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Preface

ICALP 2006, the 33rd edition of the International Colloquium on Automata,
Languages and Programming, was held in Venice, Italy, July 10–14, 2006. ICALP
is a series of annual conferences of the European Association for Theoretical
Computer Science (EATCS) which first took place in 1972. This year, the ICALP
program consisted of the established track A (focusing on algorithms, automata,
complexity and games) and track B (focusing on logic, semantics and theory of
programming), and of the recently introduced track C (focusing on security and
cryptography foundation).

In response to the call for papers, the Program Committee received 407 sub-
missions, 230 for track A, 96 for track B and 81 for track C. Out of these, 109
papers were selected for inclusion in the scientific program: 61 papers for Track
A, 24 for Track B and 24 for Track C. The selection was made by the Program
Committee based on originality, quality, and relevance to theoretical computer
science. The quality of the manuscripts was very high indeed, and several de-
serving papers had to be rejected.

ICALP 2006 consisted of four invited lectures and the contributed papers.
This volume of the proceedings contains all contributed papers presented at the
conference in Track A, together with the paper by the invited speaker Noga
Alon (Tel Aviv University, Israel). A companion volume contains all contributed
papers presented in Track B and Track C together with the papers by the invited
speakers Cynthia Dwork (Microsoft Research, USA) and Prakash Panangaden
(Mc Gill University, Canada). The program had an additional invited lecture by
Simon Peyton Jones (Microsoft Research, UK), which does not appear in the
proceedings.

ICALP 2006 was held in conjunction with the Annual ACM International
Symposium on Principles and Practice of Declarative Programming (PPDP
2006) and with the Annual Symposium on Logic-Based Program Synthesis and
Transformation (LOPSTR 2006). Additionally, the following workshops were
held as satellite events of ICALP 2006: ALGOSENSORS 2006 - International
Workshop on Algorithmic Aspects of Wireless Sensor Networks; CHR 2006 -
Third Workshop on Constraint Handling Rules; CL&C 2006 - Classical Logic
and Computation; DCM 2006 - 2nd International Workshop on Developments in
Computational Models; FCC 2006 - Formal and Computational Cryptography;
iETA 2006 - Improving Exponential-Time Algorithms: Strategies and Limita-
tions; MeCBIC 2006 - Membrane Computing and Biologically Inspired Process
Calculi; SecReT 2006 - 1st Int. Workshop on Security and Rewriting Techniques;
WCAN 2006 - 2nd Workshop on Cryptography for Ad Hoc Networks.

We wish to thank all authors who submitted extended abstracts for consid-
eration, the Program Committee for their scholarly effort, and all referees who
assisted the Program Committees in the evaluation process.



VI Preface

Thanks to the sponsors for their support, to the Venice International Uni-
versity and to the Province of Venice for hosting ICALP 2006 in beautiful S.
Servolo. We are also grateful to all members of the Organizing Committee in
the Department of Computer Science and to the Center for Technical Support
Services and Telecommunications (CSITA) of the University of Venice. Thanks
to Andrei Voronkov for his support with the conference management software
EasyChair. It was great in handling the submissions and the electronic PC meet-
ing, as well as in assisting in the assembly of the proceedings.

April 2006 Michele Bugliesi
Bart Preneel

Vladimiro Sassone
Ingo Wegener
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Mariangiola Dezani-Ciancaglini, Università di Torino, Italy
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CVR - Consorzio Venezia Ricerche



Table of Contents – Part I

Invited Lectures

Additive Approximation for Edge-Deletion Problems
Noga Alon, Asaf Shapira, Benny Sudakov . . . . . . . . . . . . . . . . . . . . . . . . . 1

Graph Theory I

Testing Graph Isomorphism in Parallel by Playing a Game
Martin Grohe, Oleg Verbitsky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

The Spectral Gap of Random Graphs with Given Expected Degrees
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A graph property is monotone if it is closed under removal of vertices and edges.
We consider the following algorithmic problem, called the edge-deletion problem;
given a monotone property P and a graph G, compute the smallest number of
edge deletions that are needed in order to turn G into a graph satisfying P . We
denote this quantity by E′

P (G). Our first result states that the edge-deletion
problem can be efficiently approximated for any monotone property.

– For any fixed ε > 0 and any monotone property P , there is a deterministic
algorithm, which given a graph G = (V,E) of size n, approximates E′

P (G)
in linear time O(|V |+ |E|) to within an additive error of εn2.

The proof is based on a strong version of Szemerédi’s Regularity Lemma
proved in [4], following the proof of the original lemma in [12] (see also [10]),
as well as on the algorithmic versions of this lemma, developed in [2], [9]. An
alternative, related approach can be developed using the techniques of [7]. The
approximation algorithm applies in many settings in which the methods of [6],
[8] and [3] do not suffice, and is related to the results of [5] on testing monotone
properties.

Given the above, a natural question is for which monotone properties one can
obtain better additive approximations of E′

P . Our second main result essentially
resolves this problem by giving a precise characterization of the monotone graph
properties for which such approximations exist.

1. If there is a bipartite graph that does not satisfy P , then there is a δ > 0 for
which it is possible to approximate E′

P to within an additive error of n2−δ

in polynomial time.
2. On the other hand, if all bipartite graphs satisfy P , then for any δ > 0 it is

NP -hard to approximate E′
P to within an additive error of n2−δ.

While the proof of (1) is a relatively simple consequence of the classical result
of [11], the proof of (2) requires several new ideas and involves tools and new
results from Extremal Graph Theory together with spectral techniques, as well
as the approach of [1] which transforms a hard sparse instance to a hard dense
one by blowing it up and combining it with a random looking instance.

Interestingly, prior to this work it was not even known that computing E′
P

precisely for the properties in (2) is NP -hard. We thus answer (in a strong form)

M. Bugliesi et al. (Eds.): ICALP 2006, Part I, LNCS 4051, pp. 1–2, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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a question of Yannakakis, who asked in 1981 if it is possible to find a large and
natural family of graph properties for which computing E′

P is NP -hard.
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Abstract. Our starting point is the observation that if graphs in a
class C have low descriptive complexity, then the isomorphism prob-
lem for C is solvable by a fast parallel algorithm. More precisely, we
prove that if every graph in C is definable in a finite-variable first order
logic with counting quantifiers within logarithmic quantifier depth, then
Graph Isomorphism for C is in TC1 ⊆ NC2. If no counting quantifiers are
needed, then Graph Isomorphism for C is even in AC1. The definability
conditions can be checked by designing a winning strategy for suitable
Ehrenfeucht-Fräıssé games with a logarithmic number of rounds. The
parallel isomorphism algorithm this approach yields is a simple combi-
natorial algorithm known as the Weisfeiler-Lehman (WL) algorithm.

Using this approach, we prove that isomorphism of graphs of bounded
treewidth is testable in TC1, answering an open question from [9]. Fur-
thermore, we obtain an AC1 algorithm for testing isomorphism of ro-
tation systems (combinatorial specifications of graph embeddings). The
AC1 upper bound was known before, but the fact that this bound can
be achieved by the simple WL algorithm is new. Combined with other
known results, it also yields a new AC1 isomorphism algorithm for planar
graphs.

1 Introduction

1.1 The Graph Isomorphism Problem

An isomorphism between two graphs G and H is a 1-to-1 correspondence between
their vertex sets V (G) and V (H) that relates edges to edges and non-edges to
non-edges. Two graphs are isomorphic if there exists an isomorphism between
them. Graph Isomorphism (GI) is the problem of recognizing if two given graphs
are isomorphic. The problem plays a prominent role in complexity theory as one
of the few natural problems in NP that are neither known to be NP-complete
nor known to be in polynomial time. There are good reasons to believe that GI is
not NP-complete; most strikingly, this would imply a collapse of the polynomial
hierarchy [7,34]. The best known graph isomorphism algorithm due to Babai,
Luks, and Zemplyachenko [1,4] takes time O(2

√
n logn), where n denotes the

� Supported by an Alexander von Humboldt fellowship.
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number of vertices in the input graphs. The strongest known hardness result
[36] says that GI is hard for DET, which is a subclass of NC2. The complexity
status of GI is determined precisely only if the problem is restricted to trees: For
trees GI is LOGSPACE-complete [24,21].

However, there are many natural classes of graphs such that the restriction of
GI to input graphs from these classes is in polynomial time. These include planar
graphs [18,19], graphs of bounded genus [13,26], graphs of bounded treewidth [5],
graphs with excluded minors [31], graphs of bounded degree [25], and graphs of
bounded eigenvalue multiplicity [3]. Here we are interested in classes of graphs
for which the isomorphism problem is solvable by a fast (i.e., polylogarithmic)
parallel algorithm. Recall the class NC and its refinements: NC =

⋃
i NCi and

NCi ⊆ ACi ⊆ TCi ⊆ NCi+1, where NCi consists of functions computable by
circuits of polynomial size and depth O(logi n), ACi is an analog for circuits with
unbounded fan-in, and TCi is an extension of ACi allowing threshold gates. As
well known [22], ACi consists of exactly those functions computable by a CRCW
PRAM with polynomially many processors in time O(logi n). Miller and Reif [27]
design an AC1 algorithm for planar graph isomorphism and isomorphism of ro-
tation systems, which are combinatorial specifications of graph embeddings (see
[28, Sect. 3.2]). Chandrasekharan [9] (see also [10]) designs an AC2 isomorphism
algorithm for k-trees, a proper subclass of graphs of treewidth k, and asks if
there is an NC algorithm for the whole class of graphs with treewidth k.

We answer this question in affirmative by showing that isomorphism of graphs
with bounded treewidth is in TC1 (see Corollary 9). Furthermore, we obtain a
new AC1-algorithm for testing isomorphism of rotation systems (see Corollary
11), which by techniques due to Miller and Reif [27] also yields a new AC1

isomorphism algorithm for planar graphs (see Corollary 12).
Remarkably, the algorithm we employ for both graphs of bounded treewidth

and rotation systems is a simple combinatorial algorithm that is actually known
since the late 1960s from the work of Weisfeiler and Lehman. This is what we
believe makes our result on rotation systems worthwhile, even though in this
case the AC1 upper bound was known before.

1.2 The Multidimensional Weisfeiler-Lehman Algorithm

For the history of this approach to GI we refer the reader to [2,8,11,12]. We
will abbreviate k-dimensional Weisfeiler-Lehman algorithm by k-dim WL. The
1-dim WL is commonly known as canonical labeling or color refinement algo-
rithm. It proceeds in rounds; in each round a coloring of the vertices of the input
graphs G and H is defined, which refines the coloring of the previous round. The
initial coloring C0 is uniform, say, C0(v) = 1 for all vertices v ∈ V (G) ∪ V (H).
In the (i + 1)st round, the color Ci+1(v) is defined to be a pair consisting of
the preceding color Ci−1(v) and the multiset of colors Ci−1(u) for all u adjacent
to v. For example, C1(v) = C1(w) iff v and w have the same degree. To keep
the color encoding short, after each round the colors are renamed (we never
need more than 2n color names). As the coloring is refined in each round, it
stabilizes after at most 2n rounds, that is, no further refinement occurs. The
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algorithm stops as soon as this happens. If the multiset of colors of the ver-
tices of G is distinct from the multiset of colors of the vertices of H , the algo-
rithms reports that the graphs are not isomorphic; otherwise, it declares them
to be isomorphic. Clearly, this algorithm is not correct. It may report false
positives, for example, if both input graphs are regular with the same vertex
degree.

Following the same idea, the k-dimensional version iteratively refines a color-
ing of V (G)k∪V (H)k. The initial coloring of a k-tuple v̄ is the isomorphism type
of the subgraph induced by the vertices in v̄ (viewed as a labeled graph where
each vertex is labeled by the positions in the tuple where it occurs). The refine-
ment step takes into account the colors of all neighbors of v̄ in the Hamming
metric (see details in Sect. 3). Color stabilization is now reached in r < 2nk

rounds. The k-dim WL is polynomial-time for each constant k. In 1990, Cai,
Fürer, and Immerman [8] proved a striking negative result: For any sublinear
dimension k = o(n), the k-dim WL does not work correctly even on graphs of
vertex degree 3. Nevertheless, later it was realized that a constant-dimensional
WL is still applicable to particular classes of graphs, including planar graphs
[14], graphs of bounded genus [15], and graphs of bounded treewidth [16].

We show that the k-dim WL admits a natural parallelization such that the
number of parallel processors and the running time are closely related to nk

and r, respectively, where r denotes the number of rounds performed by the
algorithm. Previous work never used any better bound on r than the trivial
r < 2nk, which was good enough to keep the running time polynomially bounded.
In view of a possibility that r can be much smaller, we show that the r-round
k-dim WL can be implemented on a logspace uniform family of TC circuits of
depth O(r) and size O(r ·n3k). It follows that if for a class of graphs C there is a
constant k such that for all G,H ∈ C the k-dim WL in O(log n) rounds correctly
decides if G and H are isomorphic or not, then there is a TC1 algorithm deciding
GI on C. We also prove a version of these results for a related algorithm we call
the count-free WL algorithm that places GI on suitable classes C into AC1.

1.3 Descriptive Complexity of Graphs

To prove that the k-dim WL correctly decides isomorphism of graphs from a cer-
tain class C in a logarithmic number of rounds, we exploit a close relationship
between the WL algorithm and the descriptive complexity of graphs, which was
discovered in [8]: The r-round k-dim WL correctly decides if two graphs G and
H are isomorphic in at most r rounds if and only if G and H are distinguishable
in the (k + 1)-variable first order logic with counting quantifiers in the lan-
guage of graphs by a sentence of quantifier depth r. (In)distinguishability of two
graphs in various logics can be characterized in terms of so-called Ehrenfeucht-
Fräıssé games. The appropriate game here is the counting version of the r-
round k-pebble game (see Sect. 5). The equivalence between correctness of
the r-round k-dim WL, logical indistinguishability, and its game characteri-
zation reduces the design of a TC1 isomorphism algorithm on C to the de-
sign of winning strategies in the O(log n)-round k-pebble counting game on
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graphs from the class C, for a constant k. Similarly, the design of an AC1 iso-
morphism algorithm on C can be reduced to the design of winning strategies
in the O(log n)-round k-pebble game (without counting) on graphs from the
class C.

Our results on the descriptive complexity of graphs are actually slightly stronger
than it is needed for algorithmic applications: They give O(log n) upper bounds
on the quantifier depth of a k-variable first-order sentence (with or without
counting) required to distinguish a graph G from all other graphs. For graphs of
treewidth at most k, we obtain an O(k·log n) upper bound in the (4k+4)-variable
first-order logic with counting (see Theorem 8). For rotation systems, we obtain
an O(log n) upper bound in the 5-variable first-order logic without counting (see
Theorem 10). The proofs are based on an analysis of Ehrenfeucht-Fräıssé games.

Various aspects of descriptive complexity of graphs have recently been inves-
tigated in [6,23,29,30,37] with focus on the minimum quantifier depth of a first
order sentence defining a graph. In particular, a comprehensive analysis of the
definability of trees in first order logic is carried out in [6,29,37]. Here we extend
it to the definability of graphs with bounded treewidth in first order logic with
counting. Notice a fact that makes our results on descriptive complexity poten-
tially stronger (and harder to prove): We are constrained by the condition that
a defining sentence must be in a finite-variable logic.

The rest of the paper is organized as follows. In Sect. 2 we give relevant defi-
nitions from descriptive complexity of graphs. The Weisfeiler-Lehman algorithm
is treated in Sect. 3. Section 4 contains some graph-theoretic preliminaries. Sec-
tion 5 is devoted to the Ehrenfeucht-Fräıssé game. We outline our results about
graphs of bounded treewidth in Sect. 6 and about rotation systems in Sect. 7.

2 Logical Depth of a Graph

Let Φ be a first order sentence about a graph in the language of the adjacency
and the equality relations. We say that Φ distinguishes a graph G from a graph
H if Φ is true on G but false on H . We say that Φ defines G if Φ is true on
G and false on any graph non-isomorphic to G. The quantifier rank of Φ is the
maximum number of nested quantifiers in Φ. The logical depth of a graph G,
denoted by D(G), is the minimum quantifier depth of Φ defining G.

The k-variable logic is the fragment of first order logic where usage of only k
variables is allowed. If we restrict defining sentences to the k-variable logic, this
variant of the logical depth of G is denoted by Dk(G). We have

Dk(G) = max
{

Dk(G,H) : H �∼= G
}

, (1)

where Dk(G,H) denotes the minimum quantifier depth of a k-variable sentence
distinguishing G from H . This equality easily follows from the fact that, for
each r, there are only finitely many pairwise inequivalent first order sentences
about graphs of quantifier depth at most r. It is assumed that Dk(G) = ∞
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(resp. Dk(G,H) = ∞) if the k-variable logic is too weak to define G (resp. to
distinguish G from H).

Furthermore, let cDk(G) (resp. cDk(G,H)) denote the variant of Dk(G) (resp.
Dk(G,H)) for the first order logic with counting quantifiers where we allow
expressions of the type ∃mΨ to say that there are at least m vertices with
property Ψ (such a quantifier contributes 1 in the quantifier depth irrespective
of m). Similarly to (1) we have

cDk(G) = max
{
cDk(G,H) : H �∼= G

}
. (2)

3 The k-Dim WL as a Parallel Algorithm

Let k ≥ 2. Given an ordered k-tuple of vertices ū = (u1, . . . , uk) ∈ V (G)k, we
define the isomorphism type of ū to be the pair

tp(ū) =
({

(i, j) ∈ [k]2 : ui = uj
}

,
{

(i, j) ∈ [k]2 : {ui, uj} ∈ E(G)
})

,

where [k] denotes the set {1, . . . , k}. If w ∈ V (G) and i ≤ k, we let ūi,w denote
the result of substituting w in place of ui in ū.

The r-round k-dimensional Weisfeiler-Lehman algorithm (r-round k-dim WL)
takes as an input two graphs G and H and purports to decide if G ∼= H . The
algorithm performs the following operations with the set V (G)k ∪ V (H)k.

Initial coloring. The algorithm assigns each ū ∈ V (G)k∪V (H)k color W k,0(ū)
= tp(ū) (in a suitable encoding).

Color refinement step. In the i-th round each ū ∈ V (G)k is assigned color

W k,i(ū) =
(
W k,i−1(ū),

{{
(W k,i−1(ū1,w), . . . ,W k,i−1(ūk,w)) : w ∈ V (G)

}})
and similarly with each ū ∈ V (H)k.

Here {{. . .}} denotes a multiset. In a variant of the algorithm, which will be
referred to as the count-free version, this is a set.

Computing an output. The algorithm reports that G �∼= H if{{
W k,r(ū) : ū ∈ V (G)k

}}
�=
{{

W k,r(ū) : ū ∈ V (H)k
}}

. (3)

and that G ∼= H otherwise.
In the above description we skipped an important implementation detail. To

prevent increasing the length of W k,i(ū) at the exponential rate, before every
refinement step we arrange colors of all k-tuples of V (G)k ∪ V (H)k in the lexi-
cographic order and replace each color with its number.

As easily seen, if φ is an isomorphism from G to H , then for all k, i, and
ū ∈ V (G)k we have W k,i(ū) = W k,i(φ(ū)). This shows that for the isomorphic
input graphs the output is always correct. We say that the r-round k-dim WL
works correctly for a graph G if its output is correct on all input pairs (G,H).
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Proposition 1 (Cai-Fürer-Immerman [8]).

1. The r-round k-dim WL works correctly for a graph G iff r ≥ cDk+1(G).
2. The count-free r-round k-dim WL works correctly for a graph G iff r ≥

Dk+1(G).

Theorem 2. Let k ≥ 2 be a constant and r = r(n) a function, where n denotes
the order of the input graphs.

1. The r-round k-dim WL can be implemented by a logspace uniform family of
TC circuits of depth O(r) and size O(r · n3k).

2. The count-free r-round k-dim WL can be implemented by a logspace uniform
family of AC circuits of depth O(r) and size O(r · n3k).

The proof is omitted due to space limitation and can be found in a full version
of this paper [17]. The following corollary states the most important application
of the previous theorem for us:

Corollary 3. Let k ≥ 2 be a constant.

1. Let C be a class of graphs G with cDk+1(G) = O(log n). Then Graph Iso-
morphism for C is in TC1.

2. Let C be a class of graphs G with Dk+1(G) = O(log n). Then Graph Isomor-
phism for C is in AC1.

Remark 4. The Weisfeiler-Lehman algorithm naturally generalizes from graphs
to an arbitrary class of structures over a fixed vocabulary. It costs no extra efforts
to extend Theorem 2 as well as Corollary 3 in the general situation.

4 Graph-Theoretic Preliminaries

The distance between vertices u and v in a graph G is denoted by d(u, v). If u
and v are in different connected components, we set d(u, v) =∞. The diameter
of G is defined by diam (G) = max {d(u, v) : u, v ∈ V (G)}. Let X ⊂ V (G).
The subgraph induced by G on X is denoted by G[X ]. We denote G \ X =
G[V (G) \X ], which is the result of removal of all vertices in X from G. We call
the vertex set of a connected component of G \X a flap of G \X . We call X a
separator of G if every flap of G \X has at most |V (G)|/2 vertices.

A tree decomposition of a graph G is a tree T and a family {Xi}i∈V (T ) of sets
Xi ⊆ V (G), called bags, such that the union of all bags covers all V (G), every
edge of G is contained in at least one bag, and we have Xi ∩Xj ⊆ Xl whenever
l lies on the path from i to j in T .

Proposition 5 (see Robertson-Seymour [33]). In any tree decomposition
of a graph G there is a bag that is a separator of G.

The width of the decomposition is max |Xi| − 1. The treewidth of G is the mini-
mum width of a tree decomposition of G.
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Now we introduce a non-standard notation specific to our purposes. It will
be convenient to regard it as a notation for two binary operations over sets of
vertices. Let A ⊂ V (G) and v ∈ V (G) \ A. Then A � v denotes the union of A
and the flap of G \A containing v. Furthermore, let A,C ⊂ V (G) be nonempty
and disjoint. Then A C is the union of A, C, and the set of all those vertices
x ∈ V (G) \ (A ∪C) such that there are a path from x to A in G \C and a path
from x to C in G \A.

5 Ehrenfeucht-Fräıssé Game

Let G and H be graphs with disjoint vertex sets. The r-round k-pebble Ehren-
feucht-Fräıssé game on G and H , denoted by Ehrkr (G,H), is played by two
players, Spoiler and Duplicator, with k pairwise distinct pebbles p1, . . . , pk, each
given in duplicate. Spoiler starts the game. A round consists of a move of Spoiler
followed by a move of Duplicator. At each move Spoiler takes a pebble, say pi,
selects one of the graphs G or H , and places pi on a vertex of this graph. In
response Duplicator should place the other copy of pi on a vertex of the other
graph. It is allowed to move previously placed pebbles to other vertices and place
more than one pebble on the same vertex.

After each round of the game, for 1 ≤ i ≤ k let xi (resp. yi) denote the vertex of
G (resp. H) occupied by pi, irrespectively of who of the players placed the pebble
on this vertex. If pi is off the board at this moment, xi and yi are undefined.
If after every of r rounds the component-wise correspondence (x1, . . . , xk) to
(y1, . . . , yk) is a partial isomorphism from G to H , this is a win for Duplicator;
Otherwise the winner is Spoiler.

In the counting version of the game, the rules of Ehrkr (G,H) are modified as
follows. A round now consists of two acts. First, Spoiler specifies a set of vertices
A in one of the graphs. Duplicator responds with a set of vertices B in the other
graph so that |B| = |A|. Second, Spoiler places a pebble pi on a vertex b ∈ B.
In response Duplicator has to place the other copy of pi on a vertex a ∈ A.

Proposition 6. (Immerman, Poizat, see [20, Theorem 6.10])

1. Dk(G,H) equals the minimum r such that Spoiler has a winning strategy in
Ehrkr (G,H).

2. cDk(G,H) equals the minimum r such that Spoiler has a winning strategy
in the counting version of Ehrkr (G,H).

All the above definitions and statements have a perfect sense for any kind of
structures, in particular, for colored graphs (i.e., graphs with unary predicates)
or even more complicated structures considered in Sect. 7. The following lemma
provides us with a basic primitive on which our strategy will be built.

Lemma 7. Consider the game on graphs G and G′. Let u, v ∈ V (G), u′, v′ ∈
V (G′) and suppose that u, u′ and as well v, v′ are under the same pebbles. Suppose
also that d(u, v) �= d(u′, v′) and d(u, v) �= ∞ (in particular, it is possible that
d(u′, v′) = ∞). Then Spoiler is able to win with 3 pebbles in �log d(u, v)� moves.
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Proof. Spoiler uses the halving strategy (see [35, Chap. 2] for a detailed account).

Saying that Spoiler has a fast win in the game on graphs G and G′, we will
mean that he is able to win in the next logn + O(1) moves using constantly
many pebbles irrespective of Duplicator’s strategy, where n denotes the order
of G. Consider the following configuration: A set of vertices A and two vertices
v /∈ A and u are pebbled in G, while a set A′ and vertices v′ and u′ are pebbled
in G′ correspondingly. Let u ∈ A � v but u′ /∈ A′ � v′. Applying Lemma 7 to
graphs G \ A and G′ \ A′, we see that Spoiler has a fast win (operating with 3
pebbles but keeping all the pebbles on A and A′).

Let now u /∈ A � v but u′ ∈ A′ � v′. The symmetric argument only shows
that Spoiler wins in less than log diam (G′) + 1 moves, whereas diam (G′) may
be much larger than n. However, Lemma 7 obviously applies in the case that
diam (G) �= diam (G′) and Spoiler wins fast anyway.

Assume that diam (G) = diam (G′). It follows that, if such A, v,A′, v′ are
pebbled and Spoiler decides to move only inside (A�v)∪(A′�v′), then Duplicator
cannot move outside for else Spoiler wins fast. In this situation we say that
Spoiler forces play in (A � v) ∪ (A′ � v′) or restricts the game to G[A � v]
and G′[A′ � v′]. Similarly, if at some moment of the game we have two disjoint
sets A and C of vertices pebbled in G, then Spoiler can force further play in
(A C) ∪ (A′  C′), where A′, C′ are the corresponding sets in G′.

6 Graphs of Bounded Treewidth

Theorem 8. If a graph G on n vertices has treewidth k, then cD4k+4(G) <
2(k + 1) log n + 8k + 9.

On the account of Corollary 3.1 this has a consequence for the computational
complexity of Graph Isomorphism.

Corollary 9. Let k be a constant. The isomorphism problem for the class of
graphs with treewidth at most k is in TC1.

The proof of Theorem 8 is based on Equation (2) and Proposition 6.2. Let
G′ �∼= G. We have to design a strategy for Spoiler in the Ehrenfeucht-Fräıssé
game on G and G′ allowing him to win with only 4k + 4 pebbles in less than
2(k+1) logn+8k+9 moves, whatever Duplicator’s strategy. Fix (T, {Xs}s∈V (T )),
a width-k tree decomposition of G.

It is not hard to see that Spoiler can force play on K and K ′, some non-
isomorphic components of G and G′. We hence can assume from the very begin-
ning that G and G′ are connected. Moreover, we will assume that diam (G) =
diam (G′) because otherwise Spoiler has a fast win as discussed in Sect. 5.

We here give only a high level description of the strategy (see [17] for full de-
tails). The strategy splits the game into phases. Each phase can be of two types,
Type AB or Type ABC. Whenever X ⊂ V (G) consists of vertices pebbled in some
moment of the game, by default X ′ will denote the set of vertices pebbled corre-
spondingly in G′ and vice versa. Saying that G is colored according to the pebbling,
we mean that every vertex which is currently pebbled by pj receives color j.
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Phase i of type AB. Spoiler aims to ensure pebbling sets of vertices A ⊂ V (G),
A′ ⊂ V (G′), vertices v ∈ V (G) \A, v′ ∈ V (G′) \A′, and perhaps sets of vertices
B ⊂ V (G), B′ ⊂ V (G′) so that the following conditions are met.

AB1. Let Gi = G[Ai � vi] be colored according to the pebbling and G′
i be

defined similarly. Then Gi �∼= G′
i.

AB2. |V (Gi)| ≤ |V (Gi−1)|/2 + k + 1 (we set G0 = G).
AB3. Both Gi and G′

i are connected.
AB4. A set Bi is pebbled if |V (Gi)| > 2k + 2, otherwise play comes to an

endgame. Bi is a separator of Gi and B′
i ⊂ V (G′

i).
AB5. There are distinct r, t ∈ V (T ) such that Ai ⊆ Xr and Bi ⊆ Xt.

Phase i of type ABC. Spoiler aims to ensure pebbling sets of vertices A,C ⊂
V (G), A′, C′ ⊂ V (G′) so that A ∩ C = ∅, and perhaps sets B ⊂ V (G), B′ ⊂
V (G′) so that the following conditions are met.

ABC1. Let Gi = G[Ai  Ci] be colored according to the pebbling and G′
i be

defined similarly. Then Gi �∼= G′
i.

ABC2, ABC3, and ABC4 are the same as, respectively, AB2, AB3, and AB4.
ABC5. There are pairwise distinct r, s, t ∈ V (T ) such that s ∈ ({r} � t) ∩

({t} � r) and Ai ⊆ Xr, Bi ⊆ Xs, Ci ⊆ Xt.

A choice of Bi is granted to Spoiler by Proposition 5. In the next Phase i + 1
Spoiler restricts the game to Gi and G′

i, keeping pebbles on Ai∪{vi} (or Ai∪Ci)
until the new Ai+1, vi+1 (or Ai+1, Ci+1) are pebbled. As soon as this is done,
the pebbles on Ai ∪ {vi} \ (Ai+1 ∪ {vi+1}) (or Ai ∪ Ci \ (Ai+1 ∪ Ci+1)) can be
released and reused by Spoiler in further play.

Endgame. Suppose it begins after Phase l. We have Gl �∼= G′
l and the former

graph has at most 2k + 2 vertices. Spoiler restricts the game to Gl and G′
l. If

Duplicator agrees, Spoiler obviously wins in no more than 2k + 2 moves. Once
Duplicator moves outside, Spoiler has a fast win as explained in Sect. 5, where
fast means less than log diam (Gl) + 2 ≤ log(k + 1) + 3 moves.

7 Graph Embeddings in Orientable Surfaces

We here consider cellular embeddings of connected graphs in orientable surfaces
of arbitrary genus using for them a standard combinatorial representation, see
[28, Sect. 3.2]. A rotation system R = 〈G, T 〉 is a structure consisting of a graph
G and a ternary relation T on V (G) satisfying the following conditions:

(1) If T (x, y, z), then y and z are in Γ (x), the neighborhood of x in G.
(2) For every x of degree at least 2, the binary relation Tx(y, z) = T (x, y, z)

is a directed cycle on Γ (x) (i.e., for every y ∈ Γ (x) there is exactly one z such
that Tx(y, z), for every z ∈ Γ (x) there is exactly one y such that Tx(y, z), and
the digraph Tx is connected).

Geometrically, Tx describes the circular order in which the edges of G incident
to x occur in the embedding if we go around x clockwise.
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Theorem 10. Let R = 〈G, T 〉 be a rotation system for a connected graph G
with n vertices. We have D5(R) < 3 log n + 8.

On the account of Corollary 3.2 this implies earlier results of Miller and Reif [27].

Corollary 11. The isomorphism problem for rotation systems is in AC1.

Miller and Reif give also a reduction of the planar graph isomorphism to the
isomorphism problem for rotation systems which is an AC1 reduction provided
3-connected planar graphs are embeddable in plane in AC1. The latter is shown
by Ramachandran and Reif [32].

Corollary 12. The isomorphism problem for planar graphs is in AC1.

In the rest of the section we prove Theorem 10. The proof is based on Equation
(1) and Proposition 6.1. Let R = 〈G, T 〉 be a rotation system with n vertices
and R′ = 〈G′, T ′〉 be a non-isomorphic structure of the same signature. We have
to design a strategy for Spoiler in the Ehrenfeucht-Fräıssé game on R and R′

allowing him to win with only 5 pebbles in less than 3 logn+8 moves, whatever
Duplicator’s strategy.

The main idea of the proof is to show that a rotation system admits a nat-
ural coordinatization and that Duplicator must respect vertex coordinates. A
coordinate system on R = 〈G, T 〉 is determined by fixing its origins, namely, an
ordered edge of G. We first define local coordinates on the neighborhood of a
vertex x. Fix y ∈ Γ (x) and let z be any vertex in Γ (x). Then cxy(z) is defined
to be the number of z in the order of Tx if we start counting from cxy(y) = 0.
In the global system of coordinates specified by an ordered pair of adjacent
a, b ∈ V (G), each vertex v ∈ V (G) receives coordinates Cab(v) as follows. Given
a path P = a0a1a2 . . . al from a0 = a to al = v, let Cab(v;P ) = (c1, . . . , cl)
be a sequence of integers with c1 = cab(a1) and ci = cai−1ai−2(ai) for i ≥ 2.
We define Cab(v) to be the lexicographically minimum Cab(v;P ) over all P .
Note that Cab(v) has length d(a, v). By Pv we will denote the path for which
Cab(v) = Cab(v;Pv). One can say that Pv is the extreme left shortest path from
a to v. Note that Pv is reconstructible from Cab(v) and hence different vertices
receive different coordinates. The following observation enables a kind of the
halving strategy.

Lemma 13. Let a, b, v ∈ V (G) and a′, b′, v′ ∈ V (G′), where a and b as well as
a′ and b′ are adjacent. Assume that d(a, v) = d(a′, v′) but Cab(v) �= Ca′b′(v′).
Furthermore, let u and u′ lie on Pv and Pv′ at the same distance from a and a′

respectively. Assume that Cab(u) = Ca′b′(u′). Finally, let w and w′ be predeces-
sors of u and u′ on Pv and Pv′ respectively. Then Cuw(v) �= Cu′w′(v′).

Proof. By definition, Cab(v) = Cab(u)Cuw(v) and Ca′b′(v′) = Ca′b′(u′)Cu′w′(v′).

Lemma 14. Suppose that a, b, v ∈ V (G) and a′, b′, v′ ∈ V (G′) are pebbled co-
herently to the notation. Assume that a and b as well as a′ and b′ are adjacent
and that Cab(v) �= Ca′b′(v′). Then Spoiler is able to win with 5 pebbles in less
than 3 logn + 3 moves.
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The proof of the lemma can be found in [17]. Now we are ready to describe
Spoiler’s strategy in the game on R and R′. In the first two rounds he pebbles
a and b, arbitrary adjacent vertices in G. Let Duplicator respond with adjacent
a′ and b′ in G′. If G contains a vertex v with coordinates Cab(v) different from
every Ca′b′(v′) in G′ or if G′ contains a vertex with coordinates absent in G,
then Spoiler pebbles it and wins by Lemma 14. Suppose therefore that the coor-
dinatization determines a matching between V (G) and V (G′). Given x ∈ V (G),
let f(x) denote the vertex x′ ∈ V (G′) with Ca′b′(x′) = Cab(x). If f is not an
isomorphism from G to G′, then Spoiler pebbles two vertices u, v ∈ V (G) such
that the pairs u, v and f(u), f(v) have different adjacency. Not to lose immedi-
ately, Duplicator responds with a vertex having different coordinates and again
Lemma 14 applies. If f is an isomorphism between G and G′, then this map
does not respect the relations T and T ′ and Spoiler demonstrates this similarly.
The proof of Theorem 10 is complete.

References

1. Babai, L.: Moderately exponential bound for graph isomorphism. In: Gécseg, F.
(ed.): Fundamentals of Computation Theory. Lecture Notes in Computer Science,
Vol. 117. Springer-Verlag (1981) 34–50

2. Babai, L.: Automorphism groups, isomorphism, reconstruction. In: Graham, R.L.,
Grötschel, M., Lovász, L. (eds.): Handbook of Combinatorics, Chap. 27. Elsevier
Publ. (1995) 1447–1540

3. Babai, L., Grigoryev, D.Yu., Mount, D.M.: Isomorphism of graphs with bounded
eigenvalue multiplicity. In: Proc. of the 14th ACM Symp. on Theory of Computing
(1982) 310–324

4. Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proc. of the 15th ACM
Symposium on Theory of Computing (1983) 171–183

5. Bodlaender, H.L.: Polynomial algorithms for Graph Isomorphism and Chromatic
Index on partial k-trees. J. Algorithms 11 (1990) 631–643

6. Bohman, T., Frieze, A., �Luczak, T., Pikhurko, O., Smyth, C., Spencer, J., Ver-
bitsky, O.: The first order definability of trees and sparse random graphs. E-print
(2005) http://arxiv.org/abs/math.CO/0506288

7. Boppana, R.B., H̊astad, J., Zachos, S.: Does co-NP have short interactive proofs?
Inf. Process. Lett. 25 (1987) 127–132
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Abstract. We investigate the Laplacian eigenvalues of a random graph
G(n, d) with a given expected degree distribution d. The main result
is that w.h.p. G(n, d) has a large subgraph core(G(n, d)) such that the

spectral gap of the normalized Laplacian of core(G(n, d)) is ≥ 1−c0d̄
−1/2
min

with high probability; here c0 > 0 is a constant, and d̄min signifies
the minimum expected degree. This result is of interest in order to
extend known spectral heuristics for random regular graphs to graphs
with irregular degree distributions, e.g., power laws. The present paper
complements the work of Chung, Lu, and Vu [Internet Mathematics 1,
2003].

1 Introduction

Numerous heuristics for graph partitioning problems are based on spectral meth-
ods : the heuristic sets up a matrix that represents the input graph and reads
information on the global structure of the graph out of the eigenvalues and eigen-
vectors of the matrix. Spectral techniques are very popular in areas such as VLSI
design, parallel computing, and scientific simulation [16,17].

Though in many cases there are worst-case examples known showing that
certain spectral heuristics perform badly on general instances, they seem to
perform well on many “practical” inputs. Therefore, in order to gain a better
theoretical understanding, quite a few papers deal with rigorous analyses of
spectral heuristics on random graphs, e.g., Alon, Kahale [2], Alon, Krivelevich,
Sudakov [3], or McSherry [14].

However, a crucial problem with most known spectral methods is that their use
is limited to essentially regular graphs, where all vertices have approximately the
same degree (two exceptions are [6,8], cf. below). For the spectra of the matrices
that are most frequently used to represent graphs (e.g., the adjacency matrix) are
quite susceptible to fluctuations of the vertex degrees. In effect, in the case of ir-
regular graphs their eigenvalues fail to mirror global graph properties but merely
reflect the tails of the degree distribution, cf. Mihail and Papadimitriou [15].

M. Bugliesi et al. (Eds.): ICALP 2006, Part I, LNCS 4051, pp. 15–26, 2006.
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Nonetheless, in the past decade it turned out that many interesting types
of graphs actually are extremely irregular. For example, the degree distribution
of the Internet domain graph follows a power law [9]; that is, the number of
vertices of degree d is proportional to d−γ for a constant γ > 1. Similar degree
distributions occur in further networks arising, e.g., in biology. In addition, these
graphs are usually sparse [1]. Since a power law distribution has a heavy upper
tail (i.e., there are plenty of vertices whose degrees by far exceed the average
degree), most of the known spectral methods do not apply.

In the present paper we investigate how spectral methods can be extended to
irregular graphs, and in particular, to sparse irregular graphs. As in the regu-
lar case, random graphs turn out to be a rather useful tool to analyze spectral
techniques rigorously. The random graph model we shall work with is the fol-
lowing: let V = {1, . . . , n}, and let d = (d̄(v))v∈V , where each d̄(v) is a posi-
tive real. Moreover, set d̄ = 1

n

∑
v∈V d̄(v) and suppose that d̄(v)d̄(w) ≤ d̄n for

all v, w ∈ V . Then the random graph G(n,d) has the vertex set V , and for
any two distinct vertices v, w ∈ V the edge {v, w} is present with probability
pvw = d̄(v)d̄(w)/(nd̄) independently of all others.

Hence, the expected degree of each vertex v ∈ V is
∑

w �=v pvw ∼ d̄(v), and the
expected average degree is d̄. In other words, G(n,d) is a random graph with a
given expected degree sequence d. We say that G(n,d) has some property E with
high probability (w.h.p.) if the probability that E holds tends to one as n →∞.
Possibly G(n,d) is the simplest model of a random irregular graph; its advantage
is that it can model graphs with very general degree distributions, including but
not limited to power laws. There are, however, also relevant generative models
of power law graphs (cf. [4] for details).

There are essentially two previous papers [6,8] that successfully apply spectral
methods to the G(n,d) model. Chung, Lu, and Vu [6] studied the eigenvalue
distribution of the normalized Laplacian matrix of G(n,d). They showed that
its spectrum does reflect global properties, provided that minv∈V d̄(v) ≥ ln2 n,
i.e., the graph is dense enough. (By contrast, in the irregular case the spectrum
of the adjacency matrix does not mirror global properties [15].) Furthermore, the
normalized Laplacian was also used by Dasgupta, Hopcroft, and McSherry [8]
to devise a heuristic for partitioning sufficiently dense random irregular graphs
(with average degree � ln6 n); their model is closely related to G(n,d).

We complement the work of Chung, Lu, and Vu [6] by studying the normalized
Laplacian of sparse random graphs G(n,d), e.g., with average degree indepen-
dent of n. We believe that this extension is significant, because sparse graphs are
the most appropriate to model real networks [1,9]. In comparison with the dense
case, dealing with sparse graphs requires new techniques, as both the proofs and
the results of [6] depend crucially on the assumption that the minimum expected
degree is � ln2 n. In addition, we indicate a few algorithmic applications of our
main result, which show how spectral algorithms for random regular graphs can
be extended to the irregular case.

Before discussing related work in Section 3, we state the results. Finally, in
Section 4 we sketch the proof of the main theorem.
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2 Results

Let us recall the definition of the normalized Laplacian L(G) of a graph G =
(V,E). Letting dG(v) denote the degree of v in G, for v, w ∈ V we define �vw = 1
if v = w and dG(v) > 0, �vw = −1/

√
dG(v)dG(w) if {v, w} ∈ E, and �vw =

0 otherwise. Then L(G) = (�vw)v,w∈V . This matrix is singular and positive
semidefinite, and its largest eigenvalue is ≤ 2 (cf. [5]). Letting 0 = λ1(L(G)) ≤
· · · ≤ λ#V (L(G)) denote its eigenvalues, we call min{λ2(L(G)), 2−λ#V (L(G))}
the spectral gap of L(G).

The spectral gap is a most interesting parameter, because it is directly related
to combinatorial graph properties. To see this, let G = (V,E) be an arbitrary
graph. Then we say that G has (α, β)-low discrepancy if for any two disjoint sets
X,Y ⊂ V the following holds. Letting eG(X,Y ) denote the number of X-Y -edges
in G and setting d(X,Y ) =

∑
(v,w)∈X×Y dG(v)dG(w), we have

|e(X,Y )− d(X,Y )/(2#E)| ≤ (1 − α)
√

d(X,Y ) + β and (1)

|2e(X,X)− d(X,X)/(2#E)| ≤ (1 − α)
√

d(X,X) + β. (2)

An easy computation shows that d(X,Y )/(2#E) is the number of X-Y -edges
that we would expect if G were a random graph with expected degree sequence
(dG(v))v∈V ; similarly, d(X,X)/(4#E) is the expected number of edges inside of
X . Thus, the closer α < 1 is to 1 and the smaller β ≥ 0, the more G “looks like”
a random graph if (1) and (2) hold.

Now, if the spectral gap of L(G) is ≥ γ, then G has (γ, 0)-low discrepancy [5].
Hence, the larger the spectral gap, the more G resembles a random graph. There-
fore, if the normalized Laplacian provides a reasonable way to represent graphs
with degree sequence d, then the spectral gap of G(n,d) should be large.

Chung, Lu, and Vu [6] proved that this is indeed the case, provided that
the minimum expected degree d̄min = minv∈V d̄(v) satisfies d̄min � ln2 n. More
precisely, they proved

spectral gap of L(G(n,d)) ≥ 1− (1 + o(1))4d̄−1/2 − d̄−1
min ln2 n w.h.p. (3)

As for general graphs with average degree d̄ the spectral gap is at most 1 −
4d̄−1/2, the bound (3) is very strong and in general best possible.

However, (3) is obviously void if d̄min ≤ ln2 n (because the r.h.s. is negative).
In fact, the following proposition shows that if d̄ is small, then the spectral gap
of L(G(n,d)) is just 0, even if the expected degrees of all vertices coincide.

Proposition 1. Let d > 0 be arbitrary but constant, set dv = d for all v ∈ V ,
and let d = (dv)v∈V . Let λ∗ denote the smallest positive eigenvalue of L(G(n,d)),
and let λ∗ be the largest. Then for any constant ε > 0 we have λ∗ < ε and λ∗ = 2
w.h.p.

Nonetheless, our main result is that even in the sparse case w.h.p. G(n,d) has
a large subgraph core(G) on which a similar statement as (3) holds.
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Theorem 2. There are constants c0, d0 > 0 such that the following holds. Sup-
pose that d = (d̄(v))v∈V satisfies

d0 ≤ d̄min = min
v∈V

d̄(v) ≤ max
v∈V

d̄(v) ≤ n0.99. (4)

Then w.h.p. the random graph G = G(n,d) has an induced subgraph core(G)
that enjoys the following properties.

1. We have
∑

v∈G−core(G) dG(v) ≤ n exp(−d̄min/c0).

2. The spectral gap of L(core(G)) is ≥ 1− c0d̄
−1/2
min .

Thus, the spectral gap of the core is close to 1 if d̄min is not too small. It
is instructive to compare Theorem 2 with (3), cf. Remark 8 below for details.
Further, in Remark 7 we point out that the bound on the spectral gap given in
Theorem 2 is best possible up to the precise value of the constant c0.

Theorem 2 has a few interesting algorithmic implications. Namely, we can extend
a couple of algorithmic results for random graphs in which all expected degrees
are equal to the irregular case.

Corollary 3. There is a polynomial time algorithm LowDisc that satisfies the
following two conditions.

Correctness. For any input graph G, LowDisc outputs two numbers α, β such
that G has (α, β)-low discrepancy.

Completeness. If G = G(n,d) is a random graph such that d satisfies the as-
sumption (4) of Theorem 2, then α ≥ 1−c0d̄

−1/2
min and β ≤ 2n exp(−d̄min/c0)

w.h.p.

LowDisc relies on the fact that for a given graph G the subgraph core(G) can be
computed efficiently. Then, LowDisc computes the spectral gap of L(core(G)) to
bound the discrepancy of G. Hence, Corollary 3 shows that spectral techniques
do yield information on the global structure of random irregular graphs G(n,d),
even in the sparse case.

One could object that we might as well derive by probabilistic techniques such
as the “first moment method” that G(n,d) has low discrepancy w.h.p. However,
such arguments just show that “most” graphs G(n,d) have low discrepancy. By
contrast, the statement of Corollary 3 is much stronger: for a given outcome
G = G(n,d) of the random experiment we can find a proof that G has low
discrepancy in polynomial time.

Since the discrepancy of a graph is closely related to quite a few prominent
graph invariants that are (in the worst case) NP-hard to compute, we can apply
Corollary 3 to obtain further algorithmic results on random graphs G(n,d).
For instance, we can bound the independence number α(G(n,d)) efficiently. In
addition, we have the following result on the chromatic number χ(G(n,d)).

Corollary 4. There exists a polynomial time algorithm BoundChi that satisfies
the following conditions.
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Correctness. For any input graph G BoundChi outputs a lower bound χ ≤ χ(G)
on the chromatic number.

Completeness. If G = G(n,d) is a random graph such that d satisfies (4),
then χ ≥ c1d̄

1/2 w.h.p., for a certain constant c1 > 0.

Corollaries 3 and 4 extends results from [10,13] for G(n, p) to the G(n,d) model.
(Actually Corollary 4 relies on a somewhat modified construction of the subgraph
core(G); we omit the details.)

3 Related Work

A large number of authors have studied the Erdős-Rényi model G(n, p) of ran-
dom graphs, where 0 ≤ p ≤ 1 is the expected density of the graph. The G(n, p)
model is the same as G(n,d) with d̄(v) = np for all v. With respect to the eigen-
values λ1(A) ≤ · · · ≤ λn(A) of the adjacency matrix A = A(G(n, p)), Füredi and
Komlós [12] proved that if np(1 − p) � ln6 n, then max{−λ1(A), λn−1(A)} ≤
(2 + o(1))(np(1 − p))1/2 and λn(A) ∼ np. Furthermore, Feige and Ofek [10]
showed that max{−λ1(A), λn−1(A)} ≤ O(np)1/2 and λn(A) = Θ(np) also holds
w.h.p. under the weaker assumption np ≥ lnn.

By contrast, in the sparse case (say, d̄ = np = O(1) as n → ∞), neither
λn(A) = Θ(d̄) nor max{−λ2(A), λn−1(A)} ≤ O(d̄)1/2 is true w.h.p. For if d̄ =
O(1), then the vertex degrees of G = G(n, p) have (asymptotically) a Poisson
distribution with mean d̄. Consequently, the degree distribution features a fairly
heavy upper tail. Indeed, the maximum degree is Ω(ln n/ ln lnn) w.h.p., and
the high degree vertices induce both positive and negative eigenvalues as large
as Ω(ln n/ ln lnn)1/2 in absolute value. Nonetheless, following an idea of Alon
and Kahale [2] and building on the work of Kahn and Szemerédi [11], Feige and
Ofek [10] showed that the graph G′ = (V ′, E′) obtained by removing all vertices
of degree, say, > 2d̄ from G w.h.p. satisfies max{−λ1(A(G′)), λ#V ′−1(A(G′))} =
O(d̄1/2) and λ#V (G′)(A(G′)) = Θ(d̄). The articles [10,12] are the basis of several
papers dealing with rigorous analyses of spectral heuristics on random graphs
(e.g., [3,14]). Further, the first author [7] used [10,12] to investigate the Laplacian
of G(n, p).

The graphs we are considering in this paper may have a significantly more
general (i.e., irregular) degree distribution than even the sparse random graph
G(n, p). In fact, such irregular degree distributions occur in real-world networks,
cf. Section 1. While such networks are frequently modeled best by sparse graphs,
(i.e., d̄ = O(1) as n → ∞) the maximum degree may very well be as large as
nΩ(1), i.e., not only logarithmic but even polynomial in n. As a consequence, the
eigenvalues of the adjacency matrix are determined by the upper tail of the de-
gree distribution rather than by global graph properties (cf. [15]). Furthermore,
the idea of Feige and Ofek [10] of just deleting the vertices of degree � d̄ is not
feasible, because the high degree vertices constitute a significant share of the
graph. Thus, the adjacency matrix is simply not appropriate to represent power
law graphs.
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As already mentioned in Section 1, Chung, Lu, and Vu [6] were the first to
obtain rigorous results on the normalized Laplacian. In addition to the afore-
mentioned estimate (3), they also proved that the global distribution of the
eigenvalues follows the semicircle law. Their proofs rely on the “trace method” of
Wigner [18], i.e., Chung, Lu, and Vu (basically) compute the trace of L(G(n,d))k

for a large even number k. Since this equals the sum of the k’th powers of the
eigenvalues of L(G(n,d)), they can thus infer information on the distribution of
the eigenvalues.

However, the proofs in [6] hinge upon the assumption that d̄min � ln2 n, and
indeed there seems to be no easy way to extend the trace method to the sparse
case (even if d̄(v) = d̄ for all v ∈ V ). Therefore, in the present paper instead
of relying on the trace method we extend a technique developed by Kahn and
Szemerédi [11] to analyze the spectral gap of random regular graphs to the
irregular case. In addition, we also need to extend some methods from the first
author’s analysis [7] of the Laplacian of G(n, p) to irregular degree distributions.

4 The Spectral Gap of the Laplacian

In this section we sketch the proof of Theorem 2. We state the definition of the
core exactly in Section 4.1. Then, in Section 4.2 we outline how to prove that
the Laplacian of core(G(n,d)) has a large spectral gap w.h.p. In the remaining
subsections we sketch some of the proof details. We always assume that (4)
holds, that c0, d0 > 0 are sufficiently large constants, and that n is large enough.
No attempt has been made to optimize the constants involved in the analysis.

Let us briefly introduce some notation. Throughout, we let V = {1, . . . , n}.
Moreover, if G = (V,E) is a graph and X,Y ⊂ V , then eG(X,Y ) signifies
the number of X-Y -edges in G. We denote the degree of v ∈ V by dG(v).
Further, by µ(X,Y ) we denote the expected number of X-Y -edges in a random
graph G = G(n,d). If X = Y , then we abbreviate eG(X) = eG(X,X) and
µ(Y ) = µ(Y, Y ). Additionally, let Vol(X) =

∑
v∈X d̄(v).

If M = (mvw)v,w∈V is a matrix and X,Y ⊂ V , then MX×Y denotes the
matrix with entries (m′

vw)v,w∈V , where m′
vw = mvw if (v, w) ∈ X × Y , and

m′
vw = 0 otherwise. If X = Y , we briefly write MX = MX×X .

4.1 The Definition of Core(G(n,d))

To motivate the definition of the core, let us discuss why L(G(n,d)) may have
positive eigenvalues much smaller than one. Basically the reason is the existence
of vertices of small degree. Indeed, consider v ∈ V such that d̄(v) ≤ 2d̄, say. Then
the actual degree dG(v) is a sum of independent Bernoulli variables. Therefore,
if d̄max = o(

√
n) and d̄ = O(1) as n→∞, then an easy computation shows that

dG(v) is much smaller than d̄(v) (or even dG(v) = 0) with probability bounded
away from 0. Therefore, w.h.p. for each 0 ≤ d < d̄min there are Ω(n) vertices with
degree d in G(n,d). Furthermore, these small degree vertices can easily cause
the spectral gap to be tiny. To see this, we call a vertex v of G(n,d) a (d, d)-star
if v has degree d, its neighbors v1, . . . , vd have degree d as well, and {v1, . . . , vd}
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is an independent set. Then, using standard random graph arguments, we can
prove the following.

Lemma 5. Let d ≤ d̄ = O(1) ≤ d̄max = o(
√

n). Then G(n,d) has a (d, d)-star
w.h.p.

Now, a (d, d)-star induces the eigenvalues 1 ± (1 − o(1))d−1/2: define a vector
ξ = (ξw)w∈V by letting ξv = d1/2, ξvi = 1 for 1 ≤ i ≤ d, and ξw = 0 for all
other vertices w. Then ‖ξ‖−2 〈L(G)ξ, ξ〉 = 1− d−1/2; similarly, one could define
a vector η such that ‖η‖−2 〈L(G)η, η〉 = 1+ d−1/2. Hence, Lemma 5 entails that
w.h.p. the spectral gap is much smaller than 1− d̄

−1/2
min .

Thus, to construct a subgraph of G = G(n,d) with a large spectral gap, we
need to get rid of the small degree vertices. To this end, we consider the following
process.

CR1. Initially let H = G− {v : dG(v) ≤ 0.01d̄min}.
CR2. While there is a vertex v ∈ H that has ≥ max{c0, exp(−d̄min/c0)dG(v)}

neighbors in G−H , remove v from H .

Hence, in the first step CR1 we just remove all vertices of degree much smaller
than d̄min. This is, however, not yet sufficient; for the deletion of these vertices
might create new vertices of small degree. Therefore, CR2 iteratively removes
vertices that have plenty of neighbors that were removed before. The final out-
come H of the process is core(G). Observe that by construction all vertices
v ∈ core(G) satisfy

dcore(G)(v) ≥ d̄min

200
, e(v,G− core(G)) < max{c0, exp(−c−1

0 d̄min)dG(v)}. (5)

Additionally, in the analysis of the spectral gap of L(core(G)) in Section 4.2,
we will need to consider the following subgraph S, which is defined by a “more
picky” version of CR1–CR2:

S1. Initially, let S = core(G) − {v ∈ V : |dH(v)− d̄(v)| ≥ 0.01d̄(v)}.
S2. While there is a v ∈ S so that eG(v,G−S) ≥ max{c0, dG(v) exp(−d̄min/c0)},

remove v from S.

Then by (4) after the process S1–S2 has terminated, every vertex v ∈ S satisfies∣∣dS(v)− d̄(v)
∣∣ ≤ d̄(v)

50 .
An important property of core(G) is that given just d̄min, G (and c0), we can

compute core(G) efficiently (without any further information about d). This fact
is the basis of the algorithmic applications (Corollaries 3 and 4). By contrast,
while S will be useful in the analysis of L(core(G)), it cannot be computed
without explicit knowledge of d.

Let us finally point out that w.h.p. S and thus core(G) constitutes a huge
fraction of G = G(n,d). We sketch the proof of the following proposition in
Section 4.3.

Proposition 6. W.h.p. Vol(V \ core(G)) ≤ Vol(V \ S) ≤ exp(−100d̄min/c0)n.
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Remark 7. Letting d = d̄min and assuming that d̄ = O(1) as n → ∞, one can
derive that w.h.p. core(G(n, p)) contains a (d, d)-star. Hence, a similar argument
as above shows that the spectral gap of L(core(G(n,d))) is at most 1 − d̄

−1/2
min .

Thus, Theorem 2 essentially best possible (up to the precise value of c0).

Remark 8. While the result (3) of Chung, Lu, and Vu [6] is void if d̄min ≤ ln2 n,
in the case d̄min � ln2 n its dependence on d̄min is better than the estimate
provided by Theorem 2. In the light of Remark 7, this shows that in the dense
case d̄min � ln2 n “bad” local structures such as (d̄min, d̄min)-stars just do not
occur w.h.p.

4.2 Proof of Theorem 2: Outline

We let G = (V,E) = G(n,d), H = core(G), and ω = (dG(v)1/2)v∈V . Then
L(H)ω = 0, so that our task is to estimate the spectral radius of M = E−L(H)
restricted to the orthogonal complement of ω (where E signifies the identity
matrix). A crucial issue is that the entries of M are mutually dependent random
variables. For if two vertices v, w ∈ H are adjacent, then the vw’th entry of M
is (dH(v)dH(w))−1/2, and of course dH(v), dH(w) are neither mutually indepen-
dent nor independent of the presence of the edge {v, w}. A further source of
dependence is that we restrict ourselves to the core H of G.

Therefore, instead of M it would be much easier to deal with the matrix
M = (muv)u,v∈V with entries muv = (d̄(u)d̄(v))−1/2 if {u, v} ∈ E, and muv = 0
otherwise; that is, inM the entries are normalized by the expected degrees rather
than by the actual degrees. Hence, the entries of M are mutually independent.

To relate M and M, we decompose M into four blocks M = MS + MH−S +
M(H−S)×S + MS×(H−S), where S is the set constructed in the process S1–S2
(cf. Section 4.1). Then MS should be “similar” to MS , because for all v ∈ S the
degree dH(v) is close to its mean d̄(v). Thus, to analyze MS , we investigate the
norm of MS on the orthogonal complement of the vector ω̄ = (d̄(v)1/2)v∈H .

Lemma 9. We have sup0�=χ,ξ⊥ω̄
|〈MSξ,χ〉|
‖ξ‖·‖χ‖ ≤ c1d̄

− 1
2

min for some constant c1 > 0
w.h.p.

The proof of Lemma 9 builds on a powerful technique developed by Kahn and
Szemerédi [11] to investigate the spectral gap of random regular graphs. The
generalization of this method to the irregular case is somewhat involved; there-
fore, in Section 4.5, we just give a brief sketch of the proof of Lemma 9, omitting
most of the details.

Using Lemma 9, we can bound the norm of MS on the orthogonal complement
of ω. To this end, we basically need to investigate how much the actual degree
distribution on S differs from the expected degree distribution.

Corollary 10. There is a constant c2 > 0 such that sup0�=ξ⊥ω
‖MSξ‖
‖ξ‖ ≤ c2d̄

− 1
2

min
w.h.p.
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To bound ‖MH−S‖, we show that H − S is “tree-like”. More precisely, we can
decompose the vertex set of H−S into classes Z1, . . . , ZK such that every vertex
v ∈ Zj has only few neighbors in the classes Zi with indices i ≥ j.

Lemma 11. W.h.p. H −S has a decomposition V (H −S) =
⋃K
j=1 Zj such that

for all j and all v ∈ Zj we have e(v,
⋃K
i=j Zi) ≤ max{c0, exp(−d̄min/c0)dG(v)}.

Using Proposition 6 and Lemma 11, in Section 4.4 we bound ‖MH−S‖.

Proposition 12. W.h.p. ‖MH−S‖ ≤ 21d̄−1/2
min .

Furthermore, similar computations as in the proof of Proposition 12 yield the
following bound on ‖M(H−S)×S‖.

Proposition 13. We have ‖MS×(H−S)‖ = ‖M(H−S)×S‖ ≤ 2c1/2
0 d̄

−1/2
min .

Finally, combining Corollary 10 with Propositions 12 and 13, we conclude that
there is a constant c3 > 0 such that sup0�=ξ⊥ω

‖Mξ‖
‖ξ‖ ≤ c3d̄

− 1
2

min w.h.p. Since
L(H)ω = 0, this implies the assertion on the spectral gap of L(H) = E −
M in Theorem 2. Moreover, the first part of Theorem 2 follows directly from
Proposition 6.

4.3 Proof of Proposition 6

To bound Vol(V \S), we first estimate the volume of the set of vertices removed
by S1.

Lemma 14. There is a constant k1 > 0 such that the set R = {v ∈ V : |dG(v)−
d̄(v)| ≥ 0.01d̄(v)} has volume Vol(R) ≤ n exp(−k1d̄min) w.h.p.

The proof relies on Chernoff bounds and Azuma’s inequality. As a second step, we
analyze the volume of the set of vertices removed during the iterative procedure
in step S2.

Lemma 15. The set T removed by S2 satisfies Vol(T ) ≤ n exp(−101d̄min/c0)
w.h.p.

The proof of Lemma 15 relies on the fact that w.h.p. in G(n,d) there do not
occur sets U,U ′ ⊂ V such that e(U,U ′) exceeds its mean µ(U,U ′) “too much”.

Lemma 16. G = G(n,d) enjoys the following property w.h.p.

Let U,U ′ ⊂ V be subsets of size u = #U ≤ u′ = #U ′ ≤ n
2 . Then at least

one of the following conditions holds.

1. eG(U,U ′) ≤ 300µ(U,U ′).
2. eG(U,U ′) ln(eG(U,U ′)/µ(U,U ′)) ≤ 300u′ ln(n/u′).

(6)
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Proof of Lemma 15 (sketch). By Lemma 14 we have Vol(R) ≤ exp(−k1d̄min)n.
Suppose S2 removes the vertices T = {z1, . . . , zk}, and assume that the volume of
T is “large” – say, Vol(T ) > exp(k1d̄min/10)Vol(R). Then we can choose j∗ < k
as large as possible so that Vol(R ∪ {z1, . . . , zj∗}) ≤ exp(k1d̄min/10)Vol(R). Set
Z = {z1, . . . , zj∗+1}. Then trite computations show that U = U ′ = R ∪ Z
violate (6), i.e., R∪Z is an “atypically dense” set of “small” volume. Hence, the
assertion follows from Lemma 16. ��

4.4 Proof of Proposition 12

Let Z1, . . . , ZK be a decomposition of H − S as in Lemma 11. We set Z≥j =⋃K
i=j Zi and define Z<j , Z>j analogously. Let ξ = (ξv)v∈H be a unit vector, and

set η = (ηw)w∈H = MH−Sξ. Our objective is to bound ‖η‖. For v ∈ Zj we set

ρv =
∑

w∈NH(v)∩Z≥j

ξw
(dH(v)dH(w))1/2

, σv =
∑

w∈NH(v)∩Z<j

ξw
(dH(v)dH(w))1/2

.

Then the entries of η are ηv = ρv + σv if v ∈ H − S, and ηv = 0 for v ∈ S.
Setting αj =

∑
v∈Zj

ρ2
v and βj =

∑
v∈Zj

σ2
v, we have ‖η‖2 ≤ 2

∑K
j=1 αj + βj .

To bound
∑K

j=1 αj , we apply the Cauchy-Schwarz inequality, which yields

αj ≤
∑
v∈Zj

∑
w∈NH(v)∩Z≥j

e(v, Z≥j)ξ2
w

dH(v)dH(w)
. (7)

As by Lemma 11 e(v, Z≥j) ≤ max{c0, exp(−d̄min/c0)dH(v)} for all v ∈ Zj ,

αj
(7)
≤
(

c0

minv∈H dH(v)
+ exp(−d̄min/c0)

) ∑
v∈Zj

∑
w∈NH(v)∩Z≥j

ξ2
w

dH(w)
. (8)

Further, as dH(v) ≥ 1
2dG(v) ≥ d̄min/200 for all v ∈ H by (5), (8) implies

K∑
j=1

αj ≤
201
d̄min

K∑
j=1

∑
w∈Zj

e(w,Z≤j)ξ2
w

dH(w)
≤ 201

d̄min

∑
w∈H−S

ξ2
w ≤

201
d̄min

‖ξ‖2 ≤ 201
d̄min

.

Similar computations yield
∑K

j=1 βj ≤ 201
d̄min

, so that ‖η‖ ≤ 21d̄−1/2
min , as desired.

4.5 Proof of Lemma 9

Let Q be the set of all x ∈ RV such that xv = 0 for all v ∈ V \ S, let S consist
of all ω̄ ⊥ x ∈ RV of norm ‖x‖ ≤ 1, and set S′ = S ∩Q. Then our objective is
to prove that max {|〈Mx, y〉| : x, y ∈ S′} ≤ c1d̄

− 1
2

min for a certain constant c1 > 0
w.h.p. To this end, we shall replace the infinite set S′ by a finite set T ′ such that

max
x,y∈S′

|〈Mx, y〉| ≤ 5 max
x,y∈T ′

|〈Mx, y〉|+ 4. (9)



The Spectral Gap of Random Graphs with Given Expected Degrees 25

Then, it suffices to prove that maxx,y∈T ′ |〈Mx, y〉| ≤ c2d̄
−1/2
min w.h.p. for some

constant c2 > 0.
Let T be the set of all lattice points x ∈ (0.01n−1/2Z)n of norm ‖x‖ ≤ 1 such

that | 〈ω̄, x〉 | ≤ d̄ 1/2n−1/2. Then, set T ′ = T ∩Q.

Lemma 17. The set T ′ satisfies (9), and #T ≤ cn3 for some constant c3 > 0.

Given vectors x = (xu)u∈V , y = (yv)v∈V ∈ RV , we define

B(x, y) =
{

(u, v) ∈ V 2 : n2d̄min |xuyv|2 < d̄(u)d̄(v)
}

, Xx,y =
∑

(u,v)∈B(x,y)

muvxuyv.

Our goal is to prove that there exist constants c4, c5 > 0 such that w.h.p. σ =
maxx,y∈T |Xx,y| ≤ c4d̄

− 1
2

min and τ = maxx,y∈T ′
∑

(u,v) �∈B(x,y) |muvxuyv| ≤ c5d̄
− 1

2
min.

In order to estimate σ, we first bound the expectation of Xx,y.

Lemma 18. There is a constant c6 > 0 such that |E(Xx,y)| ≤ c6d̄
−1/2
min for all

x, y ∈ T .

Lemma 18 follows fairly easily from the definition of B(x, y). Secondly, we can
bound the probability that Xx,y deviates from its expectation significantly.

Lemma 19. Let x, y ∈ Rn, ‖x‖, ‖y‖ ≤ 1. Then for any constant C > 0 there
exists a constant K > 0 such that P

[
|Xx,y − E(Xx,y)| > Kd̄

−1/2
min

]
≤ C−n.

Proof. We shall prove below that E(exp(nd̄
1/2
minXx,y)) ≤ exp((c6 + 8)n). Then

Markov’s inequality implies that P(Xx,y ≥ Kd̄
−1/2
min ) ≤ exp [(c6 + 8−K)n].

Hence, choosing K large enough, we can ensure that the r.h.s. is ≤ 1
2 exp(−Cn).

As a similar estimate holds for −Xx,y = X−x,y, we obtain the desired estimate.
To bound E(exp(nd̄

1/2
minXx,y)), we set λ = nd̄

1/2
min, and we let αuv signify the

possible contribution of the edge {u, v} to Xx,y (u, v ∈ V ). Thus, if, e.g., (u, v) ∈
B(x, y) and (v, u) �∈ B(x, y), then αuv = (d̄(u)d̄(v))−1/2xuyv. Moreover, let
Xx,y(u, v) = αuv if {u, v} ∈ G, and Xx,y(u, v) = 0 otherwise. Finally, let E =
{{u, v} : u, v ∈ V }, so that Xx,y =

∑
{u,v}∈E Xx,y(u, v).

Then E(exp(λXx,y)) =
∏

{u,v}∈E [puv(exp(λαuv)− 1) + 1], because the ran-
dom variables Xx,y(u, v), {u, v} ∈ E , are mutually independent. Moreover, by
the definition of B(x, y) for all(u, v) ∈ B(x, y) we have λαuv ≤ 2. Thus,

E(exp(λXx,y)) ≤
∏

{u,v}∈E

[
1 + puvλαuv + 2puvλ2α2

uv

]
Lemma 18
≤ exp

c6n + 2λ2
∑

{u,v}∈E
puvα

2
uv

 . (10)

Furthermore, a straight computation yields λ2∑
{u,v}∈E puvα

2
uv ≤ 4n. Plugging

this estimate into (10), we conclude that E(exp(λXx,y)) ≤ exp((c6 + 8)n). ��
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Combining Lemmas 18 and 19, we conclude that there is a constant c4 > 0
such that P(|Xx,y| > c4d̄

−1/2
min ) ≤ (2c2

3)−n for any two points x, y ∈ T . Therefore,
invoking Lemma 17, we get P(maxx,y∈T |Xx,y| > c4d̄

−1/2
min ) ≤ #T ·(2c2

3)
−n ≤ 2−n,

thereby proving that σ ≤ c4d̄
−1/2
min w.h.p. Finally, the estimate of τ relies on

Lemma 16 (details omitted).
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Embedding Bounded Bandwidth Graphs into �1
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Abstract. We introduce the first embedding of graphs of low bandwidth
into �1, with distortion depending only upon the bandwidth. We extend
this result to a new graph parameter called tree-bandwidth, which is very
similar to (but more restrictive than) treewidth. This represents the first
constant distortion embedding of a non-planar class of graphs into �1.
Our results make use of a new technique that we call iterative embedding
in which we define coordinates for a small number of points at a time.

1 Introduction

Our main result is a technique for embedding graph metrics into �1, with dis-
tortion depending only upon the bandwidth of the original graph. A graph has
bandwidth k if there exists some ordering of the vertices such that any two ver-
tices with an edge between them are at most k apart in the ordering. While this
ordering could be viewed as an embedding into one-dimensional �1 with bounded
expansion (any two vertices connected by an edge must be close in the ordering),
the contraction of such an embedding is unbounded (there may be two vertices
which are close in the ordering but not in the original metric). Obtaining an em-
bedding with bounded distortion (in terms of both expansion and contraction)
turns out to be non-trivial.

In fact, our results can be extended to a new graph parameter that we call
tree-bandwidth. We observe that metrics based on trees are easy to embed into �1
isometrically, despite the fact that even a binary tree can have large bandwidth.
The tree-bandwidth parameter is a natural extension of bandwidth, where ver-
tices are placed along a tree instead of being ordered linearly. We prove that the
shortest path metric of an unweighted graph can be embedded into �1 with dis-
tortion depending only upon the tree-bandwidth of the graph (thus independent
of the number of vertices).

We achieve these results by introducing a novel technique for iterative embed-
ding of graph metrics into �1. The idea is to partition the graph into small sets
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and embed each set separately. The coordinates of each specific point are deter-
mined when the set containing that point is embedded. Two embeddings will
be computed for each set of points. One is generated via some local embedding
technique, and maintains accurate distances between the members of the same
set. The other embedding copies a set of “parent” points; the goal is to maintain
small distances between points and their parents. These two sets of coordinates
will be carefully combined to generate the final coordinates for the new set of
points. We then proceed to the next set in the ordering.

For ease of exposition we use a very simple local embedding technique in this
paper. However, we have also proven a more general result in which we show
that with iterative embedding, any reasonable local embedding technique suffices
for embedding into �1 with distortion dependent only upon the tree-bandwidth
(proof omitted). This leaves open the possibility that the dependence on the
tree-bandwidth could be improved with a different local embedding technique.

The motivation for our work is a conjecture (stated by Gupta et al. [9] and
others) that excluded-minor graph families can be embedded into �1 with distor-
tion dependent only upon the set of excluded minors. This is one of the major
conjectures in metric embedding, and many previous results have resolved special
cases of this conjecture. However, all previous �1 embedding results either yield
distortion dependent upon the number of points in the metric [4,15], or apply
only to a subset of the planar graphs [13,9,6]. While our results do not resolve the
conjecture, we are able to embed a well-studied subclass of graphs (bandwidth-k
graphs) with distortion independent of the number of points in the metric. This
is the first such result for a non-planar graph class. In addition, our definition of
tree-bandwidth is similar to (although possibly weaker than) treewidth. While we
conjecture that there exist families of graphs with low treewidth but unbounded
tree-bandwidth, it is interesting to note that weighted treewidth-k graphs can be
embedded with constant distortion into weighted tree-bandwidth-O(k) graphs.

We note that at each step, our embedding technique requires the existence of
a previously embedded “parent” set such that each point of the new set is close
to one of the parents, but no point in the new set is close to any other previously
embedded set. This property implies the existence of a hierarchy of small node
separators (small sets of nodes which partition the graph), which is exactly the
requirement for a graph of low treewidth. However, we also need each point to
be close to some member of the parent set, which motivates our definition of the
tree-bandwidth parameter.

1.1 Related Work

A great deal of recent work has concentrated on achieving tight distortion bounds
for �1 embedding of restricted classes of metrics. For general metrics with n
points, the result of Bourgain[4] showed that embedding into �1 with O(log n)
distortion is possible. A matching lower bound (using expander graphs) was
introduced by LLR [11]. It has been conjectured by Gupta et al. [9], and In-
dyk [10] that the shortest-path metrics of planar graphs can be embedded into
�1 with constant distortion. Gupta et al. [9] also conjecture that excluded-minor



Embedding Bounded Bandwidth Graphs into �1 29

graph families can be embedded into �1 with distortion that depends only on
the excluded minors. In particular, this would mean that for any k the family of
treewidth-k graphs could be embedded with distortion f(k) independent of the
number of nodes in the graph1. Such results would be the best possible for very
general and natural classes of graphs.

Since Okamura and Seymour [13] showed that outerplanar graphs can be
embedded isometrically into �1, there has been significant progress towards re-
solving several special cases of the aforementioned conjecture. Gupta et al. [9]
showed that treewidth-2 graphs can be embedded into �1 with constant distor-
tion. Chekuri et al. [6] then followed this by proving that k-outerplanar graphs
can be embedded into �1 with constant distortion. Note that all these graph
classes not only have low treewidth, but are planar. We give the first constant
distortion embedding for a non-planar subclass of the bounded treewidth graphs.

Rao [15] proved that any minor excluded family can be embedded into �1 with
distortion O(

√
log n). This is the strongest general result for minor-excluded

families. Rabinovich [14] introduced the idea of average distortion and showed
that any minor excluded family can be embedded into �1 with constant average
distortion.

Graphs of low treewidth have been the subject of a great deal of study. For
a survey of definitions and results on graphs of bounded treewidth, see Bod-
laender [2]. More restrictive graph parameters include domino treewidth [3] and
bandwidth [7], [8].

2 Definitions and Preliminaries

Given two metric spaces (G, ν) and (H,µ) and an embedding Φ : G → H , we
say that the distortion of the embedding is ‖Φ‖ · ‖Φ−1‖ where

‖Φ‖ = max
x,y∈G

µ(Φ(x), Φ(y))
ν(x, y)

, ‖Φ−1‖ = max
x,y∈G

ν(x, y)
µ(Φ(x), Φ(y))

Parameter ‖Φ‖ will be called the expansion of the embedding and parameter
‖Φ−1‖ is called the contraction. We will define bandwidth and then present our
definition of the generalization tree-bandwidth.

Definition 1. Given graph G = (V,E) and linear ordering f : V → {1, 2, ..., |V |}
the bandwidth of f is max{|f(v)− f(w)||(v, w) ∈ E}. The bandwidth of G is the
minimum bandwidth over all linear orderings f .

Definition 2. Given a graph G = (V,E), we say that it has tree-bandwidth k
if there is a rooted tree T = (I, F ) and a collection of sets {Si ⊂ V |i ∈ I} such
that:

1. ∀i, |Si| ≤ k
2. V =

⋃
Si

1 There is a lower bound of Ω(log k) arising from expander graphs.
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3. the Si are disjoint
4. ∀(u, v) ∈ E, u and v lie in the same set Si or u ∈ Si and v ∈ Sj and

(i, j) ∈ F .
5. if c has parent p in T , then ∀v ∈ Sc, ∃u ∈ Sp such that d(u, v) ≤ k.

We claimed that tree-bandwidth was a generalization of bandwidth. Intuitively,
we can divide a graph of low bandwidth into sets of size k (the first k points in
the ordering, the next k points in the ordering, and so forth). We then connect
these sets into a path. This gives us all the properties required for tree-bandwidth
except for the fifth property – there may be some node which is not close to any
node which appeared prior to it in the linear ordering. We can fix this problem
by defining a new linear ordering of comparable bandwidth. The proof of this
fact has been deferred until the full version of the paper.

Lemma 1. Graph G = (V,E) with bandwidth b has tree-bandwidth at most 2b.

We will now define treewidth and show the close relationship between the defin-
itions of treewidth and tree-bandwidth.

Definition 3. (i) Given a connected graph G = (V,E), a DFS-tree is a rooted
spanning subtree T = (V, F ⊂ E) such that for each edge (u, v) ∈ E, v is an
ancestor of u or u is an ancestor of v in T .

(ii) The value of DFS-tree T is the maximum over all v ∈ V of the number
of ancestors that are adjacent to v or a descendent of v.

(iii) The edge stretch of DFS-tree T is the the maximum over all v, w ∈ V
of the distance d(v, w) where w is an ancestor of v and w is adjacent to v or a
descendent of v.

We use the following definition of treewidth due to T. Kloks and related in a
paper of Bodlaender [2]:

Definition 4. Given a connected graph G = (V,E), the treewidth of G is the
minimum value of a DFS-tree of a supergraph G′ = (V,E′) of G where E ⊂ E′.

The following proposition follows immediately from the definition of tree-band-
width:

Proposition 1. Given a connected graph G = (V,E), the tree-bandwidth of G
is the minimum edge stretch of a DFS-tree of G.

Thus, treewidth and tree-bandwidth appear to be related in much the same
way that cutwidth and bandwidth are related (see [2] for instance). The close
relationship between treewidth and tree-bandwidth is cemented by the following
observation (the proof is deferred until the full version of the paper):

Lemma 2. Any metric supported on a weighted graph G = (V,E) of treewidth-k
can be embedded with distortion 4 into a weighted graph with tree-bandwidth-O(k).

Thus, a technique for embedding weighted tree-bandwidth-k graphs into �1 with
O(f(k)) distortion would immediately result in constant distortion �1-embeddings
of weighted treewidth-k graphs.
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2.1 Bounded Bandwidth Example

To see that previous constant distortion embedding techniques do not handle bo-
unded bandwidth graphs consider the following example. Construct a graph G by
connecting k points in an arbitrary way, then adding k new points connected to
each other and the previous k points in an arbitrary way, and repeat many times.

Clearly the graph G generated in this way has bandwidth ≤ 2k− 1. However,
note that if k ≥ 3 and some set of 2k consecutively added points contains K3,3
or K5 then G is not planar and thus previous constant distortion �1-embedding
techniques cannot be applied [13,9,6]. G does have bounded treewidth, so Rao’s
algorithm [15] can be applied but it only guarantees O(

√
log n) distortion.

2.2 Bounded Tree-Bandwidth Example

To show that bounded tree-bandwidth graphs form a broader class than the bo-
unded bandwidth graphs consider the following example. Let G = (V ′, E′) consist
of k copies of an arbitrary tree T = (V,E). Construct G′ from G as follows:

1. For x ∈ V , let {x1, ..., xk} be the k copies of x in V ′.
2. For each x ∈ V , connect {x1, ..., xk} in an arbitrary way.

While the resulting graph G′ clearly has tree-bandwidth k, a complete binary
tree of depth d has bandwidth Ω(d) [7], thus G′ may have bandwidth Ω(log n).

Note again that if k ≥ 5 and G′ contains K3,3 or K5 then G′ is not planar and
thus previous constant distortion �1-embedding techniques cannot be applied.

Also note that there are trees T with |V | = n such that any �2-embedding of T
has distortion Ω(

√
log log n) [5]. Since Rao’s technique embeds first into �2 this

gives a lower bound of Ω(
√

log log n) on the distortion achievable using Rao’s
technique to embed G′ into �1. The technique presented in this paper embeds
these examples into �1 with distortion depending only on k.

Apart from being interesting from a technical viewpoint, bounded tree-band-
width graphs may also be a good model for phylogenentic networks with limited
introgression/reticulation [12]. This is a fruitful connection to explore, though it
is outside the scope of this paper.

3 Algorithm

Given a graph G of tree-bandwidth k, it must have a tree-bandwidth-k decompo-
sition (T, {Xi}). We will embed the sets Xi one set at a time according to a DFS
ordering of T . When set Xi is embedded, all members of that set will be assigned
values for each coordinate. Note that once a point is embedded, its coordinates will
never change - all subsequently defined coordinates will be assigned value zero for
these points. Note that when new coordinates are introduced, these are considered
to be coordinates that were never used at any previous point in the algorithm.

For each set we will obtain two embeddings: one derived by extending the em-
bedding of the parent of Xi in T and one local embedding using a simple deter-
ministic embedding technique. We prove the existence of a method for combining
these two embeddings to provide an acceptable embedding of the set Xi.
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At stage i, our algorithm will compute a weight for each partition S of Xi. We
would like these weights to look like wM (S) - the distance between the closest
pair of points separated by S. The embedded distance between two points x, y in
Xi will be the sum of weights over partitions separating x from y. The weights
suggested above will guarantee no contraction and bounded expansion within Xi.
We can transform weighted partitions into coordinates by introducing wM (S)
coordinates for each partition S, such that the coordinate has value 1 for each
x ∈ S and value −1 for each x ∈ Xi − S.

This approach will create entirely new coordinates for each point. Since points
in Xi are supposed to be close to points in Xp(i), this can create large distortion
between sets. Instead of introducing all new coordinates, we would like to “reuse”
existing coordinates by forcing points in Xi to take on values similar to those
taken on by points in Xp(i).

To reuse existing coordinates we will choose a “parent” in Xp(i) for each
point x ∈ Xi and identify x with its parent p(x). The critical observation here
is that each point in Xi is within distance k of some point in Xp(i). Therefore,
the partition weights (and hence distances) established by these coordinates are
good approximations of the target values we would like to assign.

More precisely, for each point x ∈ Xi there is at least one closest point in Xp(i).
Choose an arbitrary such point to be the parent of x. After identifying points
in this way, each parent coordinate induces a partition S on Xi between points
whose parents have values 1 and −1 in that coordinate. We can define wP (S) to
be the number of parent coordinates inducing partition S. If |wP (S) − wM (S)|
is always small then the independent local weightings agree and we get a good
global embedding.

Unfortunately, there are cases in which wP (S)−wM (S) can be large. However,
we can successfully combine the two metrics by using the following weighting:
wF (S) = max(wM (S), wP (S) − µ). The key property of this weighting is that
we do not activate too many new coordinates (since wP (S) not much less than
wF (S)) nor do we deactivate too many existing coordinates (wP (S) not much
more than wF (S)). In addition, we can show that wF (S) does not contract nor
greatly expand distances between points of Xi.

3.1 MIN-SEPARATOR Embedding

We can prove that any reasonable local embedding technique suffices to obtain
O(f(k)) distortion. However, that proof is quite involved and is omitted from
this abstract. Instead, for ease of exposition, we will employ a simple local em-
bedding technique which we call a MIN-SEPARATOR embedding and which
is described below. The MIN-SEPARATOR embedding returns similar embed-
dings for independently embedded metrics with similar distances. This is a very
useful property and greatly simplifies our overall algorithm and analysis2.

2 It is conceivable that a different local embedding technique might result in a better
dependence on k.
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MIN-SEPARATOR embedding: Given metric (G, d), we assign a weight for
each of the distinct partitions of G. To each partition S we assign weight
wM(G)(S) = d(S,G − S) = min{d(x, y)|x ∈ S, y ∈ G − S}. Note that when
the source metric is clear we will denote these weights as wM (S). We then
transform these weighted partitions into coordinates by introducing wM (S) co-
ordinates for each partition S such that the coordinate has value 1 for each
x ∈ S and value −1 for each x ∈ G−S. The distances in this embedding become
dM(G)(x, y) =

∑
S∈2G:x∈S,y∈G−S

wM(G)(S) =
∑

S∈2G:x∈S,y∈G−S
d(S,G− S)

Lemma 3. The MIN-SEPARATOR embedding does not contract distances and
does not expand distances by more than 2k.

Proof. First we show that MIN-SEPARATOR does not contract the distance
between x and y. The proof is by induction on the number of points in the
metric (G, d).

If |G| = 2, then there is only one non-trivial partition and it has weight
d(x, y). For larger graphs, there must be some point z other than x, y. Let
B = G−{z}; by the inductive hypothesis the claim holds on set B. However, we
observe that the embedded distance dM(B)(x, y) is at most the embedded dis-
tance dM(G)(x, y). For any partition of B, we can consider two new partitions of
G (one with z on each side) and observe that the total weight MIN-SEPARATOR
places on these partitions must be at least the weight MIN-SEPARATOR placed
on the original partition of B (this because of triangle inequality).

We now show that MIN-SEPARATOR does not expand distances by more
than 2k. For each partition S which separates x, y, wM(G)(S) ≤ d(x, y) and
since there are < 2k partitions which separate x, y, dM(G)(x, y) ≤ 2kd(x, y).

3.2 Combining the Local Embeddings

The algorithm EMBED-BAND relies on three critical properties of the tree-
bandwidth decomposition:

1. Each node in Xi is within distance k of a node in the parent of Xi.
2. The nodes of Xi are not adjacent to any previously embedded nodes except

those in the parent of Xi.
3. The number of points in Xi is at most k.

The first property enables us to prove that

wP (S)− µ ≤ wF (S) ≤ wP (S) + 2k (1)

This is key in bounding the distortion between sets, since it indicates that we
never introduce or “zero-out” too many coordinates for any partition S of Xi.

The second property means that we don’t need to bound expansion between
too many pairs of points. As long as we can prove that distances between points
in Xi and Xp(i) don’t expand too much, the triangle inequality will allow us to
bound expansion between all pairs of points.
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The third property allows us to bound the distortion of the local embedding
(MIN-SEPARATOR) as well as to bound the total number of coordinates intro-
duced or zeroed out, since there are only 2k partitions of set Xi with k points.

3.3 Example: Embedding a Cycle

It is instructive to observe what happens when embedding a cycle (see figure 1).
It is clear that the first two points in the cycle (X1) can be embedded ac-
ceptably. As we embed subsequent sets we embed the descendents of these two
points. Because the pairs of points in consecutive sets diverge, each new point
inherits the values of all of the coordinates of its parent. Additionally, new co-
ordinates are added to separate the pairs of points. The union of these coordi-
nates is enough to establish the distances between these pairs of points as they
diverge.

After embedding half the points in the cycle, the pairs of points in subse-
quent sets begin to converge. Whenever the distance induced by the parent
points exceeds the target distance of the current points (represented by the
MIN-SEPARATOR distance), we set the values of µ coordinates establishing
that distance to zero for the new points. Because points in consecutive sets are
within distance k of their parents, the distances between consecutive pairs of
points cannot decrease by more than 2k per step. Thus, zeroing µ coordinates
at each step is more than sufficient to compensate for the decreasing distances.

It might appear that zeroing µ coordinates at each step would contract dis-
tances between points and their ancestors, but recall that we also define β new
coordinates at each step to separate the current points from all previously em-
bedded points and prevent such contractions.

Fig. 1. Embedding a Cycle
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4 Analysis

The central result of this paper follows directly from the lemmas below:

Theorem 1. Algorithm EMBED-BAND embeds tree-bandwidth-k graphs into
�1 with distortion ≤ 2β = 4 · 2kµ = 16k · 22k.

Lemma 4. The distances between points embedded simultaneously are not con-
tracted.

Input: Assume G = (V, H) has tree-bandwidth decomposition (T = (I, F ), {Xi|i ∈
I}). Let p(i) be the parent of i ∈ T . Assume that p(i) appears before i in the ordering
of the nodes of I . X1 is the root of T .

1. µ ← 4k2k

2. for each of the 2k−1 − 1 non-trivial partitions S of X1:

(a) wM (S) ← min{d(x, y)|x ∈ S, y ∈ X1 − S}
(b) define wM (S) new coordinates
(c) for each new coordinate c set:

xc ← 1 if x ∈ S,
xc ← −1 if x ∈ X1 − S

3. FOR i ← 2 TO |I |
(a) for each x ∈ Xi, let p(x) be the parent of x (closest node to x) in Xp(i).

(By identifying nodes x with their parents p(x), each existing coordinate in-
duces a partition on the points of Xi.)

(b) for each of the 2k−1 − 1 non-trivial partitions S of Xi:

i. wM (S) ← min{d(x, y)|x ∈ S, y ∈ Xi − S}
ii. wP (S) ← # of existing coordinates which induce S via Xp(i)

iii. wF (S) ← max(wM (S), wP (S) − µ)
iv. if wF (S) > wP (S) then:

A. for all the wP (S) coordinates that induce partition S set xc ← p(x)c

for all x ∈ Xi

B. define wF (S) − wP (S) new coordinates
C. for each new coordinate c set:

xc ← 1 if x ∈ S,
xc ← −1 if x ∈ Xi − S
(xc ← 0 for all previously embedded points)

v. If wF (S) ≤ wP (S) then:

A. for wP (S) − wF (S) of the coordinates that induce partition S set
xc ← 0 for all x ∈ Xi

B. for the wF (S) remaining coordinates that induce partition S set xc ←
p(x)c for all x ∈ Xi

(c) xc ← p(x)c for all coordinates c which do not partition Xi

(d) define an additional β = 2 · 2kµ coordinates and set xc ← 1 for all x ∈ Xi

4. NEXT i

Fig. 2. Algorithm EMBED-BAND
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Proof. If x, y are in the same tree node Xi, then the distance dE(x, y) is at least
as large as the distance dM(Xi)(x, y) returned by MIN-SEPARATOR. This is
because for every partition we use wF (S) = max{wM (S), wP (S)−µ} ≥ wM (S).

Lemma 5. The distances between points embedded simultaneously are expanded
by at most a factor of 2k.

Proof. Recall that for each partition S of Xi, we compute three weights: a local
weight, a ”parent” weight, and the final weight which we use to embed the
current tree node.

wM (S) = min{d(x, y)|x ∈ S, y ∈ Xi − S}
wP (S) = # of existing coordinates that induce S via Xp(i)

wF (S) = max(wM (S), wP (S)− µ)

If for all partitions S separating x and y, we have wF (S) = wM (S), then the
embedded distance will be the same as that from MIN-SEPARATOR, which is
at most 2kd(x, y).

Otherwise, at least one partition separating x and y has wF (S) = wP (S)−µ.
Note that by the triangle equality, d(x, y) ≤ d(p(x), p(y)) + 2k for all x, y. Thus
every such partition has wF (S) ≤ wP (S) + 2k, so by summing and observ-
ing that there are only 2k possible partitions of k points, we have dE(x, y) ≤
dE(p(x), p(y)) − µ + 2k2k. Applying our inductive hypothesis to points in the
parent set and using µ = 4k2k gives the desired bound.

Lemma 6. The distances between points in different sets are expanded by at
most 2β = 4 · 2kµ where µ = 4k2k.

Proof. Consider x ∈ Xi and y ∈ Xj. Xi and Xj are connected by a unique path
Q in T . Assume WLOG that Xp(i) is in Q. Our proof will be by induction on
the length of Q.

If length(Q) = 1, this means Xj = Xp(i) and by triangle inequality we
have dE(y, x) ≤ dE(y, p(x)) + dE(p(x), x). The distortion of the first quantity is
bounded because these points are in the same tree node. The second quantity
is bounded by β plus the sum of differences in partition weights since we re-use
coordinates when possible. Combining these, and observing that p(x) is closer
to x than y is, we obtain dE(y, x) ≤ 2βd(y, x). If length(Q) > 1, there must be
a point z ∈ Xp(i) such that z lies on a shortest path between x and y in G. By
the induction hypothesis, dE(x, z) ≤ 2βd(x, z) and dE(z, y) ≤ 2βd(z, y). Thus,
dE(x, y) ≤ dE(x, z) + dE(z, y) ≤ 2βd(x, z) + 2βd(z, y) = 2βd(x, y) since z is on
the shortest path between x and y.

Lemma 7. The distances between points in different sets are not contracted.

Proof. Consider x ∈ Xi and y ∈ Xj. Xi and Xj are connected by a unique path
Q in T . Assume WLOG that Xp(i) is in path Q. x has a closest ancestor z in
Xj which is at distance dE(z, y) from y. Consider the path from z to x that lies
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in Q. Intuitively, we activate at least β coordinates at each step and deactivate
at most 2kµ, so distances increase as ≈ (β − 2kµ)|Q|. So

dE(x, y) ≥ max((dE(z, y)− 2kµ|Q|), 0) + β|Q| ≥ dE(z, y)− 2kµ|Q|+ β|Q|
≥ d(z, y)− 2kµ|Q|+ β|Q| ≥ d(x, y)− 2k|Q| − 2kµ|Q|+ β|Q|
= d(x, y) + (β − 2k − 2kµ)|Q| ≥ d(x, y).
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Abstract. We give a dichotomy theorem for the problem of counting homomor-
phisms to directed acyclic graphs. H is a fixed directed acyclic graph. The prob-
lem is, given an input digraph G, to determine how many homomorphisms there
are from G to H . We give a graph-theoretic classification, showing that for some
digraphs H , the problem is in P and for the rest of the digraphs H the problem
is #P-complete. An interesting feature of the dichotomy, absent from related di-
chotomy results, is the rich supply of tractable graphs H with complex structure.

1 Introduction

Our result is a dichotomy theorem for the problem of counting homomorphisms to
directed acyclic graphs. A homomorphism from a (directed) graph G = (V,E) to a
(directed) graph H = (V , E) is a function from V to V that preserves (directed) edges.
That is, the function maps every edge of G to an edge of H .

Hell and Nešetřil [6] gave a dichotomy theorem for the decision problem for undi-
rected graphs H . In this case, H is an undirected graph (possibly with self-loops). The
input, G, is an undirected simple graph. The question is “Is there a homomorphism
from G to H?”. Hell and Nešetřil [6] showed that the decision problem is in P if the fixed
graph H has a loop, or is bipartite. Otherwise, it is NP-complete. Dyer and Greenhill [3]
established a dichotomy theorem for the corresponding counting problem in which the
question is “How many homomorphisms are there from G to H?”. They showed that the
problem is in P if every component of H is either a complete graph with all loops present
or a complete bipartite graph with no loops present1. Otherwise, it is #P-complete. Bu-
latov and Grohe [2] extended the counting dichotomy theorem to the case in which H
is an undirected multigraph. Their result will be discussed in more detail below.

In this paper, we study the corresponding counting problem for directed graphs. First,
consider the decision problem. H is a fixed digraph and, given an input digraph G, we
ask “Is there a homomorphism from G to H?”. It is conjectured [7, 5.12] that there
is a dichotomy theorem for this problem, in the sense that, for every H , the problem is
either polynomial-time solvable or NP-complete. Currently, there is no graph-theoretic
conjecture stating what the two classes of digraphs will look like. Obtaining such a

� Partially supported by the EPSRC grant Discontinuous Behaviour in the Complexity of Ran-
domized Algorithms. Some of the work was done while the authors were visiting the Mathe-
matical Sciences Research Institute in Berkeley.

1 The graph with a singleton isolated vertex is taken to be a (degenerate) complete bipartite
graph with no loops.
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c© Springer-Verlag Berlin Heidelberg 2006
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dichotomy may be difficult. Indeed, Feder and Vardi [5, Theorem 13] have shown that
the resolution of the dichotomy conjecture for layered (or balanced) digraphs, which are
a small subset of directed acyclic graphs, would resolve their long-standing dichotomy
conjecture for all constraint satisfaction problems. There are some known dichotomy
classifications for restricted classes of digraphs. However, the problem is open even
when H is restricted to oriented trees [7], which are a small subset of layered digraphs.
The corresponding dichotomy is also open for the counting problem in general digraphs,
although some partial results exist [1,2]. Note that, even if the dichotomy question for
the existence problem were resolved, this would not necessarily imply a dichotomy for
counting, since the reductions for the existence question may not be parsimonious.

In this paper, we give a dichotomy theorem for the counting problem in which H can
be any directed acyclic graph. An interesting feature of this problem, which is different
from previous dichotomy theorems for counting, is that there is a rich supply of tractable
graphs H with complex structure.

The formal statement of our dichotomy is given below. Here is an informal descrip-
tion. First, the problem is #P-complete unless H is a layered digraph, meaning that the
vertices of H can be arranged in levels, with edges going from one level to the next.
We show (see Theorem 4 for a precise statement) that the problem is in P for a layered
digraph H if the following condition is true (otherwise it is #P-complete). The condi-
tion is that, for every pair of vertices x and x′ on level i and every pair of vertices y
and y′ on level j > i, the product of the graphs Hx,y and Hx′,y′ is isomorphic to the
product of the graphs Hx,y′ and Hx′,y . The precise definition of Hx,y is given below,
but the reader can think of it as the subgraph between vertex x and vertex y. The details
of the product that we use (from [4]) are given below. The notion of isomorphism is the
usual (graph-theoretic) one, except that certain short components are dropped, as de-
scribed below. Some fairly complex graphs H satisfy this condition (see, for example,
Figure 2), so for these graphs H the counting problem is in P.

Our algorithm for counting graph homomorphisms for tractable digraphs H is based
on factoring. A difficulty is that the relevant algebra lacks unique factorisation. We deal
with this by introducing “preconditioners”. (See Section 6.)

Before giving precise definitions and proving our dichotomy theorem, we note that
our proof relies on two fundamental results of Bulatov and Grohe [2] and Lovász [9].
These will be introduced in Section 3. Many technical lemmas are stated without proof
in this extended abstract. A full version, including all proofs, can be found at
http://eccc.hpi-web.de/eccc-reports/2005/TR05-121/index.html.

2 Notation and Definitions

Let N0 = {0, 1, 2, 3, . . .}. For m,n ∈ N0, we will write [m,n] = {m,m + 1, . . . ,
n−1, n} and [n] = [1, n]. We will generally let H = (V , E) denote a fixed “colouring”
digraph, and G = (V,E) an “input” digraph. We denote the empty digraph (∅, ∅) by 0.

2.1 Homomorphisms

Let G = (V,E), H = (V , E). If f : V → V , and e = (v, v′) ∈ E, we write f(e) =
(f(v), f(v′)). Then f is a homomorphism from G to H (or an H-colouring of G) if
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f(E) ⊆ E . We will denote the number of distinct homomorphisms from G to H by
#H(G). Note that #H(0) = 1 for all H .

Let f be a homomorphism from H1 = (V1, E1) to H2 = (V2, E2). If f is also injec-
tive, it is a monomorphism. Then |E1| = |f(E1)| ≤ |E2|. If there exist monomorphisms
f from H1 to H2 and f ′ from H2 to H1, then f is an isomorphism from H1 to H2.
Then |E1| = |E2|, so f(E1) = E2. If there is an isomorphism from H1 to H2, we write
H1 ∼= H2 and say H1 is isomorphic to H2. The relation∼= is easily seen to be an equiv-
alence. Usually H1, . . . will denote equivalence classes of isomorphic graphs, and we
write H1 = H2 rather than H1 ∼= H2.

In this paper, we consider the particular case where H = (V , E) is a directed acyclic
graph (DAG). In particular, H has no self-loops, and #H(G) = 0 if G is not a DAG.

2.2 Layered Graphs

A DAG H = (V , E) is a layered digraph2 with � layers if V is partitioned into (� + 1)
levels Vi (i ∈ [0, �]) such that (u, u′) ∈ E only if u ∈ Vi−1, u

′ ∈ Vi for some i ∈ [�].
We will allow Vi = ∅. We will call V0 the top and V� the bottom. Nodes in V0 are called
sources and nodes in V� are called sinks. (Note that the usage of the words source and
sink varies. In this paper a vertex is called a source only if it is in V0, a vertex in Vi for
some i �= 0 is not called a source even if it has in-degree 0, and similarly for sinks.)
Layer i is the edge set Ei ⊆ E of the subgraph H [i−1,i] induced by Vi−1 ∪ Vi. More
generally we will write H [i,j] for the subgraph induced by

⋃j
k=i Vk.

Let G� be the class of all layered digraphs with � layers and let C� be the subclass
of G� in which every connected component spans all � + 1 levels. If H ∈ C� and G =
(V,E) ∈ C�, with Vi denoting level i (i ∈ [0, �]) and Ei denoting layer i (i ∈ [�]), then
any homomorphism from G to H is a sequence of functions fi : Vi → Vi (i ∈ [0, �])
which induce a mapping from Ei into Ei (i ∈ [�]).

We use C� to define an equivalence relation on G�. In particular, for H1, H2 ∈ G�,
H1 ≡ H2 if and only if Ĥ1 = Ĥ2, where Ĥi ∈ C� is obtained from Hi by deleting
every connected component that spans fewer than � + 1 levels.

2.3 Sums and Products

If H1 = (V1, E1), H2 = (V2, E2) are disjoint digraphs, the union H1+H2 is the digraph
H = (V1 ∪ V2, E1 ∪ E2). Clearly 0 is the additive identity and H1 + H2 = H2 + H1.
If G is connected then #(H1 + H2)(G) = #H1(G) + #H2(G), and if G = G1 + G2
then #H(G) = #H(G1)#H(G2).

The layered cross product [4] H = H1 × H2 of layered digraphs H1 = (V1, E1),
H2 = (V2, E2) ∈ G� is the layered digraph H = (V , E) ∈ G� such that Vi = V1i × V2i
(i ∈ [0, �]), and we have

(
(u1, u2), (u′

1, u
′
2)
)
∈ E if and only if (u1, u

′
1) ∈ E1 and

(u2, u
′
2) ∈ E2. We will usually write H1×H2 simply as H1H2. It is clear that H1H2 is

connected only if both H1 and H2 are connected. The converse is not necessarily true.
An example appears in the full paper. Nevertheless, we have the following lemma.

2 This is called a balanced digraph in [5,7]. However, “balanced” has other meanings in the
study of digraphs.
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Lemma 1. If H1, H2 ∈ C� and both of these graphs contain a directed path from every
source to every sink then exactly one component of H1H2 spans all �+1 levels. In each
other component either level 0 or level � is empty.

Note that H1H2 = H2H1, using the isomorphism (u1, u2) �→ (u2, u1). If G,H1, H2 ∈
C� then any homomorphism f : G → H1H2 can be written as a product f1 × f2 of
homomorphisms f1 : G → H1 and f2 : G → H2, and any such product is a homo-
morphism. Thus #H1H2(G) = #H1(G)#H2(G). Observe that the directed path P�
of length � gives the multiplicative identity 1 and that 0H = H0 = 0 for all H . It also
follows easily that H(H1 + H2) = HH1 +HH2, so × distributes over +. The algebra
A = (G�,+,×, 0, 1) is a commutative semiring. The + operation is clearly cancella-
tive3. We will show in Lemma 2 that × is also cancellative, at least for C�. In many
respects, this algebra resembles arithmetic on N0, but there is an important difference.
In A we do not have unique factorisation into primes. A prime is any H ∈ G� which
has only the trivial factorisation H = 1H . Here we may have H = H1H2 = H ′

1H
′
2

with H1, H2, H
′
1, H

′
2 prime and no pair equal, even if all the graphs are connected. An

example is given in the full version. The layered cross product was defined in [4] in the
context of interconnection networks. It is similar to the (non-layered) direct product [8],
which also lacks unique factorisation, but they are not identical. In general, they have
different numbers of vertices and edges.

3 Fundamentals

Our proof relies on two fundamental results of Bulatov and Grohe [2] and Lovász [9].
First we give the basic result of Lovász [9]. (See also [7, Theorem 2.11].) The following
is essentially a special case of Lovász [9, Theorem 3.6], though stated rather differently.

Theorem 1 (Lovász). If #H1(G) = #H2(G) for all G, then H1 = H2.

The following variant of Theorem 1 restricts H1, H2 and G to C�. This theorem and the
subsequent lemmas and corollaries are proved in the full version.

Theorem 2. If H1, H2 ∈ C� and #H1(G) = #H2(G) for all G ∈ C�, then H1 = H2.

Corollary 1. Suppose H1 = (V1, E1), H2 = (V2, E2) ∈ C�. If there is any G ∈ C� with
#H1(G) �= #H2(G), then there is such a G with 0 < |V | ≤ maxk=1,2 |Vk|.

Lemma 2. If H1H = H2H for H1, H2, H ∈ C�, then H1 = H2.

Recall that≡ denotes the equivalence relation on G� which ignores “short” components.

Lemma 3. If H1, H2, H ∈ C� and each of these contains a directed path from every
source to every sink and H1H ≡ H2H then H1 = H2.

The second fundamental result is a theorem of Bulatov and Grohe [2, Theorem 1],
which provides a powerful generalisation of a theorem of Dyer and Greenhill [3].
Let A = (Aij) be a k × k matrix of non-negative rationals. We view A as a weighted

3 This means that H + H1 = H + H2 implies H1 = H2. Similarly for ×.
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digraph such that there is an edge (i, j) with weight Aij if Aij > 0. Given a digraph
G = (V,E), EVAL(A) is the problem of computing the partition function

ZA(G) =
∑

σ:V→{1,...,k}

∏
(u,v)∈E

Aσ(u)σ(v). (1)

In particular, if A is the adjacency matrix of a digraph H , ZA(G) = #H(G). Thus
EVAL(A) has at least the same complexity as #H . If A is symmetric, corresponding to a
weighted undirected graph, the next theorem characterises the complexity of EVAL(A).

Theorem 3 (Bulatov and Grohe). Let A be a non-negative rational symmetric matrix.

(1) If A is connected and not bipartite, then EVAL(A) is in polynomial time if the row
rank of A is at most 1; otherwise EVAL(A) is #P-complete.

(2) If A is connected and bipartite, then EVAL(A) is in polynomial time if the row
rank of A is at most 2; otherwise EVAL(A) is #P-complete.

(3) If A is not connected, then EVAL(A) is in polynomial time if each of its connected
components satisfies the corresponding condition stated in (1) or (2); otherwise
EVAL(A) is #P-complete.

4 Reduction from Acyclic H to Layered H

Let H = (V , E) be a DAG. Clearly #H is in #P. We will call H easy if #H is in P and
hard if #H is #P-complete. We will show that H is hard unless it can be represented as
a layered digraph. Essentially, we do this using a “gadget” consisting of two opposing
directed k-paths to simulate the edges of an undirected graph and then apply Theorem 3.
To this end, let Nk(u, u′) be the number of paths of length k from u to u′ in H . Say
that vertices u, u′ ∈ V are k-compatible if, for some vertex w, there is a length-k path
from u to w and from u′ to w. We say that H is k-good if, for every k-compatible pair
(u, u′), there is a rational number λ such that Nk(u, v) = λNk(u′, v) (∀v ∈ V). In the
full version, we prove the following.

Lemma 4. If there is a k such that H is not k-good then #H is #P-complete.

Remark 1. The statement of Lemma 4 is not symmetrical with respect to the direction
of edges in H . However, if the digraph HR is obtained from H by reversing every edge,
then #HR and #H have the same complexity, since #HR(GR) = #H(G) for all G.

The main result of this section, which is proved in the full version, is the following.

Lemma 5. If H is a DAG, but it cannot be represented as a layered digraph, then #H
is #P-hard.

5 A Structural Condition for Hardness

We can now formulate a sufficient condition for hardness of a layered digraph H =
(V , E) ∈ G�. Suppose s ∈ Vi and t ∈ Vj for i < j. If there is a directed path in H
from s to t, we let Hst be the subgraph of H induced by s, t, and all components of
H [i+1,j−1] to which both s and t are incident. Otherwise, we let Hst = 0.
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Lemma 6. If there exist x, x′ ∈ V0, y, y′ ∈ V� such that HxyHx′y′ �≡ Hxy′Hx′y , and
at most one of Hxy, Hxy′ , Hx′y, Hx′y′ is 0, then #H is #P-complete.

Clearly checking the condition of the Lemma requires only constant time (since the
size of H is a constant). Note that if x, x′, y, y′ are not all in the same component of H
then at least two of Hxy, Hx′y′ , Hxy′ , Hx′y are 0, so Lemma 6 has no content. We may
generalise Lemma 6 as follows.

Lemma 7. If there exist x, x′ ∈ Vi, y, y′ ∈ Vj ( 0 ≤ i < j ≤ �) such that HxyHx′y′ �≡
Hxy′Hx′y , and at most one of Hxy, Hxy′ , Hx′y, Hx′y′ is 0, then #H is #P-complete.

Note that the “N” of Bulatov and Dalmau [1] is the special case of Lemma 7 in which
j = i + 1, Hxy = Hxy′ = Hx′y′ = 1, and Hx′y = 0. More generally, any structure
with Hxy, Hxy′ , Hx′y′ �= 0 and Hx′y = 0 is a special case of Lemma 7, so is sufficient
to prove #P-completeness. Using this idea, we can prove the following.

Lemma 8. If H ∈ C� is connected and not hard, then there exists a directed path from
every source to every sink.

Lemma 8 cannot be generalised by replacing “source” with “node (at any level) with
indegree 0” and replacing “sink” similarly, as the graph in Figure 1 illustrates. We call
four vertices x, x′, y, y′ in H , with x, x′ ∈ Vi and y, y′ ∈ Vj (0 ≤ i < j ≤ �), a Lovász
violation4 if at most one of Hxy, Hx′y′ , Hxy′ , Hx′y is 0 and HxyHx′y′ �≡ Hxy′Hx′y . A
graph H with no Lovász violation will be called Lovász-good. We show next that this
property is preserved under the layered cross product.

s

y

x

t

Fig. 1. An easy H with no st path Fig. 2. A Lovász-good H

Lemma 9. If H,H1, H2 ∈ C� and H = H1H2 then H is Lovász-good if and only if
both H1 and H2 are Lovász-good.

The requirement of H being Lovász-good is essentially a “rank 1” condition in the
algebra A of Section 2.3, and therefore resembles the conditions of [2,3]. However,
sinceA lacks unique factorisation, difficulties arise which are not present in the analyses
of [2,3]. But a more important difference is that, whereas the conditions of [2,3] permit
only trivial easy graphs, Lovász-good graphs can have complex structure. See Figure 2
for a small example.

4 The name derives from the isomorphism theorem (Theorem 1) of Lovász.



44 M. Dyer, L.A. Goldberg, and M. Paterson

6 Main Theorem

We can now state the dichotomy theorem for counting homomorphisms to directed
acyclic graphs.

Theorem 4. Let H be a directed acyclic graph. Then #H is in P if H is layered and
Lovász-good. Otherwise #H is #P-complete.

The proof of Theorem 4 will use the following lemma, which we prove later.

Lemma 10. Suppose H ∈ C� is connected, with a single source and sink, and is
Lovász-good. There is a polynomial-time algorithm for the following problem. Given
a connected G ∈ C� with a single source and sink, compute #H(G).

Proof (of Theorem 4). We have already shown in Lemma 5 that any non-layered H is
hard. We have also shown in Lemma 7 that H is hard if it is not Lovász-good. Suppose
H ∈ G� is Lovász-good. We will show how to compute #H(G).

First, we may assume that G is connected since, as noted in Section 2.3, if G =
G1 + G2 then #H(G) = #H(G1)#H(G2). We can also assume that H is connected
since, for connected G, #(H1 + H2)(G) = #H1(G) + #H2(G), but H1 and H2 are
Lovász-good if H1 + H2 is.

So we can now assume that H ∈ C� is connected and G is connected. If G has more
than � + 1 non-empty levels then #H(G) = 0. If G has fewer than � non-empty levels
then decompose H into component subgraphs H1, H2, . . . as in the proof of Lemma 7
in the full version, and proceed with each component separately. So we can assume
without loss of generality that both H and G are connected and in C�.

Now we just add a new level at the top of H with a single vertex, adjacent to all
sources of H and a new level at the bottom of H with a single vertex, adjacent to all
sinks of H . We do the same to G. Then we use Lemma 10.

Before proving Lemma 10 we need some definitions. Let H be a connected graph in C�.
For a subset S of sources of H , let H

[0,j]
S be the subgraph of H [0,j] induced by those

vertices from which there is an (undirected) path to S in H [0,j]. We say that H is top-j
disjoint if, for every pair of distinct sources s, s′, H

[0,j]
{s} and H

[0,j]
{s′} are disjoint, and

that H is bottom-j disjoint if the reversed graph HR from Remark 1 is top-j disjoint.
Finally, H is fully disjoint if it is top-(�− 1) disjoint and bottom-(�− 1) disjoint.

We will say that (Q,U,D) is a good factorisation of H if Q, U and D are connected
Lovász-good graphs in C� such that QH ≡ UD, Q has a single source and sink, U has
a single sink, and D has a single source.

Remark 2. The presence of the “preconditioner” Q in the definition of a good factori-
sation is due to the absence of unique factorisation in the algebra A. Our algorithm for
computing homomorphisms to a Lovász-good H works by factorisation. However, a
non-trivial Lovász-good H can be prime. An example is given in the full version.

We can now state our main structural lemma.

Lemma 11. If H ∈ C� is connected, and Lovász-good, then it has a good factorisation
(Q,U,D).
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We prove Lemma 11 below in Section 7. In the course of the proof, we give an algorithm
for constructing (Q,U,D). We now describe how we use Lemma 11 (and the algorithm)
to prove Lemma 10.

Proof (of Lemma 10). The proof is by induction on �. The base case is � = 2. (Note that
calculating #H(G) is easy in this case.) For the inductive step, suppose � > 2. Let H ′

denote the part of H excluding levels 0 and � and let G′ denote the part of G excluding
levels 0 and �. Using reasoning similar to that in the proof of Theorem 4, we can assume
that G′ is connected and then that H ′ is connected. Since H is Lovász-good, so is H ′.
Now by Lemma 11 there is a good factorisation (Q′, U ′, D′) of H ′.

Let S ⊆ V1 be the nodes in level 1 of H that are adjacent to the source and T ⊆ V�−1
be the nodes in level � − 1 of H that are adjacent to the sink. Note that V1 is the top
level of U ′ and V�−1 is the bottom level of D′.

Construct Q from Q′ by adding a new top and bottom level with a new source and
sink. Connect the new source and sink to the old ones. Construct D from D′ by adding
a new top and bottom level with a new source and sink. Connect the new source to the
old one and the new sink to T . Finally, construct U from U ′ by adding a new top and
bottom level with a new source and sink. Connect the new source to S and the new sink
to the old one. See Figure 3. Note that (Q,U,D) is a good factorisation of H . To see that
QH ≡ UD, consider the component of Q′H ′ that includes sources and sinks. (There
is just one of these. Since H ′ is Lovász-good, it has a directed path from every source
to every sink by Lemma 8. So does Q′. Then use Lemma 1.) This is isomorphic to the
corresponding component in D′U ′ since (Q′, U ′, D′) is a good factorisation of H ′. The
isomorphism maps S in H ′ to a corresponding S in U ′ and now note that the new top
level is appropriate in QH and DU . Similarly, the new bottom level is appropriate.

Q′ × H ′

S

T

≡ D′

T

× U ′

S

Fig. 3. Modifying H

Now let’s consider how to compute #Q(G). In any homomorphism from G to Q,
every node in level 1 of G gets mapped to the singleton in level 1 of Q. Thus, we can
collapse all level 1 nodes of G into a single vertex without changing the problem. At
this point, the top level of G and Q are not doing anything, so they can be removed, and
we have a sub-problem with fewer levels. So #Q(G) can be computed recursively. The
same is true for #D(G) and #U(G).

Since G ∈ C�, #QH(G) = #Q(G)#H(G). Also, since components without
sources and sinks cannot be used to colour G (which has the full � layers), this is equal
to #D(G)#U(G). Thus, we can output #H(G) = #D(G)#U(G)/#Q(G).

That concludes the proof of Theorem 10, so it only remains to prove Lemma 11.
The proof will be by induction, for which we will need the following technical lemmas,
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which are proved in the full version. Our proofs use the following operations on a
Lovász-good connected digraph H ∈ C�.
Local Multiplication: Suppose that U is a connected Lovász-good single-sink graph
in Cj on levels 0, . . . , j for j ≤ �. Let C be a Lovász-good connected component in
H [0,j] with no empty levels. Then Mul(H,C,U) is the graph constructed from H by
replacing C with the full component of UC. (Note that there is only one full component,
by Lemmas 8 and 1.)

Local Division: Suppose S ⊆ V0, and that (Q,U,D) is a good factorisation of H
[0,j]
S .

Then Div(H,Q,U,D) is the graph constructed from H by replacing H
[0,j]
S with D.

Lemma 12. Suppose that H is Lovász-good, top-(j − 1) disjoint, S ⊆ V0 and H
[0,j]
S

is connected. If (Q,U,D) is a good factorisation of H
[0,j]
S , then Div(H,Q,U,D) is

Lovász-good.

Lemma 13. If H and U are Lovász-good, then Mul(H,C,U) is Lovász-good.

7 Proof of Lemma 11

A top-dangler is a component in H [1,�−1] that is incident to a source but not to a sink.
Similarly, a bottom-dangler is a component in H [1,�−1] that is incident to a sink but not
to a source. (Note that a bottom-dangler in H is a top-dangler in HR.)

The proof of Lemma 11 will be by induction. The base case will be � = 1, where it
is easy to see that a connected Lovász-good H must be a complete bipartite graph. The
ordering for the induction will be lexicographic on the following criteria (in order): (1)
the number of levels, (2) the number of sources, (3) the number of top-danglers, (4) the
number of sinks, and (5) the number of bottom-danglers. Thus, for example, if H ′ has
fewer levels than H then H ′ precedes H in the induction. If H ′ and H have the same
number of levels, the same number of sources and the same number of top-danglers but
H ′ has fewer sinks then H ′ precedes H in the induction.

The inductive step will be broken into five cases. The cases are exhaustive but not
mutually exclusive – given an H we will apply the first applicable case.

7.1 Case 1: H is top-(j-1) disjoint and has a top-dangler with depth at most j-1.

Let R be a top-dangler with depth j′ where j′ < j (meaning that it is a component in
H [1,...,�−1] that is incident to a source but not to a sink, and that levels j′ + 1, . . . , �− 1
are empty and level j′ is non-empty). Note that since H is top-(j − 1) disjoint, R must
be adjacent to a single source, v, in H . This follows from the definition of top-(j − 1)
disjoint, and from the fact that R has depth at most j − 1.

Construct H ′ from H by removing R. Note that H ′ is connected. By construction
(from H), H ′ is Lovász-good and has no empty levels. It precedes H in the induction
order since it has the same number of levels, the same number of sources and one fewer
top-dangler. By induction, it has a good factorisation (Q′, U ′, D′) so Q′H ′ ≡ U ′D′.

Construct D̂ as follows. On layers 1, . . . , j′, D̂ is identical to D′. On layers (j′ +
2), . . . , �, D̂ is a path. Every node in level j′ is connected to the singleton vertex in
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level j′ + 1. Then clearly D̂Q′H ′ ≡ ÛD′ where Û is the single full component of
D̂U ′. (There is just one of these. Since D̂ is Lovász-good, it has a directed path from
every source to every sink by Lemma 8. So does U ′. Then use Lemma 1.) Note that Û
has a single sink.

Let R′ be the graph obtained from R by adding the source v. Let R′′ be Q′[0,j′]R′.
Form U ′′ from R′′ and Û by identifying v with the appropriate source of Û . (Note that
Û has the same sources as H .) Then D̂Q′H ≡ U ′′D′.

Thus, we have a good factorisation (Q,U,D′) of H by taking Q to be the full compo-
nent of D̂Q′ and U to be the full component of U ′′. To see that it is a good factorisation,
use Lemma 9 to show that Q and U are Lovász-good.

7.2 Case 2: For j < �, H is top-(j − 1) disjoint, but not top-j disjoint, and has no
top-dangler with depth at most j − 1.

Partition the sources of H into equivalence classes S1, . . . , Sk so that the graphs H
[0,j]
Si

are connected and pairwise disjoint. See Figure 4. Since H is not top-j disjoint some
equivalence class, say S1, contains more than one source. Let Ĥ denote H

[0,j]
S1

. Ĥ is

. . .

V�

Vj

V0

Ĥ

S1 S2 Sk

H

Fig. 4. H

. . .

V�

Vj

V0

D̂

s S2 Sk

H ′

Fig. 5. H ′

shorter than H , so it comes before H in the induction order. It is connected by con-
struction of the equivalence classes, and it is Lovász-good by virtue of being a sub-
graph of H . By induction we can construct a good factorisation (Q̂, Û , D̂) of Ĥ . Let
H ′ = Div(H, Q̂, Û , D̂). See Figure 5. H ′ comes before H in the induction order be-
cause it has the same number of levels, but fewer sources. To see that H ′ is connected,
note that H is connected and Ĥ is connected. Since (Q̂, Û , D̂) is a good factorisation),
we know D̂ is connected, so H ′ is connected. By Lemma 12, H ′ is Lovász-good. By
induction, we can construct a good factorisation (Q′, U ′, D′) of H ′.

Let s be the (single) source of D̂. By construction, the sources of U ′ are {s} ∪ S2 ∪
· · · ∪ Sk. See Figure 6. Let C1, . . . , Cz be the connected components of U ′[0,j]. Let C1

Q′ ×
. . .

H ′

s S2 Sk

≡
D′ ×

. . .

U ′

s S2 Sk

Fig. 6. Q′H ′ ≡ D′U ′
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be the component containing s. Since the H
[0,j]
Si

are connected and pairwise disjoint, and
Q′ has a single source, there is a single connected component of (Q′H ′)[0,j] containing
all of Si (and no other sources) so (see Figure 6) there is a single connected component
of U ′[0,j] containing all of Si (and no other sources). For convenience, call this Ci.

If z > k then components Ck+1, . . . , Cz do not contain any sources. (They are due
to danglers in U ′, which in this case are nodes that are not descendants of a source.)

Now consider U1 = Mul(U ′, C1, Û), where U1 is constructed from U ′ by replacing
C1 with the full component of C1Û . For i ∈ {2, . . . , z}, let Ui = Mul(Ui−1, Ci, Q̂).
Uz is the graph constructed from U ′ by replacing C1 with the full component of C1Û
and replacing every other Ci with the full component of CiQ̂.

Let Q̃ extend Q̂ down to level � with a single path. We claim that

Q′Q̃H ≡ UzD
′. (2)

To establish Equation (2), note that on levels [j, . . . , �] the left side is (Q′Q̃H)
[j,�]

≡
(Q′H ′)[j,�]. Any components of Q′H ′ that differ from U ′D′ do not include level �, so
this is equivalent to (U ′D′)[j,�] ≡ (UzD′)[j,�], which is the right-hand side. So focus on

levels 0, . . . , j. From the left-hand side, look at the component (Q′Q̃H)
[0,j]
S1

. Note that
it is connected. It is

(Q′[0,j]Q̂Ĥ)
[0,j]
S1

≡ (Q′[0,j]ÛD̂)
[0,j]
S1

≡ ((D′[0,j]U ′[0,j]){s}Û)
[0,j]

S1
≡ (D′Uz)

[0,j]
S1

,

which is the right-hand side. Then look at the component S2.

(Q′Q̃H)
[0,j]
S2

≡ (Q′[0,j]Q̂H [0,j])S2
≡ ((D′[0,j]U ′[0,j])S2Q̂)

[0,j]
S2

≡ (D′Uz)
[0,j]
S2

.

The other components containing sources (the only relevant components) are similar.
Having established (2), we observe that (Q,U,D′) is a good factorisation of H

where Q is the full component of Q′Q̃ and U is the full component of Uz . Use Lemma 9
to show Q is Lovász-good and Lemma 13 to show that Uz is.

7.3 Case 3: H is top-(� − 1) disjoint and has no top-dangler and is bottom-(j − 1)
disjoint and has a bottom-dangler with height at most (j − 1).

We apply an analysis similar to Case 7.1 to the reversed graph HR from Remark 1.

7.4 Case 4: For j < �, H is top-(� − 1) disjoint and has no top-dangler and is
bottom-(j − 1) disjoint, but not bottom-j disjoint, and has no bottom-dangler
with height at most (j − 1).

We apply an analysis similar to Case 7.2 to the reversed graph HR from Remark 1.

7.5 Case 5: H is fully disjoint. and has no top-danglers or bottom-danglers.

In the fully disjoint case (see Figure 7), the subgraphs Hst (s ∈ V0, t ∈ V�) satisfy

Hst ∩Hs′t′ =

{s}, if s = s′, t �= t′;
{t}, if s �= s′, t = t′;
∅, if s �= s′, t �= t′,

(3)
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Hst �= 0 and HstHs′t′ ≡ Hst′Hs′t, since H is Lovász-good. We assume without loss
that |V0| > 1 and |V�| > 1, since otherwise (1, H, 1) or (1, 1, H) is a good factorisation.
Choose any s∗ ∈ V0, t

∗ ∈ V�, and let Q = Hs∗t∗ . Note that Q is connected with a

V�

V0
s1 s2 sk. . . . . .

t1 t2 tk′

Hst

. . . . . .

Fig. 7. Fully disjoint case

single source and sink, and is Lovász-good because H is Lovász-good. Let D be the
subgraph

⋃
t∈V�

Hs∗t of H , and let U be the subgraph
⋃
s∈V0

Hst∗ of H . These are
both connected and Lovász-good since H is. Clearly D has a single source and U has
a single sink. Also QH ≡ DU follows from (3) and from the fact that there are no
top-danglers or bottom-danglers and

(DU)s∗s,tt∗ = Ds∗tUst∗ ≡ Hs∗tHst∗ = Hs∗t∗Hst = QHst (s ∈ V0; t ∈ V�),
(4)

since H is Lovász-good. Thus (Q,U,D) is a good factorisation of H .
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Fault-Tolerance Threshold for a Distance-Three

Quantum Code

Ben W. Reichardt

UC Berkeley

Abstract. The quantum error threshold is the highest (model-
dependent) noise rate which we can tolerate and still quantum-compute
to arbitrary accuracy. Although noise thresholds are frequently estimated
for the Steane seven-qubit, distance-three quantum code, there has been
no proof that a constant threshold even exists for distance-three codes.
We prove the existence of a constant threshold. The proven threshold is
well below estimates, based on simulations and analytic models, of the
true threshold, but at least it is now known to be positive.

1 Introduction

Quantum operations are inherently noisy, so the development of fault-tolerance
techniques is an essential part of progress toward a quantum computer. A quan-
tum circuit with N gates can only a priori tolerate O(1/N) error per gate. In
1996, Shor showed how to tolerate O(1/ poly(log N)) error by encoding each
qubit into a poly(log N)-sized quantum error-correcting code, then implement-
ing each gate of the desired quantum circuit directly on the encoded qubits,
alternating computation and error-correction steps [1]. Even though the correc-
tions themselves are imperfect, noise overall remains under control – the scheme
is “fault-tolerant” (Fig. 1).

Several groups [2,3,4] independently realized that by instead using a constant-
sized quantum error-correcting code repeatedly concatenated on top of itself
– and correcting lower levels more frequently than higher levels – a constant
amount of error is tolerable, again with only polylogarithmic overhead. The tol-
erable noise rate, which Aharonov and Ben-Or proved to be positive (with no
explicit lower bound) [2], is known as the fault-tolerance threshold. Intuitively,
small, constant-sized codes can be more efficient to use because encoding into
the quantum code (which is necessary at the beginning of the computation and
also during error correction, in certain schemes) is a threshold bottleneck. How-
ever, the threshold proof of Aharonov and Ben-Or only applies for concatenating
codes of distance five or higher. In this paper, we prove a constant noise thresh-
old for the concatenated distance-three, seven-qubit Steane/Hamming code. (A
threshold for the distance-three five-qubit code follows by the same structure of
arguments.)

The attainable threshold value, and the overhead required to attain it, are
together of considerable experimental interest. Thus, while work has continued
on proving the existence of constant thresholds in different settings – e.g., under

M. Bugliesi et al. (Eds.): ICALP 2006, Part I, LNCS 4051, pp. 50–61, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Fault-tolerance overview: In fault-tolerant computing, qubits are encoded

into an error-correcting code, and the ideal circuit’s gates are compiled into gates

acting directly on the encoded data. For example, an encoded CNOT gate can often

be implemented as transversal physical CNOT gates. To prevent errors from spreading

and accumulating, error-correction modules (Fig. 2) are placed between encoded gates.

With a distance d = 2t + 1 code, one intuitively expects the “effective/logical error

rate” to be O(pt+1) if p is the physical error rate, because t+1 errors might be corrected

in the wrong direction. One can’t directly use large codes, because then even the initial

encoding would fail. Instead, use a small code, and repeatedly concatenate the entire

compilation procedure on itself, reducing the error rate at each level as long as the

initial error rate is beneath a threshold. However, because of an inefficiency in the

analysis, the classic threshold proof only gives a quadratic error-rate reduction with

distance-five codes, and does not apply to distance-three codes.

physical locality constraints [5], or with non-Markovian noise [6] – a substantial
amount of attention has been devoted to estimating the fault-tolerance threshold,
using simulations and analytic modeling. Most of these threshold estimates have
used the seven-qubit code, from basic estimates [2, 3, 7, 8] to estimates using
optimized fault-tolerance schemes [9,10,11], to a threshold estimate with a two-
dimensional locality constraint [12]. One reason the seven-qubit code has been
so popular is no doubt its elegant simplicity, and its small size allows for easy,
efficient simulations. However, there had been no proof that a threshold even
existed for the simulated fault-tolerance schemes.

Currently, the highest error threshold estimate is due to Knill, who has esti-
mated a threshold perhaps as high as 5% by using a very efficient distance-two
code with a novel fault-tolerance scheme [13]. Being of distance two, the code only
allows for error detection, not correction, so the scheme uses extensive rejection
testing. This leads to an enormous overhead at high error rates, limiting the practi-
cality of operating a quantum computer in this regime. Still, a major open problem
remains to prove the existence of a threshold for a distance-two code.

We prove an error threshold lower bound of 6.75 × 10−6 in a certain error
model. Our analysis is prioritized for proof simplicity and ease of presentation,
not for a high threshold (although we discuss optimizations in Sect. 4). Also, it is
not surprising that unproven threshold estimates should be significantly higher
than proven threshold lower bounds – although actually the author is unaware
of any published rigorous lower bounds besides the current work and Ref. [14]
(except in the erasure error model [15]). But such a large gap between what
we can prove, and what our models and simulations indicate is embarrassing. A
second major open problem is to close the gap between proofs and estimates.

Our proof is based on giving a recursive characterization of the probability
distribution of errors in blocks of the concatenated code. Intuitively, with a
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Fig. 2. Quantum error-correction overview: So-called Steane-type error correc-

tion consists of X (bit flip) error correction, followed by Z (phase flip, the dual) error

correction; X|a〉 = |1⊕ a〉, Z|a〉 = (−1)a|a〉 for a ∈ {0, 1}. To correct X errors, prepare

an ancilla in the encoded state |+〉L = 1√
2
(|0〉L + |1〉L). Then apply transversal CNOTs

into the ancilla, measure the ancilla, and apply any necessary correction to the data.

Facts 1 and 2, which each follow immediately from the definition of the CNOT gate,

imply firstly that there is no logical effect and secondly that any X errors in the data

are copied onto the ancilla. Thus it is safe to measure the ancilla without affecting the

data’s logical state, and then interpret the code’s syndromes with a classical computer

to determine the correction to apply.

distance-three code, two errors in a code block is a bad event, so the block error
rate should drop roughly like cp2, with p the bit error rate. After two levels of
concatenation, the error rate should be like c(cp2)2 = (cp)2

2
/c, and so on.The

threshold for improvement is at p = 1/c. The difficulty lies in formalizing and
making rigorous this intuition.

The classic threshold proof of Aharonov and Ben-Or [2] can be reformulated
to rely on a key definition of 1-goodness. Roughly, define a code block to be
1-good if it has at most one subblock which is not itself 1-good. Maintaining this
definition as an inductive invariant through the logical circuit – i.e., proving that
the outputs of a logical gate are 1-good if the inputs are, with high probability –
allows provable thresholds for concatenating codes of distance five or higher. But
this definition does not suffice for concatenating a distance-three code. For take a
1-good block, with the allowed one erroneous subblock, and apply a logical gate
to it. If a single subblock failure occurs while applying the logical gate, there can
be two bad subblocks total, enough to flip the state of the whole block (since
the distance is only three). Therefore, the block failure rate is first-order in the
subblock failure rate. Logical behavior is not necessarily improved by encoding,
and the basic premise of fault tolerance, controlling errors even with imperfect
controls, is violated.

Essentially, a stronger inductive assumption is required for the proof to go
through. With 1-goodness, we are assuming that the block entering a computa-
tion step has no more than one bad subblock. Intuitively, though, most of the
time there should be no bad subblocks at all. We capture this intuition in the
stronger definition of “1-wellness.” In a 1-well block, not only is there at most
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one bad subblock, but also the probability of a bad subblock is small. With this
definition, the problem sketched above does not occur because the probability of
there being an erroneous subblock in the input is already first-order, so a logical
failure is still a second-order event. For the argument to go through, though,
the definition must be carefully stated, and we need to carefully define what
is required by each logical gate and how the logical gates will be implemented.
Controlling the probability distribution of errors is the main technical tool and
new contribution of this paper.

Very recently, Aliferis, Gottesman, and Preskill independently completed a
threshold proof for distance-three codes [14], based instead on formalizing the
“overlapping steps” threshold argument of Knill, Laflamme and Zurek [3]. Our
probabilistic definitions may be more difficult to extend to different error models.
However, the probabilistic structure is also a potential strength, in that it may
make this proof more extensible toward provable thresholds for postselection-
based, error-detection fault-tolerance schemes like that of Knill [13].

Sections 2 and 3 contain the necessary definitions, and the proof of a thresh-
old for quantum stabilizer operations (meaning preparation of fresh qubits as
|0〉, measurement in the computational basis, and application of Clifford group
unitaries like the CNOT gate). Stabilizer operations are easy to work with be-
cause Pauli errors (bit flips and dual phase flips) propagate through linearly.
The full paper extends the proof to give a threshold for full universal quantum
computation. In fact, the threshold itself is unaffected by this extension – the
bottleneck, as in most threshold estimates, is in achieving stabilizer operation
fault-tolerance.

2 Definitions

2.1 Concatenated Steane Code

In concatenated coding, qubits are arranged into level-one code blocks of n,
which are in turn arranged into level-two blocks of n, and so on. We call a single
qubit a block0, n grouped qubits a block1, and nk grouped qubits a blockk (but
often extraneous subscripts will be omitted).

In this section, we will use for simple examples the classical three-bit repetition
code: |0〉L = |000〉, |1〉L = |111〉. (A level-k concatenated encoding of |0〉 is |03k〉.)
This code has distance three against bit flip X errors – X = ( 0 1

1 0 ) so X |0〉 =
|1〉, X |1〉 = |0〉 – but of course has no protection against phase flip Z =

(
1 0
0 −1
)

errors (known as dual errors because of their behavior on the dual basis states
|±〉 ≡ 1√

2
(|0〉 ± |1〉)). Codewords satisfy the parity checks 110 and 011 ensuring

pairwise equality of bits – equivalently, the codespace is the simultaneous +1
eigenspace of the operators Z⊗Z⊗I and I⊗Z⊗Z. To apply a logical bit flip on
an encoded state, apply bit flips transversally, to each bit: XL = XXX (tensor
signs implied). A logical phase flip can be applied by a phase flip to any single bit:
ZL = ZII or IZI or IIZ. The CNOT gate is defined by CNOT|a, b〉 = |a, a⊕b〉
for a, b ∈ {0, 1}. Logical CNOT is just transversal CNOT.
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The smallest distance-three quantum code – protecting against X and Z errors
– uses five qubits, but we will present the slightly simpler distance-three Steane
code on n = 7 qubits. The codespace is the simultaneous +1 eigenspace of the
six operators

IIIZZZZ, IZZIIZZ, ZIZIZIZ,
IIIXXXX, IXXIIXX, XIXIXIX.

The first three “stabilizers” are exactly the classical [7, 4, d = 3] Hamming code’s
parity checks, so the Steane code too has distance three against bit flip errors.
The last three stabilizers are the same except in the dual basis, implying that
the code separately has distance three against dual phase flip errors. With this
code, encoded, or logical, X and Z operators are transversal X and Z operators,
respectively: i.e., XL = X⊗7, ZL = Z⊗7. The CNOT gate (and other so-called
“Clifford group” operations) can be applied transversally.

2.2 Error Model

For ease of exposition, we consider a very simple error model, defined to start
only for so-called stabilizer operations. (These operations do not form a universal
quantum gate set; we will extend to universality in Sect. 5.)

Definition 1 (Base error model). Assume each CNOT gate fails with prob-
ability p, independently of the others and earlier or simultaneous measurement
outcomes, resulting in one of the sixteen Pauli products I ⊗ I, I ⊗X, . . . , Z ⊗ Z
being applied to the involved qubits after a perfect CNOT gate. Assume that
single-qubit Clifford group operations are perfect, that single-qubit preparation
and measurement is perfect, and that there is no memory error.

Several of these assumptions are not essential. There being no memory error
is essential only as it implies arbitrary control parallelism, which is essential
in threshold schemes. The independence assumption of the CNOT failures can
be relaxed as long as the as the conditional probability of failure (regardless of
earlier or simultaneous events) remains at most p. The probabilistic nature of
the failures is however essential for the proof in its current form. Probabilistic
failures of other operations can be straightforwardly incorporated.

As is standard, additionally assume perfect classical control with feedback
based on measurements. All the required classical computations are efficient. It
is often assumed that classical computations are instantaneous, although this
assumption doesn’t matter with no memory error and even in general it can
carefully be removed.

2.3 Error States

It is important for the analysis to be able to say whether or not a given bit is in
error at a given time. This is not immediate for quantum errors, because different
errors can have an equivalent effect; for example if we want 1√

2
(|00〉+ |11〉) but

we get 1√
2
(|01〉+ |10〉), either bit could equally well be in X error.
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To avoid ambiguities, X, Z or Y = iXZ errors are tracked through the circuit
from their introduction by the commutation rules of Fig. 3. Some errors may
have trivial effect – e.g., Z|0〉 = |0〉 – but we still record them (we do not reduce
errors modulo the stabilizer). When we later extend the proof to a universal gate
set, top-level logical Pauli errors can no longer be traced through the circuit, but
we will make certain that these errors happen with vanishing probability.

Fig. 3. Propagation of X and Z Pauli errors through a CNOT gate; X errors are copied

forward and Z errors copied backward

Similarly, we want to say if a given code block is in error or not. Error-free
(perfect), bottom-up decoding of a blockk is defined recursively by first decoding
its subblocksk−1, to interpret their statesk−1, then decoding the block. Note that
this recursive procedure is not the same as correcting to the closest codeword,
but it is easier to analyze.

Definition 2 (State). The state0 of a qubit is either I, X, Y, or Z, depending
on what we have tracked onto that bit. The statek of a blockk is I, X, Y, or Z,
determined by error-free decoding of the statesk−1 of its subblocks.

The state of a block is determined by the states of its subblocks. We want to
define the relative states of the subblocks, because a probability distribution over
subblock errors is most naturally defined keeping in mind (i.e., relative to) the
state of the enclosing block. If a block is in error, then necessarily some of its
subblocks will be in error.

As a simple example, consider the classical three-bit repetition code. If the
states of three bits are XII – the first bit is in error – then the block’s state
decodes to be I. The first bit is also in relative error. If the states of three
bits are IXX, then the block’s state decodes to be X. The first bit is said to
be in relative error (although it is not in error). Making this definition precise,
particularly in the quantum case, requires some care because different errors can
be equivalent.

Definition 3 (Relative syndromek). The relative syndromek of a blockk con-
sist of the syndromes of the n− 1 code stabilizer generators on the statesk−1 of
the subblocksk−1.

Definition 4 (Relative statek−1). The relative statesk−1 of subblocksk−1 of
a blockk are given by the minimum weight error, counting Y errors as two,
generating the relative syndromek of the blockk.
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There is a unique minimum weight error, so this notion is well-defined, since
every error syndrome can be achieved with at most one X and one Z error (or
with one Y error).

For example if the first two subblocks are in X error, then the block’s state is
X error, with the third subblock in relative X error (since logical X is equivalent
to XXXIIII). Here is another example with a statek of X:

statesk−1 : I I I I IYX
relative statesk−1 : XIIII Z I .

Unlike its state, the (X or Z component of the) relative state of a subblock can
be determined by measuring the block transversally (in the Z or X eigenbases).
Again using the repetition code for an example, |+〉L = 1√

2
(|000〉+ |111〉). Since

(XII)|+〉L = (IXX)|+〉L ∝ |100〉 + |011〉, one can’t measure the state of the
first qubit. However, measuring in the 0/1 computational basis (Z eigenbasis)
gives 100 or 011 with equal probabilities, telling us in either case that qubit 1
was in relative error (before the destructive measurement).

2.4 Logical Error Model

Definition 5 (Logical error model). The implementation of a logical oper-
ation Uk on one or more blocksk is said to have had the correct logical effect if
the following diagram commutes:

Uk
�

decoding

�

U
�

decoding

�

Here the vertical arrows indicate perfect recursive decoding of the involved blocks,
and the lower horizontal arrow represents a perfect U on the decoded blocks.

Uk has had an incorrect logical effect if the same diagram commutes but with
P ◦U on the bottom arrow, where P is a Pauli operator or Pauli product on the
involved blocks.

In our error model, with our implementations, every logical operation will have
either the correct logical effect or an incorrect logical effect with some P prob-
abilistically. For example, in error correction of a block, U is the identity. Error
correction has the correct logical effect (no logical effect) if the state of the sys-
tem following a perfect recursive decoding on the corrected blocks is the same as
if we had just perfectly decoded the input blocks (and then applied the identity).
In particular, this implies that the statek of the output is the same as the statek
of the input, but, more than that, also logical entanglement is preserved.
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2.5 Goodness and Wellness

A key problem in proving a threshold is in establishing the proper definitions for
inductively controlling the errors. Once the correct definitions have been stated
carefully, proving the relationships among them needed for a threshold result is
fairly straightforward.

The classic proof of a threshold in this setting, due to Aharonov and Ben-
Or [2], can be framed as relying on the definition:

Definition 6 (r-goodk). A blockk is r-goodk (and not r-badk) if it has ≤ r
subblocksk−1 which are either in relative error or not r-goodk−1. A block0 (single
qubit) is r-good0 if it is not in relative error.

So in a 1-good block, we have control over errors in n− 1 of the subblocks (they
are 1-good themselves and not in relative error), but potentially no control over
the state of one of the subblocks.

Definition 6 does not suffice for proving a threshold for a distance-three code
because there is no room for errors in blocks which interact. We can’t maintain
the inductive assumption of each block being 1-good because as soon as two
blocks interact, they will then each have two subblocks with uncontrolled errors
(with a priori constant probability, not second-order probability as we desire).
Aliferis et al. manage to use a similar definition, but change the method of
induction proof to involve “overlapping steps.” We instead will use a similar
inductive proof to Aharonov and Ben-Or, but with different definitions to look
at probability distributions of errors.

To give a threshold argument with a d = 3 code, we will use a definition for
probability distributions over relative errors.

Definition 7 (wellk). A blockk is wellk(p1, . . . , pk) if, conditioned on its state
and on the errors in all other blocks, it has at most one subblock either in relative
error or not wellk−1(p1, . . . , pk−1), and

P(such an uncontrolled subblock) ≤ pk.

This definition conditions on the errors in all other blocks as a measure of in-
dependence. Note that we don’t assert anything about the distribution of errors
within a subblock in relative error. This is important because errors within rel-
atively erroneous subblocks are typically less well controlled. (For example, con-
sider a perfect 7-qubit block1, and introduce bitwise independent errors. When
the block as a whole is in error, one relative bit error is more likely than none,
since two bit errors are more likely than three.)

For example, again using the three-qubit repetition code, the ensemble

III w/ prob. 1− p

IXX w/ prob. p

is not well1(p). Even though the probability of a relative error is ≤ p, condition-
ing on a logical state of X there is a relative error with probability one.
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Definition 7 can be generalized to r-wellk, a requirement on probability distri-
butions with up to r relative errors, but for a concatenated distance-three code
threshold, r = 1 is sufficient and so I have omitted any prefix.

3 Fault-Tolerance for Stabilizer Operations

Our proof of fault-tolerance for stabilizer operations will rely on three indexed
Claims Ak, Bk and Ck for, respectively, encoded ancilla preparation, error cor-
rection and encoded CNOT, at code-concatenation level k, with the following
inductive dependencies:

A k − 1 � k

B k − 1 �

�

k
�

C k − 1 �

�

�

k
�

That is, a level-k encoded CNOT, or CNOTk, will use CNOTsk−1 and error
correctionsk – so the proof of Claim Ck will rely on Claims Ck−1 and Bk. Error
correctionk will use correctionsk−1 and CNOTsk−1, as well as ancillask. Finally,
the proof of Claim Ak (ancillak preparation) will rely on each of Claims Ak−1,
Bk−1 and Ck−1.

Each level-k operation will fail with probability Ak, Bk or Ck (failure param-
eters are italicized unlike the names of the claims to which they correspond).
Failure parameters will drop quadratically at each level, giving a threshold as
sketched in Sect. 1. That is,

max{Ak, Bk, Ck} = O
(
(max{Ak−1, Bk−1, Ck−1})2

)
.

Splitting out separate error parameters in this way lets us easily track where errors
are coming from, and lets us find the threshold bottlenecks for optimization. We
will also define two wellness parameters ak and bk (since a CNOTk ends with error
correctionsk, there is no need for a separate wellness parameter ck).

Relaxing some of the assumptions in our error model would just require modi-
fying these claims, and possibly adding new ones. For example, we have assumed
perfect measurements, but faulty measurements would only require a fourth in-
dexed claim dependent only on itself (a level-k measurement outcome is the
decoding of n level-(k − 1) measurement outcomes).

Preparation of a single-qubit ancilla in state |0〉0 = |0〉 or |+〉0 = |+〉 ≡
1√
2
(|0〉 + |1〉) we assume to be perfect, so define A0 ≡ 0. (Alternatively, set

A0 > 0 to remove this assumption.) For k ≥ 1, we need:

Claim Ak (Ancillak). Except with failure probability at most Ak, we can pre-
pare a level k ancilla |0〉k which has a statek of I (no error) and is wellk(b1, . . . ,
bk−1, ak).

(The different parameters will be set explicitly within the proofs.)
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Error correctionk is only defined for k ≥ 1 levels of encoding, so we may take
B0 ≡ 0.

Claim Bk (Correctionk). With probability at least 1−Bk, the output is wellk
(b1, . . . , bk) and, if the input is wellk(b1, . . . , bk), there is no logical effect.

Additionally, if all but one of the input subblocksk−1 are wellk−1(b1, . . . , bk−1)
and not in relative error, then with probability at least 1−B′

k there is no logical
effect and the output is wellk(b1, . . . , bk).

Note how powerful a successful correctionk is. Even if there is no control what-
soever on the errors in the input block, the output is still wellk. This property
is essential for getting errors fixed in a fully recursive manner, because it means
that to fix an erroneous subblockk−1, we need only apply a single-qubit cor-
rection transversally on that subblock and there is no need to worry about bit
errors within that subblock.

CNOT0 is simply a physical CNOT gate. C0 ≡ p is the probability of failure of
a physical CNOT gate (for the oft-used simultaneous depolarization error model,
p is 15

16 times the depolarization rate).

Claim Ck (CNOTk). With probability at least 1− Ck, the output blocksk are
wellk(b1, . . . , bk) and, if the input blocksk are wellk(b1, . . . , bk), then a logical
CNOT, the correct logical effect, is applied.

Proofs are in the full paper; there, for example, a rough Correctionk failure upper
bound is determined to be

Bk ≡ 4Ak + ( 4n
2 )C2

k−1 + ( 4
2 ) a2

k + ( 2n
2 ) B2

k−1

+ bk(4nCk−1 + 4ak + 2nBk−1)
+ 4nCk−1(4ak + 2nBk−1) + 8nakBk−1.

4 Threshold Lower Bounds

The results in Sect. 3 give the claimed positive constant threshold for stabilizer
operations, because the error parameters each drop quadratically at each level of
concatenation. Our goal was to complete a rigorous proof of a constant threshold,
not to estimate the true threshold. Still, it is interesting how high a threshold
these techniques give us. We have numerically iterated the equations of Sect. 3,
taking n = 7. We found that the error rates converged to zero for p = C0 <
6.75 × 10−6. Of course this is not a proof that the equations converge in this
range, but the proof is clearly doable with careful numerics.

This threshold does not compare directly to the 4.18×10−5 rigorous threshold
lower bound of Aliferis et al. [14] because their error model allows faults in
single-qubit preparation and measurement as well as just CNOT gates. Also, our
recursion equations were highly conservative, typically bounding the probability
of a level k failure by the probability of any two level k − 1 failures. Aliferis et
al., however, used a computer to count exactly which pairs of level k − 1 faults
could cause a level k failure.
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There are a number of optimizations that can be carried out to improve
the threshold, and in the full paper we sketch some of these, increasing the
threshold lower bound to 1.46× 10−5, and speculate on others. The bottlenecks
in our equations in fact appear to be ancilla preparation subblock failure ak and
CNOT failure Ck.

These threshold estimates for stabilizer operations remain applicable for full
quantum universality, discussed in Sect. 5. The techniques we use to gain uni-
versality can tolerate higher error rates than those for stabilizer operations, so
achieving universality is not a bottleneck.

5 Fault-Tolerant Universality

To achieve universality, we use the technique of “magic states distillation” [16,17,
13]. Operating beneath the threshold for stabilizer operations, we can assume the
error rate is arbitrarily small, and therefore condition on no stabilizer operation
errors at all. Using perfect (encoded) stabilizer operations, we distill faulty copies
of the “magic,” single-qubit pure states |H〉 or |T 〉 to perfect copies, which then
give quantum universality. Details are given in the full paper.

6 Conclusion

We have proved:

Theorem 1. For the error model specified in Def. 1, arbitrarily accurate, ef-
ficient, universal quantum computation is achievable, via a scheme based on
concatenation of the [[7, 1, 3]] Steane code, as long as the error rate is beneath a
positive constant threshold.

It should be emphasized that preparation of reliable encoded states is a major
threshold bottleneck.

A major open question in quantum fault-tolerance is to prove rigorously higher
thresholds. As the highest threshold estimates rely heavily on postselection, a
good understanding of the error probability distribution seems to be necessary to
prove results about these schemes. Our arguments comprise a first, minor step in
this direction, but to go further one needs to characterize the error distribution
even within blocks which are in relative error. Dependencies between blocks are
also a concern – for full independence is impossible to maintain (or even con-
verge toward), and small deviations can grow exponentially when postselections
discard large fractions of the probability mass.

There are many other open problems. How high can a threshold be proved
for schemes not based on postselection? We are still orders of magnitude below
the highest estimates. One promising approach is via a rigorous, computer-aided
analysis of the lower levels, then plugging in to a conservative analysis once
errors have dropped. Running Monte Carlo simulations, and fitting to failure
and wellness parameters, would give threshold confidence intervals.



Fault-Tolerance Threshold for a Distance-Three Quantum Code 61

Efficiency of the scheme itself (not the analysis) is a major practical con-
cern; even constants are very important. All constant-threshold fault-tolerance
schemes should ultimately have the same efficiency in big-O notation – after
startup levels, one can switch to the most efficient scheme. By fitting models to
simulations, Steane has investigated concatenating on larger codes once a smaller
code like the [[7, 1, 3]] code has reduced the error rate sufficiently, and found it
to be an apparently useful technique [18].

Can this threshold proof be extended to more general error models (not just
probabilistic Pauli errors)?

The present work, with its improved analysis efficiency, merely sheds light on
a fact which had long been assumed – a threshold for a distance-three code – but
not proved. Hopefully a more solid foundation will help us as we try to address
the more ambitious open questions in this field.

Research supported in part by NSF ITR Grant CCR-0121555, and ARO Grant
DAAD 19-03-1-0082.
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a Quantum Argument
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Abstract. The rigidity of a matrix measures how many of its entries
need to be changed in order to reduce its rank to some value. Good lower
bounds on the rigidity of an explicit matrix would imply good lower
bounds for arithmetic circuits as well as for communication complexity.
Here we reprove the best known bounds on the rigidity of Hadamard
matrices, due to Kashin and Razborov, using tools from quantum com-
puting. Our proofs are somewhat simpler than earlier ones (at least for
those familiar with quantum) and give slightly better constants. More
importantly, they give a new approach to attack this longstanding open
problem.

1 Introduction

1.1 Rigidity

Suppose we have some n × n matrix M whose rank we want to reduce. The
rigidity of M measures the minimal number R of entries we need to change in
order to reduce its rank to r. Formally:

RM (r) = min{weight(M − M̃) | rank(M̃) ≤ r},

where “weight” counts the number of non-zero entries. Here the rank could be
taken over any field of interest; in this paper we consider the complex field.
Roughly speaking, high rigidity means that M ’s rank is robust against changes:
changes in few entries won’t change the rank much.

Rigidity was defined by Valiant [1, Section 6] in the 1970s with a view to
proving circuit lower bounds. In particular, he showed that an explicit n × n
matrix M with RM (εn) ≥ n1+δ for ε, δ > 0 would imply that log-depth arith-
metic circuits that compute the linear map M : Rn → Rn need superlinear
circuit size. Clearly, RM (r) ≥ n − r for every full-rank matrix, since reducing
the rank by 1 requires changing at least 1 entry. This bound is optimal for the
identity matrix, but usually far from tight. Valiant showed that most matrices
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have rigidity (n− r)2, but finding an explicit matrix with high rigidity has been
open for decades.

A very natural and widely studied candidate for such a high-rigidity matrix
are the Hadamard matrices. A Hadamard matrix is an orthogonal n× n matrix
H with entries +1 and −1. Such matrices exist whenever n is a power of 2,
but are conjectured to exist whenever n is a multiple of 4. Suppose we have a
matrix H̃ differing from H in R positions such that rank(H̃) ≤ r. The goal in
proving high rigidity is to lower bound R in terms of n and r. Alon [2] proved
R = Ω(n2/r2), which was reproved by Lokam [3] using spectral methods. Kashin
and Razborov [4] improved this to R = Ω(n2/r). This is currently the best known
for Hadamard matrices.

In view of the difficulty in proving strong lower bounds on rigidity proper,
Lokam [3] also introduced a relaxed notion of rigidity. This limits the size of
each change in entries to some parameter θ > 0. Formally

RM (r, θ) = min{weight(M − M̃) | rank(M̃) ≤ r, ‖ M − M̃ ‖∞ ≤ θ},

where ‖ · ‖∞ measures the largest entry (in absolute value) of its argument. For
Hadamard matrices, Lokam proved the bound RH(r, θ) = Ω(n2/θ) if θ ≤ n/r
and RH(r, θ) = Ω(n2/θ2) if θ > r/n. In particular, if entries can change at
most by a constant then the rigidity is Ω(n2). For the case θ > r/n, Kashin
and Razborov [4] improved the bound to RH(r, θ) = Ω(n3/rθ2). Study of this
relaxed notion of rigidity is further motivated by the fact that stronger lower
bounds would separate the communication complexity versions of the classes PH
and PSPACE [3].

Apart from Hadamard matrices, the rigidity of some other explicit matri-
ces has been studied as well, sometimes giving slightly better bounds RM (r) =
Ω(n2 log(n/r)/r), for instance for Discrete Fourier Transform matrices [5,6,7].
Very recently, Lokam [8] showed a near-optimal rigidity bound RP (n/17) =
Ω(n2) for the matrix P whose entries are the square roots of distinct primes,
and proved an Ω(n2/ logn) arithmetic circuit lower bound for the induced linear
map P : Rn → Rn. This matrix P , however, is “less explicit” than Hadamard
matrices and the rigidity bound has no consequences for communication com-
plexity because P is not a Boolean matrix. Moreover, the same circuit lower
bound was already shown by Lickteig [9] (see also [10, Exercise 9.5]) without the
use of rigidity.

1.2 Our Contribution

In this paper we give new proofs of the best known bounds on the rigidity of
Hadamard matrices, both the standard rigidity and the relaxed one:

– if r ≤ n/2, then RH(r) ≥ n2

4r

– RH(r, θ) ≥ n2(n− r)
2θn + r(θ2 + 2θ)
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Our constant in the former bound is a bit better than the one of Kashin and
Razborov [4] (their proof gives n2/256r), while in the latter bound it is essen-
tially the same. However, we feel our proof technique is more interesting than
our precise result. As detailed in Section 2, the proof relies on interpreting an
approximation H̃ of the Hadamard matrix H as a quantum communication sys-
tem, and then using quantum information theory bounds from [11] to relate the
rank of H̃ to the quality of its approximation.1 Actually our bounds hold for
all so-called generalized Hadamard matrices; these are the orthogonal matrices
where all entries have the same magnitude. However, for definiteness we will
state the results for Hadamard matrices only.

This paper fits in a recent but fast-growing line of research where results
about classical objects are proved or reproved using quantum computational
techniques. Other examples of this are lower bounds for locally decodable codes
and private information retrieval [13,14], classical proof systems for lattice prob-
lems derived from earlier quantum proof systems [15,16], strong limitations on
classical algorithms for local search [17] inspired by an earlier quantum computa-
tion proof, a proof that the complexity class PP is closed under intersection [18],
formula size lower bounds from quantum lower bounds [19], and a new approach
to proving lower bounds for classical circuit depth using quantum communication
complexity [20].

It should be noted that the use of quantum computing is not strictly necessary
for either of our results. The first is proved in two steps: (1) using the quantum
approach we show that every a× b submatrix of H has rank at least ab/n and (2)
using a non-quantum argument we show that an approximation H̃ with small R
contains a large submatrix of H and hence by (1) must have high rank. The result
of (1) was already proved by Lokam [3, Corollary 2.2] using spectral analysis, so
one may obtain the same result classically using Lokam’s proof for (1) and our
argument for (2). Either way, we feel the proof is significantly simpler than that
of Kashin and Razborov [4], who show that a random a × a submatrix of H has
rank Ω(a) with high probability. In contrast, the quantum aspects of our proof for
the bound on RH(r, θ) cannot easily be replaced by a classical argument, but that
proof is not significantly simpler than the one of Kashin and Razborov (which uses
the Hoffman-Wielandt inequality) and the constant is essentially the same.

Despite this, we feel our quantum approach has merit for two reasons. First,
it unifies the two results, both of which are now proved from the same quan-
tum information theoretic idea. And second, using quantum computational tools
gives a whole new perspective on the rigidity issue, and might just be the
new approach we need to solve this longstanding open problem. Our hope is
that these techniques not only reprove the best known bounds, but will also
push them further. In Section 5 we discuss two non-quantum approaches to the
rigidity issue that followed a first version of the present paper, and point out
ways in which our approach is stronger.

1 The connection between the Hadamard matrix and quantum communication was also
exploited in the lower bound for the communication complexity of inner product by
Cleve et al. [12].
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2 Relation to Quantum Communication

Very briefly, an r-dimensional quantum state is a unit vector of complex ampli-
tudes, written |φ〉 =

∑r
i=1 αi|i〉 ∈ Cr. Here |i〉 is the r-dimensional vector that

has a 1 in its ith coordinate and 0s elsewhere. The inner product between |φ〉
and |ψ〉 =

∑r
i=1 βi|i〉 is 〈φ|ψ〉 =

∑
i α

∗
i βi. A measurement is described by a set

of positive semidefinite operators {Ei} that sum to identity. If this measurement
is applied to some state |φ〉, the probability of obtaining outcome i is given by
〈φ|Ei|φ〉. If {|vi〉} is an orthonormal basis, then a measurement in this basis cor-
responds to the projectors Ei = |vi〉〈vi|. In this case the probability of outcome
i is |〈vi|φ〉|2. We refer to [21] for more details about quantum computing. We
use ‖ E ‖ to denote the operator norm (largest singular value) of a matrix E,
and Tr(E) for its trace (sum of diagonal entries).

Our proofs are instantiations of the following general idea, which relates (ap-
proximations of) the Hadamard matrix to quantum communication. Let H be
an n × n Hadamard matrix. Its rows, after normalization by a factor 1/

√
n,

form an orthonormal set known as the Hadamard basis. If Alice sends Bob the
n-dimensional quantum state |Hi〉 corresponding to the normalized ith row of
H , and Bob measures the received state in the Hadamard basis, then he learns
i with probability 1.

Now suppose that instead of H we have some rank-r n × n matrix H̃ that
approximates H in some way or other. Then we can still use the quantum states
|H̃i〉 corresponding to its normalized rows for quantum communication. Alice
now sends the state |H̃i〉. Crucially, she can do this by means of an r-dimensional
quantum state. Let |v1〉, . . . , |vr〉 be an orthonormal basis for the row space of
H̃ . In order to send |H̃i〉 =

∑r
j=1 αj |vj〉, Alice sends

∑r
j=1 αj |j〉 and Bob applies

the unitary map |j〉 �→ |vj〉 to obtain |H̃i〉. He measures this in the Hadamard
basis, and now his probability of getting the correct outcome i is

pi = |〈Hi|H̃i〉|2.

The “quality” of these pi’s correlates with the “quality” of H̃ : the closer the ith
row of H̃ is to the ith row of H , the closer pi will be to 1.

Accordingly, Alice can communicate a random element i ∈ [n] via an r-
dimensional quantum system, with average success probability p =

∑n
i=1 pi/n.

But now we can apply the following upper bound on the average success proba-
bility, due to Nayak [11, Theorem 2.4.2]:2

p ≤ r

n
.

Intuitively, the “quality” of the approximation H̃ , as measured by the average
success probability p, gives a lower bound on the required rank r of H̃ . In the
next sections we instantiate this idea in two different ways to get our two bounds.
2 NB: this is not the well-known and quite non-trivial random access code lower bound

from the same paper, but a much simpler statement about average decoding proba-
bilities.
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We end this section with a simple proof of Nayak’s bound due to Oded Regev.
In general, let |φ1〉, . . . , |φn〉 be the r-dimensional states encoding 1, . . . , n, re-
spectively, and E1, . . . , En be the measurement operators applied for decoding.
Then, using that the eigenvalues of Ei are nonnegative reals and that the trace
of a matrix is the sum of its eigenvalues:

pi = 〈φi|Ei|φi〉 ≤ ‖ Ei ‖ ≤ Tr(Ei)

and
n∑
i=1

pi ≤
n∑
i=1

Tr(Ei) = Tr

(
n∑
i=1

Ei

)
= Tr(I) = r.

3 Bound on RH(r)

The next theorem was proved by Lokam [3, Corollary 2.7] using some spectral
analysis. We reprove it here using a quantum argument.

Theorem 1 (Lokam). Every a× b submatrix A of H has rank r ≥ ab/n.

Proof. Obtain rank-r matrix H̃ from H by setting all entries outside of A to 0.
Consider the a quantum states |H̃i〉 corresponding to the nonempty rows; they
have normalization factor 1/

√
b. For each such i, Bob’s success probability is

pi = |〈Hi|H̃i〉|2 =
∣∣∣∣ b√

bn

∣∣∣∣2 =
b

n
.

But we’re communicating one of a possibilities using r dimensions, so Nayak’s
bound implies

1
n

n∑
i=1

pi = p ≤ r

a
.

Combining both bounds gives the theorem. ��

Surprisingly, Lokam’s result allows us quite easily to derive Kashin and
Razborov’s [4] bound on rigidity, which is significantly stronger than Lokam’s
(and Alon’s). We also obtain a slightly better constant than [4]: their proof
gives 1/256 instead of our 1/4. This is the best bound known on the rigidity of
Hadamard matrices.

Theorem 2. If r ≤ n/2, then RH(r) ≥ n2/4r.

Proof. Consider some rank-r matrix H̃ with at most R = RH(r) “errors” com-
pared to H . By averaging, there exists a set of a = 2r rows of H̃ with at most
aR/n errors. Now consider the submatrix A of H̃ consisting of those a rows
and the b ≥ n − aR/n columns that have no errors in those a rows. If b = 0
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then R ≥ n2/2r and we are done, so we can assume A is nonempty. This A is
errorfree, hence a submatrix of H itself, and the previous theorem implies

r = rank(H̃) ≥ rank(A) ≥ ab

n
≥ a(n− aR/n)

n
.

Rearranging gives the theorem. ��
The condition r ≤ n/2 is important here. If H is symmetric then its eigenvalues
are all ±

√
n (because HTH = nI), so we can reduce the rank to n/2 by adding

or subtracting the diagonal matrix
√

nI. This shows that RH(n/2) ≤ n.

4 Bound on RH(r, θ)

We now consider the case where the maximal change in entries of H is bounded
by θ.

Theorem 3. RH(r, θ) ≥ n2(n− r)
2θn + r(θ2 + 2θ)

.

Proof. Consider some rank-r matrix H̃ with at most R = RH(r, θ) errors, and
‖ H − H̃ ‖∞ ≤ θ. As before, define the quantum states corresponding to its
rows:

|H̃i〉 = ci

n∑
j=1

H̃ij |j〉,

where ci = 1/
√∑

j H̃2
ij is a normalizing constant. Note that

∑
j H̃2

ij ≤ (n −
∆(Hi, H̃i))+∆(Hi, H̃i)(1+θ)2 = n+∆(Hi, H̃i)(θ2 +2θ), where ∆(·, ·) measures
Hamming distance. Bob’s success probability pi is now

pi = |〈Hi|H̃i〉|2

≥ c2
i

n
(n− θ∆(Hi, H̃i))2

≥ c2
i (n− 2θ∆(Hi, H̃i))

≥ n− 2θ∆(Hi, H̃i)

n + ∆(Hi, H̃i)(θ2 + 2θ)
.

Since pi is a convex function of Hamming distance and the average ∆(Hi, H̃i) is
R/n, we also get a lower bound for the average success probability:

p ≥ n− 2θR/n

n + R(θ2 + 2θ)/n
.

Nayak’s bound implies p ≤ r/n. Rearranging gives the theorem. ��
For θ ≥ n/r we obtain the second result of Kashin and Razborov [4]:

RH(r, θ) = Ω(n2(n− r)/rθ2).

If θ ≤ n/r we get an earlier result of Lokam [3]:

RH(r, θ) = Ω(n(n− r)/θ).
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5 Non-quantum Proofs

Of course, quantum mechanical arguments like the above can always be stripped
of their quantum aspects by translating to the underlying linear algebra lan-
guage, thus giving a non-quantum proof. In this section we discuss the relation
between our proof and two recent non-quantum approaches to rigidity. Both are
significantly simpler than the Kashin-Razborov proofs [4].

5.1 Midrijanis’s Proof

After reading a first version of this paper, Midrijanis [22] published a very sim-
ple argument giving the same bound RH(r) ≥ n2/4r for the special class of
Hadamard matrices defined by k-fold tensor product of the basic 2 × 2 matrix
(so n = 2k)

H2k =
(

1 1
1 −1

)⊗k
.

Let r ≤ n/2 be a power of 2. This H2k consists of (n/2r)2 disjoint copies of
±H2r and each of those has full rank 2r. Each of those copies needs at least r
errors to reduce its rank to r, so we need at least (n/2r)2r = n2/4r errors to
reduce the rank of H2k to r. Notice, however, that this approach only obtains
bounds for the case where H is defined in the above manner3.

5.2 The Referee’s Proof

An anonymous referee of an earlier version of this paper suggested that the quan-
tum aspects were essentially redundant and could be replaced by the following
spectral argument. Suppose for simplicity that the Hadamard matrix H and its
rank-r approximation H̃ have normalized rows, and as before let |Hi〉 and |H̃i〉
denote their rows. The Frobenius norm of a matrix A is ‖ A ‖F =

√∑
i,j A2

ij .

We can factor H̃∗ = DE, where D is an n× r matrix with orthonormal columns
and E is an r × n matrix with ‖ E ‖F = ‖ H̃ ‖F . Using the Cauchy-Schwarz
inequality, we bound

n∑
i=1

〈Hi|H̃i〉 = Tr(HH̃∗) = Tr(HDE)

≤ ‖ HD ‖F · ‖ E ‖F
= ‖ D ‖F · ‖ E ‖F
=
√

r · ‖ H̃ ‖F .

This approach is quite interesting. It gives the same bounds when applied to the
two cases of this paper (where

∑
i〈Hi|H̃i〉 and ‖ H̃ ‖F are easy to bound), with

less effort than the Kashin-Razborov proofs [4]. However, it is not an unrolling
3 It’s not clear how new this proof is, see the comments at Lance Fortnow’s weblog
http://weblog.fortnow.com/2005/07/matrix-rigidity.html
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of the quantum proof, since the latter upper bounds the sum of squares of the
inner products:

n∑
i=1

|〈Hi|H̃i〉|2 ≤ r.

An upper bound on the sum of squares implies a bound on the sum of inner prod-
ucts via the Cauchy-Schwarz inequality, but not vice versa. Thus, even though
the two bounds yield the same results in the two cases treated here, the quantum
approach is potentially stronger than the referee’s.

6 Discussion

As mentioned in the introduction, this paper is the next in a recent line of papers
about classical theorems with quantum proofs. So far, these results are somewhat
ad hoc and it is hard to see what unifies them other than the use of some quantum
mechanical apparatus. A “quantum method” in analogy to the “probabilistic
method” [23] is not yet in sight but would be a very intriguing possibility. Using
quantum methods as a mathematical proof tool shows the usefulness of the study
of quantum computers, quantum communication protocols, etc., irrespective of
whether a large quantum computer will ever be built in the lab. Using the
methods introduced here to prove stronger rigidity lower bounds would enhance
this further.

Most lower bounds proofs for the rigidity of a matrix M in the literature
(including ours) work in two steps: (1) show that all or most submatrices of M
have fairly large rank, and (2) show that if the number of errors R is small, there
is some (or many) big submatrix of M̃ that is uncorrupted. Such an uncorrupted
submatrix of M̃ is a submatrix of M and hence by (1) will have fairly large rank.
As Lokam [7] observes, this approach will not yield much stronger bounds on
rigidity than we already have: it is easy to show that a random set of R =
O(max(a,b)n2

ab log(n/ max(a, b))) positions hits every a× b submatrix of an n× n
matrix. Lokam’s [8] recent Ω(n2) rigidity bound for a matrix consisting of the
roots of distinct primes indeed does something quite different, but unfortunately
this technique will not work for matrices over {+1,−1} like Hadamard matrices.

To end this paper, let me describe two vague directions for improvements.
First, the approach mentioned above finds a submatrix of rank at least r in
M̃ and concludes from this that M̃ has rank at least r. However, the approach
usually shows that most submatrices of M̃ of a certain size have rank at least r.
If we can somehow piece these lower bounds for many submatrices together, we
could get a higher rank bound for the matrix M̃ as a whole and hence obtain
stronger lower bounds on rigidity.

A second idea that might give a stronger lower bound for RH(r) is the fol-
lowing. We used the result that every a × b submatrix of H has rank at least
ab/n. This bound is tight for some submatrices but too weak for others. We
conjecture (or rather, hope) that submatrices for which this bound is more or
less tight, are very “redundant” in the sense that each or most of its rows are
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spanned by many sets of rows of the submatrix. Such a submatrix can tolerate a
number of errors without losing much of its rank, so then we don’t need to find
an uncorrupted submatrix of H̃ (as in the current proof), but could settle for a
submatrix with little corruption.
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Abstract. We prove that a quantum circuit together with measurement
apparatuses and EPR sources can be self-tested, i.e. fully verified without
any reference to some trusted set of quantum devices.

To achieve our goal we define the notions of simulation and equiva-
lence. Using these two concepts, we construct sets of simulation condi-
tions which imply that the physical device of interest is equivalent to
the one it is supposed to implement. Another benefit of our formalism is
that our statements can be proved to be robust.

Finally, we design a test for quantum circuits whose complexity is
polynomial in the number of gates and qubits, and the required precision.

1 Introduction

The purpose of this paper is to address the issue of deciding whether an imple-
mentation of a quantum circuit follows its specification. The precise setting in
which we ask this question is that of self-testing. In such setting, the sources, the
gates as well as the measurement apparatuses that are used, are considered as
black-boxes. Moreover, none of them will be trusted to implement the quantum
operator it is supposed to implement. As a consequence, the tests cannot make
reference to another set of trusted and already characterized quantum devices.
Such notion of self-testing follows quite closely the one defined initially for classi-
cal programs [1,2], and is indeed based on its extension to quantum devices [3,4]
and to quantum testers of logical properties [5,6].

The task of self-testing a set of quantum devices has been the focus of attention
of two papers [3,4], each of which considers a very particular set of assumptions.
The work by Mayers and Yao [3] focuses on testing entangled EPR states shared
between two distinguishable locations, A and B. The main assumptions they
exploit are (1) locality, in the sense that the measurements at A commute with
the measurements at B; and that (2) one can perform independent repetitions
of the same experiments, in order to gather statistics (i.e., apparatuses have no
memory of previous runs of the experiments). However, they do not assess the
robustness of their results, i.e. if a state satisfies only approximately the required
statistics then it is still close to an EPR state. Robustness is nonetheless an
important property very much worth studying for practical reasons: first, one
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can never learn any statistics with infinite precision by sampling only; second,
by their very nature, physical implementations are only approximate.

The work of Van Dam, Magniez, Mosca and Santha [4] focuses instead on
testing gates. They make a number of assumptions, in addition to the above,
(3) the ability to use the same gate in different places of the same experiment;
(4) the ability to prepare and measure ‘0’ and ‘1’; and (5) the dimension of
the physical qubits (i.e., 2-level systems). Of these assumptions, the last one is
certainly the most unrealistic one, but also the most crucial one. Relaxing it
allows for “conspiracies” that can spoof the test.

Our work improves upon the results of [3] by making them robust. We also
improve upon the paper [4] by removing the need for assumptions (3), (4) and (5).
Let us detail the assumptions that we make. We assume that, (H1) the physical
system we are working with consists of several identifiable sub-systems; that
(H2) two subsystems interact only if we are applying a gate that has both those
subsystems as input; (H3) each gate will behave identically in each experiment
it is used in; and (H4) classical computation and control can be trusted.

First (Section 2), we define a precise mathematical framework for testing
quantum devices. This is done by introducing the concept of simulation which
amounts to producing the expected probability distribution for the outcomes
of the measurements that are performed at the end of the computation. This
alone will not be sufficient to propose efficient tests of quantum circuits. For this
purpose, we introduce the concept of equivalence which relates the action of the
devices on physical quantum systems used in the implementation, to the action
of the unitary operators specifying the circuit on logical qubits.

Second (Section 3), we characterize unitary gates and circuits in terms of sim-
ulation. We explain how simulation implies equivalence, and how by composing
equivalences one can derive the correctness of a physical implementation of a
circuit. The main tool used in this section is the Mayers-Yao test of an EPR
pair, which provides the most simple example in which simulation implies equiv-
alence. We will then show that this test can be generalized and yields trusted
input states to be used in conjunction with self-testable quantum circuits.

Last (Section 4), we prove the robustness of our characterization. In particular,
we show that the EPR test of [3] can tolerate ε inaccuracy in the statistics and
still yields states and measurements that are within O(ε1/4) of their specification.
Using the concepts of simulation and equivalence, such proofs are not so difficult
although the robustness of the EPR test had been left open. The crucial point
is to realize that the robustness of our characterization needs only to be stated
on a rather small subspace in order for it to be of practical interest.

The important consequence of our study is the design of an efficient self-tester
(Section 5) for quantum circuits with some specific input. Contrary to tomogra-
phy which requires trusted measurement devices and an exponential number of
statistics to be checked, our test has a complexity linear in the number of qubits
and gates involved in the circuit, and polynomial in the required precision. We
describe our tester in a general context and illustrate it with an example.
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2 Testing Concepts

Notation. Set HN = CN , whose computational basis is (|i〉)0≤i<N . For α ∈ R,
let |α〉 = cosα|0〉+sinα|1〉. In particular |π2 〉 = |1〉. Denote by |φ+〉 the EPR state
1√
2
(|0〉⊗|0〉+ |1〉⊗|1〉), and by |Φ+

n 〉 the tensor product of n EPR states: |Φ+
n 〉 =

1√
2n

∑
x∈{0,1}n |x〉⊗|x〉. Let U(H) be the set of unitary transformations on H , and

I(H,H ′) the set of isomorphisms between H and H ′ which preserve the inner
product. When H = HN we let U(N) = U(HN ). In case of transformations over
real spaces, we use the notations O(N) and O(H) instead of U(N) and U(H).
For transformations M and M ′ on H , and S ⊆ H , the notation M =S M ′ means
that the equality holds when restricted to S. When M is a linear transformation
on A, we extend M on any tensor product A⊗B by M ⊗ IdB.

Simulation. Two states simulate one another when they produce the same
probability distributions of outcomes for two families of projectors. Here, the
projectors are used in the same way measurement devices are used in a labora-
tory: they act as reference systems against which systems are tested.

More precisely, we are given a family of projectors (Pw)w∈W acting on a
physical space H and a state |ψ〉 ∈ H , whose purpose is to implement some
given and fixed projectors |w〉〈w| on the logical space HN and a state |φ〉 ∈ HN .

Definition 1. A quantum state |ψ〉 ∈ H simulates the quantum state |φ〉 ∈ HN

(with respect to (Pw)w∈W), if ‖Pw|ψ〉‖2 = |〈w|φ〉|2, for every w ∈ W.

The notion of simulation can be rephrased for the whole space H . Assume we are
given a family of states (|ψi〉)i of H that respectively simulate the basis states
(|i〉)i) (with respect to fixed set of projectors (Pw)w∈W). Then we say that H
simulates HN .

We now extend the simulation notion to gates.

Definition 2. Assume that H simulates HN : (|ψi〉)i simulates (|i〉)i (with re-
spect to (Pw)w∈W). A unitary transformation G ∈ U(H) simulates the unitary
transformation T ∈ U(HN ) (with respect to (|ψi〉)i and (Pw)w∈W), if G|ψi〉
simulates T |i〉 (with respect to (Pw)w∈W), for every i.

Equivalence. Testing a circuit as a single unitary operation is not an option.
Indeed, this would require checking a simulation condition by sampling a prob-
ability distribution with a number of realizations exponential in the number of
qubits involved in the circuit. Rather, we would like to test each of the physical
devices that constitute the circuit individually in order to conclude that their
composition simulates the whole circuit. Unfortunately, statements about sim-
ulation cannot be composed. This is the reason for the introduction of another
concept, the concept of equivalence.

The equivalence notion we introduce is motivated by results of Mayers and
Yao [3], but was not explicitly stated in their work. It is a mathematical notion
based on the possibility of transferring states which lie within a physical space
into a logical system.
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For a Hilbert space H , that will describe our physical system, we set a logical
space Hc = HN for some given integer N , and define H̄ = Hc ⊗ H . We now
identify H with |0〉 ⊗H , and consider H as a subspace of H̄ .

First, we define the equivalence between a subspace of H and the logical
system Hc with respect to a set of projectors. As for the notion of simulation,
these projectors act as reference systems.

Definition 3. Let U ∈ U(H̄). A subspace S of H is U -equivalent to Hc (with
respect to (Pw)w∈W), if for every w ∈ W, Pw =S U †(|w〉〈w| ⊗ IdH)U .

The above definition is equivalent to the commutative diagram:
S

P w

−−→ S

U ↓ ↑ U†

H̄
|w〉〈w|⊗IdH−−−−−−−−→ H̄

. Intuitively, the unitary transformation U ensures that the

correspondence between the physical system H and the logical system Hc is
well defined on S. As a consequence, the projectors Pw satisfy Pw(S) ⊆ S.

Define now the U -equivalence for states and gates that implies the simulation.

Definition 4. Let S be a subspace of H. A state |ψ〉 ∈ S is U -equivalent to
|φ〉 ∈ Hc on S (with respect to (Pw)w∈W), if
1. S is U -equivalent to Hc,
2. |ψ〉 = U †(|φ〉 ⊗ |χ〉), for some |χ〉 ∈ H.

Definition 5. Let S be a subspace of H. A unitary transformation G ∈ U(H)
is (U, V )-equivalent to T ∈ U(Hc) on S (with respect to (Pw)w∈W), if
1. S is U -equivalent to Hc,
2. S′ = G(S) is V -equivalent to Hc,
3. G =S V †(T ⊗W )U , for some W ∈ U(H).

This equivalence can be summarized by the following commutative diagram:
S

P w

←−− S
G−→ S′ P w

−−→ S′

U† ↑ ↓ U V † ↑↓ V ↑ V †

H̄
|w〉〈w|⊗IdH←−−−−−−−− H̄

T⊗W−−−−→ H̄
|w〉〈w|⊗IdH−−−−−−−−→ H̄

.

Proposition 1. Assume that {0, 1, . . . , N − 1} ⊆ W. Let (|ψi〉)0≤i<N be a unit
vector of P i(S). If G ∈ U(H) is equivalent to T ∈ U(Hc) on S, then G simulates
T with respect to (|ψi〉)i.

When H =
⊗n

i=1 Hi, and Pw =
⊗n

i=1 Pwi

Hi , where w = (w1, w2, . . . , wn) ∈
W1 ×W2 . . .Wn, we will often use the equivalence for matrices U that can be
tensor product decomposed as U =

⊗
i U

i, for some U i ∈ U(H̄i). In that case,
we will say that G is tensor equivalent to T . Notice that |χ〉 and W are not
required to be also tensor product decomposable. This is because we want to
encompass situations where the physical implementation G of the gate creates or
destroys entanglement in the hidden degrees of freedom of the quantum register.
Finally, note that the tensor equivalence on H implies the equivalence for each
factor Hi, if the projectors Pwi

Hi are complete, namely if they linearly generate
the identity in Hi. This will be the case in the rest of the paper.
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Norm and approximation. We consider the �2 norm ‖·‖ for states, and the
corresponding operator ‖·‖ norm for linear transformations. These norms are
stable by tensor product composition in the following sense: ‖u⊗v‖ = ‖u‖×‖v‖,
if u and v denote either vectors or linear transformations. We note |ψ〉 =ε |ψ′〉
when two vectors |ψ〉, |ψ′〉 are such that ‖|ψ〉 − |ψ′〉‖ ≤ ε. We extend the �2-
operator norm for restrictions of linear transformations on H . Namely if M is
a linear transformation on H , and S is a subspace of H we define by ‖M‖S =
sup(‖M |ψ〉‖ : |ψ〉 ∈ S and ‖|ψ〉‖ = 1). Similarly to states, we will write M =ε

S N
when ‖M −N‖S ≤ ε. We introduce the notion of ε-simulation by extending the
notion of simulation where statistics equalities are only approximately valid up
to some additive term ≤ ε. The notions of equivalence can be similarly extended
to ε-equivalence, by replacing each equality =S by =ε

S.

3 Building a Test from Simulation

We consider a test as a set of simulation conditions, each of which can be checked
through sampling. We show how to design efficient tests for quantum circuits by
studying elementary tests that characterize sources and gates, and proving that
the elementary tests are enough to characterize the whole circuit.

3.1 EPR State Testing

We rephrase Mayers and Yao [3] in our framework of quantum testing we just in-
troduced. This is the simplest situation in which simulation implies equivalence.
Their main result will be stated in an extended form that is most convenient for
testing several registers successively. We will then use this result as a building
block for finding other situations in which simulation implies equivalence.

From now and until the end of the paper, let A0 = {0, π8 , π4 }, A1 = {a + π
2 :

a ∈ A0}, and A = A0 ∪A1. We fix orthogonal measurements (P a
A, P

a+π/2
A )a∈A0

and (P b
B , P

b+π/2
B )b∈A0 respectively on two Hilbert spaces A and B. Namely, we

assume that P a
A + P

a+π/2
A = IdA and P a

B + P
a+π/2
B = IdB, for every a ∈ A0.

Theorem 1. Let H = A⊗B⊗C, and |ψ〉 ∈ H that simulates |φ+〉 with respect
to (P a

A ⊗ P b
B ⊗ IdC)a,b∈A. Then there exist two unitary transformations UĀ ∈

U(Ā) and UB̄ ∈ U(B̄) such that |ψ〉 is (UĀ ⊗ UB̄)-equivalent to |φ+〉 on S =
span{P a

A ⊗ P b
B ⊗ IdC |ψ〉 : a, b ∈ A}. Moreover the dimension of S is 4.

In [3], the theorem was initially extended from S to the supports of |ψ〉 on each
side. Nonetheless our results will be stated on S since this is sufficient for our
purpose, and because their respective robustness can only be stated on S.

From Theorem 1 we derive by induction over n our main tool for test-
ing n-qubit registers. Let A =

⊗n
i=1 Ai and B =

⊗n
i=1 Bi. We now fix

(P ai

Ai , P
ai+π/2
Ai )ai∈A0 and (P bi

Bi , P
bi+π/2
Bi )bi∈A0 to be orthogonal measurements on

Ai and Bi respectively for every i. We denote P a
A =
⊗n

i=1 P ai

Ai , with a = (ai)ni=1

and P b
B =

⊗n
i=1 P bi

Bi with b = (bi)ni=1.
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Corollary 1. Let H = A ⊗ B ⊗ C, and |Ψ〉 ∈ H that simulates |φ+〉 with
respect to (P ai

Ai⊗P bi

Bi⊗ IdC)ai,bi∈A for every i = 1, 2, . . . , n. Then there exist two
unitary transformations UĀ ∈

⊗
i U(Āi) and UB̄ ∈

⊗
i U(B̄i) such that |Ψ〉 is

(UĀ ⊗ UB̄)-equivalent to |Φ+
n 〉 on S = span{P a

A ⊗ P b
B |ψ〉 : a, b ∈ An}. Moreover

the dimension of S is 4n.

Therefore, testing a 2n-qubit EPR state can be done by checking the probabilities
of O(n) outcomes, whereas there are 2O(n) possible joint measurement outcomes.

3.2 Gate Testing

One-qubit Gate Testing. As a first attempt, we state how to check that a
gate is equivalent to the identity.

Proposition 2. Let H = A⊗B and G ∈ U(A). Let |ψ〉 ∈ H be such that |ψ〉 and
G|ψ〉 simulate |φ+〉 with respect to some projectors (P a

A)a∈A and (P b
B)b∈A. Then,

G⊗ IdB is tensor equivalent to IdAc⊗ IdBc on S = span{P a
A⊗P b

B|ψ〉 : a, b ∈ A}.

Stating the above result allows us to exhibit simple characteristics of the general
method used for proving that gates can be self-tested. First, any gate testing
requires two EPR tests. These are used to ensure that the input and output
states together with the measurements act properly before and after the gate.
These are conspiracy tests. Second, the fundamental properties of EPR states is
used in order to show that the gate G and the measurements commute on the
input state. This allows to perform tomography of the gate G. These tests will
be referred to as tomography tests.

We can now state the general result concerning any 1-qubit real gate. We use
the fact that any real gate on one qubit of the EPR state |φ+〉 can be undone
by doing the same real gate on the other qubit.

Theorem 2. Let T ∈ O(2). Let H = A ⊗ B, GA ∈ U(A), and GB ∈ U(B).
Let |ψ〉 ∈ H be such that |ψ〉 and GAGB|ψ〉 simulate |φ+〉, and such that GA|ψ〉
simulates (T ⊗ Id2)|φ+〉. Then, GA is tensor equivalent to T on S = span{P a

A⊗
P b
B|ψ〉 : a, b ∈ A}.

Proof. The proof proceeds in two steps. First, we show that S and GA(S) are
resp. (UĀ ⊗ UB̄)- and (VĀ ⊗ UB̄)-equivalent to Ac ⊗ Bc. Second, we prove that
there exists W ∈ U(A) such that GA⊗IdB =S (V †

Ā
⊗U †

B̄
)(T⊗W⊗IdB̄)(UĀ⊗UB̄).

Theorem 1 applied to |ψ〉 and GAGB|ψ〉 gives UĀ, VĀ ∈ U(Ā) and UB̄, VB̄ ∈
U(B̄) such that S and (GA⊗GB)(S) are respectively (UĀ⊗UB̄)- and (VĀ⊗VB̄)-
equivalent to Ac⊗Bc. This implies that (GA ⊗ IdB)(S) is (VĀ ⊗UB̄)-equivalent
to Ac ⊗Bc. That is, we have the required tensor equivalences for S and GA(S).
If we define |χ〉AB as UĀ ⊗ UB̄|ψ〉 = |φ+〉AcBc ⊗ |χ〉AB, we then have S =
U †
A ⊗ U †

B(Ac ⊗Bc ⊗ |χ〉AB).
The simulation of T |φ+〉 by GA|ψ〉 can be rewritten within the den-

sity matrix formalism as: tr
(
(P a

A ⊗ P b
B)GA|ψ〉〈ψ|G†

A

)
= tr ((|a〉〈a| ⊗ |b〉〈b|)

(T ⊗ Id2)|φ+〉〈φ+|(T † ⊗ Id2)
)
. Using the commutativity of the trace operator
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and (Id2⊗|b〉〈b|)|φ+〉〈φ+| = 1
2 |b〉〈b|⊗|b〉〈b|, we get: tr

(
(G†

AP a
AGA ⊗ P b

B)|ψ〉〈ψ|
)

=
1
2 tr
(
T †|a〉〈a|T |b〉〈b|

)
.

Define the positive semi-definite operator Ra
ĀB̄

= (UĀ ⊗
UB̄)G†

AP a
AGA(U †

Ā
⊗ U †

B̄
). Since |ψ〉 is tensor equivalent to |φ+〉, we have:

tr
(
Ra
ĀB̄

(|b〉〈b|Ac ⊗ |b〉〈b|Bc ⊗ |χ〉〈χ|AB)
)

= tr
(
T †|a〉〈a|T |b〉〈b|

)
.

Observe that the operators UB̄ and U †
B̄

can be removed from the definition of
Ra
ĀB̄

without modifying it. Therefore the previous equation can be extended for
all b, b′ ∈ A to tr

(
Ra
ĀB̄

(|b〉〈b|Ac ⊗ |b′〉〈b′|Bc ⊗ |χ〉〈χ|AB)
)

= tr
(
T †|a〉〈a|T

)
, since

the value of the left hand side does not depend on b′.
Now applying standard techniques of tomography, we get that

AB〈χ|Bc〈b′|Ra
ĀB̄
|b′〉Bc |χ〉AB = (T †|a〉〈a|T ), for every b′ ∈ A. Since Ra

ĀB̄
is

a semi-definite operator, the above conclusion can be rewritten as

Ra
ĀB̄ =Ac⊗Bc⊗|χ〉AB

(T †|a〉〈a|T )⊗ IdA⊗B̄. (1)

The tensor-equivalence of GA(S) with Ac ⊗ Bc also gives P a
A =GA(S) (V †

Ā
⊗

U †
B̄

)(|a〉〈a|⊗IdA⊗B̄)(VĀ⊗UB̄). Since S = U †
A⊗U †

B(Ac⊗Bc⊗|χ〉), this can be used
to replace P a

A inside Equation (1). We obtain (|a〉〈a|⊗IdA⊗B̄)(VĀ⊗UB̄)GA(U †
Ā
⊗

U †
B̄

)(T † ⊗ IdA⊗B̄) =Ac⊗Bc⊗|χ〉 (VĀ ⊗ UB̄)GA(U †
Ā
⊗ U †

B̄
)(T † ⊗ IdA⊗B̄)(|a〉〈a| ⊗

IdA⊗B̄). Then, we can conclude using standard linear algebra techniques that
there exists W ∈ U(A) such that GA =S (V †

Ā
⊗U †

B̄
)(T ⊗W ⊗ IdB̄)(UĀ⊗UB̄). ��

Many-qubit Gate Testing. We now consider n-qubit real gates. We present
our main result for testing gates using a slightly different formulation than in
Theorem 2, which will be useful for the proof of Theorem 4. The proof is omitted
since it is similar to the second step of the proof of Theorem 2.

Note that we will use that any real gate on one register of the state |Φ+
n 〉 can

be undone by doing the same real gate on the other register.

Theorem 3. Let T ∈ O(2n). Let H = A ⊗B ⊗ C, where A =
⊗

i A
i and B =⊗

i B
i. Let GA ∈ U(A) and GB ∈ U(B). Let |Ψ〉 ∈ H and UĀ, VĀ ∈

⊗
i U(Āi)

and UB̄, VB̄ ∈
⊗

i U(B̄i) be such that:

1. |Ψ〉 is (UĀ ⊗ UB̄)-equivalent to |Φ+
n 〉 on S with respect to (P a

A ⊗ P b
B)a,b∈An ,

2. GAGB |Ψ〉 is (VĀ ⊗ VB̄)-equivalent to |Φ+
n 〉 on (GA ⊗GB)(S) with respect to

(P a
A ⊗ P b

B)a,b∈An ,
3. GA|Ψ〉 simulates (T ⊗ Id2n)|Φ+

n 〉 with respect to (P a
A ⊗ P b

B ⊗ IdC)a,b∈An ,
where S = span{P a

A ⊗ P b
B|ψ〉 : a, b ∈ An}. Then GA is (UĀ ⊗ UB̄, VĀ ⊗ UB̄)-

equivalent to T on S.

As Theorems 2 & 3 exemplify, there is one restriction to the class of gates we are
able to test. The ideal gates must have real-valued coefficients. Note that we are
not making any assumptions about the physical implementation of gates, but
rather on the ideal gates they are supposed to simulate. The problem lies in the
fact that any complex gate of dimension d can be simulated using real gates and
appropriate measurement devices on a 2d-dimensional Hilbert space, in a rather
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standard way [7]. On the positive side, this remark means that our restriction is
not a limitation, as any quantum computation can be performed with real gates
and real gates can be tested.

3.3 Circuit Testing

Now we state our main theorem and its corollary which relates elementary tests
of sources and gates with the simulation of a whole circuit. They derive from
Corollary 1 and Theorem 3, in the sense that (i) under certain conditions simu-
lation implies equivalence, (ii) equivalence statements can be composed and (iii)
that equivalence implies simulation.

Assume that some Hilbert space H has a tensor product decomposition H =⊗n
i=1 Ai

⊗
Bi. For any subset I ⊆ {1, 2, . . . , n}, let HI denote the Hilbert space⊗

i∈I Ai
⊗

i∈I Bi, and |Φ+〉I the EPR state |Φ+
|I|〉 over

⊗
i∈I Ai

c

⊗
i∈I Bi

c.

Theorem 4. Let H = A ⊗ B, where A =
⊗

i A
i and B =

⊗
i B

i. Let
I1, I2, . . . , It ⊆ {1, 2, . . . , n}. Let Gj

A ∈ U(AIj

), Gj
B ∈ U(BIj

) and T j ∈ O(AIj

c ).
Let |Ψ〉 ∈ A ⊗ B. Define inductively |Ψ ′j〉 = (Gj

A ⊗ IdB)|Ψ j−1〉 and |Ψ j〉 =
(Gj

A ⊗Gj
B)|Ψ j−1〉, where |Ψ0〉 = |Ψ ′0〉 = |Ψ〉. Assume:

1. |Ψ〉 simulates |φ+〉 with respect to (P ai

Ai⊗P bi

Bi)ai,bi∈A, for every i = 1, 2, . . . , n.
2. For j = 1, . . . , t: |Ψ j〉 simulates |φ+〉 with respect to (P ai

Ai ⊗ P bi

Bi)ai,bi∈A, for
every i ∈ Ij.
3. For j = 1, . . . , t: |Ψ ′j〉 simulates T j|Φ+〉Ij w.r.t. (P a

AIj ⊗ P b
BIj )a,b∈AIj .

Then Gt
AGt−1

A · · ·G1
A is tensor equivalent to T tT t−1 · · ·T 1 on S = span(P a

A ⊗
P b
B|Ψ〉 : a, b ∈ An).

Corollary 2. Let |Ψ〉 ∈ H satisfy the hypothesis of Theorem 4 for some decom-
position of GA ∈ U(A) and T ∈ U(Ac) into t gates acting only on a constant
number of qubits. Then, for every x ∈ {0, 1}n, the state

√
2n trB(P x

B |Ψ〉) simu-
lates |x〉Ac with respect to (Pw

A )w∈An . Moreover GA simulates T with respect to
the above identification, and the number of statistics to be checked is in O(t).

4 Robustness of Testing

Until now, our interest has been focused on the possibility of self-testing a quan-
tum circuit when outcome probabilities are known with perfect accuracy. To
be of practical interest, our results must be extended to the situation of finite
accuracy. We show below that it is possible and that the relevant results for
testing are robust in the following way: if the statistics are close to the ideal
ones, then the states, the measurements and the gates are also close to ones that
are equivalent to the ideal ones. This notion of robustness follows the ones of
[8,9] for classical computing and of [4] for quantum computing.

The proofs of this section follow the structure of the exact case, and are
omitted due to the lack of space. They will be in the full version of the paper.
We first state the robustness of Theorem 1.
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Theorem 5. Let H = A ⊗ B ⊗ C, and |ψ〉 ∈ H that ε-simulates |φ+〉 with
respect to (P a

A ⊗ P b
B ⊗ IdC)a,b∈A. Then there exist UĀ ∈ U(Ā) and UB̄ ∈ U(B̄)

such that |ψ〉 is (O(ε1/4), (UĀ ⊗ UB̄))-equivalent to |φ+〉 on S.

This result can be generalized to the case of a source producing a state |Ψ〉 that
simulates n EPR pairs. In such case equivalence holds within O(4nε1/4).

Corollary 3. Let H = A ⊗ B ⊗ C, where A =
⊗

i A
i and B =

⊗
i B

i. Let
|Ψ〉 ∈ H be a state that ε-simulates |φ+〉 with respect to (P ai

Ai ⊗ P bi

Bi)ai,bi∈A, for
every i = 1, 2, . . . , n. Then, |Ψ〉 is O(4nε1/4)-equivalent to |Φ+

n 〉.

Another corollary we will use in the context of circuit testing concerns the case
of n sources of EPR pairs that are tested simultaneously. This is qualitatively
different from the previous situation as the state |Ψ〉 that is tested is assumed to
be separable across the tensor product decomposition of H into Hi = Ai ⊗Bi.

Corollary 4. Let H = A ⊗ B ⊗ C, where A =
⊗

i A
i and B =

⊗
i B

i. Let
|Ψ〉 ∈ H be a separable state across the tensor product decomposition of H into
Ai⊗Bi, and such that it ε-simulates |φ+〉 with respect to (P ai

Ai ⊗P bi

Bi)ai,bi∈A, for
every i = 1, 2, . . . , n. Then, |Ψ〉 is O(nε1/4)-equivalent to |Φ+

n 〉.

Now we concentrate on the robustness of Theorem 3. Note that the exponential
dependency in the number n of qubits is not a problem, since we will use this
theorem for constant n only (typically n ≤ 3).

Theorem 6. Let T ∈ O(2n). Let H = A ⊗B ⊗ C, where A =
⊗

i A
i and B =⊗

i B
i. Let GA ∈ U(A) and GB ∈ U(B). Let |Ψ〉 ∈ H and UĀ, VĀ ∈

⊗
i U(Āi)

and UB̄, VB̄ ∈
⊗

i U(B̄i) be such that:

1. |Ψ〉 is (ε, (UĀ⊗UB̄))-equivalent to |Φ+
n 〉 on S with respect to (P a

A⊗P b
B)a,b∈An ,

2. GA⊗GB|Ψ〉 is (ε, (VĀ⊗VB̄))-equivalent to |Φ+
n 〉 on (GA⊗GB)(S) with respect

to (P a
A ⊗ P b

B)a,b∈An ,
3. GA|Ψ〉 ε-simulates (T ⊗ Id2n)|Φ+

n 〉 with respect to (P a
A ⊗ P b

B ⊗ IdC)a,b∈An .

Then GA ⊗ IdB is (2O(n)√ε, (UĀ ⊗UB̄, VĀ ⊗UB̄))-equivalent to T ⊗ IdB̄c
on S.

5 Testing a Circuit on a Specific Input

We have seen in Section 3 how to test the implementation of a circuit on a whole
subspace S of the input space. Surprisingly, this is much easier than to test a
circuit on a particular input. In fact, using EPR pairs allows for the simultaneous
testing of all possible inputs, while making the selection of a particular one
difficult. The obvious choice would be to post-select the outcome of the B-side
measurements of the EPR pairs. Unfortunately, the selected input state would
then be prepared with exponentially small probability.

We circumvent the aforementioned difficulty using the fact that our circuits
can have classically controlled feedback that decides which gates need to be
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applied based on some measurement results. Given a circuit for a unitary trans-
formation T and an input x, we first measure the B-side of the (alleged) EPR
states. This yields a classical state y on the A-side. Second, we design a circuit
Tx,y whose purpose is to flip the corresponding bits of y in order to get the input
x, and to apply the original circuit for T . Third, we run the modified circuit on
the state y that was prepared on the A-side. Finally, we test that this modified
circuit implemented the correct computation. This includes verifying the gates
and the preparation of all input states |x′〉—and in particular the preparation
of |x〉—obtained by measuring |Ψ〉 on the B-side. See Figure 1 for an example.

Fig. 1. The experiments to test the circuit consisting of gates G3
AG2

AG1
A on input |00〉.

We first run the computation (Experiment 1) once on the modified circuit, where the

intermediate measurements on the B-side yield the outcomes M1, M2. We now wish to

check that the output of the circuit is correct. We carry on implementing Experiments

2 through 8 each a number of times in log(n/γ)/ε8, where ε is the required precision

and γ is some confidence parameter.

The parameters of our test is a circuit for T ∈ U(2n), that is a gate decom-
position T tT t−1 · · ·T 1 = T ; a binary string x ∈ {0, 1}n; a precision ε > 0; and
a confidence γ > 0. We assume that each gate T i acts on a constant number of
qubits (say ≤ 3). The input is a source of quantum states |Ψ〉 spread over n pairs
of quantum registers; gates Gj

A and Gj
B acting on the same register numbers as

T j, for every j; auxiliary gates N i
A acting on the i-th register of A; and orthogo-

nal measurements (P a
Ai , P

a+π/2
Ai )a∈A0 and (P b

Bi , P
b+π/2
Bi )b∈A0 . The goal is to test

that, firstly,
√

2n trB(P b
B |Ψ〉) simulates |b〉 and that, secondly, the implemented

circuit GA simulates T .

Circuit Test (T 1, T 2, . . . , T t ∈ U(2n), x ∈ {0, 1}n, ε > 0, γ > 0)
1. Prepare a state |Ψ〉 of n EPR states into n pairs on A1 ⊗B1, . . . , An ⊗Bn

2. Measure the B-side of |Ψ〉 using (P b
B)b∈{0,π/2}n and let y be the outcome
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3. Let Tx,y be the circuit that changes the input |y〉 into |x〉 and applies T
4. Prepare on the A-side the circuit GA implementing Tx,y using the t gates

Gj
A and at most n gates N i

A. Let t′ ≤ t + n be the total number of gates
5. Run the circuit on the A-side and measure using (P a

A)a∈{0,π/2}n

6. Approximate all the following statistics by repeating O( log(n/γ)
ε

) times the
following measurements (where we use the notation of Theorem 4):

(a) Measure |Ψ〉 using (P ai

Ai ⊗ P bi

Bi)ai,bi∈A0
, for every i = 1, 2, . . . , n

(b) For j = 1, . . . , t′: Measure |Ψ j〉 using (P ai

Ai ⊗ P bi

Bi)ai,bi∈A, for every i ∈ Ij

(c) For j = 1, . . . , t′: Measure |Ψ ′j〉 using (P a

AIj ⊗ P b

BIj )
a,b∈AIj

0
7. Accept if all the statistics are correct up to an additive error ε

Theorem 7. Let T 1, T 2, . . . , T t ∈ U(2n), x ∈ {0, 1}n, ε > 0, γ > 0.
If Circuit Test(T 1, T 2, . . . , T t, x, ε, γ) accepts then, with probability 1−O(γ),

the outcome probability distribution of the circuit (in step 5) is at total variance
distance O((t + n)ε1/8) from the distribution that comes from the measurement
of T tT t−1 · · ·T 1|x〉 by (|a〉〈a|)a∈{0,π/2}n .

Conversely, if Circuit Test(T 1, T 2, . . . , T t, x, ε, γ) rejects then, with proba-
bility 1 − O(γ), at least one of the state |Ψ〉, the gates Gi

A, Gi
B and N i

A is not
O(ε)-equivalent to respectively either |Φ+

n 〉, (|a〉〈a|Ai
c
)a∈A, (|b〉〈b|Bi

c
)b∈A), T i, t(T i)

and NOTAi
c
, on S = span(P a

A⊗P b
B|Ψ〉 : a, b ∈ An) with respect to the projections

(P a
A ⊗ P b

B)a,b∈An .
Moreover Circuit Test(T 1, T 2, . . . , T t, x, ε, γ) consists of O( tnε log(n/γ))

samplings.

Proof. We first describe the use of the hypotheses we made in Section 1. The
assumption (H4) of trusted classical control is used to ensure that the circuit has
the same behavior on P y

B |Ψ〉 as it would have on |Ψ〉. Hypothesis (H3) implies
that we can repeat several times the same experiment, and hypotheses (H1) and
(H2) allow us to state which parts of our system are separated from the others.

First, using the Chernoff-Hoeffding bound, we know that the expectation of
any bounded random variable can be approximated within precision O(ε) with
probability 1− O(γ) by log(1/γ)

ε2 independent samplings. Moreover if the expec-
tation is lower bounded by a constant, then log(1/γ)

ε independent samplings are
enough. In our case, the random variable is the two possible outcomes of a mea-
surement. Call them 0 or 1. Since we can count both 0 and 1 outcomes, one of
the corresponding probabilities is necessarily at least 1/2. Therefore we get that
each statistics we have from Circuit Test are approximated within precision
O(ε) with probability 1− O(γ). From now on, we assume that all statistics are
given within this precision.

First, we prove the robustness of Circuit Test. We derive the correct simu-
lation of the implemented circuit using the approximate version of Corollary 2,
that we get using Theorems 5 and 6. More precisely, using Corollary 4 for the ini-
tial source we get that |Ψ〉 is O(nε1/4)-equivalent to |Φ+

n 〉 on S. For other steps,
due to the application of the j-th gate, the state |Ψ j〉 is not necessarily a sepa-
rable state across the n-registers. So we apply Corollary 3 on the registers where
the j-th gate is applied, that is on a constant number of register, which gives
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the required O(ε1/4)-equivalence on the corresponding registers. Then, Theo-
rem 6 concludes that the j-th gate is O(jε1/8)-equivalent to the expected one,
similarly for the intermediate states of the circuit and for the measurements.
Note the error propagation is controlled by two properties: the stability of the
�2 operator-norm by tensor product composition, and the triangle inequality.

Then, we focus on the run of Tx,y in Step 5. We have to justify that the (nor-
malized) outcome state

√
2nP y

B|Ψ〉 ∈ S of the measurement (P b
B)b∈{0,π/2}n is

O(nε1/4)-equivalent to |y〉 with respect to (P a
A)a∈{0,π/2}n on P y

B(S). Recall that
by assumption the initial state |Ψ〉 is separable across the n pairs of registers,
namely |Ψ〉 =

⊗
i|ψi〉 with |ψi〉 ∈ Ai ⊗ Bi. For each pair of registers Ai ⊗ Bi,

using Theorem 5 we get that |ψi〉 is O(ε1/4)-equivalent to |φ+〉 with respect
to (P ai

Ai ⊗ P bi

Bi)ai,bi∈A on Si = span(P ai

Ai ⊗ P bi

Bi |ψi〉 : ai, bi ∈ A). In particular
the projections P ai

Ai ⊗ P bi

Bi are also O(ε1/4)-equivalent to |ai〉〈ai| ⊗ |bi〉〈bi| on Si.

Therefore the normalized outcome state
√

2P yi

B |ψi〉 (which is in Si) is O(ε1/4)-
equivalent to |yi〉 with respect to (P ai

Ai)ai∈{0,π/2} on P yi

Bi(Si). We then get our
equivalence for the whole outcome state using those intermediate equivalences
together with the stability of the �2 operator-norm by tensor product compo-
sition, and the triangle inequality of the norm. Finally, we combine the above
approximate equivalences, one for the circuit and one for the input, and get that
the outcome distribution is at total variation distance at most O((t + n)ε1/8)
from the expected one.

The second part of the theorem is the soundness of Circuit Test. Since �2-
distance between states bounds the statistics bias of their measures, the proof
of the contraposition directly follows: if our objects are ε-equivalent to the spec-
ification, then their statistics have a bias which is upper bounded by O(ε). ��
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Abstract. In this paper, we consider the task of deterministically ex-
tracting randomness from sources consisting of a sequence of n indepen-
dent symbols from {0, 1}d. The only randomness guarantee on such a
source is that the whole source has min-entropy k. We give an explicit de-
terministic extractor which can extract Ω(log k−log d−log log(1/ε)) bits
with error ε, for any n, d, k ∈ N and ε ∈ (0, 1). For sources with a larger
min-entropy, we can extract even more randomness. When k ≥ n1/2+γ ,
for any constant γ ∈ (0, 1/2), we can extract m = k −O(d log(1/ε)) bits
with any error ε ≥ 2−Ω(nγ ). When k ≥ logc n, for some constant c > 0,
we can extract m = k − d(1/ε)O(1) bits with any error ε ≥ k−Ω(1).
Our results generalize those of Kamp & Zuckerman and Gabizon et
al. which only work for bit-fixing sources (with d = 1 and each bit of
the source being either fixed or perfectly random). Moreover, we show
the existence of a non-explicit deterministic extractor which can extract
m = k−O(log(1/ε)) bits whenever k = ω(d+log(n/ε)). Finally, we show
that even to extract from bit-fixing sources, any extractor, seeded or not,
must suffer an entropy loss k−m = Ω(log(1/ε)). This generalizes a lower
bound of Radhakrishnan & Ta-Shma with respect to general sources.

1 Introduction

Randomness has become a useful tool in computer science. However, when us-
ing randomness in designing algorithms or protocols, people usually assume the
randomness being perfect, and the performance guarantees are based on this
assumption. In reality, the random sources we (or computers) have access to are
typically not so perfect at all, but only contain some crude randomness. One
approach to solve this problem is to construct so-called extractors, which can
extract almost perfect randomness from weakly random sources [32,20]. Extrac-
tors turn out to have close connections to other fundamental objects and have
found a wide range of applications (e.g. [20,33,34,31,29,28,16,30]). A nice survey
can be found in [25].

We measure the amount of randomness in a source by its min-entropy; a
source is said to have min-entropy k if every element occurs with probability at
most 2−k. Given sources with enough min-entropy, one would like to construct an

M. Bugliesi et al. (Eds.): ICALP 2006, Part I, LNCS 4051, pp. 84–95, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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extractor which extracts a string with distribution close to uniform. However,
it is well known that one cannot deterministically extract even one bit from
an n-bit source with min-entropy n − 1 [6]. In contrast, it becomes possible if
we are allowed a few random bits, called a seed, to aid the extraction. Such
a procedure is called a seeded extractor. During the past decades, a long line
of research has worked on using a shorter seed to extract more randomness
(e.g. [20,19,22,10,24,29,27,26]), and recently an optimal (up to constant factors)
construction has been given [17].

The problem with a seeded extractor is again to get a seed which is perfectly
(or almost) random. For some applications, this issue can be taken care of (for
example, by enumerating all possible seed values when the seed is short), but for
others, we are back to the same problem which extractors are originally asked to
solve. This motivates one to consider the possibility of more restricted sources
from which randomness can be extracted in a deterministic (seedless) way.

One line of research studies the case with multiple independent sources. The
goal is to have a small number of independent sources with a low min-entropy
requirement on sources, while still being able to extract randomness from them.
With two independent sources, the requirement on the min-entropy rate (average
min-entropy per bit) stayed slightly above 1/2 for a long time [6,8], but this
barrier has been broken by a recent construction which pushes the requirement
slightly below 1/2 [5]. The requirement on min-entropy rate can be lowered to
any constant when there are a constant number of independent sources [3], and
the number of sources has recently been reduced to three [4].

The other line of research considers the case of bit-fixing sources. In an obliv-
ious bit-fixing source, each bit is either fixed (containing no randomness) or
perfectly random, and is independent of other bits. From such a source of length
n with min-entropy n1/2+γ , for any constant γ ∈ (0, 1/2), Kamp and Zucker-
man [13] gave a seedless extractor which can extract Ω(n2γ) bits of randomness.
Building on this result together with some new idea, Gabizon et al. [9] were
able to extract even more randomness. In particular, when the source has min-
entropy k > n1/2+γ , they can extract k − n1/2+γ bits and when k > logc n for
some constant c, they can extract k − kΩ(1) bits.

Note that the two lines of research discussed above can be seen as belonging
to two extremes of a spectrum in the following sense. Sources in both cases
consist of multiple parts which are mutually independent. In the first case, one
usually has in mind sources with relatively few parts while each part is long and
contains a substantial amount of randomness. In the second case, a bit-fixing
source consists of many parts, while each part is only a single bit which is either
random or fixed. We would like to put both cases in the same framework and
study sources that lie in between these two extremes.

We consider the following more general class of sources, characterized by the
parameters n, d, k ∈ N. Each source in the class consists of n mutually indepen-
dent parts, each of length d, and the whole source has min-entropy k. For small
n and large d, this covers sources of the first type, while for large n and d = 1,
this covers sources of the second type. For other ranges of n and d, very little



86 C.-J. Lee, C.-J. Lu, and S.-C. Tsai

is known, and the main focus of our paper is to extract randomness from such
sources.

Previously, [15,14] were able to extract randomness from such a source with
the condition that there are two parts in it with a combined min-entropy slightly
above d. Independent of our work, Kamp et al. [12] recently also considered the
same class of sources as ours and obtained some similar results. Furthermore,
they showed that extractors for such sources also work for a more general class
of sources which can be generated in small space.

Note that for deterministic extractors, the goal is to maximize the number m
of extracted bits (or equivalently to minimize the entropy loss k − m) and to
minimize the distance ε, which we call error, of its output distribution to the
uniform one.

Our results. Our first result gives an explicit extractor which works for any min-
entropy k but extracts only about log k random bits. More precisely, for any
n, d, k ∈ N and ε ∈ (0, 1), our extractor can extract Ω(log k− log d− log log(1/ε))
bits with error ε. This can be seen as a generalization of the extractor of Kamp
and Zuckerman [13], but note that theirs only works for bit-fixing sources and
does not seem to work for the case that allows each bit having arbitrary bias. In
fact, our extractor works for sources in which randomness could be distributed
very non-uniformly among the n parts (e.g., some may have no min-entropy at
all, but we do not know which ones), while previous constructions such as [3,4,21]
do not seem to work for such sources. Independent of our work, Kamp et al. [12]
also gave the same construction but used a different analysis.

To extract more randomness, we borrow the technique of Gabizon et al. [9].
We have two constructions, both built on our first construction mentioned above.
First, when k ≥ n1/2+γ , for any constant γ ∈ (0, 1/2), we can extract m = k −
O(d log(1/ε)) random bits with any error ε ≥ 2−Ω(nγ). Second, when k ≥ logc n,
for some constant c > 0, we can extract m = k − d(1/ε)O(1) bits with error
ε ≥ k−Ω(1). That is, when the min-entropy k is high, we can have a small
entropy loss and a small error, but when k is small, the loss and error become
larger. Note that the two main results in [9] follow from our two with d = 1
(that is, for bit-fixing source). On the other hand, we cover a large range of d
and ε, and capture the tradeoff between error and entropy loss. For example, for
constant d and ε, we show that the entropy loss can be lowered to a constant.

One may wonder if the entropy loss can be further reduced. We show that
this is indeed possible, by proving the existence of a seedless extractor which
can extract m = k − O(log(1/ε)) random bits whenever k = ω(d + log(n/ε)).
However, the existence is not shown in an explicit way; we only know such an
extractor exists but we do not know how to construct it. Still, this shows that
better explicit constructions than ours may be possible. Only for the case with
d = O(1), k ≥ n1/2+γ , and ε ≥ 2−Ω(nγ) do we have an explicit construction
matching this bound.

On the other hand, one may also wonder whether this existential upper bound
on entropy loss is tight. Our final result shows that this is indeed the case by giv-
ing a matching lower bound. In fact, we show that even for the case of bit-fixing
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sources and even allowing a seed of length s, any extractor can only extract
k+s−Ω(log(1/ε)) random bits. That is, even to extract from bit-fixing sources,
any extractor, seeded or not, must suffer an entropy loss of Ω(log(1/ε)). This
generalizes the result of Radhakrishnan and Ta-Shma [23], which has the same
bound for seeded extractors on general sources.

Our techniques. Our first extractor, which extracts about log k bits, was inspired
by that of Kamp and Zuckerman [13], but our approach is quite different. Instead
of taking a random walk on an odd cycle, we walk on the group ZM for a prime
M . More precisely, given a source X = (X1, . . . , Xn), we see each Xi as an
element of ZM and outputs X1 + · · · + Xn over ZM . As in [13], we will show
that each step of our walk brings the distribution closer to uniform when the
symbol from the source contains some randomness. However, even for the case
of d = 1, we cannot use the analysis from [13], which is based on bounding the
second eigenvalue of the transition matrix for a perfectly random step on a cycle.
This is because we may walk in a highly biased way as each bit of our source
can have an arbitrary bias. Our proof is very different and elementary, and has
the following interesting point. The recent breakthrough construction of multi-
source extractors [3] and its subsequent works all relied on using both sums and
products to increase entropy. Our analysis shows that in fact even doing sums
alone can increase entropy. The increase, however, is slower, so we need a larger
number of sources (as opposed to a constant number in [3]).

Then we apply the technique of [9] to extract more randomness. Our two
extractors generalize the corresponding ones in [9]. The only difference is that
we deal with a more general classes of sources, do a more careful analysis, and
use our first extractor instead of that in [13] as a building block.

Our existential upper bound on entropy loss is proved via a probabilistic
argument. That is, we generate a seedless extractor randomly, and show that it
works for all of our sources with a positive probability. For each source, we can
show that it fails with a small probability. However, the number of all possible
sources is in fact infinite. Nevertheless, we show that it suffices to consider only
a small set of sources, since any source is close to a convex combination of
them. Sources in this set are those with the property that their distributions
in each dimension are “almost flat” and have only a small number of possible
min-entropy values.

Our lower bound proof of entropy loss follows the outline of that in [23].
Namely, given any function Ext : {0, 1}n × {0, 1}s → {0, 1}m with m ≥ k +
s − o(log(1/ε)), we show the existence of a bit-fixing source with min-entropy
k on which the error of Ext exceeds ε, again using a probabilistic argument.
We generate a source by randomly picking n− k bits from the source and fixing
them to some random values; the remaining k bits are left free and given a
uniform distribution. The difficult part is to show that any such Ext fails on
such a randomly chosen source with a positive probability. This probability turns
out to be related to the size of some “almost” t-wise independent space, whose
distribution is close to random on most sets of t dimensions. This can be seen as
a relaxation of the standard notion of approximate t-wise independent space, in
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which the close-to-randomness property is required on every set of t dimensions.
We prove a size lower bound on such a sample space, which seems to have an
interest of its own. In particular, it immediately implies a size lower bound on
any approximate t-wise independent space.

2 Preliminaries

For n ∈ N, let [n] denote the set {1, . . . , n}. For x ∈ {0, 1}n, i ∈ [n], and I ⊆ [n],
let xi denote the bit in the i’th dimension of x and xI denote the projection of
x onto those dimensions in I. For S ⊆ {0, 1}n and I ⊆ [n], let SI denote the set
{xI : x ∈ S}. For a set S and t ∈ N, let P (S, t) denote the collection of t-element
subsets of S. All the logarithms in this paper will have base two.

When we sample from a finite set, the default distribution is the uniform
one. For n ∈ N, let Un denote the uniform distribution over {0, 1}n. For a
distribution X over a set S and an element x ∈ S, let X (x) denote the prob-
ability measure of x in the distribution X . We say that a distribution X is a
convex combination of distributions X 1, . . . ,X t over a set S, if there exist num-
bers α1, . . . , αt ≥ 0 with

∑
i∈[t] αi = 1 such that for every x ∈ S, X (x) =∑

i∈[t] αiX i(x). We will mainly measure the distance between two distributions
X ,X ′ over S by their L1-distance, defined as ‖X −X ′‖1 =

∑
x∈S |X (x)−X ′(x)|.

Another distance measure that will be used sometimes is the L2-distance, de-
fined as ‖X − X ′‖2 =

√∑
x∈S(X (x) −X ′(x))2. Call a distribution ε-random if

its L1-distance to the uniform distribution is at most ε. We will measure the
amount of randomness in a distribution X over S by its min-entropy, defined
as H∞(X ) = minx∈S log(1/X (x)). In this paper, we will focus on a special kind
of sources called independent-symbol sources, which consist of n independent
symbols over some set [D].

Definition 1. A distribution X = (X1, . . . ,Xn) over the set [D]n is called an
(n,D)-source if the n symbols X1, . . . ,Xn are distributed independently from each
other. An (n,D)-source with min-entropy k is called an (n,D, k)-source. A bit-
fixing source is an (n, 2)-source with the additional condition that each bit of the
source has min-entropy either 0 or 1.

The task of this paper is to extract randomness from such (n,D, k)-sources.

Definition 2. For n,D, k, s,m ∈ N and ε ∈ [0, 1], a function Ext : [D]n ×
{0, 1}s→ {0, 1}m is called an (n,D, k, ε)-extractor if for any (n,D, k)-source X ,
‖Ext(X ,Us)− Um‖1 ≤ ε.

The second input, of s-bit long, to an extractor is called its seed. We allow the
case of s = 0 (i.e. without a seed) and we call such an extractor a seedless (or
deterministic) extractor. The entropy loss of an extractor is the value k+ s−m.
Minimizing this entropy loss is one of the main goals of extractor construction.
Moreover, one usually prefers constructions which are explicit, in the sense that
given any input, one can compute the output in polynomial time.
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3 Extractor from Random Walk

In this section, we give an explicit seedless extractor for independent-symbol
sources, which works for any min-entropy k but only extracts about log k bits.

Theorem 1. For any n, k,D ∈ N and any prime number M ≥ D, there is an
explicit (n,D, k, ε)-extractor Ext0 : [D]n → [M ], with ε ≤

√
M · e−k/(8M2 logD).

Proof. We will work on the group ZM , for a prime M , and see any symbol
Xi ∈ [D] of the source as an element in ZM . Throughout this section, operation
+ or − on elements in ZM is understood as an operation over the group ZM .
Our extractor Ext0 : [D]n → [M ] is then defined as Ext0(X ) =

∑
i Xi, which

can be seen as taking an n-step walk on the group ZM , using the n symbols from
the source in the following way. Each time when we are at some state v ∈ ZM
(initially at 0 ∈ ZM ) and read a symbol a from the source, we go to the state
v + a ∈ ZM . The extractor of Kamp and Zuckerman [13] for bit-fixing sources
can be seen as a special case of ours, with D = 2 and Xi ∈ {−1, 1}.

As in [13], we will show that each step of the walk brings the distribution closer
to uniform if the symbol read from the source contains some randomness, but
our analysis is totally different. See a distribution over ZM as an M -dimensional
vector in the natural way. Suppose the current distribution is P = (P1, . . . ,PM )
and the next symbol in the source has a distribution β = (β1, . . . , βM ) (let
βi = 0 for D+1 ≤ i ≤M). Then the next distribution is P̄ = (P̄1, . . . , P̄M ) with
P̄i =

∑
j∈ZM

βjPi−j for i ∈ ZM . Let U denote the uniform distribution over
ZM . Let δ = P − U and δ̄ = P̄ − U , i.e., δi = Pi − 1/M and δ̄i = P̄i − 1/M for
i ∈ ZM . The following lemma, to be proved in Section 3.1, shows the progress
we can make after each step.

Lemma 1. ‖δ̄‖22 ≤ ‖δ‖22 · (1 −H∞(β)/(4M2 log D)).

This implies that ‖Ext0(X ) − U‖22 ≤
∏
t∈[n](1 − H∞(Xt)/(4M2 log D))

≤ e−
∑

t∈[n] H∞(Xt)/(4M2 logD). Since the n symbols of the source are indepen-
dent of each other, we have

∑
t∈[n] H∞(Xt) = H∞(X ) = k, so the bound above

becomes e−k/(4M
2 logD). Then by Cauchy-Schwartz inequality, we have the the-

orem. ��

3.1 Proof of Lemma 1

Note that for i ∈ ZM , δ̄i =
∑

j∈ZM
βjδi−j . So ‖δ̄‖22 =

∑
i(
∑

j βjδi−j)2 =∑
i

∑
j β2

j δ
2
i−j +

∑
i

∑
j �=� βjβ�δi−jδi−� which, using the equality ab = (a2 +

b2 − (a− b)2)/2 on the second term, equals∑
j

β2
j

∑
i

δ2
i−j +

∑
j �=�

βjβ�
∑
i

(δ2
i−j + δ2

i−� − (δi−j − δi−�)2)/2

=
∑
j

β2
j ‖δ‖22 +

∑
j �=�

βjβ�‖δ‖22 −
∑
j �=�

βjβ�
∑
i

(δi−j − δi−�)2/2

= ‖δ‖22 −
∑
j �=�

βjβ�
∑
i

(δi − δi+j−�)
2
/2,
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where the last line follows from the fact that
∑

j β2
j +
∑

j �=� βjβ� = (
∑

j βj)2 = 1.
The lemma then follows easily from the following two claims: (1) for any nonzero
s ∈ ZM ,

∑
i∈ZM

(δi − δi+s)2 ≥ ‖δ‖22/M2 and (2)
∑

j �=� βjβ� ≥ H∞(β)/(2 log D).
Now we prove the first claim. By an average argument, there exists an i0 ∈ ZM

such that δ2
i0
≥ ‖δ‖22/M . Next, since

∑
i δi = 0, there exists an i1 ∈ ZM such

that δi1 and δi0 have different signs, so |δi0 − δi1 |2 ≥ δ2
i0 ≥ ‖δ‖

2
2/M . As M and s

are relatively prime, there exists an integer t ∈ [1,M − 1] such that i1 = i0 + ts
over ZM . By a triangle inequality,

∑
1≤j≤t |δi0+(j−1)s− δi0+js| ≥ |δi0 − δi0+ts| =

|δi0 − δi1 |. Finally,
∑

i∈ZM
(δi − δi+s)2 ≥

∑
1≤j≤t(δi0+(j−1)s − δi0+js)2 which

by Cauchy-Schwartz inequality is at least (
∑

1≤j≤t |δi0+(j−1)s − δi0+js|)2/t ≥
|δi0 − δi1 |2/t ≥ ‖δ‖22/M2.

Next, we prove the second claim. Let β̂ = max{βi : i ∈ [M ]}, so H∞(β) =
log(1/β̂). Then

∑
j �=� βjβ� =

∑
j βj
∑

� �=j β� ≥
∑

j βj(1 − β̂) = 1 − β̂. Note
that β is a distribution over [D], so β̂ ∈ [1/D, 1]. For β̂ in this range, we have
1− β̂ ≥ (log(1/β̂))(1 − 1/D)/ logD ≥ H∞(β)/(2 log D). This proves the second
claim and completes the proof of Lemma 1.

4 Extracting More Randomness

Building on the extractor in the previous section, we have the following two
extractors, which generalize the corresponding ones in [9].

Theorem 2. For any constant γ ∈ (0, 1/2), for any D = 2d ∈ N, there exists
n0 ∈ N such that for any n ≥ n0, k ≥ n1/2+γ , and ε ≥ 2−cn

γ

, there exists
an explicit seedless (n,D, k, ε)-extractor Ext : [D]n → {0, 1}m with m ≥ k −
O(d log(1/ε)).

Theorem 3. For any D = 2d ∈ N, there exists n0 ∈ N and constants c1 > 0,
c2 ∈ (0, 1), c3 ∈ (0, 1/c2) such that for n ≥ n0, k ≥ logc1 n, and ε ≥ k−c2 ,
there exists an explicit seedless (n,D, k, ε)-extractor Ext : [D]n → {0, 1}m with
m ≥ k −O(d(1/ε)c3).

The first one works for the case of large min-entropy and can achieve a smaller
error and a smaller entropy loss, while the second can work for the case of smaller
min-entropy but has a larger error and a larger entropy loss. The proofs of the
two theorems are very similar to the corresponding ones in [9]. The main differ-
ence is that we consider independent-symbol sources, so we cannot build on the
extractor of [13] as [9] did, and instead, we build on our extractor in Theorem 1.
Furthermore, we do a more careful analysis in order to cover a wider range of pa-
rameters and identify the tradeoff between error and entropy loss. For example,
our theorems show that when d is small and a large ε is allowed, the entropy loss
can become very small. We omit the proofs here due to space constraint.

5 Existential Upper Bound on Entropy Loss

One may wonder if it is possible to extract more randomness than our two
extractors in the previous section. In this section, we show the existence of
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a (non-explicit) seedless extractor for independent-symbol source with entropy
loss O(log(1/ε)).

Theorem 4. Suppose k ≥ c log(Dn/ε) for a large enough constant c. Then there
exists an (n,D, k, ε)-extractor Ext : [D]n → {0, 1}m with m ≥ k −O(log(1/ε)).

The proof is somewhat standard, and due to the space limitation, we only sketch
the idea here. The existence of such an extractor is guaranteed by a probabilistic
argument: we show that a randomly chosen function is an (n,D, k, ε)-extractor
with a positive probability. Our first step is to show that for any given (n,D, k)-
source, a randomly chosen function fails on it with a small probability. However,
the number of such sources is infinite. Our next step is to show that it suffices
to consider a much smaller class of sources, namely, those (n,D, k)-sources X
with the property that for each i ∈ [D], Xi is an “almost flat” distribution and
H∞(Xi) is a multiple of some number α. This is guaranteed by the fact, which
is our main technical contribution in this section, that any (n,D, k, ε)-source is
close an (n,D, k, ε)-source which can be expressed as a convex combination of
sources with this property. The number of such sources is small, and the theorem
then follows from a union bound.

6 Lower Bound on Entropy Loss

In this section, we show that the existential upper bound on the entropy loss
in Section 5 is tight by giving a matching lower bound. In fact, we show that
even for bit-fixing sources and even allowing a seed, any extractor must suffer
an entropy loss of Ω(log(1/ε)).

Theorem 5. Let Ext : {0, 1}n × {0, 1}s → {0, 1}m be an (n, 2, k, ε)-extractor
for bit-fixing sources, with n, s,m ∈ N, k = ω(1), and ε ∈ (0, 1). Then m ≤
k + s−Ω(log(1/ε)).

We will basically follow the proof idea in [23]. Briefly speaking, given any Ext :
{0, 1}n × {0, 1}s → {0, 1}m with m exceeding the bound, we will show the
existence of a bit-fixing source of min-entropy k on which Ext fails, using a
probabilistic argument. Before giving the proof, let us first state some definitions
and lemmas which will be needed. For any z ∈ {0, 1}m, let S(z) denote the set
{x ∈ {0, 1}n : ∃y ∈ {0, 1}s s.t. z = Ext(x, y)}, and we say that z is δ-missed
by X ⊆ {0, 1}n if |Prx∈S(z) [x ∈ X ] − Prx∈Un [x ∈ X ] | ≥ δ. We will rely on the
following lemma from [23].1

Lemma 2. Suppose X is the uniform distribution over a set X ⊆ {0, 1}n with
|X | = 2k, and ‖Ext(X ,Us) − Um‖1 ≤ ε. Then at most 4

√
ε fraction of z ∈

{0, 1}m can be (2−(n−k)√ε)-missed by X.

1 Note that this lemma does not appear explicitly in [23] but corresponds to Claim
2.7 there, which is stated in a graph-theoretical term and says that any extractor
gives rise to some kind of “slice-extractor”.
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For n, t ∈ N, S ⊆ {0, 1}n, I ∈ P ([n], t), u ∈ {0, 1}t, and β ∈ (0, 1), we say that u
is β-biased in SI if |Prx∈S [xI = u]− 2−t| > β. Our key lemma is the following.

Lemma 3. Suppose n, t ∈ N with n − t = ω(1), 0 < δ ≤ 1/c for some large
enough constant c, and S ⊆ {0, 1}n satisfies the property that over random
I ∈ P ([n], t) and u ∈ {0, 1}t, u is (2−tδ)-biased in SI with probability at most
8δ. Then |S| ≥ 2t(1/δ)Ω(1).

Note that a set S satisfying the property in Lemma 3 can be seen as an “almost”
t-wise independent space, in the sense that the uniform distribution over S looks
random on most sets of t dimensions. This can be seen as a relaxation of the
standard notion of approximate t-wise independent space. Lemma 3 gives a size
lower bound on such a set, which seems to have an interest of its own. We will
prove the lemma in Section 6.1. With this lemma, we can now prove Theorem 5.

Proof. (of Theorem 5) Assume for the sake of contradiction that m ≥ k + s −
o(log(1/ε)). We will show that in this case Ext fails on some bit-fixing source of
min-entropy k. Following [23], the existence of such a source will be shown using
a probabilistic argument. The difference is that [23] had the luxury of having all
possible sources of min-entropy k to search through, while we are limited to the
much smaller class of bit-fixing sources, which makes our task much harder. We
randomly generate such a bit-fixing source in the following way:

– Randomly pick a set I ∈ P ([n], n− k) and a string u ∈ {0, 1}n−k. Generate
the source X u

I which is uniform over the set Xu
I = {x ∈ {0, 1}n : xI = u}.

Next, we will show that Ext fails with a positive probability over such a
randomly generatedX u

I . As in [23], the idea is to show that when m is large, most
z’s in {0, 1}m can only have a small set S(z), and such z’s are (2−(n−k)√ε)-missed
by Xu

I with a non-negligible probability. As we will see next, this probability is
guaranteed by Lemma 3, by observing that the condition that z is (2−(n−k)√ε)-
missed by Xu

I is exactly the condition that u is (2−(n−k)√ε)-biased in S
(z)
I .

Let t = n− k and δ = ε1/2, and note that Ez[|S(z)|] = 2n+s/2m = 2t(1/δ)o(1).
Call z heavy if |S(z)| ≥ 2t(1/δ)Ω(1) and call z light otherwise. By Markov in-
equality, at most 1/2 fraction of z’s are heavy. From Lemma 3, for any light z,
with |S(z)| < 2t(1/δ)Ω(1), the probability over I ∈ P ([n], t) and u ∈ {0, 1}t that
z is (2−tδ)-missed by Xu

I is more than 8δ. By an average argument, there must
exist I ∈ P ([n], t) and u ∈ {0, 1}t such that more than 8δ fraction of light z’s
are (2−t

√
ε)-missed by Xu

I . Thus, for this I and u, more than (1/2)8δ = 4
√

ε
fraction of all possible z ∈ {0, 1}m are (2−t

√
ε)-missed by Xu

I . From Lemma 2,
this implies that ‖Ext(X u

I ) − Um‖1 > ε, a contradiction. Therefore, one must
have m ≤ k + s−Ω(log(1/ε)), which proves the theorem. ��

6.1 Proof of Lemma 3

Consider any set S satisfying the property stated in the lemma. Our goal is to
show a lower bound on the size of such a set. For r-wise independent spaces, a
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tight lower bound on their size is known [2,7], and we would like to apply it to
get our bound. However, there are two difficulties in front of us. One is that S
only guarantees some randomness property on most, instead of all, collections of
t dimensions. The other is that the randomness property only guarantees being
close to random instead of perfectly random. We get around these by showing
that for some properly chosen r < t, S embeds many disjoint copies of r-wise
independent spaces.

We say that S is
√

δ-uniform on I ∈ P ([n], t) if the fraction of u ∈ {0, 1}t being
(2−tδ)-biased in SI is at most

√
δ. From the property of S, a Markov inequality

shows that S is not
√

δ-uniform on at most 8
√

δ fraction of I ∈ P ([n], t). By
an average argument, there must exist some J ∈ P ([n], t − r), for some r to
be determined later, such that S is not

√
δ-uniform on J ∪ T for at most 8

√
δ

fraction of T ∈ P ([n] \J, r). Fix one such set J . We will partition S into subsets
SJ,v = {x ∈ S : xJ = v}, for v ∈ {0, 1}t−r, and show that many of them embed
an r-wise independent space.

Let us focus on the set J̄ = [n] \ J and those subsets T ∈ P (J̄ , r). Let
k = n− t, so |J̄ | = k + r. Call T ∈ P (J̄ , r) nice if S is

√
δ-uniform on J ∪T . Call

v ∈ {0, 1}t−r bad for T if (v, w) is (2−tδ)-biased in SJ∪T for some w ∈ {0, 1}r.
Then for any nice T , the fraction of v ∈ {0, 1}t−r bad for T cannot exceed 2r

√
δ.

Thus, the fraction of v ∈ {0, 1}t−r bad for at least 2r+1
√

δ fraction of nice T ’s is
at most 1/2. Fix any v ∈ {0, 1}t−r which is bad for at most 2r+1

√
δ fraction of

nice T ’s, and thus is bad for at most α = 2r+1
√

δ + 8
√

δ fraction of all possible
T ’s in P (J̄ , r). Next, we show that |SJ,v| ≥ 2r(1/δ)Ω(1).

Assume without loss of generality that |SJ,v| < 2r/(6δ) (otherwise, we are
done), which means that 2−r(6δ) < 1/|SJ,v|. Then we have the following.

Claim. Suppose v is not bad for T ∈ P (J̄ , r). Then ∀w ∈ {0, 1}r, Prx∈SJ,v [xT =
w] = 2−r.

Proof. Suppose v is not bad for T , so ∀w ∈ {0, 1}r, |Prx∈S[(xJ , xT ) = (v, w)]−
2−t| ≤ 2−tδ. This implies that |Prx∈S [xJ = v] − 2−(t−r)| ≤ 2−(t−r)δ. Then for
any w ∈ {0, 1}r, Prx∈SJ,v [xT = w] = Prx∈S [(xJ , xT ) = (v, w)]/ Prx∈S [xJ = v]
is at most 2−r(1 + δ)/(1 − δ) ≤ 2−r(1 + 3δ) and at least 2−r(1 − δ)/(1 + δ) ≥
2−r(1− 2δ). That is,

∀w ∈ {0, 1}r ,

∣∣∣∣ Pr
x∈SJ,v

[xT = w] − 2−r

∣∣∣∣ ≤ 2−r(3δ) < 1/(2|SJ,v |). (1)

Consider the 2r probabilities Prx∈SJ,v [xT = w], for w ∈ {0, 1}r, which are
all multiples of 1/|SJ,v|. If they were not all equal to 2−r, there must exist
w,w′ ∈ {0, 1}r such that Prx∈SJ,v [xT = w] < 2−r < Prx∈SJ,v [xT = w′]. Then
the difference between 2−r and one of these two probabilities must be at least
half their gap, which is at least 1/(2|SJ,v|), a contradiction to condition (1)
above. Therefore, these 2r probabilities must all be equal to 2−r. ��

From the claim, we next show that SJ,v embeds an r-wise independent space,
which then implies a lower bound on |SJ,v|. We differentiate two cases ac-
cording to the range of δ. In the first case, when δ < 1/(2k)8, we choose
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r = �(log(1/δ))/(4 log(2k))� ≥ 2. Note that now α = o( 4
√

δ), and |P (J̄ , r)| =(
k+r
r

)
< (e(k + r)/r)r ≤ (2k)r ≤ 4

√
1/δ. Since α · |P (J̄ , r)| < 1, v is not bad

for any T ∈ P (J̄ , r). This means that the set SJ,v projected to dimensions in
J̄ is an r-wise independent space. From [2,7], such a set must have size at least
|J̄ |Ω(r) = (k + r)Ω(r) = 2r(1/δ)Ω(1).

In the second case, when δ ≥ 1/(2k)8, we choose r = 2. Then α = O(
√

δ),
and the following implies that the set SJ,v projected to dimensions in A gives a
pair-wise independent space, so by [2,7] we have |SJ,v| ≥ |A|Ω(1) ≥ (1/δ)Ω(1) =
2r(1/δ)Ω(1).

Claim. There exists a subset A ⊆ J̄ of size (1/δ)Ω(1) such that v is not bad for
any T ∈ P (A, 2).

Proof. Consider the undirected graph G with vertex set V = J̄ and edge set
E = {T ∈ P (J̄ , 2) : v is not bad for T }. Note that |E| ≥ (1 − α)

(|V |
2

)
. When

α ≥ 1/|V |, one can show that |E| > (1 − 2α)|V |2/2. By the well-known Tu-
ran’s theorem in graph theory (e.g., see Theorem 4.7 in [11]), G must contain
a clique of size Ω(1/α) = (1/δ)Ω(1). When α < 1/|V |, |E| ≥ (1 − 1/|V |)

(|V |
2

)
>

(1− 2/|V |)|V |2/2, and Turan’s theorem implies that G contains a clique of size
Ω(|V |) = Ω(k + r) ≥ (1/δ)Ω(1). Let A be the vertex set of the largest clique in
G, and we have the claim. ��

We have shown in both cases that |SJ,v| ≥ 2r(1/δ)Ω(1), for any v which is bad
for at most α fraction of T ∈ P (J̄ , r). Since there are at least (1/2)2t−r such v’s,
and the corresponding sets SJ,v’s are all disjoint subsets of S, we conclude that
|S| = 2t(1/δ)Ω(1).
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Abstract. We show an alternative implementation of the gap amplifi-
cation step in Dinur’s [4] recent proof of the PCP theorem. We construct
a product Gt of a constraint graph G, so that if every assignment in G
leaves an ε-fraction of the edges unsatisfied, then in Gt every assignment
leaves an Ω(tε)-fraction of the edges unsatisfied, that is, it amplifies the
gap by a factor Ω(t). The corresponding result in [4] showed that one
could amplify the gap by a factor Ω(

√
t). More than this small quantita-

tive improvement, the main contribution of this work is in the analysis.
Our construction uses random walks on expander graphs with exponen-
tially distributed length. By this we ensure that some random variables
arising in the proof are automatically independent, and avoid some tech-
nical difficulties.

1 Introduction

Probabilistic checkable proofs occupy a central place in complexity theory to-
day, especially in the study of the class NP and the hardness of approximation
for combinatorial problems. The cornerstone of this area is the amazing PCP
theorem of Arora, Lund, Motwani, Sudan and Szegedy [1], which states, e.g.,
that there is a constant ε > 0, such that it is NP-hard to distinguish between
satisfiable 3CNF expressions and those where only a fraction 1− ε of the clauses
can be simultaneously satisfied. The original proof of this theorem was alge-
braic, and built on a long line of research that made several deep and subtle
contributions [3,5,2].

Recently, Irit Dinur [4] presented a remarkable and essentially combinatorial
proof the PCP theorem. This proof uses the notion of gap amplification in con-
straint graphs. There are several carefully chosen steps in this proof. The key
new insight, however, is in the product construction based on random walks on
expander graphs. In this paper, we suggest a modification of Dinur’s product
construction, which yields a slightly better amplification and avoids some of the
complications in the original proof.

In order to describe Dinur’s proof of the PCP theorem and our modification,
we need some definitions.

M. Bugliesi et al. (Eds.): ICALP 2006, Part I, LNCS 4051, pp. 96–107, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Gap Amplification in PCPs Using Lazy Random Walks 97

Definition 1.1 (Constraint graph, assignment). A constraint graph G is a
tuple 〈V,E,Σ, C〉, where (V,E) is an undirected graph (we allow multiple edges
and self-loops), Σ is a finite set called the alphabet of G, and C is a collection of
constraints, 〈ce : e ∈ E〉, where each ce is a function from Σ ×Σ to {0, 1}. An
assignment is a function A : V → Σ. We say that the assignment A satisfies an
edge e of the form (u, v), if ce(A(u), A(v)) = 1. We say that the assignment A
satisfies G, if A satisfies all edges in G. If there is an assignment that satisfies
G, then we say that G is satisfiable. We say that G is ε-far from satisfiable if
every assignment leaves at least a fraction ε of the edges of G unsatisfied. Let

unsat(G) = max{ε : G is ε-unsatisfiable} = min
A

|{e : A does not satisfy e}|
|E| .

Constraint graphs arise naturally in computational problems. For example, con-
sider the graph 3-coloring problem. This can be modeled as a constraint graph,
where the alphabet is {R,G,B} and the constraints on all edges are inequality
functions. It is thus NP-complete to determine if a given constraint graph is
satisfiable. The PCP theorem is a considerable strengthening of this assertion.
Using the terminology of constraint graphs, we can state it as follows.

Theorem 1.1 (The PCP theorem). There is a constant ε0 > 0, such that
for for every language L in NP, there is a polynomial-time reduction f from L
to the satisfaction problem for constraint graphs with alphabet {0, 1}2, such that

– if x ∈ L, then f(x) is satisfiable;
– if x �∈ L, then f(x) is ε0-unsatisfiable.

The PCP theorem implies that if we could in polynomial time approximate
unsat(G) sufficiently closely, then P=NP.

Dinur’s recent proof of the PCP theorem works with constraint graphs and
uses gap amplification. The broad idea is as follows. We consider the gap version
of the constraint graph satisfaction problems in which one has to distinguish
satisfiable constraint graphs from those that are ε-far from satisfiable. We refer
to ε as the gap of this problem. For example, the easy reduction mentioned
above, reduces the 3-coloring problem to the constraint satisfaction problem
with gap 1

n2 , where n is the number of vertices in the original graph. Dinur
shows that this gap can be amplified: she presents a general procedure that,
roughly speaking, transforms a constraint graph G to another graph G′ so that
(1) if G is satisfiable, then G′ is satisfiable, and (2) if G is ε-far from satisfiable,
then G′ is (2ε)-far from satisfiable; furthermore, and crucially, the size of G′ is
at most a constant times the size of G. By composing this with the original
reduction, we reduce the 3-coloring problem to the constraint graph satisfaction
problem with twice the original gap. The idea, then, is to apply this procedure
approximately 2 logn times starting with the original constraint graph. If the
original graph is 3-colorable, then the final graph is satisfiable. On the other
hand, if the original graph is not 3-colorable, then the final graph is is ε0-far
from satisfiable (for some constant ε0 > 0). Since each iteration increases the
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size of the graph by only a constant factor, the size of the final constraint graph
is a polynomial in the size of the original input instance.

In the remainder of this section, we will present a brief overview of the various
steps involved in Dinur’s proof and describe our contribution.

1.1 Overview of Dinur’s Proof

Dinur’s proof has three steps. In the first step, we transform the input constraint
graph into a constant degree expander.

Theorem 1.2 (Step 1: constant degree expander). There are constants
d, λ < d, C1 ≥ 1 and D1 ≥ 1, and a polynomial time transformation f1 on
constraint graphs such that

– |V (f1(G))|, |E(f1(G)| ≤ D1 · |E(G)|;
– if G is satisfiable, then f1(G) is satisfiable;
– if G is ε-far from satisfiable, then f1(G) is

(
ε
C1

)
-far from satisfiable;

– f1(G) is a d-regular expander, with λ(f1(G)) ≤ λ;
– the alphabet of f1(G) is the same as the alphabet of G.

Since the constant C1 is actually greater than 1, this step reduces the gap instead
of amplifying it, but it prepares the graph for Step 2, which amplifies the gap
substantially and makes up for the loss suffered in the first step. This second
step is the most novel ingredient in Dinur’s proof, and also the subject of this
paper.

Theorem 1.3 (Step 2: gap amplification). Let G = 〈V,E,Σ,C〉 be a con-
straint graph, such that (V,E) is a d-regular expander, with second largest eigen-
value λ (in absolute value). Then, for all t ≥ 1, we can in time polynomial in
the size of the output produce a constraint graph G′ such that

– V (G′) = V (G);
– |E(G′)| ≤ dt|V (G)|;
– Σ(G′) = Σdt/2

;
– if G is satisfiable, then G′ is satisfiable;

– unsat(G′) ≥
√

t

C2
min
{

unsat(G),
1
t

}
, where C2 = O

(
( d
d−λ)|Σ|4

)
.

This gives a transformation that amplifies the gap by a factor of about
√

t but
at the cost of increasing the alphabet size exponentially. Repeating the first two
steps with a value for t much larger than (C1C2)2 will no doubt amplify the gap
in our constraint graphs, but this gain will be accompanied by an unaffordable
increase in the size of the alphabet. Thus, before we iterate we need to somehow
ensure that the alphabet is small. This is achieved in Step 3.

Theorem 1.4 (Step 3: alphabet reduction). There is a constant C3 > 0 and
a polynomial-time computable transformation f3 on constraint graphs such that
for every constraint graph G = 〈V,E,Σ,C〉, the constraint graph G′ = f3(G)
satisfies the following:
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– |V (G′)|, |E(G′)| ≤ D3 · |E(G)|, D3 depends only on Σ(G);
– Σ(G′) = {0, 1}2;
– if G is satisfiable, then G′ is satisfiable;
– if G′ is ε-far from satisfiable, then G′ is

(
ε
C3

)
-far from satisfiable.

These three steps can now be applied repeatedly; we choose t
∆= �(2C1C2C3)2� to

ensure that the gap doubles in each iteration of this three step procedure. Since,
C1, C2 and C3 are absolute constants (independent of the size of the graph), we
can apply this procedure until the gap becomes at least ε0 = 1

t ; this will take
O(log n) iterations. At the start of each iteration, we have Σ = {0, 1}2, so the
size increases by at most a fixed multiplicative factor in each iteration, and we
can afford to perform the required O(log n) iterations and still get polynomial
size constraint graphs in the end.

Remark: Dinur’s paper is available at the ECCC archive [4]. The lecture notes of
a course given by Ryan O’Donnell and Venkat Guruswami [6] present a version
of Dinur’s proof that uses the lazy random walk suggested in this paper. We refer
the reader to these sources for a detailed description of Steps 1 and 3, and the
proofs of Theorems 1.2 and 1.4. We concentrate on the Step 2 in the remainder
of this paper.

1.2 Our Contribution

The main contribution of this paper is the proof of an alternative implementation
of the gap amplification step. We first state the result, and then compare it with
the original version (Theorem 1.3).

Theorem 1.5 (Revised step 2: gap amplification). Let G = 〈V,E,Σ,C〉
be a constraint graph, such that (V,E) is a d-regular expander with second largest
eigenvalue λ (in absolute value). Then, for all t ≥ 1, one can in time polynomial
in the size of the output produce a constraint graph G′ such that

– V (G′) = V (G);
– |E(G′)| ≤ (td)O(t log |Σ|)|V (G)|;
– Σ(G′) = Σdt+1

;
– if G is satisfiable, then G′ is satisfiable;

– unsat(G′) ≥ t

C′
2

min
{
unsat(G),

1
t

}
, where C′

2 = O
(

d
d−λ
)
.

This version differs from Dinur’s original version in two respects. First, the pa-
rameters in Theorem 1.5 are better than in the original version (Theorem 1.3).
For a comparable increase in the size of the alphabet, the amplification in this
version is proportional to t, whereas the amplification in the original version
is proportional

√
t. Also, the constant does not depend on |Σ(G)|. However,

when this lemma is used in the proof of the PCP Theorem, t is a constant and
|Σ| = 4, so this improvement is inconsequential. Dinur’s proof uses random walks
of a fixed length on the constraint graph, while our proof uses random walks of



100 J. Radhakrishnan

geometrically distributed length. This modification and its analysis are the main
contribution of this paper.

To understand the differences in the two approaches, we first briefly describe
Dinur’s construction. Dinur’s proof of Theorem 1.3 is based on a product con-
struction. The alphabet of the new graph is enlarged so that the assignment
for each vertex specifies the values for all vertices of the original graph within
distance t

2 . The edges of the new graph correspond to walks of length t in the
original graph. The constraints on these edge are defined as follows. Consider a
walk of t steps starting at vertex a and ending at vertex b. Now, some of the edges
of this walk are within distance t

2 of both a and b. The constraint corresponding
to this walk requires that we check that all such edge constraints are satisfied
by the assignments given for a and b. Using a careful combinatorial argument,
Dinur shows that on an average about

√
t of the old constraints are verified by a

single constraint of the new graph. Using the fact that the graph is an expander,
she then established that this translates into a

√
t factor amplification.

Our construction is similar, but we consider walks whose lengths are geo-
metrically distributed, with expectation t. The advantage of this is that when
we consider walks passing through a fixed edge (u, v), the starting and end-
ing vertices of these walks are independent random variables. In Dinur’s proof,
such independence was needed, but could be enforced approximately only for the
edges that appeared in a section of length

√
t near middle of the walk. Our choice

of walk length avoids this difficulty, and allows us to estimate the probability of
rejection more directly. We discuss this in the next section.

2 Gap Amplification: Proof of Theorem 1.5

2.1 Preliminaries

Since we wish to use random walks on the constraint graph G, it will be conve-
nient to work with its directed version. We replace each undirected edge connect-
ing distinct vertices u and v, by two directed edges, one of the form (u, v) and
the other of the form (v, u); we replace self-loops by a single directed edge. The
adjacency matrix of this graph is symmetric. Note that if for some assignment
a fraction ε of the edges were unsatisfied in the undirected graph, then in the
directed version at least a fraction ε

2 of the edges are unsatisfied. We will also
assume that the number of (directed) edges in G is at least 2t. Otherwise, we
make sufficient copies of all edges; this modification scales all the eigenvalues by
the same factor. Since the original graph was d-regular, the outdegree of each
vertex in the directed version is exactly d, and thus the largest eigenvalue of
the its adjacency matrix is d. We denote the second largest eigenvalue of G (in
absolute value) by λ(G).

We now turn to the proof of Theorem 1.5. As stated earlier, the proof is
based on a product construction. It will be convenient to prove the theorem in
two steps. In the first step, we describe a PCP in which the verifier reads two
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locations from the proof, and simultaneously checks the constraints for about t
of the edges of the original graph. In the second step, we transform this PCP
into a constraint graph meeting the requirements of Theorem 1.5.

2.2 The Product PCP

Fix t ≥ 1. The PCP has the following features. There is a proof, which is
supposedly derived from an assignment to the original graph. There is a verifier,
who probes this proof randomly at two locations, and based on the values read,
decides to accept or reject. If the original constraint graph is satisfiable, then
there exists a proof that the verifier accepts with probability 1. On the other
hand, if the original constraint graph is ε-far from satisfiable, then the verifier
rejects every proof with probability at least ε · Ω(t). We now describe the PCP
and present our analysis.

The proof: For each vertex v ∈ V (G), the proof now provides an assignment for
all vertices that are within a distance t from v. That is, the proof is a function
A : V (G) → Σdt+1

, where A(v) denotes this (partial) assignment provided at
vertex v. We use A(v)[w] to refer to the value A(v) assigns to vertex w, and
think of A(v)[w] as vertex v’s opinion for the value that should be assigned to
w in order to satisfy G. Thus, every vertex within distance t of w has an opinion
for w; there is no guarantee, however, that these opinions agree with each other.
Vertices w that don’t appear within distance t of v are not explicitly assigned
a value in A(v); for such a vertices w, we say that A(v)[w] is null. Let A1 and
A2 be two partial assignments, and let e = (u, v) be an edge of G. We say that
A1 and A2 pass the test at e, if at least one of the following conditions holds:
(i) one of A1(u), A1(v), A2(u), and A2(v) is null; (ii) A1 and A2 agree on {u, v}
and ce(A1(u), A2(v)) = 1.

The verifier: The verifier picks two random vertices, a and b, of the graph and
performs a test on the values stored there.

The random walk: The two vertices a and b are generated using a random
walk, as follows.
I. Let v0 be a random vertex chosen uniformly from V (G). Repeat Step II

until some condition for stopping is met.
II. Having chosen v0,v1, . . . ,vi−1, let ei be a random edge leaving vi−1,

chosen uniformly among the d possibilities. Let vi be the other end
point of ei. With probability 1

t , STOP and set T = i.
The test: Suppose the random walk visits the vertices a = v0,v1, . . . ,vT = b

using the sequence of edges, e1, e2, . . . , eT . If A(a) and A(b) fail (i.e. don’t
pass) the test at some ei, the verifier rejects; otherwise, she accepts. When
a and b are clear from the context, we say that the test at ei fails, when we
mean that A(a) and A(b) fail the test at ei.

Lemma 2.1. Suppose G is a d-regular constraint graph with |λ(G)| < d.
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(a) If G is satisfiable, then there is a proof that the verifier accepts with proba-
bility 1.

(b) If G is ε-far from satisfiable, then the verifier rejects every proof with prob-
ability at least (

1
256C

)
· t ·min

{
ε,

1
t

}
,

where C = 2 + d
d−|λ(G)| .

Proof. Part (a) is straightforward. Given a satisfying assignment A for G, let
the proof be the assignment A such that A(v)[w] = A(w).

The idea for part (b) is the following. Fix an assignment A. We will argue that
for such an assignment A to succeed in convincing the verifier, the opinions of
different vertices must be generally quite consistent. This suggests that a good
fraction of A is consistent with a fixed underlying assignment A for G. Now, since
G is ε-far from satisfiable, A must violate at least a fraction ε of the constraints
in G. Since the verifier examines t edges on an average, the expected number of
unsatisfied edges she encounters is tε. Most of the work will go into showing that
when she does encounter these edges, she rejects with a sufficient probability
and that these rejections are not concentrated on just a few of her walks. In
our analysis we will use the following fact about the verifier’s random walk. (A
formal proof appears in [6].)

Lemma 2.2 (Fact about the random walk). Let e ∈ E(G) be of the form
(u, v). Consider the verifier’s walks conditioned on the event that the edge e
appears exactly k times (for some k ≥ 1) in the walk, that is, the number of i’s
for which ei = e (in particular, vi−1 = u and vi = v) is exactly k. Conditioned
on this event, consider the starting vertex, a, and the ending vertex, b. We claim
that a and b are independent random variables. Furthermore, a has the same
distribution as the random vertex obtained by the following random process.

Start the random walk at u, but stop with probability 1
t before making

each move (so we stop at u itself with probability 1
t ). Output the final

vertex.

Similarly, we claim that b can be generated using a random walk starting from
v and stopping with probability 1

t before each step.

Now, fix a proof A. Let us “decode” A and try to obtain an assignment A for
G. The idea is to define A(u) to be most popular opinion available in A for u,
but motivated by Lemma 2.2, the popularity of an opinion will be determined
by considering a random walk.

The new assignment A for G: To obtain A(u), we perform a random walk
starting from u mentioned in Lemma 2.2 (stopping with probability 1

t before
each step). Restrict attention to those walks that stop within t−1 steps. Let the
vertex where the walk stops be bu. This generates a distribution on the vertices
of G. For each letter σ in the alphabet, determine the probability (under this
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distribution) that bu’s opinion for u is σ. Then, let A(u) be the letter that has
the highest probability. Formally,

A(u) ∆= argmax
σ∈Σ

Pr[A(bu)[u] = σ and T ≤ t− 1].

We now relate the verifier’s probability of rejection to the fraction of edges
of G left unsatisfied by A. Since G is ε-far from satisfiable, a fraction ε of the
edges of G are left unsatisfied by A. We wish to argue that whenever the verifier
encounters one of these edges in her walk, she is likely to reject the walk. Let
F be a subset of these unsatisfied edges of the largest size such that |F |

|E| ≤
1
t .

Then, because we assume that |E| ≥ 2t),

min
{

ε,
1
2t

}
≤ |F |
|E| ≤

1
t
. (1)

Now, consider the edges used by the verifier in her walk: e1, e2, . . . , eT.

Definition 2.1 (Faulty edge). We say that the i-th edge of the verifier’s walk
is faulty if

– ei ∈ F and
– A(a) and A(b) fail the test at ei.

Let N be the random variable denoting the number of faulty edges on the verifier’s
walk.

Since the verifier rejects whenever she encounters a faulty edge on her walk, it is
enough to show that N > 0 with high enough probability. We prove the following
two claims below.

Claim. 1 (a) E[N] ≥ t |F |
8|E| and (b) E[N2] ≤ Dt |F |

|E| , where D = 2
(
2 + d

d−|λ|
)
.

Let us now assume that these claims hold, and complete the proof of Lemma 2.1:

Pr[verifier rejects] ≥ Pr[N > 0] ≥ E[N ]2

E[N2]
≥
(

1
64D

)
· t ·
(
|F |
|E|

)
≥
(

1
128D

)
· tmin

{
ε,

1
t

}
.

For the second inequality, we used the fact that for any non-negative random
variable X, Pr[X > 0] ≥ E[X]2

E[X2] (by the Chebyshev-Cantelli inequality). For the
last inequality we used (1). ��

1 In a previous version of this paper, the right hand side of part (b) had a |Σ|2 in the
denominator; Greg Plaxton suggested this stronger version.
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2.3 Proofs of the Claims

Proof (of Claim (a)). We will estimate the expected number of faulty occur-
rences for each edge in F . Fix one such edge e = (u, v), and let Ne denote
the number of faulty occurrences of e in the verifier’s walk. Let #e denote the
number of occurrences (not necessarily faulty) of e in the walk. Condition on
the event #e = k, and consider the starting vertex a and the ending vertex b.
By Lemma 2.2, a and b can be generated using independent lazy random walks
starting at u and v respectively. The probability that the walk to generate a
traverses t or more edges is

(
1− 1

t

)t ≤ exp(−1). Thus, with probability at least

α
∆= 1− exp(−1) the starting vertex a is at a distance at most t− 1 from u, and

hence at most t from v. Let pu be the probability that the a is at a distance at
most t− 1 from u and A(a)[u] = A(u); similarly, let pv be the probability that
b is at a distance most t− 1 from v and A(b)[v] = A(v). Now, the test at e fails
if A(a)[u] �= A(b)[u] (and are both not null). This happens with probability at
least α(α − pu). Similarly, by considering v, we conclude that the test at e fails
with probability at least α(α− pv). Furthermore, with probability at least pupv,
we have

ce(A(a)[u],A(b)[v]) = ce(A(u), A(v)) = 0,

in which case the test at e fails. Thus, overall,

Pr[the test at e fails | #e = k] ≥ max {α(α − pu), α(α − pv), pupv}

≥ α2

(√
5− 1
2

)2

>
1
8
.

If A(a) and A(b) fail the test at e, then all the k occurrences of e in the walk
are considered faulty. Thus,

E[Ne] =
∑
k>0

k · Pr[Ne = k]

=
∑
k>0

k · Pr[#e = k and the test at e fails]

≥
∑
k>0

k · Pr[#e = k] · Pr[the test at e fails | #e = k]

≥
∑
k>0

k · Pr[#e = k] ·
(

1
8

)
=
(

1
8

)
E[#e]

= t

(
1

8|E|

)
.

Finally, by summing over all e ∈ F , we obtain E[N] =
∑

eE[Ne] ≥
(

|F |
8|E|
)

t. ��
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We have shown that the expected number of faulty edges on the verifier’s walk
is large. However, this does not automatically imply that the number of faulty
edges is positive with reasonable probability, for it could be that faulty edges
appear on the verifier’s walk in bursts, and just a few walks account for the
large expectation. This is where we use the fact that our underlying graph is
an expander. Intuitively, one expects that a random walk in an expander graph
is not likely to visit the small set of edges, F , too many times. The following
proposition quantifies this intuition by showing that in the random walk the
events of the form “ei ∈ F” are approximately pairwise independent.

Proposition 2.1 (similar to [4, Proposition 2.4]). For j > i,

Pr[ej ∈ F | ei ∈ F ] ≤
(

1− 1
t

)j−i( |F |
|E| +

(
|λ(G)|

d

)j−i−1
)

.

Proof (of Claim (b)). Let χi be the indicator random variable for the event
“ei ∈ F”; then, Pr[χi = 1] = |F |

|E|
(
1− 1

t

)i−1. We then have

E[N2] ≤ 2
∑

1≤i≤j<∞
E[χiχj]

≤ 2
∞∑
i=0

Pr[χi = 1]
∑
j≥i

Pr[χj = 1 | χi = 1]

≤ 2
∞∑
i=1

Pr[χi = 1]

1 +
∑
�≥1

(
1− 1

t

)�( |F |
|E| +

(
|λ(G)|

d

)�−1
) (2)

≤ 2t
|F |
|E|

(
1 + t

|F |
|E| +

d

d− |λ(G)|

)
,

where we used Proposition 2.1 in (2). The claim follows because we have assumed
(see (1) above) that |F |

|E| ≤
1
t . ��

2.4 The Product Constraint Graph

It is relatively straightforward to model the PCP described above as a constraint
graph. There is one technicality that we need to take care of: the verifier’s walks
are not bounded in length, and a naive translation would lead to a graph with
infinitely many edges. We now observe that we can truncate the verifier’s walk
without losing much in the rejection probability.

Verifier with truncated walks: We will show that a version of Lemma 2.1 holds
even when the verifier’s walks are truncated at T ∗ = 5t, and she just accepts if
her walk has not stopped within these many steps.

Lemma 2.3 (Truncated walks). Suppose G is a d-regular constraint graph
with alphabet Σ and |λ(G)| < d. Consider the verifier with truncated walks.
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(a) If G is satisfiable, then there is a proof that the verifier accepts with proba-
bility 1.

(b) If G is ε-far from satisfiable, then the verifier rejects every proof with prob-
ability at least (

1
512C

)
· t ·min

{
ε,

1
t

}
,

where C = 2 + d
d−|λ(G)| .

Proof. We only show how the previous proof is to be modified in order to justify
this lemma. If the verifier’s walk is truncated before stopping, then no edge on
the walk is declared faulty. Under this definition, let N′ be the number of faulty
edges in the verifier’s random walk (N′ = 0 whenever the walk is truncated).
Let us redo Claim (a). Let I{T ≥ T ∗ + 1} be the indicator random variable for
the event T ≥ T ∗ +1, that is, I{T ≥ T ∗ +1} = 1 if T ≥ T ∗ +1 and 0 otherwise.
Then, N′ = N−N · I{T ≥ T ∗ + 1}, and

E[N′] = E[N]−E[N · I{T ≥ T ∗ + 1}].

We already have a lower bound for E[N] in Claim (a), so it is sufficient to
obtain an upper bound for the second term on the right, which accounts for the
contribution to E[N] from long walks.

The contribution to E[N] from walks of length � is at most �|F |/|E| times
the probability that T = �. So, the contribution to E[N] from walks of length
at least T ∗ + 1 is

Pr[T ≥ T ∗ + 1] · E[T | T ≥ T ∗ + 1] · |F ||E| .

The first factor is at most (1− 1
t )
T∗

, the second is T ∗ + t. So,

E[N · I{T ≥ T ∗ + 1}] ≤ exp
(
−T ∗

t

)
(T ∗ + t) · |F ||E| ≤ t · |F ||E| ·

1
16

.

Thus,

E[N′] ≥ t · |F ||E| ·
1
8
− t · |F ||E| ·

1
16

≥ t · |F ||E| ·
1
16

.

Note that N′ ≤ N, so the upper bound in Claim (b) applies to E[N′2] as well.
Now, Lemma 2.3 follows from the inequality E[N′ > 0] ≥ E[N′]2/E[N′2]. ��

Definition 2.2 (The product constraint graph). Let G be a d-regular con-
straint graph with alphabet Σ. The product graph Gt is defined as follows.

– The vertex set of the graph Gt is V (G).
– The alphabet for Gt is Σdt+1

.
– The edges and their constraints correspond to the verifier’s actions outlined

above. We imagine that after picking the starting vertex a, the verifier’s
moves are described by a random string of length T ∗ over the set [d]×[t]. The
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first component determines which outgoing edge the verifier takes, and she
stops after that step if the second component is 1 (say). For each vertex a and
each sequence τ , we have a directed edge labeled τ leaving a, corresponding
to the walk starting from vertex a determined by τ .

– If the walk does not terminate at the end of τ , then the ending vertex of this
edge is also a (it is a self-loop), and the constraint on that edge the constant 1.

– If the walk does terminate, and the final vertex is b, then the edge labeled τ
connects a to b, and its constraint is the conjunction of all constraints of G
checked by the verifier along this walk.

Thus, every vertex has (dt)T
∗

edges leaving it, and the total number of edges in
Gt is exactly |V (G)| · (dt)T∗

.

The following theorem is now an immediately consequence of Lemma 2.3.

Theorem 2.1. Let G = 〈V,E,Σ, C〉 be a d-regular constraint graph. Then,

unsat(Gt) ≥ t

C′
2
·min

{
unsat(G),

1
t

}
, where C′

2 = O
(

d
d−|λ(G)|

)
.

Acknowledgments

Thanks to Eli Ben-Sasson, Irit Dinur, Prahladh Harsha, Adam Kalai, Nanda
Raghunathan and Aravind Srinivasan for their comments. I am grateful to the
referees for their suggestions. In a previous version of this paper, the constant
C′

2 in Theorem 2.1 had a bound of the form O
(
|Σ|4

(
d

d−|λ(G)|
))

; I thank Greg
Plaxton for suggesting the tighter analysis presented in this version.

References

1. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy: Proof verification and
intractability of approximation problems. J. ACM, 45(3):501–555, 1998.

2. S. Arora and S. Safra: Probabilistic checking of proofs: A new characterization of
NP. J. ACM, 45(1):70–122, 1998.

3. L. Babai, L. Fortnow, L.A. Levin, M. Szegedy: Checking Computations in Polylog-
arithmic Time. STOC 1991: 21-31.

4. I. Dinur: The PCP Theorem by Gap Amplification. ECCC TR05-046. http://

eccc.uni-trier.de/eccc-reports/2005/TR05-046

5. U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy: Approximating the
clique is almost NP-complete. J. ACM, 43(2):268–292, 1996.

6. R. O’Donnell and V. Guruswami. Course notes of CSE 533: The PCP Theo-
rem and Hardness of Approximation. http://www.cs.washington.edu/education/
courses/533/05au/



Stopping Times, Metrics

and Approximate Counting

Magnus Bordewich1, Martin Dyer2, and Marek Karpinski3

1 Durham University, Durham DH1 3LE, UK
m.j.r.bordewich@durham.ac.uk

2 Leeds University, Leeds LS2 9JT, UK
dyer@comp.leeds.ac.uk

3 University of Bonn, 53117 Bonn, Germany
marek@cs.uni-bonn.de

Abstract. In this paper we examine the importance of the choice of
metric in path coupling, and its relationship to stopping time analysis.
We give strong evidence that stopping time analysis is no more powerful
than standard path coupling. In particular, we prove a stronger theorem
for path coupling with stopping times, using a metric which allows us to
analyse a one-step path coupling. This approach provides insight for the
design of better metrics for specific problems. We give illustrative appli-
cations to hypergraph independent sets and SAT instances, hypergraph
colourings and colourings of bipartite graphs, obtaining improved results
for all these problems.

1 Introduction

Markov chain algorithms are an important tool in approximate counting [16].
Coupling has a long history in the theory of Markov chains [8], and can be used to
obtain quantitative estimates of convergence times [1]. The idea is to arrange the
joint evolution of two arbitrary copies of the chain so that they quickly occupy
the same state. For all pairs of states, the coupling must specify a distribution on
pairs of states so that both marginals give precisely the transition probabilities
of the chain. Good couplings are usually not easy to design, but path coupling [6]
has recently proved a useful technique for constructing and analysing them. The
idea here is to restrict the design of the coupling to pairs of states which are close
in some suitable metric on the state space, and then (implicitly) obtain the full
coupling by composition of these pairs. For example, for independent sets in a
graph or hypergraph, the pairs of interest might be independent sets which differ
in one vertex (the change vertex ) and the metric might be Hamming distance.

The limitations of path coupling analysis are always caused by certain “bad”
pairs of states. But these pairs may be very unlikely to occur in a typical re-
alisation of the coupling. Consequently, path coupling has been augmented by
other techniques, such as stopping time analysis. The stopping time approach is
applicable when the bad pairs have a reasonable probability of becoming less bad
as time proceeds. As an illustration, consider the bad pairs for the Glauber dy-
namics on hypergraph independent sets [3]. These involve almost fully occupied
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edges containing the change vertex. However, it seems likely that the number of
occupied vertices in these edges will be reduced before we must either increase
or decrease the distance between the coupled chains. This observation allows a
greatly improved analysis [3]. See [3,11,14,18] for some other applications of this
technique. General theorems for applying stopping times appear in [3,14].

The stopping time approach is a multistep analysis, and appears to give a
powerful extension of path coupling. However, in this paper we provide strong
evidence that the stopping time approach is no more powerful than single-step
path coupling. We observe that, in cases where stopping times can be employed
to advantage, equally good or better results can be achieved by using a suitably
tailored metric in the one-step analysis. The intuition behind the choice of metric
is precisely that used in the stopping time approach. We will illustrate this with
several examples.

In fact, our first example is a proof of a theorem for path coupling using
stopping times, relying on a particular choice of metric which enables us to work
with the standard one-step path coupling. The resulting theorem is stronger than
those in [3,14]. The proof implies that all results obtained using stopping times
can just as well be obtained using standard path coupling and the right choice
of metric. This does not immediately imply that we can abandon the analysis of
stopping times. Determining the metric used in our proof involves bounding the
expected distance at a stopping time. But it does suggest that it may be better
to do a one-step analysis using a metric indicated by the stopping time.

With this insight, we revisit the Glauber dynamics for hypergraph indepen-
dent sets. Equivalently, these are satisfying assignments of monotone SAT for-
mulas, and this relationship is discussed in the full paper [4]. We also revisit
hypergraph colourings, analysed in [3] using stopping times. We find that we
are able to obtain stronger results than those obtained in [3], using metrics
suggested by stopping time considerations but then optimised. The technical
advantage arises mainly from the possibility of using simple linearity of expec-
tation where stopping time analysis uses concentration inequalities and union
bounds.

We note that this paper does not contain the first uses of “clever” metrics
with path coupling. See [7,17] for examples. But we do give the first general
approach to designing a good metric. While there have been instances in the
literature of optimising the chain [13,20], the only previous analysis of which we
are aware which uses optimisation of the metric appeared in [17].

The organisation of the paper is as follows. In section 2 we prove a better
stopping time theorem than was previously known, using only standard path
coupling. In section 3 we give our improved results for sampling independent
sets in hypergraphs. In section 4 we give improved results for sampling colour-
ings of 3-uniform hypergraphs. Finally, in section 5 we give a completely new
application, to the “scan” chain for sampling colourings of bipartite graphs. For
even relatively small values of ∆, our results improve Vigoda’s [20] celebrated
11∆/6 bound on the number of colours required for rapid mixing.
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2 Path Coupling and Stopping Times

Let M be a Markov chain on state space Ω. Let d be an integer valued metric
on Ω × Ω, and let (Xt, Yt) be a path coupling for M, i.e. a coupling defined
on a path-generating set S ⊆ Ω × Ω. See, for example, [12]. We define Tt, a
stopping time for the pair (Xt, Yt) ∈ S, to be the smallest t′ > t such that
d(Xt′ , Yt′) �= d(Xt, Yt). We will define a new metric d′ such that contraction in
d at Tt implies contraction in d′ at every t′ with positive probability Tt = t′.

Let α > 0 be a constant such that E[d(XTt , YTt)] ≤ αd(Xt, Yt) for all (Xt, Yt)
∈ S. If α < 1, then for any (Xt, Yt) ∈ S, we define d′ as follows.

d′(Xt, Yt) = (1− α)d(Xt, Yt) + E[d(XTt , YTt)] ≤ d(Xt, Yt). (1)

The metric is extended in the usual way to pairs (Xt, Yt) /∈ S, using shortest
paths. See [12]. We will apply path coupling with the metric d′ and the original
coupling. First we show a contraction property for this metric.

Lemma 1. If E[d(XTt , YTt)] ≤ αd(Xt, Yt) < d(Xt, Yt) for all (Xt, Yt) ∈ S, then

E[d′(Xk, Yk) |X0, Y0] ≤
(
1− (1− α) Pr(T0 ≤ k)

)
d′(X0, Y0).

Proof. We prove this by induction on k. It obviously holds for k = 0, since
T0 > 0. Using 1A to denote the 0/1 indicator of event A, we may write (1) as

d′(X0, Y0) = (1−α)d(X0, Y0)+E[d(XTk
, YTk

)1T0>k]+E[d(XT0 , YT0)1T0≤k], (2)

since if T0 > k then Tk = T0. Similarly, we have that E[d′(Xk, Yk)]

= E[d′(Xk, Yk)1T0>k] + E[d′(Xk, Yk)1T0≤k]
= (1− α)E[d(Xk, Yk)1T0>k] + E[d(XTk

, YTk
)1T0>k] + E[d′(Xk, Yk)1T0≤k].

= (1− α)E[d(X0, Y0)1T0>k] + E[d(XTk
, YTk

)1T0>k] + E[d′(Xk, Yk)1T0≤k]. (3)

Subtracting (2) from (3), we have that E[d′(Xk, Yk)]− d′(X0, Y0)

= −(1− α)E[d(X0, Y0)1T0≤k] + E[(d′(Xk, Yk)− d(XT0 , YT0))1T0≤k].

For T0 ≤ k, since k − T0 ≤ k − 1 the inductive hypothesis implies
E[d′(Xk, Yk) |XT0 , YT0 ] ≤ d′(XT0 , YT0) ≤ d(XT0 , YT0), (if (Xk, Yk) �∈ S this is
implied by linearity). Hence

E[d′(Xk, Yk)]− d′(X0, Y0) ≤ −(1− α)E[d(X0, Y0)1T0≤k],

But now E[d(X0, Y0)1T0≤k] = Pr(T0 ≤ k)d(X0, Y0) ≥ Pr(T0 ≤ k)d′(X0, Y0).

We may now prove the first version of our main result.

Theorem 1. Let M be a Markov chain on state space Ω. Let d be an integer
valued metric on Ω, and let (Xt, Yt) be a path coupling for M. Let Tt be the
above stopping times. Suppose for all (X0, Y0) ∈ S and for some integer k and
p > 0, that
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(i) Pr[T0 ≤ k] ≥ p,
(ii) E[d(XT0 , YT0)/d(X0, Y0)] ≤ α < 1.

Then the mixing time τ(ε) of M satisfies τ(ε) ≤ k
p(1−α) ln

(
eD

ε(1−α)

)
, where

D = max{d(X,Y ) : X,Y ∈ Ω}.

Proof. From Lemma 1, d′ contracts by a factor 1− (1−α)p ≤ e−(1−α)p for every
k steps of M. Note also that d′ ≤ D. It follows that, at time τ(ε), we have

Pr(Xτ �= Yτ ) ≤ E[d(Xτ , Yτ )] ≤
E[d′(Xτ , Yτ )]

1− α
≤ De−(1−α)pτ/k

1− α
≤ ε,

from which the theorem follows. ��

If 1 − α is small compared to ε, it is possible to do better than this. A proof of
the following appears in the full paper [4].

Theorem 2. If M satisfies the conditions of Theorem 1, the mixing time τ(ε)
of M satisfies τ(ε) ≤ k(2−α)

p(1−α) ln
(

2eD
ε

)
, where D = max{d(X,Y ) : X,Y ∈ Ω}.

Remark 1. One of the most interesting features of these theorems is that their
proofs employ only standard path coupling, but with a metric which has some
useful properties. Thus, for any problem to which stopping times might be ap-
plied, there exists a metric from which the same result could be obtained using
one-step path coupling.

Remark 2. We may compare this stopping time theorem with those in [3,14].
The main result of [14] (Theorem 3) concerns bounded stopping times, where
T0 ≤ M for all (X0, Y0) ∈ S, and gives a mixing time of O(M(1 − α)−1 log D).
By setting k = M and p = 1 in Theorem 2, we obtain the same mixing
time up to minor changes in constants, but with a proof that does not in-
volve defining a multistep coupling. For unbounded mixing times, [14, Corol-
lary 4] gives a bound O(E[T ](1 − α)−2W log D) by truncating the stopping
times, where W denotes the maximum of d(Xt, Yt) over all (X0, Y0) ∈ S and
t ≤ T . In most applications E[T ] ≤ k/p, so we obtain an improvement of order
W (1−α)−1. By comparison with [3], we obtain a more modest improvement, of
order log W log(D(1 − α)−1)/ logD.

Remark 3. Further improvements to Theorem 2 seem unlikely, other than in
constants. The term k/p must be present, since it bounds a single stopping
time. A term 1/(1 − α) log(D/ε) = Θ(logα(D/ε)) also seems essential, since it
bounds the number of stopping times required.

3 Hypergraph Independent Sets

We now turn our attention to hypergraph independent sets. These were previ-
ously studied in [3]. Let H = (V , E) be a hypergraph of maximum degree ∆ and
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minimum edge size m. A subset S ⊆ V of the vertices is independent if no edge
is a subset of S. Let Ω(H) be the set of all independent sets of H. We define the
Markov chain M(H) with state space Ω(H) by the following transition process
(Glauber dynamics). If the state of M at time t is Xt, the state at t + 1 is
determined by the following procedure.

1. Select a vertex v ∈ V uniformly at random,
2. (i) if v ∈ Xt let Xt+1 = Xt\{v} with probability 1/2,

(ii) if v �∈ Xt and Xt ∪ {v} is independent, let Xt+1 = Xt ∪ {v} with proba-
bility 1/2,

(iii) otherwise let Xt+1 = Xt.

This chain is easily shown to be ergodic with uniform stationary distribution. The
natural coupling for this chain is the “identity” coupling, the same transition is
attempted in both copies of the chain. If we try to apply standard path coupling
to this chain, we immediately run into difficulties. The change in the expected
Hamming distance between Xt and Yt after one step could be as high as ∆

2n −
1
n ,

and we obtain rapid mixing only in the case ∆ = 2.
For (σ, σ ∪{w}) ∈ S, let Ei(w, σ) be the set of edges containing w which have

i occupied vertices in σ. Using a result like Theorem 1 above, it is shown in [3]
that, for the stopping time T given by the first epoch at which the Hamming
distance between the coupled chains changes,

E[dHam(XT , YT |X0 = σ, Y0 = σ ∪ {w})] ≤ 2
m−2∑
i=0

pi|Ei| ≤ 2p1∆, (4)

where the pi is the probability that d(XT , YT ) = 2 if w is in a single edge
with i occupied vertices. Since p1 < 1/(m − 1), we obtain rapid mixing when
2∆/(m− 1) ≤ 1, i.e. when m ≥ 2∆ + 1. See [3] for details.

The approach of section 2 would lead us to define a metric for which the
distance between σ and σ∪{w} is (1−2p1∆)+2

∑m−2
i=0 pi|Ei|. By Lemma 1, we

know that this metric contracts in expectation. However, prompted by the form
of this metric, but retaining the freedom to optimise constants, we will instead
define the new metric d to be d(σ, σ ∪ {w}) =

∑m−2
i=0 ci|Ei|, where 0 < ci ≤ 1

(0 ≤ i ≤ m − 2) are a nondecreasing sequence of constants to be determined.
Using this metric, we obtain the following theorem.

Theorem 3. Let ∆ be fixed, and let H be a hypergraph such that m ≥ ∆+2 ≥ 5,
or ∆ = 3 and m ≥ 2. Then the Markov chain M(H) has mixing time O(n log n).

Proof. Without loss of generality, we take cm−2 = 1 and we will define c−1 =
c0, cm−1 ≥ ∆ + 1. Note that c−1 has no real role in the analysis, and is chosen
only for convenience, but cm−1 is chosen so that cm−1 − cm−2 ≥ ∆ ≥ d(σ, σ′)
for any pair (σ, σ′) ∈ S. We require ci > 0 for all i so that we will always have
d(σ, σ′) > 0 if σ �= σ′.

Now consider the expected change in distance between σ and σ ∪ {w} after
one step of the chain.
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If w is chosen, then the distance decreases by
∑m−2

i=0 ci|Ei|. The contribution
to the expected change in distance is − 2

2n

∑m−2
i=0 ci|Ei|.

If we insert a vertex v in an edge containing w, then we increase the distance
by (ci+1−ci) ≥ 0 for each edge in Ei containing v. This holds for i = 0, . . . ,m−2,
by the choice of cm−1 = ∆ + 1. Let U be the set of unoccupied neighbours of w,
and νi(v) be the number of edges with i occupants containing w and v. Then∑
v∈U

νi(v) =
∑
v∈U

∑
e∈Ei

1v∈e =
∑
e∈Ei

∑
v∈e∩U

1 =
∑
e∈Ei

(m− i− 1) = (m− i− 1)|Ei|.

implies that
∑
v∈U

1
2n

m−2∑
i=0

νi(v)(ci+1 − ci) =
1
2n

m−2∑
i=0

(ci+1 − ci)(m− i− 1)|Ei|.

If we delete a vertex v in an edge containing w, then we decrease the distance
by (ci − ci−1) for each edge in Ei containing v. This holds for i = 0, . . . ,m− 2,
by the choice of c−1. Let O be the set of occupied neighbours of w, and νi(v)
be the number of edges with i occupants containing w and v. Then a similar
argument gives the contribution as

−
∑
v∈O

1
2n

m−2∑
i=0

νi(v)(ci − ci−1) = − 1
2n

m−2∑
i=0

(ci − ci−1)i|Ei|.

Let d0 = d(σ, σ ∪ {w}), and let d1 be the distance after one step of the chain.
The change in expected distance E′ = E[d1 − d0] satisfies

2nE′ ≤− 2
m−2∑
i=0

ci|Ei|+
m−2∑
i=0

(ci+1 − ci)(m− i− 1)|Ei| −
m−2∑
i=0

(ci − ci−1)i|Ei|

=
m−2∑
i=0

(ici−1 − (m + 1)ci + (m− i− 1)ci+1) |Ei|.

We require E[d1−d0] ≤ −γ, for some γ ≥ 0, which holds for all possible choices of
Ei if and only if (m−i−1)ci+1−(m+1)ci+ici−1 ≤ −γ for all i = 0, 1, . . . ,m−2.
Thus we need a solution to

ici−1 − (m + 1)ci + (m− i− 1)ci+1 ≤ −γ (i = 0, . . . ,m− 2), (5)
0 = c−1 < c0 ≤ c1 ≤ · · · ≤ cm−3 ≤ cm−2 = 1, cm−1 ≥ ∆ + 1, γ ≥ 0,

with γ > 0 if possible. Solving for the optimal solution gives

ci =
γ
∑i

j=0

(
m−1
j

)
− m−∆−2+γ

m

∑i
j=0

(
m
j

)(
m−1
i

) (i = 0, . . . ,m− 2),

γ =
2m − 1−m

(m− 2)2m−1 + 1

(
m−∆− 2 +

m(m− 1)
2m − 1−m

)
.

Let f(m) = m− 2 + m(m−1)
2m−1−m , then we can have γ ≥ 0 if and only if f(m) ≥ ∆,

and γ > 0 if and only if f(m) > ∆.
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If m ≥ 5 then m(m− 1)/(2m− 1−m) < 1, so we will have f(m) > ∆ exactly
when m ≥ ∆ + 2. For smaller values of m, f(2) = 2, f(3) = 2 1

2 and f(3) = 3 1
11 .

The new case here is ∆ = 3,m ≥ 4. In any case for which f(m) > ∆,
standard path coupling arguments yield the mixing times claimed since we have
contraction in the metric and the minimum distance is at least c0. Mixing for
∆ = 3,m ≤ 3 was shown in [13]), so we have mixing for ∆ = 3 and every m. ��

Remark 4. The independent set problem here has a natural dual, that of sam-
pling an edge cover from a hypergraph with edge size ∆ and degree m. An edge
cover is a subset of E whose union contains V . For the graph case of this sam-
pling problem, with arbitrary m, see [5]. By duality this gives the case ∆ = 2 of
the independent set problem here.

4 Colouring 3-Uniform Hypergraphs

In our second application, also from [3], we consider proper colourings of 3-
uniform hypergraphs. We again use Glauber dynamics. Our hypergraph H will
have maximum degree ∆, uniform edge size 3, and we will have a set of q colours.
For a discussion of the easier problem of colouring hypergraphs with larger edge
size see [3]. A colouring of the vertices ofH is proper if no edge is monochromatic.
Let Ω′(H) be the set of all proper q-colourings of H. We define the Markov chain
C(H) with state space Ω′(H) by the following transition process. If the state of
C at time t is Xt, the state at t + 1 is determined by

1. selecting a vertex v ∈ V and a colour k ∈ {1, 2, . . . , q} uniformly at random,
2. let X ′

t be the colouring obtained by recolouring v colour k
3. if X ′

t is a proper colouring let Xt+1 = X ′
t

otherwise let Xt+1 = Xt.

This chain is easily shown to be ergodic with the uniform stationary distribution.
For some large enough constant ∆0, it was shown in [3] to be rapidly mixing for q >
1.65∆ and ∆ > ∆0, using a stopping times analysis. Here we improve this result,
and simplify the proof, by using a carefully chosen metric which is prompted by the
new insight into stopping times analyses. If w is the change vertex, the intuition
in [3] was that edges which contain both colours of w are initially “dangerous”
but tend to become less so after a time. Thus our metric will be a function of the
numbers of edges containing w with various relevant colourings.

Theorem 4. Let ∆ be fixed, and let H be a 3-uniform hypergraph of maxi-
mum degree ∆. Then if q ≥

⌈ 3
2∆ + 1

⌉
, the Markov chain C(H) has mixing time

O(n log n).

Proof. Consider two proper colourings X and Y differing in a single vertex w.
Without loss of generality let the change vertex w be coloured 1 in X and 2 in Y .
We will partition the edges e ∈ E containing w into four classes E1, E2, E3, E4,
determined by the colouring of e \ {w}, as follows:
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E1 : {1, 2}, E2 :
⋃
i>2{1, i} ∪ {2, i}, E3 :

⋃
i>2{i, i}, E4 :

⋃
2<i<j{i, j}.

Instead of Hamming distance, we define a metric d by d(X,Y ) =
∑4

i=1 ci|Ei|,
where 1 = c1 ≥ c2 ≥ c3 ≥ c4 > 0, and for convenience c0 = ∆ + 1. Note that
d(X,Y ) ≤ ∆ if X,Y have Hamming distance 1. The diameter is therefore at
most ∆n in the metric d. Arguing as in Section 3, we have

nqE[d1 − d0] ≤ −(q − |E3|)
(
c1|E1|+ c2|E2|+ c3|E3|+ c4|E4|

)
+|E1|

(
−2(q −∆− 1)(c1 − c2) + 2(c0 − c1)

)
+|E2|

(
−(q −∆− 2)(c2 − c4)− (c2 − c3) + (c0 − c2) + (c1 − c2)

)
+|E3|

(
−2(q −∆− 2)(c3 − c4) + 4(c2 − c3)

)
+|E4|

(
2(c3 − c4) + 4(c2 − c4)

)
.

(6)

If we set c1 = 1,

c2 =
2q − 2∆ + 1
2q −∆ + 1

, c3 = c4 =
2q − 3∆ + 1
2q −∆ + 1

, γ =
2q2 − q(3∆− 1)− 4∆

2q −∆ + 1
, (7)

then (6) yields

E[d1] ≤ d0 −
γ∆

nq
≤
(
1− γ

nq

)
d0. (8)

The condition γ ≥ 0 is equivalent to

q ≥ 3∆−1
4

(
1 +
√

1 + 32∆
(3∆−1)2

)
, i.e. q ≥

⌈3
2∆
⌉

+ 1. (9)

Note that we have ci > 0 (i = 1, . . . , 4) under this condition. Note also that
γ > 0 and hence, using (8), the mixing time satisfies

τ(ε) ≤ 2q2 − q∆ + q

2q2 − q(3∆− 1)− 4∆
n ln
(∆n

ε

)
.

5 Colouring Bipartite Graphs

Let G = (V,E) be a bipartite graph with bipartition V1, V2, and maximum degree
∆. For v ∈ V , let N (v) = {w : {v, w} ∈ E} denote the neighbourhood of v, and
let d(v) = |N (v)| be its degree. Let Q = [q] be a colour set, and X : V → Q be a
colouring of G, not necessarily proper. Let CX(v) = {X(w) : w ∈ N (v)} be the
set of colours occurring in the neighbourhood of v, and cX(v) denote the size of
CX(v). We consider the Markov chain Multicolour on colourings of G, which
in each step picks one side of the bipartition at random, and then recolours every
vertex on that side, followed by recolouring every vertex in the other half of the
bipartition. If the state of Multicolour at time t is Xt, the state at time t+1
is given by

Multicolour
1. choosing r ∈ {1, 2} uniformly at random,
2. for each vertex v ∈ Vr,
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(i) choosing a colour q(v) ∈ Q\CXt(v) uniformly at random,
(ii) setting Xt+1(v) = q(v). (Heat bath recolouring)

3. for each vertex v ∈ V \Vr,
(i) choosing a colour q(v) ∈ Q\CXt+1(v) uniformly at random,
(ii) setting Xt+1(v) = q(v).

Note that the order in which the vertices are processed in steps 2 and 3 is
immaterial, and that in step 3, CXt+1(v) is well defined since all of v’s neighbours
have been recoloured in step 2. We prove the following theorem.

Theorem 5. The mixing time of Multicolour is O(log(n)) for q > f(∆),
where f is a function such that
(1) f(∆)→ β∆, as ∆→∞, where β satisfies βeβ = 1,
(3) f(∆) < �11∆/6� for ∆ ≥ 31.
(2) f(∆) ≤ �11∆/6� for ∆ ≥ 14.

This chain is a single-site dynamics intermediate between Glauber and Scan
(which uses the same vertex update procedure as Glauber, but choses the vertices
in a deterministic order). It is easy to see that it is ergodic if q > ∆ + 1, and
has equilibrium distribution uniform on all proper colourings of G. Observe also
that it uses many fewer random bits than Glauber. Indeed the following easy
Corollary of Theorem 5 is proved in the full paper [4].

Corollary 1. The mixing time for Scan is at most that for Multicolour.

To prove Theorem 5 we need the following lemmas, whose proofs are given in [4].

Lemma 2. For 1 ≤ i ≤ ∆ let Si be a subset of (Q− q0) such that mi = |Si| ≥
q−∆. Let si be selected uniformly at random from Si, independently for each i.
Finally let C = {si : 1 ≤ i ≤ ∆} and c = |C|. Then

E[q − c | s1 = q1] ≥ 1 + (q − 2)
(

1− 1
q −∆

) (∆−1)(q−∆)
q−2

= α.

Lemma 3. For 1 ≤ i ≤ ∆ let Si be a subset of (Q− q0) such that mi = |Si| ≥
q−∆. Let si be selected uniformly at random from Si, independently for each i.
Finally let C = {si : 1 ≤ i ≤ ∆} and c = |C|. Then

E

[
1

q − c
| s1 = q1

]
≤ 1

α

(
1 +

(q − α− 1)(α− 1)
(q −∆)(q − 2)α

)
= α′.

Proof (Proof of Theorem 5). In the path coupling setting, we will take S to be
the set of pairs of colourings which differ at exactly one vertex. Let v be the
change vertex for some pair (X,Y ) ∈ S, and assume without loss that v ∈ V1.
The distance between X and Y is defined to be d(X,Y ) =

∑
w∈N (v)

1
q−cX,Y (w) ,

where cX,Y (w) is taken to be min{cX(w), cY (w)} in the case that they differ.
We couple as follows (the usual path coupling for Glauber dynamics). If we are
recolouring a vertex which is not a neighbour of v, then the sets of available
colours in X and Y are the same, and we use the same colour in both copies of
the chain. If we are recolouring a vertex w ∈ N (v) then there are three cases:
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1. |{X(v), Y (v)} ∩ {X(z) : z ∈ N (w)\{v}}| = 2.
Colours X(v) and Y (v) are not available for w in either X or Y , the sets of
available colours are the same, and we use the same colour in both X , Y .

2. |{X(v), Y (v)} ∩ {X(z) : z ∈ N (w)\{v}}| = 1.
Without loss assume X(v) is not available to w in either X or Y , and Y (v)
is only available in X . For any colour other than Y (v), we couple the same
colour for w in X and Y . For Y (v), we couple recolouring w with Y (v) in X
by uniformly recolouring w from the available colours in Y .

3. |{X(v), Y (v)} ∩ {X(z) : z ∈ N (w)\{v}}| = 0.
Here colour Y (v) is only available in chain X , and X(v) in only available in
Y . We couple these colours together, and for each other colour available to
both X,Y , we recolour w with the same colour.

In case 1, there is no probability of w being coloured differently in the two chains.
In the other cases, the probability of disagreement at w is 1

q−cX,Y (w) .
Let X ′, Y ′ be the colourings after recolouring Vr (half a step of Multi-

colour) and X ′′, Y ′′ be the colourings after the full step of Multicolour.
We use primes and double primes to denote the quantities in X ′ and X ′′ respec-
tively, corresponding to those in X . If we randomly select V1 to be recoloured
first, then the two copies of the chain have coupled in X ′ and Y ′ since the vertices
in V1 have the same set of available colours in each chain.

So suppose that we select V2 to be recoloured first. The only vertices in V2
that have different sets of available colours are the neighbours of v. Let N (v) =
{w1, . . . , wk} and consider the path W0,W1, . . . ,Wk+1 from X ′ to Y ′, where for
1 ≤ i ≤ k, Wi agrees with X ′ on all vertices except w1, . . . , wi which are coloured
as in Y ′, and W0 = X ′ and Wk+1 = Y ′. Then for i ≤ k we have

d(Wi−1,Wi) = 1wi

∑
z∈N (wi)

1
q − cWi−1,Wi(z)

≤ 1wi

∑
z∈N (wi)

1
q − cWi(z)

, (10)

where 1wi indicates whether X ′ and Y ′ differ on wi.
Note that Pr[1wi = 1] ≤ 1

q−cX,Y (wi)
. Furthermore, by the construction of

the coupling either conditioning on 1wi = 1 is the same as conditioning that
Wi−1(wi) = q1, or that Wi(wi) = q1, for some q1. We assume without loss that
this is Wi. Then for each z ∈ N (wi)−v the selection of colours in CWi(z) satisfies
the conditions of Lemma 3, since we may take q0 = X(z) and q1 as above. For v,
there is no colour q0 which is necessarily unavailable for all its neighbours, since
some are coloured as in X ′ and some as in Y ′. Hence we use a slightly weaker
bound on α and α′, given by

αv = (q−1)
(

1− 1
q −∆

) (∆−1)(q−∆)
q−1

and α′
v =

1
αv

(
1 +

(q − αv)(αv)
(q −∆)(q − 1)αv

)
.

Hence for i ≤ k, E[d(Wi−1,Wi)] ≤ 1
q−cX,Y (wi)

((∆ − 1)α′ + α′
v). The value of

d(Wk,Wk+1) is still d(X,Y ) since the vertices in V1 have not yet been recoloured.
Now we consider the vertices in V1. We apply the same analysis as above to

each path segment Wi−1,Wi, but augment the analysis using the fact that at the
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time a vertex z ∈ V1 is recoloured, its neighbours (in V2) will already have been
randomly recoloured. Let the neighbours of wi be z1, z2, . . . zl, and consider the
path Z0, Z1, . . . Zl+1, where for 1 ≤ j ≤ l, Zj agrees with Wi−1 on all vertices
except z1, . . . , zj which are coloured as in Wi, and Z0 = Wi−1 and Zl+1 = Wi.
Arguing as above, for j ≤ l we have

d(Zj−1, Zj) = 1zj

∑
w∈N (zj)

1
q − cZi−1,Zi(w)

.

But now Pr[1zj = 1| Wi−1,Wi] ≤ 1
q−cWi−1,Wi

(zj)
1wi . This is similar to equa-

tion (10), and the same argument gives E[1zj = 1] ≤ 1
q−cX,Y (wi)

α′, for zj �= v

and E[1zj = 1] ≤ 1
q−cX,Y (wi)

α′
v if zj = v. Also, since it depends only on the

colouring of V2, we have d(Zl, Zl+1) = d(Wi−1,Wi). So

E[
l+1∑
j=1

d(Zj−1, Zj)] ≤
1

q − cX,Y (wi)
((∆− 1)α′ + α′

v)(((∆ − 1)α′ + α′
v) + 1).

Finally note that Wk and Wk+1 differ only in V1, so after recolouring V1 they
have coupled. Hence

E[d(X ′′, Y ′′)] =
1
2

k∑
i=1

l+1∑
j=1

E[d(Zj−1, Zj)]

≤
k∑
i=1

(∆− 1)α′ + α′
v)(((∆ − 1)α′ + α′

v) + 1
2(q − cX,Y (wi))

= d(X,Y )((∆− 1)α′ + α′
v)

(((∆ − 1)α′ + α′
v) + 1)

2
.

This gives contraction if ((∆ − 1)α′ + α′
v) < 1. For large ∆, α′ and α′

v both
approach 1

q e
∆/q. Hence we have contraction when ∆

q e∆/q < 1. For small ∆, we
can compute the smallest integral q giving contraction (see table). If we have
contraction, standard path coupling gives the mixing time bounds claimed. ��

∆ q �11∆/6� q/∆ ∆ q �11∆/6� q/∆
22 40 41 1.82 35 63 65 1.80
23 42 43 1.83 40 72 74 1.80
25 46 46 1.84 50 90 92 1.80
30 55 55 1.83 10000 17634 18334 1.76

Minimum values of q for contraction.

Remark 5. Our analysis shows that one-step analysis of a single-site chain on
graph colourings need not break down at q = 2∆ [15,19]. This apparent boundary
seems merely to be an artefact of using Hamming distance.
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Abstract. We give a transparent characterization, by means of a cer-
tain syntactic semigroup, of regular languages possessing the finite power
property. Then we use this characterization to obtain a short elementary
proof for the uniform decidability of the finite power property for ra-
tional languages in all monoids defined by a confluent regular system
of deletion rules. This result in particular covers the case of free groups
solved earlier by d’Alessandro and Sakarovitch by means of an involved
reduction to the boundedness problem for distance automata.

1 Introduction

A language L is said to have the finite power property if its iteration L+ is a union
of finitely many powers of L. The problem to algorithmically determine whether
a given regular language possesses the finite power property is one of the most
prominent questions in the theory of regular languages. It was formulated by
Brzozowski during the SWAT conference in 1966, and solved independently by
Hashiguchi [4] and Simon [13] more than ten years later. Results on this problem
were the starting point of a fruitful and still active research, leading in particular
to Hashiguchi’s solution of the star-height problem [6]. The approach of Simon
initiated the development of the theory of automata with multiplicities over the
tropical semiring, which is now a standard method of dealing with problems
related to the product operation on regular languages (see [14] for a survey).

On the other hand, the approach of Hashiguchi is combinatorial: he works
directly with an automaton for the given language and uses an argument based
on the pigeon hole principle. Our solution of the problem can be viewed as un-
covering the algebraic background of Hashiguchi’s arguments. First steps in this
direction were already performed by Kirsten [8]. Here we present a fully algebraic
treatment of this technique, and we formulate a simple and easily verifiable alge-
braic condition on a certain syntactic semigroup, which is equivalent to the finite
power property. This approach also allows us to slightly generalize the result to
all monoids where length of elements can be well defined and where every two
factorizations of any element have a common refinement. These two properties
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are sufficient for the two main arguments of the proof: induction on the length
of elements and localization of the problem to regular J -classes, respectively.

Then we show that deciding the finite power property for rational languages
in finitely generated monoids where the word problem is solved by a confluent
regular system of deletions, can be uniformly reduced to monoids where the
first result can be applied. More precisely, for every rational language in such
a monoid we construct a different monoid according to the behaviour of deletions
with respect to this language. Note that free groups can be defined by a confluent
finite rewriting system consisting of the deletion rules aa−1 → ε and a−1a → ε,
for each of the free generators a. Therefore, our result generalizes the decidability
result for free groups of d’Alessandro and Sakarovitch [3], who follow the usual
approach and reduce the problem to testing whether a distance automaton is
bounded, which is decidable due to a difficult result of Hashiguchi [5].

Basic concepts employed in this paper are recalled in the following section.
For a more comprehensive introduction to semigroup theory, formal languages,
rational transductions and rewriting we refer the reader to [7], [11], [1] and [2],
respectively.

2 Preliminaries

The sets of positive and non-negative integers are denoted by IN and IN0, respec-
tively. For any set S, the notation ℘(S) stands for the set of all subsets of S. As
usual, we denote by A+ the semigroup of all non-empty finite words over a finite
alphabet A, and by A∗ the monoid obtained by adding the empty word ε to A+.
The length of a word w ∈ A∗ is written as |w|.

Let M be a monoid with identity element 1. Any subset L ⊆ M is called
a language in M. The product of two languages K and L in M is defined as
KL = { st | s ∈ K, t ∈ L }. The subsemigroup of M generated by a language L,
which is equal to

⋃
n∈IN Ln, is denoted by L+ and called the iteration of L. The

submonoid of M generated by L is L∗ = L+ ∪ {1}. Further, for n ∈ IN we write
L≤n = L∪L2∪· · ·∪Ln, and we say that a language L possesses the finite power
property (FPP) if there exists n ∈ IN such that L+ = L≤n.

A language L in a monoid M is recognizable if there exists a homomorphism
σ : M → S to a finite semigroup S satisfying L = σ−1σ(L), i.e. such that the
membership of elements of M in L depends only on their σ-images. The syntactic
homomorphism of L is the projection homomorphism σ : M→M/≡, where the
congruence ≡ of M is defined by the condition

v ≡ w ⇐⇒ (∀x, y ∈M)(xvy ∈ L ⇐⇒ xwy ∈ L) .

The factor monoid M/≡ is called the syntactic monoid of L; it is the smallest
monoid recognizing L.

A language L in M is rational if it belongs to the smallest family of languages
in M containing all finite languages and closed under the rational operations :
union, product and iteration. Kleene’s theorem states that a language in a free
monoid A∗ is rational if and only if it is recognizable; such a language is then
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called regular. If the monoid M is generated by a finite set A, i.e. there is an
onto homomorphism γ : A∗ � M, then a language in M is rational if and only
if it is of the form γ(L) for some regular language L in A∗.

Let S be an arbitrary semigroup. An ideal of S is a non-empty subset I ⊆ S
such that for all s ∈ I and t ∈ S, we have st ∈ I and ts ∈ I. For any ideal I
of S, the Rees factor semigroup S/I is defined on the set (S \ I) ∪ {0}, where
0 is a new zero element, and elements s, t ∈ S \ I are multiplied as in S, except
for st = 0 when st ∈ I holds in S.

The ideal of a semigroup S generated by a given element s ∈ S is equal
to S1sS1, where S1 denotes the monoid obtained from S by adding a new
identity element 1. The quasi-order ≤JS

on S is defined, for any s, t ∈ S, by
the rule s ≤JS

t ⇐⇒ s ∈ S1tS1. The Green relation JS of the semigroup S
is the equivalence relation on S associated with the quasi-order ≤JS

, i.e. two
elements of S are J -equivalent if they generate the same ideal. Consequently,
the quasi-order ≤JS

determines a partial order of J -classes of S.
A straightforward application of the pigeon hole principle to a J -class of

a finite semigroup gives the following useful lemma.

Lemma 1 (Kirsten [8]). Let J be a J -class of a finite semigroup S. Let n ∈ IN
and let s1, . . . , sn be a sequence of elements of S satisfying s1 · · · sn ∈ J . Let
N ⊆ {1, . . . , n} with |N | > |J | be such that si ∈ J for all i ∈ N . Then there
exist k, l ∈ N , k < l, such that sk · · · sl = sk.

Recall that an element s of a semigroup which satisfies ss = s is called an
idempotent. A J -class J of a finite semigroup S is regular if it contains an idem-
potent, or equivalently, if there exist elements s, t ∈ J such that their product
st belongs to J too.

Further, we recall one of the basic constructions of semigroups, which will be
used here to encode deletions. Assume we have a semigroup S and an element
0 /∈ S. Let L and R be arbitrary finite sets, and let P : R×L → S∪{0} be any
mapping (this mapping can be understood as an (R × L)-matrix with entries
belonging to S or equal to 0). The Rees matrix semigroup M0(S;L,R;P ) over S
is defined on the set (L ×S× R) ∪ {0}, where 0 is a new zero element, by the
multiplication formula

(l, s, r) · (l′, s′, r′) =

{
(l, s · P (r, l′) · s′, r′) if P (r, l′) �= 0 ,

0 if P (r, l′) = 0 .

A function from A∗ to B∗ is rational if it can be realized by a rational trans-
ducer, i.e. a finite automaton with output. According to Sakarovitch [12], a semi-
group S is called rational if there exist a finite set A, an onto homomorphism
α : A+ � S and a rational function β : A+ → A+ satisfying αβ = α and
ker(β) = ker(α). This means that S is isomorphic to the semigroup defined on
the set β(A+) by the rule u · v = β(uv). An important property of rational
monoids is that they satisfy Kleene’s theorem:

Proposition 1 (Sakarovitch [12]). In every rational monoid, the family of
rational sets is equal to the family of recognizable sets.
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When dealing with rational monoids, we will call rational sets regular as in free
monoids. Because rational functions algorithmically preserve regularity, a lan-
guage L in a rational monoid is regular if and only if the language βα−1(L) in
A∗ is regular. Moreover, rational operations on regular languages in a rational
monoid can be performed algorithmically as we can calculate with the corre-
sponding subsets βα−1(L) of β(A+) using the obvious rules, e.g. βα−1(K ·L) =
β(βα−1(K) · βα−1(L)).

The class of rational semigroups possesses several useful closure properties
with respect to basic semigroup constructions. In our considerations, the follow-
ing two constructions will be employed.

Proposition 2 (Sakarovitch [12]). The class of rational semigroups is algo-
rithmically closed under taking Rees factors by regular ideals.

Proposition 3. Let M be a rational monoid with identity element 1. Let L and
R be finite sets and P : R × L → M ∪ {0} a mapping such that P (ρ, λ) = 1
for certain λ ∈ L and ρ ∈ R. Then the Rees matrix semigroup M0(M;L,R;P )
over M is rational and can be algorithmically constructed.

3 Free Monoids

In this section we consider the FPP in a monoid M with identity element 1 and
zero element 0, and satisfying the following conditions:

1. There is a mapping � : M \ {0} → IN0 assigning to non-zero elements of M
their length, and satisfying �(xy) ≥ �(x)+�(y) for x, y ∈ M such that xy �= 0.

2. For every u, v, w, t ∈ M satisfying uv = wt �= 0, there exists x ∈ M such
that either ux = w and xt = v or wx = u and xv = t.

3. The languages {0} and {1} in M are recognizable.

Remark 1. Any free monoid with the length of a word defined in the usual way
and with a zero element added satisfies the above conditions.

Lemma 2. Let M be a monoid satisfying condition 2. Let m,n ∈ IN, m ≤ n,
and w, v1, . . . , vm ∈M be such that wn = v1 · · · vm �= 0. Then there exist k ∈ IN0,
k < m, and elements x, y ∈ M satisfying v1 · · · vkx = wk, yvk+2 · · · vm = wn−k−1

and vk+1 = xwy.

Let L ⊆ �-1(IN) be an arbitrary recognizable language in M consisting of ele-
ments of non-zero length, and such that its iteration L+ is also recognizable.
Let σ : M � S be a homomorphism onto a finite semigroup recognizing the lan-
guages L, L+, {0} and {1}. Consider the mapping τ : M→ ℘(S3)∪ {0} defined
by the rules τ(0) = 0 and for w ∈M \ {0}:

τ(w) = { (σ(x), σ(y), σ(z)) | x, y, z ∈M, w = xyz } .

Lemma 3. For every monoid M satisfying condition 2, the kernel of τ is a con-
gruence of M.
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Proof. Let v, w ∈M \ {0}. Since σ recognizes {0}, we have vw = 0 if and only if
σ(vw) = 0, which holds exactly when ζηϑκλµ = 0 for every (ζ, η, ϑ) ∈ τ(v) and
(κ, λ, µ) ∈ τ(w). And from property 2 it immediately follows that if vw �= 0, then
the triple (α, β, γ) ∈ S3 belongs to τ(vw) if and only if there exist (ζ, η, ϑ) ∈ τ(v)
and (κ, λ, µ) ∈ τ(w) satisfying either α = ζηϑκ, β = λ and γ = µ, or α = ζ,
β = ηϑκλ and γ = µ, or α = ζ, β = η and γ = ϑκλµ. ��

By Lemma 3 there exists a unique semigroup operation on τ(M) such that τ is
a homomorphism. Let us denote by T the subsemigroup τ(L+) of τ(M).

Remark 2. Note that if τ(v) = τ(w), then in particular σ(v) = σ(w). Therefore,
the homomorphism τ recognizes all languages recognized by σ, and it also means
that τ(v) JT τ(w) implies σ(v) JS σ(w). Further observe that the identity
element τ(1) ∈ τ(M) does not belong to T since τ recognizes {1}.

Theorem 1. Let M be an arbitrary monoid satisfying properties 1 through 3.
Then for any recognizable language L ⊆ �-1(IN) in M such that L+ is also
recognizable, and for σ, S, τ and T defined above, the following conditions are
equivalent:

1. L possesses the FPP.
2. For all w ∈ L+, there exists n ∈ IN such that wn ∈ L≤n.
3. Every non-zero regular J -class of T contains some element of τ(L).
4. For all w ∈ L+ \ {0} such that τ(w) belongs to a regular J -class of T, there

exist y ∈ L and x, z ∈ L∗ satisfying w = xyz and σ(y) JS σ(w).
5. L+ = L≤(j+1)h

, where j is the maximal size of a J -class of S and h is the
length of the longest chain of J -classes in T.

Proof. 1 =⇒ 2 is trivial.
2 =⇒ 3. Let J be a non-zero regular J -class of T. Then there exists an element

w ∈ L+\{0} such that τ(w) is an idempotent belonging to J . Let n ∈ IN be such
that wn ∈ L≤n. Then by Lemma 2 one can find k ∈ IN0 and elements x, y ∈ M
and u, v ∈ L∗ satisfying ux = wk, yv = wn−k−1 and xwy ∈ L. Therefore we
have

τ(u)τ(xwy)τ(v) = τ(wn) = τ(w) and

τ(xwyv)τ(w)τ(uxwy) = τ(xwn+2y) = τ(xwy) .

This shows that τ(xwy) ∈ J as required.
3 =⇒ 4. Let w ∈ L+ \{0} be such that τ(w) belongs to a regular J -class of T.

Then there exists u ∈ L satisfying τ(u) JT τ(w). Therefore τ(w) = τ(tuv) for
certain t, v ∈ L∗. By the definition of τ , one can find elements x, y, z ∈ M for
which w = xyz, σ(x) = σ(t), σ(y) = σ(u) and σ(z) = σ(v). Because σ recognizes
both L and L∗, this in particular means that y ∈ L and x, z ∈ L∗. Finally, we
have also σ(y) = σ(u) JS σ(w) due to Remark 2.

4 =⇒ 5. Let us prove that L+ ∩ τ−1(J) ⊆ L≤(j+1)hJ −1 for every J -class J
of T, where hJ denotes the length of the longest chain of J -classes in T greater
or equal to J . We proceed by induction on hJ . Let w ∈ L+ ∩ τ−1(J).
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If J is non-regular, consider the longest prefix x ∈ L∗ \ τ−1(J) of w such that
there exist y ∈ L and z ∈ L∗ satisfying w = xyz. Then τ(xy) ∈ J and therefore
τ(z) /∈ J , as J is not regular. Hence, by the induction hypothesis, we obtain

w ∈ L≤2((j+1)hJ −1−1)+1 ⊆ L≤(j+1)hJ −1 .

If w = 0 then w = xz for some x, z ∈ L+ \ {0} and we get w ∈ L≤(j+1)hJ −1

as in the previous case.
If J is regular and non-zero, denote the J -class of σ(w) in S by I and con-

sider a decomposition w = w0v1w1v2 · · · vnwn, where w0, w1, . . . , wn ∈ L∗ and
v1, v2, . . . , vn ∈ L ∩ σ−1(I), such that �(v1) + �(v2) + · · · + �(vn) is maximal
(note that this number is bounded by �(w)), and among such decompositions
the number n is minimal.

If n > |I| then Lemma 1 implies that there exist k, l ∈ {1, . . . , n}, k < l, such
that σ(vkwk · · ·wl−1vl) = σ(vk). Because σ recognizes L, this in particular means
that vkwk · · ·wl−1vl ∈ L∩σ−1(I), contradicting the choice of the decomposition
of w. Thus, we have n ≤ |I|.

Assuming τ(wi) ∈ J for some i ∈ {0, . . . , n}, by condition 4 we obtain certain
elements y ∈ L and x, z ∈ L∗ satisfying wi = xyz and σ(y) JS σ(wi). Since
σ(wi) ∈ I can be derived using Remark 2, this means that σ(y) ∈ I, which
contradicts the maximality of the decomposition of w. Therefore τ(wi) /∈ J for
all i ∈ {0, . . . , n}, and so the induction hypothesis gives

w ∈ L≤(|I|+1)((j+1)hJ−1−1)+|I| ⊆ L≤(j+1)hJ −1 .

5 =⇒ 1 is trivial. ��

Remark 3. Condition 2 of Theorem 1 was conjectured to be equivalent to the
FPP by Linna [10]; later this was proved true for free monoids by Hashiguchi [4].

Let us now present examples demonstrating that both ingredients of the con-
struction of the semigroup T (i.e. the decomposition of words to triples and the
restriction to τ(L+)) are essential.

Example 1. Let us take the language L = {a}∪bA∗ over the alphabet A = {a, b}.
This language clearly does not possess the FPP. Because L satisfies L+ = A+,
the syntactic homomorphism σ of L recognizes all the languages L, L+ and {ε}.
The syntactic monoid of L has four elements α, β, γ and δ, which correspond to
the languages {ε} = σ−1(α), {a} = σ−1(β), aA+ = σ−1(γ) and bA∗ = σ−1(δ).
The only regular J -class of σ(A+) is {γ, δ}, and it contains the element δ ∈ σ(L)
(note that the same is true also for the subsemigroup σ(L+)).

But in the semigroup T = τ(L+), there is really a regular J -class which does
not contain any element of τ(L), namely the J -class of the idempotent

τ(a6) = { (ζ, η, ϑ) | γ ∈ {ζ, η, ϑ} ⊆ {α, β, γ} } .

In order to verify this, let us take an arbitrary element of T which is J -equivalent
to τ(a6), and assume that it belongs to τ(L). Such an element must be of the
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form τ(va6w), where v, w ∈ L∗. Because τ recognizes L, we have va6w ∈ L, and
therefore va6w ∈ bA∗. Since τ(va6w) JT τ(a6), there exist x, y ∈ L∗ satisfying
τ(xva6wy) = τ(a6). Then τ(xva6wy) contains the triple (σ(x), σ(va6w), σ(y)) =
(σ(x), δ, σ(y)), which cannot belong to τ(a6), contradicting the previous equality.

Example 2. The language L = {ab} ∪ {ab, ba}∗ba{ab, ba}∗ over the alphabet
A = {a, b} also does not have the FPP. Again, the syntactic homomorphism σ
of L recognizes the languages L, L+ and {ε}. We are going to verify that every
regular J -class of τ(A+) containing some element of τ(L+) contains also an
element of τ(L). Because τ(L+) = τ({ab, ba}+) = τ(L)∪τ(ab(ab)+), it is enough
to deal with the J -classes of τ(A+) containing τ((ab)n) for n ≥ 2.

For n ≤ 5, we have τ−1τ((ab)n) = {(ab)n}, since the τ -image of each of these
words is characterized by the presence of some triples formed from the two dif-
ferent elements σ(ab) and σ(ab(ab)+). Therefore for n ≤ 5, the element τ((ab)n)
forms a non-regular singleton J -class of τ(A+). Further, one can calculate that
τ((ab)6) is an idempotent, and τ((ab)n) = τ((ab)6) for every n ≥ 6. In this case,
one gets τ((ab)6) Jτ(A+) τ((ba)7) ∈ τ(L).

Corollary 1. The FPP is uniformly decidable for regular languages consisting
of elements of non-zero length in rational monoids satisfying conditions 1 and 2.

Proof. First, note that condition 3 holds for every rational monoid, and so The-
orem 1 can be applied. By condition 5 of Theorem 1, it is enough to construct
a semigroup S recognizing L, L+, {0} and {1}, and test whether L+ = L≤m,

for m = n2n3

, where n is the cardinality of S. ��
Based on the results of Kirsten [8], the author [9] observed that each language
recognized by a given finite semigroup S has the FPP if and only if S is a chain
of simple semigroups, i.e. for all s, t ∈ S, either st JS s or st JS t. Let us now
show how one can derive this fact using Theorem 1 instead of Kirsten’s results.

Corollary 2. Let M be a monoid satisfying properties 1 through 3, and let S be
a finite semigroup which is a chain of simple semigroups. Then every language
L ⊆ �-1(IN) in M recognized by some homomorphism ρ : M → S, and such that
L+ is also recognizable, has the FPP.

Proof. We are going to verify condition 3 of Theorem 1. Consider n ∈ IN and
arbitrary elements w1, . . . , wn ∈ L such that τ(w1 · · ·wn) is an idempotent, and
choose any i ∈ {1, . . . , n} for which ρ(wi) belongs to the smallest of the J -classes
of S determined by the elements ρ(w1), . . . , ρ(wn). Because S is a chain of sim-
ple semigroups, we have ρ(wi) JS ρ(w1 · · ·wn). Let m be the cardinality of
the J -class of ρ(wi) in S. Applying Lemma 1 to the sequence resulting from
concatenating 2m + 1 copies of the sequence ρ(w1), . . . , ρ(wn), and to the set
N = {i, 2n + i, . . . , 2mn + i} (i.e. N consists of all odd occurrences of ρ(wi)), we
obtain a positive integer k such that ρ(wi) = ρ(wi · · ·wn(w1 · · ·wn)kw1 · · ·wi).
This shows that wi · · ·wn(w1 · · ·wn)kw1 · · ·wi ∈ L. On the other hand, we have
τ(w1 · · ·wn) = τ((w1 · · ·wn)k+2) since τ(w1 · · ·wn) is an idempotent, and there-
fore the element τ(wi · · ·wn(w1 · · ·wn)kw1 · · ·wi) ∈ τ(L) belongs to the same
J -class of T as τ(w1 · · ·wn). Hence, Theorem 1 implies that L has the FPP. ��
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4 Monoids Defined by Deletions

Let G be a monoid generated by a finite set A whose word problem can be solved
by a confluent regular system of deletion rules R = {w → ε | w ∈ R }, where
R ⊆ A+ is a regular language. In other words, we have an onto homomorphism
γ : A∗ � G such that for every v, w ∈ A∗,

γ(v) = γ(w) ⇐⇒ norm(v) = norm(w) ,

where norm(w) denotes the normal form of w with respect to R. We will also
use the notation norm(L) = { norm(w) | w ∈ L } for a language L ⊆ A∗.

Lemma 4. The language D = {w ∈ A∗ | norm(w) = ε } is context-free and
algorithmically computable from R. For every regular language L ⊆ A∗, the
language norm(L) is regular and can be algorithmically computed using R and L.

Proof. Let (A,Q, q0, Qf , δ) be a deterministic finite automaton recognizing R.
The language D can be defined by a context-free grammar with the set of non-
terminals Q∪{S} (where S is the initial symbol) and the derivation rules S → q0,
q → aSδ(q, a) for every q ∈ Q and a ∈ A, q → ε for q ∈ Qf , S → SS and S → ε.

Let d /∈ A be a new symbol and consider the context-free substitution ϕ
from (A ∪ {d})∗ to A∗ defined by the rule ϕ(d) = D and identical otherwise.
Let ψ : (A∪{d})∗ → A∗ be the homomorphism sending d to ε and leaving other
symbols unchanged. Then norm(L) = ψ(ϕ−1(L))\A∗RA∗ and since both inverse
context-free substitution and homomorphism effectively preserve regularity, the
language norm(L) is regular and can be algorithmically computed. ��

Let γ(L) ⊆ G be a rational language defined by a regular language L ⊆ A∗;
by Lemma 4 we can assume that L ⊆ norm(A∗). Let the language L be given
by a homomorphism σ : A∗ → S to a finite monoid S recognizing the three
languages L, norm(A∗) and {ε}.

We are going to use σ to construct a monoid M where deletions of R are
performed symbolically, and a language K in this monoid such that γ(L) has
the FPP in G if and only if K has the FPP in M. To achieve this, we need to
avoid sequences of elements of L which are reduced to the empty word using R,
and calculate only with those which are not completely deleted. The following
lemma shows that such a modification does not affect the FPP because all deleted
sequences can be produced using only a bounded number of words from L.

Lemma 5. For given regular languages R and L, one can algorithmically cal-
culate a positive integer m such that

ε ∈ norm(L+) =⇒ ε ∈ norm(L≤m)

and for all x, y, z, u ∈ A∗ and w ∈ L+ satisfying yz ∈ L and xu ∈ L, we have

norm(zwx) = ε =⇒ ∃x̄, z̄ ∈ A∗, w̄ ∈ L≤m : yz̄, x̄u ∈ L & norm(z̄w̄x̄) = ε ,

norm(zw) = ε =⇒ ∃z̄ ∈ A∗, w̄ ∈ L≤m : yz̄ ∈ L & norm(z̄w̄) = ε ,

norm(wx) = ε =⇒ ∃x̄ ∈ A∗, w̄ ∈ L≤m : x̄u ∈ L & norm(w̄x̄) = ε .
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Proof. First, we calculate the context-free language Lr,s = σ−1(r)L+σ−1(s)∩D,
for every r, s ∈ S. For each of these languages we test whether it is non-empty,
and if Lr,s �= ∅, we find any word in Lr,s, which belongs to σ−1(r)Lmr,sσ−1(s)
for a certain mr,s ∈ IN. We set m = max{mr,s | r, s ∈ S, Lr,s �= ∅ }. Since
σ recognizes both L and {ε}, we can easily verify the required properties. ��

Now we construct, for the language L, a rational monoid to which we are going to
apply results of the previous section. Let M be defined on the set (S×norm(A∗)×
S)∪{1, 0}, where 1 is the identity element and 0 is the zero element, by the rule

(p, u, q)(r, v, s) =

{
(p, uv, s) if uv ∈ norm(A∗) & ε ∈ norm(σ−1(q)L∗σ−1(r)) ,

0 otherwise,

for every p, q, r, s ∈ S and u, v ∈ norm(A∗). Intuitively, the words u and v are
factors of the resulting concatenation which are not affected by deletions when
producing the normal form. And the elements q and r represent any suitable
words from σ−1(q) and σ−1(r), which originated as a suffix and a prefix, respec-
tively, of certain words from L, and which can be deleted using R together with
several words from L between them.

We define the length of elements of M as �((r, v, s)) = |v| and �(1) = 0.

Lemma 6. The above defined M is a rational monoid, which can be algorith-
mically constructed from R and L and satisfies conditions 1 and 2.

Proof. Because A∗ \ norm(A∗) = A∗RA∗ is an ideal of the monoid A∗, the set

I = (S×A∗RA∗ ×S) ∪ {0}

is an ideal of the Rees matrix semigroup M0(A∗; S,S;P ) over A∗. Therefore
M is a monoid as it is isomorphic to (M0(A∗; S,S;P )/I)1, where P is defined
by the formula

P (q, r) =

{
ε if ε ∈ norm(σ−1(q)L∗σ−1(r)) ,

0 otherwise.

Since the finitely generated free monoid A∗ is rational and P is computable
and satisfies P (1, 1) = ε, by Proposition 3 the semigroup M0(A∗; S,S;P ) is
rational too and can be algorithmically constructed. In order to prove that M is
also rational, let us consider the equivalence relation ∼I on M0(A∗; S,S;P )
defined by the rules

(p, u, q) ∼I (r, v, s) ⇐⇒ p = r & σ(u) = σ(v) & q = s ,

0 ∼I (r, v, s) ⇐⇒ v ∈ A∗RA∗ .

Because σ recognizes norm(A∗), the relation ∼I is easily seen to be a congruence
of M0(A∗; S,S;P ) of finite index recognizing I. Hence, the ideal I is algorith-
mically regular, and by Proposition 2 the monoid M is rational and can be
computed from M0(A∗; S,S;P ).
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One can easily verify that condition 1 is true even in the stronger form with
�(xy) = �(x) + �(y). Condition 2 trivially holds if one of the elements is the
identity element. Otherwise, we have

(p, uv, s) = (p, u, q)(r, v, s) = (p̄, ū, q̄)(r̄, v̄, s̄) = (p̄, ūv̄, s̄)

for certain p, q, r, s, p̄, q̄, r̄, s̄ ∈ S and u, v, ū, v̄ ∈ norm(A∗). If |u| ≤ |ū| then there
exists x ∈ norm(A∗) such that ux = ū and xv̄ = v, and we immediately obtain
(p, u, q)(r, x, q̄) = (p̄, ū, q̄) and (r, x, q̄)(r̄, v̄, s̄) = (r, v, s) as required. The case
|u| > |ū| can be treated symmetrically. ��

Let us consider the following language in M:

K = { (σ(x), y, σ(z)) | x, y, z ∈ A∗, y �= ε, xyz ∈ L }

Lemma 7. The language K is regular and a congruence of M of finite index
recognizing K can be algorithmically constructed from R and L.

Proof. We prove that K is recognized by the congruence ∼ of M corresponding
to ∼I . This congruence has two one-element classes {0} and {1} and on the set
S× norm(A∗)×S it is defined as

(p, u, q) ∼ (r, v, s) ⇐⇒ p = r & σ(u) = σ(v) & q = s .

Take an element (σ(x), y, σ(z)) of K, where x, y, z ∈ A∗ are such that y �= ε and
xyz ∈ L, and assume that (r, v, s) ∼ (σ(x), y, σ(z)). Then r = σ(x), σ(v) = σ(y)
and s = σ(z), and consequently also σ(xvz) = σ(xyz). Therefore we have v �= ε
and xvz ∈ L since σ recognizes both {ε} and L. Thus, the element (r, v, s) =
(σ(x), v, σ(z)) belongs to K. ��

Proposition 4. The language γ(L) ⊆ G has the FPP if and only if the language
K ⊆ M has the FPP.

Proof. Let us first assume that γ(L) possesses the FPP, i.e. that there exists
k ∈ IN such that norm(L+) = norm(L≤k). We are going to prove that K+\{0} =
K≤k+2 \ {0}, which is sufficient to verify the FPP for K. Let (r, y, s) be an
arbitrary non-zero element of K+. Then

(r, y, s) = (σ(x1), y1, σ(z1)) · · · (σ(xl), yl, σ(zl))

for some xi, yi, zi ∈ A∗ satisfying yi �= ε and xiyizi ∈ L, for i = 1, . . . , l. In
particular, this implies y = y1 · · · yl ∈ norm(A∗). It suffices to consider the
case of l ≥ 3. By the definition of multiplication in M, we can assume that for
every i = 1, . . . , l − 1 there exists wi ∈ L∗ satisfying norm(ziwixi+1) = ε (note
that zi and xi can be replaced by another elements of σ−1σ(zi) and σ−1σ(xi),
respectively, since σ recognizes L). Now we have

w1x2y2z2w2 · · ·wl−2xl−1yl−1zl−1wl−1 ∈ L+ ,
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which means that there exists u ∈ L≤k such that

norm(w1x2y2z2w2 · · ·wl−2xl−1yl−1zl−1wl−1) = norm(u) .

Because y2 · · · yl−1 ∈ norm(A∗), we obtain

norm(z1uxl) = norm(z1w1x2y2z2w2 · · ·wl−2xl−1yl−1zl−1wl−1xl) = y2 · · · yl−1 .

Let us now consider one sequence of deletions using R producing y2 · · · yl−1
from z1uxl, and group together all neighbouring letters which are not deleted.
As L ⊆ norm(A∗) holds, this regrouping is of the form

z1 = ȳ1z̄1, u = v0x̃1ỹ1z̃1v1 · · · vn−1x̃nỹnz̃nvn, xl = x̄lȳl ,

for certain n ∈ {0, . . . , k}, ȳ1, z̄1, x̄l, ȳl ∈ A∗, x̃i, ỹi, z̃i ∈ A∗, for i = 1, . . . , n, and
vi ∈ L∗, for i = 0, . . . , n, which satisfy ỹi �= ε, x̃iỹiz̃i ∈ L, for i = 1, . . . , n,

norm(z̄1v0x̃1) = norm(z̃ivix̃i+1) = norm(z̃nvnx̄l) = ε ,

for i = 1, . . . , n − 1, and ȳ1ỹ1 · · · ỹnȳl = y2 · · · yl−1 (if n is equal to 0, then
norm(z̄1v0x̄l) = ε). This immediately gives a decomposition

(σ(x1), y1ȳ1, σ(z̄1))(σ(x̃1), ỹ1, σ(z̃1)) · · · (σ(x̃n), ỹn, σ(z̃n))(σ(x̄l), ȳlyl, σ(zl))

of (r, y, s), where each element belongs to the language K (note that we have
σ(x1y1ȳ1z̄1) = σ(x1y1z1) ∈ σ(L)), and therefore (r, y, s) ∈ K≤k+2.

In order to prove the converse, let K+ = K≤k for some k ∈ IN. We will
verify that norm(L+) = norm(L≤m(k+1)+k), where m is the number guaranteed
by Lemma 5. Let u be an arbitrary word from the language L+. We have to
show norm(u) ∈ norm(L≤m(k+1)+k). The first statement of Lemma 5 allows us
to assume that norm(u) �= ε. Because L ⊆ norm(A∗), the word u can be written
in the form

u = v0x1y1z1v1 · · · vl−1xlylzlvl ,

for a certain l ∈ IN, where xi, yi, zi ∈ A∗ satisfy yi �= ε and xiyizi ∈ L, for
i = 1, . . . , l, vi ∈ L∗, for i = 0, . . . , l, norm(u) = y1 · · · yl and

norm(v0x1) = norm(zivixi+1) = norm(zlvl) = ε ,

for i = 1, . . . , l − 1. This implies that

(σ(x1), y1 · · · yl, σ(zl)) = (σ(x1), y1, σ(z1)) · · · (σ(xl), yl, σ(zl)) ∈ K l .

By the assumption, there exist n ∈ IN, n ≤ k, and x̃i, ỹi, z̃i ∈ A∗ such that ỹi �= ε
and x̃iỹiz̃i ∈ L, for i = 1, . . . , n, which satisfy

(σ(x1), norm(u), σ(zl)) = (σ(x̃1), ỹ1, σ(z̃1)) · · · (σ(x̃n), ỹn, σ(z̃n)) .

According to the definition of the operation of M, words x̃i, for i = 2, . . . , n,
and z̃i, for i = 1, . . . , n − 1, can be chosen so that there exist words wi ∈ L∗,
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for i = 1, . . . , n − 1, satisfying norm(z̃iwix̃i+1) = ε. By Lemma 5 we can find
x̄i, z̄i ∈ A∗, for i = 1, . . . , n, and w̄i ∈ L≤m ∪ {ε}, for i = 0, . . . , n, such that
x̄iỹiz̄i ∈ L, for i = 1, . . . , n, and

norm(w̄0x̄1) = norm(z̄iw̄ix̄i+1) = norm(z̄nw̄n) = ε ,

for i = 1, . . . , n− 1 (in order to get norm(w̄0x̄1) = ε, note that x1ỹ1z̃1 ∈ L and
norm(v0x1) = ε). Therefore we have

norm(u) = ỹ1 · · · ỹn = norm(w̄0x̄1ỹ1z̄1w̄1 · · · w̄n−1x̄nỹnz̄nw̄n) ,

and so norm(u) belongs to norm(L≤m(k+1)+k) as required. ��
Theorem 2. The FPP is uniformly decidable for rational languages in finitely
generated monoids whose word problem is solved by a confluent regular system
of deletions.

Proof. For given regular languages R and L, we can construct by Lemmas 6
and 7 the rational monoid M and the regular language K ⊆ M such that testing
whether γ(L) has the FPP in G is equivalent to testing whether K has the FPP
in M (by Proposition 4). Because K contains only elements of positive length,
this can be algorithmically decided using Corollary 1. ��
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Abstract. We show that the problem of predicting t steps of the 1D
cellular automaton Rule 110 is P-complete. The result is found by show-
ing that Rule 110 simulates deterministic Turing machines in polynomial
time. As a corollary we find that the small universal Turing machines of
Mathew Cook run in polynomial time, this is an exponential improve-
ment on their previously known simulation time overhead.

1 Introduction

In this paper we solve an open problem regarding the computational complexity
of Rule 110 which is one of the simplest cellular automata. We show that the
prediction problem for Rule 110 is P-complete. Rule 110 is a nearest neighbour,
one dimensional, binary cellular automaton [1]. It is composed of a sequence of
cells . . . p−1p0p1 . . . where each cell has a binary state pi ∈ {0, 1}. At timestep
t + 1 the value of cell pi,t+1 = F (pi−1,t, pi,t, pi+1,t) is given by the synchronous
local update function F

F (0, 0, 0) = 0 F (1, 0, 0) = 0
F (0, 0, 1) = 1 F (1, 0, 1) = 1
F (0, 1, 0) = 1 F (1, 1, 0) = 1
F (0, 1, 1) = 1 F (1, 1, 1) = 0

The problem of Rule 110 prediction is defined as follows.

Definition 1 (Rule 110 prediction). Given an initial Rule 110 configura-
tion, a cell index i and a natural number t written in unary. Is cell pi in state 1
at time t?

This problem is in P as a Turing machine simulates the cellular automaton in
O(t2) steps by repeatedly traversing from left to right. From Matthew Cook’s [2]
result one infers a NC lower bound on the problem. Cook showed that Rule 110
simulates Turing machines via the following sequence of simulations

Turing machine �→ 2-tag system �→ cyclic tag system �→ Rule 110 (1)

M. Bugliesi et al. (Eds.): ICALP 2006, Part I, LNCS 4051, pp. 132–143, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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where A �→ B denotes that A is simulated by B. The universality of 2-tag sys-
tems [3] is well-known and Cook supplied the latter two simulations. Each of
these simulations runs in polynomial time (that is, B runs in a number of steps
that is polynomial in the number of A’s steps) with the exception of the expo-
nentially slow 2-tag system simulation of Turing machines [3]. This slowdown
is due to the 2-tag system’s unary encoding of Turing machine tape contents.
Thus via Equation (1), Rule 110 is an exponentially slow simulator of Turing
machines and so it has remained open as to whether Rule 110 prediction is
P-complete.

In this work we replace the tag system with a clockwise Turing machine to
give the following chain of simulations

Turing machine �→ clockwise Turing machine
�→ cyclic tag system �→ Rule 110

(2)

Each simulation runs in polynomial time and the reduction from Turing machine
to Rule 110 is computable by a logspace Turing machine. Thus our work shows
that Rule 110 simulates Turing machines efficiently, giving the following result.

Theorem 1. Rule 110 prediction is logspace complete for P.

Rule 110 is a very simple (2 state, nearest neighbour, one dimensional) cellular
automaton, and Matthew Cook [2] gave four small universal Turing machines1

that simulate its computation. Their size given as (number of states, number
of symbols), are respectively (2, 5),(3, 4),(4, 3) and (7, 2). In terms of program
size these machines are a significant improvement on previous small universal
Turing machine results [4,5,6,7,8,9]. However in terms of time complexity Cook’s
machines offer no improvement over the exponentially slow machines of Rogozhin
et al. [4,5,6,7]. A corollary of our work is that Matthew Cook’s small universal
Turing machines are polynomial time simulators of Turing machines.

The prediction problem for a number of classes of cellular automata has been
shown to be P-complete. However Rule 110 is the simplest so far, in the sense
that previous P-completeness results have been shown for more general cellular
automata (e.g. more states, neighbours or dimensions). For example prediction
of cellular automata of dimension d � 1 with an arbitrary number of states is
known to be P-complete [10]. Lindgren and Nordahl [11] show that prediction
for one dimensional nearest neighbour cellular automata is P-complete for seven
states and Ollinger’s result [12] improves this to six. If the update rule depends
on the states of five neighbours then four states are sufficient [11,10]. Moore [13]
shows that prediction of binary majority voting cellular automata is P-complete
for dimension d � 3. On the other hand, the prediction problem for a variety
1 Cook’s small “universal Turing machines” deviate from the usual Turing machine

definition in the following way: their blank tape consists of an infinitely repeated
word to the left and another to the right. Intuitively this change of definition seems
to make quite a difference to program size, especially since Cook encodes a program
in one of these repeated words. This has no bearing on our P-completeness result as
we require only a bounded initial configuration for Rule 110 prediction.
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of linear and quasilinear cellular automata is in NC [14,15]. The question of
whether Rule 110 prediction is P-complete has been asked, either directly or
indirectly, in a number of previous works (for example [14,15,16]).

2 Clockwise Turing Machines

A clockwise Turing machine is like a standard single-tape Turing machine [17]
except for the following details: (i) the tape is assumed to be circular, (ii) the tape
head moves only clockwise on the tape, (iii) the machine’s transition function is
of the form f : Q×Σ → (Σ∪ΣΣ)×Q. Here Q and Σ are the machine’s finite set
of states and tape symbols respectively. A transition rule t = (qx, σ, v, qy) ∈ f ,
is executed as follows. If the write value v is an element of Σ then the tape
cell containing the read symbol is overwritten by this value and the head moves
clockwise to the next cell. Otherwise if v ∈ ΣΣ then the tape cell containing the
read symbol is replaced with two cells that each contain one of v’s symbols and
the head moves clockwise to the next cell.

It is not difficult to give a clockwise Turing machine RM that simulates a
single-tape Turing machine M with a quadratic time overhead. We can think
of M ’s right moves as clockwise moves by RM with v ∈ Σ. However if M is
increasing its tape length by reading a blank symbol and moving right, then we
proceed differently. In this case RM inserts two symbols, v = σr, where σ is
M ’s write symbol. Then RM moves clockwise, traversing the entire tape, until
it meets the ‘rightmost end of tape marker’ symbol r. If M runs in time T (n)
then RM simulates a right move by M in O(T (n)) time.

A left move (when reading a non-blank symbol) by M is simulated by a single
traversal of the circular tape that leaves a marker and then shifts each symbol one
step clockwise. Upon reaching the marker the left move simulation is complete.
A left move by M , when reading a blank at the leftmost tape end, is simulated
using a similar strategy to that above. Proof details are to be found in a previous
paper [8].

Lemma 1. Let M be a single-tape Turing machine that runs in time T (n). Then
there is a clockwise Turing machine RM that simulates the computation of M
in time O(T 2(n)).

In the next section we prove that cyclic tag systems simulate clockwise Turing
machines. In order to simplify this proof we state the result for clockwise Turing
machines that have a binary tape alphabet Σ = {a, b}. As with standard Turing
machines, using a binary alphabet causes at most a constant factor increase in
the time, space and number of states.

3 Cyclic Tag Systems

Cyclic tag systems were used by Cook [2] to show that Rule 110 is universal.

Definition 2 (cyclic tag system). A cyclic tag system C = α0, . . . , αp−1, is
a list of binary words αm ∈ {0, 1}∗ called appendants.
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A configuration of a cyclic tag system consists of (i) a marker that points to a
single appendant αm in C, and (ii) a word w = w0 . . . w|w|−1 ∈ {0, 1}∗. We call w
the data word. Intuitively the list C is a program with the marker pointing to
instruction αm. In the initial configuration the marker points to appendant α0
and w is the binary input word.

Definition 3 (computation step of a cyclic tag system). A computation
step is deterministic and acts on a configuration in one of two ways:

– If w0 =0 then w0 is deleted and the marker moves to appendant α(m+1 mod p).
– If w0 = 1 then w0 is deleted, the word αm is appended onto the right end

of w, and the marker moves to appendant α(m+1 mod p).

We write c1 $ c2 when configuration c2 is obtained from c1 via a single compu-
tation step. We let c1 $i c2 denote a sequence of exactly i computation steps.
A cyclic tag system completes its computation if (i) the data word is the empty
word or (ii) it enters a forever repeating sequence of configurations. The com-
plexity measures of time and space are defined in the obvious way.

Example 1. (cyclic tag system computation) Let C = 00, 01, 11 be a cyclic tag
system with input word 011. Below we give the first four steps of the compu-
tation. In each configuration C is given on the left with the marked appendant
highlighted in bold font.

000000, 01, 11 011 $ 00,010101, 11 11 $ 00, 01,111111 101
$ 000000, 01, 11 0111 $ 00,010101, 11 111 $ . . .

3.1 Cyclic Tag Systems Simulate Clockwise Turing Machines

Much of the proof of Theorem 1 is given by the folowing lemma.

Lemma 2. Let R be a binary clockwise Turing machine with |Q| states that
runs in time T (n). Then there is a cyclic tag system CR that simulates the
computation of R in time O(|Q|T 2(n) log T (n)).

Proof. Let R = (Q, {a, b}, f, q1, q|Q|) where Q = {q1, . . . , q|Q|} are the states,
{a, b} is the binary alphabet, f is the transition function, and q1, q|Q| ∈ Q are
the initial and final states respectively. In the sequel σj ∈ {a, b}. The bulk of the
proof is concerned with simulating a single (but arbitrary) transition rule of R.

Encoding. We define the cyclic tag system (program) to be of the form CR =
α0, . . . , α2z−1 where z = 30|Q|+61. Given an initial configuration of R (consist-
ing of current state qi ∈ Q, read symbol σ1, and tape contents σ1 . . . σs ∈ {a, b}∗)
we encode this as a configuration of CR as follows

α0α0α0, . . . , α2z−1 〈1, qi〉〈σ1〉 . . . 〈σs〉µs
′

(3)

Here µ = 10z−1 and
s′ = 2�log2 s� (4)
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Table 1.1. (Stage 1. Halve counter). Every second µ is marked off by being changed

to µ/.

encoded encoded initial index y of appendant

object object length marker index appendant αy

〈1, qi〉 = 030i+20102z−30i−21 2z 0 30i + 20 〈 1′, qi〉
〈1, qi〉 = 030i+20102z−30i−21 2z z z + 30i + 20 0z〈1′, qi,s<s′〉

〈1, qi,s<s′〉 = 030i+25102z−30i−26 2z 0 30i + 25 〈1′, qi,s<s′〉
〈1, qi,s<s′〉 = 030i+25102z−30i−26 2z z z + 30i + 25 0z〈1′, qi,s<s′〉

〈a〉 = 0102z−2 2z 0 1 〈a〉
〈a〉 = 0102z−2 2z z z + 1 〈a〉
〈b〉 = 02102z−3 2z 0 2 〈b〉
〈b〉 = 02102z−3 2z z z + 2 〈b〉
〈a/〉 = 03102z−4 2z 0 3 〈a/〉
〈a/〉 = 03102z−4 2z z z + 3 〈a/〉
〈b/〉 = 04102z−5 2z 0 4 〈b/〉
〈b/〉 = 04102z−5 2z z z + 4 〈b/〉

µ = 10z−1 z 0 0 µ/

µ = 10z−1 z z z µ′

µ′ = 06102z−7 2z 0 6 µ′

µ′ = 06102z−7 2z z z + 6 µ′

µ/ = 05102z−6 2z 0 5 µ/

µ/ = 05102z−6 2z z z + 5 µ/

are used for a ‘tape length’ counter. The values of appendants αj are given
during the proof below. States qi and tape symbols {a, b} of R are encoded as:

〈1, qi〉 = 030i+20102z−30i−21

〈a〉 = 0102z−2

〈b〉 = 02102z−3

Our simulation algorithm consists of a number of stages. In a CTS configuration
the current stage x of our algorithm is identifiable by the notation 〈x, qi〉.
How to read the tables. We define the cyclic tag system CR via a number
of tables that specify encoded objects (e.g. encoded symbols, states) in the data
word and the appendants they map to. Each table row gives an “encoded object”
followed by the “encoded object length”. The “initial marker index” gives the
location of the program marker immediately before the encoded object is read.
Each encoded object indexes an appendant αy, where y is specified by the “index
y of appendant” column and αy is specified by the “appendant αy” column.

To aid the reader we carefully describe the initial steps in the simulation
of a transition rule. We encode a configuration that is arbitrary except for its
tape length (which is 3). Initially the marker is pointing at appendant α0 and
the data word is 〈1, qi〉〈σ1〉〈σ2〉〈σ3〉µµµµ ∈ {0, 1}12z. The leftmost 2z symbols in
the data word encode the current state qi. From Table 1.1 this is 〈1, qi〉 = 030i+20

102z−30i−21. The computation begins by deleting the 30i+20 leftmost 0 symbols
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while moving the marker rightwards through the appendants, one step for each
deletion. The leftmost data symbol is now 1, this is deleted and causes the
appendant α30i+20 to be appended onto the rightmost end of the data word.
From Table 1.1 we see that α30i+20 = 〈1′, qi〉. Then 2z − 30i− 21 contiguous 0
symbols are deleted while moving the marker one step for each deletion. Since
|〈1, qi〉| = 2z and there are exactly 2z appendants in CR, the marker is once
again positioned at α0. We write these 2z steps as

α0α0α0, . . . , α2z−1 〈1, qi〉〈σ1〉〈σ2〉〈σ3〉µµµµ

$2z α0α0α0, . . . , α2z−1 〈σ1〉〈σ2〉〈σ3〉µµµµ〈1′, qi〉

Algorithm overview. Our cyclic tag system algorithm has three stages.
Stages 1 and 2 isolate the encoded read symbol of R which is located imme-
diately to the right of 〈1, qi〉. These stages make use of the tape-length counter
specified by Equations (3) and (4). In Stage 1 every second µ is marked and then
in Stage 2 every second 〈σ〉 is marked. This process is iterated until all µ objects
are marked (1+log2 s′ iterations). The first six configurations of Fig. 1 illustrate
this process. The encoded read symbol is now isolated as it is the only unmarked
encoded tape symbol. The computation then enters Stage 3 which uses the en-
coded current state and (isolated) encoded read symbol to index an appendant
that encodes the write symbol(s) and next state. In the final two configurations
of Fig. 1 the new encoded current state and write value are appended and the
counter is doubled to maintain the equality in Equation (4).

Stage 1. Halve counter. The counter value is specified by Equation (4) as the
number of µ (or later, µ′) objects. This value is halved by marking half of the µ
objects (changing µ to µ/) using Table 1.1. In this table we see that |µ| = z so
exactly two µ objects are read for a single traversal of the marker through all 2z
appendants. Every second µ indexes µ/ and every other µ indexes µ′. The encoded
state 〈1, qi〉 indexes 〈1′, qi〉 or 〈1′, qi,s<s′〉, which sends control to Table 1.2.

cyclic tag system
program

sections of program
currently in use

〈1, qi〉〈σj〉〈σ〉〈σ〉〈σ〉µµµµ

〈2, qi〉〈σj〉〈σ〉〈σ〉〈σ〉µ/µµ/µ

〈1, qi〉〈σj〉〈σ/〉〈σ〉〈σ/〉µ/µµ/µ

〈2, qi〉〈σj〉〈σ/〉〈σ〉〈σ/〉µ/µ/µ/µ

〈1, qi〉〈σj〉〈σ/〉〈σ/〉〈σ/〉µ/µ/µ/µ

〈3, qi〉〈σj〉〈σ/〉〈σ/〉〈σ/〉µ/µ/µ/µ/

D〈σp〉〈σh〉〈1, qk〉〈σ〉〈σ〉〈σ〉µµµµ

〈σp〉〈σh〉〈1, qk〉〈σ〉〈σ〉〈σ〉µµµµµµµµ

Fig. 1. CTS simulation of transition rule (qi, σj , σpσh, qk). The CTS program is illus-

trated on the left. In the data word the encoded current state 〈x, qi〉 directs the control

flow by determining the sections of the CTS program that are used in Stage x.
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Table 1.2. (Stage 1. Check counter value). Here 〈1′, qi〉 or 〈1′, qi,s<s′〉 is used to check

if the counter is 0.

encoded encoded initial index y of appendant

object object length marker index appendant αy

〈1′, qi〉 = 030i+21102z−30i−12 2z + 10 0 30i + 21 〈2, qi〉
〈1′, qi〉 = 030i+21102z−30i−12 2z + 10 z z + 30i + 21 〈3, qi〉

〈1′, qi,s<s′〉 = 030i+26102z−30i−17 2z + 10 0 30i + 26 〈2, qi,s<s′〉
〈1′, qi,s<s′〉 = 030i+26102z−30i−17 2z + 10 z z + 30i + 26 〈3, qi,s<s′〉

〈a〉 = 0102z−2 2z 10 11 〈a′〉
〈a〉 = 0102z−2 2z z + 10 z + 11 〈a〉
〈b〉 = 02102z−3 2z 10 12 〈b′〉
〈b〉 = 02102z−3 2z z + 10 z + 12 〈b〉
〈a/〉 = 03102z−4 2z 10 13 〈a/〉
〈a/〉 = 03102z−4 2z z + 10 z + 13 〈a/〉
〈b/〉 = 04102z−5 2z 10 14 〈b/〉
〈b/〉 = 04102z−5 2z z + 10 z + 14 〈b/〉
µ′ = 06102z−7 2z 10 16 µ′

µ′ = 06102z−7 2z z + 10 z + 16 µ′

µ/ = 05102z−6 2z 10 15 µ/

µ/ = 05102z−6 2z z + 10 z + 15 µ/

We continue the above simulation (we later generalise to an arbitrary number
of tape symbols).

α0α0α0, . . . , α2z−1 〈σ1〉〈σ2〉〈σ3〉µµµµ〈1′, qi〉
$2z α0α0α0, . . . , α2z−1 〈σ2〉〈σ3〉µµµµ〈1′, qi〉〈σ1〉
$4z α0α0α0, . . . , α2z−1 µµµµ〈1′, qi〉〈σ1〉〈σ2〉〈σ3〉

$z α0, . . . ,αzαzαz , . . . , α2z−1 µµµ〈1′, qi〉〈σ1〉〈σ2〉〈σ3〉µ/
$z α0α0α0, . . . , α2z−1 µµ〈1′, qi〉〈σ1〉〈σ2〉〈σ3〉µ/µ′

$2z α0α0α0, . . . , α2z−1 〈1′, qi〉〈σ1〉〈σ2〉〈σ3〉µ/µ′µ/µ′

The algorithm tests if the counter is 0 by checking if exactly one unmarked µ
was read. If so 〈3, qi〉 is appended and we enter Stage 3. Otherwise 〈2, qi〉 is
appended and we enter Stage 2. Table 1.2 simulates this ‘if’ statement.

As we continue our simulation we note from Table 1.2 that the word 〈1′, qi〉
is of length 2z + 10. Hence the marker is at appendant α10 after 〈1′, qi〉 is read:

α0α0α0, . . . , α2z−1 〈1′, qi〉〈σ1〉〈σ2〉〈σ3〉µ/µ′µ/µ′

$2z+10 α0, . . . ,α10α10α10, . . . , α2z−1 〈σ1〉〈σ2〉〈σ3〉µ/µ′µ/µ′〈2, qi〉
$14z α0, . . . ,α10α10α10, . . . , α2z−1 〈2, qi〉〈σ′

1〉〈σ′
2〉〈σ′

3〉µ/µ′µ/µ′

Immediately above is the first configuration of Stage 2.

Stage 2. Mark half of the encoded tape symbols. The ultimate aim of
this stage is to isolate the encoded read symbol. Each iteration of this stage uses
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Table 2.1. (Stage 2. Mark half of the encoded tape symbols). Rows 3 to 6 are used to

mark off every second 〈σ〉.

encoded encoded initial index y of appendant

object object length marker index appendant αy

〈2, qi〉 = 030i+12102z−30i−3 2z + 10 10 30i + 22 02z−20〈1, qi〉
〈2, qi,s<s′〉 = 030i+17102z−30i−8 2z + 10 10 30i + 27 02z−20〈1, qi,s<s′〉

〈a′〉 = 0710z−8 z 20 27 〈a〉
〈a′〉 = 0710z−8 z z + 20 z + 27 〈a/〉
〈b′〉 = 0810z−9 z 20 28 〈b〉
〈b′〉 = 0810z−9 z z + 20 z + 28 〈b/〉
〈a/〉 = 03102z−4 2z 20 23 〈a/〉
〈a/〉 = 03102z−4 2z z + 20 z + 23 〈a/〉
〈b/〉 = 04102z−5 2z 20 24 〈b/〉
〈b/〉 = 04102z−5 2z z + 20 z + 24 〈b/〉
µ′ = 06102z−7 2z 20 26 µ

µ′ = 06102z−7 2z z + 20 z + 26 µ

µ/ = 05102z−6 2z 20 25 µ/

µ/ = 05102z−6 2z z + 20 z + 25 µ/

Table 2.1 to mark off every second (even numbered) encoded tape symbol 〈σj〉.
As we continue our simulation we note from Table 2.1 that |〈2, qi〉| = 2z + 10.
Hence the marker is at appendant α20 after reading 〈2, qi〉.

α0, . . . ,α10α10α10, . . . , α2z−1 〈2, qi〉〈σ′
1〉〈σ′

2〉〈σ′
3〉µ/µ′µ/µ′

$2z+10 α0, . . . ,α20α20α20, . . . , α2z−1 〈σ′
1〉〈σ′

2〉〈σ′
3〉µ/µ′µ/µ′02z−20〈1, qi〉

$z α0, . . . ,αz+20αz+20αz+20, . . . , α2z−1 〈σ′
2〉〈σ′

3〉µ/µ′µ/µ′02z−20〈1, qi〉〈σ1〉
$z α0, . . . ,α20α20α20, . . . , α2z−1 〈σ′

3〉µ/µ′µ/µ′02z−20〈1, qi〉〈σ1〉〈σ/2〉
$9z α0, . . . ,αz+20αz+20αz+20, . . . , α2z−1 02z−20〈1, qi〉〈σ1〉〈σ/2〉〈σ3〉µ/µµ/µ

$2z−20 α0, . . . ,αzαzαz , . . . , α2z−1 〈1, qi〉〈σ1〉〈σ/2〉〈σ3〉µ/µµ/µ

If we are simulating a transition rule that has write value from ΣΣ = {a, b}2,
and the tape length is a power of 2, then we must double the counter value in
order to satisfy Equation (4). This doubling occurs in Stage 3. However the tape
length test happens in Stage 1 using Table 1.1 as follows.

Suppose that the encoded tape length is not a power of 2 and thus s < s′.
Then, on some iteration, Stage 2 reads an odd number, strictly greater than 1, of
unmarked encoded tape symbols. If this occurs then 〈1, qi〉 indexes the appendant
〈1′, qi,s<s′〉. To see this, notice that in Stage 2 the tape symbols a, b are encoded
as 〈a′〉, 〈b′〉 where |〈a′〉| = |〈b′〉| = z. If CR reads an odd number of these then
the initial marker index is at z. Suppose otherwise that the encoded tape length
is a power of 2. Then 〈1, qi〉 always indexes the appendant 〈1′, qi〉 in Stage 1. In
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summary, if 〈1′, qi,s<s′〉 is not appended before Stage 3 begins then the number
of tape symbols is a power of 2 and s = s′.

The simulation continues as follows:

α0, . . . ,αzαzαz , . . . , α2z−1 〈1, qi〉〈σ1〉〈σ/2〉〈σ3〉µ/µµ/µ

$2z α0, . . . ,αzαzαz , . . . , α2z−1 〈σ1〉〈σ/2〉〈σ3〉µ/µµ/µ0z〈1′, qi,s<s′〉
$13z α0α0α0, . . . , α2z−1 〈1′, qi,s<s′〉〈σ1〉〈σ/2〉〈σ3〉µ/µ′µ/µ/

$16z+10 α0, . . . ,α10α10α10, . . . , α2z−1 〈2, qi,s<s′〉〈σ′
1〉〈σ/2〉〈σ′

3〉µ/µ′µ/µ/

$14z+10 α0, . . . ,α20α20α20, . . . , α2z−1 02z−20〈1, qi,s<s′〉〈σ1〉〈σ/2〉〈σ/3〉µ/µµ/µ/

$17z−20 α0, . . . ,αzαzαz , . . . , α2z−1 〈1′, qi,s<s′〉〈σ1〉〈σ/2〉〈σ/3〉µ/µ/µ/µ/
$16z+10 α0, . . . ,αz+10αz+10αz+10, . . . , α2z−1 〈3, qi,s<s′〉〈σ1〉〈σ/2〉〈σ/3〉µ/µ/µ/µ/

Immediately above is the first the configuration of Stage 3.

Stage 3. Complete simulation of transition rule. In this stage an appen-
dant αy is indexed, based on the value of the encoded current state and encoded
read symbol using Table 3.1. The printing of appendant αy simulates the encoded
write value, encoded next state, and the clockwise tape head movement.

Using Table 3.1 we read the encoded current state, either 〈3, qi〉 or 〈3, qi,s<s′〉,
after which the initial marker index is either 30i + 30 or 30i + 40 respectively.
The encoded read symbol was already isolated and uniquely retains its original
value of 〈a〉 or 〈b〉; this value points at the appendant αy (rows 3 to 10). All
other (non-isolated) encoded tape symbols are of the form 〈a/〉 or 〈b/〉 and they
point to the appendants 〈a〉 or 〈b〉 respectively.

The simulated transition rule is of the form (qi, σj , σp, qk) or (qi, σj , σpσh, qk),
respectively encoded as the appendants 〈σp〉〈1, qk〉 or 〈σp〉〈σh〉〈1, qk〉. In the
present example we simulate the rule (qi, σ1, σ4, qk):

α0, . . . ,αz+10αz+10αz+10, . . . , α2z−1 〈3, qi,s<s′〉〈σ1〉〈σ/2〉〈σ/3〉µ/µ/µ/µ/
$z+30i+30 α0, . . . ,α30i+40α30i+40α30i+40, . . . , α2z−1 〈σ1〉〈σ/2〉〈σ/3〉µ/µ/µ/µ/02z−30i−40

$2z α0, . . . ,α30i+40α30i+40α30i+40, . . . , α2z−1 〈σ/2〉〈σ/3〉µ/µ/µ/µ/02z−30i−40〈σ4〉〈1, qk〉
$12z α0, . . . ,α30i+40α30i+40α30i+40, . . . , α2z−1 02z−30i−40〈σ4〉〈1, qk〉〈σ2〉〈σ3〉µµµµ

$2z−30i−40 α0α0α0, . . . , α2z−1 〈σ4〉〈1, qk〉〈σ2〉〈σ3〉µµµµ

Alternatively if the rule is of the form (qi, σ1, σ4σ5, qk) then the latter configu-
ration is instead

α0α0α0, . . . , α2z−1 〈σ4〉〈σ5〉〈1, qk〉〈σ2〉〈σ3〉µµµµ

The simulation of the transition rule is now complete. The marker in CR’s pro-
gram is at appendant α0. The encoded write value is written, the new encoded
state 〈1, qk〉 is established and the (clockwise) tape head movement is simulated.

We have given a sequence of configurations that explicitly simulate the appli-
cation of a transition rule. We used arbitrary initial and next states qi, qk ∈ Q,
and arbitrary tape symbols σj ∈ {a, b}.



P-completeness of Cellular Automaton Rule 110 141

Table 3.1. (Stage 3. Simulate transition rule). This table prints the encoded write

value and establishes the new encoded current state 〈1, qk〉. If the counter does not

need to be doubled this table completes simulation of the transition rule.

encoded encoded initial index y of appendant

object object length marker index appendant αy

〈3, qi〉 = 030i+1410z+5 z + 30i + 20 z + 10 z + 30i + 24 02z−30i−30

〈3, qi,s<s′〉 = 030i+1910z+10 z + 30i + 30 z + 10 z + 30i + 29 02z−30i−40

〈a〉 = 0102z−2 2z 30i + 30 30i + 31 〈σp〉〈1, qk〉
〈a〉 = 0102z−2 2z 30i + 30 30i + 31 D〈σp〉〈σh〉〈1, qk〉
〈b〉 = 02102z−3 2z 30i + 30 30i + 32 〈σp〉〈1, qk〉
〈b〉 = 02102z−3 2z 30i + 30 30i + 32 D〈σp〉〈σh〉〈1, qk〉
〈a〉 = 0102z−2 2z 30i + 40 30i + 41 〈σp〉〈1, qk〉
〈a〉 = 0102z−2 2z 30i + 40 30i + 41 〈σp〉〈σh〉〈1, qk〉
〈b〉 = 02102z−3 2z 30i + 40 30i + 42 〈σp〉〈1, qk〉
〈b〉 = 02102z−3 2z 30i + 40 30i + 42 〈σp〉〈σh〉〈1, qk〉
〈a/〉 = 03102z−4 2z 30i + 30 30i + 33 〈a〉
〈a/〉 = 03102z−4 2z 30i + 40 30i + 43 〈a〉
〈b/〉 = 04102z−5 2z 30i + 30 30i + 34 〈b〉
〈b/〉 = 04102z−5 2z 30i + 40 30i + 44 〈b〉
µ/ = 05102z−6 2z 30i + 30 30i + 35 µ

µ/ = 05102z−6 2z 30i + 40 30i + 45 µ

The simulation is specific in the sense that the length of the tape data is fixed.
The computation of CR remains similar for any length of tape data that is not
a power of 2. If the tape length is a power of 2, and thus s = s′, then CR enters
Stage 3 via 〈3, qi〉 instead of 〈3, qi,s<s′〉. On the one hand, if the tape data does
not increase in length, the remainder of the computation proceeds in a similar
manner to the above simulation. On the other hand, if the tape data increases in
length [i.e. we are simulating a transition rule of the form (qi, σj , σpσh, qk)] then
rows 4 or 6 of Table 3.1 are executed. The appendants in these rows contain
the subword D. After reading D (using Table 3.2) the marker points at α40
which causes each µ in the counter to index the appendant µµ. This doubles the
counter’s value and completes the simulation of the transition rule.

The simulation is also specific in the sense that the encoded state is the
leftmost object in the data word when we begin simulating a transition rule.
This generalises to an arbitrary encoded state position. To see this notice that
the encoded state directs control flow of the algorithm through Stages 1 to 3.
The order of executing the stages is unaffected by the relative position of the
encoded state in the data word.

We have shown how CR simulates an arbitrary transition rule of R. To simu-
late halting CR enters a repeating sequence of configurations. The halt state q|Q|
is encoded in the normal way as 〈1, q|Q|〉 = 030|Q|+20102z−30|Q|−21. We define the
appendant at index 30|Q|+ 20 to be 〈1, q|Q|〉. Therefore 〈1, q|Q|〉 indexes a copy
of itself. Also after 〈1, q|Q|〉 is read, each encoded tape symbol indexes a copy of
itself. This causes CR to enter a forever repeating sequence of configurations.
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Table 3.2. (Stage 3. Double counter). Each µ indexes the appendant µµ.

encoded encoded initial index y of appendant

object object length marker index appendant αy

D = 039102z 2z + 40 0 39 02z−40

〈1, qk〉 = 030k+20102z−30k−21 2z 40 30k + 60 〈1, qk〉
〈a〉 = 0102z−2 2z 40 41 〈a〉
〈b〉 = 02102z−3 2z 40 42 〈b〉

µ = 10z−1 z 40 40 µµ

µ = 10z−1 z z + 40 z + 40 µµ

µ′ = 06102z−7 2z 40 46 µ/µ′

µ/ = 05102z−6 2z 40 45 µ/µ′

Space analysis. At time T (n) there areO(T (n)) encoded objects (state and sym-
bols) in CR’s data word; each of length O(|Q|). Thus CR uses O(|Q|T (n)) space.

Time analysis. Simulating a transition rule involves 3 stages. Each stage ex-
ecutes in O(|Q|T (n)) steps. To simulate a single transition rule the counter is
halved O(log T (n)) times, (i.e. Stages 1 and 2 are executed O(log T (n)) times)
and Stage 3 is executed once. Thus O(|Q|T (n) log(T (n)) time is sufficient to
simulate a transition rule and O(|Q|T 2(n) log T (n)) time is sufficient to simulate
the computation of R. ��

A consequence of the previous lemma is that Rule 110 simulates Turing machines
in polynomial time. Matthew Cook’s [2] universal Turing machines (see footnote
on page 133) simulate Rule 110 in quadratic time, which in turn (using Cook’s
construction) simulates Turing machines in exponential time. We have improved
this time bound to polynomial.

Corollary 1. Matthew Cook’s small universal Turing machines simulate Turing
machines in polynomial time.

Finally we show that the reduction from the generic machine simulation
problem (GMSP) [10] to Rule 110 prediction is computable by a logspace
transducer Turing machine. The GMSP is stated as: given a word x, an encod-
ing 〈M〉 of a single-tape Turing machine M , and an integer t in unary, does M
accept x within t steps?

Lemma 3. The GMSP is logspace reducible to Rule 110 prediction.

Proof. From Section 2 the number of states of the binary clockwise Turing
machine RM is linear in the number of states and symbols of M . We encode
these machines as words in a straightforward way such that for their lengths:
|〈RM 〉| = O(|〈M〉|). Also the input xR to RM is of length linear in |x|, the length
of M ’s input. The conversion is clearly logspace computable.

We reduce the simulation problem for RM to the analogous problem for cyclic
tag systems. In the proof of Lemma 2 we showed how to construct CRM . We
encode CRM as a word 〈CRM 〉. The value z used in the proof of Lemma 2 is
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linear in |Q|, the number of states of RM . There are 2z appendants, each of
length O(|Q|), giving an encoded program length of O(|Q|2). From Equation (3)
the input 〈xR〉 to CRM is of length O(|Q||xR|). Thus the encoded appendants
and input are logspace constructable.

To show that a logspace transducer Turing machine generates a Rule 110 in-
stance from 〈CRM 〉#〈xR〉#t we examine Cook’s Rule 110 simulation of cyclic
tag systems [2]. The input is written directly as the states of O(|〈xR〉|) contigu-
ous cells beginning at, say, cell p0. On the left of the input a constant word
(representing Cook’s ‘ossifiers’) is repeated O(t) times. On the right the cyclic
tag system program (list of appendants and ‘leaders’) is written O(t) times. ��
Since we already know that Rule 110 prediction is in P, the proof of Theo-
rem 1 is complete.
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Abstract. A two-way nondeterministic finite automaton is sweeping
(snfa) if its input head can change direction only on the end-markers.
For every n, we exhibit a language that can be recognized by an n-state
snfa but requires 2Ω(n) states on every snfa recognizing its complement.

1 Introduction

Understanding the power of nondeterminism is one of the most important goals
of the theory of computation. In the past four decades, huge efforts have been
invested into problems like Pvs. NP and L vs.NL, with limited success. To some,
this is creating the suspicion that essentially the same elusive idea lies at the core
of all problems of this kind, little affected by the particulars of the underlying
computational model or resource.

In this context, a possibly advantageous approach is to focus on weak models
of computation. Provided that they are also powerful enough to be relevant,
such models allow us to meaningfully study the power of nondeterministic algo-
rithms in a much simpler setting, closer to the set-theoretic objects produced by
their computations and in some distance from our often misleading algorithmic
intuitions about how these computations may behave.

One such model is the two-way finite automaton. The question whether non-
determinism strictly increases its power, in the sense that it allows exponential
economy in the number of states, was raised by Seiferas [1] in the early 70’s. Now
known as the 2Dvs. 2N question, it was reduced by Sakoda and Sipser [2] to the
study of certain complete problems and remains essentially as wide open as its
famous counterparts above. The conjecture is that indeed 2D�=2N, and its more
precise variants are quite surprising—see [3] for a brief history and discussion.

Given that small two-way deterministic finite automata (2dfas) are closed
under complement [4,5], one way to confirm the conjecture is by proving that
this closure fails in the nondeterministic case (2nfas). In this track, Geffert,
Mereghetti and Pighizzini [5] have recently studied the special case of small
unary 2nfas, but concluded that these are in fact closed under complement.

Following the same track, we study a different special case. We focus on sweep-
ing 2nfas (snfas), which are 2nfas that can change the direction of their input
head only on the end-markers. We prove that small snfas are not closed under
complement—reaffirming, in a sense, the promise of the general direction.

M. Bugliesi et al. (Eds.): ICALP 2006, Part I, LNCS 4051, pp. 144–156, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The sweeping restriction was originally introduced by Sipser [6], in the first
major step towards the conjecture, where he showed that no small sdfa can solve
liveness—a problem that even small one-way nondeterministic finite automata
(1nfas) can solve. Indeed, our proof has the structure of that argument: we show
that no small snfa can solve the complement of liveness. Note that this was
already known for 1nfas (by a relatively simple argument of [2]) and sdfas (by
a combination of the arguments of [6] and [4]), so our theorem can be seen as a
generalization of those facts to sweeping bidirectionality and to nondeterminism,
respectively. In fact, this generalization was already asked for in [6].

2 Preliminaries and Outline

We write [n] for the set {1, 2, . . . , n}. If Σ is an alphabet, Σ∗ is the set of all finite
strings over Σ. If z is a string, then |z|, zt, and zt are its length, t-th symbol, and
t-fold concatenation with itself. A property P ⊆ Σ∗ is infinitely right-extensible
if every string in P has a right extension in P : (∀y ∈ P )(∃z)(|z| �= 0 & yz ∈ P );
infinitely left-extensible properties are defined symmetrically.

2.1 Sets, Functions, and Relations

If U is a set, then U , |U |, P(U), and U2 denote its complement, size, powerset,
and set of pairs. The following simple lemma plays a central role in our proof.

Lemma 1. Let (ui)i∈I and (vi)i∈I be two sequences of subsets of a set U , where
I is a set of indices totally ordered by <. If for all i′, i ∈ I we have

i′ < i =⇒ ui′ ∩ vi = ∅ and i′ = i =⇒ ui′ ∩ vi �= ∅,

then |I| ≤ |U |.

Proof. For each i ∈ I, let ai be any element of the non-empty intersection ui∩vi.
If the list (ai)i∈I contains a repetition, say ai′ = ai =: a for two indices i′ < i,
then a = ai′ ∈ ui′ and a = ai ∈ vi; hence a ∈ ui′ ∩ vi, a contradiction. Therefore
the list (ai)i∈I contains |I| distinct elements of U . Hence, |I| ≤ |U |.

Let V ⊆ P(U) be a set of points in the lattice of subsets of U . For u ∈ V , the
part of V below u is Vu := {u′ ∈ V | u′ ⊆ u}; the height hV (u) of u in V is the
length of the longest chain ∅ �= u1 � · · · � uk in Vu. For f : V → V , we say f
is monotone if it respects inclusion: u′ ⊆ u =⇒ f(u′) ⊆ f(u); we say f is an
automorphism if its restriction to Vu is a bijection from Vu to Vf(u), for all u.
Clearly, every automorphism respects heights: hV (u) = hV

(
f(u)
)
, for all u. By

f t we mean the t-fold composition of f with itself; if t = 0, this is the identity.

Lemma 2. Suppose f : V → V , where V ⊆ P(U) is a finite set of points from
the lattice of a set U . If f is injective and monotone, then it is an automorphism.

Proof. Pick any u ∈ V , set v := f(u), and let fu be the restriction of f to Vu.
We will show fu is a bijection from Vu to Vv. Since f is monotone, fu has all its
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values in Vv: u′ ∈ Vu =⇒ u′ ⊆ u =⇒ f(u′) ⊆ f(u) =⇒ fu(u′) ∈ Vv. Since
f is injective, so is fu. So, fu is an injection from Vu to Vv. To show that it is a
bijection, it is sufficient to show that Vv does not have more elements than Vu.

Since f is injective and V is finite, f is a permutation of V . Hence, for some
t ≥ 1, f t is the identity. Let f ′ := f t−1. Since f is injective and monotone, f ′ is
also injective and monotone. Moreover, u = f t(u) = f t−1

(
f(u)
)

= f ′(v). Now
the same argument as in the previous paragraph shows that the restriction f ′

v

of f ′ to Vv is an injection from Vv to Vu. Consequently, |Vv| ≤ |Vu|.

Let R ⊆ U2 be a binary relation. We write R(·) for the mapping of each u ⊆ U
to the set R(u) := {b ∈ U | (∃a ∈ u)(aRb)} of all elements related to elements
of u; we usually write R(a) for R({a}). Clearly, R(·) is monotone. If R′ ⊆ U2

is also a binary relation, we write R′ ◦ R for the composition: a(R′ ◦ R)b ⇐⇒
(∃c ∈ U)(aR′c & cRb). Clearly, (R′ ◦R)(u) = R

(
R′(u)

)
, for all u.

A total order < on P(U)2 is nice if each pair “escapes” from every strictly
smaller pair in at least one component: (u′, v′) < (u, v) =⇒ u′ � u ∨ v′ � v.
It is not hard to verify that nice orders on P(U)2 exist, for every finite U .

2.2 Sweeping Automata and Liveness

A sweeping deterministic finite automaton (sdfa, [6]) is a triple M = (qs, δ, qf),
where δ is the transition function, partially mapping Q × (Σ ∪ {�}) to Q, for
some set Q of states, some alphabet Σ, and some end-marker � /∈ Σ, while qs
and qf are the start and final states. An input z ∈ Σ∗ is presented to M between
two copies of �. The computation starts at qs, on the symbol to the right of the
left copy of �, heading rightward. The next state is always derived from δ and
the current state and symbol. The next position is always the adjacent one in
the direction of motion; except when the current symbol is � and the next state
is not qf , in which case the next position is the adjacent one in the opposite
direction. Note that the computation can either loop, or hang, or fall off the
string �z� into qf . In this last case we say that M accepts z.

More generally, for any z ∈ Σ∗ and p ∈ Q, the left computation of M from p
on z is the unique sequence

lcompM,p(z) := (qt)1≤t≤m

where q1 = p; every next state is qt+1 = δ(qt, zt), provided that t ≤ |z| and
the value of δ is defined; and m is the first t for which this last provision
fails. If m = |z| + 1, the computation exits into qm; otherwise, 1 ≤ m ≤ |z|
and the computation hangs at qm. The right computation of M from p on z,
rcompM,p(z) :=

(
qt)1≤t≤m, is defined symmetrically, with qt+1 = δ(qt, z|z|+1−t).

If M is allowed more than one next move at each step, we say that it is
nondeterministic (snfa). Formally, this means that δ totally maps Q×(Σ∪{�})
to the powerset of Q and implies that, on any z ∈ Σ∗, M exhibits a set of
computations. If at least one of them falls off �z� into qf , then M accepts z.

Similarly, lcompM,p(z) is now a set of computations. To encode how states
connect via left computations, we define the binary relation lviewM (z) ⊆ Q2
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Fig. 1. (a) Three symbols in Σ5; e.g., the third symbol is {(1, 2), (1, 4), (2, 5), (4, 4)}.
(b) The string defined by them. (c) The string simplified and indexed; here ξ = {(3, 5)}.

(p, q) ∈ lviewM (z) ⇐⇒
(
∃c ∈ lcompM,p(z)

)
(c exits into q),

and call it the left behavior of M on z. Then, for u ⊆ Q, the set lviewM (z)(u)
of states reachable via left computations from within u is the left view of u on z.
The right behavior rviewM (z) of M on z and the right view rviewM (z)(u) of
u on z are defined similarly. Note that, if |z| = 1, the automaton has the same
behavior in both directions: lviewM (z) = rviewM (z) = {(p, q) | δ(p, z) & q}.
Also, if extending z does not cause a view to include any new states, then this
remains true on all identical further extensions, as described in the next lemma.

Lemma 3. The following implications are true, for all t ≥ 1:
• lviewM (z)(u) ⊇ lviewM (zz̃)(u) =⇒ lviewM (z)(u) ⊇ lviewM (zz̃t)(u),
• rviewM (z)(u) ⊇ rviewM (z̃z)(u) =⇒ rviewM (z)(u) ⊇ rviewM (z̃tz)(u).

Liveness. For n ≥ 1, we consider the alphabet Σn := P([n]2) of all directed
2-column graphs with n nodes per column and only rightward arrows (Fig. 1a).
An m-long string over Σn is naturally viewed as a directed (m + 1)-column
graph (Fig. 1b), in which for simplicity we often omit the direction of the arrows
(Fig. 1c). We say that the string has connectivity ξ ⊆ [n]2 if ξ correctly describes
all connections between the outer columns: (a, b) ∈ ξ iff there exists an m-long
path from the a-th node of the 0-th column to the b-th node of the m-th column.
We write Bn,ξ for the set of all strings of connectivity ξ. The strings of Bn,∅
are called dead ; all other strings are called live. We define Bn := Bn,∅ as the
collection of all live strings. So, Bn is the property of liveness —as defined in [2].

2.3 Outline

It is easy to see that Bn can be recognized by a snfa (a 1nfa, actually) with only
n states. Our goal is to prove that, in contrast, for the complementary language
Bn = Bn,∅ a snfa would need exponentially many states.

Theorem 1. Every snfa that recognizes Bn,∅ has 2Ω(n) states.

The rest of the article proves this fact. We fix n and a snfa M = (qs, δ, qf) over
a set Q of k states that recognizes Bn,∅. We will prove that k = 2Ω(n).
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The proof is based on Lemma 1. We build two sequences (Xι)ι∈I and (Yι)ι∈I
that are related as in the lemma. The indices are all pairs of non-empty subsets
of [n], the universe is all sets of 1 or 2 steps of M :1

I := {(α, β) | ∅ �= α, β ⊆ [n]} S :=
{
{s′, s} | s′, s ∈ Q2},

and the total order < is the restriction on I of some nice order on P([n])2. If
we indeed construct these sequences, then the lemma says |I| ≤ |S|, therefore

(2n − 1)2 ≤ k2 +
(
k2

2

)
,

hence k = 2Ω(n). For the remainder, we fix I and S as here.
Note that from now on some subscripts in our notation are redundant. We

thus drop them: e.g., Bn,∅ and lviewM (z)(u) become B∅ and lview(z)(u).
Also, before moving on, let us prove a fact that will be useful later: In order

to accept a dead string but reject a live one, M must produce on the dead string
a single-state view that “escapes” the corresponding view on the live string.

Lemma 4. Let z′ be live and z dead. Then at least one of the following is true:
• lview(z′)(p) � lview(z)(p) for some p ∈ Q.
• rview(z′)(p) � rview(z)(p) for some p ∈ Q.

Proof. Suppose lview(z′)(p) ⊇ lview(z)(p) and rview(z′)(p) ⊇ rview(z)(p),
for all p. Pick any accepting computation c of M on z. Break c into its traversals
c1, . . . , cm, in the natural way: for j < m, each cj starts at some state pj next
to a � and ends at some state qj on the other �; p1 = qs; δ(qj , �) & pj+1; and
cm = (qf ). Then, for each odd (resp., even) j < m, we know qj is in lview(z)(pj)
(resp., in rview(z)(pj)) and thus also in lview(z′)(pj) (resp., rview(z′)(pj));
hence, some computation c′j of M on z′ starts and ends identically to cj . If we
also set c′m := (qf ) and concatenate c′1, . . . , c

′
m, we end up with a computation

c′ of M on z′ which is also accepting. So, M accepts z′, a contradiction.

3 Hard Inputs and the Two Sequences

3.1 Generic Strings

Consider any y ∈ Σ∗ and the set of views produced via left computations on it:

lviews(y) := {lview(y)(u) | u ⊆ Q},

i.e., the range of lview(y)(·). How does this set change if we extend y into yz?
Let lmap(y, z) be the function that for every left view produced on y returns

its left view on z —i.e., lmap(y, z) simpy restricts lview(z)(·) to lviews(y).
It is easy to verify that lviews(yz) contains all values of this function, and is
covered by them. In other words, lmap(y, z) is a surjection from lviews(y) to
lviews(yz). This immediately implies that |lviews(y)| ≥ |lviews(yz)|.
1 A step of M is any s ∈ Q2. Also, note that {s′, s} represents a singleton when s′ = s.
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The next fact encodes this conclusion, along with the obvious remark that
lmap(y, z) is monotone. It also shows the symmetric facts, for left extensions
and right views. The set rviews(y) consists of all views produced on y via right
computations, and rmap(z, y) is the restriction of rview(z)(·) on rviews(y).

Fact 1.For all y, z: lmap(y, z) monotonically surjects lviews(y) to lviews(yz),
so |lviews(y)| ≥ |lviews(yz)|; symmetrically, in the other direction, rmap(z, y)
monotonically surjects rviews(y) to rviews(zy), so |rviews(y)|≥|rviews(zy)|.

Now suppose y belongs to an infinitely right-extensible property P ⊆ Σ∗. What
happens to the size of lviews(y) if we keep extending y into yz, yzz′, . . . inside
P? Although there are infinitely many extensions, the size of the set can decrease
only finitely many times. So, at some point it must stop changing. When this
happens, we have arrived at a very useful tool. We define it as follows.

Definition 1. Let P ⊆ Σ∗. A string y is l-generic over P if y ∈ P and

(∀yz ∈ P )
[
|lviews(y)| = |lviews(yz)|

]
.

An r-generic string over P is defined symmetrically, with left-extensions and
rviews(·). A string that is both l-generic and r-generic over P is called generic.

Lemma 5. Let P ⊆ Σ∗. If P is non-empty and infinitely right-extensible (resp.,
left-extensible), then there exist l-generic (resp., r-generic) strings over P . If yl
is l-generic and yr is r-generic, then every string ylxyr ∈ P is generic.

Proof. For the last claim, we just note that all right-extensions of an l-generic
string inside P are also l-generic, and the same is true in the other direction.

Generic strings were introduced in [6] (for sdfas and over Bn). Intuitively, they
are among the richest strings with property P , in the sense that they exhibit a
greatest subset of the “features” that M is “prepared to pay attention to”. This
makes them useful in building hard inputs, as described in the next lemma and
in Sect. 3.2. For the lemma, we will also need the following simple fact.

Fact 2. For all y, z: lviews(yz) ⊆ lviews(z) and rviews(zy) ⊆ rviews(z).

Proof. By Fact 1, lviews(yz) is the range of lmap(y, z), which is a restriction
of lview(z)(·); so, the first containment follows. Similarly in the other direction.

Lemma 6. Suppose y is generic over P ⊆ Σ∗, and x ∈ Σ∗. If yxy ∈ P , then
• lmap(y, xy) is an automorphism on lviews(y), and
• rmap(yx, y) is an automorphism on rviews(y).

Proof. Suppose yxy ∈ P . Then |lviews(y)| = |lviews(yxy)| (since y is generic)
and lviews(yxy) ⊆ lviews(y) (by Fact 2). Hence, lviews(y) = lviews(yxy).
By this and Fact 1, we conclude lmap(y, xy) surjects lviews(y) onto itself, which
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is possible only if it is injective. Since lmap(y, xy) is also monotone, Lemma 2
implies it is an automorphism. The fact about rmap(yx, y) is proved similarly.

3.2 Constructing the Hard Inputs

Fix ι = (α, β) ∈ I and let Pι := Bα×β be the property of connecting exactly
every leftmost node in α to every rightmost node in β. Easily, Pι is non-empty
and infinitely extensible in both directions. So, an l-generic string yl and an
r-generic string yr exist (Lemma 5). Then, for η = [n]2 the complete symbol, we
easily see that ylηyr ∈ Pι, too. Hence, this string is generic over Pι (Lemma 5).
We define yι := ylηyr. We also define the symbol xι := β × α.

Lemma 7. The two sequences (yι)ι∈I and (xι)ι∈I are such that, for all ι′, ι ∈ I:

ι′ < ι =⇒ yιxι′yι ∈ Pι and ι′ = ι =⇒ yιxι′yι ∈ B∅.

Proof. Fix ι′ = (α′, β′) and ι = (α, β) and let z := yιxι′yι. Note that the
connectivities of yι and xι′ are respectively ξ := α× β and ξ′ := β′ × α′.

α

yιyι xι′

β

a∗b∗

β′ α′ yιyι xι′

α
β

β′ α′

If ι′ < ι (on the left), then α′ � α or β′ � β (since < is nice). Suppose β′ � β
(if α′ � α, use a similar argument) and fix any b∗ ∈ β \ β′ and any a∗ ∈ α. For
any a, b ∈ [n], consider the a-th leftmost and b-th rightmost nodes of z. If a �∈ α
or b �∈ β, then the two nodes do not connect in z, since neither can “see through”
yι. If a ∈ α and b ∈ β, then (a, b∗) ∈ ξ and (b∗, a∗) ∈ ξ′ and (a∗, b) ∈ ξ, so the
two nodes connect via a path of the form a � b∗ → a∗ � b. Overall, z ∈ Pι.

If ι′ = ι (on the right), then ξ′ = β × α. Suppose z �∈ B∅. Then some path
in z connects the leftmost to the rightmost column. Suppose it is of the form
a � b∗ → a∗ � b. Then b∗ ∈ β and (b∗, a∗) ∈ ξ′ and a∗ ∈ α, a contradiction.

3.3 Constructing the Two Sequences

Suppose ι′ < ι. Since the extension yιxι′yι of yι preserves Pι (Lemma 7), each of
lmap(yι, xι′yι) and rmap(yιxι′ , yι) is an automorphism (Lemma 6). Put another
way, the interaction between the steps of M on xι′ and its two behaviors on yι
is such that these two mappings are automorphisms. Put formally, both
• the restriction of

(
Sι′ ◦ lview(yι)

)
(·) on lviews(yι) and

• the restriction of
(
Sι′ ◦ rview(yι)

)
(·) on rviews(yι)

are automorphisms, for Sι′ := {(p, q) | δ(p, xι′) & q} = lview(xι′) = rview(xι′).
What if ι′ = ι? What is the status of lmap(yι, xιyι) and rmap(yιxι, yι)? We

can show that, since yιxιyι is dead (Lemma 7), we cannot have both functions
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be automorphisms2. However, something stronger is true: we can even convince
ourselves that one of the functions is not an automorphism by pointing at only
1 or 2 of the steps of M on xι. The next figure shows three examples of this.
In each, we sketch the left behavior of M on yι and all single-state views, and
consider all heights to be with respect to lviews(yι).

s′
s

s

s′

s

xιyι yι

(i)

xιyι yι

u uu′v
(ii)

xιyι yι

(iii)
u′ v′u vvv′

Example i shows only 1 of the steps of M on xι, say s = (p, q) —many
more may be included in Sι. Is lmap(yι, xιyι) an automorphism? Normally, we
would need to know the entire Sι to answer this question. Yet, in this case
s is enough to answer no. To see why, note that the view v of q on yι has
height 2, while one of the views that contain p is u, of height 1. Irrespective
of the rest of Sι, lmap(yι, xιyι) will map u to a view that contains v and thus
has height 2 or more. So, it does not respect heights, which implies it is not an
automorphism.

Example ii shows 2 of the steps in Sι, say s′ = (p′, q′) and s = (p, q). Is
lmap(yι, xιyι) an automorphism? Observe that neither step alone can force a
negative answer: the view v′ of q′ on yι has height 1, as does the lowest view u′

containing p′; similarly for s, u, v, and height 2. Hence, individually each of s′

and s may very well participate in sets of steps that induce automorphisms. Yet,
they cannot belong to the same such set. To see why, suppose they do. Since
u′ ⊆ u, the image of u would be v′ ∪ v or a superset. Since v′ � v, the height
of that image would be greater than the height of v, and thus greater than the
height of u, violating the respect to heights.

Example iii also shows 2 of the steps in Sι, say s′ = (p′, q′) and s = (p, q),
neither of which can disqualify lmap(yι, xιyι) from being an automorphism.
Yet, together they can. To see why, suppose both steps participate in the same
automorphism. Then the image of u′ must be exactly v′: otherwise, it would be
some strict superset of v′, of height 2 or more, disrespecting the height of u′. On
the other hand, u must map to a set that contains v, and thus also v′. Hence, v′

must be the exact image of some u∗ ⊆ u. But then both u∗ and u′ map to v′,
when u∗ �= u′ (since u′ � u), a contradiction to the map being injective.

In short, each step in Sι severely restricts the form of lmap(yι, xιyι) and rmap
(yιxι, yι). And, either individually or in pairs, some steps can be so restrictive

2 If they were, they would be bijections (because each of lviews(yι) and rviews(yι)
has a maximum). Hence, M would not be able to distinguish between the live yι

and the dead yι(xιyι)
t, for t any exponent that turns both bijections into identities.

(Note that this is true even for the n-state snfa that solves liveness. Therefore, this
observation alone can give rise to no interesting lower bound for k.)
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that they cannot be part of any set of steps that induces an automorphism in
both directions. To describe this formally, we introduce the next definition.

Definition 2. A set of steps S ⊆ Q2 is compatible with yι if there exists a set
Ŝ such that S ⊆ Ŝ ⊆ Q2 and the following are both automorphisms:
• the restriction of

(
Ŝ ◦ lview(yι)

)
(·) on lviews(yι), and

• the restriction of
(
Ŝ ◦ rview(yι)

)
(·) on rviews(yι).

E.g., {s} in Example i and {s′, s} in Examples ii,iii are incompatible with yι.
We are now ready to define the sequences promised in Sect. 2.3. For each

ι ∈ I, we let Xι consist of all sets of 1 or 2 steps of M on xι, and Yι consist of
all sets of 1 or 2 steps of M that are incompatible with yι:

Xι :=
{
S ∈ S | S ⊆ Sι

}
, Yι :=

{
S ∈ S | S is incompatible with yι

}
.

We need, of course, to show that the sequences relate as in Lemma 1.
The case ι′ < ι is easy. Each S ∈ Xι′ can be extended to the set of all steps

of M on xι′ (i.e., Ŝ := Sι′), which does induce automorphisms, so Xι′ ∩ Yι = ∅.
The case ι′ = ι is harder. We analyze it in the next section.

4 The Main Argument

Suppose ι′ = ι. Our goal is to exhibit a singleton or two-set S ⊆ Sι that is
incompatible with yι. First, some preparation.

The witness. Consider the strings yι(xιyι)t = (yιxι)tyι, for all t ≥ 1. Since yιxιyι
is dead, so are all of them. Since yι is live, Lemma 4 says for all t ≥ 1:

• lview(yι)(p) � lview
(
yι(xιyι)t

)
(p) for some p ∈ Q, or

• rview(yι)(p) � rview
(
(yιxι)tyι

)
(p) for some p ∈ Q.

Namely, in order to accept the extensions yι(xιyι)t = (yιxι)tyι but reject the
original yι, M must exhibit on each of them a single-state view that “escapes”
its counterpart on the original. In a sense, among all 2k single-state views on
each extension, the escaping one is a “witness” for the fact that the extension is
accepted, and Lemma 4 says that every extension has a witness. Of course, this
allows for the possibility that different extensions may have different witnesses.
However, we can actually find the same witness for all extensions:

Fact 3. At least one of the following is true:
• lview(yι)(p) � lview

(
yι(xιyι)t

)
(p) for some p ∈ Q and all t ≥ 1.

• rview(yι)(p) � rview
(
(yιxι)tyι

)
(p) for some p ∈ Q and all t ≥ 1.

Proof. Suppose neither is true. Then each of the 2k single-state views has an
extension on which it fails to escape from its counterpart on yι. Namely, every
p has some tp,l ≥ 1 such that lview(yι)(p) ⊇ lview

(
yι(xιyι)tp,l

)
(p) and some

tp,r ≥ 1 such that rview(yι)(p) ⊇ rview
(
(yιxι)tp,ryι

)
(p). Consider the exponent

t∗ :=
(∏

p∈Q tp,l
)
·
(∏

p∈Q tp,r
)
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and the extension z := yι(xιyι)t
∗

= (yιxι)t
∗
yι. Then each p has some t ≥ 1 such

that z = yι((xιyι)tp,l)t, and thus Lemma 3 implies lview(yι)(p) ⊇ lview(z)(p);
similarly, rview(yι)(p) ⊇ rview(z)(p). Overall, all single-state views on z fall
within their counterparts on yι, contradicting Lemma 4.

We fix p to be a witness as in Fact 3. We assume p is of the first type, involving
left views (otherwise, a symmetric argument applies). Moreover, among all wit-
nesses of this type, we select p so as to minimize the height of lview(yι)(p) in
lviews(yι). We let V := lviews(yι), h := hV , and v0 := lview(yι)(p).

By the selection of p, no p̃ with lview(yι)(p̃) � v0 can be a witness of the
first type. Hence, for every such p̃ there is some t̃ ≥ 1 such that lview(yι)(p̃) ⊇
lview

(
yι(xιyι)t̃

)
(p̃). We fix t∗ to be the product of all such t̃. Then:

Fact 4. For all such p̃ and all λ ≥ 1: lview(yι)(p̃) ⊇ lview(yι(xιyι)λt
∗
)(p̃).

Proof. Fix such a p̃ and the t̃ for which lview(yι)(p̃) ⊇ lview
(
yι(xιyι)t̃

)
(p̃). Fix

any λ ≥ 1. Then λt∗ is a multiple of t̃ and Lemma 3 applies.

Escape computations. For all t ≥ 1, collect into a set Ct all computations c ∈
lcompp(yι(xιyι)t) that exit into some q �∈ v0. These are the escape computations
for p on the t-th extension. We also define C := ∪t≥1Ct.

Let us see how an escape computation looks like. Pick any c ∈ C (Fig. 2a), say
on the t-th extension, exiting into q. Let s1, . . . , st be the steps of c on xι, where
sj = (pj , qj) ∈ Sι. These are the critical steps along c. Let vj := lview(yι)(qj)
be the view of the right end-point of sj . Along with v0, these views form the
list v0, v1, . . . , vt of the major views along c. Clearly, each of them contains the
left end-point of the following critical step: vj−1 & pj (similarly, vt & q). So, for
each sj there exist views u ∈ V that contain its left end-point and are contained
in the preceding major view: vj−1 ⊇ u & pj (similarly, vt ⊇ u & q). Among
them, let uj−1 be one of minimum height in V (select ut similarly). Then the
list u0, . . . , ut−1, ut are the minor views along c.

We will find an incompatible S among the critical steps of such computations.

Case 1: Some c ∈ C contains some critical step s such that the singleton {s} is
incompatible with yι. Then we can select S := {s}, and we are done.

Case 2: For all c ∈ C and all critical steps s in c, the singleton {s} is compatible
with yι. In this case, we will find an incompatible two-set.

Steepness. First of all, every c ∈ C (say with t, sj , vj , uj as above) has every
major view at least as high as the next minor one (h(vj) ≥ h(uj), since vj ⊇ uj)
and every minor view at least as high as the next major one (h(uj) ≥ h(vj+1),
otherwise {sj+1} would be incompatible, as in Example i). Hence, every c ∈ C has
views of monotonically decreasing height (h(v0) ≥ h(u0) ≥ h(v1) ≥ · · · ≥ h(ut)).
To capture the “rate” of this decrease, we record the list of minor view heights
Hc :=

(
h(uj)

)
0≤j≤t, and order each Ct lexicographically: c′ ≤ c iff Hc′ ≤lex Hc.

With respect to this total order, “smaller” computation means “steeper”.
Long and steepest computation. We fix t to be a multiple of t∗ which is at

least |V |, and select c to be steepest in Ct. We let q, sj , vj , uj be as usual.
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Fig. 2. (a) An escape computation c ∈ C5, exiting into q. (b) An example of Case 2A,

for j = 3 and l = 2; in dashes, the new computation c′ ∈ Cj . (c) An example of Case 2B,

for j′ = 2 and j = 4; in dashes, the hypothetical case uj′−1 ⊇ uj−1 and c′.

Since t ≥ |V |, the list u0, . . . , ut contains repetitions. Let j′ < j be the indices
for the earliest one. Then uj′ = uj, so h(uj′) = h(uj), and thus all views in
between have the same height: h(uj′) = h(vj′+1) = · · · = h(vj) = h(uj). As a
result, each major view equals the next minor one: vj′+1 = uj′+1, . . . , vj = uj .

Case 2A: j′ = 0. Then h(u0) = h(v1) = · · · = h(vj) = h(uj), and therefore
v1 = u1, . . . , vj = uj . In fact, we also have h(v0) = h(u0), and therefore v0 = u0.

To see why, suppose h(v0) �= h(u0). Then v0 � u0. Since u0 ∈ V , some state
p̃ has lview(yι)(p̃) = u0 (Fig. 2a), and thus Fact 4 applies to it (since u0 � v0).
In particular, lview(yι)(p̃) ⊇ lview

(
yι(xιyι)t

)
(p̃) (since t is a multiple of t∗).

On the other hand, u0 contains the left end-point of s1, so the part of c after
s1 shows that q ∈ lview

(
yι(xιyι)t

)
(p̃), and thus q ∈ lview(yι)(p̃) = u0. Since

u0 ⊆ v0, this means that c is not an escape computation, a contradiction.
So, h(v0) = h(u0) = · · · = h(vj) = h(uj) and v0 = u0, . . . , vj = uj (Fig. 2b).

By the selection of p, its view on the j-th extension escapes v0. Pick any c′ ∈ Cj ,
with exit state q′ /∈ v0, critical steps s′1, . . . , s

′
j , and major views v′0, . . . , v

′
j . Then

v′0 = v0 (since both c′ and c start at p) and q′ ∈ v′j \ vj (since vj = uj = u0 = v0
and q′ /∈ v0). So, the respective major views start with inclusion v′0 ⊆ v0 but
end with non-inclusion v′j � vj . So there is 1 ≤ l ≤ j so that v′l−1 ⊆ vl−1 but
v′l � vl.

We are now ready to prove that {s′l, sl} is incompatible with yι. The argument
is as in Example ii. Suppose the two steps participate in a set inducing an
automorphism f . Since v′l−1 ⊆ vl−1, both s′l and sl have their left end-points in
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vl−1. Hence, f(vl−1) ⊇ v′l∪vl. Since v′l � vl, the height of f(vl−1) is greater than
that of vl. But h(vl−1) = h(vl). Therefore h

(
f(vl−1)

)
> h(vl−1), a contradiction.

Case 2B: j′ �= 0. Then we can talk of the minor views uj′−1 and uj−1 that
precede the first repetition. Of course, uj′−1 �= uj−1. In fact, uj′−1 � uj−1.

To see why, suppose uj′−1 ⊇ uj−1 (Fig. 2c). Then uj′−1 � uj−1 (since uj′−1 �=
uj−1) and thus h(uj′−1) > h(uj−1). Moreover, sj has its left end-point in vj′−1
(since vj′−1 ⊇ uj′−1 ⊇ uj−1) while its right end-point has view uj′ (since vj =
uj = uj′). Hence, by replacing sj′ with sj , we get a new computation c′ that is
also in Ct. In addition, Hc′ differs from Hc only in that h(uj′−1) is replaced by
h(uj−1). But then c′ is strictly steeper than c, a contradiction.

We are now ready to prove that {sj′ , sj} is incompatible with yι. The argument
is as in Example iii. Suppose the two steps participate in a set inducing an
automorphism f . Because of sj , f(uj−1) ⊇ uj; but h(uj−1) = h(uj) and f
respects heights, so in fact f(uj−1) = uj . Because of sj′ , f(uj′−1) ⊇ uj′ = uj ;
so there exists u∗ ⊆ uj′−1 such that f(u∗) = uj. Overall, u∗ �= uj−1 (since exactly
one is in uj′−1) and f(u∗) = f(uj−1). Hence f is not injective, a contradiction.

This concludes the analysis of the case ι′ = ι and thus the proof of Theorem 1.

5 Conclusion

We proved that small snfas are not closed under complement. In order to stay
close to the combinatorial core of the problem, we used a non-standard transition
function (implicit direction of motion; unusual reject and accept) and a large
alphabet (exponential in n). It is not hard to show that the lower bound remains
exponential even under more standard definitions and over the binary alphabet.
In addition, by selecting the hard inputs more carefully in Sect. 3.2, we can ensure
that a small 2dfa can correctly decide liveness on all of them. This way, we also
have a proof that 2dfas can be exponentially more succinct than snfas, which
generalizes the analogous known relationship between 2dfas and sdfas [6,7,8].
More details about these claims will appear in the full version of this article.

An interesting next question concerns the exact value of our lower bound (for
our definition and alphabet). The smallest known snfa for Bn,∅ is the obvious
2n-state 1dfa. Is this really the best snfa algorithm? If so, then nondeterminism
and sweeping bidirectionality together are completely useless in this context.

Of course, the full 2Dvs. 2N question remains as wide open and challenging
as ever: Is there a small 2dfa for liveness?
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Abstract. Two variants of pebble tree-walking automata on binary
trees are considered that were introduced in the literature. It is shown
that for each number of pebbles, the two models have the same expres-
sive power both in the deterministic case and in the nondeterministic
case. Furthermore, nondeterministic (resp. deterministic) tree-walking
automata with n + 1 pebbles can recognize more languages than those
with n pebbles. Moreover, there is a regular tree language that is not rec-
ognized by any tree-walking automaton with pebbles. As a consequence,
FO+posTC is strictly included in MSO over trees.

1 Introduction

A pebble automaton is a sort of sequential automaton which moves from node
to node in a tree, along its edges. Besides a finite set of states it has a finite
set {1, . . . , n} of pebbles which it can drop at and lift from nodes. There is a
restriction though: if pebbles i + 1, . . . , n are on the tree, only pebble i can be
dropped or pebble i + 1 can be lifted. Pebble automata were introduced in [4]
as a model with intermediate expressive power between tree-walking automata
[1,7] and parallel bottom-up or top-down automata. They are closely related
to some aspects of XML languages. Furthermore, they are a building block of
pebble transducers which were used to capture XML transformations (cf. [8,6]).
Besides the number of pebbles, there are other parameters of pebble automata
that can be varied. For example, they may be deterministic or nondeterministic,
and they may have different policies of lifting a pebble: in the original model
[4], a pebble can be lifted only if it is at the current node (head position), in the
strong model, which was used to obtain a logical characterization in [5], it can
be lifted everywhere. Not much is known about the relationships between the
classes induced by the different models. Until recently it was even conceivable
that deterministic tree-walking automata (sequential automata without pebbles)
could recognize all regular languages. In [2,3] this has been refuted and it has
been shown that nondeterministic tree-walking automata do not recognize all
regular tree languages but are strictly more expressive than deterministic tree-
walking automata.
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The current paper sheds some more light on the relationship between the
pebble automata classes. In a nutshell, (a) whether pebbles are strong or not
does not change the expressive power but (b) increasing the number of pebbles
or moving from the deterministic to the nondeterministic model increases the
expressive power. We next give an overview of the results of this paper. We
write PA for the class of tree languages recognized by nondeterministic pebble
automata. We add a subscript n for the restriction to n-pebble automata, ‘D’ to
indicate deterministic automata and ‘s’ for the strong model, e.g., sDPAn is the
class of tree languages recognized by deterministic strong n-pebble automata.
REG denotes the class of regular tree languages. The main result of this paper
is that pebble automata do not recognize all regular tree languages.

Theorem 1.1. PA � REG.

This result is refined by showing that the hierarchy for pebble automata based
on the number of pebbles is strict for both nondeterministic and deterministic
pebble automata, settling open questions raised in [4,5].

Theorem 1.2. For each n ≥ 0, PAn � PAn+1 and DPAn � DPAn+1.

Furthermore, for each n, there is a language recognized by a nondeterministic
tree-walking automaton but not by a deterministic n-pebble automaton. This
improves the result in [2] that tree-walking automata (pebble automata with no
pebbles) can not always be determinized.

Theorem 1.3. For each n ≥ 0, TWA �⊆ DPAn.

It remains open whether DPA is strictly included in PA. In [5], strong pebble
automata were introduced as a model which corresponds to natural logics on
trees. It was stated as an open question whether this model is stronger than the
original one. We were surprised that this is actually not the case.

Theorem 1.4. For each n ≥ 0, sPAn = PAn and sDPAn = DPAn.

This proof is effective, but the state space increases n-fold exponentially. In a
recent paper [9], it was shown that DPAn is closed under complement but the
closure under complement of sDPAn was left open. Nevertheless, it was shown
that the complement of a language in sDPAn is in sDPA3n. From Theorem 1.4
we get the following stronger result:

Corollary 1.5. For each n ≥ 0, sDPAn is closed under complement.

In [5], the expressive power of strong pebble automata has been characterized in
terms of logics. It was shown that FO+DTC=sDPA and FO+posTC=sPA. Here,
FO+DTC is the extension of first-order logic with unary deterministic transitive
closure operators and FO+posTC is the extension with positive unary transitive
closure operators. By combining these results with ours and the fact that the
regular tree languages are captured by monadic second-order logic (MSO), we
immediately obtain the following result.

Corollary 1.6. FO+posTC � MSO.

Whether FO+TC � MSO and FO+DTC � FO+posTC remains open.
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Section 2 gives precise definitions and develops some related terminology. In
Section 3 we prove some basic facts about the behavior of pebble automata on
trees, in particular we show a kind of universality of n-pebble automata: for
each n-pebble automaton A, there is an n-pebble automaton which on a tree
t computes, in some sense, the complete behavior of A on t, for all possible
contexts in which t may occur. In Section 4 we use these techniques to prove
our separation results. Finally, in Section 5, we prove that strong pebbles give
no additional power, thereby completing the proof of Corollary 1.6. Because of
space limitation most proofs are missing and are available in the full version of
this paper.

We are deeply indebted to Joost Engelfriet for carefully reading a previous
draft of this paper and, in particular, pointing out a significant shortcoming in
one of the proofs.

2 Definitions

We consider finite, binary trees labeled by a given finite alphabet Σ. We insist
that each non-leaf node has exactly two children. A set of trees over a given
alphabet is called a tree language. Given a tree t and a node v of t, we denote
by t|v the Σ-tree corresponding to the subtree of t rooted at v. Let ∗ be a new
symbol not in Σ. A context is a tree over Σ ∪ (Σ×{∗}), where the label with ∗
occurs only once and at a leaf. This unique leaf whose label contains ∗ is called
the port of the context. Given a context C and a tree t such that the label of the
root of t is the same as the Σ-part of the label of the port of C, we denote by C[t]
the tree which is constructed from C and t by replacing the ∗-leaf with t. The
context Ct,v is the context resulting from t by removing all proper descendants
of v and adding ∗ to the label of v.

Informally, a pebble automaton – just like a tree walking automaton – walks
through its input tree from node to node along the edges. Additionally it has a
fixed set of pebbles, numbered from 1 to n that it can place in the tree. At each
time, pebbles i, . . . , n are placed on some nodes of the tree, for some i. In one
step, the automaton can stay at the current node, move to its parent, to its left
or to its right child, or it can lift pebble i or place pebble i − 1 on the current
node. Which of these transitions can be applied depends on the current state,
the label and the type of the current node (root, left or right child — leaf or
inner node), the set of pebbles at the current node and the number i.

We consider two kinds of pebble automata which differ in the way they can
lift a pebble. In the standard model a pebble can be lifted only if it is on the
current node. In the strong model this restriction does not apply.

We turn to the formal definition of pebble automata. The set types = {r, 0, 1}×
{l, i} describes the possible types of a node. Here, r stands for the root, 0 for a
left child, 1 for a right child, l for a leaf and i for an internal node (not a leaf). We
indicate the possible kinds of moves of a pebble automaton by elements of the set
{ε, ↑,↙,↘, lift, drop}, where informally ↑ stands for ‘move to parent’, ε stands for
‘stay’,↙ for ‘move to left child’ and↘ for ‘move to right child’. Clearly, drop refers
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to dropping a pebble and lift to lifting a pebble. Finally, 2[n] denotes the powerset
of {1, . . . , n}.

Definition 2.1. An n-pebble automaton is a tuple A = (Q,Σ, I, F, δ), where
Q is a finite set of states, I, F ⊆ Q are respectively the sets of initial and accepting
states, and δ is the transition relation of the form

δ ⊆ (Q× types× {0, . . . , n} × 2[n] ×Σ)× (Q× {ε, ↑,↙,↘, lift, drop}).

A tuple (q, β, i, S, σ, q′,m) ∈ δ intuitively means that if A is in state q with
pebbles i, . . . , n on the tree, the current node has the pebbles from S, has type β
and is labeled by σ then A can enter state q′ and do a move according to m. A
pebble set of A is a set P ⊆ {1, . . . , n}. For a tree t, a P -pebble assignment
is a function f which maps each j ∈ P to a node in t. A P -pebbled tree
is a tree t with an associated P -pebble assignment. A pebbled tree is a
P -pebbled tree, for some P . We usually do not explicitly denote f . Analogous
notions are defined for contexts. For 0 ≤ i ≤ n, an i-configuration c is a tuple
(v, q, f), where v is a node, q a state and f a {i + 1, . . . , n}-pebble assignment.
We call v the current node, q the current state and f the current pebble
assignment. We also write (v, q, vi+1, . . . , vn) if f(j) = vj , for each j ≥ i + 1.
We write c $A,t c′ to denote that the automaton can make a (single step)
transition from configuration c to c′. We denote the transitive closure of $A,t
by $+

A,t. The relation $A,t is basically defined in the obvious way following the
intuition described above. However, there is a restriction of the lift-operation. A
lift-transition can only be applied to an i-configuration (v, q, f) if f(i + 1) = v,
i.e., if pebble i + 1 is at the current node. In Section 5 we also consider strong
pebble automata for which this restriction does not hold. A run is a nonempty
sequence c1, . . . , cl of configurations such that cj $A,t cj+1 holds for each j. It is
accepting if it starts and ends in the root of the tree with no pebble on the tree,
the first state in I and the last state in F . The automaton A accepts a tree if it
has an accepting run on it. A set of Σ-trees L is recognized by an automaton
that accepts exactly the trees in L. Finally, we say that a pebble automaton
is deterministic if δ is a function from Q × types × {1, . . . , n} × 2[n] × Σ to
Q× {ε, ↑,↙,↘, lift, drop}.

We use PAn (sPAn) to denote the class of tree languages recognized by some
(strong) pebble automaton using n pebbles and DPAn (sDPAn) for the corre-
sponding deterministic classes. We write PA for

⋃
n>0 PAn and so forth.

Note that a (strong or standard) pebble automaton without pebbles is just
a tree walking automaton. Thus, we also write TWA and DTWA for PA0 and
DPA0, respectively.

An i-run is a run from an i-configuration to an i-configuration in which
pebble i + 1 is never lifted. An i-loop is an i-run from a configuration (v, p, f)
to a configuration (v, q, f). Therefore, an i-loop is determined by the source i-
configuration (v, p, f) and the target state q. An i-move is an i-run with only
two i-configurations: the first and last one. It can be (a) a single transition, or
(b) a drop i transition, followed by an (i− 1)-loop followed by a lift i transition.
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If the automaton is strong it can also be (c) drop i, followed by a (non-loop)
(i− 1)-run, followed by lift i.

3 Behaviors and How to Compute Them

Let an n-pebble automaton A be fixed for the rest of the section. It is important
in this section that we work with a standard pebble automaton and not with
a strong one. Let v be a node in a tree t and c = (v, p, vi+1, . . . , vn) an i-
configuration. Intuitively, whether or not there is an i-loop that starts in c clearly
only depends on t|v and Ct,v together with the pebble placement. Nevertheless,
the exact relationship is not obvious: e.g., the automaton might enter t|v, drop
pebble i, move to Ct,v, drop pebble i − 1 and then enter t|v again. Thus, the
behavior of A depends on t|v and Ct,v in an interleaving manner.

In this section, we will formalize the intuitive notion of behavior of A through
the notion of simulation. Intuitively, a tree s is simulated by a tree t if all loops
in s also exist in t. The behavior of a tree is its simulation equivalence class
(the set of trees that both simulate it, and are simulated by it). We show that,
for each A, (1) there are only finitely many different behaviors, (2) behaviors
are compositional, and (3) the behavior of a tree can be computed by another
pebble automaton with the same number of pebbles.

Two pebble assignments f and g are i-compatible if their domains partition
{i+1, . . . , n}. A pebbled tree t with assignment f is i-compatible with a pebbled
context C with assignment g if f and g are i-compatible and the pebbles assigned
to the root of t by f are exactly the pebbles assigned to the port of C by g.

Given a pebbled context C and an i-compatible pebbled tree t, let loopsi(C, t)
denote the set of pairs (p, q) for which there is an i-loop ρ in C[t] from (v, p, f∪g)
to (v, q, f ∪ g), where v is the junction node between C and t. An i-loop is a
tree i-loop if it involves no i-configurations outside t, it is a context i-loop if
it involves no i-configurations outside C. By tree-loopsi(C, t) (context-loopsi
(C, t)) we denote the corresponding set where ρ is a tree (context) i-loop. Clearly,
tree-loopsi(C, t) ∪ context-loopsi(C, t) ⊆ loopsi(C, t).

Definition 3.1. Let t, s be P -pebbled trees. We say s is i-simulated by t if, for
every i-compatible pebbled context C, tree-loopsi(C, s) ⊆ tree-loopsi(C, t).

We define i-simulation of pebbled contexts analogously. If s is j-simulated by
t, for every j ∈ {0, . . . , i} we say that s is i∗-simulated by t. Two P -pebbled
trees (resp. contexts) are said to be i-equivalent if they i-simulate each other;
they are i∗-equivalent if they i∗-simulate each other. We will denote context
equivalence classes by γ and tree equivalence classes by τ . We write τi(t) (resp.
γi(C)) for the i∗-equivalence class of a pebbled tree t (resp. pebbled context
C). We show next that there are only finitely many i-equivalence classes (and
therefore finitely many i∗-equivalence classes.) The following technical lemma
shows that the notion of i∗-simulation actually also covers context i-loops, not
only tree i-loops.
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Lemma 3.2. Let i ≤ n. Let s, t be pebbled trees and C a pebbled context, such
that s and t are i-compatible with C.

1. context-loops0(C, s) = context-loops0(C, t)
2. For i > 0, if s is (i − 1)∗-simulated by t, then context-loopsi(C, s) ⊆

context-loopsi(C, t).
3. If s is i∗-simulated by t, then loopsi(C, s) ⊆ loopsi(C, t).

We associate with every tree i∗-equivalence class τ a (pebbled) tree tτ of this
class and likewise we choose a (pebbled) context Cγ , for each γ. If γ is a (i−1)∗-
equivalence class, then from the dual of Lemma 3.2(2) we can conclude that
tree-loopsi(C, t) = tree-loopsi(Cγ , t), for every context C of class γ.

Given a pebbled tree t, its tree i-behavior Bi
t, for i > 0, is a function that

maps (i − 1)∗-equivalence class γ to the set of pairs tree-loopsi(Cγ , t). It is
defined only for γ such that Cγ is i-compatible with t. For i = 0, Bi

t is simply
the set of tree 0-loops of t. The context i-behavior Bi

C is defined analogously.
There is a natural order on i-behaviors: Bi

s ≤ Bi
t if Bi

s(γ) ⊆ Bi
t(γ) holds

for all γ. The following technical lemma shows that the i-behaviors completely
determine the i-equivalence classes and their simulations:

Lemma 3.3. Let s, t be P -pebbled trees. Then Bi
s ≤ Bi

t iff s is i-simulated by t.

Thus, Bi
s = Bi

t iff s and t are i-equivalent and from now on we also refer to the
i-equivalence class of a tree as its tree i-behavior. A simple induction shows that,
for each i ≤ n, there are finitely many tree (resp. context) i-equivalence classes.
The above construction is nonelementary, and this cannot be improved. One can
easily show that the number of behaviors is at least as big as the smallest depth
of an accepted tree. Using a standard construction for first-order logic, one can
construct an n-pebble automaton with O(n) states that only accepts trees whose
depth is a tower of n exponentials.

t
C

b a a,
t

C

b

*

pebbles from R

Fig. 1. The left-composed context Compose

(C, a, R, t, ∗)

We show next that i-
behaviors behave composition-
ally. For instance, the i-behavior
of a tree depends only on the
i-behaviors of its two subtrees
and the label of the root. Let
R,P0, P1 be a partition of {i +
1, . . . , n} and let a be a la-
bel. For trees t0, t1 pebbled with
P0, P1, respectively, we write
Compose(a,R, t0, t1) for the
pebbled tree consisting of an a-labeled and R-pebbled root which has t0 and
t1 as left and right subtrees, respectively. Similarly, for a P0-pebbled tree t and
a P1-pebbled context C, Compose(C, a,R, t, ∗) is the context composed from
C and t as illustrated in Fig. 1. Likewise, Compose(C, a,R, ∗, t) is the context
where the port is the left sibling of t. Given ordered sets A,B,C, an operation
f : A×B → C is monotone if a ≤ a′, b ≤ b′ implies f(a, b) ≤ f(a′, b′).
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Lemma 3.4. Once the label a and pebble set R are fixed, the composition oper-
ations are monotone with respect to i∗-simulation.

In particular, i∗-equivalence is a congruence for the composition operations.
Thus, it makes sense to write Compose(a,R, τ0, τ1) for the i∗-equivalence class
of any tree with an a-labeled, R-pebbled root and subtrees of i∗-equivalence class
τ0 and τ1. The proof of Lemma 3.4 is by induction on i and is straightforward
by composing the subruns of the automaton in each of the subcomponents.

In the following lemma we assume that pebbles i + 1, . . . , n in a tree are
suitably encoded by an (enlarged) alphabet. The proof is omitted in this abstract.

Lemma 3.5. For every i ≤ n and tree i-behavior Bi, there is an i-pebble au-
tomaton A′ that recognizes the pebbled trees t with Bi

t ≥ Bi. Likewise for con-
texts. If A is deterministic, A′ can be chosen deterministic, as well.

Finally, we show one more closure property of pebble automata. For i ≥ 0, the
i∗-behavior of a tree t is defined as the sequence B0

t , . . . , B
i
t (or, equivalently,

the i∗-equivalence class of t; see the paragraph after Lemma 3.3). An i∗-behavior
folding of a tree t is a tree that is obtained from t by replacing, for some nodes
v of t, the subtree t|v with a single node labeled by the i∗-behavior of t|v. The
techniques from Lemmas 3.5 can be generalized to i∗-behavior foldings:

Lemma 3.6. For every i ≤ n and tree i-behavior Bi, there is an i-pebble au-
tomaton B that recognizes the i∗-behavior foldings of pebbled trees t with Bi

t ≥ Bi.
Likewise for contexts. If A is deterministic, B can be chosen deterministic, too.

4 The Pebble Automata Hierarchy

In this section we will prove Theorems 1.1, 1.2 and 1.3. In Subsection 4.1, we
define the separating tree languages that we will use. In Subsection 4.2 we in-
troduce oracle automata, a slight extension of tree-walking automata and show
that the results (cf. Theorem 4.1 below) of [2] and [3] can be generalized to these
models. Finally, in Subsection 4.3 we show the mentioned results.

4.1 The Separating Languages

In this section, we will mostly deal with trees over the alphabet {a,b}. Moreover
we require that only leaves can be labeled by a. We call these trees quasi-
blank trees. An inner node of a quasi-blank tree is labeled by b and a leaf of
a quasi-blank tree is labeled either by a or b. For a quasi-blank tree t we define
its branching structure b(t). The branching structured results from t by first
removing all nodes from t besides the a-labelled leaves and their ancestors. Then,
all inner nodes with only one child are removed. Thus, b(t) consists only of the
a-leaves, and of deepest common ancestors of a-leaves. Note that the descendant-
relation of the nodes of b(t) is inherited from t. By Lbranch we denote the set of
quasi-blank trees t such that all the paths from root to leaf of b(t) have even
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length. Let L3l be the set of quasi-blank trees t such that b(t) is . Thus

a quasi-blank tree in L3l has exactly three a-leaves whose branching structure
corresponds to the tree depicted above. Likewise, L3r is the language of trees with

branching structure . Note that each quasi-blank tree with 3 a-leaves is

either in L3l or in L3r. We use the following result.

Theorem 4.1. L3l and L3r are in TWA but not in DTWA [2]. Lbranch is in
REG but not in TWA [3].

Actually, in [3] a slightly stronger result was shown: for each TWA A, there
are trees s′ ∈ Lbranch and t′ �∈ Lbranch such that each root-to-root loop of A
in s′ also exists in t′. For the construction in this section we would need yet a
stronger statement, namely that s′ and t′ have the same root-to-root loops. To
this end, we define another tree language Leven on top of Lbranch, as follows.
We recall that in a finite binary tree each node can be naturally addressed by a
{0, 1}-string describing the path from the root to the node where 0 corresponds
to taking the left child of a node. In that spirit, a 0∗1-node is a right child of a
node of the leftmost path. Let Leven be the set of trees t for which b(t) has an
even number of 0∗1-nodes v whose subtree has all branches of even length.

Proposition 4.2. For every TWA A, there are trees s ∈ Leven and t �∈ Leven
which have the same root-to-root loops of A.

Proof. Let A be given. Let s′ and t′ be as guaranteed by Theorem 4.1. We
can assume that t′ simulates s′. (That is, replacing t′ by s′ in any context gives
at least as many root-to-root loops.) This can be enforced in a straightforward
manner. Let m be |Q × Q|, the number of pairs of states of A, and thus the
number of different tree-loops of A. For i ≥ 0, let ti denote the tree which has a
leftmost branch of length m + 1 which has s′ and t′ subtrees as right offspring.
More precisely, a node of the form 0j1 has s′ as subtree if j ≤ i and otherwise t′.
Clearly, ti is in Leven iff i is even. Note that ti+1 is obtained from ti by replacing
one subtree s′ with t′. It is easy to see that therefore ti+1 has all root-to-root
loops of A that ti has. Thus, the ti, for 0 ≤ i ≤ m + 1, induce a monotone
sequence of m+2 sets of root-to-root loops and, consequently, there must be an
i such that the sets induced by ti and ti+1 are identical. We can choose one of
them as s and the other as t. �

c c c c c c c c c c

c c c c c c

c
level 3

level 2

level 1

level 0

a a a

Fig. 2. A leveled tree

We now define the languages that will be used in
our separation proofs. They all consist of trees of
a certain shape. A tree is n-leveled, for n ≥ 0, if
each of its paths from the root to a leaf is labeled by
a sequence of the form (cb∗)n(a + b). Thus, in an
n-leveled tree the root is labeled with c, there are
n antichains labeled by c, some leaves have label a
and all the other nodes are labeled by b. Note that
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a 0-leveled tree consists of a single node labeled with a or b. A node is said to
be on level i if its subtree is an i-leveled tree; it must therefore be labeled by c.
A tree is leveled if it is n-leveled for some n. For a language K of (n−1)-leveled
trees, the K-folding of an n-leveled tree t is defined as follows. The label of the
root is set to b. All nodes below level n − 1 are removed. Each node v at level
n−1 is labeled by a if t|v ∈ K and by b otherwise. The folding of a 0-leveled tree
is just the tree itself with the root label set to b. In the remainder of the section,
we only consider leveled trees and their subtrees. Let languages L0,L1, . . . and
M0,M1, . . . be defined as follows.

– L0 =M0 contains only the single node tree with label a.
– Ln is the set of all n-leveled trees whose Ln−1-folding is in Leven.
– Mn is the set of n-leveled trees whose Mn−1-folding is in L3l.

Note that L1 = Leven and M1 = L3l.

Proposition 4.3. For each n ≥ 1, (a) Ln ∈ DPAn − PAn−1, and (b) Mn ∈
TWA−DPAn−1.

Proposition 4.3 (a) immediately implies Theorem 1.2. Likewise, Theorem 1.3
immediately follows from Proposition 4.3 (b). The lower bounds are shown in the
following subsections. The upper bounds are shown by induction, the difficulty
being the initial case which will be detailed in the full version.

4.2 Oracle Automata

The general idea of the lower bound proofs of Propositions 4.3 is that once an
(n− 1)-pebble automaton drops a pebble in the top level of an n-leveled tree t,
with the remaining n− 2 pebbles it cannot check whether the subtree of a node
at level n− 1 is in Ln−1 (resp., Mn−1). Thus, whenever the automaton uses a
pebble at a node v in the top level it is blind with respect to the properties of
the nodes at level n − 1. But it still can check properties of v that depend on
the position of v in the unlabeled version of t. In this subsection, we formalize
this intuition by the notion of oracle automata which are an extension of tree-
walking automata by structure oracles. Then we show that Theorem 4.1 also
holds for oracle automata. A structure oracle O is a (parallel) deterministic
bottom-up tree automaton [10] that is label invariant. That is, any two trees that
have the same nodes get assigned the same state by O. Therefore, a structure
oracle is defined by its state space Q, an initial state s0 ∈ Q and a transition
function Q×Q → Q. We write tO for the state of O assigned to a tree t. This
notation is extended to contexts: given a context C, CO : Q → Q is defined
by CO(q) = (C[t])O , where t is some tree with q = tO. (All states are assumed
reachable.) For a tree t, a node v of t, and a structure oracle O, the structural
O-information about (t, v) is the pair ((Ct,v)O, (t|v)O) ∈ QQ ×Q.

It should be noted that the result of any unary query expressible in monadic
second-order logic which does not refer to the label predicates can be calculated
based on the structural O-information for some O (and vice-versa). Since the
only type of oracles we use in this paper are structure oracles, we just write oracle



166 M. Bojańczyk et al.

from now on. An oracle tree-walking automaton is a tree-walking automa-
ton A (with state set Q) extended by a structure oracle O (with state set P ).
The only difference to a usual tree-walking automaton is in the definition of the
transition relation. It is of the form: δ ⊆ (Q× (PP ×P )×Σ)× (Q×{ε, ↑,↙,↘
, lift, drop}). Whether a transition of A is allowed depends on the current state
of A, the label of the current node v and the structural O-information about
(t, v). Note that this generalizes tree-walking automata, since the structural in-
formation can include the type. The size of an oracle tree-walking automaton
is defined as |P | + |Q|. The following proposition generalizes Theorem 4.1 and
Proposition 4.2 to oracle automata:

Proposition 4.4. (a) For each deterministic oracle automaton, there are trees
s ∈ L3l, t �∈ L3l that have the same root-to-root loops.

(b) For each oracle automaton, there are trees s ∈ Leven, t �∈ Leven that have the
same root-to-root loops.

4.3 The Proof of the Lower Bounds

This subsection is devoted to the lower bound part of Proposition 4.3. To this
end, let n ≥ 1 and A be an (n− 1)-pebble automaton with m states.

We will inductively construct trees si and ti, i = 1, . . . , n, such that, for each
i, (1) si and ti are i-leveled, (2) si ∈ Li, ti �∈ Li, and (3) si and ti are (i− 1)∗-
equivalent. The base trees s1 and t1 are taken from the following lemma, which
is an immediate consequence of Proposition 4.4.

Lemma 4.5. For every k, there are 1-leveled trees s1 ∈ L1, t1 �∈ L1 that have the
same root-to-root loops for every nondeterministic oracle tree-walking automaton
of size ≤ k.

Let s1 and t1 be the trees obtained by this lemma for k large enough, depending
on A and n. (The exact constraints on k are stated in the proof of Lemma 4.6).
For i > 1, si is obtained from s1 by replacing every a leaf with si−1 and every b
leaf with ti−1. The tree ti is analogously obtained from t1. It is immediate that
si and ti are i-leveled trees and that si ∈ Li and ti �∈ Li.

The lower bound of Proposition 4.3 (a) follows directly from Lemma 3.2 and:

Lemma 4.6. For each i = 0, . . . , n−1, the trees si+1 and ti+1 are i∗-equivalent.

Proof. The proof is by induction on i. For the base case i = 0, we need to
show that the trees s1 and t1 admit the same 0-loops, i.e. loops that do not
use any pebbles. But this follows from Lemma 4.5, since it corresponds to loops
of a tree-walking automaton without pebbles (we do not even need the oracle).
Since Lemma 4.5 talks about root-to-root loops, and we want s1 and t1 to be
equivalent in any context, we need k to be greater than the state space of any
automaton recognizing a 0-behavior from Lemma 3.5.

Let thus i ≥ 1. We assume that si and ti are (i − 1)∗-equivalent, we need
to show that si+1 and ti+1 are i∗-equivalent. An (i + 1)-leveled tree where all
i-leveled subtrees are either si or ti is called difficult. Clearly both si+1 and ti+1



Expressive Power of Pebble Automata 167

are difficult. Let τs and τt be the i∗-behaviors of si and ti, respectively. Note
that τs and τt may be different, our induction assumption only says that the
(i − 1)∗-behaviors of si, ti are the same. The behavior folding t of a difficult
tree t is the i∗-behavior folding of t where every occurrence of ti is replaced by
a single node labeled with τt, similarly for si. Note that the behavior foldings of
si+1, ti+1 are essentially the trees s1, t1, except that a is replaced by τs and b is
replaced by τt.

Let B be a j-behavior, with j ≤ i. In order to complete the proof of the
lemma, we need to show that B is the j-behavior of si+1 if and only if it is
the j-behavior of ti+1. Let C be the automaton from Lemma 3.6 that accepts
i∗-foldings of trees with j-behavior B. We only consider the most difficult case,
when j = i and C has i pebbles. We will show that

Claim. C accepts the behavior folding of si+1 iff it accepts the behavior folding
of ti+1.

The general idea is that over behavior foldings of difficult trees, the i-pebble
automaton C can be simulated by an oracle tree-walking automaton. That is,
we will construct an oracle tree-walking automaton D that accepts exactly the
same behavior foldings of difficult trees as C. The size of D will depend only on
the size of C (and hence in turn, on the size of A). The result follows, as long
as the k used in defining s1 and t1 was chosen large enough so that D cannot
distinguish the behavior foldings of si+1 and ti+1 (which are the same as s1, t1).

We now proceed to show how the simulating oracle tree-walking automaton
D is defined. Recall that an i-run of the automaton C in the behavior folding
of a difficult tree t (actually in any tree) can be decomposed into a sequence of
i-moves each of one of the following types:

– a single transition in which pebble i is not dropped on the tree;
– a drop pebble i transition, followed by an i− 1-loop, followed by lift pebble i.

Clearly, a single transition of the former type can be simulated by a tree-walking
automaton (even without any oracle). It remains to show how to simulate an
i-move of the latter type.

Claim. Let v be a node in the behavior folding t of a difficult pebbled tree.
Whether or not there is an (i− 1)-loop from a state p to a state q in v does not
depend on the labels of t.

The proof of this claim can be found in the full version of the paper. �
The proof of the lower bound of Proposition 4.3 (b) is completely analogous.

Proof (of Theorem 1.1). We will define a regular tree language L that is not
recognized by any pebble automaton. Note that we can not use the union of all
Li, since this language requires checking that all paths have the same number
of c labels. The general idea though, is the same: the intersection of L with the
set of i-leveled trees will be exactly Li. In particular, all the trees si from the
previous lemma belong to L, but none of the trees ti does. Therefore, no pebble
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automaton can recognize L. Now we define the language L. Every path in every
tree from L is of the form (cb∗)∗(a + b). The tree with the single node a is in
L. Furthermore, a tree is in L if its L-folding is in Leven. Here, the L-folding of
a tree with paths of the form (cb∗)∗(a + b) is obtained by replacing each node
whose only c ancestor is the root by a leaf with a if its subtree is in L, and by
a leaf with b otherwise. This language clearly satisfies the desired properties. �
We do not know if the language M, analogously constructed from the Mi, is
in TWA. If it was we would get TWA �⊆ DPA, and thus, by the result of [5],
FO+DTC � FO+posTC.

5 Strong Pebbles Are Weak

The proof of Theorem 1.4 makes use of the techniques developed in Section 3.
As an intermediate model it uses k-weak n-pebble automata in which pebbles
1, . . . , k are weak (and can be lifted only when the head is on them) and pebbles
k + 1, . . . , n are strong (and can be lifted from anywhere). The theorem follows
from the following two lemmas by induction.

Lemma 5.1. For every 0 ≤ k < n, each k-weak n-pebble automaton A has an
equivalent (k + 1)-weak n-pebble automaton A′.

Lemma 5.2. For every k < n, each k-weak pebble deterministic automaton A
with n pebbles has an equivalent (k +1)-weak pebble deterministic automaton A′

with n pebbles.
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Abstract. In this paper, we study the minimum degree minimum span-
ning tree problem: Given a graph G = (V, E) and a non-negative cost
function c on the edges, the objective is to find a minimum cost spanning
tree T under the cost function c such that the maximum degree of any
node in T is minimized.

We obtain an algorithm which returns an MST of maximum degree at
most ∆∗+k where ∆∗ is the minimum maximum degree of any MST and
k is the distinct number of costs in any MST of G. We use a lower bound
given by a linear programming relaxation to the problem and strengthen
known graph-theoretic results on minimum degree subgraphs [3,5] to
prove our result. Previous results for the problem [1,4] used a combina-
torial lower bound which is weaker than the LP bound we use.

1 Introduction

The minimum spanning tree problem is a fundamental problem in combinatorial
optimization. It also has various applications, especially in network design. A
favorable property of a connecting network is not only to have the lowest possible
cost but also to have small load on all nodes. A natural way to formulate this
problem is via the minimum degree minimum spanning tree (MDMST) problem.
In an instance of the MDMST problem, we are given a graph G = (V,E) and a
non-negative cost function c on the edges, and the objective is to find a minimum
cost spanning tree T under the cost function c such that the maximum degree of
T is minimized. Here, the maximum degree of T is the maximum degree among
all vertices in T .

The MDMST problem is closely related to the Hamiltonian path problem.
If the maximum degree of an MST in an unweighted graph is at most 2, we
get a Hamiltonian path. Since we do not assume that the costs are metric, no
approximation is possible unless we relax the degree constraints [6]. Hence, for
the MDMST problem, the natural criterion for approximation is the maximum
degree of the minimum spanning tree.
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1.1 Previous Work

For the MDMST problem, Fischer [4] gave a polynomial time algorithm which
returns a minimum spanning tree with maximum degree b∆∗+logb n for any b >
1 where ∆∗ is the maximum degree of the optimal MST based on the techniques
on Furer and Raghavachari [5]. A generalization of the MDMST problem is the
bounded degree minimum spanning tree problem (BDMST) in which one is given
degree bounds (Bv for vertex v) in an undirected graph with edge costs c and
we demand a minimum cost tree satisfying the degree bounds. The BDMST
problem is closely related to the well-studied Travelling Salesman Problem [8].
In particular, if we set Bv = 2 for each vertex v, the BDMST problem reduces
to the Travelling Salesman Path Problem which has been studied by Lam and
Newman [11].

For the BDMST problem, Konemann and Ravi [9,10] gave bi-criteria approx-
imation algorithms which return a spanning tree with O(Bv + log n) bound on
the degree of vertex v and cost O(copt). Here n is the number of vertices in
the input graph and copt is the minimum cost of a spanning tree obeying the
degree bounds. Chaudhuri et al [1,2] gave a quasi-polynomial time algorithm for
the MDMST problem which returns a tree of maximum degree O(∆∗ + logn

log logn )
and a polynomial time algorithm that returns a tree of maximum degree O(∆∗).
They also generalize both their algorithm for the BDMST problem giving al-
gorithms with similar bounds on the degree as in the MDMST problem and
cost O(cOPT ). All these results [9,1,2] for the BDMST problem are derived from
results for the MDMST problem [4,1,2], thus motivating us to concentrate on
the latter. Subsequent to our work, Goemans [7] has shown an algorithm for the
BDMST problem which returns a tree of optimal cost and degree of vertex v at
most Bv + 2 for each v ∈ V .

An interesting restriction of the MDMST problem arises when all costs are in
{1,∞}. Then, as every spanning tree of cost 1 edges is an MST, the MDMST
problem reduces to finding a spanning tree in the undirected graph induced by
the cost one edges with minimum maximum degree. Fürer and Raghavachari [5]
gave an algorithm which returns a tree with maximum degree within ∆∗ + 1,
where ∆∗ is the degree of the optimal tree.

1.2 Our Work and Contributions

All previous algorithms for the MDMST problem worked with a combinatorial
lower bound given by a witness set. The major contribution in this paper is
working with a stronger lower bound given by a natural linear programming
relaxation of the problem. Also, we strengthen the existing results of Fürer and
Raghavachari [5] and Ellingham and Zha [3]. This helps us prove our main
theorem below. Here, the maximum degree restriction can be generalized to
specify separate bounds on individual nodes.

Theorem 1. Given an instance of the minimum degree minimum spanning tree
problem on a graph G = (V,E) with a cost function c on the edges and a degree
bound Bv on vertex v for each v ∈ V , there exists a polynomial time algorithm
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which shows either that the degree upper bounds are infeasible for any minimum
spanning tree of G or returns an MST in which the degree of each vertex v is at
most Bv + k where k is the number of distinct costs in any MST.

Note that our Theorem 1 strictly generalizes the result of [5] since k = 1 in an
unweighted graph. We introduce the following new ideas to prove Theorem 1:

– We use linear programming relaxation as a check for infeasibility instead
of the witness set that has been used previously [4,1]. If the degree bounds
are feasible for a fractional MST, we use the optimal LP solution to divide
the total degree bound of a vertex v into k parts, each assigned to a set of
incident edges of a particular cost.

Our strategy is to deal with edges of distinct costs separately. We use the
known results for the unweighted case of the problem given by Fürer and
Raghavachari [5] and its generalizations by Ellingham and Zha [3] to prove
a weaker version of theorem 1 with degree guarantees of Bv +2k− 1 instead
of Bv + k as claimed in the theorem. This we prove in Section 3.

– We strengthen the existing results of [5] in Theorem 4, by showing that when
we do not find a witness for infeasibility we can obtain a solution where the
degree bound is strictly satisfied for one chosen vertex while still ensuring
that the violation of this bound is at most one for any other vertex. Similarly,
we strengthen the results of Ellingham and Zha [3] in Theorem 5 (Section 4).
We believe that these improvements are interesting in their own right.

– We use the strengthened guarantees in Theorem 4 and Theorem 5 to prove
Theorem 1. We do this by applying the methods of Theorem 5 on different
unweighted subgraphs, each naturally defined by edges of a particular cost
that are used in an MST. This application proceeds in the top-down order
by considering subgraph of progressively decreasing costs. At each step, we
assign vertices to cost classes in which they can exceed their degree bound
by at most one. We then inductively ensure that any such vertex does not
exceed its bound in any other cost class. The resulting delegate-and-conquer
algorithm is presented in Section 5, along with a proof of our main result.

2 Structure of MSTs

In this section, we prove some properties of MSTs. We then show the implica-
tion of these properties on the structure of the optimal solution to the linear
programming relaxation to the MDMST problem.

2.1 Forest over Forest Problem

We define a new problem which will be used later for the MDMST problem.
Given a forest F of a graph G, we call H a F -tree of G if H does not contain

any edge e = {u, v} such that both u and v are in the same component of F and
F ∪ H is a spanning tree over each connected component of G. Note that for
any F -tree H of G, |H | = (number of connected components in F ) − (number
of connected components of G).
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In an instance of the forest over forest problem, we are given an unweighted
graph G = (V,E) a forest F with connected components C(F ) = {C1, . . . , Ck}
and a degree bound Bv for each vertex v ∈ V . The problem is to find a F -tree
H of G such that degH(v) ≤ Bv.

We also define a notion of witness set which forms the basis of the algorithms
of Ellingham and Zha [3] and Fürer and Raghavachari [5]. Given a set W ⊂ V
and partition P of connected components of F , we say (W,P) is a witness if each
edge e with endpoints in different sets of P must have at least one endpoint in
W . The following lemma is straightforward and proved in [3].

Lemma 1. [3] If (W,P) is a witness, then
∑

w∈W degH(w) ≥ |P| − κ(G) for
any F -tree H of G, where κ(G) is the number of connected components of G.

The following theorem was proved by Ellingham and Zha [3] for the forest over
forest problem.

Theorem 2. [3] There exists a polynomial time algorithm which given an in-
stance of the forest over forest problem over a graph G = (V,E) and a forest F
with degree bound Bv for each vertex v ∈ V , returns a F -tree H and a witness
(W,P) such that:

1. If W �= φ, then the witness (W,P) shows that
∑

w∈W degH′(w) ≥ (
∑

w∈W
Bw) + 1 for each F -tree H ′ of G, i.e., the degree bounds are infeasible for
any F -tree of G.

2. If W = φ, then degH(v) ≤ Bv + 1 for each v ∈ V .

The MDST problem (unweighted MDMST problem) is a special case when
F = φ. Then the problem reduces to finding a spanning tree of G and the
guarantees of the above theorem are exactly the same as those of Fürer and
Raghavachari [5].

2.2 Laminar Structure of an MST

Given a graph G = (V,E) with cost function c on the edges, let the cost function
c take at most k different values on the edges of the MST. Without loss of
generality, we can delete all edges of G of other costs since they do not occur
in any MST. We also assume, without loss of generality, that the range of c is
{1, . . . , k} as the particular values do not change the structure of any MST.

Let G≤i denote the graph over V (G) with only those edges of E(G) that cost
at most i. We let G≤0 denote the graph over vertex set V (G) with no edges. Let
Gi denote the graph with vertex set V (G) and edges in E(G) which cost exactly
i. The following lemma is a standard result about minimum spanning trees.

Lemma 2. T is a minimum spanning tree of a graph G iff T i is a G≤i−1-tree
of G≤i for each i.

Hence, we also delete all edges e of cost i or higher which have both endpoint of
G≤i−1 without affecting any MST T of G. More importantly, Lemma 2 implies
that we can independently select the edges of each cost class one at a time and
solve the appropriate unweighted forest over forest problem to form an MST.
The main issue is to manage the degree of any vertex across different cost classes.
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2.3 LP Relaxation

We formulate the following integer program MSTIP for the problem considered
in Theorem 4 which is a generalization of the MDMST problem.

optB = min
∑

e∈E cexe (1)
s.t. x(δ(v)) ≤ Bv ∀v ∈ V, (2)

x ∈ SPG, (3)
x integer. (4)

Here SPG is the spanning tree polyhedron, i.e., a linear description of the convex
hull of all spanning trees of G. It is well known that optimization over SPG can
be achieved in polynomial time [12]. We then relax the integrality conditions to
obtain MSTLP . If the optimum value of MSTLP is more than the cost of an
MST of G, then clearly the problem is infeasible.

Let x∗ denote an optimal basic feasible solution to MSTLP . The following
lemma follows directly from LP duality and is implicit in [9].

Lemma 3. [9] The optimal basic feasible solution x∗ to MSTLP can be writ-
ten as a convex combination of spanning trees, i.e, there exists spanning trees
T0, . . . , Tn and constants λ0, . . . , λn such that x∗ =

∑n
i=0 λiTi,

∑n
i=0 λi = 1 and

λi > 0 for each 0 ≤ i ≤ n. Here n is the number of vertices in the graph G.

The following corollary to Lemma 3 is straightforward.

Corollary 1. If c(x∗) = cMST then each of the spanning trees T0, . . . , Tn ob-
tained from Lemma 3 are minimum spanning trees.

Proof. As x∗=
∑n

i=0 λiTi, we have cMST=c(x∗)=
∑n

i=0 λic(Ti) ≤
∑n

i=0 λicMST =
cMST

∑n
i=0 λi = cMST . Hence, each of the inequalities cMST ≤ c(Ti) must hold

at equality. ��

2.4 LP Relaxation for Forest over Forest Problem

Given a forest over forest problem of constructing a F -forest of graph G with
degree bound Bv for each vertex v ∈ V , we formulate the following natural IP
formulation for the forest over problem which we call the IPFOR(F,G). Ob-
serve that this is a feasibility problem as a forest over forest problem is over an
unweighted graph.

opt = min 0 (5)
s.t. x(δ(v)) ≤ Bv ∀v ∈ V, (6)

x ∈ SF (G/F ), (7)
x ∈ {0, 1}, (8)
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Here G/F denotes the graph formed when we shrink components of each com-
ponent of F in to a single vertex in G and SF (G) denote the natural linear
formulation for the incidence vectors of all maximal spanning forests of G gener-
alized from [12,9] (This is the same as the formulation for the incidence vectors
of the bases of the graphic matroid of G). If we relax the integrality constraints,
we get a LP relaxation which we denote by LPFOR(F,G). Later in Lemma 5,
we show that if there exists a witness showing infeasibility of the degree bounds
then the above LP relaxation is also infeasible.

2.5 Decomposing MSTs into Forests over Forests

To obtain any minimum spanning tree on an edge-weighted graph G, we need
to solve the LPFOR(G≤i, G≤i+1) for each i = 0, . . . , k−1 where k is the number
of distinct edge-costs in any minimum spanning tree of G. Now, we show that
MSTLP actually solves each of these forest over forest problems with appropriate
degree bounds.

Let Bi
v =

∑
e∈δ(v),c(e)=i x

∗
e . Observe that

∑k
i=1 Bi

v ≤ Bv. Let yie = x∗
e if

c(e) = i else yie = 0 for each i = 1, . . . , k and e ∈ E. Then we have the following
lemma.

Lemma 4. For each 1 ≤ i ≤ k, yi is a feasible solution to the linear program-
ming relaxation of the forest over forest problem of finding a G≤i−1-tree of G≤i

with degree bound Bi
v for each vertex v ∈ V .

Proof. Let x∗ =
∑n

j=0 λjTj as in Lemma 3. Let Hi
j be the forest formed by

cost-i edges in tree Tj. Clearly, each of the forests Hi
j is a valid G≤i−1-tree of

G≤i but may violate the degree bounds. By definition, yi =
∑n

j=0 λjH
i
j and

hence is a valid fractional solution to LPFOR(G≤i−1, G≤i). Also, it satisfies the
degree constraints by definition as

∑
e∈δ(v) yi(e) =

∑
e∈δ(v),c(e)=i xe = Bi

v. ��

The following lemma shows that the LP gives a stronger notion of infeasibility
than any witness.

Lemma 5. If there exists a witness (W,P) showing that the degree bounds are
infeasible then the LPFOR(F,G) is infeasible.

Proof. If (W,P) is a witness showing that the degree bounds are infeasible then
for any F -tree H ,

∑
v∈W degH(v) ≥

∑
v∈W Bv + 1. Hence, the above holds for

F -trees H0, . . . , Hn. For any convex combination, we get

∑
v∈W

n∑
i=0

αidegHi(v) ≥
n∑
i=0

αi(
∑
w∈W

Bw + 1) ≥
∑
v∈W

(
n∑
i=0

αiBv) + 1 =
∑
v∈W

Bv + 1

since
∑n

i=0 αi = 1. Since any feasible solution to LPFOR(F,G) dominates a
convex combination of F -trees (variant of Lemma 3), the degree constraint for
at least one node in W must be violated. ��
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3 Weaker Algorithm

As a warm-up, we describe an algorithm which uses the linear programming
relaxation for the MDMST problem and the algorithm of Ellingham and Zha [3]
as stated in Theorem 2 to obtain a weaker guarantee than claimed in Theorem 1.

Given an instance of MDMST problem over G = (V,E), cost function c and
degree bound Bv on vertex v, the algorithm Alg-Weak is as follows:

1. Find x∗ the optimum solution to the linear programming relaxation to the
problem. If c(x∗) > cMST , declare the problem infeasible.

2. Define Bi
v =

∑
e∈δ(v),c(e)=i x

∗
e . For each i, we construct G≤i−1-tree Hi of

G≤i with degree bounds �Bi
v� for each vertex v ∈ V using the algorithm

described in Theorem 2.
3. Return the MST T = ∪iHi.

Theorem 3. Algorithm Alg-Weak for the MDMST problem on graph G with
a degree bound Bv on vertex v for each v ∈ V and a cost function c returns an
MST such that the degree of any vertex v is at most Bv + 2k − 1 or shows that
the degree bounds are infeasible for any MST of G.. Here, k is the number of
distinct edge costs in any MST.

Proof. The algorithm declares the degree bounds infeasible only if c(x∗) > cMST .
Clearly, then the degree bounds are infeasible for any MST. We only need to
argue that if the c(x∗) = cMST , then the tree returned satisfies the claimed
degree bounds and is an MST.

First, observe the tree T returned is an MST as it is a union of G≤i−1-tree
Hi of G≤i for each i (see Lemma 2).

We only need to show that the algorithm in Theorem 2 returns a F -tree
and not a witness set showing infeasibility of the degree bounds. However, this
directly follows from Lemma 5.

Observe that the degree of any vertex v in tree T is exactly degT (v) =∑k
i=1 degHi(v) ≤

∑k
i=1(�Bi

v� + 1) <
∑k

i=1(B
i
v + 2) ≤ Bv + 2k. Here the last

inequality follows from the fact that
∑k

i=1 Bi
v ≤ Bv. which proves the degree

bound as claimed. This proves Theorem 3. ��

4 A Refined Characterization of Witnesses

In this section, we strengthen Theorem 2 which will help us obtain improved
guarantees for the MDMST problem. However, to illustrate the strengthening
without getting mired in notation, we first state and prove the strengthening of
the result of Fürer and Raghavachari [5] for spanning trees rather than for forests
over forests. Recall however that Theorem 2 is a generalization of the result of
Fürer and Raghavachari [5], so the ideas in this strengthening generalize with
some extra work allowing us to prove Theorem 5 in the the spirit of Theorem 4
(that is described in extended version of this paper [13]).
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4.1 Improving Unweighted Minimum Degree Spanning Trees

Fürer and Raghavachari [5] present an algorithm which returns a tree of maxi-
mum degree ∆∗ + 1 where ∆∗ is the minimum maximum degree of any tree.

We prove a stronger version of their theorem which is useful for the weighted
version of the problem. The algorithm is similar to the algorithm of Fürer and
Raghavachari [5] but our stopping criterion is more stringent.

Given a tree T and an edge f /∈ T , let Cycle(T, f) denote the set of vertices
on the unique cycle in T ∪ f .

Theorem 4. Given a connected graph G = (V,E), degree bound Bv for each
vertex v ∈ V , there is a polynomial time algorithm which returns a spanning tree
T and witness set W ⊂ V (possibly empty) such that

1. Infeasibility: If W �= φ, then for any tree T ′,
∑

w∈W degT ′(w) ≥
∑

w∈W Bw+
1, i.e., the degree bounds are infeasible for any spanning tree of G.

2. Solution: If W = φ, then for each node v ∈ V , degT (v) ≤ Bv + 1.
3. Strong Solution: If W = φ, then for each node in v ∈ V , there exists a tree

Tv such that degTv (v) ≤ Bv and for each u ∈ V \ {v}, degTv(u) ≤ Bu + 1.

While the algorithm of Fürer and Raghavachari [5] results in a tree satisfying
conditions 1 and 2 only, we continue to improve the solution until we satisfy
condition 3 or find a new witness for infeasibility.

Algorithm Alg-Unweighted

1. Find any spanning tree T .
2. Initialize Ugly(T ) = {v|degT (v) ≥ Bv+2}, Bad(T ) = {v|degT (v) = Bv+1},

Good(T ) = {v|degT (v) ≤ Bv}, MakeGood(u) = (u) for each u ∈ Good(T ).
Return (T, φ) if Bad(T ) ∪ Ugly(T ) = φ.

3. If there exists edges e = (u1, u2) ∈ T and f = (v1, v2) ∈ E\T , such that e and
f are swappable (i.e., e lies in the cycle closed by f in T ), v1, v2 ∈ Good(T )
and either u1 or u2 /∈ Good(T ), then do for each w ∈ Cycle(T, f)∩(Ugly(T )∪
Bad(T )):
(a) Good(T ) ← Good(T ) ∪ {w}
(b) Ugly(T )← Ugly(T ) \ {w}, Bad(T )← Bad(T ) \ {w}.
(c) Makegood(w) ← (v1, v2).

4. If any w is shifted from Ugly(T ) to Good(T ) in Step 3, then T ← Improve(w,
T ) and Return to Step 2.

5. Return (T,W = Ugly(T )∪Bad(T )).

The procedure Improve(w, T ) is implemented as follows:

1. If MakeGood(w) = w, then return T .
2. If MakeGood(w) = (u, v), let Tu and Tv be the subtree containing u and

v in T \ W where W = Bad(T ) ∪ Ugly(T ). Here, Bad(T ) and Ugly(T )
are as defined by the algorithm before w is shifted to Good(T ). Let T ′

u =
Improve(u, Tu) and T ′

v = Improve(v, Tv). Return T ′ = T ∪T ′
u∪T ′

v ∪{u, v}\
(Tu ∪ Tv ∪ e) where e ∈ Cycle({u, v}, T ) and is incident at w.
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The procedure Improve(w) ensures that the degree of one ugly vertex reduces
by at least 1 while no new ugly vertices are introduced in the resulting swaps.
This is ensured by the following Lemma from [5]. A vertex v is called non-blocking
in T if degT (v) ≤ Bv.

Lemma 6. [5] Suppose that w ∈ Bad is marked Good in iteration i, when edge
(u, v) is scanned in Step 3c of the algorithm. Then w can be made non-blocking
by applying improvements to the components of Fi containing u and v where Fi
is the subgraph of T generated by nodes marked good in iteration i.

Now, we prove Theorem 4.

Proof. Suppose W �= φ. Let C1, . . . , Cr be the components formed after removing
W from T . Clearly, there does not exist any edge from Ci to Cj for any i, j
else we would have found it in Step 3. Also number of components is at least
r ≥
∑

w∈W degT (w)−2(|W |−1) ≥
∑

w∈W (Bw+1)−2(|W |−1), since degT (w) ≥
Bw + 1 for each w ∈ Bad(T ) and degT (w) > Bw + 1 for each w ∈ Ugly(T ). Let
W = {w1, w2, . . . , wp}. Then, (W,P = {C1, . . . , Cr{w1}, . . . , {wp}}) is a witness
as there is no swap edge wrt to W . Hence by Lemma 1 since G is connected, there
must be at least r + |W | − 1 edges incident at vertices in W in any tree T ′,i.e.,∑

w∈W degT ′(w) ≥
∑

w∈W Bw + |W | − 2(|W | − 1) + |W | − 1 =
∑

w∈W Bw + 1.
This proves (1) in the theorem.

Suppose now that W = φ. Algorithm Alg − Unweighted returns a spanning
tree T and set W = Ugly(T )∪Bad(T ) = φ. Hence every vertex has been marked
Good implying that for any vertex v ∈ V , degT (v) ≤ Bv + 1, proving (2).

Now, we prove (3). Assume that W = φ. Take any v ∈ V . Hence, v ∈ Good(T )
where T is the final tree returned by the algorithm. Either degT (v) ≤ Bv in which
case Tv = T suffices. Else degT (v) = Bv + 1 and v was shifted from Bad(T ) to
Good(T ) in step 3b. Then by Lemma 6, there exist a series of swaps which do not
increase the degree of any vertex u ∈ V above Bu + 1 and make v non-blocking.
The tree Tv obtained after performing these swaps by invoking Improve(v, Tv)
suffices for proving (3). ��

4.2 Forests over Forests Revisited

In this section, we obtain strengthening of the results of Ellingham and Zha [3]
on the lines of the results in Section 4.1. We are given an instance of forest over
forest problem to construct a F -tree of G satisfying the degree bounds Bv for
each vertex v ∈ V . We first begin with a few definitions.

Let C(F ) be set of connected components of F . We will refer these connected
components as supernodes. For any vertex v, we will denote Fv to be the supern-
ode containing v.

We present the following theorem in the spirit of Theorem 4.

Theorem 5. Given a graph G = (V,E), a forest F , a degree bound Bv for
each vertex v ∈ V , there exists a polynomial time algorithm StrongForest which
returns a F -tree H of G and witness set (W, CW ) where W ⊂ V and CW is a
partition of C(F ) such that
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1. Infeasibility: If W �= φ, then
∑

w∈W degH′(w) ≥
∑

w∈W Bw + 1 ∀ F -trees
H ′, i.e, the degree bounds are infeasible for any F -tree of G.

2. Solution: If W = φ, then for each v ∈ V , degH(v) ≤ Bv + 1 and in each su-
pernode Fi ∈ C(F ) there is at most one vertex for which the above inequality
is satisfied at equality.

3. Strong Solution: If W = φ then for each supernode Fi ∈ C(F ) there exists a
F -tree Hi which satisfies the condition (2) above. Moreover, for each vertex
u ∈ Fi we have degHi(u) ≤ Bu.

Ellingham and Zha [3] prove the above theorem with conditions 1 and a weaker
version of condition 2 and we strengthen it proving condition 3. Due to space
considerations we omit the algorithm and the proof of the theorem since they are
very similar to that for trees, only more notationally tedious. They are included
in the technical report [13]. Note that the above theorem strictly generalizes
Theorem 4, by setting F = ∅.

Another point to note here is that the strong solution guarantee can be applied
to each connected component of G, i.e., we can choose one supernode from each
connected component of G when obtaining the strong solution. This follows from
the fact the F -tree problem over each connected component of G is independent
and can be treated separately. We use this fact critically later in the algorithm
for the MDMST problem.

5 Delegating Vertices Using Refined Witnesses

We now describe an algorithm, which given an MDMST problem on graph G =
(V,E) with cost function c and degree bounds Bv gives a better guarantee than
one in Section 2. We use the algorithm StrongForest of Theorem 5 instead of
the algorithm forest over forest to obtain a improved guarantee for the MDMST
problem.

Algorithm Delegate-and-Conquer

1. Step 1: Initialization
Solve the LP relaxation for the MDMST problem to obtain the optimal
solution x∗ and if c(x∗) > cMST , we declare the instance infeasible. Else, let
Bi
v =

∑
e∈δ(v),c(e)=i x

∗
e for each v ∈ V and for each i = 1, . . . , k. Observe

that
∑k

i=1 Bi
v ≤ Bv for each v ∈ V . Observe that by Lemma 5, invoking

the algorithm StrongForest of Theorem 5 to construct a G≤i−1-tree of G≤i

with degree bounds �Bi
v� will always result in an empty witness set.

2. Step 2: Using StrongForest
Find a G≤k−1-tree Hk of G≤k with degree bounds �Bk

v � for each vertex v
using the algorithm described in Theorem 5. Let Sk = {v|degHk(v) = �Bk

v�+
1}. Observe that at most one vertex of any connected component of G≤k−1

lies in Sk. This follows from condition (2) of Theorem 5 as each connected
component of G≤k−1 is a supernode in the forest-over-forest problem solved.
Also, let Mk = Hk.
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3. Step 3: Delegating the vertices to cost classes
For i = k − 1 down to 1, repeat

(a) From each connected component of G≤i there is at most one vertex in
Si+1 (proved in Lemma 7). Apply algorithm StrongForest of Theorem 5
to each component Gi

j of graph G≤i. Apply condition (3) of Theorem 5
by selecting from each component Gi

j the supernode containing v where
v ∈ Si+1 to obtain G≤i−1-tree M i of G≤i.

(b) Define Si = {v|deg∪k
r=iM

r (v) = (
∑k

j=i�Bj
v�) + 1}

Return T = ∪ki=1M
i.

Theorem 6. Given an instance of the MDMST problem over a graph G =
(V,E), cost function c and degree bound Bv for vertex v ∈ V , Algorithm Delegate-
and-Conquer returns either an MST T such that degT (v) ≤ Bv+k or shows that
the degree bounds are infeasible for any MST. Here k is the number of different
costs in any MST.

Proof. We declare the problem infeasible when c(x∗) > cMST in which case the
problem is clearly infeasible. The Step 2 of the algorithm returns G≤k−1-tree
Hk of graph G≤k satisfying the conditions of Theorem 5. First we prove the
following claim.

Lemma 7. There is at most one vertex of Si in each connected component of
G≤i−1 for each 1 ≤ i ≤ k.

Proof. The proof of the claim is by induction for i = k down to 1. Clearly, this
is true for Sk from condition (2) of Theorem 5. Suppose it is true for Si+1 such
that 2 ≤ i + 1 ≤ k. We claim that it is true for Si. Observe that the candidate
vertices for Si are vertices in Si+1 or vertices which exceed their corresponding
degree bound �Bi

v� in M i.
Take any connected component Gi−1

j of G≤i−1. If there is some vertex v in
Gi−1
j that is in Si+1, then Gi−1

j is chosen in Step 3(a) of the algorithm as the
selected supernode. Hence, no vertex in this connected component exceeds the
degree bound �Bi

v� in M i by condition (3) of Theorem 5. Hence, v remains the
only vertex that might exceed its total degree bound in ∪kr=iM i. Else, if the
connected component of G≤i−1 is such that there is no vertex of Si+1 in it,
then we introduce at most one vertex which exceeds the degree bound in M i by
condition (2) of Theorem 5. In either case there is at most one vertex of Si in
each component of G≤i−1. Hence, the property holds for each 1 ≤ i ≤ k. ��

Hence, we obtain degT (v) =
∑k

i=1 degMi(v) ≤ (
∑k

i=1�Bi
v�) + 1 <

∑k
i=1(B

i
v +

1) + 1 = Bv + k + 1. This implies that degT (v) ≤ Bv + k for each v ∈ V . ��

Observe that in the above proof, if each Bi
v were integral, then we would have

obtained that degT (v) ≤ Bv+1 as we would ”save” k−1 in rounding of fractional
values.
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Better Algorithms for Minimizing Average

Flow-Time on Related Machines

Naveen Garg� and Amit Kumar��
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Abstract. We consider the problem of minimising flow time on related
machines and give an O(log P )-approximation algorithm for the offline
case and an O(log2 P )-competitive algorithm for the online version. This
improves upon the previous best bound of O(log2 P log S) on the com-
petitive ratio. Here P is the ratio of the maximum to the minimum
processing time of a job and S is the ratio of the maximum to the mini-
mum speed of a machine.

1 Introduction

A well-studied setting in the scheduling literature is one where we have multiple
machines of differing speeds. This is commonly referred to as the related machine
scenario. All machines are equally capable so that a job can be scheduled on any
machine. The only distinction is that a machine of speed twice that of another
machine would take half the time to finish the same job.

The jobs arrive over time and have to be scheduled so that the total flow time
is minimized. The flow time of a job is the difference between its completion
and release times and is equal to the total time that the job is waiting or being
processed. We will permit preemption, so that a job can be stopped even before
it is completed and resumed later. However, we will not permit migration, i.e.
the job cannot be resumed, after preemption, on another machine. Thus we
are looking for a preemptive, non-migratory schedule on m related machines
which minimizes the total flow time. In the three field notation of scheduling
problems [7] this is denoted by Q|rj , pmtn|

∑
j(Cj − rj).

When all machines have the same speed — the setting of parallel machines —
the problem is well-studied. Leonardi and Raz [8] were the first to give an online
algorithm for this problem with a bounded competitive ratio. They showed that
the Shortest-Remaining-Processing-Time (SRPT) rule gives a schedule which
is O(min(log P, log(n/m)))-competitive, where P is the ratio of the maximum
processing time to the minimum processing time and n is the number of jobs.
They also established an Ω(log P ) lower bound on the competitiveness of any
randomized online algorithm. The schedule obtained by Leonardi and Raz is
migratory. Awerbuch et.al. [2] gave an online non-migratory algorithm with a
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competitive ratio of O(min(log P, log n))). This algorithm had the notion of a
central queue where a job would wait till it was scheduled on one of the m ma-
chines. Chekuri et.al.[3] presented a simple O(min(log P, log n/m)))-competitive
non-migratory algorithm that scheduled jobs based on their class instead of the
remaining processing time. Avrahami and Azar [1] obtained the same bounds
with an algorithm without a central queue so that now a job is dispatched to
the appropriate machine as soon as it is released.

For the case of related machines, the first algorithm with a bounded compet-
itive ratio was obtained by the authors [4]; this algorithm had a O(log2 P log S)
competitive ratio, where S is the ratio of the maximum machine-speed to the
minimum speed. Prior to this Goel [5] obtained a 2-competitive algorithm for
unit-sized jobs.

In this paper we develop a new linear programming approach to minimizing
flow time on related machines. Our LP is a natural extension of the preemptive
time-indexed formulation that Goemans [6] introduced in the context of single
machine scheduling approximation algorithms. This LP is, seemingly, quite weak,
since a fractional solution may schedule a job simultaneously on all machines.
The flow time of a job is captured as the difference between its release time
and the average time the job is scheduled in the LP solution and this quantity
could be much smaller than the actual flow time of the job. In spite of all
this we show a way of rounding this LP solution to obtain a non-migratory
schedule whose flow time is at most O(log P ) times the objective value of the
LP solution. This gives an offline, O(log P )-approximation algorithm for this
problem.

We do not know how to solve this LP in an online manner. However, we can
modify the linear program so that an optimum solution to the modified LP can
be found in an online manner. Our procedure for rounding the LP solution into
a non-migratory schedule continues to apply even in this online setting. Finally
we show that the optimum solution to our modified LP is at most O(log P ) times
the flow time of the best schedule. This implies an O(log2 P )-competitive online
algorithm for minimizing flow time on related machines. For the case of parallel
machines, we do not need to modify the LP to solve it online and so we obtain
an O(log P ) competitive algorithm for parallel machines.

We remark that for both the offline and the online algorithm we obtain non-
migratory schedules that are, respectively, within O(log P ) and O(log2 P ) of the
best offline migratory schedule. This also shows that permitting job-migration
does not reduce flowtime by more than an O(log P ) factor.

2 Preliminaries

We consider the scheduling problem where we are given machines with different
speeds. For ease of notation, we shall work with slowness rather than speed. The
slowness of a machine is defined as the reciprocal of its speed. In other words,
a job j of size pj will require pj · s amount of processing time to get completely
processed by a machine of slowness s.
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There are m machines and let si, si ≥ 1 be the slowness of machine i. The
machines are ordered so that s1 ≤ s2 ≤ · · · ≤ sm. There are n jobs. Job j has size
pj and, as mentioned above, takes pj ·si amount of time to finish on machine i. Let
rj be the release time of job j. We say that a job j is of class k if 2k−1 ≤ pj < 2k.
Let the minimum size of a job be 1 and P be the maximum size of a job. We
shall assume, without loss of generality, that all quantities are integers.

A schedule S specifies which job gets processed on each machine at each
unit of time. Of course a job can start processing only after its release date.
In this paper, all our schedules will be non-migratory and pre-emptive. How-
ever, our algorithms might construct migratory schedules on way to constructing
non-migratory schedules. Also note that we can restrict ourselves to only those
schedules which pre-empt jobs at integral time steps.

Let OPT denote the optimal schedule. We first consider the off-line problem
where the sizes and the release dates of all the jobs are known at the beginning.
Then we consider the on-line version of this problem where jobs arrive over time.

3 Off-Line Algorithm

In this section we give a polynomial time O(log P )-approximation algorithm for
this problem. We first give a linear programming formulation for this problem
and then show how to convert an optimum LP solution to a non-migratory
schedule.

3.1 Linear Programming Formulation

We formulate the problem as an integer program. In this formulation, we will
even allow migratory schedules as feasible solutions. In fact we will even allow
the schedule to process the same job simultaneously over multiple machines. The
lower bound generated from such a formulation will be enough for our purposes.
For each job j, machine i and time t, we have a variable xi,j,t which is 1 if
machine i processes job j from time t to t+1, 0 otherwise. The integer program
is as follows. The variable j refers to jobs, i to machines and t to time.

min
∑
j

∑
i

∑
t

xi,j,t ·
(

t− rj
pj · si

+
1
2

)
(1)

∑
j

xi,j,t ≤ 1 for all machines i and time t (2)

∑
i

∑
t

xi,j,t
si

= pj for all jobs j (3)

xi,j,t = 0 if t < rj , for all jobs j, machines i, time t (4)
xi,j,t ∈ {0, 1} for all jobs j, machines i, time t (5)

Constraint (2) refers to the fact that a machine can process at most one job at
any point of time. Equation (3) says that job j gets completed in the schedule.
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Equation (4) denotes the simple fact that we cannot process a job before its
release date. It should be clear that any integral solution gives rise to a schedule
where jobs can migrate across machines and may even get processed simultane-
ously on different machines. The only non-trivial equation in the integer program
is the objective function. The following lemma shows that the optimal value of
this integer program is a lower bound on the total flow-time of any non-migratory
schedule. Let ∆j(x) denote the term

∑
i

∑
t xi,j,t ·

(
t−rj

pj ·si
+ 1

2

)
. So the objective

function is to minimize ∆(x) =
∑

j ∆j(x).
Let S be a non-migratory schedule. S also yields a solution to the integer

program in a natural way – let x′ denote this solution.

Lemma 1. The total flow-time of S is at least
∑

j ∆j(x′).

Proof. Fix a job j and suppose S schedules it on machine i. Let the completion
time of j in S be t. So its flow-time is t − rj . Notice that ∆j(x′) is maximized
when j is scheduled from t− pj · si to t− 1. So

∆j(x′) ≤
pj ·si∑
t′=1

(
t− rj − t′

pj · si
+

1
2

)
≤ t− rj .

Thus
∑

j ∆j(x′) is at most the total flow time of S.

Recall that OPT is the optimal non-migratory schedule. The lemma above says
that the integer program yields a lower bound on the total flow-time of OPT. For
the purpose of subsequent discussion, we modify the integer program slightly.
We replace the objective function

∑
j ∆j(x) by

∑
j ∆′

j(x), where

∆′
j(x) =

∑
i

∑
t

xi,j,t

(
t− rj
�pj� · si

+
1
2

)
.

Here �pj� equals pj rounded up to the nearest power of 2. Note that �pj� is the
same for all jobs j of the same class. Thus the terms in this new objective function
can be grouped together in a convenient manner. Since �pj� ≥ pj , the optimal
value of the integer program cannot increase and so the statement of Lemma 1
still holds. Further note that �pj� ≤ 2 ·pj , and so the optimal value of the integer
program does not change by more than a factor of 2. Let ∆′(x) =

∑
j ∆′

j(x).
We now relax the integer program by replacing the constraints (5) by 0 ≤

xi,j,t ≤ 1. Let x∗ be an optimal fractional solution this linear program.

3.2 Building the Non-migratory Schedule

We now show how to get a non-migratory schedule Q. Let y be a feasible so-
lution to the LP corresponding to the schedule Q. The solution y is related
to the optimum solution x∗ in the following manner: If slot (i, t) is full in x∗,
i.e.
∑

j x∗
i,j,t = 1, then we will have that

∑
j∈Jk

yi,j,t ≤
∑

j∈Jk
x∗
i,j,t, where Jk

denotes jobs of class k. However, if some part of slot (i, t) is empty in x∗,
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i.e.
∑

j x∗
i,j,t < 1, then this empty part can be used in y to schedule jobs of

any class.
For each slot (i, t) and class k we associate a variable zi,k,t which is initially

equal to
∑

j∈Jk
x∗
i,j,t/si and denotes the total volume of class k jobs which have

been processed in slot (i, t) in the solution x∗. In the course of our algorithm we
reduce zi,k,t till it becomes zero.

We now describe our procedure for obtaining Q. We consider the slots in
increasing order of time. At time t, consider machine i and class k. If there
is a job, j, of class k which has been scheduled (in Q) on machine i and not
completed yet, we schedule j in this slot to the maximum possible extent. This
is the minimum of two quantities — the space available in this slot which is∑

j∈Jk
x∗
i,j,t and the remaining processing time of this job.

If there is no job, j as above, or if we finish the job in this slot, we need
to identify another job of class k to schedule in this slot. If there is a job, j,
of class k which has been released but not scheduled on any machine and if
pj ≤

∑
t′≤t
∑m

i′=i zi′,k,t′ then we schedule j in this slot to the maximum possible
extent. Further, we reduce the variables zi′,k,t′ , i ≤ i′ ≤ m, t′ ≤ t by a total
amount equal to pj. The variables are reduced in increasing order of (i′, t′).

For each slot (i, t) the above procedure is repeated for every class k. This
ensures that for every class k,

∑
j∈Jk

yi,j,t ≤
∑

j∈Jk
x∗
i,j,t. If some part of this

slot is empty in x∗ we try to use it in solution y by using the above procedure
to find a job (of any class) which can be scheduled in this slot. This job is then
assigned to the maximum possible extent. The process may have to be repeated
till this slot is fully occupied.

We must show that this procedure will eventually schedule all the jobs. Sup-
pose for the sake of contradiction there is a job j which does not get assigned
to a machine in our schedule. Let k denote its class. Let t be the time by which
all jobs finish processing in schedule Q. Initially, the sum

∑
i

∑
t zi,k,t equals the

total processing time of all jobs in class k and every time we schedule a job of
class k we remove an amount equal to its processing time from this sum. This
implies that eventually, this sum is exactly pj and so j will get scheduled when
we encounter an empty slot at time t. This yields a contradiction. Thus, our
algorithm yields a feasible non-migratory schedule.

Let P (x∗) denote the total time for which jobs are processed in solution x∗,
i.e., P (x∗) =

∑
i

∑
j

∑
t x

∗
i,j,t. We define P (y) similarly.

Lemma 2. P (y) ≤ P (x∗).

Proof. When we assign a job of class k to machine i in schedule Q, we re-
duce

∑m
i′=i
∑

t′≤t zi′,k,t′ by a total amount pj. Since si′ ≥ si, the reduction in∑m
i′=i
∑

t′≤t si′ ·zi′,k,t′ is greater than si ∗pj, the processing time of j in Q. Note
that the sum

∑
i

∑
t si · zi,k,t equals the total processing time of all class k jobs

in the solution x∗. This implies that the total processing time of class k jobs is
less in y than in x∗.

Now we try to bound the flow-time of our schedule.
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Lemma 3.
∆′(y) ≤ ∆′(x∗) + 2 logP · P (x∗).

Proof. Note that

∆′(y)−∆′(x∗) =
P (y)− P (x∗)

2
+
∑
i

∑
j

∑
t

(yi,j,t − x∗
i,j,t) · t

si · �pj�

≤
∑
k

∑
i

∑
j∈Jk

∑
t

(yi,j,t − x∗
i,j,t) · t

si · 2k

where the last inequality follows from Lemma 2.
For a fixed class k and machine i, consider the quantity

∑
t

∑
j∈Jk

(yi,j,t −
x∗
i,j,t) · t/si. A little thought yields that this is same as the sum over all t of the

difference in volume of jobs of class k which get processed on machine i after
t. Summing it over all i, this is same as the sum over t of the difference in the
volume of jobs of class k which get processed after t in the two schedules.

Define Vk,t(x∗) as the volume of class k jobs which get processed by time t in
x∗. Define Vk,t(y) similarly. Since the total volume of jobs of a particular class
that get processed in the two schedules is the same, we see that for any fixed k,

∑
i

∑
t

∑
j∈Jk

(yi,j,t − x∗
i,j,t) · t

si · 2k
=
∑
t

(Vk,t(x∗)− Vk,t(y))/2k.

Claim. Vk,t(x∗) − Vk,t(y) is at most mt · 2k+1, where mt is the number of busy
machines in our schedule Q at time t.

Proof. Consider the quantity
∑

i

∑
t′≤t zi,k,t′ . Initially this is equal to Vk,t(x∗).

Every time we schedule a job of class k we reduce this quantity by the processing
time of the job. Hence by time t, the reduction in this quantity equals the total
volume of jobs that have been scheduled in Q. Let zti,k,t′ denote the value of
the variable zi,k,t′ after our algorithm has processed slot (i, t). Thus Vk,t(x∗) −∑

i

∑
t′≤t z

t
i,k,t′ equals Vk,t(y) plus “the unprocessed volume of class k jobs that

have been scheduled but have not finished by time t in Q”.
To bound

∑
i

∑
t′≤t z

t
i,k,t′ , we fix a machine i and consider the sum∑

t′≤a zai,k,t′ + pa, where pa is the unprocessed volume of the class k job that is
scheduled but has not finished at time a. We argue that for any a this sum can
never exceed 2k.

When machine i has an unfinished job of class k, the increase
∑

t′≤a+1 za+1
i,k,t′−∑

t′≤a zai,k,t′ is offset by the decrease pa − pa+1. Thus, till i has an unfinished
job, this sum cannot increase. If we schedule a new job from slot (i, a + 1), then
pa+1 is balanced by the decrease

∑
t′≤a+1 za+1

i,k,t′ −
∑

t′≤a zai,k,t′ . This is because,
when we scheduled j we reduced zi,k,t′ , t

′ ≤ a + 1 by an extent of pj.
Thus, this sum can increase beyond 2k only if no job of class k is scheduled

in slot (i, a + 1). If
∑

t′≤a+1 za+1
i,k,t′ > 2k then the total volume of class k jobs

processed in x∗ by time a + 1 exceeds the total volume of class k jobs scheduled
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in y till time a + 1 by at least 2k. This implies that there is a job, j, of class k
which has been released but not scheduled in Q till time a + 1. Since pj ≤ 2k,
our procedure would have scheduled j at slot (i, a + 1) and this leads to a
contradiction.

Now suppose there are idle machines at time t in our schedule Q. Let i be such
a machine of smallest index. Then we claim that

∑m
i′=i
∑

t′≤t z
t
i′,k,t′ is at most

2k. Indeed if it were greater than 2k, then, as above, we can argue that there
must be a job j of class k which has been released by time t but not scheduled
in Q. Then machine i should not be idle at this time.

Combining these two arguments, we see that
∑

i

∑
t′≤t z

t
i,k,t′ plus “the total

unprocessed volume of class k jobs which have been scheduled but not finished
by time t” is at most mt · 2k + 2k. Thus Vk,t(x∗)− Vk,t(y) is at most (mt + 1)2k

which, since mt ≥ 1 is at most mt · 2k+1.

Thus we get

∆′(y)−∆′(x∗) ≤
∑
k

∑
t

mt · 2k+1/2k

= (2 · log P )
∑
t

mt

= 2 logP · P (y)
≤ 2 logP · P (x∗),

where the last inequality follows from Lemma 2.

The solution y can be converted into a schedule Q by splitting each slot (i, t)
into sub-slots of length proportional to yi,j,t and scheduling job j in the sub-slot
corresponding to it.

We are ready to relate the flow-time of the schedule Q to that of OPT.

Lemma 4. The total flow-time of our schedule Q is at most 2∆′(y)+P (y)·log P .

Proof. Fix a job j. Let Cj be its completion time in schedule Q. It is easy to see
that 2∆′

j(y) is at least the flow-time of j minus “the total time for which j is
preempted in schedule Q”. Since on any machine, there can be at most one job
of class k which is preempted, we see that the sum 2

∑
j∈Jk

∆′
j(y) is at least the

total flow time of all class k jobs minus “the total processing time of schedule Q”.
Thus we get that the flow-time of our schedule is at most 2∆′(y) + log P · P (y).

We are now ready to state the main theorem.

Theorem 1. There is a polynomial time O(log P ) approximation algorithm for
minimizing flow time on related machines.

Proof. Combining Lemmas 4, 2 and 3, we see that the flow-time of schedule Q is
at most 5P (x∗) log P + 2∆′(x∗). Now P (x∗) is at most twice of ∆′(x∗) (because
of the additive 1/2 term in the objective function). Lemma 1 finally implies the
theorem.
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4 The On-Line Algorithm

We now give an O(log2 P )-competitive algorithm for this problem. It is easy to
see that a solution to the linear program can be rounded into a non-migratory
solution in an on-line manner. However, we do not know how to find an optimum
solution to the linear program in an online manner. In this section we first present
a modified linear program and argue that its optimum solution can be computed
online. We then relate the optimum of this linear program to the flow-time of
the optimal schedule.

Let x be a solution to the linear program. We now define the fractional flow
time of job j, ∆′′

j (x) as

∆′′
j (x) =

∑
i

∑
t

xi,j,t ·
t− rj
�pj� · si

.

Note that this is only less than the fractional flow-time, as defined earlier and
so the sum of ∆′′

j (x), which is the objective function, continues to be a lower
bound on the optimum.

With this modification we cannot claim any more that P (x) ≤ 2
∑

j ∆′′
j (x).

Bounding the processing time of the fractional solution was crucial to the analysis
of the off-line algorithm. Our second modification to the linear program lets us
do this. We now require that a job j is scheduled on machine i at least �pj� · si
time units after its release. We encode this in the linear program by changing
constraint (4) to xi,j,t = 0 if t ≤ rj + �pj� · si. However, now it is no more true
that the objective function is a lower bound on the optimum flow time.

The objective function of this modified linear program is equivalent to min-
imizing

∑
j

∑
i

∑
t
xi,j,t·t
�pj�·si

. This is because of the constraint (3) in the linear

program. We claim that the following greedy procedure yields an optimum so-
lution to the linear program : at each time t consider the machines in increasing
order of slowness. On machine i schedule the job, j, of smallest class which is
available (t ≥ rj + si · �pj�) and not completed (

∑
t

∑
i xi,j,t/si < pj). Schedule

this job to the maximum extent possible (i.e., until the slot is fully occupied
or this job finishes) and continue. Note that xi,j,t denotes the fraction of time
during (t, t + 1) for which j was scheduled on i.

We now argue that the solution obtained by this greedy procedure is optimal.

Lemma 5. The solution x obtained by the greedy algorithm is an optimal solu-
tion to the linear program.

Proof. Let O′ be an optimal solution to the modified LP and let x∗ denote the
solution corresponding to O′. For a class k of jobs, machine i and time t, define
u∗
i,k,t as

∑
j∈Jk

x∗
i,k,t, i.e., the total processing done on class k during (t, t + 1)

on i. Define ui,k,t with respect to the greedy solution x similarly. Clearly it is
enough to show that ui,k,t = u∗

i,k,t for all i, k, t.
So let us suppose for the sake of contradiction that greedy is not optimal.

Suppose t is the first time at which the two solution differ in the class of job
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scheduled, i.e., there is a class k and machine i for which u∗
i,k,t �= ui,k,t (if there

are multiple machines i at time t for which this happens, then pick the machine
with the smallest index). Then there are jobs j, j′ of different class such that
greedy processed more of j than j′ during (t, t + 1) on i while the converse is
true for O′. So O′ must have processed j at some other time t′ ≥ t on some
other machine i′ (the pair (i, t) and (i′, t′) are different). We reduce x∗

i,j′,t by
an amount ε. Then ε/si amount of job j′ has to be accommodated at the slot
on machine i′ at time t′. So we increase x∗

i′,j′,t′ by ε · si′/si. To avoid violating
the constraint (2) at i′, t′, we reduce x∗

i′,j,t′ by ε · si′/si and increase x∗
i,j,t by ε.

Clearly we have a valid solution. Let us see the change in the objective function
for x∗. The change is equal to

t

si
·
(

ε

�pj�
− ε

�pj′�

)
+

t′

si′
·
(

ε · si′
si · �pj′�

− ε · si′
si · �pj�

)
= (t− t′)

ε

si
·
(

1
�pj�

− 1
�pj′�

)
Since �pj� < �pj′� and t ≤ t′ the above quantity is non-positive. Thus we have
brought O′ closer to our schedule without increasing the cost. By repeatedly
doing such operations we can make O′ identical to the greedy schedule.

As in the offline case, we convert the greedy solution, x, to obtain a solution y
which corresponds to a non-migratory schedule, Q. Define ∆′′(y) =

∑
j ∆′′

j (y)
for any feasible solution y. The following claim bounds the processing time of
the greedy solution.

Claim. For any feasible solution y, the total processing time, P (y) is at most
∆′′(y).

Proof. ∆′′(y) =
∑

j,i,t
yi,j,t(t−rj)

�pj�·si

≥
∑

j,i,t yi,j,t = P (y). The last inequality fol-

lows from the fact that yi,j,t > 0 only if t ≥ rj + �pj� · si.

Claim. The total flow time of schedule Q is at most (4 + 9 logP ) ·∆′′(x).

Proof. It is easy to show that if a job gets released at rj and finishes at t on
some machine, its flow-time is at most 4 ·∆′′

j (y) plus “the total time for which j
was interrupted”. Since the interruption intervals for jobs of the same class on a
particular machine are disjoint, we can bound the total interruption time for all
the jobs by P (y) · log P . So we get that the total flow time is at most 4 ·∆′′(y)+
P (y) log P . From Lemma 3, we know that ∆′′(y) is at most ∆′′(x)+2·P (y)·logP .
This implies that the flow time of Q is at most 4 ·∆′′(x) + 9 · P (y) · log P .

As in the offline case, we can argue that P (y) ≤ P (x). Combining this with
the claim above completes the proof.

Finally we bound ∆′′(x) in terms of the flow-time of the optimum schedule OPT
(recall that OPT can schedule a job anytime after its release).

Claim. F (x) is at most O(log P ) times the flow-time of OPT.
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Proof. Note that F (x) is less than the optimum flow time of the schedule with
the restriction that a job, j is scheduled on machine i at least �pj� ·si units after
its release.

Now consider OPT. Fix a class k and let us only consider the time slots in
OPT where we schedule class k jobs. Now we shift each class k job on a machine
i by 2k · si units (where the shifting is done with respect to these slots only).
Note that this shifting does not put any of these jobs into a slot of another class.
The shifting process may occupy empty slots at the end of the schedule. If we do
this for each k (starting from k = 1), we get a schedule which obeys the property
that a job j, of class k, is scheduled on a machine i only after rj + 2k · si time.

Now note that the total increase in the flow time of jobs of class k is at most
twice the processing time of the optimum schedule. This implies that the new
schedule obtained has flow time at most (1+2 logP ) times the flow-time of OPT.

Combining the last two claims we obtain the following theorem.

Theorem 2. There is an online algorithm for minimizing flow time on related
machines which has a competitive ration of O(log2P ) where P is the ratio of the
maximum to the minimum processing time of a job.

5 Open Problems

We believe that such a linear programming approach should lead to an offline ap-
proximation algorithm for minimizing flow time on unrelated machines. We leave
this as an open problem. It would also be interesting to close the gap between
the O(log2 P ) upper bound and the Ω(log P ) lower bound on the competitive
ratio for flow time on related machines.
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Abstract. Given a graph G and degree bound B on its nodes, the
bounded-degree minimum spanning tree (BDMST) problem is to find
a minimum cost spanning tree among the spanning trees with maxi-
mum degree B. This bi-criteria optimization problem generalizes several
combinatorial problems, including the Traveling Salesman Path Problem
(TSPP).

An (α, f(B))-approximation algorithm for the BDMST problem pro-
duces a spanning tree that has maximum degree f(B) and cost within a
factor α of the optimal cost. Könemann and Ravi [13,14] give a polynomial-
time (1 + 1

β
, bB(1 + β) + logb n)-approximation algorithm for any b > 1,

β > 0. In a recent paper [2], Chaudhuri et al. improved these results with a
(1, bB +

√
b logb n)-approximation for any b > 1. In this paper, we present

a (1 + 1
β
, 2B(1 + β) + o(B(1+ β)))-approximation polynomial-time algo-

rithm. That is, we give the first algorithm that approximates both degree
and cost to within a constant factor of the optimal. These results generalize
to the case of non-uniform degree bounds.

The crux of our solution is an approximation algorithm for the related
problem of finding a minimum spanning tree (MST) in which the maxi-
mum degree of the nodes is minimized, a problem we call the minimum-
degree MST (MDMST) problem. Given a graph G for which the degree
of the MDMST solution is ∆opt, our algorithm obtains in polynomial
time an MST of G of degree at most 2∆opt + o(∆opt). This result
improves on a previous result of Fischer [4] that finds an MST of G
of degree at most b∆opt + logb n for any b > 1, and on the improved
quasipolynomial algorithm of [2].

Our algorithm uses the push-relabel framework developed by Gold-
berg [7] for the maximum flow problem. To our knowledge, this is the
first instance of a push-relabel approximation algorithm for an NP-hard
problem, and we believe these techniques may have larger impact. We
note that for B = 2, our algorithm gives a tree of cost within a (1 + ε)-
factor of the optimal solution to TSPP and of maximum degree O( 1

ε
) for

any ε > 0, even on graphs not satisfying the triangle inequality.

1 Introduction

Given a graph and upper bounds on the degrees of its nodes, the bounded-degree
minimum spanning tree (BDMST) problem is to find a minimum cost spanning

M. Bugliesi et al. (Eds.): ICALP 2006, Part I, LNCS 4051, pp. 191–201, 2006.
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tree among the spanning trees that obey the degree bounds. This bi-criteria
optimization problem generalizes several combinatorial problems, including the
Traveling Salesman Path Problem (TSPP), which corresponds to the case when
degrees are restricted to 2 uniformly. Since we do not assume the triangle inqual-
ity, approximations for the BDMST problem must relax the degree constraint,
unless P equals NP.

Let copt(B) be the cost of an optimal solution to the BDMST problem, given
input graph G and uniform degree bound B. We call a BDMST algorithm an
(α, f(B))-approximation algorithm if, given graph G and bound B, it produces
a spanning tree that has cost at most α · copt(B) and maximum degree f(B).
Könemann and Ravi give, to our knowledge, the first BDMST approximation
scheme [13]: a polynomial-time (1 + 1

β , bB(1 + β) + logb n)-approximation algo-
rithm for any b > 1, β > 0. They illustrate the close relationship between the
BDMST problem and the problem of finding an MST in which the maximum
degree of the nodes is minimized, a problem we call the minimum-degree MST
(MDMST) problem. Using a novel cost-bounding technique based on Lagrangean
duality, Könemann and Ravi show that the MDMST problem can essentially be
used as a black box in an algorithm for the BDMST problem. In a subsequent pa-
per [14], they use primal dual techniques and give similar results for nonuniform
degree bounds.

The BDMST and MDMST problem are different generalizations of the same
unweighted problem: given an unweighted graph G = (V,E), find a spanning
tree of G of minimum maximum degree. Fürer and Raghavachari [5] give a lovely
algorithm for this problem that outputs an MST with degree ∆opt + 1. Their
algorithm finds a sequence of swaps in a laminar family of subtrees of G such
that the sequence results in an improvement to the degree of some high-degree
node, without creating any new high-degree nodes. The laminar structure relies
on the property that an edge e ∈ E that is not in a spanning tree T can replace
any tree edge on the induced cycle of T ∪ e. This property is not maintained
in weighted graphs because a non-tree edge can only replace other tree edges of
equal cost. The structure of an improving sequence of swaps in a weighted graph
can therefore be significantly more complicated.

Könemann and Ravi rely on an MDMST algorithm due to Fischer [4]. Given
a graph G for which the MDMST solution is ∆opt, Fischer’s algorithm finds
an MST of G of degree at most b∆opt + logb n for any b > 1. In a recent pa-
per [2], Chaudhuri et al. give an improved MDMST algorithm based on finding
augmenting paths of swaps. The algorithm in [2] simultaneously enforces upper
and lower bounds on degrees, which, by using linear programming duality and
techniques of [13,3], is shown to result in an optimal-cost (1, bB(1+β)+ logb n)-
approximation BMDST algorithm for any b > 1. At the expense of quasipoly-
nomial time, [2] also gives an algorithm that produces an MST with degree at
most ∆opt+O( logn

log logn ), leading to a (1, B+O( logn
log logn ))-approximation for the

BDMST problem (in quasipolynomial time).
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In this paper, we present a polynomial-time BDMST algorithm which we show
to be a (1 + 1

β , 2B(1 + β) + o(B(1 + β)))-approximation scheme for any β > 0.
That is, we give the first algorithm that approximates both degree and cost to
within a constant factor of the optimal.

For example, for B = 2, all previous algorithms would produce a tree with
near-logarithmic degree and cost within a constant factor of the optimal; our
algorithm, in contrast, approximates both the degree and the cost to within a
constant factor.

For the sake of a simpler exposition, we describe our BDMST results in the
setting of uniform degree bounds. Our techniques imply analogous results even in
the case of more general non-uniform degree bounds. Though our BDMST algo-
rithm does not simultaneously enforce upper and lower degree bounds, our tech-
niques here do apply to a version of the BDMST problem in which lower bounds
on node degrees must be respected, which may be of independent interest.

The crux of our solution is an improved approximation algorithm for the
MDMST problem that uses the push-relabel framework invented by Goldberg
[7] for the max flow problem (and fully developed by Goldberg and Tarjan [8]).
Given a graph G for which the degree of the MDMST solution is ∆opt, our
algorithm obtains in polynomial time an MST of G of degree at most 2∆opt +
o(∆opt).

While Fischer’s MDMST solution is locally optimal with respect to single edge
swaps in the current tree, our algorithm explores a more general set of moves that
may consist of long sequences of branching, interdependent changes to the tree.
Surprisingly, the push-relabel framework can be delicately adapted to explore
these sequences. The basic idea that we borrow from Goldberg [7] is to give each
node a label and permit “excess” to flow from a higher labeled node to lower
labeled nodes. Nodes are allowed to increase their label when they are unable to
get rid of their excess. For max-flow, the excess was a preflow, while in our case,
the excess refers to excess degree. To our knowledge, this is the first instance
of a push-relabel approximation algorithm for an NP-hard problem and we are
intrigued by the possibility that this framework may be extended to search what
may appear to be complicated neighborhood structures for other optimization
problems.

We note that for B = 2, our BDMST algorithm gives a tree of cost within a
(1+ ε)-factor of the optimal solution to TSPP and of maximum degree O(1

ε ) for
any ε > 0. Our work does not assume the triangle inequality; when the triangle
inequality holds, Hoogeveen [10] gives a 3

2 -approximation of TSPP based on
Christofides’ algorithm. The Euclidean version of the BDMST problem has also
been widely studied. See, for example, [15,12,1,11].

Independent of our work, Ravi and Singh [16] give an algorithm for the
MDMST problem with an additive error of k, where k is the number of distinct
weight classes. We note that this bound is incomparable to the one presented
here, and does not improve previous results for the BDMST problem. More
recently, Goemans [6] has announced an algorithm for the BDMST problem
with an additive error of 2.
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1.1 Techniques

All known algorithms for the MDMST problem repeatedly swap a non-tree edge
e ∈ E with a tree edge e′ ∈ T of the same weight, where e′ is on the induced
cycle in T∪e in the current MST T . Fischer proceeds by executing any swap that
improves a degree d node without introducing new degree d nodes, for selected
high values of d. He shows that when the tree is locally optimal, the maximum
degree of the tree is at most b∆opt + logb n, for any b > 1, where ∆opt is the
degree of the optimal MDMST solution. Moreover, as shown in [2], this analysis
is tight.

To illustrate the difficulty of the MDMST problem, we next describe a patho-
logical MST T in a graph G (see Figure 1): the tree T has a long path consisting
of O(n) nodes ending in a node u of degree d. The children of u each have degree
(d − 1); the children of the degree (d − 1) nodes have degree (d − 2), and so
on until we get to the leaves. Each edge on the path has cost ε, and an edge
from a degree (d− i + 1) node to its degree (d− i) child has cost i. In addition,
each of the degree (d − i) nodes has a cost-i edge to one of the nodes on the
path. For some d with d = O(log n/ log log n), the number of nodes in the graph
is O(n).

Note that an MST of G with optimal degree consists of the path along with the
non-tree edges and has maximum degree three. On the other hand, every cost-
neutral swap that improves the degree of a degree-(d−i) node in the current tree
increases the degree of a degree-(d−i−1) node. Hence the tree T is locally optimal
for the algorithms of [4,13]. Moreover, all the improving edges are incident on
a single component of low degree nodes; one can verify that the algorithm of
[2] starting with this tree will not be able to improve the maximum degree. In

Fig. 1. Graph G and a locally optimal tree. The shaded triangles represent subtrees

identical to the corresponding ones shown rooted at the same level. The bold nodes

represent a path and the bold dotted edges correspond to a set of edges going to similar

nodes in the subtrees denoted by shaded triangles.
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fact, a slightly modified instance, G′, where several of the non-tree edges are
incident on the same node on the path, is not improvable beyond O(d). Previous
techniques do not discriminate between different nodes with degree less than
d− 1 and hence cannot distinguish between G and G′.

On the other hand, our MDMST algorithm, described in Section 2, may per-
form a swap that improves the degree of a degree d node by creating one or
more new degree d nodes. In turn, it attempts to improve the degree of these
new degree d nodes. We note that in the process the algorithm may end up
undoing the original move. However, the labels ensure that this process cannot
continue indefinitely. These two new degree d nodes cannot necessarily be im-
proved independently since they may rely on the same edge or use edges that
are incident to the same node. Moreover, this effect snowballs as more and more
degree d nodes are created.

As previously mentioned, Goldberg’s push-relabel framework helps us tame
this beast of a process. A high degree node may only relieve a unit of excess
degree using a non-tree edge that is incident to nodes of lower labels. Thus, while
two high degree nodes may be created by a swap, at least they are guaranteed
to have lower labels than the label of the node initiating the swap.

We define a notion of a feasible labeling and prove that our MDMST algorithm
maintains one. During the course of the algorithm, there is eventually a label
L such that the number of nodes with that label is not much larger than the
number of nodes with label L+1. We use feasibility to show that all nodes with
labels L and higher must have high average degree in any MST, thus obtaining
a lower bound on ∆opt. This degree lower bound also holds for any fractional
MST in the graph.

Combining our MDMST algorithm with the cost-bounding techniques of
Könemann and Ravi [13] gives us our result for the BDMST problem.

2 Minimum-Degree MSTs

MDMST Problem: Given a weighted graph G = (V,E, c), find an MST T of
G such that maxv∈V {degT (v)} is minimized.

2.1 The MDMST Algorithm

Our algorithm is based on the push-relabel scheme used in an efficient algorithm
for the max flow problem [7,9]. Starting with an arbitrary MST of the graph,
our algorithm runs in phases. The idea is to reduce the maximum degree in
each phase using a push-relabel technique. If we fail to make an improvement at
some phase, we get a set of nodes with high labels which serves as a certificate
of near-optimality.

More formally, let ∆i be the maximum degree of any node in the tree Ti at
the beginning of phase i, also called the ∆i-phase. During the ∆i-phase, we either
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modify Ti to get Ti+1 such that the maximum degree in Ti+1 is less than ∆i or
we find a proof that ∆i ≤ 2∆opt + O(

√
∆opt). (The constants hidden in the

big-O notation are small—see Section 2.3.)
We now describe a general phase of the algorithm. Let T be the tree at the

beginning of the current phase, and let ∆ be the maximum degree over all nodes
in T . Let N be the set of nonnegative integers. Given a labeling l : V → N,
we extend the labeling to E by defining l(e) = max{l(u), l(v)} for e = (u, v).
The label of a node is a measure of its potential. In our algorithm, all nodes are
initialized at the beginning of each phase to have label l(v) = 0. At any time,
let level i be defined as the set of nodes that currently have label i.

In addition to being assigned a label, each node is given an initial excess.
(Excess can also be formally defined as a function from V to N.) At the beginning
of the phase, each vertex with degree ∆ is initialized to have an excess of 1; all
other vertices initially have excess 0. We call a vertex that has positive excess
overloaded.

We define a swap to be a pair of edges (e, e′) such that e ∈ T , e′ �∈ T ,
c(e) = c(e′), and e lies on the unique cycle of T ∪ e′. For a node u and a tree
T , let STu denote the set of swaps (e, e′) such that e is incident on u and e′ is
not incident on u. We call a swap in STu useful for u because it can be used to
decrease the degree of u. We say that a labeling l is feasible for a tree T if for
all nodes u ∈ V , for every swap (e, e′) ∈ STu , l(e) ≤ l(e′)+1. A swap (e, e′) ∈ STu
is called permissible for u if l(u) ≥ l(e′) + 1. This notion of feasibility is crucial
in establishing a lower bound on the optimal degree (and hence proving an
approximation guarantee) when the algorithm terminates.

The current phase proceeds as follows: Let L be the label of the lowest level
containing overloaded nodes. If there is an overloaded node u in level L that
has a permissible, useful swap (e, e′) ∈ STu , modify T by deleting e = (u, v) and
adding e′ = (u′, v′). Then decrease the excess on u by one. If u′ now has degree ∆
or more, add one to its excess; if v′ has degree ∆ or more, add one to its excess.
If no overloaded node in level L has a permissible, useful swap, then relabel to
L + 1 all overloaded nodes in level L. Repeat this loop.

The phase ends either when no node is overloaded, or when there is an over-
loaded node with label log2 n. Note that if the phase ends for the former reason,
then the tree at the end of the phase has maximum degree at most ∆ − 1. See
Figure 2 for a formal algorithm.

Since each node is relabeled at most log2 n times, the number of iterations in
any phase of the algorithm is bounded by n2 log2 n. Hence the algorithm runs
in polynomial time.

In the next few sections, we build the tools used to argue that when a phase
ends with some overloaded node in level log2 n, the algorithm produces a witness
to the fact that ∆ ≤ 2∆opt + O(

√
∆opt).

The proof of the following lemma is omitted from the extended abstract.

Lemma 1. The algorithm always maintains a feasible labeling.
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Algorithm push relabel MDMST

T ← arbitrary MST of G.
While witness not found do

∆ ← maximum degree over nodes in T .
Initialize labels to zero; put excess of 1 on nodes with degree ∆.
Repeat

L ← lowest level that contains overloaded nodes.
UL ← overloaded nodes with label L.
If there is a node u ∈ UL that has a permissible, useful swap (e, e′) where e = (u, v)

T ← T \ {e} ∪ {e′};
Set excess on u and v to 0;
If an endpoint of e′ has degree ∆ or more

set its excess to 1.
else

Relabel all nodes in UL to L + 1.
until there is an overloaded node with label at least log2 n

or there are no more overloaded nodes.
If some node has label log2 n

Pick L such that level L is the highest sparse level.
Let W be the set of nodes with label strictly higher than L.
Let W ′ be the set of nodes with label higher than or equal to L.
Output tree T and witness (W, W ′).

endwhile.

Fig. 2. An algorithm for the MDMST problem

2.2 Cascades and Involuntary Losses

For an integer L, let VL be level L, i.e. the set of nodes with label L, and let UL
be the set of overloaded nodes in VL. For convenience, we imagine placing flags
on nodes when we relabel them. We start with all the pending flags cleared.

In each iteration of the algorithm, we find the lowest L such that UL is non-
empty, i.e. there are some overloaded nodes with label L. If we can find any swap
(e, e′) that is permissible and useful for a node in UL, we execute the swap and
clear pending flags (if set) on the endpoints of e. Let us call this a label-L swap.
If no such swaps exist, we raise the label of all nodes in UL by one and set their
pending flags.

Lemma 2. During the ∆-phase, no node ever has degree more than ∆.

Proof. We use induction on the number of swaps. In the beginning of the phase,
the maximum degree is ∆. Any swap (e, e′) decreases the degree of a node in UL
and adds at most one to the degree of a node with strictly lower label. By choice
of L, all nodes with lower labels had degree at most ∆−1 before the swap. Since
a swap adds at most one to any vertex degree, the induction holds. The lemma
follows.

Consider a swap (e, e′), where e = (u, v) and e′ = (u′, v′), that is useful for an
overloaded node u. If v is not overloaded, then we say that the swap (e, e′) causes
v an involuntary loss in degree.
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We call a swap a root swap if it is a useful swap for a node with its pending
flag set. Let (e, e′) be a non-root swap that occurs in the sequence of swaps made
by the algorithm. The swap (e, e′) was performed in order to decrease the degree
of node u (where e = (u, v)). There is a unique swap (f, f ′) in the sequence that
most recently (before the (e, e′) swap was done) increased the degree of u (so u
is an endpoint of edge f ′). We say that swap (e, e′) can blame swap (f, f ′), and
we call (f, f ′) the parent swap of (e, e′). Recall that a label-L swap reduces the
degree of a node with label L, and note that every non-root swap has a label
strictly smaller than its parent. Moreover each swap is the parent of at most two
other swaps. This parent relation naturally defines a directed graph on the set
of swaps, each component of which is an in-tree rooted at one of the root swaps.
We call the set of swaps in a component a cascade. In other words, a cascade
corresponds to the set of swaps sharing a single root swap as an ancestor. Note
that one cascade does not necessarily finish before another begins. The label of
the cascade is defined to be the label of the root swap in it.

As noted above, each swap has at most two children and they have a strictly
smaller label. Thus it follows that:

Lemma 3. A label-i cascade contains at most 2i−j label-j swaps.

We say that the cascade contains an involuntary loss if some swap in the cascade
causes it. Since each swap causes at most one involuntary loss, the lemma above
implies:

Corollary 4. A label-i cascade contains at most 2i−j+1 − 1 involuntary losses
to nodes with labels at least j.

Proof. An involuntary loss to a label-k node must be caused by a swap with
label k or higher.

2.3 Obtaining the Witness

We now show that when the algorithm terminates, we can find a combinatorial
structure, that we call the witness, which establishes the near optimality of the
final tree. Our witness consists of a partition C = {W,C1, . . . , Ck} and a subset
W ′ ⊂ V such that W ⊆ W ′. Call an edge e MST-worthy if there is some
minimum spanning tree of G that contains e. The witness has the following
property: any MST-worthy edge e = (u, v) leaving Ci has at least one endpoint
in W ′, i.e. for any MST-worthy edge (u, v) : u ∈ Ci, v �∈ Ci, |{u, v} ∩W ′| ≥ 1.
The following lemma, essentially contained in [4] shows that a witness establishes
a lower bound on the minimum degree of any MST.

Lemma 5. [4] Let W = {C,W ′} be a witness defined as above. Then any min-
imum spanning tree of G has maximum degree at least (k + |W | − 1)/|W ′|.

Proof. Consider any MST T of G and let G′ be the graph formed by shrinking
each of the sets C1, . . . , Ck to a single node. T must contain a spanning tree
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T ′ of G′ and hence must have at least k + |W | − 1 edges from G′. Moreover,
each such edge is MST-worthy and hence has at least one endpoint in W ′. The
average degree of W ′ is thus at least (k + |W | − 1)/|W ′|.

Let the ∆-phase be the last phase of the final iteration of the algorithm. It ends
with an overloaded node at level l = log2 n. Let WL = ∪i≥LVi be the set of
nodes with label at least L and sL = |WL| be the final number of nodes in WL.
Fix a constant c ≥ 2. We search top-down for the highest level labeled l− j, for
some j, 0 ≤ j < l, such that sl−(j+1) < c · sl−j . We call level l − (j + 1) sparse.
Since l ≥ logc n, such a sparse level must exist for any c ≥ 2. Then for every
level i such that i ≥ g, it is true that si ≥ c · si+1.

We first show that the average degree of Wg is high.

Lemma 6. The average degree of Wg in the final tree is at least ∆− 1− 2c
c−2 .

Proof. Each node enters the set Wg with degree ∆, after which it may lose at
most one degree from a useful swap and it may suffer some involuntary losses.
Thus the total degree of Wg is at least (∆− 1)|Wg| minus the number of invol-
untary losses to Wg .

Each involuntary loss to Wg occurs in a cascade and by Corollary 4, the
number of involuntary losses to Wg in a label-i cascade is at most 2i−g+1. Recall
that the root swap of a cascade is useful to a pending node that moved up one
label. The total number of involuntary losses to Wg during the course of the
phase is at most ∑

i≥g
2i−g+1|Wi| =

∑
i≥g

2i−g+1si

≤
∑
i≥g

2i−g+1 sg
ci−g

≤ 2sg
∑
i≥g

(
2
c

)i−g
≤ 2|Wg|(

c

c− 2
)

Thus the average degree ∆av of Wg is at least ∆− 1− 2 c
c−2 .

Our witness is now constructed as follows: W ′ is the set Wg−1 and W is Wg.
C1, . . . , Ck are the components formed by deleting Wg from the final tree. The
feasibility of the labeling implies that this indeed is a witness. Moreover, k is
at least ∆av|Wg| − 2(|Wg| − 1), where ∆av is the average degree of Wg in T .
Lemma 5 then implies that the maximum degree of any MST must be at least(

∆− 2− 2c
c− 2

)
|W |
|W ′| =

(
∆− 2− 2c

c− 2

)(
|Wg|
|Wg−1|

)
≥ ∆

c
− 2

c− 2
− 2

Rearranging, we get

∆ ≤ c(∆opt + 2 +
2

c− 2
)
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Setting c to be 2 + 2√
∆opt

, we get

∆ ≤ 2∆opt + 4
√

∆opt + 6 +
4√

∆opt

Theorem 7 summarizes the results of Section 2.

Theorem 7. Given a graph G, the push relabel MDMST algorithm obtains in
polynomial time an MST of degree ∆, where ∆ ≤ 2∆opt + O(

√
∆opt).

This algorithm along with Lagrangean relaxation techniques from [13] gives a
bi-criteria approximation for the Bounded-degree MST problem. We omit the
proof from this extended abstract.

Theorem 8. For any β > 0, there is a polynomial-time algorithm that, given a
graph G and degree bound B, computes a spanning tree T with maximum degree
at most 2 (1 + β)B + O(

√
(1 + β) B) and cost at most

(
1 + 1

β

)
optLD(B).
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Abstract. We study the Edge Disjoint Paths (EDP) problem in undi-
rected graphs: Given a graph G with n nodes and a set T of pairs of
terminals, connect as many terminal pairs as possible using paths that
are mutually edge disjoint. This leads to a variety of classic NP-complete
problems, for which approximability is not well understood. We show a
polylogarithmic approximation algorithm for the undirected EDP prob-
lem in general graphs with a moderate restriction on graph connectivity;
we require the global minimum cut of G to be Ω(log5 n). Previously,
constant or polylogarithmic approximation algorithms were known for
trees with parallel edges, expanders, grids and grid-like graphs, and most
recently, even-degree planar graphs. These graphs either have special
structure (e.g., they exclude minors) or there are large numbers of short
disjoint paths. Our algorithm extends previous techniques in that it ap-
plies to graphs with high diameters and asymptotically large minors.

1 Introduction

In this paper, we explore approximation for the edge disjoint paths (EDP) prob-
lem: Given a graph with n nodes and a set of terminal pairs, connect as many of
the specified pairs as possible using paths that are mutually edge disjoint. EDP
has a multitude of applications in areas such as VLSI design, routing and ad-
mission control in large-scale, high-speed and optical networks. Moreover, EDP
and its variants have also been prominent topics in combinatorics and theoret-
ical computer science for decades. For example, the celebrated theory of graph
minors of Robertson and Seymour [29] gives a polynomial time algorithm for
routing all the pairs given a constant number of pairs. However, varying the
number of terminal pairs leads to a variety of classic NP-complete problems, for
which approximability is an interesting problem. In a recent breakthrough [3],
Andrews and Zhang showed an Ω(log

1
3−ε n) lower bound on the hardness of

approximation for undirected EDP.
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In this work, we show a polylogarithmic approximation algorithm for the undi-
rected EDP problem in general graphs with a moderate restriction on graph
connectivity; we require that there are Ω(log5 n) edge disjoint paths between
every pair of vertices, i.e., the global min cut is of size Ω(log5 n). If this moder-
ately connected case holds, we can route Ω(OPT/ polylog n) pairs using disjoint
paths with congestion 1, where OPT is the maximum number of pairs that one
can route edge disjointly for the given EDP instance. Previously, constant or
polylogarithmic approximation algorithms were known for trees with parallel
edges, expanders, grids and grid-like graphs, and most recently, even-degree pla-
nar graphs [20]. The results rely either on excluding a minor (or other structural
properties), or the fact that very short paths exist. Our algorithm extends previ-
ous techniques; for example, our graphs can have high diameter and contain very
large minors. We are hopeful that this constraint on the global minimum cut can
be removed if congestion on each edge is allowed to be O(log log n). Formally,
we have the following result.

Theorem 1. There is a polylog n-approximation algorithm for the edge disjoint
path problem in a general graph G with minimum cut and node degree Ω(log5 n).

1.1 The Approach

We begin with a fractional relaxation of the problem, where each terminal pair
can route a real-valued amount of flow between 0 and 1, and this flow can be
split fractionally across a set of distinct paths. This can be expressed as an LP
and can be solved efficiently. We denote the value of an optimal fractional LP
solution as OPT∗. Our algorithm routes a polylogarithmic fraction of this value
using integral edge-disjoint paths.

The algorithm proceeds by decomposing the graph into well-connected sub-
graphs, based on OPT∗, so that a subset of the terminal pairs, that remain
within each subgraph are “well-connected”, following a decomposition procedure
of Chekuri, Khanna, and Shepherd (CKS05) [11]. Then, for each well connected
subgraph G, we construct an expander graph that can be embedded into G us-
ing its terminal set. We use a result by Khandekar, Rao and Vazirani in [19],
where they show that one can build an expander graph H on a set of nodes V by
constructing O(log2 n) perfect matchings M1, . . . ,MO(log2 n) between O(log2 n)
sets of equal partitions of V in an iterative manner.

Our contribution along this line is to route each perfect matching Mt, ∀t, on
one of the O(log2 n) (edge-disjoint) subgraphs of G. The “splitting procedure”,
motivated by Karger’s theorem [18], simply assigns edges of G uniformly at ran-
dom into O(log2 n) subgraphs. Using Karger’s arguments, we show that all cuts
in each subgraph have approximately the correct size with high probability. Here
we crucially use the polylogarithmic lower bound on the min-cut. We then route
each matching Mt on a unique split subgraph using a max-flow computation
with unit capacities. Thus, we can route all O(log2 n) matchings edge disjointly
in G and embed an expander graph H integrally with congestion 1 on G.

After we construct such an expander graph H for each G, we route terminal
pairs in H greedily via short paths. This is effective since there are plenty of short
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disjoint paths in an expander graph[7,21]. Since a node in H maps to a cluster of
nodes in G that is connected by a spanning tree, we put a capacity constraint on
V (H): we allow only a single path to go through each node. We greedily connect
a pair of terminals from G via a path in H while taking both nodes and edges
along the chosen path away from H , until no short paths remain between any
unrouted terminal pair. For the pairs we indeed route, we know the congestion
is 1 in the original graph G, since we use each edge and node in H only once,
and edges and nodes of H correspond to disjoint paths of G. We use a lemma
in [15] to show that such a greedy method ensures that we route a sufficiently
large number of such pairs; We note that this method was proposed but analyzed
somewhat differently by Kleinberg and Rubinfeld [21]. Our analysis is more like
that of Obata [27], and yields somewhat stronger bounds. Our approximation
factor is O(log10 n). (A breakdown of this factor is described in Theorem 4.)

1.2 Related Work

Much of recent work on EDP has focused on understanding the polynomial-
time approximability of the problem. Previously, constant or polylogarithmic
approximation algorithms were known for trees with parallel edges [15], ex-
panders [21,26], grids and grid-like graphs [5,6,22,23], and even-degree planar
graphs [20]. For general graphs, the best approximation ratio for EDP in di-
rected graphs is O(min(n2/3,

√
m)) [8,24,25,30,31], where m denotes number

of edges in the input graph. This is matched by the Ω(m
1
2−ε)-hardness of ap-

proximation result by Guruswami et al [17]. For undirected and directed acyclic
graphs, the upper bound has been improved to O(

√
n) [13]. For even-degree

planar graphs, an O(log2 n)-approximation [20] is obtained recently.
A variant is the EDP with Congestion (EDPwC) problem, where the goal

is to route as many terminals as possible, such that at most ω demands can
go through any edge in the graph. For EDPwC on planar graphs, for ω = 2
and 4, O(log n) [10,11] and constant [12] approximations have been obtained
respectively. For undirected graphs, the hardness results [1] are Ω(log1/2−ε n)
for EDP and Ω(log(1−ε)/(ω+1) n) for EDPwC.

A closely related problem is the congestion minimization problem: Given a
graph and a set of terminal pairs, connect all pairs with integral paths while
minimizing the maximum number of paths through any edge. Raghavan and
Thompson [28] show that by applying a randomized rounding to a linear relax-
ation of the problem one obtains an O(log n/ log log n) approximation for both
directed and undirected graphs. For hardness of approximation, Andrews and
Zhang [2] show a result of Ω((log log1−ε m)) for undirected and an almost-tight
result [4] of Ω(log1−ε m) for directed graphs, improving that of Ω(log log m) by
Chuzhoy and Naor [14]. Finally, the All-or-Nothing Flow (ANF) problem [9,11]
is to choose a subset of terminal pairs such that for each chosen pair, one can
fractionally route a unit of flow for all the chosen pairs. The hardness result for
ANF and ANF with Congestion is the same as that of EDP and EDPwC [1].
Currently, there exists an O(log2 n) [11] approximation for ANF. Indeed, we
build on the techniques developed in this approximation algorithm for ANF.
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2 Definitions and Preliminaries

We work with graph G = (V,E) with unit-capacity edges, where we allow parallel
edges, unless we specify a capacity function for edges explicitly. For a capacitated
graph G = (V,E, c), where c is an integer capacity function on edges, one can
replace each edge e ∈ E with c(e) parallel edges. For a cut (S, S̄ = V \ S) in G,
let δG(S), or simply δ(S) when it is clear, denote the set of edges with exactly
one endpoint in S in G. Let cap(S, S̄) = |δG(S)| denote the total capacity of
edges in the cut. The edge expansion of a cut (S, S̄), where |S| ≤ |V | /2, is
φ(S) = cap(S,S̄)

|S| . The expansion of a graph G is the minimum expansion over all
cuts in G. We call a graph G an expander if its expansion is at least a constant.

An instance of a routing problem consists of a graph G = (V,E) and a set of
terminals pairs T = {(s1, t1), (s2, t2), . . . , (sk, tk)}. Nodes in T are referred to as
terminals. Given an EDP instance (G, T ) with k pairs of terminals, we will use
the following LP relaxation as specified in (2.1), to obtain an optimal fractional
solution. Let Pi, ∀i, denote the set of paths joining si and ti in G.

max
k∑
i=1

xi s.t. (2.1)

xi −
∑
p∈Pi

f(p) = 0, ∀1 ≤ i ≤ k (2.2)

∑
p:e∈p

f(p) ≤ 1, ∀e ∈ E (2.3)

xi, f(p) ∈ [0, 1], ∀1 ≤ i ≤ k,∀p (2.4)

We let OPT∗(G, T ) be the value of this linear program for the optimal solution
f̄ of the LP. In the text, where we always refer to a single instance, we primarily
use OPT∗. The following definitions come from [11].

Definition 1. (CKS2005 [11]) Given a non-negative weight function π : X →
R+ on a set of nodes X in G, X is π-cut-linked in G if ∀S such that π(S∩X) =∑

x∈S∩X π(x) ≤ π(X)/2, |δ(S)| ≥ π(S ∩X); We also refer to (G,X) as a π-
cut-linked instance.

Definition 2. (CKS2005 [11]) A set of nodes X is well-linked in G if ∀S such
that |S ∩X | ≤ |X |/2, |δ(S)| ≥ |S ∩X |.

3 Decomposition and an Outline of Routing Procedure

In this section, we first present Theorem 2 regarding a preprocessing phase of our
algorithm that decomposes and processes (G, T ) into a collection of cut-linked
instances with a min-cut Ω(log3 n) in each subgraph. We then state our main
theorem with a breakdown of the polylogn approximation factor. Finally, we give
an outline on how we route terminal pairs in each cut-linked instance (G, T );
Note that we use G to refer to a subgraph that we obtain through Theorem 2
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starting from Section 3.1 till the end of the paper, while G refers to the original
input graph. We first specify the following parameters.

– Parameters related to original EDP instance (G, T )
• ω log2 n is the number of matchings as in Figure 1;
• min-cut κ = Ω(log3 n) = 12(lnn)(ω log2 n+1)

ε2 , where ε < 1;
• β(G) = O(log n): the worst-case mincut-maxflow gap on product com-

modity flow instances on G;
• λ(n) = 10β(G) log OPT∗(G, T ) = O(log2 n): as introduced in [11].

Theorem 2. There is a polynomial time decomposition algorithm, that given an
EDP instance (G, T ), where G has a min-cut of size Ω(κ log2 n), and a solution
f̄ to the fractional EDP problem, with xi, ∀i, being specified as in (2.1), produces
a disjoint set of subgraphs and a weight function π : V (G) → R+ on V (G) where

1. there are α1, . . . , αk such that ∀u in a subgraph H, π(u) =
∑

i:si=u,ti∈H αixi,
(note that this implies ∀siti ∈ T , xi contributes the same amount of weight
to π(si) and π(ti));

2. the set of nodes V (H) in each subgraph H is π-cut-linked in H;
3. each subgraph H has min-cut κ = Ω(log3 n);
4. ∀u in a subgraph H s.t. π(H) ≥ Ω(log3 n), π(u) ≤

∑
i:si=u,ti∈H

xi

β(G)λ(n) ;
5. and π(G) = Ω(OPT∗/β(G)λ(n)).

The decomposition essentially says that summing across all subgraphs G, a fair
fraction of terminal pairs in T remain (condition 4, 5); indeed, we lose only a
constant fraction of the terminal pairs (by assigning a zero weight to those lost
terminals) of T . In addition, each subgraph G is well connected with respect to
X , the set of induced terminals of T in G, in the sense of (G,X) being a π-cut-
linked instance. This decomposition is essentially the same as that of Chekuri,
Khanna, and Shepherd [11]. We need to do some additional work to ensure that
the min-cut condition (condition 3) holds. We prove a dual (flow-based) version
of the result in the full version of the paper.

3.1 Overall Routing Algorithm in Each Decomposed Subgraph G

We assume that we have the π-cut-linked subgraphs given by Theorem 2. We will
treat each subgraph and its induced subproblem (G, T ) independently. We use
π(G) to denote π(V (G)) in the following sections. Let X be the set of terminals
of T that is assigned with a positive weight by function π in instance G. We
further assume that π(G) = Ω(log7 n). If not, we just route an arbitrary pair of
terminals in T ; otherwise, we use Procedure EmbedAndRoute(G, T,π) in
Figure 1 to route. We first specify a few more parameters and conditions related
to (G, T ); We then state Theorem 3, which we prove through the rest of the
paper. Combining Theorem 3 and Theorem 2 proves Theorem 4.

– Parameters and conditions related to an induced subproblem (G, T )
• sampling probability p = 12(lnn)/ε2κ = 1/(ω log2 n + 1)
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0. Given graph G with min-cut Ω(log3 n) and a weight function π : V (G) → R+

1. {G1, . . . , GZ} = Split(G, Z, π)
2. {X , C} = Clustering(GZ, π), where X = {X1, . . . , Xr} and C = {C1, . . . , Cr}
3. Given a set of superterminals X of size r
4. Let X map to vertex set V (H) of Expander H
5. For t = 1 to ω log2 n
6. (S, S̄ = X \ S) = KRV-FindCut(X ,{Mk : k < t}) s. t. |S| =

∣∣S̄∣∣ = r/2
7. Matching Mt = FindMatch(S, S̄, Gt) s.t. Mt is routable in Gt

8. Combine M1, . . . , Mω log2 n to form the edge set F on vertices V (H)
9. ExpanderRoute(H,T, X)
10. End

Fig. 1. Procedure EmbedAndRoute(G,T, π)

• number of split subgraphs Z = 1/p = ω log2 n + 1
• W = (ω log2 n + 1)/(1− ε), for some ε < 1;
• r ≥ max{1, (π(G)− (W −1))/(2W −1)}, such that ∀i ∈ [1, . . . , r], 2W −

1 ≥ π(Xi) =
∑

v∈Xi
π(v) ≥ W and π(X ) ≥ π(G) − (W − 1): i.e., at

most W − 1 unit of weight is not counted in X .

Theorem 3. Given an induced instance (G, T ) with min-cut of G being Ω(log3 n)
and aweight function π : V (G) → R+ such that X is π-cut-linked in G and π(G) =
Ω(log7 n), EmbedAndRoute routes at least max{1, Ω(π(G)/ log7 n)} pairs of T
in G edge disjointly.

Theorem 4. Given an EDP instance (G, T ), where G has a min-cut Ω(λ(n)κ),
we can route Ω(OPT∗(G, T )/f) terminal pairs edge disjointly in G, where the
approximation factor f is O(λ(n)β(G)W log5 n).

4 Obtaining Z Split Subgraphs of G

In this section, we analyze a procedure that splits a graph G, with min-cut
κ = Ω(log3 n), into Z subgraphs b extending a uniform sampling scheme from
Karger [18]. We thus obtain a set of cut-linked instances as in Lemma 1, which
immediately follows from Theorem 5.

Procedure Split(G,Z,π): Given a graph G = (V,E) with min-cut κ =
Ω(log3 n), a weight function π : V (G) → R+, a set of terminals X in G such
that (G,X) is a π-cut-linked instance, and probability p = 1/Z.
Output: A set of randomized split subgraphs G1, . . . , GZ of G.
Each split subgraph Gj , ∀j = 1, . . . , Z inherits the same set of vertices of G;
Edges of G are placed independently and uniformly at random into the Z sub-
graphs; each e = (u, v) ∈ E is placed between the same endpoints u, v in the
chosen subgraph. We retain the same weight function π for all nodes in V in
each split subgraph Gj , ∀j.
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Lemma 1. With high probability, X is (1−ε)π
Z -cut-linked in Gj , ∀j, for some

ε < 1.

Theorem 5 says that all cuts can be preserved in all split graphs G1, . . . , GZ of
G we thus obtain. Recall for S ∈ V , |δG(S)| denote the size of (S, V \ S) in G.
For the same cut (S, V \ S), we have E[|δGj (S)|] = p |δG(S)| in Gj , ∀j, where p
is the probability that an edge e ∈ E is placed in Gj , ∀j.

Theorem 5. Let G = (V,E) be any graph with unit-weight edges and min cut
κ. Let ε =

√
3(d + 2)(lnn)/pκ. If ε ≤ 1, then with probability 1−O(log2 n/nd),

every cut (S, V \ S) in every subgraph G1, G2, . . . , GZ of G has value between
(1− ε) and (1 + ε) times its expected value p |δG(S)|.

Proof. We sketch a proof, leaving details in the full paper. We first give a defi-
nition by Karger [18], regarding a uniform random sampling scheme on an un-
weighted graph G = (V,E); Lemma 2 immediately follows from this definition.
We then state Karger’s theorem regarding preserving all cuts of G in a sampled
subgraph, under a certain min-cut condition.

Definition 3. (Karger94 [18]) A p-skeleton of G is a random subgraph G(p)
constructed on the same vertices of G by placing each edge e ∈ E in G(p) inde-
pendently with probability p.

Lemma 2. Every randomized subgraph Gj , ∀j, is a p-skeleton of G.

Theorem 6. (Karger94 [18]) Let G be a graph with unit-weight edges and
min-cut κ. Let p = 3(d+2)(lnn)/ε2κ. With probability 1−O(1/nd), every cut in
a p-skeleton of G has value between (1− ε) and (1 + ε) times its expected value.

To prove Theorem 6, Karger uses a union bound to show that the sum of proba-
bilities of all bad events in a p-skeleton of G is O(1/nd), where a bad event refers
to some cut in a p-skeleton of G diverges from its expected value k by more
than εk. Given that every random split subgraph Gj , ∀j, is a p-skeleton of G by
Lemma 2, we apply the essential statement in Karger’s proof to all subgraphs
Gj with p = 12(lnn)/ε2κ and κ = 12(lnn)(ω log2 n + 1)/ε2 for a given ε. We
can then use a union bound to sum up probabilities of bad events across all split
subgraphs G1, . . . , GZ of G, which is O(log2 n/n2) for d = 2.

5 Forming Superterminals That Are Well-Linked

The procedure in this section constructs superterminals as follows. It finds con-
nected subgraphs C in GZ , where π(C) = Ω(log2 n), each connecting a subset
of terminals. Roughly, the idea is that these clustered terminals are better con-
nected than individual terminals. They are well linked in the sense that any cut
that splits off K superterminals as one entity contains at least K edges in Gj , ∀j
This allows us to compute congestion-free maximum flows in Section 6.1.

Given split subgraphs G1, . . . , GZ of G, each with the same weight func-
tion π on its vertex set V (Gj) = V, ∀j, that we obtain through Procedure
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Split(G,Z,π), we aim to find a set X = {X1, . . . , Xr} of node-disjoint “supert-
erminals”, where each superterminal Xi ∈ X consists of a subset of terminals in
X and each Xi gathers a weight between W and 2W −1. In addition, we want to
find an edge-disjoint set of clusters C = {C1, . . . , Cr}, where Ci = (Vi, Ei), such
that Xi ⊆ Vi and Ci is a connected component, and hence all nodes in Xi are
connected through Ei. W.l.o.g., we pick GZ for forming such clusters Ci, ∀i; note
that GZ is a connected graph with a min-cut of Ω(log n), whp, by Theorem 5.

Procedure Clustering(GZ ,π): Given a split subgraph GZ and a weight func-
tion π : V (GZ) → R+ and π(V (GZ)) = π(G) ≥W .
Output: X = {X1, . . . , Xr} and C = {C1, . . . , Cr} as specified in Lemma 3.
We group subsets of vertices of V in an edge-disjoint manner, following a proce-
dure from [9], by choosing an arbitrary rooted spanning tree of GZ and greedily
partitioning the tree into a set C of edge-disjoint subgraphs of GZ .

Lemma 3. (CKS2004 [9]) Let GZ be a connected graph with a weight function
π : V (GZ)→ [0,W ] such that π(V (GZ)) ≥W . We can find r ≥ max{1, (π(G)−
(W − 1))/(2W − 1)} edge-disjoint connected subgraphs, C1 = (V1, E1), . . . , Cr =
(Vr, Er), such that there exist vertex-disjoint subsets X1, . . . , Xr and for each
i: (a) Xi ⊆ Vi and (b) 2W − 1 ≥

∑
v∈Xi

π(v) ≥W .

Result. To get an intuition of the purpose of forming such clusters, consider a
cut (U, V \ U) in a split subgraph Gj , ∀j. Let U be a subset of V (G) such that
π(U) =

∑
x∈U∩X π(x) ≤ π(X)/2. Let K be the number of superterminals that

are contained in U . We have the following lemma, which captures the notion of
superterminals being “well-linked”, with a hint of Definition 2.

Lemma 4. ∀ split subgraphs G1, . . . , GZ , where Z = 1/(ω log2 n+1), and ∀U ⊂
V (G) s.t. π(U) ≤ π(X)/2, |δGj (U)| ≥ K, where K = |{Xi ∈ X : Xi ⊆ U}|.

6 Construct and Embed an Expander H in G

In this section, we use the superterminals from the previous section as nodes in
an expander H that we embed in G. The edges of H are defined using a tech-
nique in [19] that builds an expander using O(log2 n) matchings. We embed this
expander in G by routing each matching in one of the split graphs using a max-
imum flow computation. This allows us to embed H into G with no congestion.
The following procedure restates this outline. Theorem 7 is a main technical
contribution of this paper.

Procedure EmbedExpander(G1, . . . , Gω log2 n,X ):
Output: An expander H = (V ′, F ) routable in G s.t. |V ′| = r and ∀i ∈ V ′,
π(i) = π(Xi) and π(H) = π(X ); F consists of M1, . . . ,Mω log2 n.
We use Step (3) to (8) of Procedure EmbedAndRoute in Figure 1, where
we substitute Procedure FindMatch with Figure 3 while relying on an exist-
ing Procedure KRV-FindCut [19]. At each round t, we use KRV-FindCut
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0. Given a set of points V (H) of size k
1. for t = 1 to ω log2 n
2. (S, S̄ = V (H) \ S) = KRV-FindCut(V (H), {Mk : k < t}) s.t. |S| =

˛
˛S̄

˛
˛ = k/2

3. Mt = FindMatch(S, S̄) s.t. Mt is a matching between S and S̄
4. Combine M1, . . . , Mω log2 n to form the edge set F on vertices V (H)
5. End

Fig. 2. KRV-Procedure Constructing an α-Expander H

to generate an equal-sized partition (S,X \ S = S̄); we then find a match-
ing Mt between S and S̄ by computing a single-commodity max-flow using
FindMatch(S, S̄, Gt) in Gt, that we add to F as edges.

Theorem 7. (a) EmbedExpander constructs a 1/4-expander H = (V ′, F );
(b) in addition, H is embedded into G as follows. Each node i of H corresponds
to a superterminal Xi in X in G such that all superterminals are mutually node
disjoint and each superterminal is connected by a spanning tree, Ti, in G. Each
edge (i, j) in H corresponds to a path, Pij from a node in Xi to a node in Xj.
All paths Pij and trees Ti are mutually edge disjoint in G.

Proof. The expander property (a) follows from a result of Khandekar, Rao and
Vazirani [19]; they show the procedure in Figure 2 produces an expander H .

Theorem 8. (KRV2005 [19]) Given a set of nodes V (H) of size k, ∃ a KRV-
FindCut procedure s.t. given any FindMatch procedure, the KRV-procedure
as in Figure 2. produces an α-expander graph H, for α ≥ 1/4.

Each edge e = (i, j) in the matching Mt maps to an integral flow path that
connects Xi and Xj in Gt; all such flow paths can be simultaneously routed in
Gt edge disjointly due to the max-flow computation as we show in Lemma 5.
Since each matching M t is on a unique split subgraph Gt, the entire set of edges
in M1, . . . ,Mω log2 n, that comprise the edge set F of H , correspond to edge
disjoint paths in G1, . . . , GZ−1, where Z = ω log2 n + 1. Finally, all spanning
trees Ti, ∀i, are constructed using disjoint set of edges in GZ as in Lemma 3.

6.1 Finding a Matching Through a Max-Flow Construction

In this section, we show that given an arbitrary equal partition (S, S̄) of the set
X = {X1, . . . , Xr}, that we obtain through Procedure Clustering(GZ ,π),
we can use the following procedure to route a max-flow of size r/2, such that the
integral flow paths that we obtain through flow decomposition induce a perfect
matching between S and S̄. Let S = {Xi1 , . . . , Xir/2} and S̄ = {Xj1 , . . . , Xjr/2}.

Lemma 5. In each sampled graph Gt, FindMatch produces a perfect matching
Mt between an equal partition (S, S̄) of X such that for each edge in e = (i, j) ∈
Mt, there is an integral unit-flow path Pij from a terminal in Xi ∈ S to a
terminal in Xj ∈ S̄. All paths Pij , s.t.(i, j) ∈Mt are edge disjoint in Gt.
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0. Given an equal partition (S, S̄) of X , we form a flow graph G′ from Gt

by adding auxiliary nodes and directed unit-capacity edges:
1. Add a special source and sink nodes s0 and t0;
2. Add nodes s1, . . . , sr/2 and an edge from s0 to sk,∀k = 1, . . . , r/2;
3. Add nodes t1, . . . , tr/2; from each tk,∀k = 1, . . . , r/2, add an edge to t0
4. From each sk,∀k, add an edge to each terminal x ∈ Xik s.t. Xik ∈ S
5. To each node tk, add an edge from each terminal x ∈ Xjk s.t. Xjk ∈ S̄
6. Route a max-flow from s0 to t0
7. Decompose the flow to obtain a matching between S and S̄
8. End

Fig. 3. Procedure FindMatch(S, S̄, Gt)

Lemma 6. Every s0 − t0 cut has size at least r/2 in the flow graph G′.

Proof of Lemma 5: By Lemma 6 (proof appears in the full version), and the fact
that there ∃ a s0 − t0 cut of size r/2, (e.g., ({s0}, V (G′) \ {s0})) we know the
s0 − t0 min-cut is r/2. Hence by the max-flow min-cut theorem, we know that
there ∃ a max-flow of size r/2 from s0 to t0. We next decompose the max-flow
into r/2 integer flow paths, which induce a perfect matching Mt between S and
S̄ as follows. Consider an integral flow path Pk, ∀k = 1, . . . , r/2. Let directed
path Pk start with s0 and go through sk, x ∈ Xik ∈ S for some x; and let Pk
end with y ∈ Xjk′ ∈ S̄, tk′ , t0 for some k′ ∈ [1, . . . , r/2] and some terminal y.
No other path in the max-flow can go through the same pair of superterminals
Xik , Xjk′ due to the capacity constraints on edges (s0, sk) and (tk′ , t0). Hence
Mt = {(ik, jk′), ∀k ∈ [1, . . . , r/2], where k′ ∈ [1, . . . , r/2]} is a perfect matching
between S and S̄.

7 Routing on an Expander H Node Disjointly

In this section, we show that the following greedy algorithm routes Ω(K/ log5 n)
pairs of terminals, where K = |V (H)| = Ω(π(G)/W ), in H .

Procedure ExpanderRoute(H,T,X): Given an uncapacitated expander H
with at least 512 log5 n nodes, with node degree ω log2 n. While there is a pair
(s, t) in T ⊆ T whose path length is less than D in H = (V,E), where D =
a3ω log3 n and a3 = 32 is a constant; Remove both nodes and edges from H ,
along a path through which we connect a pair of terminals in T .

Since we take away both nodes and edges as we route a path across the
expander H due to the node capacity constraints on V (H), routing the set P
of pairs via integral paths on H induces no congestion in G by Theorem 7. We
now argue that |P | is large to finish our proof. Let H ′ be the remaining graph of
expander H = (V,E), after we take away nodes and edges along the paths used
to route P . Note that all remaining pairs T ′ ⊆ T in H ′ must have distance at
least D. This is the main condition that allows us to prove the following theorem.
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Theorem 9. The procedure above routes Ω(K/ log5 n) pairs, node disjointly, in
degree-(ω log2 n) expander H = (V,E) with K ≥ 512 log5 n nodes.

Proof Sketch: Let us first state the following lemma regarding a multicut in H ′

which follows from arguments of Garg, Vazirani and Yannakakis [16].

Lemma 7. If all remaining terminal pairs in T ′ ⊆ T have distances at least D
in H ′, then there exists a multicut L in H ′ = (V ′, E′) of size |E′| log n/D in H ′

that separates every source and sink pair siti ∈ T ′.

Lemma 7 implies that there is a multicut of size at most Kω log3 n/2D = K/2a3
given that |E′| ≤ |E| = Kω log2 n/2 in the remaining graph H ′.

We finish, by noting that condition 1 of Theorem 2 implies that any multicut
of the terminals in H ′ ensures that no piece in H ′ separated by L contains
more than half the weight of all terminals in H . We use this fact to show that
the multicut L can be rearranged to find a “weight-balanced” cut in H ′, which
corresponds to a node-balanced cut in H . Any node-balanced cut, however, in H
must have at least Ω(K) edges. Using a proper choice of a3, we force this balanced
cut to contain at most half as many edges in H ′ as in H . Thus, we show Ω(K)
edges have been removed when routing P . Since routing each such pair removes
at most Dω log2 n(O(log5 n) edges. We conclude |P | must be Ω(K/ log5 n).

In more detail, in H ′, we alter π slightly to generate a new function π′(i), ∀i ∈
V (H ′), so that only remaining pairs uv ∈ T ′ contribute a positive weight to
π′(H ′) according to their flow in f̄ like that of condition 1 in Theorem 2; hence
each connected component in H ′, separated by multicut L, has a weight of at
most π′(H ′)/2. We then use L to find a balanced cut (U ′, V ′ \ U ′) in H ′ such
that each side has weight at least π′(H ′)/4, where π′(H ′) ≥ π(G)− (W − 1)−
2(2W − 1)D |P |. It is straightforward to verify that any partition (U, V (H) \U)
in H , such that U ′ ⊆ U and (V ′ \U ′) ⊆ (V (H)\U), is node-balanced in H . The
rest of the proof follows the outline in the previous paragraph.
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Abstract. Bin packing is a well studied problem which has many appli-
cations. In this paper we design a robust APTAS for the problem. The
robust APTAS receives a single input item to be added to the packing at
each step. It maintains an approximate solution throughout this process,
by slightly adjusting the solution for each new item. At each step, the
total size of items which may migrate between bins must be bounded by
a constant factor times the size of the new item. We show that such a
property cannot be maintained with respect to optimal solutions.

1 Introduction

Consider the classical online bin packing problem where items arrive one by
one and are assigned irrevocably to bins. Items have sizes bounded by 1 and
are assigned to bins of size 1 so as to minimize the number of bins used. The
associated offline problem assumes that the complete input is given in advance.

We follow [12] and allow the “online” algorithm to change the assignment of
items to bins whenever a new item arrives, subject to the constraint that the
total size of the moved items is bounded by β times the size of the arriving item.
The value β is called the Migration Factor of the algorithm. We call algorithms
that solve an offline problem in the traditional way static, whereas algorithms
that receive the input items one by one, assign them upon arrival, and can do
some amount of re-packing using a constant migration factor are called dynamic
or robust. An example we introduce later shows that an optimal solution for
bin packing cannot be maintained using a dynamic (exponential) algorithm.
Consequently, we focus on polynomial-time approximation algorithms.

In our point of view, the main advantage in obtaining an APTAS for the clas-
sical bin packing problem with a bounded migration factor is that such type of
schemes possess a structure. Hence we are able to gain insights into the struc-
ture of the solution even though it results from exhaustive enumeration of a large
amount of information.

Sanders, Sivadasan and Skutella [12] studied the generalization of the online
scheduling problem where jobs that arrive one by one are assigned to identical
parallel machines with the objective of minimizing the makespan. In their gen-
eralization they allow the current assignment to be changed whenever a new job
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arrives, subject to the constraint that the total size of moved jobs is bounded by
β times the size of the arriving job. They obtained a dynamic polynomial time
approximation scheme for this problem extending an earlier polynomial time ap-
proximation scheme of Hochbaum and Shmoys [7] for the static problem. They
noted that this result is of particular importance if considered in the context
of sensitivity analysis. While a newly arriving job may force a complete change
of the entire structure of an optimal schedule, only very limited local changes
suffice to preserve near-optimal solutions.

For an input X of the bin packing problem we denote by OPT (X) the minimal
number of bins needed to pack the items of X , and let SIZE(X) denote the
sum of all sizes of items. Clearly, OPT (X) ≥ SIZE(X). For an algorithm B we
denote by B(X) the number of bins used by B.

It is known that no approximation algorithm for the classical bin packing
problem can have a cost within a constant factor r of the minimum number of
required bins for r < 3

2 unless P = NP . This leads to the usage of the stan-
dard quality measure for the performance of bin packing algorithms which is
the asymptotic approximation ratio or asymptotic performance guarantee. The
asymptotic approximation ratio for an algorithm A is defined to be

R(A) = lim sup
n→∞

sup
X

{
A(X)

OPT (X)

∣∣∣∣∣OPT (X) = n

}
.

The natural question, which was whether this measure allows to find an ap-
proximation scheme for bin packing, was answered affirmatively by Fernandez de
la Vega and Lueker [3]. They designed an algorithm whose output never exceeds
(1 + ε)OPT (I) + g(ε) bins for an input I and a given ε > 0. The running time
was linear in n, but depended exponentially on ε, and such a class of algorithms
is considered to be an APTAS (Asymptotic Polynomial Time Approximation
Scheme). The function g(ε) depends only on ε and grows with 1

ε .
Two later modifications simplified and improved this seminal result. The first

modification allows to replace the function g(ε) by 1 (i.e. one additional bin
instead of some function of ε), see [17], Chapter 9. The second one by Karmarkar
and Karp [10] allows to develop an AFPTAS (Asymptotic Fully Polynomial
Time Approximation Scheme). This means that using a similar (but much more
complex) algorithm, it is possible to achieve a running time which depends on 1

ε
polynomially. The dependence on n is much worse than linear, and is not better
than Θ(n8). In this case the additive term remains g(ε). Karmarkar and Karp
[10] also designed an algorithm which uses at most OPT (I)+ log2[OPT (I)] bins
for an input I.

Related work. The classical online problem was studied in many papers, see
the survey papers of [2,1]. It was first introduced and investigated by Ullman
[15]. The currently best results are an algorithm of asymptotic performance ratio
1.58889 given by Seiden [14] and a lower bound of 1.5401 [16]. From this lower
bound we can deduce that in order to maintain a solution which is very close to
optimal, the algorithm cannot be online in the usual sense. Several attempts were
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made to give a semi-online model which allows a small amount of modifications
to the solution produced by the algorithm. We next review these attempts.

Gambosi, Postiglione and Talamo [5,6] introduced a model where a constant
number of items (or small items grouped together) can be moved after each
arrival of an item. They presented two algorithms. The first moves at most
three items on each arrival and has the performance guarantee 3

2 = 1.5. The
second algorithm moves at most seven items on each arrival and the performance
guarantee 4

3 ≈ 1.33333. The running times of these two algorithms are Θ(n) and
Θ(n log n) respectively, where n is the number of items.

Ivkovic and Lloyd [9] gave an algorithm which uses O(log n) re-packing moves
(these moves are again of a single item or a set of grouped small items). This
algorithm is designed to deal with departures of items as well as arrivals, and
has performance guarantee 5

4 . Ivkovic and Lloyd [9,8] considered an amortized
analysis as well, and show that for every ε > 0, the performance guarantee 1+ ε
can be maintained, with O(log n) amortized number of re-packing moves if ε is
seen as a constant, and with O(log2 n) re-packing moves if the running time must
be polynomial in 1

ε . However, the amortized notion here refers to a situation that
for most new items no re-packing at all is done, whereas for some arrivals the
whole input is re-packed.

Galambos and Woeginger [4] adapted the notion of bounded space online
algorithms (see [11]), where an algorithm may have a constant number of active
bins, and bins that are no longer active, cannot be activated. They allow complete
re-packing of the active bins. It turned out that the same lower bound as for the
original (bounded space) problem holds for this problem as well, and re-packing
only allowed to obtain the exact best possible competitive ratio having three
active bins, instead of in the limit.

Outline. We review the adaptation of the algorithm of Fernandez de la Vega
and Lueker [3], as it appears in [17], in Section 2. We then state some further
helpful adaptations that can be made to the static algorithm. In Section 3 we
describe our dynamic APTAS and prove its correctness. This algorithm uses
many ideas from [3], however the adaptation into a dynamic APTAS requires
careful changes to the scheme. We show that the number of bins used by our
APTAS never exceeds (1 + ε)OPT (X) + 1 where X is the list of items that has
been considered so far. The running time is O(n log n) where n is the number of
items, since the amount of work done upon arrival of an item is a function of ε
times log n. In the full version we show an example in which there is no optimal
solution that can be maintained with a constant migration factor.

2 Preliminaries

We review a simple version of the very first asymptotic polynomial time approx-
imation scheme. This is the algorithm of Fernandez de la Vega and Lueker [3].
The algorithm is static, i.e., it considers the complete set of items in order to
compute the approximate solution. Later in this section we adapt it and present
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another version of it, which is still static. This new version is used in our dynamic
APTAS that is presented in the next section.

We are given a value 0 < ε < 1 such that the asymptotic performance guar-
antee should be at most 1 + ε, and 1

ε is an integer. Consider an input I for the
bin packing problem. We define an item to be small, if its size is smaller than
ε
2 . Other items are large.

Algorithm FL [3]
1. Items are partitioned into two sets according to their size. The multiset of
large items is denoted L and the multiset of small items is denoted T . We have
I = L ∪ T .
2. A linear grouping is performed to the large items. Let n be the number of
large items in the input (n = |L|), and let a1 ≥ . . . ≥ an be these items.
Let m = 2

ε2 . We partition the sorted set of large items into m consecutive
sequences Sj (j = 1, . . . ,m) of k = � nm� = �nε22 � items each (to make the last
sequence be of the same cardinality, we define ai = 0 for i > n). I.e., Sj =
{a(j−1)k+1, . . . , a(j−1)k+k} for j = 1, 2, . . . ,m. For j ≥ 2, we define a modified
sequence Ŝj which is based on the sequence Sj as follows. Ŝj is a multiset which
contains exactly k items of size a(j−1)k+1, i.e., all items are rounded up to the
size of the largest element of Sj . The set S1 is not rounded and therefore Ŝ1 = S1.

Let L′ be the union of all multisets Ŝj and let L′′ =
m⋃
j=2

Ŝj.

3. The input L′′ is solved optimally.
4. A packing of the complete input is obtained by first replacing the items of
Ŝj in the packing by items of Sj (the items of Sj are never larger than the
items of Ŝj , and so the resulting packing is feasible), and second, using k bins
to pack each item of S1 in a separate bin. Last, the small items are added to the
packed bins (with the original items without rounding) using Any Fit Algorithm.
Additional bins can be opened for small items if necessary. Step 3 can be executed
in polynomial time by solving an integer programming in a fixed dimension.

Lemma 1. Algorithm FL is a polynomial time algorithm.

We next analyze the performance guarantee of Algorithm FL. For two multisets
A,B, we say that A is dominated by B and denote A ≤ B if there exists an
injection h : A→ B such that for all a ∈ A, h(a) ≥ a.

Lemma 2. If A and B are multisets such that A≤B, then OPT (A)≤OPT (B).

Theorem 1. Algorithm FL is an APTAS.

Algorithm Revised FL: We now design a new static adaptation Algorithm
FL which is later generalized into a dynamic APTAS. We modify only Step 2 as
follows:

– The multisets Sj are defined similarly to before, with the following changes.
The multisets do not need to have the same size, but their cardinalities need
to be monotonically non-increasing. I.e., for all j, |Sj | ≥ |Sj+1|. Moreover,
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we require that if nε2 ≥ 8, then |S1| ≤ � ε
2n
2 � and |Sm| ≥ |S1|

4 , and otherwise
each set has a single element.

– The rounding is done as follows. Given a multiset Sj which consists of el-
ements c1 ≥ . . . ≥ ck, the elements are rounded up into two values. Let
1 < s ≤ k, then all elements c1, . . . , cs−1 are rounded into c1, and the ele-
ments cs, . . . , ck are rounded into ct for some 2 ≤ t ≤ s.

The proof of Theorem 1 extends easily to this adaptation as well. Specifically,
the amount of distinct sizes in the rounded instance is constant (which depends
on ε) and so is the number of patterns. The mapping is defined similarly, and
the set S1 still satisfies |S1| ≤ � ε2n2 � so it is small enough to be packed into
separate bins. If the small items which are are added using Any Fit cause the
usage of additional bins, the situation is exactly the same as before. Therefore,
we establish the following theorem.

Theorem 2. Algorithm Revised FL is an APTAS.

In the sequel we show how to maintain the input grouped as required by Al-
gorithm Revised FL. We also show that the difference between packing of two
subsequent steps is small enough that it can be achieved by using a constant (as
a function of ε) migration factor as in [12].

3 APTAS with f(1
ε
) Migration Factor

In this Section we describe our dynamic APTAS for bin packing with the ad-
ditional property that the migration factor of the scheme is f(1

ε ) (i.e., it is a
function f of the term 1

ε ), and therefore a constant migration factor for fixed
value of ε.

We use the following notations. The number of large items among the first
t items is denoted n(t). The size of the ith arriving item is bi. The value m is
defined as in the previous section m = 2

ε2 . We denote by OPT (t) the number
of bins used by an optimal solution for the first t items. We assume that after
the first t items, we have a feasible solution that uses at most (1+ ε)OPT (t)+1
bins and show how to maintain such a solution after the arrival of a new item of
index t + 1. Later on we describe several structural properties that our solution
satisfies, and show how to maintain these properties as well. These structural
properties help us to establish the desired migration factor.

Similarly to Algorithm Revised FL we treat small items and large items dif-
ferently. Recall that an item is small, if its size is smaller than ε

2 . When a small
item arrives, we use Any Fit Algorithm to find it a suitable bin.

It remains to consider the case where the t + 1-th item is a large item, i.e.,
bt+1 ≥ ε

2 . We keep the following structural properties throughout the algorithm.

1. If n(t) ≥ 4m + 1 then the sorted list of large items which arrived so far is
partitioned into M(t) consecutive sequences S1(t), . . . , SM(t)(t), where 4m+
1 ≤ M(t) ≤ 8m + 1 such that |S1(t)| ≥ |S2(t)| = |S3(t)| = · · · = |SM(t)(t)|.
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Otherwise, if n(t) ≤ 4m then the sorted list of large items which arrived so
far is partitioned into n(t) consecutive sequences each of them has a single
large element S1(t), . . . , Sn(t)(t).

2. Denote K(t) = |SM(t)(t)|, then |S1(t)| ≤ 4K(t).
3. There are two special subsets of S1(t) denoted by S′

1(t) and S′′
1 (t) (these sets

might be empty at some times). Each of these two sets contains at most K(t)
items. The sets are special in the sense that we treat them as separate sets
while rounding, and in the rounded up instance S′

1(t) and S′′
1 (t) are rounded.

However in the analysis the cost of the solution is bounded allowing each
element of S1(t) to be packed in its own bin.

The time index t can be omitted from the notation of a set or a parameter
if the time it belongs to is clear from the context. Therefore, when e.g. we
discuss the set S1 this is the set S1(t) that is associated with the discussed time.
The size of the set S1 is defined according to algorithm Revised FL. We have
n ≥MK > 4mK, and therefore S1 ≤ 4K < n

m = nε2

2 .
Note that for n ≤ 4m each element has its own list, and therefore we solve

optimally the instance of the large items excluding the largest item.
We turn now to discuss steps, where each step is an arrival of a large item. We

partition the steps into three types, which are, regular steps, creation steps and
union steps. An insertion of a new large item operation takes place in all types
of steps. A creation of new sets operation takes place only in creation steps. A
union of sets operation takes place only in union steps.

We also maintain the following property. During regular steps or creation
steps, no set is rounded to a pair of values but for each set Sj (j ≥ 2), the items of
Sj are rounded up to the largest size of any element of Sj . However, during union
steps, each set is rounded up to a pair of values (as in Algorithm Revised FL).

Lemma 3. The arrival of a small item and allocating it according to Any Fit
Algorithm maintains the structural properties.

We next define a series of operations on the sequences so the properties are
maintained after a new item arrives, and the migration factor of the resulting
solution is constant. When a new item arrives, we first apply the insertion of a
new large item operation. Afterwards if the current step is a creation step, we
apply the creation of new sets operation, whereas if the current step is a union
step, we apply the union of sets operation.

When we bound the migration factor, note that changes to the allocation of
items into bins are made only when large items arrive. Hence, the size of the
arriving item of index t + 1 is at least ε

2 . Therefore, if we can prove that the
allocation is changed only for a set of items that we allocated to a fixed number
of bins (their number is a function of ε) then we get a constant migration factor
throughout the algorithm.

Insertion of a new large item. When a large item arrives then if n ≤ 4m+1
we add a new list that contains the new item as its unique element. Note that
in this case the resulting set of lists satisfies the structural properties. Otherwise
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(i.e., n ≥ 4m+2) we first compute the list to which it belongs, and add it there.
The list to which it belongs, Sj, is defined as follows. If the new item is larger
than an existing item in S1, then this list is S1. Otherwise, we find the set Sj+1
of smallest index such that the new item is larger than all its elements, and the
list to which the item belongs is Sj . We move up items from Si to Si−1 for all
2 ≤ i ≤ j, this operations is defined as follows. We move the largest item of Si
to Si−1 and afterwards we change the value which the size of the items of Si is
rounded up to, into the size of the new largest item of Si. When we consider
the effect this operation has on the feasibility of the integer program, we can see
that the right hand side does not change (the size of Sr is not affected for all
values of r such that 2 ≤ r ≤ M), however new patterns arise as the size of the
rounded up instance is smaller (and so we can pack more items to a bin in some
cases). The additional patterns mean new columns of the feasibility constraint
matrix. Note that adding the new large item into its list takes O(log n) time (as
we need to maintain sorted lists of the large elements).

Theorem 3. [Corollary 17.2a, [13]] Let A be an integral m×d matrix such that
each sub-determinant of A is at most ∆ in absolute value, let û and u′ be column
m-vectors, and let v be a row d-vector. Suppose max{vx|Ax ≤ û;x is integral}
and max{vx|Ax ≤ u′;x is integral} are finite. Then, for each optimum solution y
of the first maximum there exists an optimum solution y′ of the second maximum
such that ||y − y′||∞ ≤ d∆ (||û− u′||∞ + 2).

Lemma 4. Let A be the constraint matrix of the feasibility integer program. Let
d be the number of columns of A and let ∆ be the maximum value in absolute
value of a sub-determinant of A. Then, throughout the algorithm d ·∆ is bounded
by a constant (for a fixed value of ε).

The proof of the following lemma is similar to the analysis of [12].

Lemma 5. Assume that before the arrival of the current large item, there is a
feasible solution y to the feasibility integer program of the rounded up instance
L′′. After we apply an insertion of a new large item operation, if the feasibility
integer program is feasible then there is a solution to it y′ such that it is suffices
to re-pack the items that reside in a constant number of bins.

Proof. Denote by Ay = u the constraints of the feasibility integer program of
the rounded up instance. The matrix A is the constraint matrix and u is the
right hand side. Note that the columns of A correspond to patterns and the rows
correspond to different sizes of items. The constraint that corresponds to an item
size a has the following meaning. The amount of the items that we allocate along
all possible patterns of items with size a is exactly the number of items in the
rounded up instance with size a.

We first assume that n(t) ≥ 4m+1. Now consider the change in the constraint
matrix A when a new large item of size bt+1 arrives. Let A′ denote the modified
A, which is the feasibility constraint matrix for all the items in L′′ and the one
extra new element of S1. First, the cardinality of S1 increases by 1, (at the end
of the move up operation), and this does not change the constraint matrix as we
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do not have a constraint associated with S1. Next, we consider the decrease in
the size of rounded up items. Note that all the patterns that were feasible in the
previous stage clearly remain feasible (given a set of items that can be packed
in a single bin, decreasing the size of some of the items still allows to pack them
into a single bin). Therefore, the matrix A of the previous stage is a sub-matrix
of the matrix after we apply the insertion of a new large item operation. The
difference is a possible addition of columns (that correspond to patterns that
were infeasible before we decrease the size of some items and before we add the
new item, however these patterns are now feasible).

To bound the change in u, denote the new right hand side by u′. The set S1 is
not represented in A, therefore there is no change and u′ = u. Let û = u. Then,
in the case where n(t) ≥ 4m + 1 the change in the right hand side is bounded
by a constant, i.e., ||u′ − û||∞ = 0.

Otherwise, n(t) ≤ 4m and the feasibility integer program has a new row that
corresponds to the new large item and whose right hand side value is 1. Note that
all the patterns that were feasible in the previous stage clearly remain feasible.
Therefore, the matrix A of the previous stage is a sub-matrix of the matrix
after we apply the insertion of a new large item operation. The difference is a
possible addition of columns that pack the new item as well, and a new row that
corresponds to the new item. To bound the change in u, denote the new right
hand side by u′. Let û be a right hand side equal to u′ beside one entry that is
in the component that correspond to the new row of A where it equals zero. In
this case ||u′ − û||∞ = 1. In the remainder of this proof we do not distinguish
between the case where n ≥ 4m + 1 and the case where n ≤ 4m.

We can extend y to a vector ŷ that is a feasible solution of A′ŷ = û. To do so,
we define the entries of y that correspond to the new columns in A′ compared
to A to be zero. In the other components (whose columns exist in A) the value
of ŷ is exactly the value of y.

In order to prove the claim it is enough to show that there is a feasible solution
y′ such that ||ŷ − y′||∞ is a constant (then we re-pack the items from the bins
that correspond to the difference between ŷ and y′). Recall that we assume that
Ay = û is feasible integer program. Therefore, the assumptions of Theorem 3
are satisfied. Therefore, by Theorem 3, there is a feasible integer solution y′ such
that ||ŷ − y′||∞ ≤ d∆ (||û− u′||∞ + 2). We would like to bound by a constant
the right hand side of the last inequality.

By Lemma 4, d and ∆ are bounded by a constant. We have already bounded
||û− u′||∞ by the constant 1 and this completes the proof. ��
Therefore, the moving up operation causes constant migration. However in order
to prove the performance guarantee of the algorithm we need to show how to
maintain the structural properties. To do so, note that the only sets whose
cardinality increases during the moving up operation is S1, and therefore we
need to show how to deal with cases where S1 is too large.

Creation of new sets: After S1 has exactly 3K items we start a new operation
that we name creation of new sets that lasts for K steps (in each such step a
new large item arrives and we charge the operation done in the step to this new
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item). We consider the items c1 ≥ c2 ≥ · · · ≥ c3K of S1. We create new sets
S′

1 and S′′
1 where eventually S′

1 = {cK+1, . . . , c2K} and S′′
1 = {c2K+1, . . . , c3K}.

In each step we will have already rounded i items from S′
1 and from S′′

1 to its
target value and i is increased by 1 each step. So after i steps of this creation
of new sets operation, the rounded up instance has i copies of the items cK+1
and c2K+1. Then, the resulting instance can be solved in polynomial time where
we put each item of S1 that has not already rounded up to either cK+1 or
to c2K+1 in a separate bin. Rounding up two items at each step results in a
constant change in the right hand side of the feasibility integer programming
and therefore increase the migration factor within an additive constant factor
only as we prove in Lemma 6 below. At the end of K steps we declare the sets
S′

1 and S′′
1 as the new S2 and S3 and increasing M by two. Each of the new

sets contains exactly K elements and the new S1 contains exactly 2K elements,
and therefore if M(t) ≤ 8m− 1 we are done while keeping a constant migration
factor. Otherwise, next time the creation new sets operation takes place we will
violate the second structural property, and therefore we currently initiate the
union of sets operation that lasts for K steps as well. Note that we never apply
both the creation of new sets and the union of sets operations at the same step.

The moving up procedure during the insertion of a new large item operation
will increase S1 further, and this case we also apply this procedure to S′

1 and S′′
1

and thus decreasing the value to which we round up the items that belong to S′
1

and S′′
1 . So in fact during the creation of new sets operation S1 is partitioned

into five sets S1
1 , S

′
1, S

2
1 , S

′′
1 , S3

1 such that the items in S1
1 are the largest items of

S1, S2
1 contains the items with size that is smaller than the items in S′

1 but they
are larger than the items in S′′

1 , and S3
1 contains the other items of S1. Then,

in each step we increase the size of S1
1 , S′

1 and S′′
1 by one item each, whereas

the size of S2
1 and S3

1 is decreased by one. This means that during the move up
operation we will move up items also in these collection of the five subsets of S1.

Lemma 6. Assume that before we apply the creation of new sets operation and
after we finish the insertion of a new large item operation, there is a feasible
solution y′ to the feasibility integer program of the rounded up instance L′′. After
we apply the creation new sets operation, if the feasibility integer program is
feasible then there is a solution to it y′′ such that it is enough to re-pack the
items that reside in a constant number of bins.

Union of sets: When the number of sets reaches 8m+ 1 we start the following
operation that lasts for K steps (where again a step means an arrival of a large
item). First we declare each pair of consecutive sets as a new set. That is for
2 ≤ j ≤ 4m + 1 we let Sj(t + 1) be S2j−1(t) ∪ S2j−2(t), but we still do not
change the way the rounding is performed. So in the resulting partition into
sets, each set has exactly 2K items, and we declare this the new value of K, i.e.,
K(t+1) = 2K(t), and the number of sets now is M = 4m+1. However, each set
is rounded to a pair of values, and this is something we will recover in the next
steps. While the rounding of each set is to two values, denote by S′

j the items
that we round to the largest item of Sj and by S′′

j = Sj \ S′
j. In each step for all

j ≥ 2 we move the largest item of S′′
j to S′

j . Thus, we round this moved item to
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the largest element of Sj and do not change the value to which we round up the
items of S′′

j . Both these changes do not increase the migration factor by much
as we prove below in Lemma 7. At the end of this procedure we end up with
a collection of subsets each rounded to a common value and finish the union of
sets operation.

Lemma 7. Assume that before we apply the union of sets operation and after
we finish the insertion of a new large item operation, there is a feasible solution
y′ to the feasibility integer program of the rounded up instance L′′. After we apply
the union of sets operation, if the feasibility integer program is feasible then there
is a solution to it y′′ such that it is enough to re-pack the items that reside in a
constant number of bins.

We now describe the algorithm we apply each time a new item arrives denoted
as Algorithm Dynamic APTAS. If the new arriving item is small then we
use Any Fit Algorithm to pack it into an existing bin or open a new bin for it if
it cannot fit into any other existing bin (when we need to pack a small item, we
consider the original sizes of large items that are already packed and not their
rounded sizes). In the case where the new small items causes an addition of a
new bin, we maintain the solution to the feasibility integer program by adding
a bin whose pattern is the empty pattern that does not pack any large item.

Otherwise, the item is large and we are allowed (while still getting a constant
migration factor) to re-pack the items of a constant number of bins. We consider
the optimal rounded-up solution y before the current item has arrived. Note
that y is the integer solution after the previous large item was added with the
possibility of introducing empty patterns bins in case we open new bins to small
items.

Then, after we apply the insertion of a new large item operation, we use
Lemma 5 and look for a feasible packing of the resulting new rounded-up in-
stance, y′ that is close to y (i.e., the norm infinity of their difference is at most a
constant that is given by the proof of Lemma 5). The restriction that y′ is close
to y is given by linear inequalities, and therefore we can solve the resulting fea-
sibility integer program in polynomial time (for fixed value of ε). If the resulting
integer program is infeasible, then we must open a new bin for the new rounded
up instance, and then we can put the new item in the new bin and the rest of
the items as they were packed in the solution before the insertion of a new large
item operation occurs. Otherwise, we obtain such an integer solution y′ that is
close to y.

Similarly, if we need to apply either the creation of new sets operation or the
union the sets operation we construct a solution y′′ that is close to y′ (the norm
infinity of their difference is a constant). This restriction is again given by linear
inequalities and therefore we can solve the resulting feasibility integer program
in polynomial time (for fixed value of ε). If the resulting integer program is
infeasible, then we must open a new bin for the new rounded up instance, and
then we can put the new item in the new bin and the rest of the items as they
were packed in the solution before the insertion of a new large item operation
occurs. Otherwise, we obtain such an integer solution y′′ that is close to y. If we



224 L. Epstein and A. Levin

did not apply the creation of new sets operation or the union the sets operation,
then we denote y′′ = y′.

Note that during creation steps our algorithm packs the items from S′
1 ∪ S′′

1
according to their packing in the feasibility integer program. I.e., the integer
program has a row for S′

1 and a row for S′′
1 . However, in the analysis of the

performance guarantee of the algorithm in Theorem 4 below we bound the cost
of the solution by a different solution that packs each item of S1 in its own bin
(this is also with for the items of S′

1 ∪ S′′
1 ). Such a solution is not better than

our resulting solution as it corresponds to a solution to the integer program that
choose such patterns for its covering of the elements of S′

1 ∪ S′′
1 .

It remains to show how to construct a solution to the bin packing instance
using the vector y′′. For each pattern we change the packing of max{yp − y′′

p , 0}
bins that were packed according to pattern p. For pattern p we select such bins
arbitrarily (from the bins that we pack according to pattern p). We complete the
packing of the items to a packing that correspond to y′′. This will pack all the
large items and all the small items that were not packed in the bins we decided
to re-pack. Then, we apply Any Fit Algorithm for the small unpacked items.

This algorithm re-packs a constant number of bins in case a large item arrives
and it does not change the packing in case a small item arrives.

Corollary 1. Algorithm Dynamic APTAS has a constant migration factor for
fixed value of ε.

The proof of the following theorem is based on the analysis of Algorithm Revised
FL.

Theorem 4. Algorithm Dynamic APTAS is a polynomial time algorithm that
has a constant migration factor and uses at most (1 + ε)OPT (t) + 1 bins after
t items arrives.

Remark 1. The feasibility integer program to find vectors y′ and y′′ (in the
notations of the algorithm), which are close to y, can be solved by only one
integer program of a fixed size.

4 Concluding Remarks

A similar approach allows to prove the following result. Given bins of size 1 + ε
instead of size 1, it is possible to design a dynamic algorithm which uses at time
t, at most OPT (t) bins to pack the items. The algorithm works as follows. Items
are partitioned into large (at least ε

4 ) and small (all other items). The sizes of
large items are rounded up into powers of 1 + ε

4 . This rounding is permanent
and the original size is ignored in all steps of the algorithm. Feasible patterns of
large items are defined similarly to [12]. At each arrival of a large item we check
whether the previous amount of bins still allows a feasible solution. It is possible
to show that in such a case, a limited amount of re-packing is needed. Otherwise
the new item is packed in a new bin. Small items are packed greedily using Any
Fit Algorithm.
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A question that is left open is whether there exists a robust AFPTAS for the
classical bin packing problem. It would be interesting to find out which other
problems can benefit from the study of robust approximation algorithms.
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Abstract. We prove an improved hardness of approximation result for
two problems, namely, the problem of finding the size of the largest clique
in a graph and the problem of finding the chromatic number of a graph.
We show that for any constant γ > 0, there is no polynomial time algo-

rithm that approximates these problems within factor n/2(log n)3/4+γ

in

an n vertex graph, assuming NP � BPTIME(2(log n)O(1)
). This improves

the hardness factor of n/2(log n)1−γ′
for some small (unspecified) con-

stant γ′ > 0 shown by Khot [20]. Our main idea is to show an improved
hardness result for the Min-3Lin-Deletion problem.

An instance of Min-3Lin-Deletion is a system of linear equations mod-
ulo 2, where each equation is over three variables. The objective is to find
the minimum number of equations that need to be deleted so that the
remaining system of equations has a satisfying assignment. We show a
hardness factor of 2Ω(

√
log n) for this problem, improving upon the hard-

ness factor of (log n)β shown by H̊astad [18], for some small (unspecified)
constant β > 0. The hardness results for clique and chromatic number
are then obtained using the reduction from Min-3Lin-Deletion as given
in [20].

1 Introduction

A clique in a graph is a subset of vertices such that any pair of vertices in the
subset is connected by an edge. MaxClique is the problem of finding the size
of the largest clique in a graph. It has been a pivotal problem in the field of
inapproximability, leading to the development of many important tools in this
field.

The best approximation algorithm for MaxClique was given by Feige [11].
The algorithm achieves an approximation factor of O(n(log log n)2

log3 n
), where n is

the number of vertices in the input graph. It was conjectured that the Lovász
θ-function might be a O(

√
n) approximation for MaxClique (see [22] for details).

Since the Lovász θ-function can be computed to any desired degree of accuracy
in polynomial time, the conjecture implies a O(

√
n) approximation algorithm for

� The research is partly supported by the Microsoft New Faculty Fellowship.
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MaxClique. For perfect graphs, Lovász θ-function equals the size of the largest
clique. For random graphs, the gap between these two values can be as bad as
Ω(
√

n/ log n). The conjecture says that this may essentially be the worst possible
gap. Feige [10] disproved the conjecture by showing that the Lovász θ-function
does not approximate MaxClique better than n

2
√

c log n , where c > 0 is a constant.
The first inapproximability result for MaxClique was obtained by Feige et

al. [12] who discovered the connection between hardness of approximation and
Probabilistically Checkable Proofs(PCPs). We summarize the progress on show-
ing hardness results for MaxClique in Table 1. Let PCPc,s(r(n), q(n)) denote the
class of languages that have a non-adaptive verifier with the following proper-
ties. For an input string of length n, the verifier uses r(n) random bits and
queries q(n) from the proof. If the input belongs to the language, there is
a correct proof that is accepted with probability c. Otherwise, no proof is
accepted with probability more than s. Feige et al. [12] showed that NP ⊆
PCP1,1/2(O(log n log log n), O(log n log log n)). Arora and Safra [3] and Arora et
al. [2] improved this result to show that NP ⊆ PCP1,1/2(O(log n), O(1)), a result
known as the PCP Theorem. Since then, many different PCP constructions for
languages in NP have led to inapproximability results for several other problems
in addition to MaxClique.

Bellare and Sudan [6] defined a parameter called amortized free bits for PCPs.
They showed that if problems in NP have PCPs that use logarithmic randomness
and f̄ amortized free bits, then MaxClique is hard to approximate within a factor
of n1/(1+f̄)−ε unless NP ⊆ ZPP. They constructed PCPs with 3 + δ amortized
free bits for arbitrarily small δ > 0. This implies a hardness factor of n1/4−ε for
MaxClique. The result was improved by Bellare et al. [4] by constructing PCPs
with 2 + δ amortized free bits. Finally, H̊astad [16] gave a construction that
achieved an amortized free bit complexity of δ for any constant δ > 0, proving
n1−ε hardness for MaxClique. Simpler proofs of H̊astad’s result were given by
Samorodnitsky and Trevisan [24] and H̊astad and Wigderson [19]. Both these
results achieved amortized free bit complexity δ and amortized query complexity
1 + δ for any constant δ > 0 (both parameters are optimal).

Khot [20] showed that MaxClique cannot be approximated within a factor of
n

2(log n)1−γ′ for some small constant γ′ > 0, assuming NP � ZPTIME(2(logn)O(1)
).

We believe that it is an important open problem whether inapproximability of
MaxClique can be improved to n

2O(
√

log n) . As mentioned before, Feige [10] showed
that the Lovász θ-function can have an approximation ratio as bad as n

2c
√

log n

for some constant c > 0. It would be interesting to prove the same lower bound
for any polynomial time algorithm. It would also fit in nicely with Trevisan’s
[27] lower bound of d

2O(
√

log d) for MaxClique on degree d graphs (d thought of
as a large constant). Blum [7] showed that if there exists a factor n

2
√

b log n quasi-
polynomial time approximation algorithm for MaxClique, then there exists a
quasi-polynomial time algorithm to color a 3-colorable graph with nε colors,
where ε = O(1/b). Therefore, strong lower bounds for MaxClique give evidence
that the graph coloring problem is hard. Another motivation comes from a result
of Feige and Kogan [15] who showed that if the balanced bipartite clique problem
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can be approximated within a constant factor, then there is a n
2O(

√
log n) approx-

imation for MaxClique. We refer to Srinivasan’s paper [26] for several other
interesting consequences of proving strong hardness results for MaxClique.

Table 1. Hardness Results for MaxClique

Hardness Factor Assumption

Feige et al. [12] 2log1−ε n, for any ε > 0 NP � DTIME(2(log n)O(1)
)

Arora and Safra [3] 2(log n)1/2−ε

P �= NP
Arora et al. [2] nc, for some c > 0 P �= NP

Bellare et al. [5] n1/30 NP � BPP

Bellare et al. [5] n1/25 NEXP � BPEXP

Feige and Kilian [13] n1/15 NP � coRP

Bellare and Sudan [6] n1/4−ε NP � ZPP

Bellare et al. [4] n1/3−ε NP � ZPP

H̊astad [17] n1/2−ε NP � coRP
H̊astad [16] n1−ε NP � ZPP
Engebretsen and n

2O(log n/
√

log log n) NP �

Holmerin [9] ZPTIME(2O(log n(log log n)3/2))

Khot [20] n

2(log n)1−γ′ , for some γ′ > 0 NP � ZPTIME(2(log n)O(1)
)

The chromatic number of a graph G, denoted by χ(G), is the minimum num-
ber of colors required to color the vertices of G such that for any edge, its
end-points receive different colors. Feige and Kilian [14] showed the connection
between randomized PCPs and inapproximability of chromatic number. Using
this result, they prove that it is hard to approximate chromatic number within a
factor better than n1−ε for any constant ε > 0, assuming NP � ZPP. Khot [20]
constructs a more efficient verifier and obtains a hardness factor of n

2(log n)1−γ′

for some constant γ′ > 0, assuming NP � ZPTIME(2(logn)O(1)
). We would like

to emphasize that the constant γ′ in Khot’s hardness results for MaxClique
and Chromatic Number is a non-explicit (possibly extremely tiny) constant that
depends on the proof of Raz’s Parallel Repetition Theorem [23].

2 Our Results and Techniques

We show the following inapproximability results for MaxClique and chromatic
number, taking us closer to the goal of n

2O(
√

log n) (or even n/polylog(n)).

Theorem 1. Assuming NP � BPTIME(2(logn)O(1)
), for any constant γ > 0,

MaxClique on an n vertex graph cannot be approximated within a factor better
than n/2(logn)3/4+γ

by any probabilistic polynomial time algorithm.

Theorem 2. Assuming NP � ZPTIME(2(logn)O(1)
), for any constant γ > 0,

chromatic number of an n vertex graph cannot be approximated within a factor
better than n/2(logn)3/4+γ

by any probabilistic polynomial time algorithm.
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Our main idea is to show an improved hardness factor for the Min-3Lin-Deletion
problem that is defined next.

Definition 1. Given a system of linear equations modulo 2

{ai0 ⊕ (
m
⊕
j=1

aijxj) = 0}i=1,2,...,l

as an input, Min-Lin-Deletion is the problem of finding the minimum number of
equations that need to be deleted so that the remaining system of equations has a
satisfying assignment. Min-3Lin-Deletion is the special case where exactly three
of the coefficients ai1, ai2, . . . , aim are non-zero for all i (that is, each equation
is over exactly 3 variables). An instance of the Min-Lin-Deletion problem can be
specified by a (l,m + 1) matrix

A =


a10 a11 . . . a1m
a20 a21 . . . a2m
...

...
...

al0 al1 . . . alm


In this case, we say that A is a (l,m)-Min-Lin-Deletion instance. We refer to
the minimum fraction of equations that need to be deleted to find a satisfying
assignment as the optimum of A, denoted by Opt(A). That is, Opt(A) is the
minimum possible fraction of 1s in AX, where the minimum is taken over all
vectors X = (1, x1, . . . , xm).

Min-Lin-Deletion-(c, s) is the problem of deciding whether the optimum of
the input is at most c or at least s (we let c and s depend on the size of the
input). The parameters c and s are called the completeness and soundness of
this problem.

We say a Min-Lin-Deletion instance is k-restricted if each equation is over
at most k variables. We say a Min-Lin-Deletion instance is k-regular if every
variable appears in exactly k equations.

All instances of Min-Lin-Deletion considered in this paper have the property
that the maximum number of variables in an equation is at most the number of
linear equations in that instance. Therefore, for simplicity, we assume that the
size of a Min-Lin-Deletion instance is the number of equations in it.

The following theorem was shown by H̊astad [18].

Theorem 3. For any constants ε, δ > 0, there exists a polynomial time algo-
rithm A1 that when given a 3SAT formula φ of size n produces a Min-3Lin-
Deletion instance A1 of size N1 = nO(1) such that:

– (Yes Case:) If φ is satisfiable, then there exists an assignment that satisfies
all but at most ε fraction of the equations. That is, Opt(A1) ≤ ε.

– (No Case:) If φ is not satisfiable, then no assignment satisfies more than
1/2 + δ fraction of the equations. That is, Opt(A1) ≥ 1/2− δ.
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H̊astad also showed that the theorem holds with ε = δ = (log N1)−β for some
(tiny) constant β > 0 if N1 and the running time of the reduction are al-
lowed to be slightly super-polynomial in n. In particular Min-3Lin-Deletion-
((log N1)−β , 0.4) is hard. This is the starting point for Khot’s [20] hardness
results for clique and chromatic number. Our main contribution is the following
improved hardness result for Min-3Lin-Deletion. This in turn implies improved
hardness results for MaxClique and chromatic number:

Theorem 4. There exists a 2O(log2 N1) time algorithm A that when given a Min-
3Lin-Deletion instance A1 of size N1 outputs a 7-regular Min-3Lin-Deletion
instance A of size N = 2O(log2 N1) such that:

– (Yes Case:) If Opt(A1) ≤ 0.1, then Opt(A) ≤ 2−Ω(
√

logN).
– (No Case:) If Opt(A1) ≥ 0.4, then Opt(A) ≥ Ω(log−3 N).

2.1 Reduction from Min-3Lin-Deletion to MaxClique

We briefly explain here how the improved hardness result for the Min-3Lin-
Deletion problem leads to improved hardness results for MaxClique (and sim-
ilarly for chromatic number). Khot’s [20] reduction from Min-3Lin-Deletion to
MaxClique proceeds in two steps. First, the Min-3Lin-Deletion instance is re-
duced to the so-called Raz Verifier and a PCP is built on top of the Raz Verifier.
Then, the hardness result for MaxClique follows from the PCP construction
using known techniques.

The strength of the hardness result for clique depends directly on the strength
of the Raz Verifier. To be precise, one would like to have a Raz Verifier with as
low soundness as possible, without losing much in completeness. Khot [20] starts
with a size N instance of Min-3Lin-Deletion-((logN)−β , 0.4) which is shown to
be hard by H̊astad [18]. The Raz Verifier is obtained via Parallel Repetition of
a certain protocol constructed from the Min-3Lin-Deletion instance. If u is the
number of repetitions, then the soundness of the Raz Verifier is 2−Ω(u). Thus the
soundness can be lowered by taking u large enough. However, the completeness
of the Raz Verifier suffers with parallel repetition. The completeness of the Min-
3Lin-Deletion instance is (log N)−β and this limits u to be at most (log N)β .
Note that β > 0 is a tiny constant.

On the other hand, we start with the Min-3Lin-Deletion-(2−Ω(
√

logN), Ω
(log−3 N)) instance given by Theorem 4. The completeness is good enough so
that we may take up to u = 2Ω(

√
logN) repetitions (we however take much fewer

repetitions since we do not want to blow up the size of the Raz Verifier). For
some fixed constant c0, the soundness of the Raz Verifier is (1− (1/ log3 N)c0)u,
which is roughly 2−u/ log3c0 N . We pick u = (log N)K+3c0 for a large constant K
and achieve a Raz Verifier with much lower soundness than earlier.

2.2 Overview of Our Construction

The main steps involved in showing inapproximability of Min-3Lin-Deletion are
shown in Fig. 1. We start with the Min-3Lin-Deletion-(0.1, 0.4) problem shown
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to be NP-hard by H̊astad [18]. We repeatedly perform two operations called
tensoring and boosting on this problem. This gives a reduction to a version of
Min-Lin-Deletion that has a big gap between completeness and soundness. But
the instances of Min-Lin-Deletion produced by the reduction can have equations
with large number of variables. We first reduce the number of variables appearing
in an equation significantly by using the Sum-Check protocol and the Low-degree
Test. We then break each of the linear equations into equations over at most three
variables in a trivial way by introducing auxiliary variables. We now describe
these steps in more detail and explain the new ideas involved.

[H̊astad]

Repeated tensoring
and boosting

Min-Lin-Deletion-(2−Ω(
√

log N2), 0.4)

Sum-Check Protocol
and

Low-degree Test

log3 N3-restricted

Trivial way to break a linear
equation into linear equations
over three variables

7-regular

Min-Lin-Deletion-(2−Ω(
√

log N3), 0.15)

Min-3Lin-Deletion-(2−Ω(
√

log N), Ω(log−3 N))

Min-3Lin-Deletion-(0.1, 0.4)

Fig. 1. The main steps in proving an improved factor for Min-3Lin-Deletion

Hardness of Approximation Result for Min-Lin-Deletion. The tensor-
ing operation we use on a Min-Lin-Deletion instance is similar to an operation
defined by Dumer et al. [8] on linear codes. Tensoring involves taking all possi-
ble pairs of linear equations, computing their “product”, and then replacing the
terms of the form xixj with xij and xi with xii to get back a linear equation. Ten-
soring converts a Min-Lin-Deletion-(c, s) instance to a Min-Lin-Deletion-(c2, s2)
instance. Our aim is to bring the completeness close to zero, while keeping the
soundness close to 1/2. Therefore, we cannot use tensoring repeatedly by it-
self (otherwise the soundness would also tend to zero). We use a boosting step
after every tensoring operation to work around this problem. Given a Min-Lin-
Deletion instance, boosting produces a new Min-Lin-Deletion instance by pick-
ing O(1) equations from its input and adding all possible linear combinations
of these equations to the output instance. The idea is that even if one the O(1)
equations are not satisfied by some assignment, half of the linear combinations
of these equations will also not be satisfied by the assignment. To keep the size
of the output Min-Lin-Deletion instance small, we pseudo-randomly generate
only O(n) of the nO(1) possible ways to pick O(1) equations from n equations.
When given a Min-Lin-Deletion-(c, 0.16) instance as an input, boosting produces
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a Min-Lin-Deletion-(σc, 0.4) instance as the output, for some absolute constant
σ. Here, σ is the length of a random walk we need to perform on the expander so
that the probablilty of visiting a subset containing 0.16 fraction of the vertices
is at least 0.8. By an appropriate choice of the expander, we can assume σ ≤ 5.

After applying tensoring and boosting once to a Min-Lin-Deletion-(c, 0.4) in-
stance, we get a Min-Lin-Deletion-(σc2, 0.4). If we start with the completeness
c = 1/(2σ) = 0.1, we could apply tensoring and boosting repeatedly. The com-
pleteness will decrease each time while the soundness stays at 0.4.

Both tensoring and boosting increase the number of variables appearing in
each equation. As a result, even though we start with a Min-3Lin-Deletion in-
stance, the final instance of Min-Lin-Deletion has a large number of variables
appearing in an equation. To obtain the inapproximability result for Min-3Lin-
Deletion, we cannot simply break the equations into smaller equations with at
most three variables in the trivial way by introducing auxiliary variables. The
reason is that the gap between the completeness and soundness of the Min-Lin-
Deletion problem will then become insignificant. We instead use a technique
based on the Sum-Check Protocol.

Reducing the Size of Equations in a Min-Lin-Deletion Instance. We
use the Sum-Check Protocol combined with the Low-degree Test (see Arora [1])
to construct a PCP verifier for Min-Lin-Deletion. A typical constraint of the
Min-Lin-Deletion instance looks like:

x1 ⊕ x2 ⊕ . . .⊕ xn = a (1)

The verifier tries to verify that this constraint is satisfied using logO(1) n queries
(with access to auxiliary tables as explained below). The test of the verifier is a
linear predicate in the logO(1) n bits read. This gives a reduction to the Min-Lin-
Deletion problem in which every equation is over at most logO(1) n variables. We
can then break the equations into smaller equations in the trivial way.

Let IF be a field. Given a r-variate degree d polynomial f and a ∈ IF, the
Sum-Check Protocol can be used to verify if the sum of the values of f on the
sub-hypercube Sr of IFr is equal to a, without having to read the value of f at
all points on Sr. The prover needs to provide some auxiliary data in the form of
a Partial Sums Table. The non-adaptive verifier under this protocol randomly
reads a few values from the Partial Sums Table and uses the value of f at one
point in IFr and accepts or rejects the proof based on these values. We use this
protocol to check if a constraint of the input Min-Lin-Deletion instance (such
as (1)) is satisfied. We fix a field IF of characteristic 2 and associate the values
of the variables to points in Sr, for some appropriately chosen values of the
parameters |IF|, |S| and r. There exists a polynomial f of “low” degree that
takes these values on Sr. Checking if a linear equation is satisfied is then ba-
sically the task of checking if the sum of the values of f on the points in Sr

(weighted by the coefficients of the variables in the equation) is a certain target
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value. We use the Sum-Check Protocol for this purpose. The polynomial f is
not known to the verifier (since the values of the variables are not known to the
verifier). Hence we expect the prover to also provide a Points Table, a table with
the value of f at all the points in IFr. For the protocol to work, we need to make
sure that the Points Table is in fact “close” to a low degree polynomial. We use
the Low-degree test for this purpose.

The Low-degree test expects a Lines Table as an auxiliary input. The Lines
Table is supposed to contain the restriction of f to every line in IFr. The test
picks a random point and a random line through the point. It then checks that
the value of the point as reported in the Points Table and the value of the line
as reported in the Lines Table are consistent. All the tests performed by the
Sum-Check protocol and the Low-degree Test are linear in the field elements.
Since the field IF has characteristic 2, these can be replaced by linear tests over
boolean values if the field elements are encoded as appropriate bit strings. The
number of queries is logO(1) n and hence we get linear constraints with logO(1) n
size.

3 Hardness for Min-3Lin-Deletion

In this section, we formally state the second step mentioned in Fig. 1. We start
by assuming that the first step in Fig. 1 yields the following gap for Min-3Lin-
Deletion.

Theorem 5. There exists a 2O(log2 n) time algorithm A2 that when given a Min-
3Lin-Deletion instance A1 of size N1 outputs a Min-Lin-Deletion instance A2
of size N2 = 2O(log2 n) such that:

– (Yes Case:) If Opt(A1) ≤ 0.1, then Opt(A2) ≤ 2−Ω(
√

logN2)

– (No Case:) If Opt(A1) ≥ 0.4, then Opt(A2) ≥ 0.4

The reduction A2 works by repeatedly tensoring and boosting log log N1 times.
The equations in A2 can be over a large number of variables. We use the Sum-
Check Protocol combined with the Low-degree Test (see Arora [1]) to get the
number of variables in an equation down to a poly-logarithmic number.

Theorem 6. There exists a polynomial-time reduction A3 from a Min-Lin-
Deletion instance A2 of size N2 to a Min-Lin-Deletion instance A3 such that:

– A3 has size N3 = N
O(1)
2 . Also, A3 is log3 N3-restricted. That is, each equa-

tion of A3 is over at most log3 N3 variables.
– Opt(A3)≤Opt(A2). This implies that Opt(A3)≤2−Ω(

√
logN3) if Opt(A2) ≤

2−Ω(
√

logN2).
– Assuming N2 is large enough, Opt(A2) ≥ 0.4 implies Opt(A3) ≥ 0.15.

Proof. To prove the theorem, we first construct a probabilistic polynomial-time
verifier V for Min-Lin-Deletion with the following properties:
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1. The acceptance test is non-adaptive. That is, V determines the test only
based on A2 and its random string.

2. Each test of V is a logical AND of k smaller tests, where k = O(log N2)
and each of the smaller tests is a linear equation mod 2 over O(log2 N2) bits
of the certificate/proof. We call these the basic tests corresponding to the
random string.

3. A3 uses O(log N2) random bits.
4. (Yes Case:) There exists a certificate for A2 that is accepted with probability
≥ 1−Opt(A2).

5. (No Case:) If Opt(A2) ≥ 0.4, then any certificate for A2 is accepted with
probability at most 0.7.

The variables in the output Min-Lin-Deletion instance A3 then correspond to
the bits in the certificate. For each possible random string of length O(log N2)
to V , A3 adds 2k = 2O(logN2) equations, corresponding to all possible linear
combinations of the basic tests mentioned in Property 2. Therefore, A3 has N3 =
N
O(1)
2 linear equations where each equation is over kO(log2 N2) = O(log3 N2)

variables. By Property 4, there is an assignment to the variables in A3 such
that all the 2k equations corresponding to 1− Opt(A2) fraction of the random
strings are accepted. If Opt(A2) ≥ 0.4, then it follows from Property 5 that
for at least a 0.3 fraction of the random strings, one or more of the O(log N2)
basic tests corresponding to each of these strings must fail. This implies that if
Opt(A2) ≥ 0.4, then Opt(A3) ≥ 0.3× 1/2 = 0.15. We next describe the verifier.

Let the number of variables in A2 be n2. Then, n2 ≤ N2
2 since each equation

in A2 is over at most N2 variables. Define h = �log n2�, m = �log n2/ log log n2�
and d = (h − 1)m. Then, hm ≥ n2. The verifier V picks a field (IF,+, ·) of
characteristic 2 with 2q elements, where 2q ≥ d3m. Let S be any subset of IF of
size h. The elements in IF can be represented by bit strings of length q such that
for any α = (α1, α2, . . . , αq) and α′ = (α′

1, α
′
2, . . . , α

′
q) in IF, we have

– α + α′ is the bitwise xor of the two strings.
– The kth bit of α · α′ is ⊕i,j=1,2,...,qαicijkα

′
j , where the cijk only depends on

the field.

Let the prover wish to prove that a certain assignment to the variables
x1, x2, . . . , xn2 in A2 satisfies a “large” number of linear equations. The prover
is expected to provide a certificate consisting of:

– The values of a multivariate polynomial f(y1, y2, . . . , ym) on the points in
IFm, where f has degree h− 1 in each of the m variables. This is called the
Points Table.

– For every line l in IFm, a univariate degree d = m(h − 1) polynomial gl(t).
This is called the Lines Table.

– For the ith line in IFm, for every k=0, 1, . . . ,m−1 and every (θ1, θ2, . . . , θk) ∈
IFk, the coefficients of a univariate polynomial pi,θ1,θ2,...,θk

(yk+1) with degree
2(h − 1). This is called the Partial Sums Table. The polynomials for k = 0
are denoted as pi,∅(y1).
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All the field elements are expected to be provided as bit-strings with the
aforementioned properties. V associates the variables in A2 to different points in
Sm. The last bit of f(y1, y2, . . . , ym) is supposed to be the value to be assigned
to the variable xj corresponding to (y1, y2, . . . , ym). It can be verified that the
degree of f is large enough to represent any assignment to the variables xj .
Let ci(y1, y2, . . . , ym) be the unique multivariate polynomial of degree ≤ h − 1
in each variable such that ci(y1, y2, . . . , ym) is the coefficient of the variable xj
corresponding to (y1, y2, . . . , ym) in the ith equation of A2 (If no variable xj
corresponds to (y1, y2, . . . , ym) ∈ Sm, then ci(y1, y2, . . . , ym) is defined to be
zero). Note that ci(y1, y2, . . . , ym) can be computed from A2. Then testing that

an equation ai0 ⊕ (
m
⊕
j=1

aijxj) = 0 is satisfied reduces to checking if

∑
(y1,y2,...,ym)∈Sm

ci(y1, y2, . . . , ym)f(y1, y2, . . . , ym) = ai0

Note that ci(y1, y2, . . . , ym)f(y1, y2, . . . , ym) is a degree 2(h − 1)m polynomial.
The polynomial pi,θ1,θ2,...,θk

(yk+1) is supposedly the unique degree 2(h− 1) uni-
variate polynomial such that

pi,θ1,θ2,...,θk
(yk+1) =∑

yk+2,...,ym∈Sm−k−1

ci(θ1, . . . , θk, yk+1, . . . , ym)f(θ1, . . . , θk, yk+1, . . . , ym)

Also, gl(t) is the supposed restriction of the polynomial f to the line l. That is, if
l(t) = θ + θ′t is the parametric representation of the line l for some θ,θ′ ∈ IFm,
then gl(t) = f(l(t)).

The verifier performs the following tests:

1. (The Low-degree Test) Repeat the following 4δ−1 times, where δ = 10−4/2.
Pick a line l in IFm and t ∈ IF uniformly at random. Check that gl(t) =
f(l(t)).

2. (The Sum-Check Protocol) Pick i ∈ {1, 2, . . . , N2} uniformly at random (i.e.
the verifier is trying to verify the ith equation of A2). Pick θ=(θ1, θ2, . . . , θm)
from IFm uniformly at random.
(a) Check that

∑
y1∈S

pi,∅(y1) = ai0

(b) Check that ∀j : 1 ≤ j ≤ m− 1,∑
yj+1∈S

pi,θ1,...,θj (yj+1) = pi,θ1,...,θj−1(θj)

(c) Check that pi,θ1,...,θm−1(θm) = ci(θ1, . . . , θm)f(θ1, . . . , θm)

The verifier accepts if all the above tests succeed. The test is clearly non-adaptive.
All the O(1) + 1 + O(m) + 1 = O(m) basic tests mentioned above are linear in
the field elements read, and hence can be broken down into k = O(m log |IF|)



236 S. Khot and A.K. Ponnuswami

= O(m log(d3m)) = O(log N2) smaller linear tests over the bits read. Each of
these smaller tests is over at most O(d) log |IF| = O(log2 N2) bits read. The
randomness used is O(log |IF|) + O(log N2) + O(m log |IF|) = O(log N2). It is
easy to see that if the prover selects the best assignment to A2 and constructs
the proof honestly as expected, it is accepted with probability ≥ 1 − Opt(A2).
On the other hand, if Opt(A2) ≥ 0.4), then no proof is accepted with probability
≥ 0.7. The analysis of Sum-Check Protocol and Low-degree Test are based on
Theorem 4.15 and Lemma 4.12 of Arora [1]. We skip the details due to lack of
space. �

4 Conclusion

Recently, Samorodnitsky and Trevisan [25] showed that, assuming the Unique
Games Conjecture of Khot [21], it is hard to approximate MaxClique in degree
d graphs better than d/polylog(d). This suggests that MaxClique on general
graphs could be hard to approximate within n/polylog(n). We think it is a
challenging (and important) open problem to prove such a hardness result, or
even to improve the hardness result to n

2O(
√

log n) .

References

1. S. Arora. Probabilistic checking of proofs and the hardness of approximation prob-
lems. Ph.D. thesis, UC Berkeley, 1994.

2. S. Arora, C. Lund, R. Motawani, M. Sudan, and M. Szegedy. Proof verification
and the hardness of approximation problems. Journal of the ACM, 45(3):501–555,
1998.

3. S. Arora and S. Safra. Probabilistic checking of proofs : A new characterization of
NP. Journal of the ACM, 45(1):70–122, 1998.

4. M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs and non-approximability.
Electronic Colloquium on Computational Complexity, Technical Report TR95-024,
1995.

5. M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistic checkable
proofs and applications to approximation. In Proc. 25th ACM Symposium on
Theory of Computing, pages 294–304, 1993.

6. M. Bellare and M. Sudan. Improved non-approximability results. In Proc. 26th
ACM Symposium on Theory of Computing, pages 184–193, 1994.

7. Avrim Louis Blum. Algorithms for approximate graph coloring. PhD thesis, Massa-
chusetts Institute of Technology, Cambridge, MA, USA, 1992.

8. I. Dumer, D. Micciancio, and M. Sudan. Hardness of approximating the mini-
mum distance of a linear code. In Proc. 40th IEEE Symposium on Foundations of
Computer Science, 1999.

9. L. Engebretsen and J. Holmerin. Towards optimal lower bounds for clique and
chromatic number. Electronic Colloquium on Computational Complexity (ECCC),
(TR01-003), 2001.

10. U. Feige. Randomized graph products, chromatic numbers, and the lovász θ-
function. In Proc. 27th ACM Symposium on Theory of Computing, pages 635–640,
1995.



Better Inapproximability Results 237

11. U. Feige. Approximating maximum clique by removing subgraphs. SIAM J. Dis-
crete Math., 18(2):219–225, 2004.

12. U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Interactive proofs
and the hardness of approximating cliques. Journal of the ACM, 43(2):268–292,
1996.

13. U. Feige and J. Kilian. Two prover protocols: low error at affordable rates. In
Proc. 26th ACM Symposium on Theory of Computing, pages 172–183, 1994.

14. U. Feige and J. Kilian. Zero knowledge and the chromatic number. In Proc.
11thIEEE Conference on Computational Complexity, pages 278–287, 1996.

15. Uriel Feige and Shimon Kogan. Hardness of approximation of the balanced com-
plete bipartite subgraph problem. Technical Report MCS04-04, The Weizmann
Institute of Science, 2004.

16. J. Hastad. Clique is hard to approximate within n1−ε. In Proc. 37th IEEE Sym-
posium on Foundations of Computer Science, pages 627–636, 1996.

17. J. H̊astad. Testing of the long code and hardness for clique. In Proc. 28th ACM
Symposium on Theory of Computing, pages 11–19, 1996.

18. J. Hastad. Some optimal inapproximability results. In Proc. 29th ACM Symposium
on Theory of Computing, pages 1–10, 1997.

19. J. Hastad and A. Wigderson. Simple analysis of graph tests for linearity and PCP.
In Proc. 16th IEEE Conference on Computational Complexity, 2001.

20. S. Khot. Improved inapproximability results for maxclique, chromatic number and
approximate graph coloring. In Proc. 42nd IEEE Annual Symposium on Founda-
tions of Computer Science, 2001.

21. Subhash Khot. On the power of unique 2-prover 1-round games. In STOC ’02:
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing,
pages 767–775, New York, NY, USA, 2002. ACM Press.

22. Donald E. Knuth. The sandwich theorem. Electr. J. Comb., 1, 1994.
23. R. Raz. A parallel repetition theorem. SIAM J. of Computing, 27(3):763–803,

1998.
24. A. Samorodnitsky and L. Trevisan. A PCP characterization of NP with optimal

amortized query complexity. In Proc. 32nd ACM Symposium on Theory of Com-
puting, pages 191–199, 2000.

25. A. Samorodnitsky and L. Trevisan. Gowers uniformity, influence of variables, and
pcps. Electronic Colloquium on Computational Complexity (ECCC), (TR05-116),
2005.

26. Aravind Srinivasan. The value of strong inapproximability results for clique. In
STOC ’00: Proceedings of the thirty-second annual ACM symposium on Theory of
computing, pages 144–152, 2000.

27. L. Trevisan. Non-approximability results for optimization problems on bounded
degree instances. In Proc. 33rd ACM Symposium on Theory of Computing, pages
453–461, 2001.

28. D. Zuckerman. On unapproximable versions of NP-complete problems. SIAM J.
on Computing, pages 1293–1304, 1996.



Approximating the Orthogonal Knapsack

Problem for Hypercubes

Rolf Harren�

Graduate School of Informatics, Kyoto University, Japan and
Fachbereich Informatik, Universität Dortmund, Germany

rolf.harren@ls2.cs.uni-dortmund.de

Abstract. Given a list of d-dimensional cuboid items with associated
profits, the orthogonal knapsack problem asks for a packing of a se-
lection with maximal profit into the unit cube. We restrict the items
to hypercube shapes and derive a ( 5

4
+ ε)-approximation for the two-

dimensional case. In a second step we generalize our result to a ( 2d+1
2d +ε)-

approximation for d-dimensional packing.

1 Introduction

The knapsack problem is one of the most fundamental optimization problems
in computer science. The classical one-dimensional variant and its applications
are subject to a great number of articles, see [15] and [12] for surveys. Not sur-
prisingly, a geometrical generalization called d-dimensional orthogonal knapsack
problem (OKP-d) is also popular. It is defined as follows.

Given a list I = (r1, . . . , rn) of cuboid items ri = (ai,1, ai,2, . . . , ai,d) with
associated profit pi > 0 and the unit hypercube B = [0, 1]d as a bin. The ob-
jective is to find a feasible, i.e., orthogonal, non-rotational and non-overlapping
packing of a selection I ′ ⊂ I into B such that the overall packed profit is maxi-
mized. An orthogonal packing requires that the items are packed parallel to the
axis of the bin. Items are non-overlapping if their interiors are disjoint. For the
two-dimensional case, i.e., packing rectangles into a unit square, the best-known
general result is a (2 + ε)-approximation given by Jansen and Zhang [11]. As
the difficulty of the problem is increasing drastically with the dimension, only
recently a (7 + ε)-approximation for the three-dimensional case was derived [4].

In this paper we restrict the items to hypercube shapes (squares instead of rect-
angles in the two-dimensional case) and investigate how much easier the problem
becomes. Note that this restriction is quite popular in the literature ([1], [6], [10])
and yields great potential. Bansal et al. [1] showed for two-dimensional bin pack-
ing, that even though it is APX-complete in the general case, the restriction
to hypercube bin packing admits an APTAS. Furthermore, their results hold for
higher dimensions as well.
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Our Contribution. Our main result is an approximation algorithm for square
packing, i.e., hypercube OKP-2, with an approximation ratio of (5

4 +ε). Moreover,
we show that our result can be extended to d-dimensional packing, deriving an
(2d+1

2d + ε)-approximation. Note that we improve the known approximations of
(2 + ε) and (7 + ε) for general two- and three-dimensional knapsack packing
significantly. Furthermore, we reverse the effect of rising approximation ratios for
higher dimensions. In fact, our approximation ratio is improving exponentially
with the dimension.

Related Problems. Besides the orthogonal knapsack problem, there are two
other common generalizations of packing problems. The previously mentioned
d-dimensional orthogonal bin packing problem (OBPP-d) has the objective of
minimizing the total number of unit-size bins in order to pack a list I of cuboid
items. The d-dimensional orthogonal strip packing problem (OSPP-d), on the
other hand, asks to pack into a strip of bounded basis and unlimited height such
as to minimize the total height of the packing.

In 1990 Leung et al. [14] proved the NP-hardness in the strong sense for
the special case of determining whether a set of squares can be packed into a
bigger square or not. Therefore, already a very special two-dimensional case and
all generalizations are strongly NP-hard. In spite of that, the NP-hardness of
hypercube bin, strip and knapsack packing is still an open problem for d > 2.

In the strip packing setting, OSPP-2 admits an asymptotic full polynomial
time approximation scheme (AFPTAS) for the rotational and non-rotational
case, see Jansen and van Stee [9], and Kenyon and Rémila [13]. For OSPP-3,
Jansen and Solis-Oba [8] gave a (2+ε)-approximation. For general 2-dimensional
bin packing (OBPP-2), the best-known result is a 1, 691...-approximation by
Caprara et al. [2].

Apart from the general knapsack packing results mentioned earlier, OKP-2
has also been studied in different variants. For the restriction of packing squares
into a rectangle in order to maximize the number, Jansen and Zhang gave an
AFPTAS [10]. Maximizing the packed area of squares admits a PTAS, as Fishkin
et al. showed [6]. In the case that the rectangles are much smaller than the bin,
a better approximation is possible. We refer to this case as packing with large
resources. Fishkin et al. [5] showed that a solution with weight at least (1− ε) of
the optimum can be found if the side length of the bin differs by at least 1/ε4.

An application for the two-dimensional knapsack problem is job scheduling
with a due date, where the jobs have to be assigned to a consecutive line of
processors and the overall profit of accepted jobs has to be maximized. Further
applications of packing problems include container loading, VLSI design and
advertisement placement [7], i.e., placing rectangular ads on a given board.

In order to generalize our square packing result to higher dimensions, we de-
rived an APTAS for d-dimensional hypercube strip packing and a result similar
to [5] for hypercube knapsack packing with large resources. Both results are moti-
vated by their two-dimensional equivalents in [13] and [5] and thus also stand for
themselves. Due to page limitations we can not give the proofs for these results
in this paper.
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Presentation of the Paper. We begin with some Preliminaries in Section 2.
In Section 3 we describe the (5

4 + ε)-algorithm for hypercube OKP-2. Before the
presentation of the generalization in Section 5 we state our results on hypercube
OSPP-d and on knapsack packing with large resources in Section 4. In Section
6 we conclude our presentation and point out future work.

2 Notations and Preliminaries

Since the items are squares (or hypercubes) throughout the paper, we refer to
both, the items and their sizes by ai. Let I be a set of items. We denote the
volume of I by Vol(I) =

∑
i∈I a2

i (
∑

i∈I adi in the d-dimensional setting), the
profit of I by p(I) =

∑
i∈I pi and the optimal profit by OPT(I).

Bansal et al. showed in [1] how to check the feasibility, i.e., whether a given
set of items can be packed into the bin, in constant time when the number of
items is bounded by a constant. We refer to this method by constant packing.

Coffman et al. [3] analysed the Next Fit Decreasing Height (NFDH) heuristic
for the two-dimensional case. Their work was generalized by Bansal et al. [1] for
d-dimensional packing. We will use NFDH for packing small items.

Lemma 1. NFDH
Given a set S of small items ai ≤ δ, then

1. The total wasted, i.e., uncovered, volume of a packing P of S into a cuboid
bin B = (b1, . . . , bd) with bi ≤ 1 by NFDH is bounded by δ

∑d
i=1 bi ≤ δd.

2. If the total volume V of the given space is at least δ and the total wasted
volume when packing with NFDH is at most δ2 then we can pack the small
items with profit at least (1 − 2δ)OPT(S).

Note that the bin B is not a unit cube but a cuboid bin and that the given space
with volume V can have an arbitrary shape.

Proof. Part 1 is shown in [1]. To see Part 2, we use an instance of the fractional
knapsack problem, i.e., one-dimensional knapsack packing where fractions of the
items can be packed. Note that the well known greedy algorithm finds an optimal
solution with one fractional item at the most. Let FracKnap(S, V − 2δ2) be the
fractional knapsack instance with volume bound V − 2δ2 and the items in S
be given by their volume. Let S′ be the optimal solution derived by the greedy
algorithm, including the possibly fractional item. Since the volume of every item
is at most δ2, we get Vol(S′) ≤ V − δ2. Therefore a packing of S′ into the
volume is possible. Observe that p(S′) ≥ V−2δ2

V OPT(S) ≥ (1 − 2δ2
δ )OPT(S) =

(1− 2δ)OPT(S). ��
To restrict the number of gaps in a packing, Bansal et al. [1] showed

Lemma 2. Let P be a packing of m hypercubes in [0, 1]d such that there is a
hypercube touching each of the hyperplanes xi = 0 for i = 1, . . . , d. Then, the
remaining space [0, 1]d \ P can be divided into at most (2m)d non-overlapping
cuboids.

For d = 2, the number of rectangles is bounded by 3m.
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Fig. 2. An irregular shaped R

Note that the constant packing method creates suitable packings where each

hyperplane xi = 0 for i = 1, . . . , d is touched by a hypercube.

Finally, we introduce a shifting technique that we use several times to free a

given line L inside a packing P without losing too much profit. Fishkin et al.

used a similar technique in [5].

Lemma 3. Given a packing P of a list I = (a1, . . . , an) of small (ai ≤ δ)
squares into a rectangle R = (w, h) with width w = 1 and a vertical line L.
If δ ≤ 1

2 , we can derive a packing P
′ of a selection I

′ ⊆ I into R with profit
p(I

′
) ≥ (1− 4δ)p(I) in polynomial time such that L does not intersect with any

item.

Proof. Let IL be the set of items that intersect L. PartitionR into l = - 1
δ . ≥

1
δ−1

rectangular slices S1, . . . , Sl of width δ and a possible smaller one by drawing

lines with a distance of δ parallel to the bins height as in Figure 1. Find an

index i such that the items, that intersect with Si have minimal profit. Remove

all items that intersect with Si and copy the items IL left-aligned into Si. The

remaining profit is

p(S
′
) ≥ p(S)− 2p(S)

1
δ − 1

≥ (1− 4δ)p(S)

since every item intersects with at most two rectangle Si, Si+1. ��

Note that the proof is also valid for a rectangle R with h = 1 and a horizontal

line L. Furthermore, it is not necessary that R is a rectangle as long as the

cutting line is at the thinnest part of R so that copying the items is possible, see

Figure 2 for another possible setting.

3 Square Packing

We now describe our main result for the two-dimensional case. Later we will

generalize it for d-dimensional packing. In order to ease the generalization, we

split the description into several parts.

Outline. The first step of the algorithm is a separation of the items into sets of

large, medium and small items. This yields a gap in size between large and small
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items and a profit of the medium items that is negligible. Since the number of

large items in the bin is bounded by a constant, we can enumerate all possible

selections and thus assume the knowledge of an optimal packing of large items.

After that, we consider three different cases for packing: 1) the large items leave

enough remaining space to pack the small items, 2) there are several large items,
and 3) there is only one very large item.

We derive almost optimal solutions for the first and third case and an almost
k+1
k -optimal solution for the second case, where k is the number of large items.

By showing that any packing with k < 4 can be reduced to the first or the third

case, we derive an overall approximation ratio of (
5
4 + ε).

Let 0 < ε ≤ 1/2
10

, ε
′
= ε/3. The following separation technique divides an

optimal solution Iopt into sets Lopt of large, Mopt of medium and Sopt of small

items such that p(Mopt) ≤ ε
′
OPT(I) and thus we can neglect the medium items.

Separation Technique. Let r = �1/ε′�. Consider an optimal solution Iopt and

the sequence α0 = ε
′
, αi+1 = α

4
i ε

′
for i = 0, . . . , r. Define the partition of Iopt

into sets M0 = {s ∈ Iopt : s ≥ α1}, Mi = {s ∈ Iopt : s ∈ [αi+1, αi[} for 1 ≤ i ≤ r

and Mr+1 = {s ∈ Iopt : s < αr+1}. Observe, that there is an index i
∗ ∈ {1, . . . r}

such that p(Mi∗) ≤ ε
′
p(Iopt) = ε

′
OPT(I). Let Lopt = M0 ∪ . . . ∪Mi∗−1 be the

set of large, Mopt = Mi∗ the set of medium and Sopt = Mi∗+1 ∪ . . . ∪Mr+1
the set of small items. Thus p(Lopt ∪ Sopt) ≥ (1− ε

′
)OPT(I) and it is sufficient

to approximate this almost optimal solution. Let S = {s ∈ I : s < αi∗+1},
obviously Sopt ⊆ S and thus OPT(Lopt ∪ S) ≥ (1 − ε

′
)OPT(I).

Since s ≥ αi∗ for s ∈ Lopt, there are at most 1/α
2
i∗ items in Lopt. Thus we

can enumerate over all i ∈ {1, . . . r} and L with |L| ≤ 1/α
2
i and use the constant

packing method to check the feasibility of L. Hence assume the knowledge of i
∗

and Lopt. Let PLopt be a packing of Lopt by the constant packing method.

The gap in size between the large and the small items is needed to obtain an

efficient packing of some of the small items in S with NFDH into the gaps of

PLopt . Since |Lopt| ≤ 1/α
2
i∗ , there are at most 3/α

2
i∗ gaps in PLopt - see Lemma

2. Lemma 1 Part 1 bounds the wasted volume for every gap by 2αi∗+1. Hence

we can bound the overall wasted volume of a packing with NFDH of the small

items in S into the gaps of PLopt by
3
α2

i∗
· 2αi∗+1 = 6

α4
i∗ ε

′

α2
i∗

= 6ε
′
α

2
i∗ ≤ α

2
i∗ , which

is a lower bound for the volume of an item in Lopt.

Now let us see how to derive a packing in three different cases: 1) enough

remaining space for the small items (Vol(Lopt) ≤ 1−αi∗), 2) several large items

(|Lopt| = k), and 3) one very large item (amax ≥ 1 − ε
′4

), where amax is the

biggest item in Lopt.

Lemma 4. Enough Remaining Space
If Vol(Lopt) ≤ 1−αi∗ , we can find a selection S

′ ⊆ S of small items in polynomial
time such that Lopt and S

′ can be packed together and p(Lopt ∪ S
′
) ≥ (1 −

3ε
′
)OPT(I).

Proof. The remaining space is at least αi∗ and the overall wasted volume is

at most α
2
i∗ . As all small items have size at most αi∗+1 ≤ αi∗ we can apply

Lemma 1 Part 2 with δ = αi∗ to find a feasible selection S
′ ⊆ S with p(S

′
) ≥
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(1 − 2δ)OPT(S) ≥ (1 − 2ε
′
)OPT(S), where OPT(S) is the optimal profit for

packing S into the remaining space. ��

Lemma 5. Several Large Items
If |Lopt| = k, we can find a selection S

′ ⊆ S of small items in polynomial
time such that Lopt and S

′ can be packed together and p(Lopt ∪ S
′
) ≥ (

k
k+1 −

2ε
′
)OPT(I).

Proof. Let Knapsack(S, V, ε) denote to a solution with accuracy ε for a one-

dimensional knapsack instance with items S and volume bound V . The items

are given by their volume. Let S
′

= Knapsack(S, 1 − Vol(Lopt), ε
′
). Note that

p(Lopt ∪ S
′
) ≥ (1 − 2ε

′
)OPT(I). Consider the packing PLopt and use NFDH

to add as much as possible of S
′

into the gaps. Let the profit be P1. If S
′

is

completely packed, P1 = p(Lopt ∪ S′
) ≥ (1 − 2ε

′
)OPT(I). Otherwise consider a

second packing. Therefore remove the item a
∗

with smallest profit from Lopt and

pack the remaining items of Lopt together with S
′

into a bin. This is possible

since Vol(a
∗
) ≥ α

2
i∗ and the total waste is bounded by α

2
i∗ . Let this profit be

P2. We state that max(P1, P2) ≥ k
k+1p(Lopt∪S′

) ≥ (
k

k+1 −2ε
′
)OPT(I). Assume

Lopt = {a1, . . . ak} and a
∗

= ak. Then,

P1 ≥
k∑
i=1

pi ≥ k pk and P2 = p(Lopt ∪ S′
)− pk

For pk ∈ [0,
p(Lopt∪S′)

k+1 ], P2 ≥ p(Lopt ∪ S′
)− p(Lopt∪S′)

k+1 ≥ k
k+1p(Lopt ∪ S′

) and

for pk ∈ [
p(Lopt∪S′)

k+1 ,
p(Lopt∪S′)

k ], P1 ≥ k
k+1p(Lopt ∪ S′

). Note that pk ≤ p(Lopt∪S′)
k

as ak is the item with smallest profit in Lopt. ��

Lemma 6. One Very Large Item
If amax ≥ 1−ε′4, we can find a selection S

′ ⊆ S of small items in polynomial time
such that Lopt and S

′ can be packed together and p(Lopt∪S′
) ≥ (1−3ε

′
)OPT(I).

Proof. The proof consists of two parts. First we show that the big item amax

can be packed into the lower left corner of the bin. Second we use the result

for packing with large resources by Fishkin et al. [5] to find an almost optimal

packing for the remaining space.

Consider an optimal packing of Iopt where amax is not placed in the lower left

corner. Notice that the free space to all sides has width at most 1− amax ≤ ε
′4

.

Draw three lines S1, S2, S3 as on the left side of Figure 3. As the items might

have high profit we cannot dispose them directly, but with the shifting technique
of Lemma 3 and δ = ε

′4
we obtain a packing without any item intersecting lines

S1, S2, S3. Thus replace the packing as in Figure 3 on the right side, such that

amax is placed in the lower left corner.

For ε ≤ 1/2
10

, Fishkin et al. [5] described an algorithm that finds a packing

for a subset S
′

of a set of rectangles S into a bin (1, b) where b ≥ 1/ε
4

with

profit p(S
′
) ≥ (1 − ε)OPT(S). We can consider the remaining space in the bin

as a strip of size (1 − amax, 1 + amax) by cutting at S4 and rotating a part of
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amax
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g2

amax g1
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1− amax

Fig. 3. Almost optimal solution with amax

in lower left corner

S4

S5

amax

1− amax

1 + amax

Fig. 4. Shifting the remaining

space

the space as shown in Figure 4. Scaling this strip and all small items by
1

1−amax

gives a strip of size (1, b) where b =
1+amax

1−amax
≥ 1/ε

′4
(as amax ≥ 1 − ε

′4
). Thus

we can find a packing with profit at least (1 − ε
′
)OPT(S). By cutting again at

S5, the solution can be adopted to the original shape. The rotation is possible

since we only have square items. As we have a total of five applications of the

shifting technique, the loss is bounded by 5 · 4ε
′4
OPT(S) ≤ ε

′
OPT(S). ��

We now give a simple but very important lemma, which takes the full advantage

of the square shapes of the items, namely that any packing with k < 4 large

items can be reduced to either the first or the third case. Our intuition is, that it

is impossible to fill a unit-size bin with either two or three equally big squares.

This also turns out to be the reason for the improving approximation ratio with

higher dimensions, e.g., either one very large or more than seven cubes are needed

to fill a cube bin almost completely.

Lemma 7. If |Lopt| < 4, then Vol(Lopt) ≤ 1− αi∗ or amax ≥ 1− ε
′4.

Proof. Suppose that |Lopt| ∈ {1, 2, 3}. If amax ≤ 1/2, then Vol(Lopt) ≤ 3/4 ≤

1 − αi∗ . With amax > 1/2 the smaller items in Lopt can have a size of at most

1−amax so that Lopt is still feasible. As there are at most two more items in Lopt,

we can bound the total volume by Vol(Lopt) ≤ f(amax) := a
2
max +2(1− amax)

2
.

It is easy to show, that f(amax) ≤ 1− α1 = 1− ε
′5

for amax ∈ [
1
2 , 1− ε

′4
]. ��

for every i ∈ {1, . . . , r} and feasible L ⊂ {s ∈ I : s ≥ αi} with |L| ≤ 1/α2
i do

case Vol(L) ≤ 1 − αi: solve almost optimal with Lemma 4
case amax ≥ 1 − ε′4: solve almost optimal with Lemma 6
case |L| ≥ 4: solve with Lemma 5

end
output the packing with the best profit

Algorithm 1. ( 5
4

+ ε)-algorithm A for square packing

The complete algorithm A is summed up in Algorithm 1. The following theorem

is immediate since
1

4
5−2ε′ ≤

5
4 + ε.

Theorem 1. There is a polynomial time algorithm for hypercube OKP-2 with
performance ratio (

5
4 + ε).
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4 Useful Tools for Hypercube Packing

In the previous section we used a result on packing with large resources to de-

rive the algorithm for the case of one very large item. In order to generalize

our algorithm we need a d-dimensional variant of this result. The original two-

dimensional algorithm from Fishkin et al. [5] is based on an AFPTAS for strip
packing (OSPP-2) by Kenyon and Rémila [13]. Similarly, we require an APTAS

for hypercube strip packing to derive our result on hypercube knapsack packing
with large resources.

Hypercube Strip Packing is defined as follows. Let C ≥ 1 be a bound for

the size of the basis. Given a list I = (a1, . . . , an) of hypercubes ai ∈ (0, 1]

and a (d − 1)-dimensional cuboid basis of the strip B = (b1, b2, . . . , bd−1) with

1 ≤ bi ≤ C. The problem is to find a feasible packing P of I into a strip with

basis B and unlimited height such that the total height of the packed items is

minimized. Using methods from [13] and [1] we derived an algorithm AStrip that

holds the following

Theorem 2. AStrip is an asymptotic polynomial time approximation scheme
(APTAS) for hypercube OSPP-d with additive constant KStrip,ε for fixed ε > 0

and C ≥ 1.

Hypercube Knapsack Packing with Large Resources is defined as follows.

Given a list I = (a1, . . . , an) of hypercubes ai ∈ (0, 1], associated profits pi > 0

and a bin B = (b1, b2, . . . , bd) with sizes bi ≥ 1. The problem is to find a feasible

packing P of a selection I
′
⊆ I into the bin B with maximal profit. Let V =∏d

i=1 bi be the volume of the bin. Using the algorithm AStrip and ideas from [5],

we derived an algorithm ALR that satisfies the following

Theorem 3. If V ≥ KLR,ε then algorithm ALR finds a feasible packing for a
selection I

′
⊆ I with profit at least (1 − ε)OPT(I).

The running time of ALR is polynomial and KLR,ε is constant for fixed ε > 0.

5 Hypercube Knapsack Packing

Now we are ready to present the generalization of our main result, a (
2d+1
2d + ε)-

approximation for hypercube knapsack packing. In the square packing algorithm

we considered three different cases, packing with enough remaining space, pack-

ing with several large items and packing with only one large item. The latter

case was motivated by the observation, that three squares cannot fill a unit bin

almost completely unless one of the squares is huge. This observation is gener-

alized to a number of 2
d
− 1 hypercubes in the d-dimensional case.

Outline. First, we give new parameters for the separation step such that the

first two cases hold for hypercubes. Second, we show how to handle the third

case, applying ALR from the previous section. Finally, we observe that for a
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number of up to 2
d
− 1 hypercubes, either the remaining space is big enough or

there is only one very large item.

Separation. Let ε
′

= ε/3 and K ≥ KLR,ε′, where KLR,ε′ is the constant for

algorithm ALR as in the previous section. Let r = �1/ε
′
�.

Use the sequence α0 =
1
K , αi+1 = α

3d
i ε

′
for i = 0, . . . , r to separate an opti-

mal solution Iopt into the sets Lopt, Mopt and Sopt as before. Similar to the square
packing algorithm, the parameters αi are chosen such that the overall wasted vol-

ume of a packing of small items into the gaps of L with NFDH is bounded by α
d
i ,

the lower bound of the volume of a large item in L - see Lemmas 1 and 2. Again

we enumerate over all i ∈ {1, . . . r} and |L| ≤ 1/α
d
i and assume the knowledge of

i
∗

and Lopt.

Since the overall wasted volume is bounded by the size of an item in Lopt, the

first two cases can be handled similarly - see Lemma 4 and Lemma 5.

Now, we show how an almost optimal packing can be derived for amax ≥ 1−
1
K .

First, we show that a special packing structure, similar to packing amax into the

lower left corner, does not change the optimal value significantly and second, we

use the shifting technique and some rotations to apply Theorem 3. Note that

the shifting technique is similar for d-dimensional hypercubes, as long as one

direction of the space R has length 1.

Well-structured Packing. A packing P is called well-structured if the biggest

item amax is located in the origin (0, . . . , 0) and the hypercube space of size

1− amax in the opposite corner as well as all hyperplanes, defined by the facets

of amax are completely free of items. See Figure 5 for a well-structured pack-

ing. Similar to the two-dimensional case, we can apply the shifting technique to

reorder an optimal solution and derive.

Lemma 8. There is a well-structured packing of a selection I
′
⊆ Iopt with profit

p(I
′
) ≥ (1− 2ε

′
)OPT(I).

amax

x1

x2

x3

1

free of items

space for

Fig. 5. Free space in a well-structured

packing for d = 3

amax

x1

x2

x3

space for

S3

S1
S2

Fig. 6. Division of the remaining space

into S1, . . . , Sd for d = 3
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Applying Algorithm ALR of Theorem 3. We cut and rotate the remaining

space of a well-structured packing of I
′
around amax such that it builds a cuboid

bin that is much bigger than the remaining items. Then we apply Theorem 3

and by cutting again and reassembling to the original position a valid solution

is derived.

Observe, that the remaining space in the bin, with the exception of a hyper-

cube of size 1− amax ≤
1
K in the opposite corner of the origin, can be divided

into d differently rotated spaces S1, . . . , Sd of size (1 − amax, amax, . . . , amax, 1)

- see Figure 6. Note that, since we consider a well-structured packing, all items

of the near optimal solution I
′
are completely included in one of these spaces.

Rotate all spaces into the same orientation, assemble them to a bin of size

(1− amax, amax, . . . , amax, d) and scale the bin and all small items with
1

1−amax
.

The volume of the bin is bigger than
1

1−amax
≥ K (since amax ≥ 1 −

1
K ). So

we can apply Theorem 3 and therefore find a packing for a selection S
′
of items

with profit p(L ∪ S
′
) ≥ (1− 3ε

′
)OPT(I

′
).

Reassembling the strip-like bin requires d−1 applications of the shifting tech-
nique and can thus be done with losing at most another ε

′
OPT(I) of the profit.

Let S
′
be the set of small items after the reassembling. We proved

Lemma 9. If amax ≥ 1 −
1
K , we can find a selection S

′
⊆ S of small items

in polynomial time such that L and S
′ can be packed together and p(L ∪ S

′
) ≥

(1− 4ε
′
)OPT(I).

Now let us see that, if |Lopt| < 2
d
, then Vol(Lopt) ≤ 1 − αi or amax ≥ 1 −

1
K .

Similar to the two-dimensional analysis, we get a volume bound of Vol(Lopt) ≤

fd(amax) = a
d
max + (2

d
− 2)(1− amax)

d
for amax ∈ [

1
2 , 1], see Figure 7. With the

second derivate it is easy to see, that fd(amax) ≤ 1 −
1
2d for amax ∈ [

1
2 ,

3
4 ] and

fd(amax) ≤ amax for amax ∈ [
3
4 , 1]. Thus amax ≤ 1−

1
K implies Vol(Lopt) ≤ 1−

1
K

for
1
K ≤

1
2d . Note that

1
K ≤

1
2d can be achieved by choosing K ≥ 2

d
. We showed

0.5 0.75 1

0.5

1

Fig. 7. The volume functions fd(amax) for d = 2, . . . , 10 and amax ∈ [ 1
2
, 1] (solid), and

the, on x ∈ [ 3
4
, 1], dominating function g(x) = x (slashed)
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Theorem 4. There is a polynomial time algorithm for hypercube OKP-d with
performance ratio (

2d+1
2d + ε).

6 Conclusion and Future Work

For the special case of packing hypercube items we derived an approximation

algorithm for OKP-d with performance ratio (
2d+1
2d + ε) that is, surprisingly,

improving with the dimension. Already for the two- and three-dimensional case,

we significantly improve upon the best-known general algorithms.

We gave PTAS-like approximations for the cases that either the remaining

volume after packing the large items is big enough or there is only one very

large item. In the case of several large items, the gap structure becomes more

complicated with an increasing number of items. Although for square packing it

seems to be possible to handle the cases |Lopt| = 4, since the remaining space

has the shape of four strip-like bins, and |Lopt| = 5, since it can be reduced to

the case with four large items or the case with enough remaining space, we could

not derive a general method to cope with large numbers of items in Lopt. Further

research should thus be concentrated on the case of several large items in order

to solve the question whether or not a PTAS for hypercube OKP-d exists.
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Abstract. We consider the problem of computing a minimum cycle ba-
sis in a directed graph. The input to this problem is a directed graph
G whose edges have non-negative weights. A cycle in this graph is ac-
tually a cycle in the underlying undirected graph with edges traversable
in both directions. A {−1, 0, 1} edge incidence vector is associated with
each cycle: edges traversed by the cycle in the right direction get 1 and
edges traversed in the opposite direction get -1. The vector space over Q
generated by these vectors is the cycle space of G. A minimum cycle basis
is a set of cycles of minimum weight that span the cycle space of G. The
current fastest algorithm for computing a minimum cycle basis in a di-
rected graph with m edges and n vertices runs in Õ(mω+1n) time (where
ω < 2.376 is the exponent of matrix multiplication). Here we present an
O(m3n + m2n2 log n) algorithm. We also slightly improve the running
time of the current fastest randomized algorithm from O(m2n log n) to
O(m2n + mn2 log n).

1 Introduction

Let G = (V,E) be a directed graph with m edges and n vertices. A cycle in G is

actually a cycle in the underlying undirected graph, i.e., edges are traversable in

both directions. Associated with each cycle is a {−1, 0, 1} edge incidence vector:

edges traversed by the cycle in the right direction get 1, edges traversed in the

opposite direction get -1, and edges not in the cycle at all get 0. The vector

space over Q generated by these vectors is the cycle space of G. A set of cycles is

called a cycle basis if it forms a basis for this vector space. When G is connected,

the cycle space has dimension d = m− n+ 1. We assume that there is a weight

function w : E → R≥0
, i.e., the edges of G have non-negative weights assigned

to them. The weight of a cycle basis is the sum of the weights of its cycles. A

minimum cycle basis of G is a cycle basis of minimum weight. We consider the

problem of computing a minimum cycle basis in a given digraph.
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A related problem pertains to undirected graphs, where a {0, 1} edge incidence

vector is associated with each cycle; edges in the cycle get 1 and others get 0.

Unlike directed graphs where the cycle space is defined over Q, cycle spaces in

undirected graphs are defined as vector spaces over Z2. Transforming cycles in

a directed cycle basis by replacing both −1 and 1 by 1 does not necessarily

yield a basis for the underlying undirected graph. In addition, lifting a minimum

cycle basis of the underlying undirected graph by putting back directions does

not necessarily yield a minimum cycle basis for the directed graph. Examples of

both phenomena were given in [16]. Thus, one cannot find a minimum cycle basis

for a directed graph by simply working with the underlying undirected graph.

Books by Deo [6] and Bollobás [3] have an in-depth coverage of cycle bases.

Motivation. Apart from its interest as a natural question, an efficient algorithm

for computing a minimum cycle basis has several applications. A minimum cycle

basis is primarily used as a preprocessing step in several algorithms. That is, a

cycle basis is used as an input for a later algorithm, and using a minimum cycle

basis instead of any arbitrary cycle basis reduces the amount of work that has to

be done by this later algorithm. Such algorithms span diverse applications like

structural engineering [4], cycle analysis of electrical networks [5], and chemical

ring perception [7]. The network graphs of interest are frequently directed graphs.

Further, specific kinds of cycle bases of directed graphs have been studied in

[14,15,8]. One special class is integral cycle bases [14,15], in which the d × m

cycle-edge incidence matrix has the property that all regular d× d submatrices

have determinant±1; such cycle bases of minimum length are important in cyclic

timetabling. Cycle bases in strongly connected digraphs where cycles are forced

to follow the direction of the edges were studied in [8]; such cycle bases are of

particular interest in metabolic flux analysis.

Previous Work and Our Contribution. There are several algorithms for comput-

ing a minimum cycle basis in an undirected graph [2,5,9,10,13] and the current

fastest algorithm runs in O(m
2
n+mn

2
logn) time [13]. The first polynomial time

algorithm for computing a minimum cycle basis in a directed graph had a run-

ning time of Õ(m
4
n) [12]. Liebchen and Rizzi [16] gave an Õ(m

ω+1
n) algorithm

for this problem, where ω < 2.376 is the exponent of matrix multiplication; this

was the current fastest deterministic algorithm. A faster randomized algorithm

of Monte Carlo type with running time O(m
2
n logn) exists [11].

We present an O(m
3
n + m

2
n

2
logn) deterministic algorithm for this prob-

lem and improve the running time of the randomized algorithm to O(m
2
n +

mn
2
logn). The running time of our deterministic algorithm is m times the

running time of the fastest algorithm for computing minimum cycle bases in

undirected graphs and we leave it as a challenge to close the gap. The increased

complexity seems to stem from the larger base field. Arithmetic in Z2 suffices

for undirected graphs. For directed graphs, the base field is Q and this seems to

necessitate the handling of large numbers. Also, the computation of a shortest

cycle that has a non-zero dot product with a given vector seems more difficult

in directed graphs than in undirected graphs.
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2 Preliminaries

We are given a digraph G = (V,E), where |V | = n and |E| = m. Without

loss of generality, the underlying undirected graph of G is connected. Then d =

m− n+ 1 is the dimension of the cycle space of G. The minimum cycle basis of

G consists of d cycles C1, . . . , Cd. We describe cycles by their incidence vectors

in {−1, 0,+1}
m

. We assume that we have ordered the edges in the edge set

E = {e1, . . . , em} so that edges ed+1, . . . , em form the edges of a spanning tree

T of the underlying undirected graph. This means that the first d coordinates

each of C1, . . . , Cd correspond to edges outside the tree T and the last n − 1

coordinates are the edges of T . This will be important in our proofs in Section 3.

We can also assume that there are no multiple edges in G. It is easy to see

that whenever there are two edges from u to v, the heavier edge (call it a) can

be deleted from E and the least weight cycle (call it C(a)) that contains the

edge a can be added to the minimum cycle basis computed on (V,E \ {a}). The

cycle C(a) consists of the edge a and the shortest path between u and v in the

underlying undirected graph. All such cycles can be computed by an all-pairs-

shortest-paths computation in the underlying undirected graph ofG, which takes

Õ(mn) time. Hence we can assume that m ≤ n
2
.

Framework. We begin with a structural characterization of a minimum cycle

basis, which is simple to show. This framework was introduced by de Pina [5];

it uses auxiliary rational vectors N1, . . . , Nd which serve as a scaffold for prov-

ing that C1, . . . , Cd form a minimum cycle basis. We use 〈v1, v2〉 to denote the

standard inner product or dot product of the vectors v1 and v2.

Theorem 1. Cycles C1, . . . , Cd form a minimum cycle basis if there are vectors
N1, . . . , Nd in Qm such that for all i, 1 ≤ i ≤ d:

1. Prefix Orthogonality: Ni is orthogonal to all previous Cj, i.e., 〈Ni, Cj〉 =

0 for all j, 1 ≤ j < i.
2. Non-Orthogonality: 〈Ni, Ci〉 = 0.
3. Shortness: Ci is a shortest cycle with 〈Ni, Ci〉 = 0.

3 A Simple Deterministic Algorithm

We present the simple deterministic algorithm from [12], that computes Ni’s and

Ci’s satisfying the criteria in Theorem 1.

The algorithm Deterministic-MCB:

1. Initialize the vectors N1, . . . , Nd of Qm
to the first d vectors e1, . . . , ed of

the standard basis of Qm
. (The vector ei has 1 in the i-th position and 0’s

elsewhere.)

2. For i = 1 to d do

– compute Ci to be a shortest cycle such that 〈Ci, Ni〉 = 0.
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– for j = i+ 1 to d do

update Nj as: Nj = Nj −Ni
〈Ci, Nj〉

〈Ci, Ni〉

normalize Nj as: Nj = Nj
〈Ci, Ni〉

〈Ci−1, Ni−1〉

(We take 〈C0, N0〉 = 1.) The above algorithm needs the vector Ni in the i-th

iteration to compute the cycle Ci. Instead of computing Ni from scratch in the i-

th iteration, it obtainsNi by update and normalization steps through iterations 1

to i−1. We describe how to compute a shortest cycle Ci such that 〈Ci, Ni〉 = 0 in

Section 5. Let us now show that the Ni’s obey the prefix orthogonality property.

Lemma 1, proved in [12], shows that and more.

Lemma 1. For any i, at the end of iteration i− 1, the vectors Ni, . . . , Nd are
orthogonal to C1, . . . , Ci−1 and moreover, for any j with i ≤ j ≤ d, Nj =

〈Ni−1, Ci−1〉(xj,1, . . . , xj,i−1, 0, . . . , 0, 1, 0, . . . , 0), where 1 occurs in the j-th co-
ordinate and x = (xj,1, . . . , xj,i−1) is the unique solution to the set of equations: C̃1

...
C̃i−1

x =

 −c1j
...

−c(i−1)j

 . (1)

Here C̃k, 1 ≤ k < i, is the restriction of Ck to its first i− 1 coordinates and ckj

is the j-th coordinate of Ck.

Remark. Note that the i-th coordinate of Ni is non-zero. This readily implies

that there is at least one cycle that has non-zero dot product with Ni, namely

the fundamental cycle Fei formed by the edge ei and the path in the spanning

tree T connecting its endpoints. The dot product 〈Fei , Ni〉 is equal to the i-th

coordinate of Ni, which is non-zero.

We next give an alternative characterization of these Nj’s. This characterization

helps us in bounding the running time of the algorithm Deterministic-MCB. Let

M denote the (i − 1) × (i − 1) matrix of C̃k’s in Equation (1) and bj denote

the column vector of −ckj ’s on the right. We claim that solving Mx = det(M) ·

bj leads to the same vectors Nj for all j with i ≤ j ≤ d. First, note that

〈Ni−1, Ci−1〉 = det(M), it is easy to show this.

By Lemma 1, (xj,1, . . . , xj,i−1) is the unique solution to Mx = bj . Hence

det(M)(xi,1, . . . , xi,i−1, 1, 0, . . .), which is Ni in the i-th iteration (that is when it

is used in the algorithm to compute the cycle Ci), could have obtained directly in

the i-th iteration by solving the set of equations Mx = det(M)bi and appending

(det(M), 0, . . . , 0) to x. However, such an algorithm would be slower - it would

take time Θ̃(m
ω+2

), where ω < 2.376 is the exponent of matrix multiplication.

The updates and normalizations in the algorithm Deterministic-MCB achieve

the same result in a more efficient manner.
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Let us now bound the running time of the i-th iteration of Deterministic-

MCB. We will show in Section 5 that a shortest cycle Ci such that 〈Ci, Ni〉 = 0

can be computed in O(m
2
n+mn

2
log n) time. Let us look at bounding the time

taken for update and normalization steps. We take O(m) arithmetic steps for

updating and scaling each Nj since each Nj has m coordinates. Thus the total

number of arithmetic operations in the i-th iteration is O((d − i)m) = O(md)

over all j, i+1 ≤ j ≤ d. We next estimate the cost of arithmetic. The coordinates

of Nj are determined by the system Mx = det(M)bj and hence are given by

Cramer’s rule. Fact 1, which follows from Hadamard’s inequality, shows that

each entry in Nj is bounded by d
d/2

. Thus we pay Õ(d) time per arithmetic

operation. Thus the running time of the i-th iteration is Õ(m
3
) and hence the

running time of Deterministic-MCB is Õ(m
4
).

Fact 1. Since M is a ±1, 0 matrix of size (i − 1) × (i − 1) and bj is a ±1, 0

vector, all determinants used in Cramer’s Rule are bounded by i
i/2. Therefore,

the absolute value of each entry in Nj, where j ≥ i, is bounded by i
i/2.

4 A Faster Deterministic Algorithm

The update and normalization steps form the bottleneck in Deterministic-MCB.

We will reduce their cost from Õ(m
4
) to Õ(m

ω+1
).

– First, we delay updates until after several new cycles Ci have been computed.

For instance, we update N�d/2�+1, . . . , Nd not after each new cycle but in bulk

after all of C1, C2, . . . , C�d/2� are computed.

– Second, we use a fast matrix multiplication method to do the updates for

all of N�d/2�+1, . . . , Nd together, and not individually as before.

The Scheme. The faster deterministic algorithm starts with the same configura-

tion for the Ni’s as before, i.e., Ni is initialized to the i-th unit vector, 1 ≤ i ≤ d.

It then executes 3 steps. First, it computes C1, . . . , C�d/2� and N1, . . . , N�d/2�
recursively, leaving N�d/2�+1, . . . , Nd at their initial values. Second, it runs a

bulk update step in which N�d/2�+1, . . . , Nd are modified so that they become

orthogonal to C1, . . . , C�d/2�. And third, C�d/2�+1, . . . , Cd are computed recur-

sively modifying N�d/2�+1, . . . , Nd in the process. Such a scheme was used earlier

in [13,11].

A crucial point to note about the second recursive call is that it modifies

N�d/2�+1, . . . , Nd while ignoring C1, . . . , C�d/2� and N1, . . . , N�d/2�; how then

does it retain the orthogonality of N�d/2�+1, . . . , Nd with C1, . . . , C�d/2� that

we achieved in the bulk update step? The trick lies in the fact that whenever

we update any Nj ∈ {N�d/2�+1, . . . , Nd} in the second recursive call, we do it

as Nj =
∑d

k=�d/2�+1 αkNk, αk ∈ Q. That is, the updated Nj is obtained as a

rational linear combination of N�d/2�+1, . . . , Nd. Since the bulk update step prior

to the second recursive call ensures that N�d/2�+1, . . . , Nd are all orthogonal to

C1, . . . , C�d/2� at the beginning of this step, the updated Nj ’s remain orthogonal
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to C1, . . . , C�d/2�. This property allows the second recursive call to work strictly

in the bottom half of the data without looking at the top half.

The base case for the recursion is a subproblem of size 1 (let this subproblem

involve Ci, Ni) in which case the algorithm simply retains Ni as it is and com-

putes Ci using the algorithm in Section 5. As regards time complexity, the bulk

update step will be shown to take O(md
ω−1

) arithmetic operations.

4.1 The Bulk Update Procedure

We describe the bulk update procedure in the recursive call that computes the

cycles C�, . . . , Ch for some h and � with h > �. This recursive call works with

the vectors N�, . . . , Nh: all these vectors are already orthogonal to C1, . . . , C�−1.

The recursive call runs as follows:

1. compute the cycles C�, . . . , Cmid where mid = �(� + h)/2� − 1, using the

vectors N�, . . . , Nmid, recursively.

2. modify Nmid+1, . . . , Nh, which are untouched by the first step, to make them

orthogonal to C�, . . . , Cmid.

3. compute Cmid+1, . . . , Ch using these Nmid+1, . . . , Nh, recursively.

Step 2 is the bulk update step. We wish to update each Nj , mid+ 1 ≤ j ≤ h, to

a rational linear combination of N�, . . . , Nmid and Nj as follows
1
:

Nj =
〈Nmid, Cmid〉

〈N�−1, C�−1〉
Nj +

mid∑
t=�

αtjNt

where the αtj ’s are to be determined in a way which ensures that Nj becomes

orthogonal to C�, . . . , Cmid. That is, we want for all i, j, where � ≤ i ≤ mid and

mid+ 1 ≤ j ≤ h,

〈Nmid, Cmid〉

〈N�−1, C�−1〉
〈Ci, Nj〉+

mid∑
t=�

αtj〈Ci, Nt〉 = 0. (2)

Rewriting this in matrix form, we get A · Nd · D = −A · Nu · X , where (let

k = mid− �+ 1)

– A is a k ∗m matrix, the i-th row of which is C�+i−1,

– Nd is an m ∗ (h− k) matrix, the j-th column of which is Nmid+j ,

– D is an (h− k) ∗ (h− k) diagonal matrix with 〈Nmid, Cmid〉/〈N�−1, C�−1〉 in

the diagonal,

– Nu is an m ∗ k matrix, the t-th column of which is N�+t−1,

– X is the k ∗ (h− k) matrix of variables αtj , with t indexing the rows and j

indexing the columns.

1 Note that the coefficient 〈Nmid, Cmid〉/〈N�−1, C�−1〉 for Nj is chosen so that the
updated vector Nj here is exactly the same vector Nj that we would have obtained
at this stage using the algorithm Deterministic-MCB (Section 3).
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To compute the αtj ’s, we solve for X = −(A · Nu)
−1

· A · Nd · D. Using fast

matrix multiplication, we can compute A · Nu and A · Nd in O(mk
ω−1

) time,

by splitting the matrices into d/k square blocks and using fast matrix multi-

plication to multiply the blocks. Multiplying each element of A · Nd with the

scalar 〈Nmid, Cmid〉/〈N�−1, C�−1〉 gives us A · Nd ·D. Thus we compute the ma-

trix A · Nd ·D with O(mk
ω−1

) arithmetic operations. Next, we find the inverse

of A · Nu with O(k
ω
) arithmetic operations (this inverse exists because A · Nu

is a lower triangular matrix whose diagonal entries are 〈Ci, Ni〉 = 0). Then we

multiply (A · Nu)
−1

with A · Nd ·D with O(k
ω
) arithmetic operations. Thus we

obtain X . Finally, we obtain Nmid+1, . . . , Nd from X using the product Nu ·X ,

which we can compute in O(mk
ω−1

) arithmetic operations, and adding Nd ·D to

Nu ·X . The total number of arithmetic operations required for the bulk update

step is thus O(mk
ω−1

).

What is the cost of the arithmetic? In the algorithm presented above, the

entries in (A · Nu)
−1

could be very large. The elements in A · Nu have values up

to d
Θ(d)

, which would result in the entries in (A ·Nu)
−1

being as large as d
Θ(d2)

.

So each arithmetic operation then costs us up to Θ̃(d
2
) time and the overall time

for the outermost bulk update step would be Θ̃(m
ω+2

) time, which makes this

approach slower than the algorithm Deterministic-MCB.

The good news is that the numbers αtj ’s are just intermediate numbers in our

computation. That is, they are the coefficients in

mid∑
t=�

αtjNt +
〈Nmid, Cmid〉

〈N�−1, C�−1〉
Nj .

Our final aim is to determine the updated coordinates of Nj which are at most

d
d/2

(refer Fact 1), since we know Nj = (y1, . . . , ymid, 0, . . . , 〈Nmid, Cmid〉, . . . , 0),

where y = (y1, . . . , ymid) is the solution to the linear system:My = det(M)bj ;M

is the mid×mid matrix of C1, . . . , Cmid truncated to their first mid coordinates

and bj is the column vector of negated j coordinates of C1, . . . , Cmid. Since the

final coordinates are bounded by d
d/2

while the intermediate values could be

much larger, this suggests the use of modular arithmetic here. We could work

over the finite fields Fp1 ,Fp2 , . . . ,Fps where p1, . . . , ps are small primes (say,

in the range d to d
2
) and try to retrieve Nj from Nj mod p1, . . . , Nj mod ps,

which is possible (by the Chinese Remainder Theorem) if s ≈ d/2. Arithmetic

in Fp takes O(1) time and we thus spend O(smk
ω−1

) time for the update step

now. However, if it is the case that some p is a divisor of some 〈Ni, Ci〉 where

� ≤ i ≤ mid, then we cannot invert A · Nu in the field Fp. Since each number

〈Ni, Ci〉 could be as large as d
d/2+1

, it could be a multiple of up to Θ(d) primes

which are in the range d, . . . , d
2
. So in order to be able to determine d primes

which are relatively prime to each of 〈N�, C�〉, . . . , 〈Nmid, Cmid〉, we might in the

worst case have to test about (mid − � + 1) · d = kd primes. Testing kd primes

for divisibility w.r.t. k d-bit numbers costs us k
2
d
2

time. We cannot afford so

much time per update step.

Another idea is to work over just one finite field Fq where q is a large prime.

If q > d
d/2+1

, then it can never be a divisor of any 〈Ni, Ci〉, so we can always
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carry out our arithmetic in Fq without any problem. Arithmetic in Fq costs us

Θ̃(d) time if q ≈ d
d
. Then our update step takes Õ(m

2
k
ω−1

) time which will

result in a total time of Õ(m
ω+1

) for all the update steps, which is our goal. But

computing such a large prime q is a difficult problem.

The solution is to work over a suitable ring instead of over a field; note that

fast matrix multiplication algorithms work over rings. Let us do the above com-

putation modulo a large integer R, say R ≈ d
d
. Then intermediate numbers do

not grow more than R and we can retrieve Nj directly from Nj mod R, because

R is much larger than any coordinate of Nj .

What properties do we need of R? The integer R must be relatively prime

to the numbers: 〈N�, C�〉, 〈N�+1, C�+1〉, . . ., 〈Nmid, Cmid〉 so that that triangu-

lar matrix A · Nd which has these elements along the diagonal is invertible in

ZR. And R must also be relatively prime to 〈N�−1, C�−1〉 so that the number

〈Nmid, Cmid〉/〈N�−1, C�−1〉 is defined in ZR. Once we determine such an R, we

will work in ZR. We stress the point that such an R is a number used only in this

particular bulk update step - in another bulk update step of another recursive

call, we need to compute another such large integer.

It is easy to see that the number R determined below is a large number that is

relatively prime to 〈N�−1, C�−1〉, 〈N�, C�〉, 〈N�+1, C�+1〉, . . ., and 〈Nmid, Cmid〉.

1. Right at the beginning of the algorithm, compute d
2

primes p1, ..., pd2, where

each of these primes is at least d. Then form the d products: P1 = p1 · · · pd,

P2 = p1 · · · p2d, P3 = p1 · · · p3d, . . . , Pd = p1 · · · pd2 .

2. Then during our current update step, compute the product:

L = 〈N�−1, C�−1〉〈N�, C�〉 · · · 〈Nmid, Cmid〉.

3. By doing a binary search on P1, . . . , Pd, determine the smallest s ≥ 0 such

that Ps+1 does not divide L.

4. Determine a p ∈ {psd+1, . . . , psd+d} that does not divide L. Compute R = p
d
.

Cost of computing R: The value of π(r), the number of primes less than r,

is given by r/6 log r ≤ π(r) ≤ 8r/log r [1]. So all the the primes p1, . . . , pd2 are

Õ(d
2
), and computing them takes Õ(d

2
) time using a sieving algorithm. The

products P1, . . . , Pd are computed just once in a preprocessing step. We will

always perform arithmetic on large integers using Schönhage-Strassen multipli-

cation, so that it takes Õ(d) time to multiply two d-bit numbers. Whenever we

perform a sequence of multiplications, we will perform it using a tree so that d

numbers (each of bit size Õ(d)) can be multiplied in Õ(d
2
) time. So computing

P1, . . . , Pd takes Õ(d
3
) preprocessing time.

In the update step, we compute L, which takes Õ(d
2
) time. The product

psd+1 · · · psd+d is found in Õ(d
2
) time by binary search. Determine a p ∈ {psd+1,

. . . , psd+d} that does not divide L by testing which of the two products:

psd+1 · · · psd+�d/2� or psd+�d/2�+1 · · · psd+d does not divide L and recurse on the

product that does not divide L. Thus R can be computed in Õ(d
2
) time.

Computation in ZR. We need to invert the matrix A · Nu in the ring ZR. Recall

that this matrix is lower triangular. Computing the inverse of a lower triangular

matrix is easy. If
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A · Nu =

(
W 0

Y Z

)
, then we have (A · Nu)

−1
=

(
W

−1
0

−Z
−1
YW

−1
Z

−1

)
.

Hence to invert A ·Nu in ZR we need the multiplicative inverses of only its diag-

onal elements: 〈C�, N�〉, . . . , 〈Cmid, Nmid〉 in ZR. Using Euclid’s gcd algorithm

each inverse can be computed in Õ(d
2
) time since each of the numbers involved

here and R have bit size Õ(d). The matrix A · Nu is inverted via fast matrix

multiplication and once we compute (A · Nu)
−1

, the matrix X , that consists of

all the coordinates αtj that we need (refer Equation (2)), can be easily computed

in ZR as −(A·Nu)
−1
·A·Nd ·D by fast matrix multiplication. Then we determine

all Nj mod R for mid + 1 ≤ j ≤ h from Nu · X + Nd · D. It follows from the

discussion presented at the beginning of Section 4.1 that the time required for

all these operations is Õ(m
2
k
ω−1

) since each number is now bounded by d
d
.

Retrieving the actual Nj. Each entry of Nj can have absolute value at most

d
d/2

(from Fact 1). The number R is much larger than this, R > d
d
. So if any

coordinate, say nl in Nj mod R is larger than d
d/2

, then we can retrieve the

original nl as nl − R. Thus we can retrieve Nj from Nj mod R in O(d
2
) time.

The time complexity for the update step, which includes matrix operations, gcd

computations and other arithmetic, is Õ(m
2
k
ω−1

+ d
2
k) or Õ(m

2
k
ω−1

). Thus

our recurrence becomes T (k) = 2T (k/2) + Õ(m
2
k
ω−1

) when k > 1. We shall

show the following lemma in the next section.

Lemma 2. A shortest cycle Ci such that 〈Ci, Ni〉 = 0 can be computed in
O(m

2
n+mn

2
logn) time.

Thus T (1) = O(m
2
n+mn

2
logn). Our recurrence solves to T (k) = O(k(m

2
n+

mn
2
logn) + k

ω
m

2
· poly(logm)) and hence T (d) = O(m

3
n + m

2
n

2
logn) +

Õ(m
ω+1

), which is O(m
3
n + m

2
n

2
log n), because m ≤ n

2
implies Õ(m

ω+1
) is

always o(m
3
n). We can conclude with the following theorem.

Theorem 2. A minimum cycle basis in a weighted directed graph with m edges
and n vertices and non-negative edge weights can be computed in O(m

3
n +

m
2
n

2
logn) time.

5 Computing Non-orthogonal Shortest Cycles

Now we come to the second key routine required by our algorithm - given a

directed graph G with non-negative edge weights, compute a shortest cycle in G

whose dot product with a given vector N ∈ Zm is non-zero. We will first consider

the problem of computing a shortest cycle Cp such that 〈Cp, N〉 = 0 ( mod p) for

a number p = O(d log d). Recall that Cp can traverse edges of G in both forward

and reverse directions; the vector representation of Cp has a 1 for every forward

edge in the cycle, a -1 for every reverse edge, and a 0 for edges not present at

all in the cycle. This vector representation is used for computing dot products

with N . The weight of Cp itself is simply the sum of the weights of the edges in

the cycle. We show how to compute Cp in O(mn + n
2
logn) time.
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Definitions. To compute shortest paths and cycles, we will work with the undi-

rected version of G. Directions will be used only to compute the residue class of

a path or cycle, i.e., the dot product between the vector representation of this

path or cycle and N modulo p. Let puv denote a shortest path between vertices

u and v and let fuv denote its length and ruv its residue class. Let suv be the

length of a shortest path, if any, between u and v in a residue class distinct from

ruv. Observe that the value of suv is independent of the choice of puv.

We will show how to compute fuv and suv for all pairs of vertices u, v in

O(mn + n
2
logn) time. As is standard, we will also compute paths realizing

these lengths in addition to computing the lengths themselves. The following

claim tells us how these paths can be used to compute a shortest non-orthogonal

cycle - simply take each edge uv and combine it with svu to get a cycle. The

shortest of all these cycles having a non-zero residue class is our required cycle.

Lemma 3. Let C = u0u1 . . . uku0 be a shortest cycle whose residue class is non-
zero modulo p and whose shortest edge is u0u1. Then the path u1u2 . . . uku0 has
a residue class different from the residue class of the edge u1u0 and the length of
the path u1u2 . . . uku0 equals su1u0 and the length of the edge u0u1 equals fu1u0 .

Proof. First, we show that the path u1u2 . . . uku0 and the edge u1u0 have dif-

ferent residue classes. Let x denote the residue class of the path and y de-

note the residue class of the edge u0u1. Since C is in a non-zero residue class,

x+ y ≡ 0 (mod p), so x ≡ −y (mod p). Since the incidence vector correspond-

ing to u1u0 is the negation of the incidence vector corresponding to u0u1, the

residue class of the edge u1u0 is −y. Thus the claim follows.

Now, if the length of u1u0 is strictly greater than fu1u0 , then consider any

shortest path π between u1 and u0 (which, of course, has length fu1u0). Combin-

ing π with u1u0 yields a cycle and combining π with u1u2 . . . uku0 yields another

cycle. These cycles are in distinct residue classes and are shorter than C. This

contradicts the definition of C. Therefore, the edge u1u0 has length fu1u0 .

Since u1u2 . . . uku0 has a different residue class from the edge u1u0, the length

of u1u2 . . . uku0 cannot be smaller than su1u0 , by the very definition of su1u0 .

Suppose, for a contradiction that the length u1u2 . . . uku0 is strictly larger than

su1u0 . Then combining the path between u1 and u0 which realizes the length

su1u0 along with the edge u1u0 yields a cycle which is shorter than C and which

has a non-zero residue class modulo p. This contradicts the definition of C. The

lemma follows. ��

Computing fuv and suv. We first find any one shortest path (amongst possibly

many) between each pair of vertices u and v by Dijkstra’s algorithm; this gives

us puv, fuv, and ruv, for each pair u, v. The time taken is O(mn+ n
2
logn). For

each pair u, v, we now need to find a shortest path between u, v with residue

class distinct from ruv; the length of this path will be suv. Use quv to denote any

such path. We show how a modified Dijkstra search can compute these paths in

O(mn + n
2
logn) time. The following lemma shows the key prefix property of

the quv paths needed for a Dijkstra-type algorithm.
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Lemma 4. For any u and v, the path quv can be chosen from the set {puw ◦
wv, quw ◦ wv : wv ∈ E}. Here p ◦ e denotes the path p extended by the edge e.

Proof. Consider any path π between u and v realizing the value suv, i.e., it has

length suv and residue class distinct from ruv. Let w be the penultimate vertex

on this path and let π
′

be the prefix path from u to w. Clearly, π cannot be

shorter than puw ◦ wv. Hence, if the residue class of puw ◦ wv is distinct from

ruv, we are done. So assume that puw ◦ wv has residue class ruv . Then π
′
must

have a residue class distinct from puw and hence quw exists. Also, the length of

π
′
must be at least the length of quw and the residue class of quw ◦wv is distinct

from the residue class of puw ◦ wv and hence distinct from ruv. Thus quw ◦ wv

realizes suv. ��

We now show how to compute the suv’s for any fixed u in time O(m+n logn) with

a Dijkstra-type algorithm. Repeating this for every source gives the result. The

algorithm differs from Dijkstra’s shortest path algorithm only in the initialization

and update steps, which we describe below. We use the notation keyuv to denote

the key used to organize the priority heap; keyuv will finally equal suv.

Initialization. We set keyuv to the minimal length of any path puw ◦ wv with

residue class distinct from ruv. If there is no such path, we set it to ∞.

The Update Step. Suppose we have just removed w from the priority queue.

We consider the u to w path of length keyuw which was responsible for the

current key value of w. For each edge wv incident on w, we extend this path via

the edge wv. We update keyuv to the length of this path provided its residue

class is different from ruv.

Correctness. We need to show that keyuv is set to suv in the course of the

algorithm (note that one does not need to worry about the residue class since

any path that updates keyuv in the course of the algorithm has residue class

different from ruv). This follows immediately from Lemma 4. If suv is realized

by the path puw ◦ wv for some neighbor w, then keyuv is set to suv in the

initialization step. If suv is realized by the path quw ◦ wv for some neighbor

w, then keyuv is set to suv in the update step. This completes the proof of

correctness.

Thus we have given an O(mn + n
2
logn) algorithm to compute a shortest

cycle Cp whose dot product with N is non-zero modulo p. A slower algorithm

with running time O(mn logn), which computes a layered graph, was given in

[11] to compute such a cycle Cp. Using the algorithm described here instead

of this slower algorithm results in a randomized algorithm with running time

O(m
2
n + mn

2
log n) for the minimum cycle basis problem in directed graphs.

We state this result as the following theorem.

Theorem 3. A minimum cycle basis in a directed graph G can be computed
with probability at least 3/4 in O(m

2
n+mn

2
logn) time.

The original problem. Our original problem here was to compute a shortest

cycle C such that 〈C,N〉 = 0. Any cycle C which satisfies 〈C,N〉 = 0 satisfies
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〈C,N〉 = 0 (mod p) for some p ∈ {p1, . . . , pd} where p1, . . . , pd are distinct

primes, each of which is at least d. This follows from the isomorphism of Z∏ pi

and Zp1 × Zp2 × · · · × Zpd
. We have |〈C,N〉| ≤ ‖N‖1 ≤ d · d

d/2
<
∏d
i=1 pi. So

if 〈C,N〉 is non-zero, then it is a non-zero element in Z∏ pi
and so it satisfies

〈C,N〉 = 0(modp) for some p in {p1, . . . , pd}. Thus a shortest cycle C such that

〈C,N〉 = 0 is the shortest among all the cycles Cp, p ∈ {p1, . . . , pd}, where Cp

is a shortest cycle such that 〈Cp, N〉 = 0 (mod p). Hence the time taken to

compute C is O(d · (mn+ n
2
logn)) or O(m

2
n+mn

2
logn). This completes the

proof of Lemma 2.
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Abstract. Let G be a graph with real weights assigned to the vertices
(edges). The weight of a subgraph of G is the sum of the weights of its
vertices (edges). The MIN H-SUBGRAPH problem is to find a minimum
weight subgraph isomorphic to H , if one exists. Our main results are new
algorithms for the MIN H-SUBGRAPH problem. The only operations
we allow on real numbers are additions and comparisons. Our algorithms
are based, in part, on fast matrix multiplication.

For vertex-weighted graphs with n vertices we obtain the following re-
sults. We present an O(nt(ω,h)) time algorithm for MIN H-SUBGRAPH
in case H is a fixed graph with h vertices and ω < 2.376 is the exponent
of matrix multiplication. The value of t(ω,h) is determined by solving a
small integer program. In particular, the smallest triangle can be found
in O(n2+1/(4−ω)) ≤ o(n2.616) time, the smallest K4 in O(nω+1) time,
the smallest K7 in O(n4+3/(4−ω)) time. As h grows, t(ω, h) converges
to 3h/(6 − ω) < 0.828h. Interestingly, only for h = 4, 5, 8 the running
time of our algorithm essentially matches that of the (unweighted) H-
subgraph detection problem. Already for triangles, our results improve
upon the main result of [VW06]. Using rectangular matrix multiplica-
tion, the value of t(ω,h) can be improved; for example, the runtime for
triangles becomes O(n2.575). We also present an algorithm whose running
time is a function of m, the number of edges. In particular, the smallest
triangle can be found in O(m(18−4ω)/(13−3ω)) ≤ o(m1.45) time.

For edge-weighted graphs we present an O(m2−1/k log n) time algo-
rithm that finds the smallest cycle of length 2k or 2k − 1. This running
time is identical, up to a logarithmic factor, to the running time of the
algorithm of Alon et al. for the unweighted case. Using the color coding
method and a recent algorithm of Chan for distance products, we obtain
an O(n3/ log n) time randomized algorithm for finding the smallest cycle
of any fixed length.

1 Introduction

Finding cliques or other types of subgraphs in a larger graph are classical prob-

lems in complexity theory and algorithmic combinatorics. Finding a maximum

clique is NP-Hard, and also hard to approximate [Ha98]. This problem is also

conjectured to be not fixed parameter tractable [DF95]. The problem of finding

M. Bugliesi et al. (Eds.): ICALP 2006, Part I, LNCS 4051, pp. 262–273, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(induced) subgraphs on k vertices in an n-vertex graph has been studied ex-

tensively (see, e.g., [AYZ95, AYZ97, CN85, EG04, KKM00, NP85, YZ04]). All

known algorithms for finding an induced subgraph on k vertices have running

time n
Θ(k)

. Many of these algorithms use fast matrix multiplication to obtain

improved exponents.

The main contribution of this paper is a set of improved algorithms for find-

ing an (induced) k-vertex subgraph in a real vertex-weighted or edge-weighted

graph. More formally, let G be a graph with real weights assigned to the ver-

tices (edges). The weight of a subgraph of G is the sum of the weights of its

vertices (edges). The MIN H-SUBGRAPH problem is to find an H-subgraph of

minimum weight, if one exists. Some of our algorithms are based, in part, on

fast matrix multiplication. In several cases, our algorithms use fast rectangular
matrix multiplication algorithms. However, for simplicity reasons, we express

most of our time bounds in terms of ω, the exponent of fast square matrix mul-

tiplications. The best bound currently available on ω is ω < 2.376, obtained by

Coppersmith and Winograd [CW90]. This is done by reducing each rectangular

matrix product into a collection of smaller square matrix products. Slightly im-

proved bounds can be obtained by using the best available rectangular matrix

multiplication algorithms of Coppersmith [Cop97] and Huang and Pan [HP98].

In all of our algorithms we assume that the graphs are undirected, for simplic-

ity. All of our results are applicable to directed graphs as well. Likewise, all of

our results on the MIN-H-SUBGRAPH problem hold for the analogous MAX-

H-SUBGRAPH problem. As usual, we use the addition-comparison model for

handling real numbers. That is, real numbers are only allowed to be compared

or added.

Our first algorithm applies to vertex-weighted graphs. In order to describe its

complexity we need to define a small integer optimization problem. Let h ≥ 3 be

a positive integer. The function t(ω, h) is defined by the following optimization

program.

Definition 1

b1 = max{b ∈ N :
b

4− ω
≤ �

h− b

2
�}. (1)

s1 = h− b1 +
b1

4− ω
. (2)

s2(b) = max{h− b+ �

h− b

2
� , h− (3− ω)�

h− b

2
�}. (3)

s2 = min{s2(b) : �
h− b

2
� ≤ b ≤ h− 2}. (4)

t(ω, h) = min{s1, s2}. (5)

By using fast rectangular matrix multiplication, an alternative definition for

t(ω, h), resulting in slightly smaller values, can be obtained (note that if ω = 2,

as conjectured by many researchers, fast rectangular matrix multiplication has

no advantage over fast square matrix multiplication).
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Theorem 1. Let H be a fixed graph with h vertices. If G = (V,E) is a graph
with n vertices, and w : V → � is a weight function, then an induced H-subgraph
of G (if exists) of minimum weight can be found in O(n

t(ω,h)
) time.

It is easy to establish some small values of t(ω, h) directly. For h = 3 we have

t(ω, 3) = 2 + 1/(4− ω) < 2.616 by taking b1 = 1 in (1). Using fast rectangular

matrix multiplication this can be improved to 2.575. In particular, a triangle of

minimum weight can be found in o(n
2.575

) time. This should be compared to

the O(n
ω
) ≤ o(n

2.376
) algorithm for detecting a triangle in an unweighted graph.

For h = 4 we have t(ω, 4) = ω + 1 < 3.376 by taking b = 2 in (4). Interestingly,

the fastest algorithm for detecting a K4, that uses square matrix multiplication,

also runs in O(n
ω+1

) time [NP85]. The same phenomena also happens for h = 5

where t(ω, 5) = ω+ 2 < 4.376 and for h = 8 where t(ω, 8) = 2ω+ 2 < 6.752, but

in no other cases! We also note that t(ω, 6) = 4+2/(4−ω), t(ω, 7) = 4+3/(4−ω),

t(ω, 9) = 2ω + 3 and t(ω, 10) = 6 + 4/(4 − ω). However, a closed formula for

t(ω, h) cannot be given. Already for h = 11, and for infinitely many values

thereafter, t(ω, h) is only piecewise linear in ω. For example, if 7/3 ≤ ω < 2.376

then t(ω, 11) = 3ω+2, and if 2 ≤ ω ≤ 7/3 then t(ω, 11) = 6+5/(4−ω). Finally,

it is easy to verify that both s1 in (2) and s2 in (4) converge to 3h/(6− ω) as h

increases. Thus, t(ω, h) converges to 3h/(6− ω) < 0.828h as h increases.

Prior to a few months ago, the only known algorithm for MIN H-SUBGRAPH

in the vertex-weighted case was the näıveO(n
h
) algorithm. Very recently, [VW06]

gave an O(n
h·ω+3

6 ) ≤ o(n
0.896h

) randomized algorithm, for h divisible by 3. Our

algorithms are deterministic, and uniformly improve upon theirs, for all values

of h.
1

A slight modification in the algorithm of Theorem 1, without increasing its

running time by more than a logarithmic factor, can also answer the decision

problem: “is there an H-subgraph whose weight is in the interval [w1, w2] where

w1 ≤ w2 are two given reals?” Another feature of Theorem 1 is that it makes a

relatively small number of comparisons. For example, the smallest triangle can

be found by the algorithm using only O(m + n logn) comparisons, where m is

the number of edges of G.

Since Theorem 1 is stated for inducedH-subgraphs, it obviously also applies to

not-necessarily induced H-subgraphs. However, the latter problem can, in some

cases, be solved faster. For example, we show that the o(n
2.616

) time bound

for finding the smallest triangle also holds if one searches for the smallest H-

subgraph in case H is the complete bipartite graph K2,k.

Several H-subgraph detection algorithms take advantage of the fact that G

may be sparse. Improving a result of Itai and Rodeh [IR78], Alon, Yuster and

Zwick obtained an algorithm for detecting a triangle, expressed in terms of m

[AYZ97]. The running time of their algorithm is O(m
2ω/(ω+1)

) ≤ o(m
1.41

). This

is faster than the O(n
ω
) algorithm when m = o(n

(ω+1)/2
). The best known

1 [VW06] also give a deterministic O(B ·n(ω+3)/2) ≤ o(B ·n2.688) algorithm, where B
is the number of bits needed to represent the (absolute) maximum weight. Note this
algorithm is not strongly polynomial.
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running times in terms of m for H = Kk when k ≥ 4 are given in [EG04].

Sparseness can also be used to obtain faster algorithms for the vertex-weighted

MIN H-SUBGRAPH problem. The triangle algorithm of [VW06] extends to a

randomized O(m
1.46

) algorithm. We prove:

Theorem 2. If G = (V,E) is a graph with m edges and no isolated vertices,
and w : V → � is a weight function, then a triangle of G with minimum weight
(if exists) can be found in O(m

(18−4ω)/(13−3ω)
) ≤ o(m

1.45
) time.

We now turn to edge-weighted graphs. An O(m
2−1/�k/2�

) time algorithm for

detecting the existence of a cycle of length k is given in [AYZ97]. A small im-

provement was obtained later in [YZ04]. However, the algorithms in both papers

fail when applied to edge-weighted graphs. Using the color coding method, to-

gether with several additional ideas, we obtain a randomizedO(m
2−1/�k/2�

) time

algorithm in the edge-weighted case, and an O(m
2−1/�k/2�

logn) deterministic

algorithm.

Theorem 3. Let k ≥ 3 be a fixed integer. If G = (V,E) is a graph with m

edges and no isolated vertices, and w : E → � is a weight function, then a
minimum weight cycle of length k, if exists, can be found with high probability
in O(m

2−1/�k/2�
) time, and deterministically in O(m

2−1/�k/2�
logn) time.

In a recent result of Chan [Ch05] it is shown that the distance product of two

n × n matrices with real entries can be computed in O(n
3
/ logn) time (again,

reals are only allowed to be compared or added). [VW06] showed how to reduce

the MIN H-SUBGRAPH problem in edge-weighted graphs to the problem of

computing a distance product. (The third author independently proved this as

well.)

Theorem 4 ([VW06]). Let H be a fixed graph with h vertices. If G = (V,E)

is a graph with n vertices, and w : E → � is a weight function, then an induced
H-subgraph of G (if exists) of minimum weight can be found in O(n

h
/ logn)

time.

We can strengthen the above result considerably, in the case where H is a cycle.

For (not-necessarily induced) cycles of fixed length we can combine distance

products with the color coding method and obtain:

Theorem 5. Let k be a fixed positive integer. If G = (V,E) is a graph with n

vertices, and w : E → � is a weight function, a minimum weight cycle with k

vertices (if exist) can be found, with high probability, in O(n
3
/ logn) time.

In fact, the proof of Theorem 5 shows that a minimum weight cycle with k =

o(log log n) vertices can be found in (randomized) sub-cubic time.

Finally, we consider the related problem of finding a certain chromatic H-

subgraph in an edge-colored graph. We consider the two extremal chromatic

cases. An H-subgraph of an edge-colored graph is called rainbow if all the edges

have distinct colors. It is called monochromatic if all the edges have the same

color. Many combinatorial problems are concerned with the existence of rainbow

and/or monochromatic subgraphs.

We obtain a new algorithm that finds a rainbow H-subgraph, if it exists.
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Theorem 6. Let H be a fixed graph with 3k + j vertices, j ∈ {0, 1, 2}. If G =

(V,E) is a graph with n vertices, and c : E → C is an edge-coloring, then a
rainbow H-subgraph of G (if exists) can be found in O(n

ωk+j
logn) time.

The running time in Theorem 6 matches, up to a logarithmic factor, the running

time of the induced H-subgraph detection problem in (uncolored) graphs.

We obtain a new algorithm that finds a monochromatic H-subgraph, if it

exists. For fixed H , the running time of our algorithm matches the running time

of the (uncolored) H-subgraph detection problem, except for the case H = K3.

Theorem 7. Let H be a fixed connected graph with 3k+j vertices, j ∈ {0, 1, 2}.
If G = (V,E) is a graph with n vertices, and c : E → C is an edge-coloring,
then a monochromatic H-subgraph of G (if exists) can be found in O(n

ωk+j
)

time, unless H = K3. A monochromatic triangle can be found in O(n
(3+ω)/2

) ≤

o(n
2.688

) time.

Due to space limitation, the proofs of Theorems 6 and 7 will appear in the

journal version of this paper.

The rest of this paper is organized as follows. In Section 2 we focus on vertex-

weighted graphs, describe the algorithms proving Theorems 1 and 2, and some

of their consequences. Section 3 considers edge-weighted graphs and contains

the algorithms proving Theorems 3, 4 and 5. The final section contains some

concluding remarks and open problems.

2 Minimal H-Subgraphs of Real Vertex-Weighted
Graphs

In the proof of Theorem 1 it would be convenient to assume that H = Kh is a

clique on h vertices. The proof for all other induced subgraphs with h vertices

is only slightly more cumbersome, but essentially the same.

Let G = (V,E) be a graph with real vertex weights, and assume V =

{1, . . . , n}. For two positive integers a, b, the adjacency system A(G, a, b) is the

0-1 matrix defined as follows. Let Sx be the set of all
(
n
x

)
x-subsets of vertices.

The weight w(U) of U ∈ Sx is the sum of the weights of its elements. We sort the

elements of Sx according to their weights. This requires O(n
x

logn) time, assum-

ing x is a constant. Thus, Sx = {Ux,1, . . . , Ux,(n
x)
} where w(Ux,i) ≤ w(Ux,i+1).

The matrix A(G, a, b) has its rows indexed by Sa. More precisely, the j’th row

is indexed by Ua,j . The columns are indexed by Sb where the j’th column is in-

dexed by Ub,j . We put A(G, a, b)[U,U
′
] = 1 if and only if U ∪U

′
induces a Ka+b

in G (this implies that U ∩U
′
= ∅). Otherwise, A(G, a, b)[U,U

′
] = 0. Notice that

the construction of A(G, a, b) requires O(n
a+b

) time.

For positive integers a, b, c, so that a+ b+ c = h, consider the Boolean prod-

uct A(G, a, b, c) = A(G, a, b) × A(G, b, c). For U ∈ Sa and U
′
∈ Sc for which

A(G, a, b, c)[U,U
′
] = 1, define their smallest witness δ(U,U ′

) to be the smallest

element U
′′
∈ Sb for which A(G, a, b)[U,U

′′
] = 1 and also A(G, b, c)[U

′′
, U

′
] = 1.

For each U ∈ Sa and U
′
∈ Sc with A(G, a, b, c)[U,U

′
] = 1 and with U ∪ U

′
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inducing a Ka+c, if U
′′

= δ(U,U
′
) then U ∪ U

′
∪ U

′′
induces a Kh in G whose

weight is the smallest of all the Kh copies of G that contain U ∪U
′
. This follows

from the fact that Sb is sorted. Thus, by computing the smallest witnesses of

all plausible pairs U ∈ Sa and U
′
∈ Sc we can find a Kh in G with minimum

weight, if it exists, or else determine that G does not have Kh as a subgraph.

Let A = An1×n2 and B = Bn2×n3 be two 0-1 matrices. The smallest wit-
ness matrix of AB is the matrix W = Wn1×n3 defined as follows. W [i, j] = 0

if (AB)[i, j] = 0. Otherwise, W [i, j] is the smallest index k so that A[i, k] =

B[k, j] = 1. Let f(n1, n2, n3) be the time required to compute the smallest wit-

ness matrix of the product of an n1×n2 matrix by an n2×n3 matrix. Let h ≥ 3

be a fixed positive integer. For all possible choices of positive integers a, b, c with

a+ b+ c = h denote

f(h, n) = min
a+b+c=h

f(n
a
, n

b
, n

c
).

Clearly, the time to sort Sb and to construct A(G, a, b) and A(G, b, c) is over-

whelmed by f(n
a
, n

b
, n

c
). It follows from the above discussion that:

Lemma 1. Let h ≥ 3 be a fixed positive integer and let G be a graph with n ver-
tices, each having a real weight. A Kh-subgraph of G with minimum weight, if ex-
ists, can be found in O(f(h, n)) time. Furthermore, if f(n

a
, n

b
, n

c
) = f(h, n) then

the number of comparisons needed to find a minimum weight Kh is O(n
b
logn+

z(G, a+ c)) where z(G, a+ c) is the number of Ka+c in G.

In fact, if b ≥ 2, the number of comparisons in Lemma 1 can be reduced to only

O(n
b

+ z(G, a + c)). Sorting Sb reduces to sorting the sums X + X + . . . + X

(X repeated b times) of an n-element set of reals X . Fredman showed in [Fr76a]

that this can be achieved with only O(n
b
) comparisons.

A simple randomized algorithm for computing (not necessarily first) witnesses

for Boolean matrix multiplication, in essentially the same time required to per-

form the product, is given by Seidel [Sei95]. His algorithm was derandomized by

Alon and Naor [AN96]. However, computing the matrix of first witnesses seems

to be a more difficult problem. Improving an earlier algorithm of Bender et al.

[BFPSS05], Kowaluk and Lingas [KL05] show that f(3, n) = O(n
2+1/(4−ω)

) ≤

o(n
2.616

). This already yields the case h = 3 in Theorem 1. We will need to

extend and generalize the method from [KL05] in order to obtain upper bounds

for f(h, n). Our extension will enable us to answer more general queries such as

“is there a Kh whose weight is within a given weight interval?”

Proof of Theorem 1. Let h ≥ 3 be a fixed integer. Suppose a, b, c are three

positive integers with a+ b+ c = h and suppose that 0 < µ ≤ b is a real parame-

ter. For two 0-1 matrices A = Ana×nb and B = Bnb×nc the µ-split of A and B is

obtained by splitting the columns of A and the rows of B into consecutive parts

of size �n
µ
� or �n

µ
� each. In the sequel we ignore floors and ceilings whenever

it does not affect the asymptotic nature of our results. This defines a partition

of A into p = n
b−µ

rectangular matrices A1, . . . , Ap, each with n
a

rows and n
µ

columns, and a partition of B into p rectangular matrices B1, . . . , Bp, each with
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n
µ

rows and n
c

columns. Let Ci = AiBi for i = 1, . . . , p. Notice that each ele-

ment of Ci is a nonnegative integer of value at most n
µ

and that AB =
∑p

i=1 Ci.

Given the Ci, the smallest witness matrix W of the product AB can be com-

puted as follows. To determine W [i, j] we look for the smallest index r for which

Cr[i, j] = 0. If no such r exists, then W [i, j] = 0. Otherwise, having found r, we

now look for the smallest index k so that Ar[i, k] = Ar[k, j] = 1. Having found

k we clearly have W [i, j] = (r − 1)n
µ

+ k.

We now determine a choice of parameters a, b, c, µ so that the time to compute

C1, . . . , Cp and the time to compute the first witnesses matrix W , is O(n
t(ω,h)

).

By Lemma 1, this suffices in order to prove the theorem. We will only consider

µ ≤ min{a, b, c}. Taking larger values of µ results in worse running times. The

rectangular product Ci can be computed by performing O(n
a−µ

n
c−µ

) products

of square matrices of order n
µ
. Thus, the time required to compute Ci is

O(n
a−µ

n
c−µ

n
ωµ

) = O(n
a+c+(ω−2)µ

).

Since there are p such products, and since each of the n
a+c

witnesses can be

computed in O(p + n
µ
) time, the overall running time is

O(pn
a+c+(ω−2)µ

+ n
a+c

(p+ n
µ
)) = O(n

h−(3−ω)µ
+ n

h−µ
+ n

h−b+µ
)

= O(n
h−(3−ω)µ

+ n
h−b+µ

). (6)

Optimizing on µ we get µ = b/(4− ω). Thus, if, indeed, b/(4 − ω) ≤ min{a, c}

then the time needed to find W is O(n
h−b+b/(4−ω)

). Of course, we would like

to take b as large as possible under these constraints. Let, therefore, b1 be the

largest integer b so that b/(4 − ω) ≤ �(h − b)/2�. For such a b1 we can take

a = �(h − b1)/2� and c = �(h − b1)/2� and, indeed, µ ≤ min{a, c}. Thus, (6)

gives that the running time to compute W is

O(n
h−b1+b1/(4−ω)

).

This justifies s1 appearing in (2) in the definition of t(ω, h). There may be cases

where we can do better, whenever b/(4−ω) > min{a, c}. We shall only consider

the cases where a = µ = �(h − b)/2� ≤ b (other cases result in worse running

times). In this case c = �(h− b)/2� and, using (6), the running time is

O(n
h−(3−ω)� h−b

2 �
+ n

h−b+�h−b
2 �

).

This justifies s2 appearing in (4) in the definition of t(ω, h). Since t(ω, h) =

min{s1, s2} we have proved that W can be computed in O(n
t(ω,h)

) time.

As can be seen from Lemma 1 and the remark following it, the number of com-

parisons that the algorithm performs is relatively small. For example, in the

case h = 3 we have a = b = c = 1 and hence the number of comparisons is

O(n log n + m). In all the three cases h = 4, 5, 6 the value b = 2 yields t(ω, h).

Hence, the number of comparisons is O(n
2
) for h = 4, O(n

2
+ mn) for h = 5

and O(n
2

+m
2
) for h = 6.
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Suppose w : {1, . . . , n
b
} → � so that w(k) ≤ w(k+1). The use of the µ-split in

the proof of Theorem 1 enables us to determine, for each i, j and for a real interval

I(i, j), whether or not there exists an index k so that A[i, k] = B[k, j] = 1 and

w(k) ∈ I(i, j). This is done by performing a binary search within the p = n
b−µ

matrices Ci, . . . , Cp. The running time in (6) only increases by a logn factor. We

therefore obtain the following corollary.

Corollary 1. Let H be a fixed graph with h vertices, and let I ⊂ �. If G =

(V,E) is a graph with n vertices, and w : V → � is a weight function, then,
deciding whether G contains an induced H-subgraph with total weight in I can
be done O(n

t(ω,h)
logn) time.

Proof of Theorem 2. We partition the vertex set V into two parts V = X ∪Y

according to a parameter ∆. The vertices in X have degree at most ∆. The

vertices in Y have degree larger than ∆. Notice that |Y | < 2m/∆. In O(m∆)

time we can scan all triangles that contain a vertex from X . In particular, we can

find a smallest triangle containing a vertex from X . By Theorem 1, a smallest

triangle induced by Y can be found in O((m/∆)
t(ω,3)

) = O((m/∆)
2+1/(4−ω)

)

time. Therefore, a smallest triangle in G can be found in

O

(
m∆+

(
m

∆

)2+1/(4−ω)
)

time. By choosing ∆ = m
(5−ω)/(13−3ω)

the result follows.

The results in Theorems 1 and 2 are useful not only for real vertex weights,

but also when the weights are large integers. Consider, for example, the graph

parameter β(G,H), the H edge-covering number of G. We define β(G,H) = 0

if G has no H-subgraph. Otherwise, β(G,H) is the maximum number of edges

incident with an H-subgraph of G. To determine β(G,Kk) we assign to each

vertex a weight equal to its degree. We now use the algorithm of Theorem 1 to

find the maximum weighted Kk. If the weight of the maximum weighted Kk is w,

then β(G,Kk) = w−
(
k
2

)
. In particular, β(G,Kk) can be computed in O(n

t(ω,k)
)

time.

Finally, we note that Theorems 1 and 2 apply also when the weight of an

H-subgraph is not necessarily defined as the sum of the weights of its vertices.

Suppose that the weight of a triangle (x, y, z) is defined by a function f(x, y, z)

that is monotone in each variable separately. For example, we may consider

f(x, y, z) = xyz, f(x, y, z) = xy + xz + yz etc. Assuming that f(x, y, z) can be

computed in constant time given x, y, z, it is easy to modify Theorems 1 and 2

to find a triangle whose weight is minimal with respect to f in O(n
2+1/(4−ω)

)

time and O(m
(18−4ω)/(13−3ω)

) time, respectively.

We conclude this section with the following proposition.

Proposition 1. If G = (V,E) is a graph with n vertices, and w : V → � is a
weight function, then a (not necessarily induced) minimum weight K2,k-subgraph
can be found in O(n

2+1/(4−ω)
).
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Proof. To find the smallest K2,k we simply need to find, for any two vertices

i, j, the first k smallest weighted vertices v1, . . . , vk so that each vi is a common

neighbor of i and j. As in Lemma 1, this reduces to finding the first k smallest

witnesses of a 0-1 matrix product. A simple modification of the algorithm in

Theorem 1 achieves this goal in the same running time (recall that k is fixed).

3 Minimal H-Subgraphs of Real Edge-Weighted Graphs

Given a vertex-colored graph G with n vertices, an H-subgraph of G is called

colorful if each vertex of H has a distinct color. The color coding method pre-

sented in [AYZ95] is based upon two important facts. The first one is that, in

many cases, finding a colorful H-subgraph is easier than finding an H-subgraph

in an uncolored graph. The second one is that in a random vertex coloring

with k colors, an H-subgraph with k vertices becomes colorful with probability

k!/k
k
> e

−k
and, furthermore, there is a derandomization technique that con-

structs a family of not too many colorings, so that each H-subgraph is colorful

in at least one of the colorings. The derandomization technique, described in

[AYZ95], constructs a family of colorings of size O(log n) whenever k is fixed.

By the color coding method, in order to prove Theorem 3, it suffices to prove

that, given a coloring of the vertices of the graph with k colors, a colorful cycle

of length k of minimum weight (if exists) can be found in O(m
2−1/�k/2�

) time.

Proof of Theorem 3. Assume that the vertices of G are colored with the colors

1, . . . , k. We first show that for each vertex u, a minimum weight colorful cycle of

length k that passes through u can be found in O(m) time. For a permutation π

of 1, . . . , k, we show that a minimum weight cycle of the form u = v1, v2, . . . , vk
in which the color of vi is π(i) can be found in O(m) time. Without loss of gener-

ality, assume π is the identity. For j = 2, . . . , k let Vj be the set of vertices whose

color is j so that there is a path from u to v ∈ Vj colored consecutively by the

colors 1, . . . , j. Let S(v) be the set of vertices of such a path with minimum pos-

sible weight. Denote this weight by w(v). Clearly, Vj can be created from Vj−1 in

O(m) time by examining the neighbors of each v ∈ Vj−1 colored with j. Now, let

wu = minv∈vk
w(v) + w(v, u). Thus, wu is the minimum weight of a cycle passing

throughu, of the desired form, and a cycle with this weight can be retrieved as well.

We prove the theorem when k is even. The odd case is similar. Let ∆ = m
2/k

.

There are at most 2m/∆ = O(m
1−2/k

) vertices with degree at least ∆. For each

vertex uwith degree at least∆we find a minimum weight colorful cycle of length k

that passes through u. This can be done inO(m
2−2/k

) time. It now suffices to find

a minimum weight colorful cycle of length k in the subgraphG
′
ofG induced by the

vertices with maximum degree less than ∆. Consider a permutation π of 1, . . . , k.

For a pair of vertices x, y, let S1 be the set of all paths of length k/2 colored con-

secutively by π(1), . . . , π(k/2), π(k/2+1). There are at mostm∆
k/2−1

= m
2−2/k

such paths and they can be found using the greedy algorithm in O(m
2−2/k

) time.

Similarly, let S2 be the set of all paths of length k/2 colored consecutively by

π(k/2 + 1), . . . , π(k), π(1). If u, v are endpoints of at least one path in S1 then let

f1({u, v}) be the minimum weight of such a path. Similarly define f2({u, v}). We
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can therefore find, inO(m
2−2/k

) a pair u, v (if exists) so that f1({u, v})+f2({u, v})

is minimized. By performing this procedure for each permutation, we find a min-

imum weight colorful cycle of length k in G
′
.

Let A=An1×n2 and B=Bn2×n3 be two matrices with entries in � ∪∞. The dis-
tance product C = A 
B is an n1 × n3 matrix with C[i, j] = mink=1...,n2 A[i, k] +

B[k, j]. Clearly,C can be computed inO(n1n2n3) time in the addition-comparison

model. However, Fredman showed in [Fr76] that the distance product of two

square matrices of order n can be performed in O(n
3
(log logn/ logn)

1/3
) time.

Following a sequence of improvements over Fredman’s result, Chan gave an

O(n
3
/ logn) time algorithm for distance products. By partitioning the matrices

into blocks it is obvious that Chan’s algorithm computes the distance product of

an n1×n2 matrix and an n2×n3 matrix in O(n1n2n3/ logmin{n1, n2, n3}) time.

Distance products can be used to solve the MIN H-SUBGRAPH problem in edge

weighted graphs.

Proof of Theorem 4. We prove the theorem for H = Kh. The proof for other

induced H-subgraphs is essentially the same. Partition h into a sum of three

positive integers a + b + c = h. Let Sa be the set of all Ka-subgraphs of G.

Notice that |Sa| < n
a

and that each U ∈ Sa is an a-set. Similarly define Sb

and Sc. We define A to be the matrix whose rows are indexed by Sa and whose

columns are indexed by Sb. The entry A[U,U
′
] is defined to by ∞ if U ∪U

′
does

not induce a Ka+b. Otherwise, it is defined to be the sum of the weights of the

edges induced by U ∪U
′
. We define B to be the matrix whose rows are indexed

by Sb and whose columns are indexed by Sc. The entry A[U,U
′
] is defined to

by ∞ if U ∪ U
′
does not induce a Kb+c. Otherwise, it is defined to be the sum

of the weights of the edges induced by U ∪ U
′
with at least one endpoint in U

′
.

Notice the difference in the definitions of A and B. Let C = A 
B. The time to

compute C using Chan’s algorithm is O(n
h
/ logn). Now, for each U ∈ Sa and

U
′
∈ Sc so that U ∪U

′
induces a Ka+c, let w(U,U

′
) be the sum of the weights of

the edges with one endpoint in U and the other in U
′
plus the value of C[U,U

′
].

If w(U,U
′
) is finite then it is the weight of the smallest Kh that contains U ∪U

′
.

Otherwise, no Kh contains U ∪ U
′
.

The weighted DENSE k-SUBGRAPH problem (see, e.g., [FKP01]) is to find a

k-vertex subgraph with maximum total edge weight. A simple modification of

the algorithm of Theorem 4 solves this problem in O(n
k
/ logn) time. To our

knowledge, this is the first non-trivial algorithm for this problem. Note that the

maximum total weight of a k-subgraph can potentially be much larger than a

k-clique’s total weight.

Proof of Theorem 5. We use the color coding method, and an idea similar to

Lemma 3.2 in [AYZ95]. Given a coloring of the vertices with k colors, it suffices

to show how to find the smallest colorful path of length k − 1 connecting any

pair of vertices in 2
O(k)

n
3
/ logn time. It will be convenient to assume that k

is a power of two, and use recursion. Let C1 be a set of k/2 distinct colors,

and let C2 be the complementary set of colors. Let Vi be the set of vertices
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colored by colors from Ci for i = 1, 2. Let Gi be the subgraph induced by Vi.

Recursively find, for each pair of vertices in Gi, the minimum weight colorful

path of length k/2−1. We record this information in matrices A1, A2, where the

rows and columns of Ai are indexed by Vi. Let B be the matrix whose rows are

indexed by V1 and whose columns are indexed by V2 where B[u, v] = w(u, v).

The distance product DC1,C2 = (A1 
 B) 
 A2 gives, for each pair of vertices

of G, all shortest paths of length k − 1 where the first k/2 vertices are colored

by colors from C1 and the last k/2 vertices are colored by colors from C2. By

considering all
(
k
k/2

)
< 2

k
possible choices for (C1, C2), and computing DC1,C2

for each choice, we can obtain an n× n matrix D where D[u, v] is the shortest

colorful path of length k− 1 between u and v. The number of distance products

computed using this approach satisfies the recurrence t(k) ≤ 2
k
t(k/2). Thus, the

overall running time is 2
O(k)

n
3
/ logn.

The proof of Theorem 5 shows that, as long as k = o(log logn), a cycle with k

vertices and minimum weight can be found, with high probability, in o(n
3
) time.

The previous best known algorithm (to our knowledge) for finding a minimum

weight cycle of length k, in real weighted graphs, has running time O(k!n
3
2
k
)

[PV91].

4 Concluding Remarks and Open Problems

We presented several algorithms for MIN H-SUBGRAPH in both real vertex

weighted or real edge weighted graphs, and results for the related problem of

finding monochromatic or rainbow H-subgraphs in edge-colored graphs. It may

be possible to improve upon the running times of some of our algorithms. More

specifically, we raise the following open problems.

(i) Can the exponent t(ω, 3) in Theorem 1 be improved? If so, this would imme-

diately imply an improved algorithm for first witnesses.

(ii) Can the logarithmic factor in Theorem 3 be eliminated? We know from

[AYZ97] that this is the case in the unweighted version of the problem. Can the

logarithmic factor in Theorem 6 be eliminated?

(iii) Can monochromatic triangles be detected faster than the O(n
(3+ω)/2

) algo-

rithm of Theorem 7? In particular, can they be detected in O(n
ω
) time?
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Abstract. In this paper we consider the problem of finding maximum
weighted matchings in bipartite graphs with nonnegative integer weights.
The presented algorithm for this problem work in Õ(Wnω)1 time, where
ω is the matrix multiplication exponent, and W is the highest edge weight
in the graph. As a consequence of this result we obtain Õ(Wnω) time
algorithms for computing: minimum weight bipartite vertex cover, single
source shortest paths and minimum weight vertex disjoint s-t paths.

1 Introduction

The weighted matching problem is one of the fundamental problems in com-

binatorial optimization. The first algorithm for this problem in the bipartite

case was proposed in the fifties of the last century by Kuhn [14]. His result has

been improved several times since then, the known results are summarized in

the Table 1. The bold font indicates an asymptotically best bound in the ta-

bles. In particular the presented here algorithm is faster than the algorithm of

Gabow and Tarjan [8] and the algorithm of Edmonds and Karp [5] in the case of

dense graphs with small integer weights. Note, that in this summary there are

no algorithms that use matrix multiplication. However, in the papers studying

the parallel complexity of the problem [13],[18], such algorithms are implicitly

constructed. These results lead to O(Wn
ω+2

) sequential time algorithms. In this

paper we improve the complexity by factor of n
2
. The improvement in the expo-

nent by 1 is achieved with use of the very recent results of Storjohann [24], who

had shown faster algorithms for computing polynomial matrix determinants.

His results are summarized in Section 1.1. Further improvement is achieved by

a novel reduction technique, that allows us to reduce the weighted version of

the problem to unweighted one. The four steps of the reduction are schemat-

ically presented on Figure 1. As a step of the reduction we also compute the

bipartite weighted cover of the graph. The unweighted problem is then solved

with use of the O(n
ω
) time algorithms developed two years ago by Mucha and

� Research supported by KBN grant 1P03A01830.
1 Õ denotes the so-called “soft O” notation, i.e. f(n) = Õ(g(n)) iff f(n) =

O(g(n) logk n) for some constant k.

M. Bugliesi et al. (Eds.): ICALP 2006, Part I, LNCS 4051, pp. 274–285, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Table 1. The complexity results for the bipartite weighted matching

Complexity Author

O(n4) Khun (1955) [14] and Munkers (1957) [19]

O(n2m) Iri (1960) [10]

O(n3) Dinic and Kronrod (1969) [4]

O(nm) Edmonds and Karp (1970) [5]

O(n
3
4 m log W ) Gabow (1983) [7]

O(
√

nm log(nW )) Gabow and Tarjan (1989) [8]

O(
√

nmW ) Kao, Lam, Sung and Ting (1999) [12]

Õ(nωW ) this paper

Sankowski [17]. Storjohann’s result can also be used to compute the maximum

weight of a perfect matching in general graphs. However, the problem of finding

such matching remains unsolved.

Fig. 1. The scheme of the reduction from weighted to unweighted matchings

The weighted matching problem is not only interesting by itself, but also

it can be used to solve many other problems in combinatorial optimization.

In particular, the presented algorithm for finding maximum weighted perfect

matchings can be used to find minimum weighted perfect matching, as well as,

maximum and minimum weighted matchings. Moreover, the minimum weighted

perfect matching algorithm can be used for computing the minimum weight of

k vertex disjoint s-t paths, whereas the minimum weighted vertex cover can be

used to solve the single source shortest paths (SSSP) problem with negative edge

weights. The complexity of the algorithms for computing the minimum weight

of k vertex disjoint s-t paths, follow exactly the results in Table 1. The author

is not aware of any special algorithms for this problem. The complexity results

for the SSSP problem with negative edge weights are summarized in Table 2.
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Table 2. The complexity results for the SSSP problem with negative weights. The

bold font indicates an asymptotically best bound in the table.

Complexity Author

O(n4) Shimbel (1955) [23]

O(n2mW ) Ford (1956) [11]

O(nm) Bellman (1958) [1], Moore (1959) [16]

O(n
3
4 m log W ) Gabow (1983) [7]

O(
√

nm log(nW )) Gabow and Tarjan (1989) [8]

O(
√

nm log(W )) Goldberg (1993) [9]

Õ(nωW ) Yuster and Zwick (2005) [25], Sankowski (2005) [21],
this paper

The rest of the paper is organized as follows. In the remainder of this introduc-

tory section, we summarize the results in linear algebra algorithms, we show the

randomization technique used later in this paper and we recall the result from [17].

In Section 2 we present our reduction technique in the case of bipartite graphs.

This section is divided into four parts, each containing one reduction step. The

first step of the reduction, i.e., the construction of the equality subgraph from the

minimum vertex cover, is based on Egervárys theorem. The reduction from mini-

mum vertex cover to shortest paths was given by Iri [10]. The third step is the re-

duction from shortest paths to matchings’ weights in appropriately defined graph.

The matchings’ weights can be latter computer with use of the matrix polynomial

algorithms. In Section 3 we review the applications of the algorithm to: other kinds

of the weighted matching problems, SSSP problem and minimum weight vertex

disjoint s-t path problem. Finally, Section 4.1 concludes the paper.

1.1 Linear Algebra Algorithms

We denote by ω the exponent of a square matrix multiplication. The best bound

on ω ≤ 2.376 is due to Coppersmith and Winograd [2]. The interaction of the

matrix multiplication and linear algebra is well understood. The best known

algorithms for many problems in linear algebra work in matrix multiplication

time, i.e., the determinant of an n × n matrix A, or the solution to the linear

system of equations, can be computed in O(n
ω
) arithmetic operations. Very

recently Storjohann [24] has shown that for polynomial matrices these problems

can be solved with the same exponent.

Theorem 1 (Storjohann ’03). Let A ∈ K[x]
n×n be a polynomial matrix of

degree d and b ∈ K[x]
n×1 be a polynomial vector of the same degree, then

– determinant det(A),
– rational system solution A

−1
b,

can be computed in Õ(n
ω
d) operations in K, with high probability.
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For our purposes it would be convenient if one could compute the inverse matrix

A
−1

in the above time bounds. This is impossible because the rational functions

in the inverse can have degrees as high as nd, so just the output size is Ω(n
3
d),

and no algorithm can work faster. Thus the approach similar to the one in papers

[20],[17], where the inverse matrix is used to find edges belonging to a perfect

matching, will not lead to Õ(Wn
ω
) time algorithm.

1.2 Zippel-Schwartz Lemma

In this paper we will reduce a weighted perfect matching problem to testing if

some set of polynomials is non-zero. In the simpler case of perfect matchings, in

order test if a graph has a perfect matchings we have to test if if appropriately

defined adjacency matrix is non-singular [15]. We can verify that the matrix is

non-singular by computing its determinant, which is a polynomial of the entries

of the matrix. However, this determinant may have exponentially many terms,

so it cannot be computed symbolically in polynomial time. The following lemma

due to Zippel [26] and Schwartz [22] can be used to overcome this obstacle.

Lemma 2. If p(x1, . . . , xm) is a non-zero polynomial of degree d with coeffi-
cients in a field and S is a subset of the field, then the probability that p evaluates
to 0 on a random element (s1, s2, . . . , sm) ∈ S

m is at most d/|S|. We call such
event a false zero.

Corollary 3. If a polynomial of degree n is evaluated on random values modulo
prime number p of length (1 + c) logn, then the probability of false zero is at
most 1

nc , for any c > 0.

In the standard RAM model we assume the word size to be O(log n). Thus

the finite field arithmetic modulo p, except division, can be implemented in

constant time. The divisions can be realized in O(log n) time. Nevertheless in

our algorithms divisions are not time dominating operations. These assumptions

are used to establish the time bounds for our algorithms.

1.3 Unweighted Matchings

As stated in the introduction we show here the reduction from the weighted

matching problem to the unweighted one. Next the unweighted perfect match-

ing problem is solved in O(n
ω
) randomized time as stated in the following the-

orem [17].

Theorem 4 (Mucha and Sankowski ’04). A perfect matching in a graph
can be computed in O(n

ω
) time, with high probability.

For the simplicity in the remainder of this paper we assume that in the considered

graphs there is always a perfect matching. When necessary this assumption can

be checked with use of this theorem.
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2 Weighted Matchings in Bipartite Graphs

A weighted bipartite n-vertex graph G is a tuple G = (U, V,E,w). The vertex

sets are given by U = {u1, . . . , un} and V = {v1, . . . , vn}. E ⊆ U × V denotes

the edge set, and the function w : E → Z+ ascribes weights to the edges. We

denote by W the maximum weight in w.

In the maximum weighted bipartite perfect matching problem we seek a per-

fect matching M in a weighted bipartite graph G to maximize the total weight

w(M) =
∑

e∈M w(e).

A weighted cover is a choice of labels y(v1), . . . , y(vn), y(u1), . . . , y(un) such

that y(v) + y(u) ≥ w(vu) for all v ∈ V and u ∈ U . The minimum weighted
cover problem is that of finding a cover of minimum weight. The following theo-

rem states that the vertex cover problem and the maximum weighted matching

problem are dual.

Theorem 5 (Egerváry ’31). Let G = (U, V,E,w) be a weighted bipartite
graph. The maximum weight of a perfect matching of G is equal to weight of
the minimum weighted cover of G.

In order to find weighted perfect matchings we explore this duality. In the next

two subsections we will show how to solve one of these problems when we already

have the solution to the other.

2.1 From Equality Subgraph to Vertex Cover

The following lemma is one of the ingredients of the Hungarian method. The

equality subgraph Gp for a weighted graph G and its vertex cover p is defined

as Gp = (U, V,E
′
), where E

′
= {uv : uv ∈ E and p(u) + p(v) = w(uv)}. The

following lemma is a direct consequence of Egervárys Theorem.

Lemma 6. Consider a weighted bipartite graph G =

(U, V,E,w) and a minimum vertex cover p of G. The matching
M is a perfect matching in Gp iff it is a maximum weighted
perfect matching in G.

Thus if we show how to find a minimum weighted bipartite vertex cover p in

Õ(Wn
ω
) time, then we will be able to find the equality subgraph Gp. Next

we find the maximum weighted bipartite matching in G by finding the perfect

matching in Gp with use of Theorem 4. Similar observation to Lemma 6, but

phrased with use of allowed edges, was formulated in [6].

2.2 From Vertex Cover to Shortest Paths

The following technique was given by Iri [10]. Let M be a maximum weighted

perfect matching in a weighted bipartite graph G = (U, V,E,w). Construct a

directed graph D = (U ∪ V ∪ {r}, A, wd), and

– for all edges uv ∈ E, with u ∈ U and v ∈ V , add a directed edge (u, v) to A,

with weight wd((u, v)) := −w(uv),
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– for all edges uv ∈ M , with u ∈ U and v ∈ V , add a directed edge (v, u) to

A, with weight wd((v, u)) := w(uv),

– add zero weight edges (r, v) for each v ∈ V .

Let distG(u, v) be the distance from vertex u to vertex v in the graph G.

Lemma 7 (Iri ’60). Set y(u) := distD(r, u) for u ∈ U and
y(v) := − distD(r, v) for v ∈ V , then y is a minimum weighted
vertex cover in G.

2.3 From Shortest Paths to Matching Weights

In this section we show how to compute the distances in D by computing

just some matching weights in G. Consider a weighted bipartite graph G =

(U, V,E,w). Add a new vertex s = un+1 to U and a new vertex t = vn+1 to

V . Connect s with all vertices from V with zero weight edges, and connect the

vertex t with a vertex u in U . Let us denote by G(u) the resulting graph and by

M(u) the maximum weighted perfect matching in this graph. Note that G(u)

has a perfect matching because G has a perfect matching. By G(∗) we denote

the graph where the vertex t is connected with all vertices in U .

Lemma 8. Let G = (U, V,E,w) be a weighted bipartite graph
and let M be the maximum weighted perfect matching M in G,
then distD(r, u) = w(M)− w(M(u)), for all u ∈ U .

Proof. Consider the matchings M(u) and M . Direct all edges in M from V to U

and all edges in M(u) from U to V . In this way we obtain a directed path p from

s to t and a set C of even length alternating cycles (see Figure 2). The path p

Fig. 2. Graph G(u) with the matching M and M(u). The sum M ∪M(u) gives a path

from s to t.
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corresponds to the path in graph D from r to u. And the cycles in C correspond

to cycles in D. All these cycles have a zero weight because M and M(u) are

maximum. Thus the weight of p is exactly w(M)−w(M(u)) and dist(r, u) ≤ yu.

Now note that from each path p from r to u in D we can construct a perfect

matching M
′
(u) in G(u). We simply take M

′
(u) = p ⊕M . Thus w(M

′
(u)) +

w(M) = w(p), and so dist(r, u) ≥ yu. ��

Note that if the minimum vertex cover is computed correctly for U then for V

it can be determined by the following equation,

y(v) := max
i∈U

{w(vi)− y(i)} for v ∈ V. (1)

Thus we can restrict ourselves to computing the vertex cover only for vertices in

U , as in Lemma 8.

2.4 From Matching Weights to Matrix Polynomials

In this subsection we show how to compute the weights of the matchings M(u)

with use of the matrix polynomials. We start by showing a way of computing

the weight of a maximum weighted perfect matching.

For a weighted bipartite graph G = (U, V,E,w), define a n×n matrix B̃(G, x)

by

B̃(G, x)i,j =

{
zi,jx

w(vivj) if vivj ∈ E,

0 otherwise,

where zi,j are distinct variables corresponding to edges in G.

Lemma 9 (Karp, Upfal and Wigderson ’86). The degree of x in
det(B̃(G, x)) is the weight of the maximum weighted perfect matching in G.

The following is a direct consequence of Theorem 1, Corollary 3 and the above

lemma.

Corollary 10. The weight of the maximum weighted bipartite perfect matching
can be computed in Õ(Wn

ω
) time, with high probability.

The above corollary gives the way of computing the weight of the maximum

weighted perfect matching w(M), but we also need to compute the weights

w(M(u)), for all u ∈ U .

For a given matrix A, we denote by A
i,j

the matrix A with elements in i-th

row and j-th column set to zero except that Ai,j = 1. From the definition of the

adjoint we have that adj(A)i,j = det(A
j,i

) and A
−1

det(A) = adj(A).

Lemma 11. Given a weighted bipartite graph G =

(U, V,E,w), compute z = det(B̃(G(∗), x))B̃(G(∗), x)
−1
en+1,

then degx(zi) = w(M(ui)).
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Proof. We have

zi = det(B̃(G(∗), x))

(
B̃(G(∗), x)

−1
en+1

)
i
=

(
adj(B̃(G(∗), x))en+1

)
i
=

= adj(B̃(G(∗), x))n+1,i = det(B̃(G(∗), x)
i,n+1

) = det(B̃(G(ui), x)),

and now from Lemma 9 we obtain that

degx(zi) = degx

(
det(B̃(G(ui), x))

)
= w(M(ui)). ��

As a a consequence of Theorem 1, Corollary 3 and the above corollary, we ob-

tain that the values w(M(u)) can be computed in Õ(Wn
ω
) time. Joining this

observation with Lemma 8, Lemma 7 and Lemma 6 we obtain

Theorem 12. Given a weighted bipartite graph G = (U, V,E,w), a minimum
weighted vertex cover of G and a maximum weighted perfect matching in G, can
be computed in Õ(Wn

ω
) time, with high probability.

3 Applications of the Matching Algorithm

3.1 Maximum and Minimum Matchings

In the minimum weighted bipartite perfect matching problem we seek a perfect

matching M in a weighted bipartite graph G to minimize the total weight w(M).

The instance of the minimization problem can be turned into the maximization

problem by defining a new weight function w
′
: E → Z+ as

w
′
(e) = −w(e) +W.

By taking the negative weights we turn the minimization problem into the maxi-

mization problem and by adding W we guarantee that edge weights are positive.

This does not change the solution because the weight of all perfect matchings is

increased by nW .

In the maximum weighted bipartite matching problem we want to construct

a matching M (not necessary perfect) in a weighted bipartite graph G, that

maximizes the total weight w(M). In order to obtain the instance of the perfect

matching problem we simply have to add zero weight edges between all not con-

nected vertices in G. The maximum weighted perfect matching in the resulting

graph corresponds to the maximum weighted matching in G.

Theorem 13. Given a weighted bipartite graph G =

(U, V,E,w), a minimum weighted perfect matching, as well as,
minimum and maximum meighted matching in G, can be com-
puted in Õ(Wn

ω
) time, with high probability.
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3.2 Single Source Shortest Paths

A weighted directed graph G is a tuple G = (V,E,w), where the vertex set is

given by V = {v1, . . . , vn}, E ⊆ V × V denotes the edge set, and the function

w : E → Z ascribes the lengths to the edges. We denote by W is the maximum

absolute value of the edge length. In the single source shortest paths problem
want to compute the distances from a given vertex v to all other vertices.

The following reduction was given by Gabow [7]. Define a bipartite graph

G
′
= (U

′
, V

′
, E

′
, w

′
) in the following way:

U
′

= {u
′
1, . . . , u

′
n},

V
′

= {v
′
1, . . . , v

′
n},

E
′

= {u
′
iv

′
j : (vi, vj) ∈ E} ∪ {u

′
iv

′
i : 1 ≤ i ≤ n},

w
′
(u

′
iv

′
j) =

{
−w((vi, vj)) if (vi, vj) ∈ E,

0 otherwise.

A perfect matching in G
′

corresponds to a set of cycles in the graph G. If a

maximum weight of a perfect matching in G
′

is greater than zero, there is a

negative weight cycle in G. Therefore, we can detect if G has a negative length

cycle in Õ(Wn
ω
) time. If this is not the case, we compute a minimum vertex

cover y
′
of G

′
. There is always a zero weight matching in G

′
, so the weight of y

′

is zero. Note also that y
′
(u

′
i) = −y

′
(v

′
i), because the edges u

′
iv

′
i are tight. Thus

we have for an edge (vi, vj)

y
′
(u

′
i) + y

′
(v

′
j) ≥ w

′
(u

′
iv

′
j)

y
′
(u

′
i)− y

′
(u

′
j) ≥ −w((vi, vj))

w((vi, vj)) ≥ y
′
(u

′
j)− y

′
(u

′
i).

We see that p : V → Z, defined as p(vi) := y
′
(u

′
i), is a good potential function

in G. Hence we can use it to map the edge weights to positive values conserving

the shortest paths (for details see [3]). With the use of the nonnegative weights

we can compute the shortest paths with Dijkstra algorithm.

Theorem 14. Given a weighted directed graph G = (V,E,w)

and a vertex v ∈ V , a negative cycle in G can be detected, or
the distances from v can be computed, in Õ(Wn

ω
) time, with

high probability.

3.3 Minimum Weight Disjoint Paths

Let G = (V,E,w) be a weighted directed graph with two distinguished vertices

s, t ∈ V . In the minimum weight vertex disjoint s-t paths problem we want to

find the minimum weight of k vertex disjoint paths in G from s to t. The vertices

s and t can be common for the paths. For given G and k, let us define a bipartite

graph G
k

= (U
k
, V

k
, E

k
, w

k
), in the following way
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U
k

= {u
k
1 , . . . , u

k
n} ∪ {s

k
1 , . . . , s

k
k},

V
k

= {v
k
1 , . . . , v

k
n} ∪ {t

k
1 , . . . , t

k
k},

E
k

:= {u
k
i v

k
j : (vi, vj) ∈ E, vi = s, vj = t} ∪

∪ {u
k
i v

k
i : 1 ≤ i ≤ n} ∪

∪ {s
k
i v

k
j : (s, vj) ∈ E, 1 ≤ i ≤ k} ∪

∪ {u
k
j t
k
i : (vj , t) ∈ E, 1 ≤ i ≤ k}.

w
k
(u

k
i v

k
j ) =

{
w((vi, vj)) if (vi, vj) ∈ E,

0 otherwise.

Consider a graph G
′
obtained from G by adding an edge (t, s). Similarly as

above, a perfect matching in G
k

corresponds to a set C of cycles in G
′
. These

cycles are, in general, vertex disjoint, but the vertices s and t may be common.

The vertices s
k
i and t

k
i cannot be matched in G

k
with themselves. Hence C must

contain the edge (t, s) exactly k times, because there are k copies of s and t. By

removing the edge (t, s) from C we obtain k vertex disjoint paths from s to t.

The minimum weight of the s-t paths corresponds to the minimum weight of the

perfect matching in G
k
. Moreover G

k
contains a perfect matching if and only if

G contains at least k vertex disjoint s-t paths.

Theorem 15. Given a weighted directed graph G = (V,E,w),
a minimum weight of k vertex disjoint s-t paths can be com-
puted in Õ(Wn

ω
) time, with high probability.

4 Conclusions and Open Problems

4.1 Weighted Matchings in General Graphs

Storjohann’s theorem can be applied in the general case as well. Let us define

for a weighted graph G = (V,E,w) a matrix

Ã(G, x)i,j =


zi,jx

w(ij)
if (i, j) ∈ E and i < j,

−zj,ix
w(ij)

if (i, j) ∈ E and i > j,

0 otherwise.

The following is the generalization of Lemma 9 to general graphs.

Lemma 16 (Karp, Upfal and Widgerson ’86). The degree of x in
det(Ã(G, x)) is twice the weight of the maximum weighted perfect matching in G.

Similarly as in the bipartite case we obtain the following corollary.

Corollary 17. The weight of the maximum weighted perfect matching can be
computed in Õ(Wn

ω
) time, with high probability.
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4.2 Conclusions

We have shown that the algebraic approach to finding perfect matching can

be used in the case of weighted bipartite graphs as well. We have presented

an algorithm solving this problem in Õ(Wn
ω
) time. For small edge weights

this improves over previous fastest algorithms for this problem that work in

Õ(n
2.5

log(nW )) time [8] and in Õ(nm) time [5]. We have also shown how to

compute the maximum weight of a matching in general graphs in Õ(Wn
ω
) time.

Nevertheless, the finding of this matching remains an open problem. Similar ideas

cannot be used for the general case because the approach of Lemma 6 does not

work there. It is impossible to construct a subgraph of a graph that will contain

all the maximum weight perfect matchings and no other perfect matchings. The

following counterexample was given by Eppstein [6]: let G = K6 with edge

weights two on two disjoint triangles and unit edge weights on the remaining

edges. Each weight one edge is in unique maximum weight matching, so no

edges can be removed from G. Thus in general case one have to use a different

approach. The algorithm presented here uses the fact, that a dual problem is

pretty simple and it can be deduced from the adjoint matrix. In the general case

we have to compute so called Edmonds sets, i.e. blossoms. The problem here

is that they are not defined unambiguously, so it seems improbable that they

could be obtained in a simple way from the adjoint of Ã(G, x). This is a similar

situation as in the case of the NC algorithms for the perfect matchings in planar

graphs, where the algorithm for the general case is not known. It seems also that

we are facing here exactly the same problem, i.e., how to compute Edmonds sets

in polylogarithmic time. However, the most intriguing open problem is whether

the dependence of the complexity on W in our algorithm can be reduced. Such

reduction would imply also a faster algorithm for the SSSP problem.
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Abstract. We investigate the problem of reliable computation in the
presence of faults that may arbitrarily corrupt memory locations. In this
framework, we consider the problems of sorting and searching in opti-
mal time while tolerating the largest possible number of memory faults.
In particular, we design an O(n log n) time sorting algorithm that can
optimally tolerate up to O(

√
n log n ) memory faults. In the special case

of integer sorting, we present an algorithm with linear expected run-
ning time that can tolerate O(

√
n ) faults. We also present a randomized

searching algorithm that can optimally tolerate up to O(log n) memory
faults in O(log n) expected time, and an almost optimal deterministic
searching algorithm that can tolerate O((log n)1−ε) faults, for any small
positive constant ε, in O(log n) worst-case time. All these results improve
over previous bounds.

1 Introduction

The need for reliable computations in the presence of memory faults arises in

many important applications. In fault-based cryptanalysis, for instance, some

recent optical and electromagnetic perturbation attacks [12] work by manipu-

lating the non-volatile memories of cryptographic devices, so as to induce very

timing-precise controlled faults on given individual bits: this forces the devices

to output wrong ciphertexts that may allow the attacker to determine the secret

keys used during the encryption. Applications that make use of large memory

capacities at low cost also incur problems of memory faults and reliable compu-

tation. Indeed, the unpredictable failures known as soft memory errors tend to

increase with memory size and speed [8]. Although the number of faults could

be reduced by means of error checking and correction circuitry, this imposes

non-negligible costs in terms of performance (as much as 33%), size (20% larger

areas), and money (10% to 20% more expensive chips). For these reasons, this
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is not typically implemented in low-cost memories. Data replication is a natu-

ral approach to protect against destructive memory faults. However, it can be

very inefficient in highly dynamic contexts or when the objects to be managed

are large and complex: copying such objects can indeed be very costly, and in

some cases we might not even know how to do this (for instance, when the

data is accessed through pointers, which are moved around in memory instead

of the data itself, and the algorithm relies on user-defined access functions).

In these cases, we cannot assume either the existence of ad hoc functions for

data replication or the definition of suitable encoding mechanisms to maintain

a reasonable storage cost. As an example, consider Web search engines, which

need to store and process huge data sets (of the order of Terabytes), including

inverted indices which have to be maintained sorted for fast document access:

for such large data structures, even a small failure probability can result in bit

flips in the index, that may become responsible of erroneous answers to keyword

searches [9]. In all these scenarios, it makes sense to assume that it must be

the algorithms themselves, rather than specific hardware/software fault detec-

tion and correction mechanisms, that are responsible for dealing with memory

faults. Informally, we have a memory fault when the correct value that should

be stored in a memory location gets altered because of a failure, and we say

that an algorithm is resilient to memory faults if, despite the corruption of some

memory values before or during its execution, the algorithm is nevertheless able

to get a correct output (at least) on the set of uncorrupted values.

The problem of computing with unreliable information has been investigated

in a variety of different settings, including the liar model (see, e.g., [3,6,11]), fault-

tolerant sorting networks [1,10], resiliency of pointer-based data structures [2],

parallel models of computation with faulty memories [5]. In [7], we introduced

a faulty-memory random access machine, i.e., a random access machine whose

memory locations may suffer from memory faults. In this model, an adversary

may corrupt up to δ memory words throughout the execution of an algorithm.

The algorithm cannot distinguish corrupted values from correct ones and can

exploit only O(1) safe memory words, whose content never gets corrupted. Fur-

thermore, whenever it reads some memory location, the read operation will tem-

porarily store its value in the safe memory. The adversary is adaptive, but has

no access to information about future random choices of the algorithm: in par-

ticular, loading a random memory location into safe memory can be considered

an atomic operation.

In this paper we address the problems of resilient sorting and searching in the

faulty-memory random access machine. In the resilient sorting problem we are

given a sequence of n keys that need to be sorted. The value of some keys can be

arbitrarily corrupted (either increased or decreased) during the sorting process.

The resilient sorting problem is to order correctly the set of uncorrupted keys.

This is the best that we can achieve in the presence of memory faults, since

we cannot prevent keys corrupted at the very end of the algorithm execution

from occupying wrong positions in the output sequence. In the resilient search-
ing problem we are given a sequence of n keys on which we wish to perform
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membership queries. The keys are stored in increasing order, but some keys may

be corrupted (at any instant of time) and thus may occupy wrong positions in

the sequence. Let x be the key to be searched for. The resilient searching prob-

lem is either to find a key equal to x, or to determine that there is no correct key

equal to x. Also in this case, this is the best we can hope for, because memory

faults can make x appear or disappear in the sequence at any time.

In [7] we contributed a first step in the study of resilient sorting and searching.

In particular, we proved that any resilient O(n log n) comparison-based sorting

algorithm can tolerate the corruption of at most O(
√

n logn ) keys and we pre-

sented a resilient algorithm that tolerates O(
3√
n logn ) memory faults. With

respect to searching, we proved that any O(log n) time deterministic search-

ing algorithm can tolerate at most O(log n) memory faults and we designed an

O(log n) time searching algorithm that can tolerate up to O(
√

logn ) memory

faults. The main contribution of this paper is to close the gaps between upper

and lower bounds for resilient sorting and searching. In particular:

• We design a resilient sorting algorithm that takes O(n log n+ δ
2
) worst-case

time to run in the presence of δ memory faults. This yields an algorithm that

can tolerate up to O(
√

n logn ) faults in O(n log n) time: as proved in [7],

this bound is optimal.

• In the special case of integer sorting, we present a randomized algorithm with

expected running time O(n+ δ
2
): thus, this algorithm is able to tolerate up

to O(
√

n ) memory faults in expected linear time.

• We prove an Ω(log n + δ) lower bound on the expected running time of

resilient searching algorithms: this extends the lower bound for deterministic

algorithms given in [7].

• We present an optimal O(log n+ δ) time randomized algorithm for resilient

searching: thus, this algorithm can tolerate up to O(log n) memory faults in

O(log n) expected time.

• We design an almost optimal O(log n + δ
1+ε′

) time deterministic searching

algorithm, for any constant ε
′
∈ (0, 1]: this improves over the O(log n + δ

2
)

bound of [7] and yields an algorithm that can tolerate up to O((log n)
1−ε

)

faults, for any small positive constant ε.

Notation. We recall that δ is an upper bound on the total number of memory

faults. We also denote by α the actual number of faults that happen during a

specific execution of an algorithm. Note that α ≤ δ. We say that a key is faithful
if its value is never corrupted by any memory fault, and faulty otherwise. A

sequence is faithfully ordered if its faithful keys are sorted, and k-unordered if

there exist k (faithful) keys whose removal makes the remaining subsequence

faithfully ordered. Given a sequence X of length n, we use X [a ; b], with 1 ≤ a ≤

b ≤ n, as a shortcut for the subsequence {X [a], X [a + 1], . . . , X [b]}. Two keys

X [p] and X [q], with p < q, form an inversion in the sequence X if X [p] > X [q]:

note that, for any two keys forming an inversion in a faithfully ordered sequence,

at least one of them must be faulty. A sorting or merging algorithm is called

resilient if it produces a faithfully ordered sequence.



Optimal Resilient Sorting and Searching 289

2 Optimal Resilient Sorting in the Comparison Model

In this section we describe a resilient sorting algorithm that takes O(n log n+δ
2
)

worst-case time to run in the presence of δ memory faults. This yields an

O(n log n) time algorithm that can tolerate up to O(
√

n logn ) faults: as proved

in [7], this bound is optimal if we wish to sort in O(n log n) time, and im-

proves over the best known resilient algorithm, which was able to tolerate only

O(
3√
n logn ) memory faults [7]. We first present a fast resilient merging algo-

rithm, that may nevertheless fail to insert all the input values in the faithfully

ordered output sequence. We next show how to use this algorithm to solve the

resilient sorting problem within the claimed O(n log n+ δ
2
) time bound.

The Purifying Merge Algorithm. Let X and Y be the two faithfully ordered

sequences of length n to be merged. The merging algorithm that we are going to

describe produces a faithfully ordered sequence Z and a disordered fail sequence

F in O(n+α δ) worst-case time. It will be guaranteed that |F | = O(α), i.e., that

only O(α) keys can fail to get inserted into Z.

The algorithm, called PurifyingMerge, uses two auxiliary input buffers of size

(2δ + 1) each, named X and Y, and an auxiliary output buffer of size δ, named

Z. The input buffers X and Y are initially filled with the first (2δ+ 1) values in

X and Y, respectively. The merging process is divided into rounds: the algorithm

maintains the invariant that, at the beginning of each round, both input buffers

are full while the output buffer is empty (we omit here the description of the

boundary cases). Each round consists of merging the contents of the input buffers

until either the output buffer becomes full or an inconsistency in the input keys

is found. In the latter case, we perform a purifying step, where two keys are

moved to the fail sequence F . We now describe the generic round in more detail.

The algorithm fills buffer Z by scanning the input buffers X and Y sequen-

tially. Let i and j be the running indices on X and Y: we call X [i] and Y[j] the

top keys of X and Y, respectively. The running indices i and j, the top keys of

X and Y, and the last key copied to Z are all stored in O(1) size safe memory.

At each step, we compare X [i] and Y[j]: without loss of generality, assume that

X [i] ≤ Y[j] (the other case being symmetric). We next perform an inversion
check as follows: if X [i] ≤ X [i + 1], X [i] is copied to Z and index i is advanced

by 1 (note that the key copied to Z is left in X as well). If the inversion check

fails, i.e., X [i] > X [i+ 1], we perform a purifying step on X [i] and X [i+ 1]: we

move these two keys to the fail sequence F , we append two new keys from X at

the end of buffer X , and we restart the merging process of the buffers X and Y

from scratch by simply resetting all the buffer indices (note that this makes the

output buffer Z empty). Thanks to the comparisons between the top keys and to

the inversion checks, the last key appended to Z is always smaller than or equal

to the top keys of X and Y (considering their values stored in safe memory): we

call this top invariant. When Z becomes full, we check whether all the remaining

keys in X and Y (i.e., the keys not copied into Z) are larger than or equal to

the last key Z[δ] copied into Z (safety check). If the safety check fails on X , the

top invariant guarantees that there is an inversion between the current top key
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X [i] of X and another key remaining in X : in that case, we execute a purifying

step on those two keys. We do the same if the safety check fails on Y. If all the

checks succeed, the content of Z is flushed to the output sequence Z and the

input buffers X and Y are refilled with an appropriate number of new keys taken

from X and Y , respectively.

Lemma 1. Algorithm PurifyingMerge, given two faithfully ordered sequences
of length n, merges the sequences in O(n + α δ) worst-case time and returns a
faithfully ordered sequence Z and a fail sequence F such that |F | = O(α).

Proof. We first show that the output sequence Z is faithfully ordered. We say

that a round is successful if it terminates by flushing the output buffer into Z,

and failing if it terminates by adding keys to the fail sequence F . Since failing

rounds do not modify Z, it is sufficient to consider successful rounds only. Let X
′

and X
′
be the remaining keys in X and X , respectively, at the end of a successful

round. The definition of Y
′
and Y

′
is similar. We denote by Z̃[h] the value of the

h-th key inserted into Z at the time of its insertion. The sequence Z̃ must be

sorted, since otherwise an inversion check would have failed at some point. Since

Z̃[h] = Z[h] for each faithful key Z[h], it follows that (i) Z is faithfully ordered.

Consider now the largest faithful key z = Z̃[k] in Z and the smallest faithful

key x in X

′
∪ X

′
. We will show that z ≤ x (if one of the two keys does not

exist, there is nothing to prove). Note that x must belong to X
′
. In fact, all the

faithful keys in X
′
are smaller than or equal to the faithful keys in X

′
. Moreover,

either X
′
contains at least (δ + 1) keys (and thus at least one faithful key), or

X
′
is empty. All the keys in X

′
are compared with Z̃[δ] during the safety check.

In particular, x ≥ Z̃[δ] since the safety check was successful. From the order of

Z̃, we obtain Z̃[δ] ≥ Z̃[k] = z, thus implying x ≥ z. A symmetric argument

shows that z is smaller than or equal to the smallest faithful key y in Y
′
∪ Y

′
.

Hence (ii) all the faithful keys in Z are smaller than or equal to the faithful

keys in X
′
∪X

′
and Y

′
∪ Y

′
. The claim follows from (i) and (ii) by induction on

the number of successful rounds. The two values discarded in each failing round

form an inversion in one of the input sequences, which are faithfully ordered.

Thus, at least one of such discarded values must be corrupted, proving that the

number of corrupted values in F at any time is at least |F |/2. This implies that

|F |/2 ≤ α and that the number of failing rounds is bounded above by α. Note

that at each round we spend time Θ(δ). When the round is successful, this time

can be amortized against the time spent to flush δ values to the output sequence.

We therefore obtain a total running time of O(n + α δ). �

The Sorting Algorithm. We first notice that a naive resilient sorting al-

gorithm can be easily obtained from a bottom-up iterative implementation of

MergeSort by taking the minimum among (δ+1) keys per sequence at each merge

step. We call this NaiveSort. The running time of NaiveSort is O(δ n logn)

and becomes O(δ n) when δ = Ω(n
ε
), for some ε > 0. In order to obtain a

more efficient sorting algorithm, we will use the following merging subroutine,

called ResilientMerge. We first merge the input sequences using algorithm
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PurifyingMerge: this produces a faithfully ordered sequence Z and a disordered

fail sequence F of length O(α). We sort F with algorithm NaiveSort and pro-

duce a faithfully ordered sequence F
′
in time O(α δ). We finally merge Z and F

′

in time O(|Z|+(|F
′
|+α) δ) = O(n+α δ) using the algorithm UnbalancedMerge

of [7]. Overall, algorithm ResilientMerge faithfully merges two faithfully or-

dered sequences of length n in O(n + α δ) worst-case time. This implies the

following:

Theorem 1. There is a resilient algorithm that sorts n keys in O(n log n+αδ)

worst-case time and linear space.

This yields an O(n log n) time resilient sorting algorithm that can tolerate up to

O(
√

n logn ) memory faults. As shown in [7], no better bound is possible.

3 Resilient Integer Sorting

In this section we consider the problem of faithfully sorting a sequence of n

integers in the range [0, n
c
− 1], for some constant c ≥ 0. We will present a

randomized algorithm with expected running time O(n+δ
2
): thus, this algorithm

is able to tolerate up to O(
√

n ) memory faults in expected linear time. Our

algorithm is a resilient implementation of (least significant digit) RadixSort,
which works as follows. Assume that the integers are represented in base b, with

b ≥ 2. At the i-th step, for 1 ≤ i ≤ �c logb n�, we sort the integers according

to their i-th least significant digit using a linear time, stable bucket sorting

algorithm (with b buckets).

We can easily implement radix sort in faulty memory whenever the base b is

constant: we keep an array of size n for each bucket and store the address of those

arrays and their current length (i.e., the current number of items in each bucket)

in the O(1)-size safe memory. It is not hard to show that this algorithm correctly

sorts the faithful elements in O(n log n) worst-case time and linear space, while

tolerating an arbitrary number of memory faults.

Unfortunately, in order to make RadixSort run in linear time, we need b =

Ω(n
ε
), for some constant ε ∈ (0, 1]. However, if the number of buckets is not

constant, we might need more than linear space. More importantly, O(1) safe

memory words would not be sufficient to store the initial address and the current

length of the b arrays. We will now show how to overcome both problems. We

store the b arrays contiguously, so that their initial addresses can be derived

from a unique address β (which is stored in safe memory). However, we cannot

store in the O(1) safe memory the current length of each array. Hence, in the

i-th step of radix sort, with 1 ≤ i ≤ �c logb n�, we have to solve b instances of

the following bucket-filling problem. We receive in an online fashion a sequence

of n
′
≤ n integers (faithfully) sorted up to the i-th least significant digit. We

have to copy this input sequence into an array B0 whose current length cannot

be stored in safe memory: B0 must maintain the same faithful order as the order

in the input sequence. In the rest of this section we will show how to solve the

bucket-filling problem in O(n
′
+ α δ) expected time and O(n

′
+ δ) space, where
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α is the actual number of memory faults occurring throughout the execution of

the bucket-filling algorithm. This will imply the following theorem.

Theorem 2. There is a randomized algorithm that faithfully sorts n polynomi-
ally bounded integers in O(n + α δ) expected time. The space required is linear
when δ = O(n

1−ε
), for any small positive constant ε.

The Bucket-Filling Problem. We first describe a deterministic bucket-filling

algorithm with running time O(n
′
+ α δ

1.5
). The algorithm exploits the use of

buffering techniques. We remark that the input integers are (faithfully) sorted

up to the i-th least significant digit and that we cannot store the current length

of the buffers in safe memory. In order to circumvent this problem, we will use

redundant variables, defined as follows. A redundant |p|-index p is a set of |p|

positive integers. The value of p is the majority value in the set (or an arbitrary

value if no majority value exists). Assigning a value x to p means assigning x to

all its elements: note that both reading and updating p can be done in linear time

and constant space (using, e.g., the algorithm in [4]). If |p| ≥ 2δ+1, we say that

p is reliable (i.e., we can consider its value faithful even if p is stored in faulty

memory). A redundant |p|-pointer p is defined analogously, with positive integers

replaced by pointers. Besides using redundant variables, we periodically restore

the ordering inside the buffers by means of a (bidirectional) BubbleSort, which

works as follows: we compare adjacent pairs of keys, swapping them if necessary,

and alternately pass through the sequence from the beginning to the end and

from the end to the beginning, until no more swaps are performed. Interestingly

enough, BubbleSort is resilient to memory faults and its running time depends

only on the disorder of the input sequence and on the actual number of faults

occurring during its execution.

Lemma 2. Given a k-unordered sequence of length n, algorithm BubbleSort
faithfully sorts the sequence in O(n + (k + α)n) worst-case time.

We now give a more detailed description of our bucket-filling algorithm. Besides

the output array B0, we use two buffers to store temporarily the input keys: a

buffer B1 of size |B1| = 2δ + 1, and a buffer B2 of size |B2| = 2
√

δ + 1. All the

entries of both buffers are initially set to a value, say +∞, that is not contained

in the input sequence. We associate a redundant index pi to each Bi, where

|p0| = |B1| = 2δ + 1, |p1| = |B2| = 2
√

δ + 1, and |p2| = 1. Note that only p0 is

reliable, while p1 and p2 could assume faulty values. Both buffers and indexes are

stored in such a way that their address can be derived from the unique address

β stored in safe memory. The algorithm works as follows. Each time a new input

key is received, it is appended to B2. Whenever B2 is full (according to index

p2), we flush it as follows: (1) we remove any +∞ from B2 and sort B2 with

BubbleSort considering the i least significant digits only; (2) we append B2 to

B1, and we update p1 accordingly; (3) we reset B2 and p2. Whenever B1 is full,

we flush it in a similar way, moving its keys to B0. We flush buffer Bj , j ∈ {1, 2},

also whenever we realize that the index pj points to an entry outside Bj or to an

entry of value different from +∞ (which indicates that a fault happened either

in pj or in Bj after the last time Bj was flushed).
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Lemma 3. The algorithm above solves the bucket-filling problem in O(n
′
+

α δ
1.5

) worst-case time.

Proof. To show the correctness, we notice that all the faithful keys eventually

appear in B0. All the faithful keys in Bj , j ∈ {1, 2}, at a given time precede the

faithful keys not yet copied into Bj. Moreover we sort Bj before flushing it. This

guarantees that the faithful keys are moved from Bj to Bj−1 in a first-in-first-

out fashion. Consider the cost paid by the algorithm between two consecutive

flushes of B1. Let α
′
and α

′′
be the number of faults in B1 and p1, respectively,

during the phase considered. If no fault happens in either B1 or p1 (α
′
+α

′′
= 0),

flushing buffer B1 costs O(|B1|) = O(δ). If the value of p1 is faithful (α
′′
≤

√

δ),

the sequence is O(α
′
)-unordered: in fact, removing the corrupted values from B1

produces a sorted subsequence. Thus sorting B1 costs O((1 + α
′
)δ). Otherwise

(α
′′
>
√

δ), the sequence B1 can be O(δ)-unordered and sorting it requires

O((1 + δ + α
′
)δ) = O(δ

2
) time. Thus, the total cost of flushing buffer B1 is

O(n
′
+ α/

√

δ δ
2
+ α δ) = O(n

′
+ α δ

1.5
). Using a similar argument, we can show

that the total cost of flushing buffer B2 is O(n
′
+α δ). The claimed running time

immediately follows. �

The deterministic running time can be improved by choosing more carefully the

buffer size and by increasing the number of buffers. Specifically, we can obtain

an integer sorting algorithm with O(n+α δ
1+ε

) worst-case running time, for any

small positive constant ε. The details will be included in the full paper.

A Randomized Approach. We now show how to reduce the (expected) run-

ning time of the bucket-filling algorithm to O(n
′
+α δ), by means of randomiza-

tion. As we already observed in the proof of Lemma 3, a few corruptions in p1
can lead to a highly disordered sequence B1. Consider for instance the following

situation: we corrupt p1 twice, in order to force the algorithm to write first δ

faithful keys in the second half of B1, and then other (δ + 1) faithful keys in

the first half of B1. In this way, with 2(
√

δ+ 1) corruptions only, one obtains an

O(δ)-unordered sequence, whose sorting requires O(δ
2
) time. This can happen

O(α/
√

δ) times, thus leading to the O(α δ
1.5

) term in the running time.

The idea behind the randomized algorithm is to try to avoid such kind of

pathological situations. Specifically, we would like to detect early the fact that

many values after the last inserted key are different from +∞. In order to do

that, whenever we move a key from B2 to B1, we select an entry uniformly at

random in the portion of B1 after the last inserted key: if the value of this entry

is not +∞, the algorithm flushes B1 immediately.

Lemma 4. The randomized algorithm above solves the bucket-filling problem in
O(n

′
+ α δ) expected time.

Proof. Let α
′
and α

′′
be the number of faults in B1 and p1, respectively, between

two consecutive flushes of buffer B1. Following the proof of Lemma 3 and the

discussion above, it is sufficient to show that, when we sort B1, the sequence to

be sorted is O(α
′
+α

′′
)-unordered in expectation. In order to show that, we will
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describe a procedure which obtains a sorted subsequence from B1 by removing

an expected number of O(α
′
+ α

′′
) keys.

First remove the α
′
corrupted values in B1. Now consider what happens either

between two consecutive corruptions of p1 or between a corruption and a reset of

p1. Let p̃1 be the value of p1 at the beginning of the phase considered. By A and

B we denote the subset of entries of value different from +∞ after B1[p̃1] and

the subset of keys added to B1 in the phase considered, respectively. Note that,

when A is large, the expected cardinality of B is small (since it is more likely

to select randomly an entry in A). More precisely, the probability of selecting

at random an entry of A is at least |A|/|B1|. Thus the expected cardinality of

B is at most |B1|/|A| = O(δ/|A|). The idea behind the proof is to remove A

from B1 if |A| <
√

δ, and to remove B otherwise. In both cases the expected

number of keys removed is O(
√

δ ). At the end of the process, we obtain a sorted

subsequence of B1. Since p1 can be corrupted at most O(α
′′
/
√

δ ) times, the total

expected number of keys removed is O(α
′
+
√

δ α
′′
/
√

δ ) = O(α
′
+ α

′′
). �

The space usage of the bucket-filling algorithm can be easily reduced to O(n
′
+δ)

via doubling without increasing the asymptotic running time.

4 Resilient Searching Algorithms

In this section we prove upper and lower bounds on the resilient searching prob-

lem. Namely, we first prove an Ω(log n+δ) lower bound on the expected running

time, and then we present an optimal O(log n + δ) expected time randomized

algorithm. Finally, we sketch an O(log n + δ
1+ε′

) time deterministic algorithm,

for any constant ε
′
∈ (0, 1]. Both our algorithms improve over the O(log n+ δ

2
)

deterministic bound of [7].

A Lower Bound for Randomized Searching. We now show that every

searching algorithm which tolerates up to δ memory faults must have expected

running time Ω(log n+ δ) on sequences of length n, with n ≥ δ.

Theorem 3. Every (randomized) resilient searching algorithm must have ex-
pected running time Ω(logn + δ).

Proof. An Ω(log n) lower bound holds even when the entire memory is safe.

Thus, it is sufficient to prove that every resilient searching algorithm takes ex-

pected time Ω(δ) when logn = o(δ). Let A be a resilient searching algorithm.

Consider the following (feasible) input sequence I: for an arbitrary value x, the

first (δ + 1) values of the sequence are equal to x and the others are equal to

+∞. Let us assume that the adversary arbitrarily corrupts δ of the first (δ + 1)

keys before the beginning of the algorithm. Since a faithful key x is left, A must

be able to find it. Observe that, after the initial corruption, the first (δ + 1)

elements of I form an arbitrary (unordered) sequence. Suppose by contradiction

that A takes o(δ) expected time. Then we can easily derive from A an algorithm

to find a given element in an unordered sequence of length Θ(δ) in sub-linear

expected time, which is not possible (even in a safe-memory system). �
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Optimal Randomized Searching. Let I be the sorted input sequence and x

be the key to be searched for. At each step, the algorithm considers a subsequence

I[�; r]. Initially I[�; r] = I[1;n] = I. Let C > 1 and 0 < c < 1 be two constants

such that cC > 1. The algorithm has a different behavior depending on the

length of the current interval I[�; r]. If r − � > Cδ, the algorithm chooses an

element I[h] uniformly at random in the central subsequence of I[�; r] of length

(r− �)c, i.e., in I[�
′
; r

′
] = I[�+(r− �)(1− c)/2; �+(r− �)(1+ c)/2] (for the sake

of simplicity, we neglect ceilings and floors). If I[h] = x, the algorithm simply

returns the index h. Otherwise, it continues searching for x either in I[�;h− 1]

or in I[h+1; r], according to the outcome of the comparison between x and I[h].

Consider now the case r − � ≤ Cδ. Let us assume that there are at least 2δ

values to the left of � and 2δ values to the right of r (otherwise, it is sufficient to

assume that X [i] = −∞ for i < 1 and X [i] = +∞ for i > n). If x is contained in

I[�−2δ; r+2δ], the algorithm returns the corresponding index. Else, if both the

majority of the elements in I[�−2δ; �] are smaller than x and the majority of the

elements in I[r; r+2δ] are larger than x, the algorithm returns no. Otherwise, at

least one of the randomly selected values I[hk] must be faulty: in that case the

algorithm simply restarts from the beginning. Note that all the variables require

total constant space and can be stored in safe memory.

Theorem 4. The algorithm above performs resilient searching in O(log n + δ)

expected time.

Proof. Consider first the correctness of the algorithm. We will later show that

the algorithm halts with probability one. If the algorithm returns an index, the

answer is trivially correct. Otherwise, let I[�; r] be the last interval considered

before halting. According to the majority of the elements in I[�−2δ; �], x is either

contained in I[� + 1;n] or not contained in I. This is true since the mentioned

majority contains at least (δ + 1) elements, and thus at least one of them must

be faithful. A similar argument applied to I[r; r + 2δ] shows that x can only be

contained in I[1; r−1]. Since the algorithm did not find x in I[�+1;n]∩I[1; r−1] =

I[�+ 1; r − 1], there is no faithful key equal to x in I.

Now consider the time spent in one iteration of the algorithm (starting from

the initial interval I = I[1;n]). Each time the algorithm selects a random el-

ement, either the algorithm halts or the size of the subsequence considered is

decreased by at least a factor of 2/(1 + c) > 1. So the total number of selection

steps is O(log n), where each step requires O(1) time. The final step, where a

subsequence of length at most 4δ+Cδ = O(δ) is considered, requires O(δ) time.

Altogether, the worst-case time for one iteration is O(log n+ δ).

Thus, it is sufficient to show that in a given iteration the algorithm halts

with some positive constant probability P > 0, from which it follows that the

expected number of iterations is constant. Let I[h1], I[h2] . . . I[ht] be the se-

quence of randomly chosen values in a given iteration. If a new iteration starts,

this implies that at least one of those values is faulty. Hence, to show that the

algorithm halts, it is sufficient to prove that all those values are faithful with

positive probability. Let P k denote the probability that I[hk] is faulty. Consider

the last interval I[�; r] in which we perform random sampling. The length of this
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interval is at least C δ. So the value I[ht] is chosen in a subsequence of length

at least cC δ > δ, from which we obtain P t ≤ δ/(cC δ) = 1/(cC). Consider

now the previous interval. The length of this interval is at least 2Cδ/(1 + c).

Thus P t−1 ≤ (1 + c)/(2 cC). More generally, for each i = 0, 1, . . . (t − 1), we

have P t−i ≤ ((1+ c)/2)
i
/ (cC). Altogether, the probability P that all the values

I[h1], I[h2] . . . I[ht] are faithful is equal to
∏t−1
i=0(1 − P t−i) and thus

P ≥

t−1∏
i=0

(
1−

1

cC

(
1 + c

2

)i)
≥

(
1−

1

cC

)∑ t−1
i=0( 1+c

2 )i

≥

(
1−

1

cC

) 2
1−c

> 0,

where we used the fact that (1 − xy) ≥ (1− x)
y

for every x and y in [0, 1]. �

Almost Optimal Deterministic Searching. We now sketch our determinis-

tic algorithm, which we refer to as DetSearch. We first introduce the notion of

k-left-test and k-right-test over a position p, for k ≥ 1 and 1 ≤ p ≤ n. In a k-left-

test over p, we consider the neighborhood of p of size k defined as I[p−k ; p−1]:

the test fails if the majority of keys in this neighborhood is larger than the key

x to be searched for, and succeeds otherwise. A k-right-test over p is defined

symmetrically on the neighborhood I[p+1 ; p+k]. Note that in the randomized

searching algorithm described in the previous section we execute a (2δ + 1)-

left-test and a (2δ + 1)-right-test at the end of each iteration. The idea behind

our improved deterministic algorithm is to design less expensive left and right

tests, and to perform them more frequently. More precisely, the basic structure

of the algorithm is as in the classical (deterministic) binary search: in each step

we consider the current interval I[�; r] and we update it as suggested by the

central value I[(� + r)/2]. Every
√

δ searching steps, we perform a
√

δ-left-test

over the left boundary � and a
√

δ-right-test over the right boundary r of the

current interval I[�; r]. If one of the two
√

δ-tests fails, we revert to the smallest

interval I[�
′
; r

′
] suggested by the failed test and by the last

√

δ-tests previously

performed (the boundaries �
′
and r

′
can be maintained in safe memory, and are

updated each time a
√

δ-test is performed). Every δ searching steps, we proceed

analogously, where
√

δ-tests are replaced by (2δ+ 1) tests. For lack of space, we

defer the low-level details, the description of the boundary cases, and the proof

of correctness of algorithm DetSearch to the full paper. We now sketch the run-

ning time analysis. We say that a boundary p is misleading if the value I[p] is

faulty and guides the search towards a wrong direction. Similarly, a k-left-test

over p is misleading if the majority of the values in I[p−k ; p−1] are misleading.

Theorem 5. Algorithm DetSearch performs resilient searching in O(log n +

α
√

δ ) worst-case time.

Proof. (Sketch) Assume that the algorithm takes at some point a wrong search

direction (misled search). Let us analyze the running time wasted due to a misled

search. We first consider a misled search where there is no misleading
√

δ-test.

Without loss of generality, consider the case where the algorithm encounters a

misleading left boundary, say p: then, the search erroneously proceeds to the
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right of p. Consider the time when the next
√

δ-left-test is performed, and let

� be the left boundary involved in the test. Note that it must be p ≤ � and,

since p is misleading, then � must be also a misleading left boundary. Due to the

hypothesis that
√

δ-tests are not misleading, the
√

δ-left-test over � must have

failed, detecting the error on p and recovering the proper search direction: hence,

the uncorrect search wasted only O(
√

δ ) time, which can be charged to the faulty

value I[�]. Since I[�] is out of the interval on which the search proceeds, each

faulty value can be charged at most once and we will have at most α uncorrect

searches of this kind. The total running time will thus be O(α
√

δ ). We next

analyze the running time for a misled search when there exists at least one

misleading
√

δ-test. In this case, an error due to a misleading
√

δ-test will be

detected at most δ steps later, when the next (2δ + 1)-test is performed. Using

similar arguments, we can prove that there must exist Θ(
√

δ ) faulty values that

are eliminated from the interval in which the search proceeds, and we can charge

the O(δ) time spent for the uncorrect search to those values. Thus, we will have

at most O(α/
√

δ ) uncorrect searches of this kind, requiring O(δ) time each. The

total running time will be again O(α
√

δ ). Since the time for the correct searches

is O(log n), the claimed bound of O(log n+ α
√

δ ) follows. �

The running time can be reduced to O(log n+α δ
ε′
), for any constant ε

′
∈ (0, 1],

by exploiting the use of (2δ
i ε′

+ 1)-tests, with i = 1, 2, . . . (1/ε
′
). This yields a

deterministic resilient searching algorithm that can tolerate up to O((log n)
1−ε

)

memory faults, for any small positive constant ε, in O(log n) worst-case time,

thus getting arbitrarily close to the lower bound. For lack of space, we defer the

details of the algorithm and of its analysis to the full paper.
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Reliable and Efficient Computational Geometry Via
Controlled Perturbation
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Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

Abstract. Most algorithms of computational geometry are designed for the Real-
RAM and non-degenerate input. We call such algorithms idealistic. Executing an
idealistic algorithm with floating point arithmetic may fail. Controlled perturba-
tion replaces an input x by a random nearby x̃ in the δ -neighborhood of x and then
runs the floating point version of the idealistic algorithm on x̃. The hope is that
this will produce the correct result for x̃ with constant probability provided that δ
is small and the precision L of the floating point system is large enough. We turn
this hope into a theorem for a large class of geometric algorithms and describe a
general methodology for deriving a relation between δ and L. We exemplify the
usefulness of the methodology by examples.

1 Introduction

Most algorithms of computational geometry are designed under two simplifying
assumptions: the availability of a Real-RAM and non-degeneracy of the input. A Real-
RAM computes with real numbers in the sense of mathematics. The notion of degener-
acy depends on the problem; examples are collinear or cocircular points or three lines
with a common point. We call an algorithm designed under the two simplifying assump-
tions an idealistic algorithm. Implementations have to deal with the precision problem
(caused by the Real-RAM assumption) and the degeneracy problem (caused by the non-
degeneracy assumption). The exact computation paradigm [10,9,3,14,12,13] addresses
the precision problem. It proposes to implement a Real-RAM tuned to geometric com-
putations. The degeneracy problem is addressed by reformulating the algorithms so
that they can handle all inputs. This may require non-trivial changes. The approach
is followed in systems like LEDA and CGAL. Halperin et al. [5,7,6] proposed con-
trolled perturbation to overcome both problems. The idea is to solve the problem at
hand not on the input given but on a nearby input. The perturbed input is carefully cho-
sen, hence the name controlled perturbation, so that it is non-degenerate and can be
handled with approximate arithmetic. They applied the idea to three problems (comput-
ing polyhedral arrangements, spherical arrangements, and arrangements of circles) and
showed that variants of the respective idealistic algorithms can be made to work. Funke
et al. [4] extended their work and showed how to use controlled perturbation in the con-
text of randomized algorithms, in particular randomized incremental constructions, and
designed specific schemes for planar Delaunay triangulations and convex hulls and De-
launay triangulations in arbitrary dimensions. We extend their work further. We prove
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that controlled perturbation and guarded tests are a general conversion strategy for a
wide class of geometric algorithms; the papers cited above hint at this possibility but
do not prove it. Moreover, we develop a general methodology for analyzing controlled
perturbation, in particular, for deriving quantitative relations between the amount of
perturbation and the precision of the approximate arithmetic.

2 Controlled Perturbation (Review from [4])

Geometric algorithms branch on geometric predicates. Typically, geometric predicates
can be expressed as the sign of an arithmetic formula E . For example, the orientation
predicate for d +1 points in Rd is given by the sign of a (d +1)× (d +1) determinant:
the determinant has one row for each point and the row for a point contains the coordi-
nates of the point followed by the entry 1 and evaluates to zero iff the d + 1 points lie
in a common hyperplane. This is considered a degeneracy.

When evaluating an arithmetic formula E using floating-point arithmetic, round-off
error occurs which might result in the wrong sign being reported. If this stays unde-
tected, the program may enter an illegal state and disasters may happen, see [11] for
some instructive examples. In order to guard against round-off errors, we postulate the
availability of a predicate GE with the following guard property: If GE evaluates to
true when evaluated with floating point arithmetic, the floating point evaluation (fp-
evaluation) of E yields the correct sign. In an idealistic algorithm A we now guard
every sign test by first testing the corresponding guard. If it fails, we abort. We call the
resulting algorithm a guarded algorithm and use Ag to denote it.

The controlled perturbation version of idealistic algorithm A is as follows: Let δ be
a positive real. On input x, we first choose a δ -perturbation x̃ of x and then run the
guarded algorithm Ag on x̃. If it succeeds, fine. If not, repeat. What is a δ -perturbation?
A δ -perturbation of a point is a random point in the δ -cube (or δ -ball) centered at the
point and for a set of points a δ -perturbation is simply a δ -perturbation of each point
in the set. For more complex objects, alternative definitions come to mind, e.g., for a
a circle one may want to perturb the center or the center and the radius. The goal is
now to show experimentally and/or theoretically that Ag has a good chance of working
on a δ -perturbation of any input and a small value of δ . More generally, one wants
to derive a relation between the precision L of the floating point system (= length of
the mantissa), a characteristic of the input set, e.g., the number of points in the set and
an upper bound on the maximal coordinate of any point in the input, and δ . Halperin
et al. have done so for arrangements of polyhedral surfaces, arrangements of spheres,
and arrangements of circles and Funke et al. have done so for Delaunay diagrams and
convex hulls in arbitrary dimensions.

We want to stress that a guarded algorithm can be used without any analysis. Suppose
we want to use it with a certain δ . We execute it with a certain precision L. If it does
not succeed, we double L and repeat. Our main result states that this simple strategy
terminates for a wide class of geometric algorithms. Moreover, it gives a quantitative
relation between δ and L and characteristic quantities of the instance.

Guard predicates must be safe and should be effective, i.e., if a guard does not fire,
the approximate sign computation must be correct, and guards should not fire too often
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Table 1. Rules for calculating error bounds. ⊕, �, �, �, and √ stand for floating point addition,
subtraction, multiplication, division, and square-root, respectively.

E Ẽ Ẽsup indE

c = const c |c| 0

x+y or x−y x̃⊕ ỹ or x̃� ỹ x̃sup⊕ ỹsup 1+max(indx, indy)

x · y x̃� ỹ x̃sup� ỹsup 1+ indx + indy

x1/2
√

x̃

{
(x̃sup� x̃)�

√

x̃ if x̃ > 0√
x̃sup�2p/2 if x̃ = 0

1+ indx

unnecessarily. It is usually difficult to analyze the floating point evaluation of GE di-
rectly. For the purpose of the analysis, we therefore postulate the existence of a bound
predicate BE with the property: If BE holds, GE evaluates to true when evaluated with
floating point arithmetic. We next give some concrete examples for guard and bound
predicates.

When E is evaluated by a straight-line program, it is easy to come up with suitable
predicates GE and BE using forward error analysis. For example, the rules in Table 1
([1]) recursively define two quantities Ẽsup and indE for every arithmetic expression E

such that |E − Ẽ| ≤ BE := Ẽsup · indE · 2−L where Ẽ denote the value of E computed
with floating point arithmetic and L denotes the mantissa length of the floating-point

system. (i.e. L = 52 for IEEE doubles). We can then use GE ≡

(
|Ẽ|> BE

)
and BE ≡

(|E|> 2BE), where BE is valid since it guarantees that |Ẽ| = |E| − |E− Ẽ| > 2BE −

BE = BE by the inverse triangle inequality. For the orientation test of three points in
the plane, one obtains Borient = 24 ·M22−L and for the incircle test of four points in
the plane, one obtains Bincircle = 432 ·M42−L. In both cases, it is assumed that all point
coordinates are bounded by M in absolute value.

We assume for this paper that input values are bounded by M in absolute value and
that bound predicates are of the form cEMeE 2−L where cE and eE are constants de-
pending on the predicate expression E . If E is a polynomial, eE is the degree of the
polynomial.

3 The Class of Algorithms

Our result applies to algorithms which can be viewed as decision trees. There is a deci-
sion tree Tn for each input size n. We assume that the input consists of a set of n points
with coordinates bounded by M in absolute value. Boundedness is essential in some
of our arguments and we leave it as a challenge to remove this restriction. The inter-
nal nodes of the decision tree are labelled by predicate evaluations sign f (xi1 , . . . ,xik )

where f stems from a fixed finite set of real-valued functions (for example, orientation
of three points or the incircle test of four points) and the xi j are input points. The tree
is ternary and branches according to the sign of f . Observe that predicates can only
be applied to input points and not to computed points. This restriction can be relieved
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somewhat. For example, if the input consists of a set of line segments, each specified
by a pair of points, then a predicate applied to an intersection point of two segments is
easily reduced to a more complex predicate involving only input points. What predicate
functions are allowed? We require that the functions f fulfil the postulates set forth in
Section 5.

Many algorithms of computational geometry are within the model, e.g., Delaunay
diagram and Voronoi diagram computations, convex hulls, line arrangements, . . . . It
is important to understand the limitations of the model. Gaussian Elimination for n×n
matrices is outside the model since it tests the sign of expressions depending on all n2

matrix entries. So the number of predicate functions is infinite and their arity is not
bounded. Observe however, that Gaussian elimination on d × d matrices used in an
algorithm to compute convex hulls of n points in Rd is within the model as d does
not depend on the input size. Algorithms whose running time depends on actual point
coordinates and not just on the number of points are also outside the model. It is the
subject of further work to weaken this restriction.

4 The Basic Idea

We concentrate on a single predicate, say P(x1, . . . ,xk) = sign f (x1, . . . ,xk), of k points
in the plane. The treatment readily generalizes to points in higher dimensions. Forward
error analysis gives us an expression B f which upper bounds the error in the evaluation
of f . For this extended abstract, we assume that B f is a constant as discussed above. We
can make B f arbitrarily small by increasing the precision L of the floating point system.

We want to prove a result of the following form: If each coordinate of any input point
is modified by a random number in [−δ ,+δ ] and the program is executed with suffi-
ciently high floating point precision L, the guarded program succeeds with probability
at least 1/2. It is clear that such a result is true if f is continuous and the zero set of f
is lower-dimensional, because then the set of k-tuples for which | f | < 2B f is within a
small neighborhood of the zero set. In order to obtain a quantitative relation between δ
and L, we need to estimate the maximal volume of the set of k-tuples with | f | < 2B f

within an arbitrary axis-oriented 2δ -cube.
We suggest a general approach for deriving such estimates exploiting the fact that

functions f underlying geometric predicates have structure. As a first step, we split the
arguments of f into k− 1 points x and a single point x. We write f (x,x) even if x is
not the last argument of f . We consider the points in x fixed and the point x variable.
Geometric predicates can usually be interpreted as follows: x defines a partition of the
plane into regions and P tells the location of x with respect to this partition. P returns
zero if x lies on a region boundary, +1 if x lies in the positive regions, and −1 is x lies
in the negative regions. We use Cx = {x : f (x,x) = 0} to denote the zero set of f and
call it the curve of degeneracy. If λ x. f (x,x) is identically zero1, we call x degenerate.
We call it regular, otherwise.

Some examples: (1) in the orientation predicate of three points p, q, and r, the first
two points (x comprises p and q) define an oriented line �(p,q) and orient(p,q,r) tells
the location of r (x corresponds to r) with respect to this line. The curve of degeneracy

1 We use the notation λx. f (x,x) to emphasize that we view f as a function of x and keep x fixed.
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is the line �(p,q) if p = q. The pair (p,q) is degenerate if p = q. (2) in the side of circle
predicate of four points p, q, r, and s, the first three points define an oriented circle
C(p,q,r) and soc(p,q,r,s) tells the location of s with respect to this circle. The curve of
degeneracy is C(p,q,r) and the triple (p,q,r) is degenerate if it contains equal points.
(3) in the side-of-wedge predicate of four points p, q, r, and s, the first three points
define a wedge with boundaries �(p,q) and �(p,r) and sow(p,q,r,s) tells the location
of s with respect to this wedge. The curve of degeneracy is �(p,q)∪�(p,r) and the triple
(p,q,r) is degenerate if either q = p or r = p.

The function λ x. f (x,x) is zero on the curve of degeneracy. It will be small near it
and larger further away, i.e., | f (x,x)| measures, in some sense, locally the distance of x
from the curve of degeneracy.

In our examples this is quite explicit: (1) orient(p,q,r) = sign fo(p,q,r) where2

| fo(p,q,r)| = dist(p,q) · dist(r, l(p,q)), (2) soc(p,q,r,s) = sign fsoc(p,q,r,s) where3

| fsoc(p,q,r,s)| ≥ (1/2)dist(p,q)dist(p,r)dist(q,r)dist(C,s) and C denotes the circle or
line defined by the first three points, and finally (3) sow(p,q,r,s) = sign fsow(p,q,r,s)
where | fsow(p,q,r,s)| = | fo(p,q,s) · fo(p,r,s)| = dist(p,q) · dist(p,r) · dist(s, �(p,q)) ·

dist(s, �(p,r))≥ dist(p,q) ·dist(p,r) ·dist(s, �(p,q)∪ �(p,r))2.
Assume we have a function g(x,d) such that | f (x,x)| ≥ g(x,dist(x,Cx)) ≥ 0 that is

non-zero if dist(x,Cx)> 0, i.e., we bound f (x,x) from below by a function in x and the
distance of x from the curve of degeneracy. The requirement | f (x,x)| ≥ 2B f would then
translate into the condition g(x,dist(Cx,x))≥ 2B f , i.e., if x lies outside a certain tubular
neighborhood of the curve of degeneracy Cx, | f (x,x)| is guaranteed to be at least 2B f .
The width of the tubular region is related to the growth of g and depends on x. What
can we say about the growth of g?

Again it is useful to consider our examples. For the orientation predicate, we have
g(p,q,d) = dist(p,q) · d and so g grows linearly in d with slope dist(p,q), for the
side-of-circle predicate, we have g(p,q,r,d) ≥ dist(p,q)dist(p,r)dist(q,r) · d and so
g grows at least linearly in d with slope dist(p,q)dist(p,r)dist(q,r), and for the side-
of-wedge predicate, we have g(p,q,r,d) ≥ dist(p,q) · dist(p,r) · d2 and so g grows at
least quadratically in d with factor dist(p,q) · dist(p,r). The slope (factor) is zero for
degenerate x (p = q for the orientation predicate, |{p,q,r}| ≤ 2 for the side-of-circle
predicate, and p ∈ {q,r} for the in-wedge-predicate) and grows in the distance of x
from degeneracy. We want to guarantee that the slope (factor) has a certain guaranteed
size because this allows us to control the width of the forbidden region for x.

So we proceed as follows. We fix the width of the forbidden region for x at some
value γ and then study the function g(x,γ). We study the conditions on x guaranteeing
g(x,γ)≥ 2B f . Now g(x,γ) has one less argument and so continuing in this way k times,
we arrive at a trivial case. The non-trivial details are given in the next section.

Let us consider our examples: In all three examples the perturbation must guaran-
tee that points have a certain minimum distance. This will guarantee that dist(p,q),
dist(p,q) ·dist(p,r), and dist(p,q)dist(p,r)dist(q,r) have certain minimum values.

2 fo is the value of a 3× 3 determinant. The value of the determinant is twice the signed area
of the triangle formed by the three points which in turn is the distance of the first two points
times the distance of the third point from the line through the first two points.

3 We are going to prove this in section 6.
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5 The General Scheme

We concentrate on a single predicate f of k point variables.

Requirement 1. f is continuous and f is not identically zero.

In order to apply the scheme, one needs to determine a family of non-negative con-
tinuous functions fs, one for every sequence s = (s0,s1, . . . ,s�−1) with 1 ≤ � ≤ k and
s j ∈ [1 . . .k− j] for 0≤ j≤ �−1; s describes the order in which we eliminated variables,
we first eliminated the s0-th variable of a k-argument function, then the s1-th variable of
a k−1-argument function, and so on. The function fs depends on k− � point variables.
For the empty sequence ε , we set fε = | f |. One also needs to fix positive constants
γ�. Consider a fixed s with � := |s| < k; fs is a function of k− � point variables. Let
h∈ [1 . . .k−�] be arbitrary and let t = s◦h. We use x to denote the h-th variable of fs and
x to denote the remaining k− �− 1 variables. We write fs(x,x) instead of fs(x′,x,x′′)
where x′ comprises the first h− 1 arguments and x′′ comprises the last k− �− h argu-
ments. For each x, let Ct

x = {x : fs(x,x) = 0}. We call Ct
x the curve of degeneracy. If

Ct
x = /0, we set Ct

x to an arbitrary singleton set for purely technical reasons. We call x
degenerate if λ x. fs(x,x) is identically zero and regular otherwise.

We next define the lower bound function. Let Ud = {x ∈ U : dist(x,Ct
x) ≥ d} and

let d0 be maximal such that Ud is non-empty. Define gt(x,d) := minx∈Ud fs(x,x) for
0≤ d ≤ d0 and gt(x,d) := gt(x,d0) for d ≥ d0.

Lemma 1. The function gt(x,d) is non-decreasing in its second argument, gt(x,d)> 0
for d > 0 if x is regular, and gt(x,d) = 0 for all d if x is degenerate.

Proof. If x is degenerate, λ x. fs(x,x) is identically zero and hence gt(x,d) = 0 for all d.
If x is regular, Cx is a closed proper subset of U and hence d0 > 0. Also Ud is a closed
non-empty subset of U for 0< d ≤ d0. Since fs is continuous, infx∈Ud fs(x,x) is attained
for a point x ∈Ud and fs(x,x)> 0. Thus gt(x,d)> 0.

Requirement 2. ft(x) is a continuous function with 0≤ ft (x)≤ gt(x,γ�) and ft(x) = 0
iff x is degenerate.

In our applications, gt(x,γ�) is continuous and we may choose ft(x) = gt(x,γ�). Al-
lowing an inequality, gives additional flexibility. However, there are situations where
gt(x,γ�) is not continuous.

Lemma 2. If |s|= k, fs is a positive constant.

Proof. Let (x1, . . . ,xk)∈Uk be such that f (x1, . . . ,xk) = 0. We may assume without loss
of generality that s = (k,k−1, . . . ,1), i.e., we remove the arguments from the end. We
prove f(k,k−1,...,k−i+1)(x1, . . . ,xk−i) = 0 by induction on i. For i = 0, there is nothing to
prove. So assume i ≥ 1. We have f(k,k−1,...,k−i+2)(x1, . . . ,xk−i,xk−i+1) = 0 by induction
hypothesis. So, x = (x1, . . . ,xk−i) is regular and hence f(k,k−1,...,k−i+1)(x1, . . . ,xk−i)> 0.



Reliable and Efficient Computational Geometry Via Controlled Perturbation 305

The Perturbation: Our input are points q1, q2, . . . . We move each qi to a random point
pi in the δ -cube centered at qi. Assume that we have already chosen p1 to pn−1 and
that the following perturbation property (PP) holds true: for every sequence s, � := |s|,
and every tuple of distinct indices j1 to jk−� in [1..n−1]: fs(p j1 , . . . , p jk−�) ≥ 2B f . For
n = 1, the conditions are vacuously true if � < k. For �= k, fs is a positive constant and
hence by making the mantissa length L large enough, we can satisfy all conditions.

Requirement 3. Precision L is large enough so that 2B f ≤ fs for all s with |s|= k.

We now choose pn.

Lemma 3. If for all �, 0 ≤ � < k, any t with |t| = �+ 1, and any tuple of distinct in-
dices j1 to jk−�−1 in [1..n− 1] and p = (p j1 , . . . , p jk−�−1), pn does not lie in the γ�-
neighborhood of Ct

p, (PP) holds for n. Moreover, if these neighborhoods together cover
at most a fraction 1/(2n) of the δ -cube centered at qn, the precondition fails with prob-
ability at most (1/2n).

Proof. Consider the application of any fs to a k− � tuple of perturbed points. If pn

is not among them, (PP) holds by induction hypothesis. If pn is among them, assume
it is the h-th argument where 1 ≤ h ≤ k− �. Let t = s ◦ h and let p be the remaining
arguments. By induction hypothesis we have ft (p) ≥ 2B f . Also dist(pn,Ct

p) ≥ γ� and
hence fs(p, pn)≥ gt(p,dist(pn,Ct

p))≥ gt(p,γ�) = ft (p)≥ 2B f .

We also need that the local geometry of the curves of degeneracy is simple.

Requirement 4. There are constants C and δ0 such that for 0 ≤ δ ≤ δ0 and all p
satisfying (PP), the γ�-neighborhood of Ct

p covers at most an area C · γ� · δ of any δ -
cube.

The requirement excludes space filling curves and sets Ct
p containing an open set. In

some cases, the space estimate can be improved. In particular, if Ct
p consists only of a

constant number of points, the estimate can be improved to Cγ2
�

. Our final requirement
relates δ and the γl .

Requirement 5. 2Ck! ·∑0≤�<k nk−�γ� ≤ δ .

Theorem 1. If requirements (1) to (5) hold and the input consists of n points, then with
probability 1/2 the fp-evaluation of f yields the correct sign for any k-tuple of distinct
perturbed points.

Proof. Consider any � with 0 ≤ � < k. There are no more than k! sequences t with
|t|= �+1. Also there are at most nk−�−1 tuples of k−�−1 distinct indices in [1,n]. Thus
the total area covered by the γ�-neighborhoods of all Ct

p is at most k!nk−�−1
·C · γ� · δ .

The sum over all � of this quantity is at most δ 2
/(2n) by requirement (5). Thus the

probability that the choice of pi for any fixed i with 1 ≤ i ≤ n does not support the
induction step is at most 1/(2n) and hence the probability that some induction step fails
is at most 1/2. Thus with probability at least 1/2, we have (PP) for n. Since fε = | f |,
this implies that the fp-evaluation of f yields the correct sign for any k-tuple of distinct
perturbed points.
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We give an example. f (p,q,r) = orient(p,q,r) = dist(p,q) · dist(r, �(p,q)). We com-
pute f(3,2,1). Let t = (3). We have Ct

x = �(p,q). Then g(3)(p,q,d) = dist(p,q) · d and
hence f(3)(p,q) = dist(p,q) · γ0. Let t = (3,2). We have Ct

x = {p}. Then g(3,2)(p,d) =

d · γ0 and hence f(3,2)(p) = γ1 · γ0. Let t = (3,2,1). We have Ct
x = /0 and set it to

Ct
x = {(0,0)}. Then g(3,2,1)(d) = γ1 · γ0 and hence f(3,2,1)(p) = γ1 · γ0. We may use

C = 4, need 48M22−L
≤ γ1 ·γ0 to satisfy requirement 3 and 48 · (n3γ0 +n2γ1 +nγ2)≤ δ

to satisfy requirement 5. With γ2 = 0, γ0 = δ/(96n3
), γ1 = δ/(96n2

), the requirement
for L becomes L ≥ 2log(M/δ ) + 5logn + O(1). This can be improved somewhat by
using the fact that requirement 5 can be replaced by 24(n2γ0δ + nγ2

1 ) ≤ δ 2
/(2n) since

for t = (3,2), the curve of degeneracy consists of a single point. With γ0 = δ/(96n3
)

and γ1 = δ/(
√

96n), the requirement for L becomes L≥ 2log(M/δ )+ 4logn + O(1).
We summarize: In order to apply the scheme, one first fixes δ to a value suitable

for the application. Then one fixes the γ� to values obeying requirement 5 and deter-
mines suitable functions ft . This might require some ingenuity and is the subject of the
discussion below. Finally, one determines C and makes L large enough to guarantee
requirement 3. We next specialize and make the general scheme more concrete.

The function f is frequently symmetric in its arguments up to change of sign, i.e.,
permuting the arguments does not change the absolute value. In the case of symmetric
functions, the functions ft only depend on the length of t and not on the actual structure
of t. Writing f� for ft with |t|= � we obtain a sequence of functions f0, f1 to fk where
f� has k− � arguments. For simplicity, we restrict most of the further discussion to
symmetric functions.

In our examples, the functions g� are separable, i.e., we have g�+1(x,d) = h�+1(x) ·

de�
·∏0≤i<� γei

i for some function h�+1 and some integers ei. More frequently, we can
locally bound g�(x,d) from below by a separable function, i.e., we have a positive
constant d� and a continuous function h�+1(x) with h�+1(x) = 0 iff x is degenerate such
that g�+1(x,d) ≥ h�+1(x) · de�

·∏0≤i<� γei
i for d ≤ d� and g�+1(x,d) ≥ h�+1(x) · de�

�
·

∏0≤i<� γei
i for d ≥ d�. With γ� ≤ d� for all �, we obtain f�+1(x) = h�+1(x) ·∏0≤i≤� γei

i
and hence fk = c · γe0

0 · · ·γek−1
k−1 for some constant c = hk. Thus requirement 3 becomes

2B f ≤ c · γe0
0 · · ·γek−1

k−1 .
What is a good choice for the γ�? The condition γ� ≤ d� makes it difficult to give a

general answer. We therefore assume d� = ∞ for all �. We want to minimize ∑� nk−�γ�
subject to the constraint 2B f ≤ c · γe0

0 · · ·γek−1
k−1 . There is an extremal point where the

inequality is an equality. The Kuhn-Tucker conditions tell us that at an extremal point
the partial derivatives of the objective function and the constraint with respect to the
γ� must line up, i.e., there is a λ such that nk−�

= λ 2B f e�/γ� for all �. Thus γ� =

λ 2B f e�/nk−� and hence λ =
(
(2B f /c)nS

/∏� ee�
�

)1/E
/(2B f ) where E = e0 + . . .+ ek−1

and S = ∑�(k− �)e�. Then δ ≥ 2Ck!∑�nk−�γ� = 2Ck!E
(
(2B f /c)nS

/∏� ee�
�

)1/E
. This

becomes δ ≥ 2Ck!E
(
2(c f /c)Md2−LnS

/∏� ee�
�

)1/E
for f a polynomial of degree d in k

point variables and hence B f = c f Md2−L. Thus we need

L≥ E log(1/δ )+ S logn + d logM + O(1) .

The major terms in this lower bound can be explained intuitively. We have to compute
with numbers as large as Md and this requires d logM bits before the binary point. We
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want to perturb by as little as δ and hence we need at least log(1/δ ) after the binary
point. This is multiplied by the sum E of exponents. The number of potential predicate
evaluations grows like nk and hence there should be a term O(k logn) to account for
them. We have no intuitive explanation for the term S logn.

A key step in applying our methodology is to find the appropriate functions ft . We
give some guidelines on how to find them.

Consider f and a regular x. For any x ∈ U , let x0 be the point on Cx closest to x.
Define gx(d) = f (x,x0 + d(x− x0)/||x− x0||) where d ∈ R

≥0 and consider the Taylor
or Puiseux expansion of gx at 0. If the Taylor expansion exist, there are D > 0, e ≥ 1,
and c> 0 depending on x and x0 such that |gx(d)| ≥ c ·de provided that d ≤D. We may
choose e as the index of the first non-zero coefficient in the Taylor expansion and c as
one half of this Taylor coefficient. If e and D can be chosen indecently of x and x and
c = c(x) depends only on x but not on x, we have a locally valid bound of the desired
form: | f (x,x)| ≥ c(x) ·dist(x,Cx)

e for dist(x,Cx)≤D.
A frequently occurring case is that Cx has no singularities whenever x is regular. Let

∇ f be the vector of partial derivatives of f with respect to the coordinates of x and
let |∇ f |(x,x) be the length of the gradient vector at (x,x). If Cx has no singularities,
|∇ f |(x,x0) > 0 for all x0 ∈ Cx and hence the minimum length of the gradient over all
points on Cx is positive. Let h(x) = minx0∈Cx |∇ f |(x,x0). Then h(x)> 0 if x is regular
and h(x) = 0 if x is degenerate. Also, gx(d) ≈ |∇ f |(x,x0) · d ≥ (1/2)h(x) · d and we
have a separable representation which is linear in the distance and is valid for small d.

Another frequently occurring case is that f is a polynomial in the point coordinates.
If x is regular, the curve Cx has a finite number of singularities. Let S be the set of
singularities. For all points x such that x0 is at least ε away from any singularity, we
can proceed as above and obtain a linear estimate in d. Near singularities, we proceed
as follows. Let s be a singularity and assume w. l. o. g that s is the origin. Let m be all
terms of minimal degree in f . Then f (x,x) ≈ m(x,x) for x near s. The terms in m have
common degree e in the point coordinates of x; the coefficients are polynomials in the
point coordinates of the points in x. Over the reals, m factors into a product of linear
factors and irreducible quadratic factors. Each linear factor �i defines a line through the
origin whose coefficients are functions in x and hence |�i(x,x)| = ci(x)dist(x, �i). An
irreducible quadratic factor q j contains only a single real point, namely the origin, and
the function value of q j grows quadratically in the distance of x from s, i.e., |q j(x,x)| ≥
c j(x)dist(x,s)2 for some c j(x). Thus

m(x,x)≥∏
i

ci(x) ·dist(x, �i) ·∏
j

c j(x) ·dist(x,s)2

≥∏
i

ci(x) ·∏
j

c j(x) ·dist(x, · · · ∪ �i∪·· ·)
e
≈∏

i
ci(x) ·∏

j
c j(x) ·dist(x,Cx)

e
,

and there is hope for a separable bound which grows like de.

6 Applications

We apply the methodology to the side-of-circle test of four points in the plane. It tells
the side of a query point with respect to an oriented circle defined by three points. We
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have three points pi = (xi,yi), 1 ≤ i ≤ 3, and a query point p = (x,y). Let us assume
first, that the three points are not collinear. Let R be the radius of the circle C defined by
the first three points. We may assume w. l. o. g. that the circle is centered at the origin.
Then x2

i + y2
i = R2 for all i. Let ∆ be the signed area of the triangle (p1, p2, p3). The

side-of-circle test is given by the sign of the determinant

f0(p1, p2, p3, p) =

∣∣∣∣∣∣∣∣
1 x1 y1 x2

1 + y2
1

1 x2 y2 x2
2 + y2

2
1 x3 y3 x2

3 + y2
3

1 x y x2
+ y2

∣∣∣∣∣∣∣∣=−

∣∣∣∣∣∣
x1 y1 R2

x2 y2 R2

x3 y3 R2

∣∣∣∣∣∣+(x2
+ y2

) ·

∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣
=−R22∆ +(x2

+ y2
)2∆ = 2∆(x2

+ y2
−R2

) .

This predicate was already analyzed in [4] using non-trivial geometric reasoning. The
purpose of this section is to show that the same result, in fact, a slightly better result,
can be obtained by generic reasoning. The curve of degeneracy is the cycle C and the

normal vector at p0 = (x0,y0)∈C is (4∆x0,4∆y0) and has norm 4
√

x2
0 + y2

0|∆ |= 4R|∆ |.
This is independent of p0. So the first order approximation of f0’s absolute value is
4R|∆ | ·dist(p,C). In fact, one half of this is even a global lower bound, namely,

| f0(p1, p2, p3, p)|= 2|∆ | · |
√

x2 + y2
−R| · (

√
x2 + y2 + R)≥ 2R|∆ | ·dist(p,C) .

Let a = dist(p1, p2), b = dist(p1, p3), c = dist(p2, p3), and let α be the angle at p3 in
the triangle (p1, p2, p3). Then 2R = a/sinα and |∆ |= (1/2)bcsinα and hence 2R|∆ |=
1/2 ·abc. Thus

| f0(p1, p2, p3, p)| ≥
1
2

dist(p1, p2)dist(p1, p3)dist(p2, p3)dist(C, p)

and by continuity of the determinant the latter inequality is also true if the points p1,
p2, and p3 are collinear. In this case, C is the line passing through the first three points.
The formula also tells us that the triple (p1, p2, p3) is regular iff the points are pairwise
distinct.

We next consider f1(p1, p2, p)/γ0 = (1/2) · dist(p1, p2)dist(p1, p)dist(p2, p). We
consider p1 and p2 as fixed and treat p = p3 = (x,y) as a variable. If p1 = p2, the func-
tion is identically zero. If p1 = p2 we have f1(p1, p2, p) = 0 iff p = p1 or p = p2. Thus
the curve of degeneracy consists of the two isolated points p1 and p2 and its tubular
neighborhood is two circles. We want to bound f1 from below. We may assume that p is
closer to p1 than to p2. Then dist(p, p2)≥ dist(p1, p2)/2 and hence f1(p1, p2, p)/γ0 ≥

dist(p1, p2)
2
/4 ·dist(p,{p1, p2}). Therefore f2(p1, p)/(γ0γ1) = dist(p1, p)

2
/4 and fur-

ther f3(p)/(γ0γ1γ2
2 ) = 1/4. In fact, there is no real reason to go down to f3. We can

also argue about f0 directly. If any two points have a certain minimum distance m,
f0(p1, p2, p3, p)≥m3

/2 ·dist(p,C). In [4], ∆ 3/2 was considered instead of ∆R and then
the curve of degeneracy is the line spanned by p1 and p2. The tubular neighborhood is
then a strip and the forbidden region is larger.

The computation of Voronoi diagrams of line segments is computationally difficult.
The available exact algorithms [2] are slow, the fast algorithm of M. Held [8] is not
guaranteed to work for all inputs. The key test in the algorithms is the side-of-circle



Reliable and Efficient Computational Geometry Via Controlled Perturbation 309

test: A circle C is specified by three sites (points or lines) and the position of a fourth
site (point or line) with respect to C is to be determined, see Figure 6. We discuss the
situation where the fourth site is a line segment given by points p and q. Let C have
center c and radius R and let p be outside C. The query point is q = (x,y). We want to
know whether the line �(p,q) intersects, touches, or misses C. There are different ways
of realizing this test. For simplicity let us put p at (0,0) and c at (c0,0).

c

q

p

t

C

In [2] the test is realized by comparing R and
dist(�(p,q),c), the distance of c from the line �. The
line has equation yx̃−xỹ = 0 (here x and y are the coeffi-
cients and x̃ and ỹ are the variables. The signed distance
of c from this line is yc0/

√
x2 + y2 and hence the test

is realized by the formula yc0−±R
√

x2 + y2. For each
choice of sign, the curve of degeneracy is one of the tan-
gents t from p at C; the equations for the tangents are

y = ±Rx/
√

c2
0−R2. We leave it to the reader to verify

that the norm of the normal vector has the same value
for all points on the curve of degeneracy.

Alternatively, we may locate q with respect to the tan-
gents from p at C. We further discuss this method. Let
us concentrate on one of the tangents. We refer to it as t.

Then the location of q = (x,y) is given by the sign of E =

√
c2

0−R2
·y−R ·x. Observe

that c0 is the distance between c and p. Hence the general form for arbitrary p and c is
given by E =

√
dist(p,c)2

−R2
· (y− yp)+ R · (x− xp).

The circle C is defined by three sites. We treat the case of three points sites, the other
cases are somewhat more involved. Let our three points be pi = (xi,yi), 1 ≤ i≤ 3. The
center c has coordinates (it is the intersection of two bisectors)

xc =

∣∣∣∣ (x2
2− x2

1 + y2
2− y2

1)/2 y2− y1

(x2
3− x2

1 + y2
3− y2

1)/2 y3− y1

∣∣∣∣
2∆

yc =

∣∣∣∣ x2− x1 (x2
2− x2

1 + y2
2− y2

1)/2
x3− x1 (x2

3− x2
1 + y2

3− y2
1)/2

∣∣∣∣
2∆

where ∆ is the area of the triangle (p1, p2, p3). Write xc = A/(2∆) and yc = B/(2∆).
The radius of the circle is given by R =

√
(x1− xc)

2 +(y1− yc)
2 =

√

D/(2|∆ |), where
D = (2x1∆ −A)

2
+(2y1∆ −B)

2. Next observe dist(p,c)2
= (xp− xc)

2
+(yp− xc)

2
=

((2xp∆ −A)
2
+(2yp∆ −B)

2
)/(4∆ 2

). Plugging into our expression E and multiplying
by 2∆ yields the simplified expression

E =

√
(2xp∆ −A)2 +(2yp∆ −B)2

− (2x1∆ −A)2
− (2y1∆ −B)2

· (y− yp)

+

√
(2x1∆ −A)2 +(2y1∆ −B)2

· (x− xp) .

Table 1 yields BE = cEM42−L for some constant cE . Next observe that |E| = |H(y−
yp)+ G(x− xp)| =

√

H2 + G2
· dist(t,q) because E is a linear function in x and y and

hence the first order approximation is exact. Also the norm of the normal vector is
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√

H2 + G2. Finally, observe H2
+ G2

= (2xp∆ −A)
2
+(2yp∆ −B)

2
= 4∆ 2dist(p,c)2

and hence
√

H2 + G2 = 2|∆ |dist(p,c). So the requirement |E| ≥ 2BE boils down to

|dist(q,t)| ≥
2BE

2|∆ |dist(p,c)
≥

BE

|∆ |R
=

cEM42−L

|∆ |R

and the quantity ∆R is familiar to us from the side-of-circle test for points. In order
to guarantee a lower bound for it, it suffices to guarantee a minimum distance for the
defining points of C.
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Abstract. We study the load balancing problem in the context of a
set of clients each wishing to run a job on a server selected among a
subset of permissible servers for the particular client. We consider two
different scenarios. In selfish load balancing, each client is selfish in the
sense that it selects to run its job to the server among its permissible
servers having the smallest latency given the assignments of the jobs of
other clients to servers. In online load balancing, clients appear online
and, when a client appears, it has to make an irrevocable decision and
assign its job to one of its permissible servers. Here, we assume that the
clients aim to optimize some global criterion but in an online fashion.
A natural local optimization criterion that can be used by each client
when making its decision is to assign its job to that server that gives the
minimum increase of the global objective. This gives rise to greedy online
solutions. The aim of this paper is to determine how much the quality
of load balancing is affected by selfishness and greediness.

We characterize almost completely the impact of selfishness and greed-
iness in load balancing by presenting new and improved, tight or almost
tight bounds on the price of anarchy and price of stability of selfish load
balancing as well as on the competitiveness of the greedy algorithm for
online load balancing when the objective is to minimize the total latency
of all clients on servers with linear latency functions.

1 Introduction

We study the load balancing problem in the context of a set of clients each

wishing to run a job on a server selected among a subset of permissible servers

for the particular client. We consider two different scenarios. In the first, called

selfish load balancing (or load balancing games), each client is selfish in the sense

that it selects to run its job to the server among its permissible servers having

the smallest latency given the assignments of the jobs of other clients to servers.
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In the second scenario, called online load balancing, clients appear online and,

when a client appears, it has to make an irrevocable decision and assign its job to

one of its permissible servers. Here, we assume that the clients are not selfish and

aim to optimize some global objective but in an online fashion (i.e., without any

knowledge of clients that may arrive in the future). A natural local optimization

criterion that can be used by each client when making its decision is to assign

its job to that server that gives the minimum increase of the global objective.

This gives rise to greedy online solutions. The aim of this paper is to answer the

question of how much the quality of load balancing is affected by selfishness and

greediness.

Load balancing games are special cases of the well-known congestion games in-

troduced by Rosenthal [22] and studied in a sequence of papers [4,7,8,11,13,19,23,

24]. In congestion games there is a set E of resources, each having a non-negative

and non-decreasing latency function fe defined over non-negative numbers, and

a set of n players. Each player i has a set of strategies Si ⊆ 2
E

(each strategy

of player i is a set of resources). An assignment A = (A1, ..., An) is a vector of

strategies, one strategy for each player. The cost of a player for an assignment A

is defined as cost(i) =
∑

e∈Ai
fe(ne(A)), where ne(A) is the number of players

using resource e in A, while the cost of an assignment is the total cost of all

players. An assignment is a pure Nash equilibrium if no player has any incentive

to unilaterally deviate to another strategy, i.e., costi(A) ≤ costi(A−i, s) for any

player i and for any s ∈ Si, where (A−i, s) is the assignment produced if just

player i deviates from Ai to s. This inequality is also known as the Nash condi-
tion. We use the term social cost to refer to the cost of a pure Nash equilibrium.

In weighted congestion games, each player has a weight wi and the latency of a

resource e depends on the total weight of the players that use e. For this case, a

natural social cost function is the weighted sum of the costs of all players (or the

weighted average of their costs). In linear congestion games, the latency func-

tion of resource e is of the form fe(x) = αex+ be with non-negative constants αe

and be. Load balancing games are linear congestion games where the strategies

of players are singleton sets. In load balancing terminology, we use the terms

server and client instead of the terms resource and player. The set of strategies

of a client contains the servers that are permissible for the client.

We evaluate the quality of solutions of a load balancing game by comparing

the social cost of Nash equilibria to the cost of the optimal assignment (i.e., the

minimum cost). We use the notions of price of anarchy introduced in a seminal

work of Koutsoupias and Papadimitriou [16] (see also [20]) and price of stability
(or optimistic price of anarchy) defined as follows. The price of anarchy/stability

of a load balancing game is defined as the ratio of the maximum/minimum social

cost over all Nash equilibria over the optimal cost. The price of anarchy/stability

for a class of load balancing games is simply the highest price of anarchy/stability

among all games belonging to that class.

[10,12,13,14,15,18] study various games which can be thought of as special

cases of congestion games with respect to the complexity of computing equilibria

of best/worst social cost and the price of anarchy when the social cost is defined
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as the maximum latency experienced by any player. The social cost of the total

latency has been studied in [4,7,17,26]. The authors in [17] study symmetric

load balancing games where all servers are permissible for any client and show

tight bounds on the price of anarchy of 4/3 for arbitrary servers and 9/8 for

identical servers with weighted clients. In two recent papers, Awerbuch et al.

[4] and Christodoulou and Koutsoupias [7] prove tight bounds on the price of

anarchy of congestion games with linear latency functions. Among other results,

they show that the price of anarchy of pure Nash equilibria is 5/2 while for mixed

Nash equilibria or pure Nash equilibria of weighted clients it is
3+

√
5

2 ≈ 2.618.

Does the fact that load balancing games are significantly simpler than con-

gestion games in general have any implications for their price of anarchy? We

give a negative answer to this question by showing that the 5/2 upper bound (as

well as the
3+

√
5

2 upper bound for weighted clients) is tight. This is interesting

since the upper bounds for congestion games (as well as an earlier upper bound

of 5/2 proved specifically for load balancing [26]) are obtained using only the

Nash inequality (i.e., the inequality obtained by summing up the Nash condition

inequalities over all players’ strategies) and the definition of the social cost. So,

it is somewhat surprising that load balancing games are as general as congestion

games in terms of their price of anarchy and that the Nash inequality provides

sufficient information to characterize their price of anarchy.

An important special case of load balancing is when servers have identical

linear latency functions. Here, better upper bounds on the price of anarchy can

be obtained. Note that this is not the case for congestion games since, as it was

observed in [7], any congestion game can be transformed to a congestion game

on identical resources (and, hence, the lower bounds of [4,7] hold for congestion

games with identical resources as well). Suri et al. [26] prove that the price of

anarchy of selfish load balancing on identical servers is between 1+2/
√

3 ≈ 2.1547

and 2.012067. Again, the upper bound is obtained by using the Nash inequality

and the definition of the social cost. We improve this result by showing that

the lower bound is essentially tight. Besides the Nash inequality, our proof also

exploits structural properties of the game with the highest price of anarchy. We

argue that this game can be represented as a directed graph (called the game
graph) and, then, structural properties of the game follow as structural properties

of this graph. Furthermore, for weighted clients and identical servers, we prove

that the price of anarchy is at least 5/2.

The price of stability of congestion games has been recently studied in [8]

where it was shown that it is between 1 + 1/
√

3 ≈ 1.577 and 1.6. The technique

used to obtain the upper bound is to consider pure Nash equilibria with potential

not larger than the potential of the optimal assignment and bound their social

cost in terms of the optimal cost using the Nash inequality. Using the same

technique but also tightening the analysis, we show that the lower bound is

tight. Does the fact that load balancing games are significantly simpler than

congestion games have any implications in their price of stability? We give a

positive answer to this question by showing that the price of stability of selfish

load balancing is 4/3. The proof of the upper bound makes use of completely
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different arguments since the techniques used for congestion games provably

cannot be used to obtain this bound.

From the algorithmic point of view, load balancing has been studied exten-

sively, including papers studying online versions of the problem (e.g., [1,2,3,5,6,9,

21,25,26]). In online load balancing, clients appear in online fashion; when a client

appears, it has to make an irrevocable decision and assign its job to a server. In

our model, servers have linear latency functions and the objective is to minimize

the total latency, i.e., the sum of the latencies experienced by all clients. Clients

may also own jobs with non-negative weights; in this case, the objective is to

minimize the weighted sum of the latencies experienced by all clients. A natural

greedy algorithm proposed in [3] for this problem is to assign each client to that

server that yields the minimum increase to the total latency (ties are broken

arbitrarily). This results to greedy assignments. Given an instance of online load

balancing, an assignment of clients to servers is called a greedy assignment if

the assignment of a client to a server minimizes the increase in the cost of the

instance revealed up to the time of its appearance. Following the standard per-

formance measure in competitive analysis, we evaluate the performance of this

algorithm in terms of its competitiveness (or competitive ratio). The competi-

tiveness of the greedy algorithm on an instance is the maximum ratio of the

cost of any greedy assignment over the optimal cost and its competitiveness on

a class of load balancing instances is simply the maximum competitiveness over

all instances in the particular class.

The performance of greedy load balancing with respect to the total latency

has been studied in [3,26]. Awerbuch et al. [3] consider a more general model

where each client owns a job with a load vector denoting the impact of the job to

each server (i.e., how much the assignment of the job to a server will increase its

load) and the objective is to minimize the Lp norm of the load of the servers. In

the context similar to the one studied in the current paper, their results imply a

3 + 2
√

2 ≈ 5.8284 upper bound. This result applies also in the case of weighted

clients where the objective is to minimize the weighted average latency. Suri et

al. [26] consider the same model as ours and show upper bounds of 17/3 and

2+
√

5 ≈ 4.2361 for arbitrary servers and identical servers, respectively. In a way

similar to the study of the price of anarchy of congestion games, [26] develops a

greedy inequality which is used to obtain the upper bounds on competitiveness.

They also present a lower bound of 3.0833 for the competitiveness of greedy

assignments in the case of identical servers.

The main question left open by the work of [26] is whether arbitrary servers

do hurt the competitiveness of greedy load balancing. We give a positive answer

to this question as well. By a rather counterintuitive construction, we show that

the 17/3 upper bound of [26] is tight. This is interesting since it indicates that

the greedy inequality is powerful enough to characterize the competitiveness of

greedy load balancing. We also consider the case of identical servers where we

almost close the gap between the upper and lower bounds of [26] by showing

that the competitiveness of greedy load balancing is between 4 and
2
3

√

21 +

1 ≈ 4.05505. In the proof of the upper bound, we use the greedy inequality
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but, more importantly, we also use arguments for the structure of greedy and

optimal assignments of instances that yield the worst competitiveness. In a sim-

ilar way to the case of selfish load balancing, we argue that such instances can

be represented as directed graphs (called greedy graphs) that enjoy particular

structural properties. In the case of weighted clients, we present a tight lower

bound of 3 + 2
√

2 on identical servers matching the upper bound of [3].

The rest of the paper is structured as follows. We present the bounds on

the price of stability of linear congestion games and selfish load balancing in

Section 2. The bounds on the price of anarchy are presented in Section 3 while

the bounds on the competitiveness of greedy load balancing are presented in

Section 4. We discuss extensions of the results to selfish and greedy load balanc-

ing when clients are weighted and conclude with open problems in Section 5. Due

to lack of space, many proofs have been omitted from this extended abstract.

2 Bounds on the Price of Stability

We present a tight upper bound on the price of stability of congestion games.

Our proof (omitted) uses the main idea in the proof of [8] and bounds the social

cost of any Nash equilibrium having a potential smaller than the potential of the

optimal assignment. In the proof we also make use of the Nash inequality which

together with the inequality on the potentials yields the upper bound. However,

the two inequalities may not be equally important in order to achieve the best

possible bound and this is taken into account in our analysis. We obtain the

following result. A matching lower bound is presented in [8].

Theorem 1. The price of stability of congestion games with linear latency func-
tions is at most 1 + 1/

√

3.

In the following we show a tight upper bound of 4/3 on the price of stability of

load balancing games. We note that the use of the inequality on the potentials

does not suffice since load balancing games may have pure Nash equilibria with

potential smaller than the potential of an optimal assignment and with cost

strictly larger than 4/3 times the optimal cost. So, in order to prove the 4/3

upper bound on the price of stability of load balancing games, we will use entirely

different arguments. Starting from any assignment, we let the clients move (one

client moves at each step) until they converge to a pure Nash equilibrium. At

each step, the moving client is selected arbitrarily among the clients with current

strategy at a server of maximum latency which have an incentive to change their

strategy. In our proof, we actually show that the social cost of the pure Nash

equilibrium at convergence is no more than 4/3 times the cost of the initial

assignment. As a corollary, by starting from an optimal solution, we will obtain

that the price of stability is at most 4/3.

Theorem 2. The price of stability of load balancing games is at most 4/3.

Proof. Consider a load balancing game, an initial assignment with oj clients at

server j for any j, and the moves as defined above. We denote by nj the number
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of clients at server j at the Nash equilibrium. Also, we denote by fj(x) = αjx+bj

the latency function of server j.

We define segments as follows. For each server j, consider the set of moves

µ1, µ2, ..., µk into server j at steps t1, t2, ..., tk so that t1 < t2 < ... < tk, and

the set of moves µ
′
1, µ

′
2, ..., µ

′
k′ out of server j at steps t

′
1, t

′
2, ..., t

′
k′ so that t

′
1 <

t
′
2 < ... < t

′
k′ . For i = 1, ..., k, we match move µi with the first move (if any)

µ
′
i′ that happens after move µi and has not been matched to any of the moves

µ1, ..., µi−1. In this way we obtain passing segments which are pairs of a move

into server j and a move out of server j, starting segments which consist of single

moves out of server j which were not matched to any incoming move, and ending
segments which consist of single moves into server j which were not matched to

any outgoing move.

We construct chains (i.e., sequence of moves) using the segments defined. A

chain begins with the move in a starting segment, terminates with a move in

an ending segment, while any two consecutive moves in the chain (if any), one

into and one out of the same server j, belong to the same passing segment of

server j. A chain may consist of a single move if this belongs to both a starting

and an ending segment. For each server j, denote by sj and ej the number of

starting and ending segments defined at server j, respectively. Equivalently, sj is

the number of chains beginning with a move out of server j and ej is the number

of chains terminating with a move into server j.

To obtain the desired bound, we will use the following lemma. The proof is

lengthy and hence omitted; it relies on an inductive argument.

Lemma 1.
∑

j fj(oj)sj ≥
∑

j fj(nj)ej.

Using Lemma 1, we have∑
j

fj(oj)oj =

∑
j

(fj(oj)(oj − sj) + fj(oj)sj)

≥

∑
j

(fj(oj)(oj − sj) + fj(nj)ej)

=

∑
j

(fj(oj)(oj − sj) + fj(nj)(nj − oj + sj))

=

∑
j

(
αj

(
o
2
j − sj(oj − nj) + n

2
j − njoj

)
+ bjnj

)
(1)

We distinguish between two cases to show that o
2
j−sj(oj−nj)+n

2
j−njoj ≥

3
4n

2
j ,

for any j. If nj ≤ oj , then since sj ≤ oj , it is o
2
j − sj(oj − nj) + n

2
j − njoj ≥

o
2
j − oj(oj −nj)+n

2
j −njoj = n

2
j . If nj ≥ oj , it is o

2
j − sj(oj −nj)+n

2
j −njoj ≥

o
2
j + n

2
j − njoj = (oj − nj/2)

2
+

3
4n

2
j ≥

3
4n

2
j . Hence, (1) yields that

∑
j

fj(oj)oj ≥
3

4

∑
j

(
αjn

2
j + bjnj

)
=

3

4

∑
j

fj(nj)nj . ��
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To show that the above result is tight, it suffices to consider, for arbitrarily

small ε > 0, a game with two servers with latency functions f1(x) = (2 + ε)x

and f2(x) = x and two clients having both servers as strategies.

3 Bounds on the Price of Anarchy

For the study of the price of anarchy, we can consider load balancing games

in which each client has at most two strategies. This is clearly sufficient when

proving lower bounds. In order to prove upper bounds, we can assume that the

highest price of anarchy is obtained by such a game. Consider any load balancing

game and let O and N be the optimal assignment and the Nash equilibrium that

yields the worst social cost, respectively. The game with the same clients and

servers in which each client has its strategies in O andN as strategies also has the

same optimal assignment and the same Nash equilibrium (and, consequently the

same price of anarchy). We represent such games as directed graphs (called game
graphs) having a node for each server and a directed edge for each client; the

direction of each edge is from the strategy of the client in the optimal assignment

to the strategy of the client in the Nash equilibrium. A self-loop indicates that

the client has just one strategy.

The next theorem states that the upper bound of 5/2 presented in [26] (and

also implied by the results in [4,7] for congestion games) is tight. This bound

was known to be tight for congestion games in general but the constructions in

the lower bounds in [4,7] are not load balancing games.

Theorem 3. For any ε > 0, there is a load balancing game with price of anarchy
at least 5/2− ε.

Proof. We construct a game graph G consisting of a complete binary tree with

k + 1 levels and 2
k+1

− 1 nodes with a line of k + 1 edges and k + 1 addi-

tional nodes hung at each leaf. So, graph G has 2k + 2 levels 0, ..., 2k + 1,

with 2
i

nodes at level i for i = 0, ..., k and 2
k

nodes at levels k + 1, ..., 2k + 1.

The servers corresponding to nodes of level i = 0, ..., k − 1 have latency func-

tions fi(x) = (2/3)
i
x, the servers corresponding to nodes of level i = k, ..., 2k

have latency functions fi(x) = (2/3)
k−1

(1/2)
i−k

x, and the servers correspond-

ing to nodes of level 2k + 1 have latency functions f2k+1(x) = (2/3)
k−1

(1/2)
k
x.

The assignment where all clients select servers corresponding to the endpoint

of their corresponding edge which is closer to the root of the game graph can

be easily verified that it is a Nash equilibrium. Its cost is
∑k−1

i=0 4 · 2
i
(2/3)

i
+∑2k

i=k 2
k
(2/3)

k−1
(1/2)

i−k
= 15(4/3)

k
− (2/3)

k−1
− 12. To compute an upper

bound for the cost of the optimal assignment, it suffices to consider the assign-

ment where all clients select the servers corresponding to nodes which are fur-

ther from the root. We obtain that the cost of the optimal assignment is at most∑k−1
i=1 2

i
(2/3)

i
+
∑2k

i=k 2
k
(2/3)

k−1
(1/2)

i−k
+ 2

k
(2/3)

k−1
(1/2)

k
= 6(4/3)

k
− 4.

Hence, for any ε > 0 and for sufficiently large k, the price of anarchy of the game

is larger than 5/2− ε. ��



318 I. Caragiannis et al.

In the case of identical servers we can show a tight bound on the price of anarchy

of approximately 2.012067; a matching lower bound has been presented in [26].

Here, we present the main idea in our analysis to obtain a slightly weaker result;

the improved analysis will appear in the final version of the paper.

We will consider the game with the highest price of anarchy and upper-bound

the ratio of the social cost of the worst Nash equilibrium to the optimal cost of

the particular game. We represent the game by a game graph. We say that server

j is of type nj/oj meaning that it has nj clients in the Nash equilibrium and

oj clients in the optimal assignment (equivalently, server j has in-degree nj and

out-degree oj in the game graph). After observing that each server of type 1/1

can be associated with a neighboring server of type 0/1, the idea behind the proof

is to account for their contribution in the social cost together. By extending the

neighborhood considered together with each server of type 1/1, we can obtain

better and better upper bounds which converge to the lower bound of 2.012067.

In the proof, we make use of the following technical lemma.

Lemma 2. For any integers x, y, define the functions g(x, y) = xy+
18+7

√
21

30 y−

7
√

21−12
30 x and h(x, y) =

6−√
21

10 x
2
+

6+
√

21
6 y

2. For any non-negative integers x, y
such that either x = 1 or y = 1, it holds that g(x, y) ≤ h(x, y). Furthermore,
g(0, 1) + g(1, 1) = h(0, 1) + h(1, 1).

Theorem 4. The price of anarchy of selfish load balancing on identical servers
is at most 2

3

√

21− 1.

Proof. Consider a load balancing game on servers with latency function f(x) =

x + b and clients having at most two strategies which has the highest price of

anarchy. Consider a server j of type 1/1. If a client c had server j as its only

strategy (this corresponds to a self-loop in the corresponding game graph), then

we may construct a new game by excluding server j and client c from the original

one; it can be easily seen that the new game has worse price of anarchy since both

the cost of the optimal assignment and the social cost of the Nash equilibrium

are decreased by 1 + b. So, let j
′

and j
′′

be the servers to which server j is

connected corresponding to clients c1 and c2 selecting servers j
′

and j in the

optimal assignment and servers j and j
′′

in the Nash assignment, respectively.

Server j
′
is of type 0/1. Assume otherwise that it is of type nj′/oj′ for nj′ > 0

or oj′ > 1. If nj′ > 0, we can construct a new game by excluding server j

and substituting clients c1 and c2 by a client selecting server j
′
in the optimal

assignment and server j
′′

in the Nash assignment. If oj′ > 1, then we can add a

new server j
′
1 and change the strategy of client c1 to {j

′
1, j}. In both cases, we

obtain games with higher price of anarchy.

Denote by F the set of servers of type 1/1 and by S the set of servers of

type 0/1 which are connected through an edge to a server in F in the game

graph. Also, for each server j in F we denote by S(j) the server of S from

which the client destined for j originates. By the Nash inequality, we obtain

that
∑

j (n
2
j + bnj) ≤

∑
j (ojnj + (1 + b)oj) and, since

∑
j nj =

∑
j oj , we have

that
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∑
j

n
2
j ≤

∑
j

(njoj + oj) =

∑
j

(
njoj +

18 + 7
√

21

30
oj −

7
√

21− 12

30
nj

)
=

∑
j �∈F∪S

g(nj, oj) +

∑
j∈F

(
g(nS(j), oS(j)) + g(nj , oj)

)
≤

∑
j �∈F∪S

h(nj , oj) +

∑
j∈F

(
h(nS(j), oS(j)) + h(nj, oj)

)
=

6−
√

21

10

∑
j

n
2
j +

6 +
√

21

6

∑
j

o
2
j

where the first equality follows since
∑

j nj =
∑

j oj , the second equality follows

by the definition of function g, the second inequality follows by Lemma 2, and

the last equality follows by the definition of function h. Hence, we obtain that

the price of anarchy is∑
j

(
n

2
j + bnj

)∑
j

(
o2
j + boj

) ≤ ∑j n
2
j∑

j o
2
j

≤

2

3

√

21−1. ��

4 Greedy Load Balancing

Similarly to the case of selfish load balancing, in the study of the competitive-

ness of greedy load balancing, we consider load balancing instances in which

each client has at most two strategies. This is clearly sufficient when proving

lower bounds. In order to prove upper bounds, we can assume that the highest

competitiveness is obtained by such an instance. Consider any load balancing in-

stance and let O and N be the optimal assignment and the greedy assignment of

the highest cost, respectively. The instance with the same clients and servers in

which each client has its strategies in O and N as strategies also has the same op-

timal assignment and the same greedy assignment (and, consequently the same

competitiveness). We represent such instances as directed graphs (called greedy
graphs) having a node for each server and a directed edge with timing informa-

tion for each client; the direction of each edge is from the strategy of the client

in the optimal assignment to the strategy of the client in the greedy assignment

and the timing information denotes the time the client appears. We can show

that the upper bound of [26] for arbitrary servers is tight.

Theorem 5. For any ε > 0, greedy load balancing has competitiveness at least
17/3− ε.

We also study the case of identical servers with latency function f(x) = x + b.

By reasoning about the structure of the load balancing instance that yields the

worst competitiveness and using the greedy inequality developed in [26], we can

prove the following theorem.

Theorem 6. Greedy load balancing on identical servers has competitiveness at
most 2

3

√

21 + 1.
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We also present an almost matching lower bound.

Theorem 7. For any ε > 0, greedy load balancing on identical servers has com-
petitiveness at least 4− ε.

Proof. We assume that there are m servers s1, s2, ..., sm, and k groups of clients

g1, ..., gk, where group gj has m/j
2

clients c
j
i , 1 ≤ i ≤ m/j

2
. We assume that

m is such that all groups have integer size. Each client c
j
i has s1, s2, ..., si as

permissible servers. The clients appear in non-increasing order according to index

i, i.e., c
1
m, c

1
m−1, ..., c

1
m/4+1, c

2
m/4, c

1
m/4, c

2
m/4−1, c

1
m/4−1, ..., c

2
m/9+1, c

1
m/9+1, c

3
m/9,

c
2
m/9, c

1
m/9, ..., etc.

To upper bound the optimal cost opt, it suffices to consider the assignment

where each client c
j
i chooses server si. We obtain that

opt ≤

k−1∑
i=1

i
2
(|gi| − |gi+1|) + k

2
|gk| = m+m

k−1∑
i=1

i
2
(

1

i2
−

1

(i + 1)2

)

= m

(
1 + 2

k−1∑
i=1

1/ (i+ 1)−

k−1∑
i=1

1/ (i+ 1)
2

)
≤ m(2Hk + ζ1)

for some positive constant ζ1, where Hk is the k-th Harmonic number.

A greedy assignment is obtained by making each client select the server with

the smallest index among its permissible servers having the minimum number

of clients. In the analysis we make use of sets of clients called columns. A client

belongs to column coli if, when it selects its server, it is the i-th client selecting

that server. For example, clients c
1
m, c

1
m−1, ...c

1
m/2+1 select servers s1, ..., sm/2,

respectively; each of them is the first client in its server, so they belong to col1.

Then, c
1
m/2, ..., c

1
m/4+1 select servers s1, ..., sm/4; they belong to col2. We can

verify that the set of servers selected by clients in coli+1 is subset of the set of

servers selected by clients in coli for i = 1, ..., 2k − 3, that columns col2i−1 and

col2i contain clients of groups g1, ..., gi, and that |col2i| =
m

(i+1)2 and |col2i−1| =
m

i(i+1) for any i = 1, ..., k − 1. So, for i = 1, ..., 2k − 3, the number of servers

receiving exactly i clients in the greedy assignment is |coli|−|coli+1|. We compute

a lower bound on the cost gr of the greedy assignment by considering only the

servers with at most 2k − 4 clients. We have that

gr ≥ m

k−2∑
i=1

(
(2i− 1)

2
(|col2i−1| − |col2i|) + (2i)

2
(|col2i| − |col2i+1|)

)
= m

k−2∑
i=1

(
(2i− 1)

2
(

1

i(i+ 1)
−

1

(i+ 1)2

)
+ (2i)

2
(

1

(i+ 1)2
−

1

(i+ 1)(i+ 2)

))

≥ m

k−2∑
i=1

(
8

i+ 1
−

20

(i+ 1)2

)
≥ m(8Hk − ζ2)

for some positive constant ζ2. We conclude that for any ε > 0 and sufficiently

large k and m, the competitiveness of the greedy assignment is at least 4− ε. ��
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By slightly modifying the argument in the proof of Theorem 7 we can show that

the lower bound holds for any deterministic online algorithm.

5 Extensions and Open Problems

We have also considered clients with non-negative weights. In the case of clients

with weights, upper bounds of
3+

√
5

2 ≈ 2.618 and 3 + 2
√

2 ≈ 5.8284 for the

price of anarchy of selfish load balancing and the competitiveness of greedy load

balancing follow by the analysis of [4,7] for weighted linear congestion games and

by the analysis of [3], respectively. We have shown that both bounds are tight. In

particular, the second lower bound holds for greedy load balancing on identical

servers. For selfish load balancing of weighted clients on identical servers, we can

show a lower bound of 5/2 on the price of anarchy. It is interesting to close the gap

between this lower bound and the upper bound of
3+

√
5

2 which has been proved

for congestion games [4]. We believe that our lower bound is tight. Another

interesting open problem is to compute tight bounds for the price of stability of

weighted load balancing games. We have considered pure Nash equilibria of load

balancing games. Our results hold or can be extended to hold for mixed and

correlated equilibria [8] as well. There is also a small gap between 4 and 4.05505

for the competitiveness of greedy load balancing on identical servers. We believe

that it can be further narrowed by extending our upper bound technique.
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Abstract. We prove an exponential lower bound on the size of sta-
tic Lovász-Schrijver calculus refutations of Tseitin tautologies. We use
several techniques, namely, translating static LS+ proof into Positivstel-
lensatz proof of Grigoriev et al., extracting a “good” expander out of a
given graph by removing edges and vertices of Alekhnovich et al., and
proving linear lower bound on the degree of Positivstellensatz proofs for
Tseitin tautologies.

1 Introduction

It is a known approach in {0, 1}-programming to translate a problem to a linear

programming problem and repeatedly refining it with new linear inequalities,

“cutting planes”, that are satisfied only by the {0, 1}-solutions. The first such

method appeared in the works of Gomory [1] and Chvátal [2]. It derives each new

inequality as a linear combination and rounding of existing inequalities, using

the fact that all variables have values in {0, 1}. In 1991, Lovász and Schrijver [3]

introduced a variety of cutting planes methods that derive new inequalities by

first lifting the existing inequalities to higher dimensional space (where a more

convenient formulation may give a tighter relaxation) and then linearizing the

resulting inequalities using the fact that x
2

= x for x ∈ {0, 1}.

We can also use these methods to solve propositional formulas by mapping

them into systems of linear inequalities. The obtained proof systems are very

strong. They have polynomial-size proofs for tautologies such as the proposi-

tional pigeonhole principle that are known to require superpolynomial-size proofs

in the resolution proof system and constant-depth Frege systems and no expo-

nential lower bounds are known for Lovász-Schrijver proof systems (though there

are exponential bounds for systems of inequalities that are not produced from

Boolean tautologies; see [4] and references therein).

If we implement a SAT-solver that operates with inequalities and run it on

some examples, we would see that it takes a long time on some instances. We
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can explain it in assumption that NP = co-NP or more mild assumption from

communication complexity [5]. However, in this paper we prove that Tseitin

tautologies require subexponential-size static LS proofs unconditionally.

From SAT-solver point of view, the “static” and “treelike” qualifiers mean

that there is no caching and reuse of discovered clauses. This might seem like a

strong restriction, and it is. However, even with this constraint, the proved lower

bound is important.

The paper is organized as follows. Sect. 2 contains the necessary definitions.

The proof of the main result is based on ideas from [4] and is divided into four

parts. In Sect. 3 we prove that if a graph G with n vertices is a “good” expander

then we can extract a “good” expander out of G by removing O(n) vertices.

In order to do this, we use the technique of Alekhnovich et al. [6]. Grigoriev

[7] proved the linear lower bound on degree of the Positivstellensatz for Tseitin

tautologies in binomial form. It can be easily extended to linear lower bound on

the Boolean degree. Sect. 4 contains the transformation of the lower bound for

Positivstellensatz into a Boolean degree lower bound for static LS. Finally, in

Sect. 5 we obtain exponential lower bounds for Tseitin tautologies in static and

tree-like LS with squares.

2 Preliminaries

A proof system [8] for a language L is a polynomial-time computable function

mapping words (treated as proof candidates) to L (whose elements are considered

as theorems).

A propositional proof system is a proof system for the co-NP-complete lan-

guage TAUT of all Boolean tautologies in disjunctive normal form (DNF). Since

this language is in co-NP, any proof system for a co-NP-hard language L can be

considered as a propositional proof system. However, we need to fix a concrete

reduction of TAUT to L before compare them.

An algebraic proof system is a proof system for the co-NP-hard language of

unsolvable systems of polynomial equations: we are given several polynomials

over a field IF and the question is whether these polynomials have no common

roots in IF. The polynomials are represented as sums of monomials c · x1 · · ·xs,

where x1, . . . , xs are variables and c ∈ IF
∗

= IF \ {0} is a constant given in

some reasonable (e.g., binary) notation. To show that such proof system is a

propositional proof system, one translates Boolean tautologies into systems of

polynomial equations.

Given a formula F in DNF with n variables andm clauses, we take its negation

¬F in CNF and translate each clause Ci containing variables xi1 , . . . , xil into a

polynomial equation of the form

(1− li1) · . . . · (1− lil) = 0 , (1)

where lij = xij if the variable xij occurs in Ci positively, and lij = (1 − xij ) if

it occurs negatively. For each variable vi, 1 ≤ i ≤ n, we also add the equation

v
2
i − vi = 0 to this system.
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Note that the formula F is a tautology if and only if the obtained system D

of polynomial equations f1, . . . , fm+n has no solutions. Therefore, to prove F it

suffices to derive a contradiction from the system D.

In Polynomial Calculus (PC) [9], one starts with the polynomial equation

system D and derives new polynomials using the following two rules:

f = 0 g = 0

f + g = 0
and

f = 0

f · g = 0
.

A proof in this system is a derivation of 1 = 0 from D using these rules.

Positivstellensatz [10] operates on polynomials over a real field. The proof D

consists of polynomials g1, . . . , gm+n and h1, . . . , hl such that

m+n∑
i=1

figi = 1 +

l∑
j=1

h
2
j . (2)

It is a “static” proof in the sense that it contains only one step. Note that the

right-hand side of (2) is the derivation of 0 in PC.

A semialgebraic proof system operates with language of unsolvable systems of

polynomial inequalities. They are much more powerful than algebraic proof sys-

tems. No nontrivial complexity lower bounds for some of them are known so far.

Moreover, in semialgebraic systems there exist short proofs of many tautologies

that are hard for other proof systems [4].

To define a propositional proof system working with inequalities, we translate

each formula ¬F with n variables in CNF into a system D of linear inequalities

such that F is a tautology if and only if the system D has no solution in {0, 1}-

variables. For a formula F , we translate each clause Ci of ¬F with variables

xj1 , . . . , xjt , into the inequality

l1 + . . .+ lt − 1 ≥ 0 , (3)

where li = xji if the variable xji occurs positively in the clause, and li = 1− xj

if xji occurs negatively. For every variable xi, 1 ≤ i ≤ n, we also add to the

system D the inequalities

0 ≤ xi ≤ 1 . (4)

In the Lovász-Schrijver proof system (LS) [3], one obtains the contradiction 0 ≥ 1

using the rules

f ≥ 0 g ≥ 0

λff + λgg ≥ 0
,

h ≥ 0

hx ≥ 0
,

h ≥ 0

h(1 − x) ≥ 0
,

where λf , λg ≥ 0, the polynomial h is linear and x is a variable. Also, the set of

axioms (4) is extended by the inequalities

x
2
i − xi ≥ 0 , for every variable xi, 1 ≤ i ≤ n . (5)
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The system LS+ [3] has the same axioms and derivation rules as LS and the

addition axiom, h
2
≥ 0, for every linear h. The proof is tree-like if the underlying

directed acyclic graph, representing the implication structure of the proof, is a

tree. That is, every inequality in the proof, except for the initial inequalities, is

used at most one as an antecedent of an implication.

A proof of Boolean formula F with n variables in static LS+ [4] consists of

positive real coefficients ci,l and multisets U
+
i,l, U

−
i,l determining the polynomials

gi,l = ci,l ·
∏
k∈U+

i,l
xk ·
∏
k∈U−

i,l
(1− xk) such that

M∑
i=1

fi

∑
l

gi,l = −1 , (6)

where each fi is either a left-hand part of inequality given by translation (3)

from the formula F , or polynomials of the form xj , (1− xj), (x
2
j − xj) for some

variable xj , 1 ≤ j ≤ n, or a square of linear polynomial h
2
j .

The original definition of the size of a refutation in static LS+ [4] is the length

of a reasonable bit representation of all polynomials gi,l, fi and thus is at least

the number of ui,l’s.

Tseitin tautologies and expanders. Let G = (V,E) be an undirected graph

on the set of vertices V , with the set of edges E. To each edge e ∈ E we attach

a {0, 1}-variable xe. The negation TG of Tseitin tautologies with respect to G is

a family of formulas meaning that, for each vertex v ∈ V
′
⊂ V , the sum ranging

over the edges incident to v is odd and for each vertex v ∈ V \ V
′
, the sum

ranging over the edges incident to v is even. If the cardinality of V
′
is odd then

TG is contradictory.

For subsets I, I1 of vertices and subset of edges J ⊆ E we define boundary
operation ∂:

NV \I,E\J(I1) = {v ∈ V \ I : (v, v
′
) ∈ E \ J for some v

′
∈ I1} \ I1 ,

∂V \I,E\J(I1) = {(v, v
′
) ∈ E \ J : v ∈ NV \I,E\J(I1) and v

′
∈ I1}.

In what follows we will use ∂V,E(I) as short notation for ∂V \∅,E\∅(I). We say

that a graph G = (V,E) is an (r, d, c)-expander if the maximal degree of a vertex

is d, and for every set X ⊆ V of cardinality at most r,

|∂V,E(X)| ≥ c · |X | .

For an (r, d, c)-expander G, Tseitin formula TG is given by the clauses∨
e∈Sv\S′

v

xe ∨

∨
e∈S′

v

(1− xe) , (7)

for each vertex v ∈ V
′
and for each subset S

′
v of even cardinality of the set Sv of

edges incident to v, for each vertex v ∈ V \V
′
and for each S

′
v of odd cardinality.

In this paper we use three different representations of Boolean formula TG.

One of them is the system of linear inequalities provided by translation (3). It

translates every clause (7) into an inequality
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f
A
v,S′

v
=

∑
e∈Sv\S′

v

xe +

∑
e∈S′

v

(1− xe)− 1 ≥ 0 . (8)

Denote obtained system including axioms (4) and (5) for all variables of the TG

by T
A
G . Our main goal is to prove that every static LS+ refutation of T

A
G has

size exp(Ω(n)).

In our proof we also need the representation of TG as the equation system

obtained by translation (1):

f
M
v,S′

v
=

∏
e∈Sv\S′

v

(1 − xe) ·

∏
e∈S′

v

xe = 0 , (9)

for every clause of TG. Denote obtained equation system including axioms x
2
−

x = 0 for all variables of the TG by T
M
G .

For lower bounds on Positivstellensatz refutations the following binomial rep-
resentation of Tseitin formulas is used [7]. To each edge of the graph G we assign

a {1,−1}-variable yk. The system T
B
G contains the equations

Y (v) = cv ·

∏
e�v

ye = 1 (10)

for each vertex v ∈ V
′

with constant cv = −1 and for each vertex v ∈ V \ V
′

with constant cv = 1 and y
2
e = 1 for all e ∈ E.

We use the following notation from [7]. For a monomial m = x
i1
1 · · ·x

ik
k , its

multilinearization in {0, 1}-variables is the polynomial obtained by the reduction

of m modulo (x
2
i = xi), 1 ≤ i ≤ k, i.e. m = x1 · · ·xk. The multilinearization in

{1,−1}-variables of the same monomial is m
′
= xj1 · · ·xjk′ , its reduction modulo

(x
2
i = 1). The corresponding multilinearization of a polynomial is a sum of its

multilinearized monomials.

We define the Boolean degree, Bdeg(f) of a polynomial f as the degree of its

multilinearization.

Lemma 1. The Boolean degree of a polynomial in {0, 1}-variables is at least its
Boolean degree in {1,−1}-variables.

Proof. The degree of a multilinearization in {0, 1}-variables of a monomial m =

x
i1
1 · · ·x

ik
k is equal to k. The degree of multilinearization in {1,−1}-variables of

m is equal to
∑k

j=1(ij mod 2) ≤ k. ��

3 Closure Operator on Expanders

In this section we recall the definition of the closure operation of a set of edges

w.r.t. graph G (originally defined in [11,6]) and examine properties of graphs

under this operation.

For a graph G = (V,E) and a subset of its edges J ⊆ E we define an inference

relation !J on subsets of vertices I, I1 ⊆ V :

I !J I1
def
⇐⇒ |I1| ≤ r/2 ∧

∣∣∂V \I,E\J(I1)
∣∣ < c/2|I1| .
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For a subset of vertices I and a set of edges J we consider the following

cleaning step:

– If there exists a nonempty I1 ⊆ V , such that I !J I1 and I ∩ I1 = ∅, then

take the first canonically
1

such I1 and add it to I.

– Repeat the cleaning step as long as it is applicable.

Let the closure Cl(J) of J be the set of all vertices I that can be inferred via

!J from the empty set, Cl(J) = {v | ∅ !J {v}}.

Lemma 2 ([6], Lemma 3.4). Assume that graph G = (V,E) is an (r, d, c)-
expander and J is a subset of its edges. Let I ′ = Cl(J) and J

′
= {(v, x) ∈ E :

v ∈ I
′ or x ∈ I

′
}. Denote by G

′
= (V \ I

′
, E \ J

′
) the graph that results from

G by removing the vertices corresponding to I
′ and edges corresponding to J

′. If
G

′ is non-empty then it is an (r/2, d, c/2)-expander.

In the next lemma we show that if we take J of small cardinality, then the graph

G
′
from Lemma 2 is non-empty.

Lemma 3 ([6], Lemma 3.5). Let a graph G = (V,E) be an (r, d, c)-expander
and |J | < cr/4. Then |Cl(J)| < 2c

−1
|J |.

4 Simulation of Static LS+ in Positivstellensatz

In this section we transform the proof in static LS+ of the system of linear

inequalities T
A
G into the Positivstellensatz proof of the system of binomial equa-

tions T
B
G with constant increase of Boolean degree, then we apply the result

of the previous section to obtain a linear lower bound on the Boolean degree

of static LS+ refutations on Tseitin Boolean formulas. The Boolean degree of
a static LS+ refutation (6) is the maximum Boolean degree of polynomials gi,l

in it. We define Boolean degree of Positivstellensatz refutation as the maximum

Bdeg of polynomials figi, 1 ≤ i ≤ n, and h
2
j , 1 ≤ j ≤M in (2).

Next two lemmas can be applied to a static LS+ proof P of arbitrary Boolean

formula F , they show that P can be transformed into the Positivstellensatz proof

of F with only constant increase of Boolean degree.

Fix for the time being a Boolean formula F with m clauses and n variables,

let F
A

be set of linear inequalities provided by translation (3) and F
M

be set of

equations provided by (1) from formula F .

Lemma 4. In static LS+, every proof P of FA can be transformed into a proof
P

′ of the polynomial equation system F
M . Moreover, if Bdeg(P ) = k and the

number of variables in every inequality of FA is at most d, then Bdeg(P ′
) ≤ k+d.

Proof. The proof P can be represented in the form

m∑
i=1

f
A
i

∑
l

gi,l +

n∑
i=m+1

fi

∑
l

gi,l = −1 , (11)

1 It does not matter what particular order to take, we take canonical to exclude
ambiguity.
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where gi,l = ci,l

∏
k∈U+

i,l
xk ·
∏
k∈U−

i,l
(1−xk) for appropriate multisets of variables

U
+
i,l, U

−
i,l and a positive real ci,l.

We show that the translation of a clause Ci = (l1∨ . . .∨ ldi) into an inequality

f
A
i =

∑di

k=1 lk−1 ≥ 0 can be represented as the translation of the clause Ci into

an equation f
M
i =

∏di

k=1(1 − lk) = 0:

f
A
i = −f

M
i + ρ(l1, . . . , ldi) , (12)

where the second summand ρ(l1, . . . , ldi) is nonnegative and equal to sum of

literal products. The induction base is ρ(l1) = 0 ≥ 0, the induction step is

ρ(l1, . . . , ldi) = ρ(l1, . . . , ldi−1)(1− ldi) +
∑di−1

k=1 lk · ldi ≥ 0.

Let us replace each f
A
i in proof P by (12). As a result, we obtain the proof

P
′
:

m∑
i=1

−f
M
i

∑
l

g
′
i,l +

n′∑
i=m+1

fi

∑
l

g
′
i,l = −1 , (13)

where g
′
i,l = c

′
i,l ·
∏
k∈U+

i,l
xk ·
∏
k∈U−

i,l
(1− xk) for appropriate multisets U

+
i,l, U

−
i,l

and positive real c
′
i,l.

Since the right-hand side of (12) has the Boolean degree at most d, the Boolean

degree of the new refutation is at most k + d. ��

Lemma 5. Every static LS+ proof P of FM can be transformed into Positivstel-
lensatz proof P ′ of it. If Bdeg(P ) = k and Bdeg(fi) ≤ d, then Bdeg(P ′

) ≤ 2k+d.

Proof. We use ideas from the proof of Lemma 9.3, [4]. The refutation P can be

represented in the form

n+m∑
i=1

fi

∑
l

gi,l +

n′∑
j=1

h
2
0,j · gm+n+1,j +

n′′∑
j=n′+1

gm+n+1,j = −1 ,

where fi, 1 ≤ i ≤ m are translations of Boolean clauses, fm+i = x
2
i − xi,

1 ≤ i ≤ n and gi,l = ci,l ·
∏
k∈U+

i,l
xk ·
∏
k∈U−

i,l
(1 − xk) for appropriate multisets

of variables U
+
i,l, U

−
i,l, positive real ci,l, and linear h0,j.

Let us replace each occurrence of xe in gm+n+1,j by (xe−x
2
e)+x

2
e = −fm+e+x

2
e

and each occurrence of 1 − xe by (xe − x
2
e) + (1 − xe)

2
= −fm+e + (1 − xe)

2
,

expand the factors obtained, gather all the terms containing at least one of fi

and the products of squares. As a result, we obtain Positivstellensatz proof P
′

of the form

n+m∑
i=1

figi +

n′′′∑
j=1

h
2
j = −1 ,

for appropriate polynomials gi, hj . The Boolean degrees of all gi, hj are at most

2·Bdeg(gi,l)(was obtained by substitutions of degree 2 polynomials for variables

not in squares or fi) and Boolean degrees of all fi are at most d, so Boolean

degree of P
′
is at most 2k + d. ��
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Next part of the reductions depends on Tseitin formula T = TG constructed

according to graph G = (V,E) and its representations as linear inequalities,

equations and binomial system.

Lemma 6. Every Positivstellensatz proof P of TMG can be transformed into a Pos-
itivstellensatz proof P ′ of TBG . The Boolean degree of P ′ is at most Bdeg(P ) + d.

Proof. Assume the proof P is as follows:∑
v,Sv

f
M
v,Sv

· gv,Sv +

∑
e∈E

(x
2
e − xe) · ge = 1 +

∑
j

h
2
j .

First of all, we replace each occurrence of xe by (1− ye)/2. Note that the sub-

stitution transforms each x
2
e − xe = 0 into (y

2
e − 1)/4 = 0, and each (9) into∏

e∈Sv\S′
v

1 + ye

2
·

∏
e∈S′

v

1− ye

2
= 0 . (14)

Due to Lemma 1 the Boolean degree of the new proof is at most Bdeg(P ).

Next, we multiply (14) and (10) for v ∈ V
′
:∏

e∈Sv\S′
v

1 + ye

2

∏
e∈S′

v

1− ye

2
(

∏
e�v

ye + 1) =

∏
e∈Sv\S′

v

ye + y
2
e

2

∏
e∈S′

v

ye − y
2
e

2
+

∏
e∈Sv\S′

v

1 + ye

2

∏
e∈S′

v

1− ye

2
=

∏
e∈Sv\S′

v

ye + 1

2

∏
e∈S′

v

ye − 1

2
+

∏
e∈Sv\S′

v

1 + ye

2

∏
e∈S′

v

1− ye

2
=

2 ·

∏
e∈Sv\S′

v

1 + ye

2

∏
e∈S′

v

1− ye

2
.

The set S
′
v has even cardinality, so

∏
e∈S′

v
(ye − 1) =

∏
e∈S′

v
(1− ye). A similar

equality holds for v ∈ V \ V
′
.

Now we can write down the transformed proof P
′
:∑

v,S′
v

(

∏
e�v

ye + 1) · 2 · f
′M
v,S′

v
· g

′
v,S′

v
+

∑
e∈E

2
−2
· (y

2
e − 1) · g

′
e = 1 +

∑
j

h
′2
j ,

where the polynomials f
′M
v,S′

v
, g

′
e, h

′2
j are obtained from f

M
v,S′

v
, ge, h

2
j by applying

the substitution xi = (1− ye)/2.

The Boolean degree of each equation (10) is at most d, hence Bdeg(P
′
) ≤

Bdeg(P ) + d. ��

Theorem 1. Every static LS+ proof of the T
A
G can be transformed into a Pos-

itivstellensatz proof TBG . We can bound the Boolean degree of the new proof by
2k + 4d, where k is the Boolean degree of the static LS+ proof.
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Proof. Fix for the time being a static LS+ proof P of (8) and apply Lemma 4

to obtain a static LS+ proof P
′
of the equation system (9). Next, transform P

′

into a Positivstellensatz proof P
′′

of (9) by Lemma 5. Finally, due to Lemma 6

we can transform P
′′

into a Positivstellensatz proof P
′′′

of system (10). The

Boolean degree of P
′′′

is at most 2k + 4d. ��

The following theorem originally was proved for degree but not Boolean degree.

Nevertheless, the similar argument works for Boolean degree. We prove it in

extended version of this paper [12].

Theorem 2 ([7], Corollary 1). The Boolean degree of any Positivstellensatz
refutation of the equation system T

B
G is at least cr/2.

Corollary 1. The Boolean degree of any static LS+ refutation of Tseitin for-
mula (7) with respect to (r, d, c)-expander G is at least εr, where 0 < ε < 1

depends only on G.

Proof. Let P be a static LS+ proof of the formula (7) represented as the system

of linear inequalities (8), and Boolean degree of P is k. We apply Theorem 1 and

transform it to into a Positivstellensatz proof P
′

of the equation system (10)

extended by y
2
e − 1 = 0, e ∈ E. The Boolean degree of P

′
is at most 2k + 4d.

Theorem 2 implies that 2k + 4d ≥ cr/2, hence, there are such 0 < ε < 1 and

N ∈ ZZ, that for all r ≥ N , k ≥ εr. ��

5 An Exponential Lower Bound on the Size of Static LS+

Refutation of Tseitin Formulas

In this section we apply the results of previous section to obtain an exponential

lower bound on the size of static LS+ refutation of Tseitin formulas.

Lemma 7 ([4], Lemma 9.2). Let M denote the number of gi,l in (6) that
have Boolean degrees at least k and N denote the number of different variables
in (6). Then there is a variable x and a value a ∈ {0, 1} such that the result of
substituting x = a in (6) contains at most M(1− k/(2N)) nonzero polynomials
gi,l|x=a of Boolean degrees at least k.

The previous lemma appeared in [9], but as a separate statement was formulated

and proved in [4].

By the definition Tseitin formula is a formula corresponding to the graph. The

substitution to the formula variables corresponds to the removing of edges in the

graph. In the following we will speak about Tseitin formulas in terms of graphs.

In Sect. 3 the operator Cl was defined for sets of edges. We extend it for use

with partial assignments: Cl(ρ) = Cl({e | ρ(e) is set to 0 or 1}). A substitution

ρ is said to be locally consistent w.r.t. Tseitin formula TG if and only if ρ can

be extended to an assignment satisfying the subformula F
′
= {C|C is a clause

of F and contains one of variables y(v,u), where v or u from Cl(ρ)}.

In the following theorem we use graphs with a positive expansion constant

c > 2. For sufficiently large n there are such graphs of degree bounded by a
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constant (see, e. g. the proof in the Sect. 4 of [13] that for any d-regular graph

G = (V,E) and any subset of vertices A ⊆ V

|∂A|

|A|
≥ (d− λ1)

|V \A|

|V |
,

where λ1 is the second eigenvalue of G. If we consider only A with |A| ≤ |X |/2,

then (d − λ1)/2 is an expander constant for G. Recall that a Ramanujan graph
is a d-regular graph satisfying λ1 ≤ 2

√

d− 1 and use the explicit construction of

Ramanujan graphs, Sect. 5 of [13] or [14]).

The idea of the proof is following: using Lemma 7 we remove an exponential

number of monomials from a static LS+ proof of the Tseitin formula TG and

after that show that the proof is still nonempty. Unfortunately, using Lemma 7

directly we can obtain the proof of trivially unsatisfiable formula, so we need

local consistency of the substitution.

Theorem 3. Any static LS+ proof of a Tseitin formula TG with respect to a
connected d-regular (r = n/2, d, c)-expander G = (V,E) with n vertices and c > 2

has size exp(Ω(n)).

Proof. Let P be a static LS+ proof of the TG. We set k = �εn/5�, where ε is

from Corollary 1 for an (r/2, d, c/2)-expander.

We apply Lemma 7 repeatedly κ = �

cr
13� times. Before each application we

remove some edges by a procedure that will be defined later. We define the

sequence of graphs G0 = (V,E0), G1 = (V,E1), . . . , Gκ = (V,Eκ), where E0 =

E \B0, Ei+1 ⊂ Ei, Ei \Ei+1 = {ei+1} ∪Bi+1, 0 ≤ i ≤ κ− 2, Eκ = Eκ−1 \ {eκ},

edge ei, 1 ≤ i ≤ κ corresponds to variable from the i-th application of Lemma 7

and Bi, 0 ≤ i ≤ κ− 1 is a set (may be empty) of edges defined by (i+ 1)-th call

of our procedure. We also need another sequence of graphs corresponding to all

substitutions made by Lemma 7 and our procedure: G = G̃0 = (V, Ẽ0), G̃1 =

(V, Ẽ1), . . . , G̃κ = (V, Ẽκ), where graph G̃i (1 ≤ i ≤ κ) is obtained after i-th

application of Lemma 7.

We call an edge e in a graph as a bridge if the removing of e from the graph

split one of a connected component into two disconnected components. Now

we describe our procedure ((i + 1)-th call) before the (i + 1)-th application of

Lemma 7 (0 ≤ i ≤ κ− 1). We need a variable for current graph called as Y . The

initial value of Y is G̃i = (V, Ẽi). Suppose that there is a bridge e (to exclude

ambiguity let e be lexicographically first bridge) in the Y . Let the removing of

e from Y split one of a connected component H into two disconnected compo-

nents H1 and H2 (assume w.l.o.g. |H1| ≤ |H2|). We substitute value of variable

corresponding to e in such a way that a subformula associating with H1 becomes

satisfiable (it can be done since H1 is connected). After that we remove the sub-

formula corresponding to H1 by a satisfying assignment of it. We also remove

all assigned edges from Y . We repeat this procedure for other bridges if any in

current graph. Let Bi+1 be a set of all considered bridges, that we remove from

G̃i to obtain G̃i+1 after removing the edge ei+1.
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Informally speaking our procedure removes all edges from the small connected

components in the graph G̃i but this edges are remained the graph Gi.

Suppose that Gκ contains l “satisfied” in a formula corresponding to G̃κ

components: H
(1)

, H
(2)

, . . . , H
(l)

. Note that l is the number of substitutions

to bridges by our procedure. By construction |H
(i)
| ≤

n
2 ≤ r. In the graph

G, |∂H
(i)
| ≥ �c|H

(i)
|� ≥ 3. Hence, the number of deleted edges in Gκ with

respect to G is at least
3l
2 . Therefore |E| − |Eκ| = κ + l ≥

3l
2 , then l ≤ 2κ and

l + κ ≤ 3κ ≤
3cr
13 <

cr
4 . The size of each H

(i)
is less than

r
2 , otherwise in G we

have |∂H
(i)
| ≥

cr
2 , but we deleted l+κ <

cr
4 edges. So we have that H

(i)
⊆ Cl(ρ)

(since |∂H
(i)
| = 0 in Gκ), where ρ is a substitution obtained by applications of

Lemma 7 and by substitutions to all bridge variables.

Denote by τ a substitution ρ extended with satisfying assignments for all H
(i)

and by σ an extension of τ satisfying the subformula F
′
= {C|C is a clause of F

and contains one of variables y(v,u), where v or u from Cl(ρ)}. The substitution

σ exists since Cl(ρ) contains vertices from H
(i)

, 1 ≤ i ≤ l and all subformulas

corresponding to H
(i)

are satisfied by τ and a formula corresponding to strict

subset of vertices of connected component not in Cl(ρ) is obviously satisfiable.

Denote the result of substitution P |σ by P
′
.

Due to Lemma 2 and Lemma 3 the proof P
′
is a proof of the Tseitin formula

with respect to a (r/2, d, c/2)-expander. By Corollary 1, the degree of P
′
is at

least εn/4 > k.

Let M0 denote the number of polynomials gi,l of degree at least k in P . Let us

denote strictly positive constants (1−ε/(5d)) byD and
c
13 by C. By Lemma 7, the

refutation P
′
contains at mostM0(1−k/(2N))

κ
≤M0 ·D

Cn
nonzero polynomials

g
′
i,l of degrees at least k. Since there is at least one polynomial g

′
i,l of such degree,

we have M0 ·D
Cn

≥ 1, i.e., M0 ≥ (1/D)
Cn

, which proves the theorem. ��

Corollary 2. Any tree-like LS+ refutation of (7) for a connected d-regular (r =

n/2, d, c)-expander G with n vertices and c > 2 has size exp(Ω(n)).

Proof. We can easily simulate any tree-like LS+ proof by a static LS+ proof and

apply Theorem 3 afterwards. ��
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Abstract. We apply recent results on extracting randomness from inde-
pendent sources to “extract” Kolmogorov complexity. For any α, ε > 0,
given a string x with K(x) > α|x|, we show how to use a constant number
of advice bits to efficiently compute another string y, |y| = Ω(|x|), with
K(y) > (1− ε)|y|. This result holds for both classical and space-bounded
Kolmogorov complexity.

We use the extraction procedure for space-bounded complexity to es-
tablish zero-one laws for polynomial-space strong dimension. Our results
include:

(i) If Dimpspace(E) > 0, then Dimpspace(E/O(1)) = 1.
(ii) Dim(E/O(1) | ESPACE) is either 0 or 1.
(iii) Dim(E/poly | ESPACE) is either 0 or 1.

In other words, from a dimension standpoint and with respect to a small
amount of advice, the exponential-time class E is either minimally com-
plex or maximally complex within ESPACE.

1 Introduction

Kolmogorov complexity quantifies the amount of randomness in an individual

string. If a string x has Kolmogorov complexity m, then x is often said to contain

m bits of randomness. Given x, is it possible to compute a string of length m that

is Kolmogorov-random? In general this is impossible but we do make progress

in this direction if we allow a tiny amount of extra information. We give a

polynomial-time computable procedure which takes x with an additional constant

amount of advice and outputs a nearly Kolmogorov-random string whose length
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is linear in m. Formally, for any α, ε > 0, given a string x with K(x) > α|x|, we

show how to use a constant number of advice bits to compute another string y,

|y| = Ω(|x|), in polynomial-time that satisfies K(y) > (1− ε)|y|. The number of

advice bits depends only on α and ε, but the content of the advice depends on

x. This computation needs only polynomial time, and yet it extracts unbounded

Kolmogorov complexity.

Our proofs use a recent construction of extractors using multiple independent

sources. Traditional extractor results [13,22,19,12,21,15,16,20,9,18,17,4] show how

to take a distribution with high min-entropy and some truly random bits to cre-

ate a close to uniform distribution. Recently, Barak, Impagliazzo, and Wigderson

[2] showed how to eliminate the need for a truly random source when several in-

dependent random sources are available. We make use of these extractors for our

main result on extracting Kolmogorov complexity. Barak et al. [3] and Raz [14]

have further extensions on extracting from independent sources.

To make the connection, consider the uniform distribution on the set of strings

x whose Kolmogorov complexity is at most m. This distribution has min-entropy

about m and x acts like a random member of this set. We can define a set of

strings x1, . . . , xk to be independent if K(x1 . . . xk) ≈ K(x1) + · · ·+K(xk). By

symmetry of information this implies K(xi|x1, . . . , xi−1, xi+1, . . . , xk) ≈ K(xi).

Combining these ideas we are able to apply the extractor constructions for mul-

tiple independent sources to Kolmogorov complexity.

To extract the randomness from a string x, we break x into a number of sub-

strings x1, . . . , xl, and view each substring xi as coming from an independent

random source. Of course, these substrings may not be independently random

in the Kolmogorov sense. We find it a useful concept to quantify the dependency
within x as

∑l
i=1 K(xi)−K(x). Another technical problem is that the random-

ness in x may not be nicely distributed among these substrings; for this we need

to use a small (constant) number of nonuniform advice bits.

This result about extractingKolmogorov-randomness also holds for polynomial-

space bounded Kolmogorov complexity. We apply this to obtain zero-one laws

for the dimensions of certain complexity classes. Polynomial-space dimension [11]

and strong dimension [1] have beendeveloped to study the quantitative structure of

classes that lie in E and ESPACE. These dimensions are resource-boundedversions

of Hausdorff dimension and packing dimension, respectively, the two most impor-

tant fractal dimensions. Polynomial-space dimension and strong dimension refine

pspace-measure [10] and have been shown to be duals of each other in many ways

[1]. Additionally, polynomial-space strong dimension is closely related to pspace-

category [7]. In this paper we focus on polynomial-space strong dimension which

quantifies PSPACE and ESPACE in the following way:

– Dimpspace(PSPACE) = 0.

– Dimpspace(ESPACE) = 1.

It is interesting to consider the dimension of a complexity class C, where C is

contained in ESPACE. The dimension is always a real number between zero and

one inclusive. Can a reasonable complexity class have a fractional dimension?

In particular consider the class E. Deciding the polynomial-space dimension of
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E would imply a major complexity separation, but perhaps we can show that E

must have dimension either zero or one, a “zero-one” law for dimension.

We can show such a zero-one law if we add a small amount of nonuniform ad-

vice. An equivalence between space-bounded Kolmogorov complexity rates and

strong pspace-dimension allows us to use our Kolmogorov-randomness extraction

procedure to show the following results.

(i) If Dimpspace(E) > 0, then Dimpspace(E/O(1)) = 1.

(ii) Dim(E/O(1) | ESPACE) is either 0 or 1.

(iii) Dim(E/poly | ESPACE) is either 0 or 1.

2 Preliminaries

2.1 Kolmogorov Complexity

Let M be a Turing machine. Let f : N → N. For any x ∈ {0, 1}
∗
, define

KM (x) = min{|π| |M(π) prints x}

and

KS
f
M (x) = min{|π| |M(π) prints x using at most f(|x|) space}.

There is a universal machine U such that for every machine M , there is some

constant c such that for all x, KU (x) ≤ KM (x)+c and KS
cf+c
U (x) ≤ KS

f
M (x)+c

[8]. We fix such a machine U and drop the subscript, writing K(x) and KS
f
(x),

which are called the (plain) Kolmogorov complexity of x and f -bounded (plain)
Kolmogorov complexity of x. While we use plain complexity in this paper, our

results also hold for prefix-free complexity.

The following definition quantifies the fraction of randomness in a string.

Definition. For a string x, the rate of x is rate(x) = K(x)/|x|. For a polynomial

g, the g-rate of x is rate
g
(x) = KS

g
(x)/|x|.

2.2 Polynomial-Space Dimension

We now review the definitions of polynomial-space dimension [11] and strong

dimension [1]. For more background we refer to these papers and the recent

survey paper [6].

Let s > 0. An s-gale is a function d : {0, 1}
∗
→ [0,∞) satisfying 2

s
d(w) =

d(w0) + d(w1) for all w ∈ {0, 1}
∗
.

For a language A, we write A � n for the first n bits of A’s characteristic

sequence (according to the standard enumeration of {0, 1}
∗
) and A� [i, j] for the

subsequence beginning from the ith bit and ending at the jth bit. An s-gale d

succeeds on a language A if lim sup
n→∞

d(A�n) = ∞ and d succeeds strongly on A if

lim inf
n→∞ d(A�n) = ∞. The success set of d is S

∞
[d] = {A | d succeeds on S}. The

strong success set of d is S
∞
str[d] = {A | d succeeds strongly on S}.
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Definition. Let X be a class of languages.

1. The pspace-dimension of X is

dimpspace(X) = inf

{
s

∣∣∣∣ there is a polynomial-space computable

s-gale d such that X ⊆ S
∞

[d]

}
.

2. The strong pspace-dimension of X is

Dimpspace(X) = inf

{
s

∣∣∣∣ there is a polynomial-space computable

s-gale d such that X ⊆ S
∞
str[d]

}
.

For every X , 0 ≤ dimpspace(X) ≤ Dimpspace(X) ≤ 1. An important fact is that

ESPACE has pspace-dimension 1, which suggests the following definitions.

Definition. Let X be a class of languages.

1. The dimension of X within ESPACE is

dim(X | ESPACE) = dimpspace(X ∩ ESPACE).

2. The strong dimension of X within ESPACE is

Dim(X | ESPACE) = Dimpspace(X ∩ ESPACE).

In this paper we will use an equivalent definition of the above dimensions in

terms of space-bounded Kolmogorov complexity.

Definition. Given a language L and a polynomial g the g-rate of L is

rate
g
(L) = lim inf

n→∞ rate
g
(L�n).

strong g-rate of L is

Rate
g
(L) = lim sup

n→∞
rate

g
(L�n).

Theorem 2.1. (Hitchcock [5]) Let poly denote all polynomials. For every class
X of languages,

dimpspace(X) = inf
g∈poly

sup
L∈X

rate
g
(L).

and

Dimpspace(X) = inf
g∈poly

sup
L∈X

Rate
g
(L).
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3 Extracting Kolmogorov Complexity

Barak, Impagliazzo, and Wigderson [2] recently gave an explicit multi-source

extractor.

Theorem 3.1. ([2]) For every constant 0 < σ < 1, and c > 1 there exist
l = poly(1/σ, c), a constant r and a computable function E : Σ

�n
→ Σ

n such
that if H1, · · · , Hl are independent distributions over Σn, each with min entropy
at least σn, then E(H1, · · · , Hl) is 2

−cn-close to Un, where Un is the uniform
distribution over Σn. Moreover, E runs in time n

r.

We show that the above extractor can be used to produce nearly Kolmogorov-

random strings from strings with high enough complexity. The following notion

of dependency is useful for quantifying the performance of the extractor.

Definition. Let x = x1x2 · · ·xk, where each xi is an n-bit string. The depen-
dency within x, dep(x), is defined as

∑k
i=1 K(xi)−K(x).

Theorem 3.2. For every 0 < σ < 1 and large enough n, there exist a constant
l > 1, and a polynomial-time computable function E such that if x1, x2, · · ·xl
are n-bit strings with K(xi) ≥ σn, 1 ≤ i ≤ l, then

K(E(x1, · · · , xl)) ≥ n− 10l logn− dep(x).

Proof. Let 0 < σ
′
< σ. By Theorem 3.1, there is a constant l and a polynomial-

time computable multi-source extractor E such that if H1, · · · , Hl are indepen-

dent sources each with min-entropy at least σ
′
n, then E(H1, · · · , Hl) is 2

−5n

close to Un.

We show that this extractor also extracts Kolmogorov complexity. We prove

by contradiction. Suppose the conclusion is false, i.e,

K(E(x1, · · ·xl)) < n− 10l logn− dep(x).

Let K(xi) = mi, 1 ≤ i ≤ l. Define the following sets:

Ii = {y | y ∈ Σ
n
,K(y) ≤ mi},

Z = {z ∈ Σ
n
| K(z) < n− 10l logn− dep(x)},

Small = {〈y1, · · · , yl〉 | yi ∈ Ii, and E(y1, · · · yl) ∈ Z}.

By our assumption 〈x1, · · ·xl〉 belongs to Small. We use this to arrive at a

contradiction regarding the Kolmogorov complexity of x = x1x2 · · ·xl. We first

calculate an upper bound on the size of Small.

Observe that the set {xy |x ∈ Σ
σ′n

, y = 0
n−σ′n

} is a subset of each of Ii. Thus

the cardinality of each of Ii is at least 2
σ′n

. Let Hi be the uniform distribution

on Ii. Thus the min-entropy of Hi is at least σ
′
n.

Since Hi’s have min-entropy at least σ
′
n, E(H1, · · · , Hl) is 2

−5n
-close to Un.

Then ∣∣∣P [E(H1, . . . , Hl) ∈ Z]− P [Un ∈ Z]

∣∣∣ ≤ 2
−5n

. (3.1)
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Note that the cardinality of Ii is at most 2
mi+1

, as there are at most 2
mi+1

strings with Kolmogorov complexity at most mi. Thus Hi places a weight of at

least 2
−mi−1

on each string from Ii. Thus H1 × · · · ×Hl places a weight of at

least 2
−(m1+···+ml+l) on each element of Small. Therefore,

P [E(H1, . . . , Hl) ∈ Z] = P [(H1, . . . , Hl) ∈ Small] ≥ |Small| · 2
−(m1+···+ml+l),

and since |Z| ≤ 2
n−10l log n−dep(x)

, from (3.1) we obtain

|Small| < 2
m1+1

× · · · × 2
ml+1

×

(
2
n−10l logn−dep(x)

2n
+ 2

−5n
)

Without loss of generality we can take dep(x) < n, otherwise the theorem is

trivially true. Thus 2
−5n

< 2
−10l logn−dep(x)

. Using this and the fact that l is a

constant independent of n, we obtain

|Small| < 2
m1+···+ml−dep(x)−8l logn

,

when n is large enough. Since K(x) = K(x1) + · · ·+K(xl)− dep(x),

|Small| < 2
K(x)−8l log n

.

We first observe that there is a program Q that, given the values of mi’s, n, l,

and dep(x) as auxiliary inputs, recognizes the set Small. This program works as

follows: Let z = z1 · · · zl, where |zi| = n. For each program Pi of length at most

mi check whether Pi outputs zi, by running the Pi’s in a dovetail fashion. If it

is discovered that for each of zi, K(zi) ≤ mi, then compute y = E(z1, · · · , zl).

Now verify that K(y) is at most n− dep(x) − 10l logn. This again can be done

by running programs of the length at most n − dep(x) − 10l logn in a dovetail

manner. If it is discovered that K(y) is at most n − dep(x) − 10l logn, then

accept z.

So given the values of parameters n, dep(x), l and mis, there is a program

P that enumerates all elements of Small. Since by our assumption x belongs

to Small, x appears in this enumeration. Let i be the position of x in this

enumeration. Since |Small| is at most 2
K(x)−8l logn

, i can be described using

K(x)− 8l logn bits.

Thus there is a program P
′
based on P that outputs x. This program takes i,

dep(x), n, m1, · · · ,ml, and l, as auxiliary inputs. Since the mi’s and dep(x) are

bounded by n,

K(x) ≤ K(x)− 8l logn + 2 logn+ l logn+O(1)

≤ K(x)− 5l logn +O(1),

which is a contradiction. �

If x1, · · ·xl are independent strings with K(xi) ≥ σn, then E(x1, · · · , xl) is a

Kolmogorov random string of length n.
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Corollary 3.3. For every constant 0 < σ < 1, there exists a constant l, and
a polynomial-time computable function E such that if x1, · · ·xl are n-bit strings
such K(xi) ≥ σn, and K(x1x2 · · ·xl) =

∑
K(xi)−O(log n), then E(x1, · · · , xl)

is Kolmogorov random, i.e.,

K(E(x1, · · · , xl)) > n−O(log n).

This theorem says that given x ∈ Σ
ln

, if each piece xi has high enough complex-

ity and the dependency with x is small, then we can output a string y whose

Kolmogorov rate is higher than the Kolmogorov rate of x, i.e, y is relatively

more random than x. What if we only knew that x has high enough complexity

but knew nothing about the complexity of individual pieces or the dependency

within x? Our next theorem states that in this case also there is a procedure pro-

ducing a string whose rate is higher than the rate of x. However, this procedure

needs constant bits of advice.

Theorem 3.4. For all real numbers 0 < α < β < 1 there exist a constant
0 < γ < 1, constants c, l, n0 ≥ 1, and a procedure R such that the following
holds. For any string x with |x| ≥ n0 and rate(x) ≥ α, there exists an advice
string ax such that

rate(R(x, ax)) ≥ min{rate(x) + γ, β}

where |ax| = c. Moreover, R runs in polynomial time, and |R(x, ax)| = �|x|/l�.
The number c depends only on α, β and is independent of x. However, the

contents of ax depend on x.

Proof. Let α
′
< α and ε < min{1−β, α

′
}. Let σ = (1− ε)α

′
. Using parameter σ

in Theorem 3.2, we obtain a constant l > 1 and a polynomial-time computable

function E that extracts Kolmogorov complexity.

Let β
′
= 1−

ε
2 , and γ =

ε2

2l . Observe that γ ≤
1−β′

l and γ <
α′−σ
l .

Let x have rate(x) = ν ≥ α. Let n, k ≥ 0 such that |x| = ln + k and k < l.

We strip the last k bits from x and write x = x1 · · ·xl where each |xi| = n.

Let ν
′
= rate(x) after this change. We have ν

′
> ν − γ/2 and ν

′
> α

′
if |x| is

sufficiently large.

We consider three cases.

Case 1. There exists j, 1 ≤ j ≤ l such that K(xj) < σn.

Case 2. Case 1 does not hold and dep(x) ≥ γln.

Case 3. Case 1 does not hold and dep(x) < γln.

We have two claims about Cases 1 and 2:

Claim 3.5. Assume Case 1 holds. There exists i, 1 ≤ i ≤ l, such that rate(xi) ≥

ν
′
+ γ.

Proof of Claim 3.5. Suppose not. Then for every i = j, 1 ≤ i ≤ l, K(xi) ≤

(ν
′
+ γ)n. We can describe x by describing xj which takes σn bits, and all the

xi’s, i = j. Thus the total complexity of x would be at most

(ν
′
+ γ)(l − 1)n+ σn+O(log n)
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Since γ <
α′−σ
l and α

′
< ν

′
this quantity is less than ν

′
ln. Since the rate of x is

ν
′
, this is a contradiction. � Claim 3.5

Claim 3.6. Assume Case 2 holds. There exists i, 1 ≤ i ≤ l, rate(xi) ≥ ν
′
+ γ.

Proof of Claim 3.6. By definition,

K(x) =

l∑
i=1

K(xi)− dep(x)

Since dep(x) ≥ γln and K(x) ≥ ν
′
ln,

l∑
i=1

K(xi) ≥ (ν
′
+ γ)ln.

Thus there exists i such that rate(xi) ≥ ν
′
+ γ. � Claim 3.6

We can now describe the constant number of advice bits. The advice ax contains

the following information: which of the three cases described above holds, and

– If Case 1 holds, then from Claim 3.5 the index i such that rate(xi) ≥ ν
′
+ γ.

– If Case 2 holds, then from Claim 3.6 the index i such that rate(xi) ≥ ν
′
+ γ.

Since 1 ≤ i ≤ l, the number of advice bits is bounded by O(log l). We now

describe procedure R. When R takes an input x, it first examines the advice ax.

If Case 1 or Case 2 holds, then R simply outputs xi. Otherwise, Case 3 holds,

and R outputs E(x). Since E runs in polynomial time, R runs in polynomial

time.

If Case 1 or Case 2 holds, then

rate(R(x, ax)) ≥ ν
′
+ γ ≥ ν +

γ
2 .

If Case 3 holds, we have R(x, ax) = E(x) and by Theorem 3.2, K(E(x)) ≥

n− 10 logn− γln. Since γ ≤
1−β′
l , in this case

rate(R(x, ax)) ≥ β
′
−

10 logn
n .

For large enough n, this value is at least β. Therefore in all three cases, the rate

increases by at least γ/2 or reaches β. �

We now prove our main theorem.

Theorem 3.7. Let α and β be constants with 0 < α < β < 1. There exist a
polynomial-time procedure P (·, ·) and constants C1, C2, n1 such that for every x

with |x| ≥ n1 and rate(x) ≥ α there exists a string ax with |ax| = C1 such that

rate(P (x, ax)) ≥ β

and |P (x, ax)| ≥ |x|/C2.
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Proof. We apply the procedure R from Theorem 3.4 iteratively. Each application

of R outputs a string whose rate is at least β or is at least γ more than the rate

of the input string. Applying R at most k = �(β − α)/γ� times, we obtain a

string whose rate is at least β.

Note that R(y, ay) has output length |R(y, ay)| = �|y|/l� and increases the

rate of y if |y| ≥ n0. If we take n1 = (n0+1)kl, we ensure that in each application

of R we have a string whose length is at least n0. Each iteration of R requires

c bits of advice, so the total number of advice bits needed is C1 = kc. Thus

C1 depends only on α and β. Each application of R decreases the length by

a constant fraction, so there is a constant C2 such that the length of the final

outputs string is at least |x|/C2. �

The proofs in this section also work for space-bounded Kolmogorov complexity.

For this we need a space-bounded version of dependency.

Definition. Let x = x1x2 · · ·xk where each xi is an n-bit string, let f and g be

two space bounds. The (f, g)-bounded dependency within x, dep
f
g (x), is defined

as
∑k

i=1 KS
g
(xi)−KS

f
(x).

We obtain the following version of Theorem 3.2.

Theorem 3.8. For every polynomial g there exists a polynomial f such that for
every 0 < σ < 1, there exist a constant l > 1, and a polynomial-time computable
function E such that if x1, · · · , xl are n-bit strings with KS

f
(xi) ≥ σn, 1 ≤ i ≤ l,

then
KS

g
(E(x1, · · · , xl)) ≥ n− 10l logn− dep

f
g(x).

Similarly we obtain the following extension of Theorem 3.7.

Theorem 3.9. Let g be a polynomial and let α and β be constants with 0 <

α < β < 1. There exist a polynomial f , polynomial-time procedure R(·, ·), and
constants C1, C2, n1 such that for every x with |x| ≥ n1 and rate

f
(x) ≥ α there

exists a string ax with |ax| = C1 such that

rate
g
(R(x, ax)) ≥ β

and |R(x, ax)| ≥ |x|/C2.

4 Zero-One Laws

In this section we establish zero-one laws for the dimensions of certain classes

within ESPACE. Our most basic result is the following, which says that if E has

positive dimension, then the class E/O(1) has maximal dimension.

Theorem 4.1. If Dimpspace(E) > 0, then Dimpspace(E/O(1)) = 1.

For the theorem we use the following lemma, which can be proved using Theo-

rem 3.9. We omit the proof due to space constraints.
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Lemma 4.2. Let g be any polynomial and α, θ be rational numbers with 0 <

α < θ < 1. Then there is a polynomial f such that if there exists L ∈ E with
Rate

f
(L) ≥ α, then there exists L′

∈ E/O(1) with Rate
g
(L

′
) ≥ θ.

Proof of Theorem 4.1. We will show that for every polynomial g, and real number

0 < θ < 1, there is a language L
′
in E/O(1) with Rate

g
(L) ≥ θ. By Theorem

2.1, this will show that the strong pspace-dimension of E/O(1) is 1.

The assumption states that the strong pspace-dimension of E is greater than

0. If the strong pspace-dimension of E is actually one, then we are done. If not,

let α be a positive rational number that is less than Dimpspace(E). By Theorem

2.1, for every polynomial f , there exists a language L ∈ E with Rate
f
(L) ≥ α.

By Lemma 4.2, from such a language L we obtain a language L
′
in E/O(1)

with Rate
g
(L

′
) ≥ θ. Thus the strong pspace-dimension of E/O(1) is 1. �

Observe that in the above construction, if the original language L is in E/O(1),

then also L
′

is in E/O(1), and similarly membership in E/poly is preserved.

Additionally, if L ∈ ESPACE, it can be shown that L
′
∈ ESPACE. With these

observations, we obtain the following zero-one laws.

Theorem 4.3. Each of the following is either 0 or 1.

1. Dimpspace(E/O(1)).
2. Dimpspace(E/poly).
3. Dim(E/O(1) | ESPACE).
4. Dim(E/poly | ESPACE).

We remark that in Theorems 4.1 and 4.3, if we replace E by EXP, the theo-

rems still hold. The proofs also go through for other classes such as BPEXP,

NEXP ∩ coNEXP, and NEXP/poly.

Theorems 4.1 and 4.3 concern strong dimension. For dimension, the situation is

more complicated. Using similar techniques, we can prove that if dimpspace(E) >

0, then dimpspace(E/O(1)) ≥ 1/2. Analogously, we can obtain zero-half laws for

the pspace-dimension of E/poly, etc.
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Abstract. Given a Boolean formula, do its solutions form a connected
subgraph of the hypercube? This and other related connectivity con-
siderations underlie recent work on random Boolean satisfiability. We
study connectivity properties of the space of solutions of Boolean for-
mulas, and establish computational and structural dichotomies. Specif-
ically, we first establish a dichotomy theorem for the complexity of the
st-connectivity problem for Boolean formulas in Schaefer’s framework.
Our result asserts that the tractable side is more generous than the
tractable side in Schaefer’s dichotomy theorem for satisfiability, while
the intractable side is PSPACE-complete. For the connectivity problem,
we establish a dichotomy along the same boundary between membership
in coNP and PSPACE-completeness. Furthermore, we establish a struc-
tural dichotomy theorem for the diameter of the connected components
of the solution space: for the PSPACE-complete cases, the diameter can
be exponential, but in all other cases it is linear. Thus, small diameter
and tractability of the st-connectivity problem are remarkably aligned.

1 Introduction

In 1978, T.J. Schaefer [1] introduced a rich framework for expressing variants

of Boolean satisfiability and proved a remarkable dichotomy theorem: the sat-

isfiability problem is in P for certain classes of Boolean formulas, while it is

NP-complete for all other classes in the framework. In a single stroke, this re-

sult pinpoints the computational complexity of all well-known variants of Sat,

such as 3-Sat, Horn 3-Sat, Not-All-Equal 3-Sat, and 1-in-3 Sat. Schae-

fer’s work paved the way for a series of investigations establishing dichotomies

for several aspects of satisfiability, including optimization [2,3,4], counting [5],

inverse satisfiability [6], minimal satisfiability [7], 3-valued satisfiability [8] and

propositional abduction [9].

Our aim in this paper is to carry out a comprehensive exploration of a different

aspect of Boolean satisfiability, namely, the connectivity properties of the space

of solutions of Boolean formulas. The solutions (satisfying assignments) of a

given n-variable Boolean formula ϕ induce a subgraphG(ϕ) of the n-dimensional
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hypercube. Thus, the following two decision problems, called the connectivity
problem and the st-connectivity problem, arise naturally: (i) Given a Boolean

formula ϕ, is G(ϕ) connected? (ii) Given a Boolean formula ϕ and two solutions

s and t of ϕ, is there a path from s to t in G(ϕ)?

We believe that connectivity properties of Boolean satisfiability merit study

in their own right, as they shed light on the structure of the solution space

of Boolean formulas. Moreover, in recent years the structure of the space of

solutions for random instances has been the main consideration at the basis

of both algorithms for and mathematical analysis of the satisfiability problem

[10,11,12,13]. It has been conjectured for 3-Sat [12] and proved for 8-Sat [14,15],

that the solution space fractures as one approaches the critical region from below.

This apparently leads to performance deterioration of the standard satisfiability

algorithms, such as WalkSAT [16] and DPLL [17]. It is also the main consid-

eration behind the design of the survey propagation algorithm, which has far

superior performance on random instances of satisfiability [12]. This body of

work has served as a motivation to us for pursuing the investigation reported

here. While there has been an intensive study of the structure of the solution

space of Boolean satisfiability problems for random instances, our work seems

to be the first to explore this issue from a worst-case viewpoint.

Our first main result is a dichotomy theorem for the st-connectivity prob-

lem. This result reveals that the tractable side is much more generous than the

tractable side for satisfiability, while the intractable side is PSPACE-complete.

Specifically, Schaefer showed that the satisfiability problem is solvable in poly-

nomial time precisely for formulas built from Boolean relations all of which are

bijunctive, or all of which are Horn, or all of which are dual Horn, or all of which

are affine. We identify new classes of Boolean relations, called tight relations,

that properly contain the classes of bijunctive, Horn, dual Horn, and affine rela-

tions. We show that st-connectivity is solvable in linear time for formulas built

from tight relations, and PSPACE-complete in all other cases. Our second main

result is a dichotomy theorem for the connectivity problem: it is in coNP for

formulas built from tight relations, and PSPACE-complete in all other cases.

In addition to these two complexity-theoretic dichotomies, we establish a

structural dichotomy theorem for the diameter of the connected components of

the solution space of Boolean formulas. This result asserts that, in the PSPACE-

complete cases, the diameter of the connected components can be exponential,

but in all other cases it is linear. Thus, small diameter and tractability of the

st-connectivity problem are remarkably aligned.

To establish these results, we first show that all tight relations have “good”

structural properties. Specifically, in a tight relation every component has a

unique minimum element, or every component has a unique maximum element,

or the Hamming distance coincides with the shortest-path distance in the rela-

tion. These properties are inherited by every formula built from tight relations,

and yield both small diameter and linear algorithms for st-connectivity.

Next, the challenge is to show that for non-tight relations, both the connec-

tivity problem and the st-connectivity problem are PSPACE-hard. In Schaefer’s
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Dichotomy Theorem, NP-hardness of satisfiability was a consequence of an ex-
pressibility theorem, which asserted that every Boolean relation can be obtained

as a projection over a formula built from clauses in the “hard” relations. Schae-

fer’s notion of expressibility is inadequate for our problem. Instead, we introduce

and work with a delicate and more strict notion of expressibility, which we call

faithful expressibility. Intuitively, faithful expressibility means that, in addition

to definability via a projection, the space of witnesses of the existential quanti-

fiers in the projection has certain strong connectivity properties that allow us

to capture the graph structure of the relation that is being defined. It should

be noted that Schaefer’s Dichotomy Theorem can also be proved using a Galois

connection and Post’s celebrated classification of the lattice of Boolean clones

(see [18]). This method, however, does not appear to apply to connectivity, as

the boundaries discovered here cut across Boolean clones. Thus, the use of faith-

ful expressibility or some other refined definability technique seems unavoidable.

The first step towards proving PSPACE-completeness is to show that both

connectivity and st-connectivity are hard for 3-CNF formulae; this is proved by

a reduction from a generic PSPACE computation. Next, we identify the simplest

relations that are not tight: these are ternary relations whose graph is a path

of length 4 between assignments at Hamming distance 2. We show that these

paths can faithfully express all 3-CNF clauses. The crux of our hardness result

is an expressibility theorem to the effect that one can faithfully express such a

path from any set of relations which is not tight.

Our original hope was that tractability results for connectivity could conceiv-

ably inform heuristic algorithms for satisfiability and enhance their effectiveness.

In this context, our findings are prima facie negative: we show that when sat-

isfiability is intractable, then connectivity is also intractable. But our results

do contain a glimmer of hope: there are broad classes of intractable satisfiabil-

ity problems, those built from tight relations, with polynomial st-connectivity

and small diameter. It would be interesting to investigate if these properties

make random instances built from tight relations easier for WalkSAT and similar

heuristics, and if so, whether such heuristics are amenable to rigorous analysis.

For want of space, some proofs, as well as some additional results, are omitted

here; they can be found in the full version available at ECCC.

2 Basic Concepts and Statements of Results

A logical relation R is a non-empty subset of {0, 1}
k
, for some k ≥ 1; k is the

arity of R. Let S be a finite set of logical relations. A CNF(S)-formula over a

set of variables V = {x1, . . . , xn} is a finite conjunction C1 ∧ . . . ∧Cn of clauses

built using relations from S, variables from V , and the constants 0 and 1; this

means that each Ci is an expression of the form R(ξ1, . . . , ξk), where R ∈ S is a

relation of arity k, and each ξj is a variable in V or one of the constants 0, 1.

The satisfiability problem Sat(S) associated with a finite set S of logical

relations asks: given a CNF(S)-formula ϕ, is it satisfiable? All well known re-

strictions of Boolean satisfiability, such as 3-Sat, Not-All-Equal 3-Sat, and
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Positive 1-in-3 Sat, can be cast as Sat(S) problems, for a suitable choice of

S. For instance, Positive 1-in-3 Sat is Sat({R1/3}), where R1/3 = {100, 010,

001}. Schaefer [1] identified the complexity of every satisfiability problem Sat(S).

To state Schaefer’s main result, we need to define some basic concepts.

Definition 1. Let R be a logical relation.

(1) R is bijunctive if it is the set of solutions of a 2-CNF formula.

(2) R is Horn if it is the set of solutions of a Horn formula, where a Horn formula

is a CNF formula such that each conjunct has at most one positive literal.

(3) R is dual Horn if it is the set of solutions of a dual Horn formula, where a

dual Horn formula is a CNF formula such that each conjunct has at most one

negative literal.

(4) R is affine if it is the set of solutions of a system of linear equations over Z2.

Each of these types of logical relations can be characterized in terms of closure
properties [1]. A relation R is bijunctive if and only if it is closed under the

majority operation (if a,b, c ∈ R, then maj(a,b, c) ∈ R, where maj(a,b, c) of

a,b, c is the vector whose i-th bit is the majority of ai, bi, ci). A relation R is

Horn if and only if it is closed under ∨ (if a,b ∈ R, then a∨b ∈ R, where, a∨b
is the vector whose i-th bit is ai ∨ bi). Similarly, R is dual Horn if and only if it

is closed under ∧. Finally, R is affine if and only if it is closed under a⊕ b⊕ c.

Definition 2. A set S of logical relations is Schaefer if at least one of the

following holds: (1) Every relation in S is bijunctive; (2) Every relation in S is

Horn; (3) Every relation in S is dual Horn; (4) Every relation in S is affine.

Theorem 1. (Schaefer’s Dichotomy Theorem [1]) If S is Schaefer, then Sat(S)

is in P; otherwise, Sat(S) is NP-complete.

Note that the closure properties of Schaefer sets yield a cubic algorithm for

determining, given a finite set S of relations, whether Sat(S) is in P or NP-

complete (the input size is the sum of the sizes of relations in S).

Here, we are interested in the connectivity properties of the space of solutions

of CNF(S)-formulas. If ϕ is a CNF(S)-formula with n variables, then G(ϕ)

denotes the subgraph of the n-dimensional hypercube induced by the solutions

of ϕ. Thus, the vertices of G(ϕ) are the solutions of ϕ, and there is an edge

between two solutions of G(ϕ) precisely when they differ in a single variable. We

consider the following two algorithmic problems for CNF(S)-formulas.

(1) The st-connectivity problem st-Conn(S): given a CNF(S)-formula ϕ and

two solutions s and t of ϕ, is there a path from s to t in G(ϕ)?

(2) The connectivity problem Conn(S): given a CNF(S)-formula ϕ, is G(ϕ)

connected?

To pinpoint the computational complexity of st-Conn(S) and Conn(S), we

need to introduce certain new types of relations.

Definition 3. Let R ⊆ {0, 1}
k

be a logical relation.
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(1) R is componentwise bijunctive if every connected component of G(R) is

bijunctive.

(2) R is OR-free if the relation OR = {01, 10, 11} cannot be obtained from R by

setting k−2 of the coordinates of R to a constant c ∈ {0, 1}k−2
. In other words,

R is OR-free if (x1 ∨ x2) is not definable from R by fixing k − 2 variables.

(3) R is NAND-free if (x̄1 ∨ x̄2) is not definable from R by fixing k−2 variables.

The next lemma is proved using the closure properties of bijunctive, Horn, and

dual Horn relations. (We skip the easy proof).

Lemma 1. Let R be a logical relation.
(1) If R is bijunctive, then R is componentwise bijunctive.
(2) If R is Horn, then R is OR-free.
(3) If R is dual Horn, then R is NAND-free.
(4) If R is affine, then R is componentwise bijunctive, OR-free, and NAND-free.

These containments are proper. For instance, R1/3 = {100, 010, 001} is compo-

nentwise bijunctive, but not bijunctive as maj(100, 010, 001) = 000 ∈ R1/3.

We are now ready to introduce the key concept of a tight set of relations.

Definition 4. A set S of logical relations is tight if at least one of the following

three conditions holds: (1) Every relation in S is componentwise bijunctive; (2)

Every relation in S is OR-free; (3) Every relation in S is NAND-free.

In view of Lemma 1, if S is Schaefer, then it is tight. The converse, however,

does not hold. It is also easy to see that there is a polynomial-time algorithm for

testing whether a given finite set S of logical relations is tight. Our first main

result is a dichotomy theorem for the computational complexity of st-Conn(S).

Theorem 2. Let S be a finite set of logical relations. If S is tight, then st-
Conn(S) is in P; otherwise, Conn(S) is PSPACE-complete.

Our second main result asserts that the dichotomy in the computational com-

plexity of st-Conn(S) is accompanied by a parallel structural dichotomy in the

size of the diameter of G(ϕ) (where, for a CNF(S)-formula ϕ, the diameter of
G(ϕ) is the maximum of the diameters of the components of G(ϕ)).

Theorem 3. Let S be a finite set of logical relations. If S is tight, then for every
CNF(S)-formula ϕ, the diameter of G(ϕ) is linear in the number of variables
of ϕ; otherwise, there are CNF(S)-formulas ϕ such that the diameter of G(ϕ)

is exponential in the number of variables of ϕ.

Our third main result establishes a dichotomy for the complexity of Conn(S).

Theorem 4. Let S be a finite set of logical relations. If S is tight, then Conn(S)

is in coNP; otherwise, it is PSPACE-complete.

We also show that if S is tight, but not Schaefer, then Conn(S) is coNP-

complete. Our results and their comparison to Schaefer’s Dichotomy Theorem

are summarized in the table below.
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S Sat(S) st-Conn(S) Conn(S) Diameter

Schaefer in P in P in coNP O(n)

Tight, not Schaefer NP-compl. in P coNP-compl. O(n)

Not tight NP-compl. PSPACE-compl. PSPACE-compl. 2
Ω(

√
n)

As an application, the set S = {R1/3}, where R1/3 = {100, 010, 001}, is tight,

but not Schaefer. It follows that Sat(S) is NP-complete (recall that this problem

is Positive 1-in-3 Sat), st-Conn(S) is in P, and Conn(S) is coNP-complete.

Consider also the set S = {RNAE}, where RNAE = {0, 1}
3
\ {000, 111}. This set

is not tight, hence Sat(S) is NP-complete (this problem is Positive Not-All-
Equal 3-Sat), while both st-Conn(S) and Conn(S) are PSPACE-complete.

We conjecture that if S is Schaefer, then Conn(S) is in P. If this conjecture

is true, it will follow that the complexity of Conn(S) exhibits a trichotomy: if S

is Schaefer, then Conn(S) is in P; if S is tight, but not Schaefer, then Conn(S)

is coNP-complete; if S is not tight, then Conn(S) is PSPACE-complete.

3 The Easy Cases of Connectivity

In this section, we determine the complexity of Conn(S) and st-Conn(S) for

tight sets S of logical relations, and also show that for such sets, the diameter of

G(ϕ) of CNF(S)-formula ϕ is linear. We prove only the key structural properties

of tight relations here, and defer the rest to the full version.

We will use a,b, . . . to denote Boolean vectors, and x and y to denote vectors

of variables. We write |a| to denote the Hamming weight (number of 1’s) of

a Boolean vector a. Given two Boolean vectors a and b, we write |a − b| to

denote the Hamming distance between a and b. Finally, if a and b are solutions

of a Boolean formula ϕ and lie in the same component of G(ϕ), then we write

dϕ(a,b) to denote the shortest-path distance between a and b in G(ϕ).

3.1 The st-Conn Problem for Tight Sets

Lemma 2. Let S be a set of componentwise bijunctive relations and ϕ a CNF(S)-
formula. If a and b are two solutions of ϕ that lie in the same component of G(ϕ),
then dϕ(a,b) = |a− b|.

Proof. (Sketch) Consider first the special case in which every relation in S is

bijunctive. In this case, ϕ is equivalent to a 2-CNF formula and so the space of

solutions of ϕ is closed under maj. We show that there is a path in G(ϕ) from

a to b, such that along the path only the assignments on variables with indices

from the set D = {i : ai = bi} change. This implies that the shortest path is of

length |D| by induction on |D|. Consider any path a → u1
→ · · · → ur

→ b
in G(ϕ). We construct another path by replacing ui

by vi
= maj (a,ui

,b) for

i = 1, . . . , r, and removing repetitions. This path has the desired property.

For the general case, it can be shown that every component F of G(ϕ) is the

solution space of a 2-CNF formula ϕ
′
. If C is a clause of ϕ involving a relation R

in S, then the projection of F on the variables of C is contained in a component
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of R. Then the formula ϕ
′

is obtained from ϕ as follows: replace each clause

C of ϕ by a 2-CNF formula expressing the component of R that contains the

projection of F on the variables of C. ��

Corollary 1. Let S be a set of componentwise bijunctive relations. Then (1) for
every ϕ ∈ CNF(S) with n variables, the diameter of each component of G(ϕ) is
bounded by n; (2) st-Conn(S) is in P; and (3) Conn(S) is in coNP.

Next, we consider sets of OR-free relations (sets of NAND-free relations are

handled dually). Define the coordinate-wise partial order ≤ on Boolean vectors

as follows: a ≤ b if ai ≤ bi, for each i.

Lemma 3. Let S be a set of OR-free relations and ϕ a CNF(S)-formula. Every
component of G(ϕ) contains a minimum solution with respect to the coordinate-
wise order; moreover, every solution is connected to the minimum solution in
the same component via a monotone path.

Proof. Suppose there are two distinct minimal assignments u and u′
in some

component of G(ϕ). Consider the path between them where the maximum Ham-

ming weight of assignments on the path is minimized. If there are many such

paths, pick one where the smallest number of assignments have the maximum

Hamming weight. Denote this path by u = u1
→ u2

· · · → ur
= u′

. Let ui
be the

assignment of largest Hamming weight in the path. Then ui
= u and ui

= u′
,

since u and u′
are minimal. The assignments ui−1

and ui+1
differ in exactly 2

variables, say, in x1 and x2. So {u
i−1
1 u

i−1
2 , u

i
1u

i
2, u

i+1
1 u

i+1
2 } = {01, 11, 10}. Let

û be such that û1 = û2 = 0, and ûi = ui for i > 2. If û is a solution, then the

path u1
→ u2

→ · · · → ui
→ û → ui+1

→ · · · → ur
contradicts the way we

chose the original path. Therefore, û is not a solution. This means that there

is a clause that is violated by it, but is satisfied by ui−1
, ui

, and ui+1
. So the

relation corresponding to that clause is not OR-free, which is a contradiction.

The unique minimal solution in a component is its minimum solution. Fur-

thermore, starting from any assignment s in the component, and repeatedly

flipping variables from 1 to 0 provides a monotone path to the minimum. ��

Corollary 2. Let S be a set of OR-free relations. Then (1) For every ϕ ∈

CNF(S) with n variables, the diameter of each component of G(ϕ) is bounded
by 2n; (2) st-Conn(S) is in P; and (3) Conn(S) is in coNP.

4 The PSPACE-Complete Cases of Connectivity

If k ≥ 2, then a k-clause is a disjunction of k variables or negated variables.

For 0 ≤ i ≤ k, let Di be the set of all satisfying truth assignments of the k-

clause whose first i literals are negated, and let Sk = {D0, D1, . . . , Dk}. Thus,

CNF(Sk) is the collection of k-CNFformulas.

The starting point of the proof is to show that Conn(S3) and st-Conn(S3)

are PSPACE-complete. The proof is fairly intricate, and is via a direct reduction

from the computation of a polynomial-space Turing machine. We also show that
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3-CNF formulas can have exponential diameter, by inductively constructing a

path of length at least 2
n
2 on n variables and then identifying it with the solution

space of a 3-CNF formula with O(n
2
) clauses.

Lemma 4. st-Conn(S3) and Conn(S3) are PSPACE-complete.

Lemma 5. For n even, there is a 3-CNF formula ϕn with n variables and
O(n

2
) clauses, such that G(ϕn) is a path of length greater than 2

n
2 .

4.1 Faithful Expressibility

From here onwards, all our hardness results are proved by showing that if S is a

non-tight set, then every 3-clause is expressible from S in a certain special way

that we describe next. In his dichotomy theorem, Schaefer [1] used the following

notion of expressibility: a relation R is expressible from a set S of relations if

there is a CNF(S)-formula ϕ so that R(x) ≡ ∃y ϕ(x,y). This notion, is not

sufficient for our purposes. Instead, we introduce a more delicate notion, which

we call faithful expressibility. Intuitively, we view the relation R as a subgraph of

the hypercube, rather than just a subset, and require that this graph structure

be also captured by the formula ϕ.

Definition 5. A relation R is faithfully expressible from a set of relations S if
there is a CNF(S)-formula ϕ such that:

(1) R = {a : ∃y ϕ(a,y)};
(2) For every a ∈ R, the graph G(ϕ(a,y)) is connected;
(3) For a,b ∈ R with |a−b| = 1, there exists a w such that (a,w) and (b,w)

are solutions of ϕ.

For a ∈ R, the witnesses of a are the y’s such that ϕ(a,y). The last two con-

ditions say that the witnesses of a ∈ R are connected, and that neighboring

a,b ∈ R have a common witness. This allows us to simulate an edge (a,b) in

G(R) by a path in G(ϕ), and thus relate the connectivity properties of the solu-

tion spaces. There is however, a price to pay: it is much harder to come up with

formulas that faithfully express a relation R. An example is when S is the set

of all paths of length 4 in {0, 1}
3
, a set that plays a crucial role in our proof.

While S3 is easily expressible from S in Schaefer’s sense, the CNF(S)-formulas

that faithfully express S3 are fairly complicated and have a large witness space.

Lemma 6. Let S and S
′ be sets of relations such that every R ∈ S is faith-

fully expressible from S
′. Given a CNF(S)-formula ψ(x), one can efficiently

construct a CNF(S
′
)-formula ϕ(x,y) such that:

(1) ψ(x) ≡ ∃y ϕ(x,y);
(2) if (s,ws

), (t,wt
) ∈ ϕ are connected in G(ϕ) by a path of length d, then

there is a path from s to t in G(ψ) of length at most d;
(3) If s, t ∈ ψ are connected in G(ψ), then for every witness ws of s, and

every witness wt of t, there is a path from (s,ws
) to (t,wt

) in G(ϕ).
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Proof. Suppose ψ is a formula on n variables that consists of m clauses C1, . . . ,

Cm. For clause Cj , assume that the set of variables is Vj ⊆ [n], and that it

involves relation Rj ∈ S. Thus, ψ(x) is ∧
m
j=1Rj(xVj ). Let ϕj be the faith-

ful expression for Rj from S
′
, so that Rj(xVj ) ≡ ∃yj ϕj(xVj ,yj). Let y be

the vector (y1, . . . ,ym) and let ϕ(x,y) be the formula ∧
m
j=1ϕj(xVj ,yj). Then

ψ(x) ≡ ∃y ϕ(x,y).

Statement (2) follows from (1) by projection of the path on the coordinates

of x. For statement (3), consider s, t ∈ ψ that are connected in G(ψ) via a path

s = u0
→ u1

→ · · · → ur
= t . For every ui

,ui+1
, and clause Cj , there exists an

assignment wi
j to yj such that both (ui

Vj ,w
i
j) and (ui+1

Vj ,w
i
j) are solutions

of ϕj , by condition (2) of faithful expressibility. Thus (ui
,wi

) and (ui+1
,wi

) are

both solutions of ϕ, where wi
= (wi

1, . . .wi
m). Further, for every ui

, the space of

solutions of ϕ(ui
,y) is the product space of the solutions of ϕj(ui

Vj ,yj) over j =

1, . . . ,m. Since these are all connected by condition (3) of faithful expressibility,

G(ϕ(ui
,y)) is connected. The following describes a path from (s,ws

) to (t,wt
)

in G(ϕ): (s,ws
) � (s,w0

) → (u1
,w0

) � (u1
,w1

) → · · · � (ur−1
,wr−1

) →

(t,wr−1
) � (t,wt

). Here � indicates a path in G(ϕ(ui
,y)). ��

Corollary 3. Suppose S and S
′ are as in Lemma 6.

(1) There are polynomial time reductions from Conn(S) to Conn(S
′
), and from

st-Conn(S) to st-Conn(S
′
).

(2) Given a CNF(S)-formula ψ(x) with m clauses, one can efficiently construct
a CNF(S

′
)-formula ϕ(x,y) such that the length of y is O(m) and the diameter

of the solution space does not decrease.

4.2 Expressing 3-Clauses from Non-tight Sets of Relations

In order prove Theorems 2, 3 and 4, it suffices to prove the following Lemma:

Lemma 7. If set S of relations is non-tight, S3 is faithfully expressible from S.

First, observe that all 2-clauses are faithfully expressible from S. There exists

R ∈ S which is not OR-free, so we can express (x1∨x2) by substituting constants

in R. Similarly, we can express (x̄1 ∨ x̄2) using a relation that is not NAND-free.

The last 2-clause (x1 ∨ x̄2) can be obtained from OR and NAND by a technique

that corresponds to reverse resolution. (x1 ∨ x̄2) = ∃y (x1 ∨ y) ∧ (ȳ ∨ x̄2). It is

easy to see that this gives a faithful expression. From here onwards we assume

that S contains all 2-clauses. The proof now proceeds in four steps.

Step 1: Faithfully expressing a relation in which some distance expands.
For a relation R, we say that the distance between a and b expands if a and b
are connected in G(R), but dR(a,b) > |a−b|. By Lemma 2 no distance expands

in componentwise bijunctive relations. This property also holds for the relation

RNAE = {0, 1}
3
\ {000, 111}, which is not componentwise bijunctive. However,

we show that if Q is not componentwise bijunctive, then, by adding 2-clauses, we

can faithfully express a relationQ
′
in which some distance expands. For instance,

when Q = RNAE, then we can take Q
′
(x1, x2, x3) = RNAE(x1, x2, x3)∧ (x̄1 ∨ x̄3).
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011
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RNAE(x1, x2, x3) RNAE(x1, x2, x3) ∧ (x̄1 ∨ x̄2)

Fig. 1. Proof of Lemma 8

The distance between a = 100 and b = 001 in Q
′

expands. Similarly, in the

general construction, we identify a and b on a cycle, and add 2-clauses that

eliminate all the vertices along the shorter arc between a and b.

Step 2: Isolating a pair of assignments whose distance expands.
The relation Q

′
obtained in Step 1 may have several disconnected components.

This cleanup step isolates a pair of assignments whose distance expands. By

adding 2-clauses, we obtain a relation T that consists of a pair of assignments

a,b of Hamming distance r and a path of length r + 2 between them.

Step 3: Faithfully expressing paths of length 4.
Let P denote the set of all ternary relations whose graph is a path of length 4

between two assignments at Hamming distance 2. Up to permutations of coor-

dinates, there are 6 such relations. Each of them is the conjunction of a 3-clause

and a 2-clause. For instance, the relation M = {100, 110, 010, 011, 001} can be

written as of (x1∨x2∨x3)∧(x̄1∨ x̄3). These relations are “minimal” examples of

relations that are not componentwise bijunctive. By projecting out intermediate

variables from the path T obtained in Step 2, we faithfully express one of the

relations in P . We faithfully express other relations in P using this relation.

Step 4: Faithfully expressing S3.
We faithfully express (x1 ∨ x2 ∨ x3) from M using a formula derived from a

gadget in [19]. This gadget expresses (x1 ∨ x2 ∨x3) in terms of “Protected OR”,

which corresponds to our relation M . From this, we express the other 3-clauses.

Lemma 8. There exist a CNF(S)-definable relation Q
′ and a,b ∈ Q

′ such that
the distance between them expands.

Proof. Since S is not tight, it contains a relation Q which is not componentwise

bijunctive. If Q contains a,b where the distance between them expands, we are

done. So assume that for all a,b ∈ G(Q), dQ(a,b) = |a − b|. Since Q is not

componentwise bijunctive, there exists a triple of assignments a,b, c lying in the

same component such that maj(a,b, c) is not in that component (which also

easily implies it is not in Q). Choose the triple such that the sum of pairwise

distances dQ(a,b) + dQ(b, c) + dQ(c,a) is minimized. Let U = {i|ai = bi},

V = {i|bi = ci}, and W = {i|ci = ai}. Since dQ(a,b) = |a− b|, a shortest path

does not flip variables outside of U , and each variable in U is flipped exactly

once. We note some useful properties of the sets U, V,W .
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1) Every index i ∈ U ∪ V ∪W occurs in exactly two of U, V,W .
Consider going by a shortest path from a to b to c and back to a. Every i ∈

U ∪ V ∪W is seen an even number of times along this path since we return to

a. It is seen at least once, and at most thrice, so in fact it occurs twice.

2) Every pairwise intersection U ∩ V, V ∩W and W ∩ U is non-empty.
Suppose the sets U and V are disjoint. From Property 1, we must have W =

U ∪ V . But then it is easy to see that maj(a,b, c) = b which is in Q. This

contradicts the choice of a,b, c.
3)The sets U ∩ V and U ∩W partition the set U .

By Property 1, each index of U occurs in one of V and W as well. Also since no

index occurs in all three sets U, V,W this is in fact a disjoint partition.

4)For each index i ∈ U ∩W , it holds that a⊕ ei ∈ Q.
Assume for the sake of contradiction that a′

= a⊕ ei ∈ R. Since i ∈ U ∩W we

have simultaneously moved closer to both b and c. Hence dQ(a′
,b)+dQ(b, c)+

dQ(c,a′
) < dQ(a,b)+dQ(b, c)+dQ(c,a). Also maj(a′

,b, c) = maj(a,b, c) ∈ Q.

But this contradicts our choice of a,b, c.
Property 4 implies that the shortest paths to b and c diverge at a, since for

any shortest path to b the first variable flipped is from U ∩ V whereas for a

shortest path to c it is from W ∩ V . Similar statements hold for the vertices b
and c. Thus along the shortest path from a to b the first bit flipped is from U∩V

and the last bit flipped is from U ∩W . On the other hand, if we go from a to c
and then to b, all the bits from U ∩W are flipped before the bits from U ∩ V .

We use this crucially to define Q
′
. We will add a set of 2-clauses that enforce the

following rule on paths starting at a: Flip variables from U ∩W before variables
from U ∩ V . This will eliminate all shortest paths from a to b since they begin

by flipping a variable in U ∩ V and end with U ∩W . The paths from a to b via

c survive since they flip U ∩W while going from a to c and U ∩ V while going

from c to b. However all remaining paths have length at least |a− b| + 2 since

they flip twice some variables not in U .

Take all pairs of indices {(i, j)|i ∈ U ∩W, j ∈ U ∩ V }. The following condi-

tions hold from the definition of U, V,W : ai = c̄i = b̄i and aj = cj = b̄j . Add

the 2-clause Cij asserting that the pair of variables xixj must take values in

{aiaj , cicj , bibj} = {aiaj , āiaj , āiāj}. The new relation is Q
′
= Q ∧i,j Cij . Note

that Q
′
⊂ Q. We verify that the distance between a and b in Q

′
expands. It is

easy to see that for any j ∈ U , the assignment a⊕ ej ∈ Q
′
. Hence there are no

shortest paths left from a to b. On the other hand, it is easy to see that a and

b are still connected, since the vertex c is still reachable from both. ��

Due to space constraints, all remaining proofs are in the full version.

5 Discussion and Open Problems

In Section 2, we conjectured a trichotomy for Conn(S). We have made progress

towards this conjecture; what remains is to pinpoint the complexity of Conn(S)

when S is Horn or dual-Horn. We can extend our dichotomy theorem for st-

connectivity to formulas without constants; the complexity of connectivity for
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formulas without constants is open. We conjecture that when S is not tight, one

can improve the diameter bound from 2
Ω(

√
n)

to 2
Ω(n)

. Finally, we believe that

our techniques can shed light on other connectivity-related problems, such as

approximating the diameter and counting the number of components.
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Abstract. Suffix trees and suffix arrays are two of the most widely
used data structures for text indexing. Each uses linear space and can be
constructed in linear time [3,5,6,7]. However, when it comes to answering
queries, the prior does so in O(m log |Σ|) time, where m is the query size,
|Σ| is the alphabet size, and the latter does so in O(m + log n), where n
is the text size. We propose a novel way of combining the two into, what
we call, a suffix tray. The space and construction time remain linear and
the query time improves to O(m + log |Σ|).

We also consider the online version of indexing, where the indexing
structure continues to update the text online and queries are answered in
tandem. Here we suggest a suffix trist, a cross between a suffix tree and a
suffix list. It supports queries in O(m+log |Σ|). The space and text update
time of a suffix trist are the same as for the suffix tree or the suffix list.

1 Introduction

Indexing is one of the most important paradigms in searching. The idea is to

preprocess a text and construct a mechanism that will later provide answer to

queries of the form ”does a pattern P occur in the text” in time proportional to

the size of the pattern rather than the text. The suffix tree [3,9,10,11] and suffix

array [5,6,7,8] have proven to be invaluable data structures for indexing.

Both suffix trees and suffix arrays use O(n) space, where n is the text length.

In fact for alphabets from a polynomially sized range, both can be constructed

in linear time, see [3,5,6,7].

The query time is slightly different in the two data structures. Namely, in

suffix trees queries are answered in O(m log |Σ|+ occ), where m is the length of

the query, Σ is the alphabet, |Σ| is the alphabet size and occ is the number of

occurrences of the query. In suffix arrays the time is O(m+ log n+ occ). For the

rest of this paper we assume that we are only interested in one occurrence of

the pattern in the text, and note that we can find all of the occurrences of the

pattern with another additive occ cost in the query time.

The differences in the running times follows from the different way queries are

answered. In a suffix tree queries are answered by traversing the tree from the root.

At each node one needs to know how to continue the traversal and one needs to de-

cide between |Σ| options which are sorted, which explains theO(log |Σ|) factor. In

M. Bugliesi et al. (Eds.): ICALP 2006, Part I, LNCS 4051, pp. 358–369, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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suffix arrays one performs a binary search on all suffixes (hence the logn factor) and

uses longest common prefix (LCP) queries to quickly decide whether the pattern

needs to be compared to a specific suffix (see [8] for full details).

It is easy to construct a data structure with optimal O(m) query time. This

can be done by simply putting a |Σ| length array at every node of the suffix tree.

Hence, when traversing the suffix tree with the query we will spend constant time

at each node. However, the size of this structure is O(n|Σ|).

The question of interest here is whether one can construct an O(n) space

structure that will answer queries in time faster than the query time of suffix

arrays and suffix trees. We indeed propose to do so with the Suffix Tray, a new

data structure that extracts the advantages of suffix trees and suffix arrays by

combining their structures. This yields an O(m + log |Σ|) query time.

We are also concerned with texts that allow online update of the text. In other

words, given an indexing structure supporting indexing queries on S, we would

also like to support extensions of the text to Sa, where a ∈ Σ. We assume that

the text is given in reverse, i.e. from the last character towards the beginning.

So, an indexing structure of our desire when representing S will also support

extensions to aS where a ∈ Σ. We call the change of S to aS a text extension.

The ”reverse” assumption that we use is not strict, as most indexing structures

can handle online texts that are reversed (e.g. instead of a suffix tree one can

construct a prefix tree and answer the queries in reverse. Likewise, a prefix array

can be constructed instead of a suffix array).

Online constructions of indexing structures have been suggested previously.

McCreight’s suffix tree algorithm [9] was the first online construction. It was a

reverse construction (in the sense mentioned above). Ukkonen’s algorithm [10]

was the first online algorithm that was not reversed. In both these algorithms

text extensions take O(1) amortized time, but O(n) worst-case time. In [1] an

online suffix tree construction (under the reverse assumption) was proposed with

O(log n) worst-case text extensions. In all these constructions a full suffix tree

is constructed and hence queries are answered in O(m log |Σ|) time. An on-line

variant of suffix arrays was also proposed in [1] with O(log n) worst-case for

text extensions and O(m + logn) for answering queries. Similar results can be

obtained by using the results in [4].

The problem we deal with in the second part of the paper is how to build

an indexing structure that supports both text extensions and supports fast(er)

indexing. We will show that if there exists an online construction for a linear-

space suffix tree such that the cost of adding a character is O(f(n, |Σ|)) (n is

the size of the current text), then we can construct an online linear-space data-

structure for indexing that supports indexing queries in time O(m + log |Σ|),

where the cost of adding a character is O(f(n, |Σ|) + log |Σ|). We will call this

data structure the Suffix Trist1.

1 The name Suffix Trist is derived from the combination of suffix trees and suffix lists,
the dynamic version of the suffix array. Of course, one may argue that it may be
preferable to work with prefix arrays and prefix lists. Then one would receive Prefix
Prays and Prefix Priests.
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2 Suffix Trees, Suffix Arrays and Suffix Intervals

Consider a text S of length n and let S
1
, · · · , S

n
be the suffixes of S. Two

classical data structures for indexing are the suffix tree and the suffix array.

We assume that the reader is familiar with the suffix tree. Let S
i1 , ..., S

in be

the lexicographic ordering of the suffixes. The suffix array of S is defined to

be SA(S) =< i1, ..., in >, i.e. the indices of the lexicographic ordering of the

suffixes. We will sometimes refer to location j of the suffix array as the location

of S
ij (instead of the location of ij).

We let ST (S) and SA(S) denote the suffix tree and suffix array of S, respec-

tively. As with all suffix array constructions to date, we make the assumption

that every node in a suffix tree maintains its children in lexicographic order.

Therefore, the leaves ordered by an inorder traversal correspond to the suffixes

in lexicographic order, which is also the order maintained in the suffix array.

Hence, one can view the suffix tree as a tree over the suffix array.

We will now sharpen this connection between suffix arrays and suffix trees.

For strings R and R
′

we say that R <L R
′
if R is lexicographically smaller

than R
′
. leaf(S

i
) denotes the leaf corresponding to S

i
in ST (S), the suffix tree

of S. We define L(v) = SA
−1

(i) if leaf(S
i
) is the leftmost leaf of the subtree of v,

i.e. L(v) is the location of S
i
in the suffix array. Note that since we assume that

the children of a node in a suffix tree are maintained in lexicographic order, it

follows that for all S
j
such that leaf(S

j
) is a descendant of v, S

i
≤L S

j
. Likewise,

we define R(v) = SA
−1

(i) if leaf(S
i
) is the rightmost leaf of the subtree of v.

Therefore, for all S
j

such that leaf(S
j
) is a descendant of v, S

i
≥L S

j
. Hence,

the interval [L(v), R(v)] is an interval of the suffix array which contains exactly

all the suffixes S
j

for which leaf(S
j
) is a descendant of v.

Moreover, under the assumption that the children of a node in a suffix tree

are maintained in lexicographic ordering we can state the following.

Lemma 1. Let S be a string and ST (S) its suffix tree. Let v be a node in ST (S)

and let v1, ..., vr be its children. Let 1 ≤ i ≤ j ≤ r, and let [L(vi), R(vj)] be an
interval of the suffix array. Then k ∈ [L(vi), R(vj)] if and only if leaf(S

k
) is in

one of the subtrees rooted at vi, ..., vj.

This leads us to the following concept.

Definition 1. Let S be a string and {Si1 , ..., Sin} be the lexicographic ordering
of its suffixes. The interval [j, k] = {ij, ..., ik}, for j ≤ k, is called a suffix

interval.

Obviously, suffix intervals are intervals of the suffix array. We note that, as

mentioned above, for a node v in a suffix tree, [L(v), R(v)] is a suffix interval

and we call the interval v’s suffix interval. Also, by Lemma 1 for v’s children

v1, ..., vr and for any 1 ≤ i ≤ j ≤ r, [L(vi), R(vj)] is a suffix interval and we call

this interval the (i, j)-suffix interval.
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3 Faster Indexing on Static Text

3.1 Suffix Trays

We now elaborate on the suffix tray. The suffix tray will use the concept of suffix

intervals from the previous section which, as we have seen, is common to both

suffix arrays and suffix trees.

For suffix trays we will create special nodes, which correspond to suffix inter-

vals. We call these nodes suffix interval nodes. Part of the suffix tray will be a

suffix array. Each suffix interval node can be viewed as a node that maintains

the endpoints of the interval within the complete suffix array.

Second, we use the idea of the space-inefficientO(n|Σ|) suffix tree solution men-

tioned in the introduction. We maintain |Σ| length arrays at a selected subset of

nodes, a subset that contains no more that
n
|Σ| nodes, which maintains the O(n)

space bound. To choose this selected subset of nodes we define the following.

Definition 2. Let S be a string over alphabet Σ. A node u in ST (S) is called a
σ-node if the number of leaves in the subtree of ST (S) rooted at u is at least |Σ|.
A σ-node u is called a branching-σ-node, if at least two of u’s children in ST (S)

are σ-nodes and is called a σ-leaf if all its children in ST (S) are not σ-nodes.

Note that if a node u is a σ-node, then all of its ancestors are σ-nodes. This also

implies that in a σ-leaf’s subtree there are no σ-nodes. The following property

of branching-σ-nodes is crucial to our result.

Lemma 2. Let S be a string of size n over an alphabet Σ and let ST (S) be its
suffix tree. The number of branching-σ-nodes in ST (S) is O(

n
|Σ|).

Proof. The number of σ-leaves is at most
n
|Σ| because (1) they each have at least

|Σ| leaves in their subtree and (2) their subtrees are disjoint. Let T be the tree

induced by the σ-nodes and contracted onto the branching-σ-nodes and σ-leaves

only. Then T is a tree with
n
|Σ| leaves and with every internal node having at

least 2 children. Hence, the lemma follows. ��

This means that we can afford to maintain arrays at every branching-σ-node

which will be very helpful in answering queries as we shall see in subsection 3.3.

3.2 Suffix Tray Construction

A suffix tray is constructed from a suffix tree as follows. The suffix tray contains

all the σ-nodes of the suffix tree. We also add some suffix interval nodes to the

suffix tray as children of σ-nodes. Here is how each σ-node is converted from the

suffix tree to the suffix tray.

– σ-leaf u: u becomes a suffix interval node with suffix interval [L(u), R(u)].

– non-leaf σ-node u: Let u1, ..., ur be u’s children in the suffix tree and ul1 , ...,

ulx be the subset of children that are σ-nodes. Then u will be in the suffix

tray with interleaving suffix interval nodes and σ-nodes, i.e. (1, l1− 1)-suffix

interval node, ul1 , (l1 + 1, l2− 1)-suffix interval node, ul2 , ..., ulx , (lx + 1, r)-

suffix interval node.
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At each branching-σ-node u in the suffix tray we maintain an array of size |Σ|,

denoted by Au, that contains the following data. For every child v of u that is a

σ-node, location τ in Au where τ is the first character on the edge (u, v), points

to v. The rest of the locations in Au point to the appropriate suffix-interval node,

or to a NIL pointer if no such suffix interval exists.

At each σ-node u which is not a branching-σ-node and not a σ-leaf, i.e. it has

exactly one child v which is a σ-node, we store the first character τ on the edge

(u, v), which we call the separating character.
We now claim that the suffix tray is of linear size.

Lemma 3. Let S be a string of size n. Then the size of the suffix tray for S is
O(n).

Proof. The suffix array is clearly of size O(n) and the number of suffix interval

nodes is bounded by the number of nodes in ST (S). Also, for each non branching-

σ-node the auxiliary information is of constant size.

The auxiliary information held in each branching-σ-node is of size O(|Σ|). By

Lemma 2 there are
n
|Σ| branching-σ-nodes. Hence, this all is of size O(n). ��

Obviously, given a suffix tree and suffix array, a suffix tray can be constructed

in linear time (using depth-first searches, and standard techniques). Since both

suffix arrays and suffix trees can be constructed in linear time for alphabets from

a polynomially sized range [3,5,6,7], so can suffix trays.

3.3 Navigating on Index Queries

We now turn to the important feature of suffix trays, answering index queries.

Upon receiving a query P = p1...pm we begin traversing the suffix tray from

the root. Assume that we have traversed the suffix tray with p1...pi−1 and need

to continue with pi...pm. At each branching-σ-node u we access location pi of

the array Au in order to know which suffix tray node to navigate to. Obviously,

since this is an array lookup this takes us constant time. For other σ-nodes that

are not σ-leaves and not branching-σ-nodes we compare pi with the separator

character τ . Recall that these nodes have only one child v that is a σ-node.

Hence, in the suffix tray the children of u are (1) a suffix interval node to the

left of v, say u’s left interval, (2) v, and (3) a suffix interval node to the right of

v, say u’s right interval. If pi < τ we navigate to u’s left interval. If pi > τ we

navigate to u’s right interval. If pi = τ we navigate to the only child of u that is

a σ-node. If u is a σ-leaf then we are at u’s suffix interval.

To search within a suffix interval [j, k] we apply the standard suffix array

search beginning with boundaries [j, k]. The time to search in this structure is

O(m + log I), where I is the interval size. Hence, the following is important.

Lemma 4. Every suffix interval in a suffix tray is of size O(|Σ|
2
).

Proof. Consider an (i, j)-suffix interval, i.e. the interval [L(vi), R(vj)] which stems

from a node v with children v1, ..., vr. Note that by Lemma 1 the (i, j)-suffix

interval contains the suffixes which are represented by leaves in the subtrees of
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vi, ..., vj . However, vi, ..., vj are not σ-nodes (by suffix tray construction). Hence,

each subtree of those nodes contains at most |Σ| − 1 leaves. Since j − i+ 1 ≤ |Σ|

the overall size of the (i, j)-suffix interval is O(|Σ|
2
).

A suffix interval [L(v), R(v)] is maintained only for σ-leaves. As none of the

children of v are σ-nodes this is a special case of the (i, j)-suffix interval. ��

By the discussion above and Lemma 4 the running time for answering an indexing

query is O(m+log |Σ|). Summarizing the discussion of the whole section we can

claim the following.

Theorem 1. Let S be a length n string over an alphabet Σ. The suffix tray
of S is (1) of size O(n), (2) can be constructed in O(n + constructST (n,Σ) +

constructSA(n,Σ)) time (where constructST (n,Σ) and constructSA(n,Σ) are
the times to construct the suffix tree and suffix array) and (3) supports indexing
queries (of size m) in time O(m + log |Σ|).

4 The Online Scenario

In this section we deal with the problem of how to build an indexing structure

that supports both text extensions and supports fast(er) indexing. We show that

if there exists an online construction for a linear-space suffix tree such that the

cost of adding a character is O(f(n, |Σ|)) (n is the size of the current text),

then we can construct an online linear-space data-structure for indexing that

supports indexing queries in time O(m + log |Σ|), where the cost of adding a

character is O(f(n, |Σ|) + log |Σ|). During the construction, we will treat the

online linear-space suffix-tree construction as a suffix-tree oracle that provides

us with the appropriate updates to the suffix tree. Specifically, the best known

current construction supports text extensions in O(log n), see introduction. As

already mentioned, the data structure we present is called the Suffix Trist.

The suffix trist imitates the suffix trays. We still use σ-nodes and branching-

σ-nodes in the suffix tree, and the method for answering indexing queries is

similar. However, new issues arise in the online model:

– Suffix arrays are static data structures and, hence, do not support insertion

of new suffixes.

– The status of nodes changes as time progresses (non-σ-nodes become σ-

nodes, and σ-nodes become branching-σ-nodes).

4.1 Balanced Indexing Structures and Suffix Trists

In order to solve the first of the two problems we turn to a dynamic variant of

suffix arrays which can be viewed as a structure above a suffix list.

The Balanced-Indexing-Structure, BIS for short, was introduced in [1]. BIS is

a binary search tree over the suffixes where the ordering is lexicographic. In [1] it

was shown how the BIS can be updated in O(log n) time for every text extension,

where n is the current text size. Moreover, a BIS supports indexing queries in

time O(m + logn), where m is the query size.
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This leads to the following idea for creating a Suffix Trist instead of a suffix

tray. Take a separate BIS for every suffix interval. Since the suffix intervals are

of size O(|Σ|
2
) the search time in those small BISs will be O(m + log |Σ|).

However, things are not as simple as they seem. Insertion of suffix aS into

a BIS for a string S assume that we have all the suffixes of S in the BIS, or

more specifically assumes that the suffix S itself is in the BIS. This may not be

the case if we limit the BIS to a suffix interval, which contains only part of the

suffixes. Nevertheless, in our case there is a way to circumvent this problem. We

describe the solution in the next subsection.

Also, we still need to deal with the second problem of nodes changing status.

Our solution is a direct deamortized solution and is presented in Section 5.

4.2 Inserting New Nodes into BISs

When we perform a text extension from S to aS, the suffix tree is updated to

represent the new text aS (by our suffix-tree oracle). Specifically, a new leaf,

corresponding to the new suffix, is added to the suffix tree, and perhaps one

internal node is also added. If such an internal node is inserted, then that node

is the parent of the new leaf and this happens in the event that the new suffix

diverges from an edge (in the suffix tree of S) at a location where no node

previously existed. In this case an edge needs to be broken into two and the

internal node is added at that point.

Since we assume that the online suffix tree is given to us, what we need to

show is how to update the suffix trist using the suffix tree (updated by the

oracle). The problem is (1) to find the correct BIS in which to insert the new

node and (2) to actually insert it into this BIS. Of course, this may change the

status of internal nodes, which we handle in Section 5. We focus on solving (1)

and mention that (2) can be solved by BIS tricks in O(log |Σ|) time, which we

defer to a full version, but mention that they are similar to what appears in [1]

and hence we find it somewhat less interesting here.

The following lemma which we state without proof will be useful and follows

from the definition of suffix trists.

Lemma 5. For a node u in a suffix tree, if u is not a σ-node, then all of the
leaves in u’s subtree are in the same BIS.

It will also be handy to maintain a pointer leaf(u) to some leaf in u’s subtree

for every node u in the suffix tree. This variant can easily be maintained under

text extensions using standard techniques.

In order to find the correct BIS in which the new node is to be inserted we

consider two cases. First, consider the case where the new leaf u in the suffix

tree is inserted as a child of an already existing internal node v. If v is not a

σ-node, then from Lemma 5 we know that leaf(v) and u need to be in the same

BIS. By traversing up from leaf(v) to the root of the BIS (in O(log |Σ|) time)

we can find the root of the BIS which needs to include the new node u. If v is a

σ-node, then we can locate the root of the appropriate BIS in constant time: if v

is a branching-σ-node, then we can find the BIS in constant time from the array
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in v (we will guarantee that this holds in the online setting as well). If v is a

σ-leaf then there is only one possible BIS. Otherwise, (v is a non-leaf σ-node but

not a branching-σ-node) we can the find correct BIS of the two possible BISs by

examining the separating character maintained in v.

Next, consider the case where the new leaf u in the suffix tree is inserted as a

child of a new internal node v. Let w be v’s parent, and let w
′
be v’s other child

(not u). We first ignore u completely by treating the new tree as the suffix tree

of S where the edge (w,w
′
) is broken into two, creating the new node v. After

we show how to update the trist to include v, we can add u as we did in the case

that v was already an internal node. In order to determine the status of v, note

that v cannot be a branching-σ-node. Moreover, note that the number of leaves

in v’s subtree is the same as the number of leaves in the subtree rooted at w
′

(as we are currently ignoring u). So, if w
′
is not a σ-node, v is not a σ-node, and

otherwise, v is a σ-node with a separating character that is the first character

of the label of edge (v, w
′
). Note that the entire process takes O(log |Σ|) time,

as required.

5 When a Node Changes Status

Before explaining how to update a node that becomes a σ-node, we must explain

how to detect that this event has taken place. This is explained next.

5.1 Detecting a New σ-Node

Let u be a new σ-node and let v be its parent. Just before u becomes a σ-node,

(1) v must have already been a σ-node and (2) u ∈ {vi, ..., vj} and is associated

with an (i, j)-suffix interval represented by a suffix interval node w that is a child

of v in the suffix trist. Hence, we will be able to detect when a new σ-node is

created if we maintain counters for each of the (suffix tree) nodes vi, ..., vj to

count the number of leaves in their subtrees (in the suffix tree). These counters

are maintained in a binary search tree, which we associate with the BIS, and

each counter vk is indexed by the the first character on the edge (v, vk).

The update of the counters can be done as follows. When a new leaf is added

into a given BIS of a suffix trist at suffix interval node w of the BIS, where u

is the parent of w, we need to increase the counter of vk in the BIS, where vk

is the one node (of the nodes of vi, ..., vj of the suffix interval of the BIS) which

is an ancestor of the new leaf. The counter of vk can be found in O(log |Σ|)

(as there are at most |Σ| nodes in the binary search tree for the counters). The

appropriate counter is found by searching with the character that appears on

the new suffix at the location immediately after |label(v)|; the character can be

found in constant time by accessing it from a pointer from node v into the text.

Note that when a new internal node was inserted into the suffix tree as de-

scribed in the previous section, it is possible that the newly inserted internal

node is now one of the nodes vi, ..., vj for an (i, j)-suffix interval. In such a case,

when the new node is inserted, it copies the number of leaves in its subtree from
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its only child (as we explained in the previous section we ignore the newly in-

serted leaf), as that child was previously maintaining the number of leaves in its

subtree. Furthermore, from now on we will only update the size of the subtree

of the newly inserted node, and not the size of its child subtree.

5.2 Updating the New σ-Node

Let u be the new σ-node (which is, of course, a σ-leaf) and let v be its parent.

As discussed in the previous subsection u ∈ {vi, ..., vj} where vi, ..., vj are the

children of v (in the suffix tree) and, as discussed in the previous subsection,

just before becoming a σ-node there was a suffix interval node w that was an

(i, j)-suffix interval with a BIS representing it.

Updating the new σ-node will require two things. First, we need to split the

BIS into 3 parts; two new BISs and the new σ-leaf that separates between them.

Second, for the new σ-leaf we will need to add the separating character (easy)

and to create a new set of counters for the children of u (more complicated).

The first goal will be to split the BIS that has just been updated into three

- the nodes corresponding to suffixes in u’s subtree, the nodes corresponding to

suffixes that are lexicographically smaller than the suffixes in u’s subtree, and

the nodes corresponding to suffixes that are lexicographically larger than the

suffixes in u’s subtree.

As is well-known, for a given a value x, splitting a BST, balanced suffix tree,

into two BSTs at value x can be implemented in O(h) time, where h is the

height of the BST. The same is true for BISs (although there is a bit more

technicalities to handle the auxiliary information). Since the height of BISs is

O(log |Σ|) we can split a BIS into two BISs in O(log |Σ|) time and by finding

the suffixes (nodes in the BIS) that correspond to the rightmost and leftmost

leaves of the subtree of u, we can split the BIS into the three desired parts in

O(log |Σ|) time. Fortunately, we can find the two nodes in the BIS in O(log |Σ|)

time using leaf(u), the length of label(u), and the auxiliary data in the BIS. We

leave the full details for the full version.

We now turn to creating the new counters. Denote the children of u by

u1, ..., uk. We first note that the number of suffixes in a subtree of ui can be

counted in O(log |Σ|) time by a traversal in the BIS using classical tricks of

binary search trees. We now show that we have enough time to update all the

counters of u1, ..., uk before one of them becomes a σ-node, while still maintain-

ing the O(log |Σ|) bound per update.

Specifically, we will update the counters during the first k insertions into the

BIS of u (following the event of u becoming a σ-node). At each insertion we

update one of the counters. What is critical for this to be done in time for the

counters to be useful, i.e. in time to detect a new σ-node occurring in the subtree

of u. The following lemma is precisely what is needed.

Lemma 6. Let u be a node in the suffix tree, and let u1, ..., uk be u’s children (in
the suffix tree). Say u has just become a σ-node. Then at this time, the number
of leaves in each of the subtrees of u’s children is at most |Σ| − k + 1.
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Proof. Assume by contradiction that this is not the case. Specifically, assume

that child vi has at least |Σ| − k + 2 leaves in its subtree at this time. Clearly,

the number of leaves in each of the subtrees is at least one. So summing up the

number of leaves in all of the subtrees of u1, ..., uk is at least |Σ|−k+2+k−1 =

|Σ| + 1, contradicting the fact that u just became a σ-node (it should have

already been a σ-node). ��

5.3 When a σ-Leaf Loses Its Status

The situation where a σ-leaf becomes a non-leaf σ-node is actually a case that we

have covered in the previous subsection. Let v be a σ-leaf that is about to change

its status to a non-leaf σ-node. This happens because one of its children vk is

about to become a σ-leaf. Note that just before the change v is a suffix interval

node. As in the previous subsection we will need to split the BIS representing

the suffix interval into three parts, and the details are exactly the same as in the

previous subsection. As before this is done in O(log |Σ|) time.

5.4 When a σ-Node Becomes a Branching-σ-Node

Let v be a σ-node that is changing its status to a branching-σ-node. Just before it

changes its status it had exactly one child vj which was a σ-node. The change in

status must occur because another child (in the suffix tree), say vi, has become

a σ-leaf (and now that v has two children that are σ-nodes it has become a

branching-σ-node).

Just before becoming a branching-σ-node v contained a separating character

τ , the first character on the edge (v, vj), and two suffix interval nodes w and x,

corresponding to the left interval of v and the right interval of v, respectively.

Now that vi became a σ-leaf w was split into three parts (as described in sub-

section 5.2). Assume, without loss of generality, that vi precedes vj in the list of

v’s children. So, in the suffix trist the children of v are (1) a suffix interval node

wL, (2) a σ-leaf vi, (3) a suffix interval node wL, (4) a σ-node vj , and (5) a suffix

interval node x. We will denote with B1, B2 and B3 the BISs that represent the

suffix interval nodes wL, wR and x.

The main problem here is that constructing the array Av takes too much

time, so we must use a different approach and spread the construction over some

time. We first give a pseudo-amortized solution and then mention how to (really)

deamortize it. The following lemma allows us this time.

Lemma 7. From the time that w becomes a branching-σ-node, at least |Σ| in-
sertions are required into B1, B2 or B3 before any node in the subtree of v (in
the suffix tree) that is not in the subtrees of vi or vj becomes a branching-σ-node.

Proof. Clearly, at this time, any node in the subtree of v (in the suffix tree) that

is not in the subtrees of vi or vj has fewer than |Σ| leaves in its subtree. On the

other hand, note that any branching-σ-node must have at least 2|Σ| leaves in

its subtree, as it has at least two children that are σ-nodes, each contributing at

least |Σ| leaves. Thus, in order for a node in the subtree of v (in the suffix tree)
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that is not in the subtrees of vi or vj to become a branching-σ-node, at least |Σ|

leaves need to be added into its subtree, as required. ��

This yields the pseudo-amortized result, as we can always amortize the Av con-

struction over its insertions into B1, B2 and B3. The crucial observation that

follows from Lemma 7 that on any given search path we charge for at most

one branching-σ-nodes construction, even if we go through several branching-σ-

nodes.

The reason that we call this a pseudo-amortized result is because the Av

construction charges on future insertions that may not occur. So, we take a lazy

approach to solve this problem and this also yields the deamortized result.

We start by using the folklore trick of initializing the array Av in constant

time. Then every time an insertion takes place into one of B1, B2 or B3 we

add one more element to the array Av. Lemma 7 assures us that Av will be

constructed before we begin to handle a branching-σ-node that is a descendant

of v but not of vi or vj .

This scheme allows us to construct Av while maintaining the O(log |Σ|) time

bound. However, it is still unclear how an indexing query should be answered

when encountering v on the traversal of the suffix tree. This is because on the

one hand Av might not be fully constructed, and on the other hand, as time

progresses, v might have a non-constant number of children that are σ-nodes.

We overcome this issue as follows. We continue to maintain the initial separating

character τ of v and another separator τ
′
, the first character on the edge (v, vi),

until Av is fully constructed. If we are at v during a traversal for a query and

the continuation of the traversal is to either vi or vj then we can discover this

in constant time from tau
′

or τ . For the rest of the children of v that are σ-

nodes, maintain them all in a BST, so that when answering an indexing query,

we can discover the appropriate place to continue in O(log|Σ|) time (as there are

only |Σ| children). This does not affect the time it takes to answer an indexing

query as we are guaranteed by Lemma 7 that if we need to use the BST of the

children that are σ-nodes, then we will not encounter any more branching-σ-

nodes afterwards. Thus, we at most add another O(log|Σ|) to the query time.

There is one more loose end that we need to deal with. When other children of

v (other, as opposed to vi and vj) become σ-nodes during the construction of Av,

this can affect many of the locations of Av. Specifically, updating accordingly

could take too much time (or might require too many insertions in order to

complete it). In order to solve this problem we define Av in a slightly different

way as opposed to the static case in order to support this. Each entry in Av will

point us to the edge whose label begins with the character of that entry, if such

an edge exists. If no such edge exists, we simply put a NIL. This still allows us to

spend constant time per branching-σ-node when answering an indexing query.

However, when we go on to the edge pointed by the appropriate location (during

the process of answering a query), we look at the node v
′
on the other side of the

edge. If v
′
is a σ-node, we continue to traverse from there. If v

′
is not a σ-node,

then we can find the appropriate BIS by following leaf(u), and traversing up to
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the root of the BIS in O(log |Σ|) time. Now, when a new node becomes a σ-node,

and its parent is already a branching-σ-node, no more changes are required.

Theorem 2. Let S be a string over an alphabet Σ. The suffix trist of S is (1) of
size O(n), (2) supports text extensions in time O(log |Σ|) + extensionST (n,Σ))

time (where extensionST (n,Σ)is the time for a text extension in the suffix tree)
and (3) supports indexing queries (of size m) in time O(m + log |Σ|).
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Abstract. We develop a new lower bound technique for data structures.
We show an optimal Ω(n lg lg n/ lg n) space lower bounds for storing an
index that allows to implement rank and select queries on a bit vec-
tor B provided that B is stored explicitly. These results improve upon
[Miltersen, SODA’05]. We show Ω((m/t) lg t) lower bounds for storing
rank/select index in the case where B has m 1-bits in it (e.g. low 0-
th entropy) and the algorithm is allowed to probe t bits of B. We
simplify the select index given in [Raman et al., SODA’02] and show
how to implement both rank and select queries with an index of size
(1+o(1))(n lg lg n/ lg n)+O(n/ lg n) (i.e. we give an explicit constant for
storage) in the RAM model with word size lg n.

1 Introduction

The term succinct data structure was first used by Jacobson in [2], where he de-

fined and proposed a solution to the following problem of implementing rank and

select queries. We are given a bit vector B of length n. The goal is to represent B

in such a way that rank and select queries about B can be answered efficiently.

Query rankB(i) returns the number of 1-bits in B before (and including) the

position i, and selectB(i) query returns the position of the i-th occurrence of 1

in B. We require that the representation should be succinct, that is, the amount

of space S it occupies is close to the information-theoretic minimum, namely

S = n+ o(n) in the case of bit vectors of length n. We consider this problem in

the RAM model with word size w = Θ(lg n). Jacobson proposed a data struc-

ture to perform rank queries that uses n + O(n lg lg n/ lgn) bits of space and

requires only O(1) time to compute the answer. His implementation of the se-

lect query requires O(lg n) bit accesses, but it does not take advantage of word

parallelism and runs in time that is more than a constant in RAM model. It was

subsequently improved by Clark [1], Munro et al. [4,5], and Raman et al. [6]. The

index proposed by Raman et al. [6] occupies O(n lg lg n/ lgn) bits, and the select

query is implemented in O(1) time. All these data structures belong to a class of

indexing data structures. An indexing data structure stores data in “raw form”

(i.e. B is stored explicitly) plus a small index I to facilitate implementation of

queries, such as rank and select. We denote the size of the index by r.

Miltersen [3] showed that any indexing data structure that allows O(1) time

implementation of rank (select) queries must use an index of size at least

M. Bugliesi et al. (Eds.): ICALP 2006, Part I, LNCS 4051, pp. 370–381, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Ω(n lg lgn/ lgn) bits (respectively Ω(n/ lgn) bits). The purpose of this paper is

to develop a new technique for showing lower bounds for indexing data struc-

tures. This technique allows to improve lower bounds of Miltersen [3] for both

rank and select problems to match the corresponding upper bounds.

For our lower bounds, we use the general indexing model which can be de-

scribed as follows. Our goal is to store and perform a set of queries on a given

family of combinatorial objects (e.g. rank/select on bit vectors). Let B be a

“raw” representation of a combinatorial object (e.g. a raw bit vector). We as-

sume that B is given to us free of charge, e.g. it is stored in external memory

such as a large database; or is provided by outside world, e.g. web graph [7]. Let

I be an index that aids performing the set of queries efficiently; presumably it is

stored in a relatively fast, expensive and/or limited memory. We are charged 1

unit of space for each bit in I, while access to I is free of charge. An algorithm

that performs a query has unlimited computation power, however we are charged

1 unit of time when it accesses (e.g. probes one bit) B.

We show that any algorithm in the indexing model that performs rank (re-

spectively select) queries with the time cost O(lg n), must have the space cost

at least Ω(n lg lg n/ lgn). Note that this setting is general enough; in particular,

it subsumes O(1) time RAM algorithms with word size O(lg n). Hence, (i) for

the select index, we improve the lower bound of Miltersen to the optimal; (ii)

for the rank index, we show the same bound, but in a more general setting.

We also consider the case where the number of 1-bits in a bit vector B is some

given number m (we call it cardinality). In this setting, for both rank and select

problems, we prove a theorem that any algorithm with the time cost t has the

space cost Ω((m/t) lg t). In particular this lower bound is optimal for bit vectors

of constant 0-th order entropy. This theorem also yields strong lower bounds in

the case m = Ω(n/ lg lg n).

We also give an implementation of select query that is simpler than the one

proposed by Raman et al. [6]. We also give an index that allows to implement

both rank and select queries in O(1) time and uses space (1 + o(1))(n lg lgn/

lgn)+O(n/ lg n). Thus, we give an explicit constant in front of the leading term

n lg lg n/ lgn. This index is simple and space efficient, and it might be of interest

to practitioners.

This paper is organized as follows. In the section 2, we give an implementation

for rank and select queries. In the section 3, we prove lower bounds for rank and

select indexes. In the section 4, we generalize the lower bounds from the section

3 to the case of bit vectors with a given cardinality.

2 Upper Bounds

In this section, we will simplify the result of Raman et. al [6] that gives an

optimal index for the select query of size O(n lg lgn/ lgn). We assume that the

word size is w = lg n for the part of the paper that deals with upper bounds; in

contrast, all lower bounds are shown in the indexing model (bit probes).

Then we will construct an optimal index for rank query of size (1 + o(1))(n lg

lgn/ lgn) + O(n/ lgn). A similar result was obtained by Jacobson [2]; however
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we implement both the rank and the select indexes simultaneously, such that

the space used is just n+ (1 + o(1))(n lg lgn/ lgn) +O(n/ lgn).

Both of these indexes share a component of size (1+ o(1))(n lg lg n/ lgn) that

we call a count index. The count index is constructed as follows: we split our bit

vector B into chunks of size lgn− 3 lg lgn. Then we store the number of 1-bits

in each chunk (we call it cardinality of a chunk) in equally spaced fields of size

lg lg n for a total of n lg lgn/(lg n− 3 lg lgn) = (1 + o(1))n lg lg n/ lgn bits.

2.1 Optimal Select Index

In this subsection, we describe a new simplified select index that uses the count

index plus an additional O(n/ lg n) bits. Let B be the bit vector of length n. Let

S1 = (lgn)
2
. We store the locations of each (iS1)-th occurrence of 1-bit in B,

for each 1 ≤ i ≤ n/S1. Note that normally the number of 1-bits in B is less than

n, so part of the range is unused. This takes O(n/ lg n) bits in total. We call

regions from position select(iS1) to position select((i+1)S1)−1 upper blocks. To

perform selectB(i), we first compute j = �i/S1� the number of the upper block

that the i-th bit is in, so that

selectB(i) = selectB(jS1) + selectUBi(i mod S1) (1)

where selectUBi denotes the select query with respect to the i-th upper block.

We call such an operation reduction from cardinality n to S1. Now we need to

implement the select query for upper blocks. We call an upper block sparse if its

length is at least (lg n)
4
. For a sparse block, we can just explicitly write answers

for all possible select queries, this will use at most (lg n)
3

bits. Intuitively, this

is roughly at most O(1/ lgn) indexing bits per one bit from B, so that the total

space used up by this part of the index sums up to O(n/ lgn) bits. We will

repeatedly use this 1/ lgn rule.

Let us consider a non-sparse upper block. It is a bit vector of cardinality S1 and

length at most (lg n)
4
. Thus, it takes O(lg lgn) bits to encode a pointer within

such a block. We perform cardinality reduction from S1 to S2 = lgn lg lg n.

Similarly to upper blocks, we introduce middle blocks, each having cardinality

S2. That is, encode every (iS2)-th occurrence of 1-bit in an upper block. This

information occupies O(lg lgn · lg n/ lg lgn) = O(lg n) bits for an upper block of

length at least (lg n)
2
, so that we use 1/ lgn bits for index per one bit from B, for

a total of at most O(n/ lgn) bits. We call a middle block sparse if it has length

more than (lg n lg lg n)
2
. If a middle block is sparse, then we can explicitly write

positions of all occurrences of 1-bits in it, this uses at most lg n(lg lgn)
2

bits (at

most O(1/ lg n) indexing bits per one original bit). We call a middle block dense
if its length is at most

(lgn)2

4 lg lgn .

If a middle block is neither sparse nor dense, then use cardinality reduction

from S2 to S3 = (lg lgn)
3
. Call the resulting blocks of cardinality S3 lower

blocks. That is, store every (iS3)-th occurrence of 1 in a middle block. This uses

lgn/ lg lg n bits per block of length at least
(lgn)2

2 lg lg n , hence O(1/ lg n) indexing

bits per original bit. We say that lower block is sparse if it has length at least



Optimal Lower Bounds for Rank and Select Indexes 373

lgn(lg lg n)
4

and dense otherwise. If a lower block is sparse, then we can explicitly

encode all 1-bit occurrences in it.

It remains to implement select query for dense middle and lower blocks. Con-

sider, for example, a dense middle block MB and implement selectMB(i) on

it. We first assume that MB is aligned with chunks, i.e. its starting (ending)

position coincide with starting (ending) position of some chunk (chunks are of

the size lgn−3 lg lgn). Recall that the length of MB is at most (lg n)
2
/4 lg lg n,

so that the part P of the count index that covers block MB (i.e. P encodes

cardinality of each chunk inside MB) is of the size at most (lg n)/2. Hence, we

can read P in one word and perform a lookup to a table T to compute the

number of the chunk where i-th 1-bit of MB is located. Table T is of size at

most
√

n lg n lg lg n × lg lgn, and it stores for each possible choice of P and for

each j = O(lg n lg lg n) the number of the chunk where j-th occurrence of 1 is

located (denote the corresponding chunk by C), and the rank of that occurrence

inside C (denote it by p). Now we can compute selectMB(j) by reading chunk

C and performing selectC(p) using a lookup to a table Q. Table Q is of size at

most O(2
lg n−3 lg lgn

· lg n × lg lg n) = O(n/ lgn), and it stores for each possible

chunk C and for each position k the result of selectC(k). The case where MB

is not aligned with chunks can be resolved by counting number of 1-bits in the

first chunk that partially belongs to MB (e.g. a lookup to a table that computes

rank within a chunk, we discuss this table later in the next subsection) and ad-

justing j accordingly. Clearly, select query for the case of dense lower blocks can

be implemented in the same way.

2.2 Optimal Rank Index

In this subsection, we show how to design the rank index using the count index

and additional O(n/ lg n) bits.

We divide the bit vector B into equally sized upper blocks of size S1 = (lgn)
2

bits each. For each upper block, we write the rank of the position preceding its

first position (rankB(0) = 0). This information uses O(n/ lg n) bits total. Now

we can compute rankB(i) as follows: first we compute j = �i/S1�, the number

of the upper block that contains i-th bit of B (denote the upper chunk by UC),

so that

rankB(i) = rankB(jS1 − 1) + rankUC(i mod S1) (2)

We call such an operation a length reduction from n to S1. Then we perform

another length reduction from S1 to S2 = lgn lg lgn. We call the corresponding

blocks of length S2 middle blocks. It takes lgn bits per an upper block of length

(lg n)
2

to describe ranks of the starting positions of middle blocks (each rank

uses lg lg n bits), so that we use 1/ lgn bits for index per one bit of B. Without

loss of generality, we can assume that middle blocks are always aligned with

chunks. Let MB be a middle block, we implement rankMB(i) as follows. Let

j = O(lg lg n) be the number of the chunk (denote it by C) that contains the

i-th bit of MB, j = �i/S3�, where S3 = lg n − 3 lg lgn denotes the length

of a chunk. One middle block of size S2 corresponds to a part P of counting

index of size at most O((lg lg n)
2
) bits, so that we can read it in one word and
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use one lookup to a table T to compute rankMB(jS3 − 1). Table T is of size

(lg n)
O(1)

lg lg lg n× lg lg n, and it stores rankMB(jS3− 1) for each possible part

P and chunk number j. Thus,

rankMB(i) = rankMB(jS3 − 1) + rankC(j mod S3) (3)

and the latter rank can be also computed by one lookup to the table Q. Recall

that table Q of size O(n/ lg n) stores for each possible chunk C and for each

position k the result of selectC(k).

3 Lower Bounds

In this section, we consider lower bounds for rank and select algorithms in the

indexing model with the time cost O(lg n), we denote the space cost (i.e. index

size) by r.

3.1 Rank Index

In this subsection we develop a new combinatorial technique and obtain

r = Ω(n lg n/ lg lg n) (4)

lower bound for the rank index.

Let us fix the mapping between bit vectors B and indexes I and fix an algo-

rithm that performs the rank query (i.e. it computes rankB(p) for a given p). As

we mentioned before, an algorithm is allowed to perform unlimited number of

bit probes to I and has unlimited computation power; we only limit the number

of bit probes it can perform to the bit vector B. Let us fix the number of bit

probes t = f lgn for some constant f > 0. We split the bit vector B into p blocks

of size k = t + lg n each. Let ni be the number of 1-bits in the i-th block, we

call ni the cardinality of i-th block. For each block i, 1 ≤ i ≤ p, we simulate the

rank query on the last position of the i-th block, si = rankB(ik − 1), so that

ni = si+1 − si. Note that we will have at least n− pt = p lgn = Ω(n) unprobed

bits after the computation is complete. Now we will construct a binary choices
tree. The first r levels correspond to all possible choices of index. At each node

at depth r of the tree constructed so far, we will attach the decision tree of the

computation that rank algorithm performed for the query rankB(k − 1) when

index I is fixed. The nodes are labeled by the positions in the bit vector that

algorithm probes and two outgoing edges are labeled 0 or 1 depending on the

outcome of the probe; we call the corresponding probe a 0-probe or 1-probe re-

spectively. At each leaf the previously constructed tree, we attach the decision

tree for rankB(2k − 1) and so on. Thus, the height of the tree is at most r + tp.

If the computation probes the same bit twice (even if the previous probe was

performed for a different rank query), we do not create a binary node for the

second and latter probes; instead we use the result of the first probe to the

bit. At the leaves of the tree all block cardinalities ni are computed. Let us fix

a leaf x, we call a bit vector B compatible with x iff: (1) the index (i.e. first r
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nodes) on the root to the leaf path correspond to the index for B; and (2) the

remaining nodes on the root to the leaf path correspond to the choices made by

the computation described above.

Let us bound the number C(x) of bit vectors B that are compatible with a

given leaf x (in what follows we will use C to denote C(x)).

...

r index levels

...

0           1

0           1

probe 
location i

Gy leaves with y 1-probes y = pty = 0

...

...

...

<= pt levels

Fig. 1. Choices tree. The leaves could be at different levels. Notation Gy will be defined

and used later in Section 4.

probed bit determined block undetermined block

Fig. 2. Bit vector at a leaf

Let ui be the number of unprobed bits in the block i, so that ui ≤ k and

p∑
i=1

ui = U (5)

where U is the total number of unprobed bits. At a given leaf, we have computed

all ni’s, and hence the sum of all unprobed bits (denote it by vi) in the block i

equals to ni minus the number of 1-probes in the i-th block. Therefore, we can

bound the number of bit vectors compatible with x by

C

2U
≤

(
u1
v1

)
2u1

(
u2
v2

)
2u2

. . .

(
up

vp

)
2up

(6)
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Let us classify blocks into two categories: determined and undetermined. We

call block i determined if ui ≤ U/(2p) (intuitively, when it has less than half of

the “average” number of unprobed bits) and call it undetermined otherwise. Let

d be the number of determined blocks. Then

U =

∑
i

ui ≤ dU/(2p) + (p− d)k (7)

hence

d ≤ p
k − U/p

k − U/(2p)
≤ (1− a)p (8)

where 0 < a < 1 is a constant. Thus, there is at least a constant fraction of

undetermined blocks. We bound
(
ui

vi

)
/2

ui < 1 for determined blocks, and(
ui

vi

)
2ui

≤

(
ui

ui/2

)
2ui

<
b
√

ui
≤

b√
U/(2p)

<
c

√

lg n
(9)

for undetermined blocks using Stirling formula, where b > 0 and c > 0 are

constants. Thus (6) can be bounded by

C

2U
≤

(
c

√

lg n

)ap
(10)

Recall that both C and U depend on x, so that U(x) = n + r − depth(x). We

can compute the following sum∑
x is a leaf

2
U(x)

= 2
n+r

∑
x is a leaf

2
−depth(x)

= 2
n+r

(11)

The total number of bit vectors B compatible with some leaf is at most

∑
x is a leaf

C(x) ≤ 2
n+r
(

c
√

lg n

)ap
(12)

However, each bit vector has to be compatible with at least one leaf

2
n
≤

∑
x is a leaf

C(x) (13)

Thus

r = Ω(n lg lgn/ lgn) (14)

The index presented in the previous section matches this lower bound up to a

constant factor.

Note that the techniques given by Miltersen [3] does not allow to obtain the

bound (4) in the case where we can perform O(lg n) bit probes to the bit vector

B; although in a more restricted case where only O(1) word probes are allowed
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his lower bound (4) is optimal. Miltersen [3] showed that the rank index has to

be of size r, such that

2(2r + lg(w + 1))tw ≥ n lg(w + 1) (15)

where w denotes the word size, t denotes the number of word probes, and r is

the size of an index. Miltersen reduces

(i) a set of Ω(n/ lg n) independent problems; problem i is to compute ni mod w,

where ni the number of 1-bits in the region [2ciw, 2c(i+ 1)w], where c is a con-

stant to

(ii) the problem of computing rank for positions 2ci lgn for all i, 0 ≤ i ≤

n/(2c lgn).

In each region of (i), 2c numbers j1, j2, . . . , j2c, such that 0 ≤ jk ≤ w are encoded

using unary representation 1
jk0

w−jk . He shows a lower bound (4) for (i) when

w = Θ(lg n). For the case w = 2, this method only yields r = Ω(n/ lg n). One

can try to generalize Miltersen’s approach to allow O(lg n) bit probes instead

of O(1) word probes. The difficulty is that in the bit probe model, a number at

most lg n represented in unary can be recognized using binary search in lg lgn

bit probes, so that each independent problem of (i) can be solved in O(lg lg n)

bit probes without using an index. One can also try to “shuffle” bits in unary

representation to disallow such binary searches, however it is not clear whether

such a proof can be completed. If one tries an approach, where regions of (i) are

of the length Ω(lg n) and w = 2, but then it suffices to store all the O(n/ lg n)

answer bits as the index, so that no bit probes are needed to the bit vector.

3.2 Select Index

In this subsection, we apply a similar combinatorial technique to show an optimal

lower bound for the select index. Fix the number of probes to the bit vector B

to be t = f lgn (for some constant f > 0) that select algorithm uses and let

k = t + lgn as before.

Let us restrict ourselves to bit vectors B of cardinality n/2 (n/2 bits are 0

and n/2 bits are 1). Let us perform the following p = n/(2k) queries: for each

1 ≤ i ≤ p we simulate select(ik). Similarly, we construct choices tree for these

queries. To compute the number of compatible bit vectors for a given leaf, we

split each vector B into p blocks, i-th block is from position selectB((i−1)k)+1

to position selectB(ik) (we define selectB(0) = 0 for convenience). Note that

there are exactly k ones in each block. The total number of unprobed bits U is

at least n − pt = n(1 − t/k) = Ω(n). We can count the number of compatible

nodes C for each leaf x by applying the same technique as for rank, and obtain

(similarly to (10))

C

2U
≤

(
c

√

lg n

)ap
(16)

where 0 < a < 1 and 0 < c are positive constants. Next, we can obtain the

bound on the total number of bit vectors B that are compatible with at least

one node in the choices tree. Similarly to (12), we have
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2
n+r
(

c
√

lgn

)ap
(17)

The total number of bit vectors we are considering is
(
n
n/2

)
, thus(

n

n/2

)
≤ 2

n+r
(

c
√

lg n

)ap
(18)

and hence

r =

lg
(
n
n/2

)
n

Ω

(
n lg lg n

lg n

)
= Ω

(
n lg lgn

lg n

)
(19)

Now we give an argument that techniques from Miltersen [3] cannot be im-

proved from r = Ω(n/ lgn) to the optimal r = Ω(n lg lg n/ lgn). Miltersen used

only bit vectors that only have O(n/ lg n) 1-bits. However, for such vectors, we

can construct an index of size O(n/ lg n) that allows O(1) select queries. Let us

divide B into p subregions of size (lg n)/2, for each subregion we count number

of 1 bits in it (denote it by ni) and represent it in unary. We construct the

following bit vector

L = 1
n101

n20 . . . 01
np (20)

of length p+ O(n/ lgn) = O(n/ lgn). To perform selectB(j) on B, we first find

x = selectL(i) and then i = x−rankL(x), the number of 0-bits before the position

x in L. Hence i gives us the number of the block of B where j-th 1-bit is located

(denote the block K). Next, we compute z = select0L(i) (where select0L(j) gives

position of j-th occurrence of 0-bit in L), the starting position of i-th block in

L. And then compute t = x − z, so that j-th 1-bit of B is t-th 1-bit of K.

Finally, selectK(j) can be done by a lookup to a table of size
√

n(lg lg n)
2

bits

that stores results of all possible select queries for all possible blocks. Note that

rank and select on L requires at most o(n/ lg n) bits in addition to storing L as

we discussed in the previous section. Thus, the total space requirement for the

index is O(n/ lg n) bits. It follows that for such bit vectors B select indexes of

size O(n/ lg n) are optimal.

We state the results for the rank and the select indexes as the following

Theorem 1. Let B be a bit vector of length n. Assume that there is an algorithm
that uses O(lg n) bit probes to B plus unlimited access to an index of size r and
unlimited computation power to answer rank (respectively, select) queries. Then
r = Ω(

n lg lgn
lgn ).

4 Density-Sensitive Lower Bounds

In this section, we consider the case where the bit vector B contains some fixed

number m of 1-bits and express lower bounds for the rank and the select indexes

in terms of both parameters m and n, the length of B. We will use techniques

similar to the previous section, however, the calculations are slightly more in-

volved in this case. We will prove a lower bound for the rank index and omit
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the proof for the select index. Throughout this section, we will use the same

notation as in the section 3: p denotes the number of simulation of rank (select)

queries in the choices tree; k denotes the size of a block; t denotes the running

time of one rank (select) query; U(x) (and its short form U) denotes the number

of unprobed bits for a given leaf x of the choices tree; r denotes the size of an

index.

First, we assume that all leaves in the choices tree are at the same level pt+r,

i.e. on every root to leaf path the rank algorithm probes exactly pt bits. If some

node x is z levels above it, we perform z fake probes, in order to split it into

2
z

nodes at the required level, so that U = n− pt for all leaves. We will choose

parameter p, such that pt ≤ n/2, so that at least half of the bits are unprobed

at the end. We will partition all the leaves x into m groups depending on the

total number of 1-probes on the root to leaf path to x (excluding the first r

levels for the index). Let Gy be the group of leaves for which we performed y

1-probes. Clearly, |Gy| ≤ 2
r
(
pt
y

)
. For each leaf x ∈ Gy we can bound the number

of compatible bit vectors by: (
u1

v1

)(
u2

v2

)
. . .

(
up

vp

)
(21)

where

u1 + u2 + . . .+ up = U (22)

v1 + v2 + . . .+ vp = V (23)

where U = n − pt is the number of unprobed bits and V = m − y. Similar to

the previous section, ui denotes the number of unprobed bits in i-th block and

vi ≤ ui denotes the sum of these bits. Recall that vi equals to ni minus number

of 1-probes in i-th block, and hence is fixed for a given leaf. We will combine

blocks into larger superblocks as follows. The 1-st superblock will contain blocks

1, 2, . . . , z1, such that k ≤ u1 +u2 + . . . uz1 ≤ 2k, the i-th superblock will contain

blocks zi−1, . . . , zi such that k ≤ u
s
i ≤ 2k, where

u
s
i = uzi−1+1 + uzi−1+2 + . . .+ uzi (24)

is the size of i-th superblock. Note that this is always possible, since ui ≤ k for

all i. Let q be the number of superblocks, clearly n/(4k) ≤ q ≤ n/k (equivalently

p/4 ≤ q ≤ p), since U ≥ n/2.

For each superblock, we will use the inequality(
uzi−1+1

vzi−1+1

)(
uzi−1+2

vzi−1+2

)
. . .

(
uzi

vzi

)
≤

(
u
s
i

vsi

)
(25)

where v
s
i = vzi−1+1 + vzi−1+2 + . . .+ vzi . So that(

u1

v1

)(
u2

v2

)
. . .

(
up

vp

)
≤

(
u
s
1

vs1

)(
u
s
2

vs2

)
. . .

(
u
s
q

vsq

)
(26)



380 A. Golynski

Observe that for any q1 < p1 and p2 < q2(
p1

q1+1

)(
p2
q2

)(
p1
q1

)(
p2

q2+1

) =

p1−q1
q1+1
p2−q2
q2+1

(27)

That is (
p1

q1 + 1

)(
p2

q2

)
>

(
p1

q1

)(
p2

q2 + 1

)
, if

q1 + 1

p1 + 1
<

q2 + 1

p2 + 1
(28)

We can interpret this inequality as follows. Let us maximize the product (26)

with fixed values of u
s
i ’s, subject to the constraint v

s
1 + v

s
2 + . . . + v

s
q = V .

The point (v
s
1, v

s
2, . . . , v

s
q) is a local maximum if we cannot increase v

s
i by 1 and

decrease v
s
j by 1 for some i = j, so that (26) increases. Intuitively, at a local

maximum all fractions v
s
i /u

s
i are roughly equal, or otherwise we can “transfer”

1 from enumerators of larger fractions to enumerators of smaller ones. We can

show (proof omitted) that if V > 2q then |v
s
i /u

s
i − V/U | < 2/k (recall that all

u
s
i satisfy k ≤ u

s
i ≤ 2k, so that each “transfer” does not change each of v

s
i /u

s
i

fractions by more than 1/k).

We will use the Stirling approximation(
u

v

)
= Θ

( √

u
√

v
√

u− v

(u/e)
u

(v/e)v((u− v)/e)u−v

)
(29)

= Θ

(
1
√

v

(
1

ξ

)v (
1

1− ξ

)u−v)
(30)

where ξ = v/u, here we assumed that v is large enough, so that we can use the

Stirling approximation for v!, but v/u ≤ 1/2. Now we can bound(
us
1
vs
1

)(
us
2
vs
2

)
. . .
(us

q

vs
q

)
(
U
V

) = 2
Θ(q)
(

1

kV/U

)q/2 (
φ

ψ

)V (
1− φ

1− ψ

)U−V
(31)

where φ = V/U ≤ 1/2 and ψ is some number, such that |ψ − φ| < 2/k (again,

we assumed V/U ≤ 1/2). The latter expression is less than

2
Θ(q)
(

1

kV/U

)q/2(
1 +

4

kV/U

)V (
1 +

4

k

)U
≤ (32)

≤ 2
Θ(q)
(

1

kV/U

)q/2
2
Θ(U/k)

≤ 2
Θ(q)
(

1

kV/U

)q/2
(33)

Here we used two facts (i) (1 + 1/α)
β

= 2
Θ(β/α)

for large enough α; and (ii)

U/k ≤ q/2.

Note that there are could have at most pt different groups of leaves (y ≤ pt).

For a given group, we bound the total number of compatible bit vectors by (31).

Denote V
∗

= m− pt, and note that V = m− y ≥ V
∗
. So that the total number

of compatible bit vectors for all groups is at most

2
r

pt∑
y=0

(
pt

y

)(
n− pt

m− y

)(
O(1)

kV ∗/U

)Θ(p)

= 2
r

(
n

m

)(
O(1)

kV ∗/U

)Θ(p)

(34)
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However, all possible bit vectors of length n with m ones have to be compatible

with at least one leaf, so that

r = Ω(p lg
n(m− pt)

p(n− pt)
) = Ω(p lg(m/p− t)) (35)

Choosing p = m/(2t) gives r = Ω((m/t) lg t). Essentially the same technique is

applicable to the case of select index (proof omitted).

Theorem 2. Let B be a bit vector of length n with m ones in it. Assume that
there is an algorithm that uses t bit probes to B plus unlimited access to an index
of size r and unlimited computation power to answer rank (respectively, select)
queries. Then r = Ω((m/t) lg t).

Note that this theorem gives an optimal lower bound for the case of constant

density bit vectors (i.e. when m/n < 1/2 is a constant). For the select index, it

also yields a lower bound better than the one given by Miltersen [3] for the case

where m = Ω(nt/(lgn lg t)), or m = Ω(n/ lg lg n) when t = Θ(lg n).
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Abstract. A new dynamic Interpolation Search (IS) data structure is
presented that achieves O(log log n) search time with high probability
on unknown continuous or even discrete input distributions with mea-
surable probability of key collisions, including power law and Binomial
distributions. No such previous result holds for IS when the probabil-
ity of key collisions is measurable. Moreover, our data structure exhibits
O(1) expected search time with high probability for a wide class of in-
put distributions that contains all those for which o(log log n) expected
search time was previously known.

1 Introduction

The dynamic dictionary search problem is one of the fundamental problems in

computer science. In this problem we have to maintain a set of elements subject

to insertions and deletions such that given a query element y we can retrieve the

largest element in the set smaller or equal to y. Well known search methods use

an arbitrary rule to select a splitting element and split the stored set into two

subfiles; in binary search, each recursive split selects as splitting element, in a

“blind” manner, the middle (or a close to the middle) element of the current file.

Using this technique, known balanced search trees (e.g., (a, b)-trees [11]) support

search and update operations in O(log n) time when storing n elements. In the

Pointer Machine (PM) model of computation, the search time cannot be further

reduced, since the lower bound of Ω(n logn) for sorting n elements would be

violated. In the RAM model of computation, which we consider in this work, a

lower bound of Ω(

√
logn

log log n ) was proved by Beame and Fich [4]; a data structure

achieving this time bound has been presented by Andersson and Thorup [2].

The aforementioned lower bounds can be surpassed if we take into account the

input distribution of the keys and consider expected complexities; in this case,

the extra knowledge about the probabilistic nature of the keys stored in the file

may lead to better selections of splitting elements. The main representative of

� This work was partially supported by the FET Unit of EC (IST priority – 6th
FP), under contracts no. IST-2002-001907 (integrated project DELIS) and no. FP6-
021235-2 (project ARRIVAL), and by the Action PYTHAGORAS with matching
funds from the European Social Fund and the Greek Ministry of Education.

M. Bugliesi et al. (Eds.): ICALP 2006, Part I, LNCS 4051, pp. 382–394, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Dynamic Interpolation Search Revisited 383

these techniques is the method of Interpolation Search (IS) introduced by Peter-

son [21], where the splitting element was selected close to the expected location

of the target key. Yao and Yao [28] proved a Θ(log logn) average search time for

stored elements that are uniformly distributed. In [9,10,18,19,20] several aspects

of IS are described and analyzed. Willard [26] proved the same search time for the

extended class of regular input distributions. The IS method was recently gener-

alized [5] to non-random input data that possess enough “pseudo-randomness”

for effective IS to be applied. The study of dynamic insertions of elements with

respect to the uniform distribution and random deletions was initiated in [8,12].

In [8] an implicit data structure was presented supporting insertions and dele-

tions in O(n
ε
), ε > 0, time and IS with expected time O(log logn). The structure

of [12] has expected insertion time O(log n), amortized insertion time O(log
2
n)

and it is claimed, without rigorous proof, that it supports IS. Mehlhorn and

Tsakalidis [16] demonstrated a novel dynamic version of the IS method, the

Interpolation Search Tree (IST), with O(log logn) expected search and update

time for a larger class than the regular distributions. In particular, they consid-

ered µ-random insertions and random deletions
1

by introducing the notion of a

(f1, f2)-smooth probability density µ, in order to control the distribution of the

elements in each subinterval dictated by an ID index. Informally, a distribution

defined over an interval I is smooth if the probability density over any subinterval

of I does not exceed a specific bound, however small this subinterval is (i.e., the

distribution does not contain sharp peaks). The class of smooth distributions is a

superset of uniform, bounded, and several non-uniform distributions (including

the class of regular distributions). The results in [16] hold for (n
α
,
√

n)-smooth

densities, where 1/2 ≤ α < 1. Andersson and Mattson [1], generalized and re-

fined the notion of smooth distributions, presenting a variant of the IST called

Augmented Sampled Forest extending the class of input distributions for which

Θ(log logn) search time is expected. In particular, the time complexities of their

structure holds for the larger class of (
n

(log log n)1+ε , n
δ
)-smooth densities, where

δ ∈ (0, 1), ε > 0. Moreover, their structure exhibited o(log log n) expected search

time for some classes of input distributions. Finally in [13], a finger search version

of these structures was presented.

The analysis of all the aforementioned IS structures was heavily based on

the assumption that the conditional distribution on the subinterval dictated by

an arbitrary interpolation step remains unaffected. In particular, in [1,13,16]

IS is performed on each node of a tree structure under the assumption that

all elements in the subtree dictated by the previous interpolation step remain

µ-random.

Our first contribution in this work (Section 2) is to show that the above

assumption is valid only when the produced elements are distinct (as indeed as-

sumed in [1,9,10,13,16,19,20,21,26,28]), i.e., they are produced under some con-

tinuous distribution where the probability of collision is zero; otherwise, it fails.

1 An insertion is µ-random if the key to be inserted is drawn randomly with density
function µ; a deletion is random if every key present in the data structure is equally
likely to be deleted.
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This means that the probabilistic analyses of previous dynamic interpolation

search data structures are inapplicable to sequences of non-distinct elements,

produced by discrete probability distributions with measurable (non-zero) prob-

ability of key collisions.

This lack of generalization does not have only theoretical, but also serious

practical implications. There exist applications where we need to store dupli-

cates, and thus the theoretically used density distribution modelling the input

process should not produce distinct elements. A classical example is the creation

of secondary indices in databases [15]. In a secondary index, duplicate values

correspond to different records and they should be stored as distinct entities.

There are also specific applications where interpolation search comes into play.

For instance, the case of searching tables with alphabetic keys (e.g., names, dic-

tionary entries) [18]. The keys in such tables follow a non-uniform, (unknown)

discrete probability distribution and collisions do occur. Other useful applica-

tions of interpolation search in non-uniform data are discussed in [3,7,18,20,22].

In these papers it has been empirically observed that interpolation search has a

very poor performance in such data. To alleviate this problem a series of heuris-

tics have been introduced in [3,7,18,20,22], but no rigorous performance analyses

have been provided. In [18,19], it was suggested that such an analysis would be

possible if one considers the idea in [10] that translates any continuous input

distribution to a uniform one.

In Section 2, we also show that this idea of taking advantage of the cumulative

distribution [10,18,19] does not apply to discrete distributions with measurable

probability of key collisions (a fact that was indeed experimentally verified in

[18]). The above pluralism of efforts demonstrates the necessity to handle non-

uniform data generated by discrete distributions with measurable probability of

key collisions.

One could be tempted to argue that the inapplicability of the previous analy-

ses could be faced by simply storing duplicate elements once; moreover, in these

structures the main rebalancing tool is local/global rebuilding, which can be eas-

ily modified to produce input sequences with distinct elements. Both arguments

are wrong, however, since the new sequences of distinct elements are artificial se-

quences, different from the initial. Consequently, important statistical properties

of the elements are destroyed and the probabilistic analyses fail.

Our second contribution in this paper is a new dynamic interpolation search

data structure (Section 3) that overcomes the above problems, and in which

the elements stored in each subtree preserve the input distribution, conditioning

only on the interval that corresponds to the current subtree. The new struc-

ture is quite simple, it exhibits similar expected O(log logn) search time as the

previous dynamic interpolation structures [1,9,10,16,19,20,21,26,28]), its prob-

abilistic analysis is always valid irrespectively of the distinctness or not of the

elements in the input sequence (i.e., regardless of whether they are produced

by a continuous or a discrete distribution), it applies to the same classes of dis-

tributions as those in [1,16] and it holds with high probability, while those in

[1,9,10,16,19,20,21,26,28]) did not grant such guarantee. Finally, as a by-product
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of our construction, we get a dynamic search data structure with O(1) expected

search time for a wide class of input distributions (Section 3). This result signif-

icantly extends the class of input distributions in [1] under which O(1) expected

search time was possible. In addition, this search time also holds with high prob-

ability, while those in [1] did not grant such property.

Although the class of smooth distributions includes, for appropriate choices

of f1 and f2, any other probability distribution, the effective range of f1, f2 for

which O(log logn) IS time is achieved excludes distributions of major practical

importance; for instance, power law [17], Binomial, etc. We are able to show

(Section 3) that a slight modification of our data structure achieves O(log logn)

time with high probability for power law and Binomial distributions. No previ-

ous IS structure achieves such a time bound for these distributions (recall the

deterioration of IS that was experimentally observed in [3,7,18,20,22]).

Our data structure is robust (as those in [1,13,16,26]), i.e., it remains efficient

without apriori knowledge of the particular continuous or discrete distribution.

Due to space limitations, several details and proofs are omitted and can be found

in the full version [14].

2 Probabilistic Analysis of the IS-Tree Revisited

Consider an unknown continuous probability distribution over the interval [a, b]

with density function µ(x) = µ[a, b](x). Given two functions f1 and f2, then

µ(x) = µ[a, b](x) is (f1, f2)-smooth [1,16] if there exists a constant β, such that

for all c1, c2, c3, a ≤ c1 < c2 < c3 ≤ b, and all integers n, it holds that

Pr[X ∈ [c2−
c3 − c1

f1(n)
, c2] |c1 ≤ X ≤ c3] =

∫ c2

c2− c3−c1
f1(n)

µ[c1, c3](x)dx ≤
βf2(n)

n
(1)

where µ[c1, c3](x) = 0 for x < c1 or x > c3, and µ[c1, c3](x) = µ(x)/p for

c1 ≤ x ≤ c3 where p =
∫ c3
c1
µ(x)dx. Similarly, for an unknown discrete probability

distribution of elements x1, . . . , xN spread over [a, b], with probability function

µ(xi) = µ[a, b](xi) we have

Pr[c2 −
c3 − c1

f1(n)
≤ X ≤ c2|c1 ≤ X ≤ c3] =

c2∑
c2− c3−c1

f1(n)

µ[c1, c3](xi) ≤
βf2(n)

n
(2)

where µ[c1, c3](xi) = 0 for xi < c1 or xi > c3, and µ[c1, c3](xi) = µ(xi)/p

for xi ∈ [c1, c3] where p =
∑

xi∈[c1, c3] µ(xi). Intuitively, function f1 parti-

tions an arbitrary subinterval [c1, c3] ⊆ [a, b] into f1 equal parts, each of length
c3−c1
f1

= O(
1
f1

); that is, f1 measures how fine is the partitioning of an arbitrary

subinterval. Function f2 guarantees that no part, of the f1 possible, gets more

probability mass than
β·f2
n ; that is, f2 measures the sparseness of any subinterval

[c2 −
c3−c1
f1

, c2] ⊆ [c1, c3]. The class of (f1, f2)-smooth distributions (for appro-

priate choices of f1 and f2) is a superset of both regular and uniform classes
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of distributions, as well as of several non-uniform classes [1,16]. Actually, any
probability distribution is (f1, Θ(n))-smooth, for a suitable choice of β.

Consider the random file S = {X1, . . . , Xn}, where each key Xi ∈ [a, b] ⊂ IR,

obeys an unknown (discrete or continuous) distribution µ, i = 1, . . . , n. Let P =

{X(1), . . . , X(n)} be an increasing ordering of file S. The goal is to find the largest

key X(j) ∈ P that precedes a target element y. We describe how the Augmented
Sampled Forest (ASF) [1], which is a generalization of the Interpolation Search
Tree (IST) [16], can be used to search for this target element y.

Assume that the (discrete or continuous) distribution µ is (I(n), n/R(n))-
smooth, where I(n), R(n) are two nondecreasing functions. The ASF is a two

level data structure; the top level is an ideal static IST [16] while the bottom level

is a sequence of buckets. The structure is maintained by using the global rebuild-

ing technique and its expected search time is dominated by the expected search

time at the top level. At the top level, the root node has R(n) children, and sim-

ilarly each child node has R(
n

R(n) ) sub-children. The root node corresponds to

the ordered file P of size n. Each child corresponds to a part of file P of size
n

R(n) .

That is, these R(n) children partition the ordered file P into R(n) equal sub-

files P1, . . . , PR(n), of the form {X(1), . . . , X( n
R(n) )

}, . . . , {X((R(n)−1) n
R(n)+1), . . . ,

X(n)}. Each node of this tree contains a pair of arrays, namely ID and REP,

that help to locate the appropriate child eligible to contain the target element

y. In the root node the set of indices of the ID array is [1, . . . , I(n)] and the set

of indices of the REP array is [1, . . . , R(n)]. The role of the ID array of the root

node is to partition the interval [a, b] into I(n) equal parts, each of length
b−a
I(n) .

When searching for an element y, the first interpolation step determines within

O(1) time the number j

j =

⌊
y − a

b− a
I(n)

⌋
+ 1 (3)

which denotes the j-th interval Ij of length
b−a
I(n) that contains the target y:

Ij =

[
a + (j − 1)

b− a

I(n)
, a+ j

b− a

I(n)

]
(4)

The role of the array REP[1, . . . , R(n)] of the root node is to partition the ordered

file P into R(n) equal subfiles, each of size
n

R(n) . Index REP[i], i = 1, . . . , R(n),

points to the i-th subfile Pi, where Pi = {X ∈ P | X((i−1) n
R(n) ) < X ≤ X(i n

R(n) )
}.

Alternatively, REP[i] can be seen as the representative of the element X(i n
R(n) )

of Pi. The first interpolation step, provided by Eq. (3), determines within O(1)

time the subinterval Ij described in Eq. (4), where the target element y belongs.

If in this subinterval correspondO(1) REP indices, then within O(1) time we can

determine the unique REP index that corresponds to the subfile that element y

may belong. Hence, the search efficiency highly depends on the distribution of

the REP indices over each ID subinterval of [a, b]. In other words, each ID index

that corresponds to a dense subinterval of [a, b] causes a great slow-down of the
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search speed. Most importantly, suppose that the second interpolation step now

yields REP[s − 1] < y ≤REP[s]. Then, y must be searched for into the subfile

Ps = {X
((s−1) n

R(n) )
, . . . , X

(s n
R(n))

}. A crucial observation is that its endpoints

X
((s−1) n

R(n))
, X

(s n
R(n))

may in general be neither µ-random nor smooth.

The analyses in [1,13,16] assume that the elements into an arbitrary sub-

file dictated by an interpolation step remain µ-randomly distributed conditioned

on the subinterval that all these elements belong, i.e., for a random element

X = λ in subfile Pv with endpoints a
′
= X(v−1) n

R(n)
and b

′
= Xv n

R(n)
, its prob-

ability density is given by Expression (5). Also, the analyses in [10,18,19] inge-

niously apply the cumulative distribution function F on the ordered keys in P =

{X(1), . . . , X(n)}, yielding PF = {F (X(1)), . . . , F (X(n))}. Now, each F (X(i)) ∈

PF is uniformly distributed over [0, 1], since Pr[F (X(i)) ≤ t] = Pr[X(i) ≤

F
−1

(t)] = F (F
−1

(t)) = t (see [6, pp. 36-37]). Thus, file PF is very suitable

for applying IS on it; i.e., to search for target key y, split PF on key F (X(jy)) ≈
y−F (X(1))

F (X(n))−F (X(1))
, and recursively apply IS to P

−
F = {F (X(1)), . . . , F (X(jy))}, if

y ≤ F (X(jy))n, otherwise to P
+
F = PF \P

−
F . However, this approach also tacitly

assumes that the conditional distribution of the keys in subfiles P
−
F , P

+
F remains

unaffected and obeys Expression (5) with a
′
, b

′
the corresponding endpoints of

the appropriate subfile P
−
F or P

+
F .

In the following, we prove the validity of these assumptions under continuous

or discrete distributions with zero probability of element collisions, and we will

depict the subtle case of discrete distributions with measurable probability of

key-collisions where all the above assumptions fail.

Continuous or discrete distributions with zero probability of element
collisions. Consider the simple case of three stored elements (random variables)

X1, X2, X3 ∈ [a, b] drawn according to some µ-random smooth distribution (the

general case of n variables can be easily deduced from this case by a simple in-

duction argument). These elements are identically and independently distributed

and it is assumed that they take distinct values. Since the collision probability for

continuous distributions is 0, we concentrate our discussion to distinct elements.

The conditional, on the arbitrary interval with fixed endpoints (a
′
, b

′
] ⊆ [a, b],

probability density equals

Pr[X = λ | a
′
< X ≤ b

′
] =

Pr[X = λ]

Pr[X ≤ b′]− Pr[X ≤ a′]
. (5)

According to definitions (1) and (2), Exp. (5) plays a crucial role in tuning the

probability mass in subinterval (a
′
, b

′
] using parameters f1, f2. For each i = 1, 2

the corresponding REP[i] is a new random variable defined as REP[1] ≡ X(1) =

min{X1, X2, X3}, REP[2] ≡ X(3) = max{X1, X2, X3}. We want to show that

the random element X that belongs into the subinterval [REP[1], REP[2]] is

µ-randomly distributed. We have
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Pr[X = λ | REP[1] = a
′
< X ≤ REP[2] = b

′
]=Pr[X = λ | X(1) =a

′
∩X(3) =b

′
]

=
Pr[X = λ ∩X(1) = a

′
∩X(3) = b

′
]

Pr[X(1) = a′ ∩X(3) = b′]
, (6)

where a
′
< λ < b

′
. The event {X(1) = a

′
∩X(3) = b

′
} occurs if at least one of

the following mutually disjoint events occur:

{X1 = a
′
, X2 = b

′
, a

′
< X3 < b

′
}, {X2 = a

′
, X1 = b

′
, a

′
< X3 < b

′
},

{X1 = a
′
, X3 = b

′
, a

′
< X2 < b

′
}, {X3 = a

′
, X1 = b

′
, a

′
< X2 < b

′
},

{X2 = a
′
, X3 = b

′
, a

′
< X1 < b

′
}, {X3 = a

′
, X2 = b

′
, a

′
< X1 < b

′
}. (7)

Hence,Pr[X(1) = a
′
∩X(3) = b

′
] = 6 Pr[X = a

′
] Pr[X = b

′
] Pr[a

′
< X < b

′
] (8)

Similarly, the event {X = λ ∩ X(1) = a
′
∩ X(3) = b

′
}, with a

′
< λ < b

′
, occurs

if one of the following mutually disjoint events occur:

{X2 = λ, X3 = a
′
, X1 = b

′
}, {X1 = λ, X2 = a

′
, X3 = b

′
},

{X3 = λ, X1 = a
′
, X2 = b

′
}, {X1 = λ, X3 = a

′
, X2 = b

′
},

{X3 = λ, X2 = a
′
, X1 = b

′
}, {X2 = λ,X1 = a

′
, X3 = b

′
}. (9)

Combining (8) and (9), the conditional probability (6) becomes

Pr[X = λ|X(1) = a
′
∩X(3) = b

′
] =

6 Pr[X = λ] Pr[X = a
′
] Pr[X = b

′
]

6 Pr[X = a′] Pr[X = b′] Pr[a′ < X < b′]

=
Pr[X = λ]

Pr[a′ < X < b′]
(10)

where a ≤ a
′
< λ < b

′
≤ b. This probability equals Exp. (5) and thus is µ-random

and consequently smooth (due to definitions (1) and (2)). Hence, we have shown

that in the case where the input elements have non measurable probability of

collisions, all previous analyses carry over correctly.

Discrete distributions with measurable probability of element colli-
sions. In this case, the event {X(1) = a

′
∩ X(3) = b

′
} occurs if, besides the

events listed in (7), at least one of the following mutually disjoint events occur:

{X1,2 = a
′
, X3 = b

′
}, {X1,2 = b

′
, X3 = a

′
}, {X1,3 = a

′
, X2 = b

′
},

{X1,3 = b
′
, X2 = a

′
}, {X2,3 = a

′
, X1 = b

′
}, {X2,3 = b

′
, X1 = a

′
} (11)

Hence, Pr[X(1) = a
′
∩X(3) = b

′
] = 3 Pr[X = a

′
]
2
Pr[X = b

′
] +

3 Pr[X = a
′
] Pr[X = b

′
]
2

+ 6 Pr[X = a
′
] Pr[X = b

′
] Pr[a

′
< X < b

′
] (12)

If a ≤ a
′
< λ < b

′
≤ b, by combining (11) and (12), now Expression (6) becomes

Pr[X = λ|X(1) = a
′
∩X(3) = b

′
] =

Pr[X = λ]

Pr[X=a′]+Pr[X=b′]
2 + Pr[a′ < X < b′]

(13)
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and if λ = a
′

or λ = b
′
, Expression (6) becomes the half of Expression (13).

Clearly, (13) is different from (5) and in general may be neither µ-random nor
smooth (see the full version of the paper [14] for more details). We conclude

that, when the probability of collisions is measurable, the net effect of choosing,

as endpoints of subintervals, not deterministically obtained values is to destroy
the smoothness of the distribution of the elements that belong in it.

3 The New IS Data Structure

Consider a dynamic file S containing O(n) elements drawn from the interval

[a, b], according to a continuous or discrete distribution µ, which is (f1, f2) =

(n
α
, n

δ
)-smooth with arbitrary α, δ ∈ (0, 1). Our structure consists of Layers

of bins. The 1st Layer partitions interval [a, b] into f1(n) equal-length bins. We

define
2

as BIN(j1), the j1-th bin in the 1st Layer of bins, which corresponds

to the subinterval [a + (j1 − 1)
b−a
f1(n) , a + j1

b−a
f1(n) ] = [aj1 , bj1 ] ⊂ [a, b], j1 =

1, . . . , f1(n). Any key X ∈ S is stored in BIN(j1), iff X is spread according to

µ into the subinterval [aj1 , bj1 ], j1 = 1, . . . , f1(n). This subfile Sj1 ⊆ S consists

of nj1 elements and is stored in BIN(j1), where n1 + . . .+ nf1(n) = |S| = O(n),

and j1 = 1, . . . , f1(n) = n
α
.

The 2nd Layer of bins is constructed by recursively partitioning each BIN (j1)

of the 1st Layer into f1(nj1) equal-length bins, j1 = 1, . . . , f1(n), i.e., BIN(j1)

containing nj1 elements is partitioned into equal-length bins BIN(j1, j2), with cor-

responding indices j1 = 1, . . . , f1(n) = n
α

and j2 = 1, . . . , f1(nj1) = (nj1 )
α
. Now

BIN(j1, j2) corresponds to the subinterval [aj1 +(j2−1)
bj1−aj1
f1(nj1 ) , aj1 +j2

bj1−aj1
f1(nj1 ) ] =

[aj1,j2 , bj1,j2 ] ⊂ [aj1 , bj1 ] ⊂ [a, b]. An arbitrary element X ∈ S is stored in

BIN(j1, j2), iff X is spread according to µ into the subinterval [aj1,j2 , bj1,j2 ], j2 =

1, . . . , f1(nj1) and j1 = 1, . . . , f1(n). The subfile Sj1,j2 ⊆ Sj1 consists of nj1,j2

elements stored in BIN(j1, j2), such that nj1,1 + . . .+ nj1,f1(nj1 ) = |Sj1 | = nj1 .

We proceed recursively for the subsequent Layers of bins; however, no bin

with less than poly logn keys becomes further partitioned (n is the initial number

of keys in the structure), i.e., it becomes a leaf of the structure. Finally, the

elements associated with each leaf bin are stored as a q
∗
-heap. The q

∗-heap [27]

is a search tree data structure having the following useful property: let M be

the current number of elements in the q
∗
-heap and let N be an upper bound on

the maximum number of elements ever stored in the q
∗
-heap. Then, insertion,

deletion and search operations are carried out in O(1 + logM/ log logN) worst-

case time after an O(N) preprocessing overhead. Choosing M = polylog(N), all

operations can be performed in O(1) time. Hence, by setting N to be n, the use

of q
∗-heap at the leaves of the structure permits the manipulation of search and

update operations in the leaf bins in worst-case O(1) time.

In the above data structure, we can search for a target element y as follows.

Given that a bin containing y at the current Layer has been located, we perform

interpolation search on its offspring of bins to locate the particular bin of the

2 From now on, the subscript i of ji will denote the i-th Layer of bins.
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next Layer that y may belong. Since target y may belong in at most one bin

of each Layer, as the Layers evolve, this process highly prunes the size of the

search space (the occupancy number of the currently scanned bin).

The careful reader should have noticed that the endpoints selected as rep-

resentatives in each subtree are independent of the particular characteristics of

the input distribution µ, thus confronting the weakness of the constructions in

all previous approaches. This crucial randomness invariance property of the new

data structure is given by Lemma 1 (whose proof is in [14]).

Lemma 1. Consider an arbitrary bin BIN(j1, . . . , ji) with corresponding subin-
terval [aj1,...,ji , bj1,...,ji ] of the ith Layer of bins. Then, the nj1,...,ji elements in
BIN(j1, . . . , ji) are µ-randomly distributed in the subinterval [aj1,...,ji , bj1,...,ji ].

Theorem 1 below shows that w.h.p. each IS step prunes drastically the size

of the dictated subfile (its proof is in [14]), i.e., a child bin has size at most

f2(elements of father bin).

Theorem 1. Consider the bin BIN(j1, . . . , ji) of the i-th Layer of bins and let
nj1,...,ji be its number of balls at the end of the t-th insertion/deletion operation.
These balls are µ-randomly distributed in its subinterval [aj1,...,ji , bj1,...,ji ]. Then,

Pr[∃ BIN(j1, . . . , ji, ji+1) : nj1,...,ji,ji+1 = ω(f2(nj1,...,ji))] → 0, as n→∞,

where ji+1 = 1, . . . , f1(nj1,...,ji).

This in turn yields the search time bound in Lemma 2 below (its proof in [14]).

Lemma 2. For every target element y, the path from its leaf bin to the root of
the tree will have length not exceeding log logn with high probability.

Moreover, for every node v of the tree, the subtree of any of its children will

have at most half the size of the subtree of v, with high probability. We call

a tree with these properties ideal; our high probability bound implies that for

a given set of µ random elements with cardinality n, such a tree can be found

and be built in O(n) expected time. Moreover, by using the arguments in [16,

Lemma 2, p. 626], we can straightforwardly show that the space complexity of

the described data structure is linear.

Consequently, by embedding the ideal version of our new data structure as the

top level in the Augmented Sampled Forest (ASF) of [1] and by maintaining the

leaf bins as a q
∗
-heap [27], while keeping in parallel a worst-case data structure

[2] (in a manner e.g., similar to [13]), we get the following theorem.

Theorem 2. Consider a file with n (not necessarily distinct) elements that was
produced by a sequence of µ-random insertions and random deletions, where
µ is a (n

α
, n

δ
)-smooth density, for any arbitrary 0 < α, δ < 1. Then, there

exists a dynamic interpolation search tree with O(log logn) expected search time
with high probability; the space usage of the data structure is Θ(n), the worst-
case update time (position given) is O(1), and the worst-case search time is
O(
√

logn/ log logn).
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Remark. It is easy to see that every part of our analysis remains valid if we

replace the function f1(n) = n
α

with the function f1(n) =
n

(log log n)1+ε , where ε >

0. Hence, our structure can handle within the same time and space complexities,

as those mentioned in Theorem 2, the larger class of (
n

(log log n)1+ε , n
δ
)-smooth

densities.

The difference of our data structure with those in [1,16] is in the absence of

REP arrays. These arrays guarantee that when we move to a child of a node

whose subtree contains N nodes, then this child node will be the root of a

subtree containing
√

N nodes. In our case, this is not guaranteed (it is easy

to come up with a setting where all elements are in a very small region and

thus the height of our tree structure is large). However, assuming that the input

elements are generated by a smooth distribution, it is very unlikely that this

bad scenario will happen, since we prove that the height of our tree structure

is doubly logarithmic with high probability. Our data structure is in a sense

“similar” to other data structures that partition the space (e.g., quadtrees).

Indeed, our structure partitions the universe until each region has a bounded

number of elements. On the contrary, the use of REP arrays allows for a partition

according to the number of elements (like e.g., in range trees), thus guaranteeing

that each partition has geometrically less elements.

O(1) search time with high probability. We study a random process of

rn insert (or delete) operations on this structure where in each operation, j =

1, . . . , rn, with probability p = (0, 1] a new element X ∈ [a, b] obeying an un-

known (f1(n), f2(n)) = (
n

g(n) , ln
O(1)

n)-smooth distribution µ, is inserted, oth-

erwise a random existing key is deleted; here g(n) denotes a function which is

either constant or slowly growing with n (i.e., ln
∗
n). The class (f1(n), f2(n)) =

(
n

g(n) , ln
O(1)

n)-smooth distributions includes that of bounded ((n, 1)-smooth)

densities, for which O(1) expected search time was known [1], as well as all

those for which a o(log logn) expected search time could be achieved [1]; for in-

stance, the density µ[0, 1](x) = − lnx is (n/(log
∗
n)

1+ε
, log

2
n)-smooth, and an

expected search time complexity of Θ(log
∗
n) was given in [1]. Our result implies

O(1) search time with high probability for all the aforementioned densities.

The idea is as follows. We can prove (see [14]) that during each step j =

1, . . . , rn, there are O(n) elements stored. Then Theorem 1 establishes that dur-

ing each step j = 1, . . . , rn, no bin of the 1st Layer gets more than poly logn

elements (balls), with high probability. That is, the whole tree-structure reduces

to a single Layer. Since each BIN(j1), j1 = 1, . . . , f1(n), is implemented as a

q
∗
-heap, we can search for element y in it within O(1) time. Finally, we can de-

termine within O(1) time the bin BIN(j1) that y may belong using the Expr. (3).

Power Law Distributions. As shown in Section 2, the efficiency of an ar-

bitrary interpolation step dictating subtree p highly relies on how the total of

np elements belonging to subtree p are sparsely distributed in its associated

subinterval [ap, bp]. This sparsity fails for power laws, as we show next. Let the

discrete universe of possible keys be U = {1, 2, . . . , N}, with N arbitrarily large,

spread over interval I = [1, b] and listed in decreasing frequency. Each random
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key X is drawn according to the power law distribution Pr[X ≥ x] = cx
−β

for

constants c, β > 0 [17, Sec. 2]. The probability mass accumulated on subinterval

I1 = [1, n
α
] containing the subset of keys {1, . . . , n

α
} ⊆ U equals:

Pr[X ∈ I1] = 1− Pr[X ≥ n
α
] = 1−

c

(nα)
β

= ω(
n
δ

n
), δ < 1 (14)

which according to definition (2) means that subinterval I1 is not (f1(n), f2(n)) =

(n
α
, n

δ
)-smooth for any constant 0 < α < 1. This rules out any attempt to

employ IS on the whole interval I = [1, b]. However, I2 = I \I1 can be arbitrarily

sparse, as a function of α, since Pr[X ∈ I2] = Pr[X ≥ n
α
] =

c
(nα)β and by setting

α = α(β) ≥
1
β , we get Pr[X ∈ I2] = O(

1
n ) = O(

f2(n)
n ), with f2(n) = poly logn.

That is, if we draw a random key X ∈ [1, b] according to power law Pr[X ≥ x] =

cx
−β

, it will belong to an arbitrary subinterval of I2 with probability O(
f2(n)
n ) ≤

poly logn
n . The later implies that the power law distribution with parameters c, β,

if restricted to I2 remains (f1(n), poly logn)-smooth. Thus, if the target element

y ∈ I2, then Theorem 2 guarantees that IS on I2 takes O(1) search time with

high probability. On the other hand, observe that the discrete subuniverse of U ,

which is spread in [1, n
α(β)

], has cardinality |{1, . . . , n
α(β)

}| = O(n
α(β)

). That

is, if the target y belongs to I1, then it can be searched amongst n
α(β)

possible

keys, which is considerably smaller that the universe’s cardinality N = |U |.

Therefore, if y ∈ I1, we can employ the van Emde Boas structure [24,25], which

yields a time complexity O
(
log log

(
|{1, . . . , n

α(β)
}|

))
= O

(
log log

(
n
α(β)
))

=

O(log logn). The splitting key n
α(β)

yielding Pr[X ∈ I2] = O(
1
n ) = O(

f2(n)
n ),

with f2(n) = poly logn, can be approximated by a key x
∗

during the initialization

of the structure, without knowledge of the parameters (c, β) (details are given

in [14]).

Binomial Distributions. We can identify the dense subinterval I1 = [np −

∆,np + ∆] ⊆ [a, b] around the mean value np for any binomial distribution

B(n, p). Notice that |I1| = 2∆ and since we can safely set ∆ = o(n), we can sim-

ilarly apply a van Emde Boas structure on I1. Taking advantage of the binomial

sharp tail bounds, the remaining subinterval I2 = [a, b] \ I1 will remain sparse

enough to apply IS. The rest of the details follow similarly to those for power

law distributions.

Acknowledgment. We are indebted to Lefteris Kirousis for various helpful

discussions.
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Abstract. We consider maintaining information about the rank of a
matrix under changes of the entries. For n × n matrices, we show an
upper bound of O(n1.575) arithmetic operations and a lower bound of
Ω(n) arithmetic operations per change. The upper bound is valid when
changing up to O(n0.575) entries in a single column of the matrix. Both
bounds appear to be the first non-trivial bounds for the problem. The
upper bound is valid for arbitrary fields, whereas the lower bound is valid
for algebraically closed fields. The upper bound uses fast rectangular
matrix multiplication, and the lower bound involves further development
of an earlier technique for proving lower bounds for dynamic computation
of rational functions.

1 Introduction

1.1 The Problem

Given a field k the function rank : k
n2

&→ {0, . . . , n} denotes the rank of an

n × n matrix, i.e. the maximal number of linearly independent columns in the

matrix, or, equivalently, the maximal number of linearly independent rows in

the matrix. The dynamic matrix rank problem consists in maintaining the rank

of an n × n matrix M = {mij} under the operations changeij, i, j = 1, . . . , n,

where changeij(v) assigns the value v ∈ k to mij .

1.2 Earlier Work

The authors are not aware of earlier nontrivial bounds for dynamic matrix rank,

i.e. the best upper bound until now appears to arise from computing the rank

from scratch. Off-line rank computation reduces to matrix multiplication via

computing the row-echelon form of the matrix using a nice recursive construction

due to Schönhage [11] and Keller-Gehrig [8]. There is a selfcontained description

in [2, sect. 16.5]. The reduction implies that matrix rank can be computed using

O(n
2.376

) arithmetic operations [3].

Sankowski [9] gives several dynamic algorithms for computing matrix inverse,

matrix determinant and solving systems of linear equations. The best of these
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algorithms obtains worst case time O(n
1.495

) per update/query. Sankowskis al-

gorithms rely on the matrix staying nonsingular trough all updates, and he

states that the time bound gets worse if the matrix is allowed to become singu-

lar. Hence, it is not clear that similar upper bounds can be given for dynamic

matrix rank.

Frandsen et al. [4] gives Ω(n) lower bounds for dynamic matrix inverse and

matrix determinant in a model based on algebraic computation trees. The lower

bound is based on an incompressibility result from algebraic geometry and works

only for dynamic evaluation of a set of polynomials or rational functions over

a given field. It is not clear that the technique can be adapted to matrix rank

that is essentially a constant function except on the algebraic subset of singular

matrices.

1.3 Results

We give two dynamic algorithms. They use the techniques from two of Sankow-

skis algorithms, but as mentioned earlier some modifications are necessary to

make the techniques work for rank.

The first algorithm which is quite elementary finds the rank by recomputing

a reduced row echelon form of the matrix for every change. This can be done

using O(n
2
) arithmetic operations per change. This bound is valid also when a

change alters arbitrarily many entries in a single column of the matrix.

The second algorithm maintains the rank by using an implicit representation

of the reduced row-echelon form. This implicit representation is kept sufficiently

compact by using fast rectangular matrix multiplication for global rebuilding,

obtaining a worst case complexity of O(n
1.575

) arithmetic operations per change.

This bound is still valid when a change alters up to O(n
0.575

) entries in a single

column of the matrix.

We show a lower bound Ω(n) on the worst case time used per change of a ma-

trix entry, when maintaining the rank of a matrix over a field. The lower bound

is valid for any algebraically closed field. Our model of computation combines

the classical algebraic computation trees used for off-line algebraic computation

[2] with the notion of history dependence [4] that let us extend the model to

dynamic computations. For the computation trees we allow the four arithmetic

operations in computation nodes, zero-tests in branching nodes, and leaves are

labelled with the rank. The history dependence may be interpreted as a tech-

nique for letting the computation trees branch also on any discrete information

that was obtained in earlier change operations. Technically, the history depen-

dence works by assigning (infinitely) many computation trees to each change

operation, viz. one tree for each history, where a history is every bit of discrete

information the system has obtained so far; in particular that includes the result

of every branching test made in earlier operations. All our upper bound algo-

rithms can be formulated in this model, and it seems to be a natural model for

dynamic algebraic computations that are generic in the sense of being valid for

all fields, though it is slightly weaker than the model used in [4].
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Our proof technique is a nontrivial adaptation of a technique from [4]. The ear-

lier technique works for dynamic evaluation of rational functions, and it exploits

that a rational function is uniquely determined from its values on a small sub-

set (via the Schwartz-Zippel theorem). However, the function of matrix rank is

mostly constant and all the interesting behaviour occurs on a lower dimensional

subset (the singular matrices). We manage to augment the earlier technique to

show lower bounds for dynamic verification of evaluation of a rational function.

Then we get the lower bound for dynamic rank using a reduction via dynamic

verification of matrix vector multiplication.

1.4 Later Work

Sankowski has recently shown that dynamic matrix rank has an upper bound of

O(n
1.495

) over infinite fields when allowing randomization and a small probability

of error [10].

1.5 Applications

A mixed matrix is a matrix where some entries are undefined. The maximum

rank matrix completion problem consists in assigning values to the undefined en-

tries in a mixed matrix such that the rank of the resulting fully defined matrix

is maximized. Geelen [5] has described a simple polynomial time algorithm for

maximum rank matrix completion of complexity O(n
9
) that uses a data struc-

ture for dynamic matrix rank. However, this application has been superseded by

newer results. Berdan [1] has introduced improvements reducing the complex-

ity to O(n
4
). Harvey et al [6] has an algorithm of complexity O(n

3
logn) for

maximum rank matrix completion using a different technique.

2 Upper Bound on Dynamic Matrix Rank

Our algorithms are inspired by two of Sankowskis algorithms [9]. However,

Sankowski considers only updates that preserves nonsingularity. Maintaining

rank information means that we must concentrate on the nonsingular case for

which reason our algorithms are somewhat different.

2.1 Preliminaries

In the following all matrices will be n × n matrices over some fixed field k. A

vector v is an n-dimensional column vector, and we use the notation v
T

for row

vectors. Let ei denote a vector with a 1 in the ith entry and zeros elsewhere.

Hence ve
T
l denotes a matrix that has vector v in the lth column and zero’s

elsewhere. We let Al denote the lth column of matrix A.

We call an entry in the matrix leading if it is the first non-zero entry in its

row. Recall that a matrix is in reduced row-echelon form when

– the leading entry in any row is 1 (call such entry a leading 1),

– a column containing a leading 1 has zeros in all other entries, and
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– rows are sorted according to position of leading 1, i.e. if row i has a leading

1 in position j then any other row i
′
< i must have a leading 1 in some

position j
′
< j. In particular, all zero-rows are at the bottom of the matrix.

Using the notation of [7,9], we let ω(1, ε, 1) denote the exponent of multiplying

n×n
ε

matrices by n
ε
×n matrices, i.e. O(n

ω(1,ε,1)
) arithmetic operations suffice

for this matrix multiplication.

Proposition 1. (Huang and Pan [7, sect. 8.2]) Let ω = ω(1, 1, 1) < 2.376 and
let α = 0.294. Then

ω(1, ε, 1) ≤

{
2 + o(1), 0 ≤ ε ≤ α

2(1−ε)+(ε−α)ω
1−α , α < ε ≤ 1 .

2.2 Elementary Dynamic Algorithm

Though the algorithm is elementary, we describe it fairly detailed in Algorithm 1,

since it is the basis for the faster algorithm in the next section.

For a matrix A, we maintain matrices U and E under changes of the entries

in A such that

U is nonsingular, E is in reduced row-echelon form, and UA = E (1)

Clearly, the rank of A is the number of nonzero rows in E.

The initialization for a given matrix A consists in computing a matrix E

in reduced row echelon form and corresponding transformation matrix U . This

can be done using O(n
3
) arithmetic operations by Gaussian elimination or using

O(n
ω
) arithmetic operations by an augmentation of the technique for computing

echelon form asymptotically fast [2, sect.16.5].

It turns out that our update algorithm works as well for update of an entire

column of A as for update of a single entry, so let us assume that an update

changes A into A
′
= A + ve

T
l , for some column index l and vector v. We must

find U
′
, E

′
that together with A

′
satisfies (1). Note that

UA
′
= U(A+ ve

T
l ) = E + Uve

T
l = E + v

′
e
T
l ,

for some vector v
′
. We need only find some row operations that will bring

D = E + v
′
e
T
l into reduced row-echelon form E

′
and then apply the same row

operations to U to get U
′
. This may be divided into 3 parts.

First, if column l in D contains a leading entry it may be necessary to clean

up the column, i.e. ensure that all entries in the column become zero except for

the leading entry which becomes 1. This is handled in lines 3-7 of Algorithm 1

resulting in the matrix D
′
. The matrix (I +W

′
) where W

′
has at most a single

nonzero column represents the row operations that transform D into D
′
.

Secondly, we may in the process of computing D (or D
′
) have cancelled a

former leading entry in column l of E creating a new leading entry in some

column t > l, which makes it necessary to clean up column t as well. This is
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handled in lines 8-11 of Algorithm 1 resulting in matrix D
′′

with row operations

represented by matrix (I+W
′′
), where W

′′
has at most a single nonzero column.

Note that the cleaning up of column t cannot cancel any further leading entries,

since E is in reduced row echelon form.

Finally, we may have to permute rows. This is done in line 12-13 of the algo-

rithm, resulting in the updated E
′
. All row operations applied so far to E are

also applied to U in line 14.

Algorithm 1. Dynamic Matrix Rank (elementary version)

Memory n × n matrices A,U, E, where
U is nonsingular, E is in reduced row-echelon form, and UA = E

Change Given vector v and column index l

compute new memory A′, U ′, E′ such that A′ = A + veT
l :

1: v′ ← Uv;
2: D ← E + v′eT

l = {dij};
3: If D has a leading entry in column l then
4: select row k such that dk,l is a leading entry and if dk′,l is any other leading

entry then the number of zeros that immediately follow dk,l in row k is at
least as large as the number of zeros that immediately follow dk′,l in row k′

(equality between number of immediately following zeros only occurs if both
rows have all zeros in E).

5: v1 ← cleanColumn(Dl, k); W ′ ← v1e
T
k ;

6: else W ′ ← 0;
7: D′ ← (I + W ′)D;
8: if E = {eij} has leading entry esl for some s and

s’th row of D′ = {d′
ij} has leading entry d′

st for some t > l then
9: v2 ← cleanColumn(D′

t, s); W ′′ ← v2e
T
s ;

10: else W ′′ ← 0;
11: D′′ ← (I + W ′′)D′;
12: Select P to be a matrix that permutes the rows of D′′ into echelon form
13: E′ ← PD′′;
14: U ′ ← P (I + W ′′)(I + W ′)U ;

where cleanColumn given vector v and index r with vr �= 0, returns vector w such
that (I + weT

r ) represents the row operations needed to change any column of a
matrix from v to er:

wi ←
{− vi

vr
for i �= r

1
vr

− 1 for i = r

Note that a complete update needs only O(n
2
) arithmetic operations. We

have shown

Theorem 1. Dynamic matrix rank over an arbitrary field can be solved using
O(n

2
) arithmetic operations per change (worst case). This bound is valid when

a change alters arbitrarily many entries in a single column. Given an initial
matrix the data structure for the dynamic algorithm can be built using O(n

ω
)

arithmetic operations.
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2.3 Asymptotically Faster Dynamic Algorithm

To speed up the dynamic algorithm, we only maintain an implicit representation

of the reduced row-echelon form of the matrix. Let ε ∈ [0, 1] be determined later.

We maintain matrices A, T,C, S,R, (I +R)
−1

and an array L such that:

– A is the current matrix.

– R and S have at most n
ε

nonzero columns.

– U = (I +R)T is invertible

– E = (I + R)(C + S) is in reduced row-echelon form except possibly for a

permutation of rows

– UA = E

– L(i) contains the column index of the leading 1 in row i of E if it exists, and

otherwise (row i is all zeros) it contains 0.

Compared to the simple algorithm in the previous subsection, we don’t permute

rows in our matrices. In stead the permutation needed to bring E into reduced

row-echelon form is represented implicitly by the array L. E itself is represented

by the three matrices C, S and R, where C is an old version of E, S represents

the changed columns since C was valid, and (I + R) represents the row opera-

tions needed to transform C + S into reduced row echelon form. Similarly, U is

represented by R and T .

We only allow updates that change at most n
ε

entries of A, and all changes

must be in a single column. When performing an update, we changeR to incorpo-

rate the additional row-operations needed. In this way, R and S may eventually

get more than n
ε

nonzero columns, and we recompute T and C, while R and S

are reset to zero-matrices. This recomputation involves multiplying rectangular

matrices and can be done in the background using global rebuilding. It turns out

that the existence of asymptotically very fast algorithms for rectangular matrix

multiplication suffices to ensure a good worst case bound on the complexity of

an update.

In the following we first consider the changes to Algorithm 1 caused by the

implicit representation of E and U , and discuss details of the global rebuilding

afterwards.

We assume an update changes A into into A
′
= A + ve

T
l , for some column

index l and vector v that has at most n
ε

nonzero entries. If we can compute the

vector v
′
and the matrices W

′
,W

′′
used in Algorithm 1, then we may compute

the updated versions R
′
, S

′
and (I +R

′
)
−1

of the matrices in the data structure

as follows

– S
′
= S + (I +R)

−1
v
′
e
T
l

– I +R
′
= (I +W

′′
)(I +W

′
)(I +R)

– (I +R
′
)
−1

= (I +R)
−1

(I +W
′
)
−1

(I +W
′′
)
−1

Note that R
′
has at most 2 more nonzero columns than R, and S

′
has at most

1 more nonzero column than S.

Note that (I+R)
−1
−I has the same number of nonzero columns as R namely

O(n
ε
). Similarly, if (I +W

′
)
−1

= (I + W̄ ) and (I +W
′′
)
−1

= (I +
¯̄
W ) then each
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of W̄ ,
¯̄
W , W

′
and W

′′
has at most a single nonzero column. Therefore R

′
, S

′
and

(I+R
′
)
−1

may all be computed using O(n
1+ε

) arithmetic operations, though we

still need to argue that v
′
,W

′
,W

′′
can be computed within the same bound. It

is not necessary to compute all entries of matrices D,D
′
, D

′′
. It suffices to know

– v
′
= Uv = (I +R)(Tv)

– the lth column of E, viz. El = (I +R)((C + S)el)

– the lth column of D, viz. Dl = El + v
′

– the tth column of D
′
, where t = l, viz. D

′
t = (I + W

′
)Et = (I + W

′
)(I +

R)((C + S)et)

– the sth row of D
′
, viz. e

T
s D

′
= (e

T
s (I+W

′
)(I+R))(C+S)+e

T
s (I+W

′
)v

′
e
T
l

which may all be computed using O(n
1+ε

) arithmetic operations, when paren-

thesizing as above and recalling that v has at most O(n
ε
) nonzero entries, R has

at most O(n
ε
) nonzero columns and W

′
has at most a single nonzero column.

In order to determine whether D has a leading entry in column l and select

the row k in lines 3-4 of Algorithm 1 it suffices to scan Dl and the list L, since

D is identical to E except possibly for column l. Similarly, we can determine

whether E has a leading entry in column l (line 8 of Algorithm 1) within time

O(n).

Finally L is updated. At line 5, L(k) is changed to l, and at line 8, L(s) is

updated to t or 0 as appropriate. Clearly, we can maintain the rank of matrix A

with no extra cost, since the rank is the number of nonzero entries in L.

The entire update has so far used O(n
1+ε

) arithmetic operations. To bound

the number of nonzero columns in R, we need to recompute C, T and reset

R,S to zero. This may be done using two multiplications of n × n
ε

by n
ε
× n

matrices taking O(n
ω(1,ε,1)

) arithmetic operations. This recomputation may be

distributed over n
ε
updates implying that each update uses O(n

1+ε
+n

ω(1,ε,1)−ε
)

arithmetic operations. Choosing ε to balance the two terms, one obtains based

on Proposition 1 the bound of O(n
1.575

) arithmetic operations per update. We

have shown

Theorem 2. Dynamic matrix rank over an arbitrary field can be solved using
O(n

1.575
) arithmetic operations per change (worst case). This bound is valid

when a change alters up to O(n
0.575

) entries in a single column. Given an initial
matrix the data structure for the dynamic algorithm can be built using O(n

ω
)

arithmetic operations.

3 Lower Bound on Dynamic Matrix Rank

Our lower bound proof has two steps. We introduce the intermediate problem of

dynamic matrix vector multiplication verification (MVMV), where the MVMV

problem consists in verifying that Mx = y for square matrix M and column

vectors x and y.

In the first step we use the technique of Frandsen et al [4] to show a lower

bound for dynamic MVMV. A refinement of the technique is necessary, since
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the original technique applies to dynamic computation of rational functions,

whereas we need a lower bound for dynamically verifying such a computation.

Since verification is potentially easier than computation, one might expect it to

be harder to prove a lower bound. Though we succeed, our proof works only

for algebraically closed fields rather than infinite fields in general, and for a

restricted model namely history dependent algebraic computation trees where

branching is based on =-comparisons rather than general predicates.

In the second step, we give a reduction that implies the wanted lower bound

for dynamic matrix rank.

3.1 Model of Computation

Let k be a field. Recall that an algebraic subset W ⊂ k
n

is an intersection of sets

of the form {x ∈ k
n
|p(x) = 0}, where p is a non-trivial multivariate polynomial.

Both the computation of matrix rank and the verification of a matrix vector

product may be seen as instances of the following more general problem:

Given a field k and a family W = {Wi}
l−1
i=0 of algebraic subsets of k

n
, let the

function fW : k
n
&→ {0, 1, . . . , l} be defined by

fW(x) =

{
min{i|x ∈Wi} if x ∈ ∪l−1

i=0Wi

l otherwise

MVMV arises as fW0 : k
n2+n+n

&→ {0, 1}, for W0 = {(M,x, y) ∈ k
n2
× k

n
×

k
n
|Mx = y}, where the function value 0 is interpreted as true and 1 as false.

Similarly, matrix rank arises as fW0,...,Wn−1 : k
n2
&→ {0, . . . , n} for Wi consisting

of those matrices where all (i+ 1)× (i + 1) minors are zero.

The problem of computing fW : k
n
&→ {0, 1, . . . , l} dynamically consists in

maintaining the value of f(x1, . . . , xn), under the operations changei(c), that as-

signs xi the value c ∈ k, for i = 1, . . . , n. We assume that initially (x1, . . . , xn) =

(0, . . . , 0).

Our change algorithms will be a specific kind of algebraic computation trees.

Compared to [4,2] we allow only branching based on =-comparison, and the

output is encoded directly in the type of leaf.

We first introduce our version of algebraic computation trees for off-line se-

quential computation. Given a function fW, we may compute it by an algebraic

branching tree, that has 3 types of nodes:

– an internal computation node, labelled with a program line of the form

yi ← yj ◦ yk, where ◦ ∈ {+,−, ·, /} and yj , yk are variables or inputs. When

the computation path goes through this node, variable yi is assigned the

value of yj ◦ yk.

– an internal branching node, labelled with y, a variable or an input. A branch-

ing node always has precisely two descendents. The path of computation

chooses a branch based on whether the value of y is zero or not.

– a leaf node that is labelled with one of {0, 1, . . . , l}. When reaching a leaf

node the label is the function value.
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The complexity of an algebraic branching tree is its depth, i.e. the length of

the longest path from the root to a leaf.

For dynamic computation we use history dependent algebraic computation
trees [4], i.e. for each changei(x) operation (i = 1, . . . , n), we assign not just

one algebraic branching tree, but we assign (infinitely) many trees, namely one

tree for each history, where a history is every bit of discrete information the

system has obtained so far; namely, the sequence of input variables that were

changed, what other variables have been assigned a value, and the result of every

branching test made so far during the execution of the operations performed.

When we execute a change operation, we find the tree corresponding to the

current history and execute that. The complexity of a solution is the depth of

its deepest tree.

Note that the dynamic algorithms for matrix rank from the previous section

can be interpreted as families of history dependent algebraic computation trees of

complexity O(n
2
) and O(n

1.575
), respectively. All discrete information is encoded

in the history. In particular, the contents of the array L from the asymptotically

fast dynamic algorithm is represented as part of the history, so there are different

trees for the different possible contents of array L.

3.2 Lower Bound for Dynamic MVMV

Basically we want to modify the lower bound proof for dynamic matrix vector

multiplication [4] to be valid for the corresponding verification problem, dynamic

MVMV. An essential ingredient of the mentioned proof is to use Schwartz-Zippels

theorem to extrapolate correct behaviour (computing a specific polynomial) from

a large finite subset to everywhere. However, in the case of a verification problem

we compute a 0, 1-valued function that is constant except on an algebraic subset,

so correct behaviour cannot be extrapolated in the same way.

We manage to get around this problem, but have to restrict the computation

trees to branch based on =-comparisons only, and the field must be algebraically

closed.

We will prove our lower bound specifically for the dynamic MVMV prob-

lem, but the technique do apply more generally to verification of polynomial or

rational functions (similar to [4, Theorem 2.1].

We need the following incompressibility result.

Proposition 2. [4, Lemma 2.1] Let k be an algebraically closed field. Let W
be an algebraic subset of km and let φ = (f1/g1, . . . , fn/gn) : k

m
\W &→ k

n be
a rational map where fi, gi ∈ k[x1, . . . , xm] for i = 1, . . . , n. Assume that there
exists y ∈ k

n such that φ−1
(y) is non-empty and finite. Then m ≤ n.

and an additional technical result.

Proposition 3. [4, Lemma 2.4] Let k be a field. Let 0 ≤ l ≤ n and let W be a
proper algebraic subset of kn = k

l
× k

n−l. There exists a proper algebraic subset
W1 ⊂ k

n−l such that for all a ∈ k
n−l

\W1, we can find a proper algebraic subset
Wa ⊂ k

l such that

W ⊆ {(x,a) ∈ k
l
× k

n−l
| a ∈W1 or x ∈ Wa}.



404 G.S. Frandsen and P.F. Frandsen

Theorem 3. Let k be an algebraically closed field. Then any history dependent
algebraic computation tree solution for dynamic evaluation of MVMV (M,x, y)

where (M,x, y) ∈ k
n2
× k

n
× k

n has complexity at least n/4.

Proof. Let a family of algebraic computation trees solving dynamic evaluation

of MVMV be given, and let the max depth of any computation tree representing

a change be d.

If we concatenate several change operations into a composite change, we may

compose the associated computation trees into a larger tree by letting the root

of a tree replace a leaf in a previous tree. Let in this way P = P1;P2;P3 de-

note the algebraic computation tree for off-line MVMV (M,x, y) that arises

by concatenating changes in the following order (with no prior history, all in-

puts are initially zero) assuming input variables M = {mij}, x = {xi}, and

y = {yj}.

P1 : change1(m11); · · · ; changen2(mnn);

P2 : changen2+1(x1); · · · ; changen2+n(xn);

P3 : changen2+n+1(y1); · · · ; changen2+2n(yn);

Define a modified tree P
′
= P1;P2;P

′
3 where

P
′
3 : changen2+n+1((Mx)1); · · · ; changen2+2n((Mx)n);

Note that P
′
is essentially P pruned to contain only leaves labelled true.

Given specific values for M,x the computation will follow a specific path

through P
′
. Note that among possible computation paths, there will be a unique

main path π = π1;π2;π3 satisfying that there is an algebraic subset W ∈ k
n2+n

such that all M,x ∈ k
n2+n

\ W will follow the path π. Here π1 denotes the

portion of the path running through P1 etc. The path π can also be found in

the tree P , since P
′
is essentially a pruning of P , though π will not be the main

path in P .

By proposition 3, there is an algebraic subset W1 such that for M ∈ k
n2
\W1

there is an algebraic subset WM such that for x ∈ k
n
\WM we have M,x ∈

k
n2+n

\W , i.e. M,x takes the path π through P
′
.

Let V be the set of the variables that are written by computation nodes on

π1 and read by computation and branching nodes on π2;π3. Let v ∈ k
|V |

denote

the contents of V after the execution of π1 but before the execution of π2;π3.

Clearly, v is a rational function of M . Let g : k
n2
\ W1 &→ k

|V |
denote that

rational function.

We will now argue that g is injective. Assume to the contrary that we can

find specific matrices M1,M2 ∈ k
n2
\W1 with M1 = M2 and g(M1) = g(M2).

Let W2 = {x | M1x = M2x}, which is an algebraic subset of k
n
. Choose an

arbitrary x1 ∈ k
n
\ (W2 ∪WM1 ∪WM2). When the algebraic computation tree P

is applied to the input (M1, x1,M1x1) it will follow path π and compute true as

it should. However, when P is applied to input (M2, x1,M1x1) it will also follow
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path π, since g(M1) = g(M2), and therefore also answer true, which is incorrect.

By contradiction, we have shown that g is injective.

Using that g : k
n2
\W1 &→ k

|V |
is injective, Proposition 2 implies that |V | ≥ n

2
.

However, since the path π2;π3 contains at most 2dn computation and branching

nodes each of which can read at most 2 variables, it follows that 4dn ≥ |V |,

implying that d ≥ n/4.

3.3 Dynamic MVMV Reduces to Dynamic Matrix Rank

Let k be a field. Given an instance (M,x, y) ∈ k
n2+n+n

of MVMV, create an

instance M
′
∈ k

(2n)2
of matrix rank, where

M
′
=

[
I xe

T
1

M ye
T
1

]
where ze

T
1 is the n × n matrix with vector z in the first column and zero’s

elsewhere. Clearly, rank(M
′
) ∈ {n, n + 1} and rank(M

′
) = n if and only if

Mx = y. Since the change of an input in (M,x, y) corresponds to a single

change of M
′
, we have reduced dynamic MVMV to dynamic matrix rank, and

Theorem 3 implies

Theorem 4. Let k be an algebraically closed field. Then any history dependent
algebraic computation tree solution for dynamic computation of rank(M) where
M ∈ k

n2
has complexity at least n/8.
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Abstract. The visibility representation (VR for short) is a classical rep-
resentation of plane graphs. VR has various applications and has been
extensively studied in literature. One of the main focuses of the study
is to minimize the size of VR. It is known that there exists a plane
graph G with n vertices where any VR of G requires a size at least
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In this paper, we prove that every plane graph has a VR with height
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+2�√n�. These
representations are nearly optimal in the sense that they differ from the
lower bounds only by a lower order additive term. Both representations
can be constructed in linear time. However, the problem of finding VR
with optimal height and optimal width simultaneously remains open.

1 Introduction

A visibility representation (VR for short) of a plane graph G is a drawing of

G, where the vertices of G are represented by non-overlapping horizontal line

segments (called vertex segment), and each edge of G is represented by a vertical

line segment touching only the vertex segments of its end vertices. In this paper,

VR refers to weak visibility representation, in which not all mutually visible

horizontal segments need to correspond to an edge in the graph.

As in many other graph drawing problems, one of the main concerns in VR

research is to minimize the size of the representation. For the lower bounds, it

was shown in [9] that there exists a plane graph G with n vertices where any

VR of G requires a size at least (�
2n
3 �)× (�

4n
3 �− 3). For the upper bounds, it is

known that every plane graph has a VR with height at most �
4n−1

5 � [11], and a

VR with width at most �
13n−24

9 � [10].

In this paper, we prove that every plane graph of n vertices has a VR with
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These representations are nearly optimal in the sense that they differ from the

lower bounds only by a lower order additive term. Both representations can be

constructed in linear time.

The present paper is organized as follows. Section 2 introduces preliminaries.

Section 3 presents the construction of a VR with nearly optimal height. Section 4

presents the construction of a VR with nearly optimal width.

2 Preliminaries

When discussing VR, we assume the input graph G is a plane triangulation.

(If not, we get a plane triangulation G
′
by adding dummy edges into G. After

constructing a VR for G
′
, we can get a VR of G by deleting the vertical line

segments for the dummy edges.) We abbreviate the words “counterclockwise”

and “clockwise” as ccw and cw respectively.

A numbering O of a set S = {a1, . . . , ak} is a one-to-one mapping between S

and the set {1, 2, · · · , k}. We write O =< ai1 , ai2 , . . . , aik > to indicate O(ai1 ) =

1, O(ai2) = 2 ... etc. A set S with a numbering written this way is called an

ordered list. For two elements ai and aj, if ai is assigned a smaller number than

aj in O, we write ai ≺O aj. Let S1 and S2 be two sets with empty intersection.

If O1 is a numbering of S1 and O2 is a numbering of S2, their concatenation,

written as O =< O1,O2 >, is the numbering of S1 ∪S2 where O(x) = O1(x) for

all x ∈ S1 and O(y) = O2(y) + |S1| for all y ∈ S2.

G is called a directed graph (digraph for short) if each edge of G is assigned a

direction. An orientation of a (undirected) graph G is a digraph obtained from

G by assigning a direction to each edge of G. We will use G to denote both the

resulting digraph and the underlying undirected graph unless otherwise specified.

(Its meaning will be clear from the context.)

Let G = (V,E) be an undirected graph. A numbering O of V induces an

orientation of G as follows: each edge of G is directed from its lower numbered

end vertex to its higher numbered end vertex. The resulting digraph is called

the orientation derived from O which, obviously, is an acyclic digraph. We use

lengthG(O) (or simply length(O) if G is clear from the context) to denote the

length of the longest path in the orientation of G derived from O. (The length

of a path is the number of edges in it.)

For a 2-connected plane graph G and an external edge (s, t), an orientation of

G is called an st-orientation if the resulting digraph is acyclic with s as the only

source and t as the only sink. Such a digraph is also called an st-graph. Lempel

et. al. [4] showed that for every 2-connected plane graph G and an external edge

(s, t), there exists an st-orientation. For more properties of st-orientation and

st-graph, we refer readers to [5].

Let G be a 2-connected plane graph and (s, t) an external edge. An st-
numbering of G is a one-to-one mapping ξ : V → {1, 2, · · · , n}, such that

ξ(s) = 1, ξ(t) = n, and each vertex v = s, t has two neighbors u,w with

ξ(u) < ξ(v) < ξ(w), where u (w, resp.) is called a smaller neighbor (bigger
neighbor, resp.) of v. Given an st-numbering ξ of G, the orientation of G derived

from ξ is obviously an st-orientation of G. On the other hand, if G = (V,E)
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has an st-orientation O, we can define an 1-1 mapping ξ : V → {1, · · · , n} by

topological sort. It is easy to see that ξ is an st-numbering and the orientation

derived from ξ is O. From now on, we will interchangeably use the term “an

st-numbering” of G and the term “an st-orientation” of G, where each edge of

G is directed accordingly.

Definition 1. Let G be a plane graph with an st-orientation O, where (s, t) is

an external edge drawn on the external face of G. The st-dual graph G
∗

of G

and the dual orientation O
∗

of O is defined as follows:

– Each face f of G corresponds to a node f
∗

of G
∗
. In particular, the unique

internal face adjacent to the edge (s, t) corresponds to a node s
∗

in G
∗
, the

external face corresponds to a node t
∗

in G
∗
.

– For each edge e = (s, t) of G separating a face f1 on its left and a face f2 on

its right, there is a dual edge e
∗

in G
∗

from f
∗
1 to f

∗
2 .

– The dual edge of the external edge (s, t) is directed from s
∗

to t
∗
.

It is well known that the st-dual graph G
∗

defined above is an st-graph with

source s
∗

and sink t
∗
. The correspondence between an st-orientation O of G

and the dual st-orientation O

∗
is a one-to-one correspondence. The following

theorem was given in [6,8]:

Theorem 1. Let G be a 2-connected plane graph with an st-orientation O. Let
O

∗ be the dual st-orientation of the st-dual graph G∗. A VR of G can be obtained
from O in linear time. The height of the VR is length(O). The width of the VR
is length(O

∗
).

The following concept was introduced in [7] and is of central importance in our

VR construction.

Definition 2. Let G be a plane triangulation of n vertices with three external

vertices v1, v2, vn in ccw order. A realizer R = {T1, T2, Tn} of G is a partition

of its internal edges into three sets T1, T2, Tn of directed edges such that the

following hold:

– For each i ∈ {1, 2, n}, the internal edges incident to vi are in Ti and directed

toward vi.

v

1T2T

2T

1T

T

T

n

n

Fig. 1. Edge pattern around an internal vertex v



410 X. He and H. Zhang

– For each internal vertex v of G, v has exactly one edge leaving v in each of

T1, T2, Tn. The ccw order of the edges incident to v is: leaving in T1, entering

in Tn, leaving in T2, entering in T1, leaving in Tn, and entering in T2. Each

entering block may be empty. (See Figure 1.)

v

vv

12

n

1 21

2 3

4

5

6

7

8

9

10

11

13

14

Fig. 2. A plane triangulation G and a realizer R of G

Figure 2 shows a realizer of a plane triangulation G. The dashed lines (dotted

lines and solid lines, respectively) are the edges in T1 (T2 and Tn, respectively).

In [7], Schnyder showed that every plane triangulation G has a realizer which

can be constructed in linear time. It was also shown that each set Ti of a realizer

is a tree rooted at vi. For each Ti, we denote by T i the tree composed of Ti

augmented with the two edges of the external face incident to the root vi of Ti.

Obviously T i is a spanning tree of G. For example, in Figure 2, Tn is Tn (the

tree in solid lines) augmented with the edges (v1, vn) and (v2, vn), which is a

spanning tree of G.

For each internal vertex v of G and i ∈ {1, 2, n}, pi(v) denotes the path in T i

from v to the root vi of T i. It was shown in [7] that p1(v), p2(v) and pn(v) have

only the vertex v in common, and for two vertices u = v and two indices i = j,

pi(u) and pj(v) can have at most one common vertex. The following property

was shown in [1,2].

Property 1. Let v be an internal vertex of G.

1. All ancestors of v in T 1 (T 2, Tn respectively) constitute a nonempty set

and they appear before v in the ccw postordering of the vertices of G with

respect to Tn (T 1, T 2 respectively).

2. All ancestors of v in T 2 (T n, T 1 respectively) constitute a nonempty set and

they appear before v in the cw postordering of the vertices of G with respect

to T n (T 1, T 2 respectively).

For example, in Figure 2, the numbering of the vertices of G is the ccw pos-

tordering with respect to Tn. For the internal vertex 5, its ancestor set in T 1 is

{1, 3}. It is nonempty and all its elements appear before 5 in this numbering.



Nearly Optimal Visibility Representations of Plane Graphs 411

3 Visibility Representation of Nearly Optimal Height

Definition 3. Let T = (V,E) be a tree drawn in the plane. The balanced parti-
tion of T is the partition of V into three ordered subsets A,B,C as follows. Let

ai be the ith vertex of T in ccw postordering and bi the ith vertex of T in cw

postordering. We mark the vertices of T in the order a1, b1, a2, b2, . . . , ai, bi . . .

Continue this process as long as the next pair of the vertices ai+1, bi+1 have not

been marked. We stop when either ak+1 = bk+1 or bk+1 is already marked. This

vertex ak+1 is called the merge vertex of T . When the marking process stops, the

un-marked vertices of T form a single path from the merge vertex ak+1 to the root

of T . We call this path the leftover path of T . We define A =< a1, a2, . . . , ak >,

B =< b1, b2, . . . , bk > and C =< c1(= ak+1), c2, . . . , cp > is the leftover path of

T ordered from the merge vertex to the root of T .

For example, the balanced partition of the tree Tn in Figure 2 is: A =< 1, 2,

3, 4, 5, 6 >, B =< 13, 11, 12, 9, 8, 10>, and C =< 7, 14 >.

Definition 4. Let T = (V,E) be a tree with the balanced partition (A,B,C).

A numbering O of V is consistent with respect to T if the following hold.

1. For any i < j, ai ≺O aj, bi ≺O bj, and ci ≺O cj .

2. For any vertices ai ∈ A, bj ∈ B and cl ∈ C, ai ≺O cl and bj ≺O cl.

By the definition of the consistent numbering, it is easy to see that the following

property holds:

Property 2. Let T be a tree with balanced partition (A,B,C) and O a num-

bering consistent with respect to T . If u is a child of v in T , then u ≺O v.

Lemma 1. Let R = {T1, T2, Tn} be a realizer of a plane triangulation G. For
i ∈ {1, 2, n}, let Oi be a consistent numbering with respect to T i. Then Oi is an
st-numbering of G.

Proof. We only prove the case i = n. The other two cases are symmetric. Let

(A,B,C) be the balanced partition of Tn.

For any vertex other than the root of Tn, its parent is assigned a bigger

number in On. The root of Tn is assigned n.

For any non-leaf vertex of Tn, their children are assigned smaller numbers in

On by Property 2. Consider a leaf u = v1, v2 of Tn. Clearly, u is an internal

vertex of G. If u ∈ A or u ∈ C is the merge vertex, then according to Property

1 (1), its ancestor set in T 1 is nonempty and all its members appear before u

in ccw postordering with respect to Tn. So the parent of u in T 1 is a smaller

neighbor of u. Similarly, by Property 1 (2), if u ∈ B, the parent of u in T 2 is a

smaller neighbor of u. For v1 and v2, one of them is assigned 1, and it becomes

a smaller neighbor of the other. Thus On is an st-numbering of G.

Definition 5. A ladder graph of order k is a plane graph L = (VL, EL). The

vertex set VL is partitioned into two ordered lists A =< a1, a2, . . . , ak > and
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B =< b1, b2, . . . , bk >. EL = EA ∪ EB ∪ Ecross where: EA = {(ai, ai+1)|1 ≤ i <

k}; EB = {(bi, bi+1)|1 ≤ i < k}; and Ecross consists of edges between a vertex

ai ∈ A and a vertex bj ∈ B. The edges in Ecross are called cross edges of L.

For a cross edge (ai, bj), we define slope(ai, bj) = i − j. A cross edge (ai, bj)

is called a level (or up or down, respectively) edge if slope(ai, bj) = 0 (or

slope(ai, bj) < 0 or slope(ai, bj) > 0, respectively).

A numbering O of the vertices of a ladder graph L = (A ∪ B,EL) is consistent
with respect to L if for any i < j, ai ≺O aj and bi ≺O bj.

Lemma 2. Let L = (A ∪ B,EL) be a ladder graph of order k. Let l be the
number of level edges in L. Then L has a consistent numbering O such that
length(O) ≤ (k − 1) + l. This numbering can be constructed in linear time.

Proof. Let Ecross =< e1, e2, . . . , ep > be the ordered list of cross edges of L

ordered from bottom up. We partition Ecross into blocks E1, E2, . . . , Eq. Each

Ej is a maximal sublist of Ecross that contains only up edges, or level edges, or

down edges. Ej is called an up, or a level, or a down block accordingly.

For each block Ej , let xj be the largest index such that either axj or bxj is

incident to an edge in Ej . The span interval of Ej (for 1 ≤ j ≤ q) is defined to be:

I1 = [1, x1]; Ij = (xj−1, xj ] (for 1 < j < q); Iq = (xq−1, k]. Note that I1, . . . , Iq
partition the interval [1, k]. For each j (1 ≤ j ≤ q), we define a numbering Oj of

the vertex set {at, bt | t ∈ Ij} as follows:

If Ej is an up or a level block, let Oj =< axj−1+1, axj−1+2, . . . , axj , bxj−1+1,

bxj−1+2, . . . , bxj >.

If Ej is a down block, let Oj =< bxj−1+1, bxj−1+2, . . . , bxj , axj−1+1,

axj−1+2, . . . , axj >.

Define a numbering of the vertices in L by O =< O1,O2, . . . ,Oq >.

It is clear that O is a consistent numbering of L and the following hold: (i) the

path consisting of the edges in EA and the path consisting of the edges in EB

each has length k−1; (ii) up edges and down edges do not increase the length of

the longest path in the orientation of L derived from O, and (iii) each level edge

can increase the length of the longest path in the orientation of L derived from

O by at most 1. Thus length(O) ≤ k − 1 + l. It is straightforward to construct

O in linear time.

For an example, Figure 3 (1) shows a ladder graph L of order 7. Ecross is par-

titioned into 6 blocks: E1 = {e1}, E2 = {e2, e3}, E3 = {e4, e5}, E4 = {e6},

E5 = {e7, e8}, and E6 = {e9}. I1 = [1, 2], I2 = (2, 3], I3 = (3, 5], I4 = (5, 5] = ∅,

I5 = (5, 7], and I6 = (7, 7] = ∅. The numbering constructed according to Lemma

2 is O =< b1, b2, a1, a2, a3, b3, a4, a5, b4, b5, a6, a7, b6, b7 >, where length(O) = 8.

We omit the details of proving the following lemma. Its basic idea is to lower the

left side A by t levels, t is from 1 to sqrt(k). Applying Lemma 2 to each of them

leads to an st-numbering. we then pick the best st-numbering among them.

Lemma 3. Let L = (A ∪ B,EL) be a ladder graph of order k. Then L has
a consistent numbering O such that length(O) ≤ k + 2�

√

k� − 1. O can be
constructed in linear time.
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Fig. 3. (1) A ladder graph L; (2) Idea of proving Lemma 3

Lemma 4. Let G = (V,E) be a plane triangulation with n vertices. Let T be a
tree obtained from a realizer R of G. Let (A,B,C) be the balanced partition of T .
Then G has an st-numbering O such that length(O) ≤ n/2+|C|/2+2�

√
n/2�−1.

O can be constructed in linear time.

Proof. Let k = (n − |C|)/2. Then |A| = |B| = k. Let L = (A ∪ B,EL) be the

ladder graph constructed as follows. The vertex set of L is A ∪ B. EL contains

all edges of G between A and B, and the edges {(ai, ai+1), (bi, bi+1)|1 ≤ i < k}.

Then L is a ladder graph of order k. By Lemma 3, L has a consistent numbering

OL with length(OL) ≤ k + 2�
√

k� − 1.

Define O =< OL, C >. Clearly this is a numbering of G consistent with

respect to T . By Lemma 1, O is an st-numbering of G. We have length(O) ≤

|C|+ length(OL) ≤ |C|+(n− |C|)/2+2�
√

k�− 1 ≤ n/2+ |C|/2+2�
√
n/2�− 1.

It is straightforward to construct O in linear time.

Lemma 5. Let G be a plane triangulation of n vertices with a realizer R =

{T1, T2, Tn}. For i ∈ {1, 2, n}, let (Ai, Bi, Ci) be the balanced partition of the
tree T i. Then there exists i ∈ {1, 2, n} such that |Ci| ≤ n/3 + 1.

Proof. Each Ci is a path in T i. By the property of realizers, if i = j, Ci and

Cj can intersect at at most one vertex. Thus there exists i ∈ {1, 2, n} such that

|Ci| ≤ (n+ 3)/3 = n/3 + 1.

We now can prove our main theorem in this section.

Theorem 2. Let G be a plane triangulation with n vertices. Then G has a VR
with height ≤ 2n/3 + 2�

√
n/2�, which can be constructed in linear time.

Proof. Let R = {T1, T2, Tn} be a realizer of G. For each i ∈ {1, 2, n}, let

(Ai, Bi, Ci) be the balanced partition of T i. By Lemma 5, there exists i ∈

{1, 2, n} such that |Ci| ≤ n/3 + 1. By Lemma 4, the st-numbering Oi as-

sociated with this T i satisfies length(Oi) ≤ n/2 + |Ci|/2 + 2�
√
n/2� − 1 ≤
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n/2+n/6+2�
√
n/2�−1+1 = 2n/3+2�

√
n/2�. By Theorem 1, the st-numbering

Oi leads to a VR with height at most 2n/3 + 2�
√
n/2�.

By Lemma 4 and Theorem 1, we can construct this VR in linear time.

4 Visibility Representation of Nearly Optimal Width

In order to find a VR with nearly optimal width, our approach is parallel to

that in Section 3: start with a realizer R
∗

= {T
∗
i , T

∗
2 , T

∗
n} of the dual graph G

∗
,

we find an st-numbering O
∗
i of G

∗
for each i ∈ {1, 2, n} and show that one of

them has the desired upper bound. However, the dual graph G
∗

is a 3-regular

plane graph, not a plane triangulation. Therefore the concept of realizer defined

in Definition 2 must be modified. In [3], the realizer concept is generalized from

plane triangulation to 3-connected plane graph as follows.

Definition 6. Let G be a 3-connected plane graph with three external vertices

v1, v2, vn in ccw order. A realizer of G is a triplet of rooted spanning trees

{T1, T2, Tn} of G with the following properties:

1. For i ∈ {1, 2, n}, the root of Ti is vi, the edges of G are directed from children

to parent in Ti.

2. Each edge e of G is contained in at least one and at most two spanning trees.

If e is contained in two spanning trees, then it has different directions in the

two trees.

3. For each vertex v ∈ {v1, v2, vn} of G, v has exactly one edge leaving v in

each of T1, T2, Tn. The ccw order of the edges incident to v is: leaving in T1,

entering in Tn, leaving in T2, entering in T1, leaving in Tn, and entering in

T2. Each entering block may be empty. An edge with two opposite direc-

tions is considered twice. The first and the last incoming edges are possibly

coincident with the outgoing edges. (Figure 4 shows two examples of edge

pattern around an internal vertex v. In the second example, the edge leaving

v in Tn and an edge entering v in T2 are the same edge).

4. For i ∈ {1, 2, n}, all the edges incident to vi belong to Ti.

We color the edges in T1 by blue, T2 by green, and Tn by red. According to

the definition, each edge of G is assigned one or two colors, and is said to be

1-colored or 2-colored, respectively.

Consider a realizer R = {T1, T2, Tn} (as defined in Definition 2) of a plane

triangulation G. The triplet of the three trees {T 1, T 2, Tn} (each of the three

external edges (v1, v2), (v2, vn), (vn, v1) is in two trees) is a special case of the

realizer for 3-connected plane graphs defined here, where the three external edges

are the only 2-colored edges.

For each vertex v of G and i ∈ {1, 2, n}, pi(v) denotes the path in Ti from v to

the root vi of Ti. A subpath of pi(v) between the end vertex v and an ancestor u

of v in Ti is denoted by pi(v, u). The subpath of the external face of G with end

vertices v1 and v2 and not containing vn is denoted by ext(v1, v2). The subpaths

ext(v2, vn) and ext(vn, v1) are defined similarly.



Nearly Optimal Visibility Representations of Plane Graphs 415

v v

T

(1)

T

T1

n

n
T2

T2 T

nT 2

T1

T2

T
1T

1

(2)

Tn

Fig. 4. Two examples of edge pattern around an internal vertex v

It was shown in [3] that every 3-connected plane graph has a realizer, which

can be computed in linear time. The properties of realizer have been studied

extensively in [3] which are summarized in the following lemma.

Lemma 6. Let G = (V,E) be a 3-connected plane graph with |V | = n and
|E| = m. Let R = (T1, T2, Tn) be a realizer of G, where Ti is rooted at the vertex
vi for i ∈ {1, 2, n}.

1. The number of 2-colored edges of G is 3n−m− 3.
2. For each vertex v of G, p1(v), p2(v) and pn(v) have only the vertex v in

common.
3. For i, j ∈ {1, 2, n} (i = j) and two vertices u and v, the intersection of pi(u)

and pj(v) is either empty or a common subpath.
4. For vertices v1, v2, vn the following hold: p1(v2) = p2(v1) = ext(v1, v2);

p2(vn) = pn(v2) = ext(v2, vn); pn(v1) = p1(vn) = ext(vn, v1).

Similar to plane triangulation, we have the following version of Property 1 for

3-connected plane graph G with a realizer R = {T1, T2, Tn}.

Property 3. Let v be an internal vertex of G.

1. All ancestors of v in T1 (T2, Tn respectively) constitute a nonempty set and

they appear before v in the ccw postordering of the vertices of G with respect

to Tn (T1, T2 respectively).

2. All ancestors of v in T2 (Tn, T1 respectively) constitute a nonempty set and

they appear before v in the cw postordering of the vertices of G with respect

to Tn (T1, T2 respectively).

Definition 7. [3]. Let G = (V,E) be a 3-connected plane graph, with three

external vertices v1, v2, vn in ccw order. The extended dual graph G
∗
e of G is

defined as follows.

1. Each internal face f of G corresponds to a node f
∗

in G
∗
e; the external face

of G corresponds to three nodes v
∗
1 , v

∗
2 , and v

∗
n in G

∗
e .

2. Each edge e of G corresponds to an edge e
∗

in G
∗
e .
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3. Two nodes f
∗
1 and f

∗
2 of G

∗
e (different from v

∗
1 , v

∗
2 , and v

∗
n) are connected by

an edge e
∗

= (f
∗
1 , f

∗
2 ) in G

∗
e if and only if the corresponding faces f1 and f2

in G have the edge e in common.

4. v
∗
1 is adjacent to all the nodes of G

∗
e corresponding to faces of G incident to

an edge of ext(v2, vn); v
∗
2 is adjacent to all the nodes of G

∗
e corresponding to

faces of G incident to an edge of ext(vn, v1); v
∗
n is adjacent to all the nodes

of G
∗
e corresponding to faces of G incident to an edge of ext(v1, v2).

5. (v
∗
1 , v

∗
2), (v

∗
2 , v

∗
n), and (v

∗
n, v

∗
1) are three edges in G

∗
e .
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Fig. 5. (1) A plane triangulation G with a realizer R; (2) Its extended dual G∗
e with

dual realizer R∗

Figure 5 (1) shows a plane triangulation G. Figure 5 (2) shows its extended

dual G
∗
e. Note that the extended dual G

∗
e of a 3-connected plane triangulation

G is also a 3-connected plane graph.

Let G = (V,E) be a 3-connected plane graph with a realizer R = {T1, T2, Tn}.

Let G
∗
e be the extended dual of G. In [3], it was shown that R induces a dual

realizer R∗
= (T

∗
1 , T

∗
2 , T

∗
n) of G

∗
e. In our application, we only need the case where

G is a plane triangulation. The following definition of R
∗

is restricted to this

special case.

Definition 8. Let G = (V,E) be a plane triangulation with a realizer R =

{T1, T2, Tn}. Then R induces a dual realizer R∗
= {T

∗
1 , T

∗
2 , T

∗
n} of the extended

dual G
∗
e as follows.

1. Let f
∗
∈ {v

∗
1 , v

∗
2 , v

∗
n} be a node of G

∗
e. Let f be the face of G corresponding

to f
∗

and e an internal edge of G that is on the boundary of f . We color

and direct the dual edge e
∗

in G
∗
e according to the following rules:

(a) If e is blue (i.e. in T1), then e
∗

is colored by green and red (i.e. e
∗

is

in both T
∗
2 and T

∗
n). If e is cw on f , then e

∗
is an outgoing red and

incoming green edge for f
∗
. If e is ccw on f , then e

∗
is an outgoing green

and incoming red edge for f
∗
.
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(b) If e is green (i.e. in T2), then e
∗

is colored by red and blue (i.e. e
∗

is

in both T
∗
n and T

∗
1 ). If e is cw on f , then e

∗
is an outgoing blue and

incoming red edge for f
∗
. If e is ccw on f , then e

∗
is an outgoing red

and incoming blue edge for f
∗
.

(c) If e is red (i.e. in Tn), then e
∗

is colored by blue and green (i.e. e
∗

is

in both T
∗
1 and T

∗
2 ). If e is cw on f , then e

∗
is an outgoing green and

incoming blue edge for f
∗
. If e is ccw on f , then e

∗
is an outgoing blue

and incoming green edge for f
∗
.

2. The dual edge of (v1, v2) is red (i.e. in T
∗
n) and directed to v

∗
n. The dual edge

of (v2, vn) is blue (i.e. in T
∗
1 ) and directed to v

∗
1 . The dual edge of (vn, v1) is

green (i.e. in T
∗
2 ) and directed to v

∗
2 .

3. The edge (v
∗
1 , v

∗
2) is blue and green (i.e. in both T

∗
1 and T

∗
2 ). The edge (v

∗
2 , v

∗
n)

is green and red (i.e. in both T
∗
2 and T

∗
n). The edge (v

∗
n, v

∗
1) is red and blue

(i.e. in both T
∗
n and T

∗
1 ). Their directions are shown in Figure 5 (2).

Figure 5 (1) shows a plane triangulation G and a realizer R. Figure 5 (2)

shows the dual realizer R
∗

of the extended dual graph G
∗
e . The extended dual

graph G
∗
e and the dual realizer R

∗
of a plane triangulation G with a realizer R

satisfy the following:

Property 4. Let R be a realizer of a plane triangulation G with n vertices, and

R

∗
the dual realizer of R of the extended dual graph G

∗
e.

1. The number N of nodes in G
∗
e is the number of faces of G plus two (since

the external face of G corresponds to 3 nodes in G
∗
e). Thus N = 2n−4+2 =

2n− 2.

2. The three edges (v1, v2)
∗
, (v2, vn)

∗
, (vn, v1)

∗
are the only 1-colored edges in

R

∗
.

3. Since R

∗
is just a special case of realizers defined for 3-connected plane

graphs, Property 3 holds for R
∗
.

For each tree T
∗
i (i ∈ {1, 2, n}) of R

∗
, we can define the balanced partition of

T
∗
i , and the consistent numbering O

∗
i with respect to T

∗
i , exactly the same way

as in Section 3.

It turns out that almost all results in Section 3 remain valid and with almost

identical proof (with one major exception for Lemma 5), we state its correspond-

ing version in the following lemma.

Lemma 7. Let G be a plane triangulation of n vertices with a realizer R =

{T1, T2, Tn}. Let G∗
e be the extended dual of G with N = 2n−2 nodes, and R∗

=

{T
∗
1 , T

∗
2 , T

∗
n} the dual realizer of R. For each i ∈ {1, 2, n}, let (Ai, Bi, Ci) be the

balanced partition of T ∗
i . Then there exists i ∈ {1, 2, n} such that |Ci| ≤ N/3+4.

We now state our main theorem in this section, its proof is omitted:

Theorem 3. Let G be a plane triangulation of n vertices. Then G has a VR
with width ≤ 4n/3 + 2�

√

n�, which can be constructed in linear time.
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Abstract. Pach and Tóth [14] proved that any n-vertex graph of genus
g and maximum degree d has a planar crossing number at most cgdn, for
a constant c > 1. We improve on this results by decreasing the bound
to O(dgn), if g = o(n), and to O(g2), otherwise, and also prove that our
result is tight within a constant factor.

1 Introduction

A drawing of a graph G in the plane is an injection of the set of the vertices

of G into points of the plane and a mapping of the set of the edges of G into

simple continuous curves such that the endpoints of each edge are mapped onto

the endpoints of its image curve. Moreover, no curve should contain an image

of a vertex in its inside and no three curves should intersect in the same point,

unless it is an endpoint. The planar crossing number (or simply the crossing
number) of G, denoted by cr(G), is the minimum number of edge crossings over

all drawings of G in the plane.

The concept of crossing numbers was introduced by Turán [18] more than

50 years ago. Although there have been scores of results and publications since,

because of the difficulty of the problem there are only a few infinite classes

of graphs with determined exact crossing numbers. For instance, Glebsky and

Salazar recently proved that the crossing number of the Cartesian product of

two cycles Cm × Cn is (m − 2)n [11]. But the exact crossing numbers for such

important graphs as the complete graph Km and the bipartite graph Km,n are

not known.

From algorithmic point of view, crossing numbers have been studied by

Leighton [13], who was motivated by their application in VLSI design. In graph

drawing, crossing numbers have been used for finding aesthetic drawing of non-

planar graphs and graph-like structures [3]. Typically, such graphs are drawn

in the plane with a small number of crossings and next each crossing point is
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replaced by a new vertex of degree 4. The resulting planar graph is then drawn

in the plane using an existing algorithm for nicely drawing a planar graph, and

finally the new vertices are removed and replaced back by edge crossings. The

general drawing heuristics are usually based on the divide and conquer approach,

using good separators, or using 2-page layouts [4,13].

The problem of finding the crossing number of a given graph was first proved

to be NP-hard by Garey and Johnson [9] and, more recently, it was shown

to be NP-hard even for cubic graphs [12]. There is only one exact algorithm

of practical use [2], but it works for small and sparse graphs only. The best

polynomial algorithm approximates the crossing number with a polylogarithmic

factor [8].

Another direction of research is to estimate crossing numbers in terms of basic

graph parameters, like density and edge separators. There are only a few results

of this type [1,13]. And although the crossing number and the genus of the graph

are two of the most important measures for nonplanarity, there are only a few

results that study the relationship between them. Pach and Tóth [14] showed

that any n-vertex d-degree toroidal graph G (i.e., graph that can be drawn on

the torus with no intersections) has crossing number O(dn). If G is of genus g

(i.e., can be drawn on a surface Sg of genus g with no intersections), they proved

that cr(G) ≤ c
g
dn, for some constant c > 1. Unfortunately, the constant c is

very large and, as a consequence, their result can be useful for very small values

of g only. Although their proofs are of a constructive type, Pach and Tóth do

not discuss algorithmic issues.

In this paper we show that cr(G) = O(dgn), if g = o(n), or cr(G) = O(g
2
),

otherwise. This result is tight within a constant factor. (The lower bound proof

will be included in the full version of the paper.) Our approach allows one to

estimate the surface g
′
crossing numbers of genus g graphs drawn on any surface

Sg′ of genus g
′
, for g

′
< g.

Our result is also interesting because of the fact that it relates the crossing

numbers of a given graph on two different surfaces. Specifically, let crg(G) denote

the surface g crossing number of G, i.e., the minimum number of edge crossings

over all drawings of G in Sg. The above type of results says that if crg(G) = 0,

then cr(G) cannot be very large. We further strengthen this result by showing as

a corollary of our main result that cr(G) = O(crg(G) g+ gn) for bounded degree

graphs.

This paper is organized as follows. In Section 2 we give some basic definitions

and facts about embeddings and surfaces. In Section 3, we prove our main result

and describe the drawing algorithm based on our upper bound proof.

2 Preliminaries

In this paper by G we denote an undirected graph and by V (G) and E(G) we

denote the set of the vertices and the set of the edges of G, respectively. The

size of G is |G| = |V (G)|+ |E(G)|. For any vertex v, the number of the adjacent

vertices to v is called the degree of v and is denoted by deg(v). The maximum
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degree of any vertex of G is called the degree of G. The set of the vertices

adjacent to v is called the neighborhood of v and is denoted by N(v). For any

set of vertices X the neighborhood of X is N(X) =
⋃
v∈X N(v).

The bisection width of G, denoted by bw(G), is the smallest number of edges

whose removal divides the graph into parts having no more than 2|V (G)|/3

vertices each.

By a surface we mean a closed manifold and by Sg we denote a surface of

genus g. A drawing of G on Sg is any injection of the vertices of G onto points of

Sg and the edges of G onto continuous simple curves of Sg so that the endpoints

of any edge are mapped onto the endpoints of its corresponding curve. The

drawing is called an embedding, if no two curves intersect, except possibly at an

endpoint. The genus of G, denoted by g(G), is the smallest genus of a surface

G can be embedded in. G is planar, if the genus of G is zero. Every planar

graph can be drawn in the plane without any edge intersections. Throughout

this paper we will use combinatorial representations of embeddings, where each

undirected edge of G is replaced by a pair of opposite directed edges, and the

cyclic list of outgoing edges from any vertex v (called edge-orbit) specifies the

counterclockwise order in which the edges appear around v in the embedding.

In a facial walk, the successor of any edge (v, w) is the edge after (w, v) in the

edge-orbit for w. The faces of embedding are all simple closed facial walks and

they correspond to the maximal connected regions into which the drawing of

G divides the plane. The outer face of a planar embedding corresponds to the

infinite face of the corresponding drawing. In a combinatorial embedding, any

face can be chosen to be the outer face.

In the remainder of this paper, we will use n, m, and d to denote the numbers

of vertices, edges, and the degree of G, respectively. We also assume that we

are given an embedding µ(G) of G in Sg as an input. If f denotes the number

of the faces of µ(G), then the Euler characteristic E(µ(G)) of µ(G), denoted

simply by E(G) when the embedding is clear from the context, is defined as

E(G) = E(µ(G)) = n−m+ f. The relation between the Euler characteristic and

the genus g of the embedding is given by the Euler formula

n−m+ f = 2− 2g. (1)

For any subgraph K of G, let µ(K) denote the embedding of K induced by

µ(G), let gµ(K) denote the genus of µ(K), and let g(K) denote the genus of K.

Note that gµ(K) and g(K) may not be equal. In order to simplify notations, we

denote gK = gµ(K).

3 The Drawing Algorithm

We will start in Section 3.1 by describing a procedure for partitioning G into

components with special properties, which we divide into three classes. In Sec-

tion 3.2 we will outline the rest of the algorithm that draws each component

according to its type and then combines all drawings into a drawing of the orig-

inal graph.
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3.1 Dividing the Graph into Components

Without a loss of generality we assume that G is biconnected, since otherwise one

can draw the biconnected components separately in the plane and then combine

their drawings into a planar drawing of G. Triangulate µ(G) by inserting a

suitable number of additional edges in each face that is not a triangle. Assign

weights 1 to all original edges of G and weights 0 to all new edges.

In order to simplify the notations, we will continue to denote by G and µ(G)

the modified graph and embedding, respectively, and will refer to the edges

of weights 1 and 0 as original and new edges of G, respectively. For any set

X ⊆ V (G), let wt(X) denote the sum of the weights of all edges of X . Since in

our algorithms we will only be interested in intersections between original edges

of G, we introduce the term original crossings to refer to crossings where both

intersecting edges are original.

Select any vertex t and divide the vertices of G into levels according to their

distance to t. For a constant r to be determined later, denote by Lj, for 0 ≤ j < r,

the set of all edges between level i and level i + 1 vertices, for all i satisfying

i mod r = j. Assume that the number of all levels is at least r. Then there exists

an i
∗
< r such that

wt(Li∗) ≤ �m/r�. (2)

Replace each edge e = (v, w) ∈ Li∗ by a pair of new edges s1 = (v, x1) and

s2 = (w, x2) called stubs, where x1 and x2 are new vertices. This has the effect

of ”cutting” e. The stubs s1 and s2 are a matching pair of stubs and e is a parent
of s1 and s2. For any stub (v, x), where v ∈ V (G) and x ∈ V (G), vertex v is

called attached and vertex x is called unattached. Our drawing algorithm will

eventually join each pair of stubs back into their parent edge.

Compute the connected components of the resulting graph, G
′
. For any com-

ponent K of G
′
, let qK and q

′
K denote the number of the bicomponents in-

duced by the vertices on the lowest and on the highest level of K, respectively,

that are incident to edges from Li∗ . Without loss of generality, we assume that

qK > 0 for any component K except the one containing t, since otherwise K will

be degenerate (a forest), which is easy to draw without intersections. Denote

LK = N(V (K)) ∩ Li∗ .

Let µ(K) be the embedding of K induced by the embedding of G, let nK

and mK be the numbers of the vertices and the edges of K, and let fK be the

number of the faces of µ(G) whose all edges are in K.

Lemma 1. The Euler characteristic of µ(K) is E(K) = nK−mK+fK+qK+q
′
K .

Corollary 1. The genus of µ(K) is gK = 1− (nK −mK + fK + qK + q
′
K)/2.

Assign a label (qK , q
′
K) to K. Consider the set M of all components K with

gK = 0 (i.e., such that µ(K) is a planar embedding) and with label (1, 1) or

(1, 0). Merge any two components K1 and K2 from M that contain a pair of

matching stubs by replacing all pairs of matching stubs by their parent edges.

Assign a label (1, 1) to the resulting component, K̄, and continue until no more

merges are possible.
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Let K(G) denote the set of all resulting components of G. We will use the

following lemma from [7].

Lemma 2. Let qG′ denote the sum of qK over all components K of G′. Then
gµ(G

′
) ≤ g(G)− qG′ + |K(G)| − 1.

By using Lemma 2 we shows that, after the merges, the number of the resulting

components is O(g).

Lemma 3. |K(G)| < 2g.

We will divide all components K of G
′

into three classes depending on their

labels (qK , q
′
K) and on gK as follows. (i) If gK > 0, then K will be of non-planar

type (note that K can actually be planar if the genus of K is smaller than the

genus of µ(K)). (ii) If gK = 0 and the label of K is (1, 1) or (1, 0), then K will

be of l-planar (for ”long planar”) type. (iii) If gK = 0 and the label of K is not

(1, 1) or (1, 0), then K will be of s-planar (for ”short planar”) type. Recall that

components of non-planar and s-planar types have no more than r levels, but

components of l-planar type can have larger number of levels.

3.2 Algorithm Outline

The rest of the algorithm draws each component K of G
′
in the plane according

to its type. The goal is to have the unattached endpoints of all stubs drawn in

the outer face and a relatively small number of original crossings between edges

of K. After all components are drawn in this way, all pairs of matching stubs

are joined into their parent edges. As all stubs are already in the outer face,

intersections may occur only between pairs of stubs. Since, by (2), the weight

of all stubs is O(m/r), this final step will increase the total number of original

crossings by O((m/r)
2
).

3.3 Drawing Non-planar Components

If K is non-planar, then we will show that a subgraph of K of relatively small

size can be found such that ”cutting” the embedding ofK along the edges of that

subgraph and appropriately pasting a face f along the cut produces a planar

surface. Then we will draw K in the plane with f as an outer face and redraw

the edges that were destroyed by the cut. Since those edges will be entirely in f ,

they will not intersect other edges of K. Finally, we will route all stubs to the

outer face.

3.3.1 Finding a Planarizing Set for K
Consider a component K such that gK > 0 and let l

−
K and l

+
K denote the lowest

and the highest levels of K. Define a spanning forest FK of K with qK trees as

follows. For each connected bicomponent Q defined by the vertices of K on level

l
−
K define a spanning tree TQ for Q and add the edges of TQ to FK . For each

vertex v on level greater than l
−
K choose any vertex w on a lower level adjacent to

v and add edge (v, w) to FK . Finally, for each stub s from K, make the attached



424 H. Djidjev and I. Vrt’o

endpoint of s parent of its unattached endpoint. Clearly, FK contains qK trees,

one for each connected bicomponent induced by level l
−
K in K.

We will call an FK-cycle any simple cycle in K that has exactly one non-forest

edge. Since K has no-more than r levels, any FK -cycle will contain no more than

2(r − 1) vertices of K, excluding the vertices on level l
−
K .

For any non-forest edge e of K incident to two different faces f1 and f2 of

the embedding, remove e and merge f1 and f2 into a single face. Since this

operation eliminates one edge and one face, the Euler characteristic does not

change. Continue until no such edge e remains. Then any of the remaining non-

forest edges should be incident only to f . Clearly, f should be the only face of the

resulting embedding, since any face must contains a non-forest edge (otherwise T

will contain a cycle). Next, remove any edge that is incident to a degree-1 vertex

as well as the degree-1 vertex itself. Since each removal reduces the number of

the vertices and the number of the edges by one, this operation preserves the

Euler characteristic of µ(K).

Denote by Pl(K) the resulting graph. We will think of Pl(K) as a ”planariz-

ing” graph since, as we will show in Step 4.2, it can be used to transform the

embedding of K into a planar embedding. Denote by nPl and mPl the number

of the vertices and the number of the edges of Pl(K). By (1) we have

nPl −mPl + 1 = 2− 2gK , (3)

and hence mPl = (nPl − 1) + 2gK , which implies that the number of remaining

non-forest edges is 2gK . Therefore, Pl(K) is a union of 2gK FK -cycles.

We proved the following.

Lemma 4. The embedding µ(Pl(K)) of Pl(K) has a single face, genus gK, and
no more than 2gK(r − 1) vertices whose levels are in the interval (l

−
K , l

+
K ].

We will use Pl(K) in the next subsection to ”planarize” µ(K).

3.3.2 Transforming µ(K) into a Planar Embedding
Next we transform µ(K) by modifying Pl(K) so that it is transformed into a

new face f bounded by a simple cycle c. See the example on Figure 1 (b). Next

we describe more formally the transformation of the different elements of K. We

denote by e = (w1, w2) an edge of K with at least one endpoint in Pl(K).

1) Vertices of Pl(K). Let v be any vertex of degree k from Pl(K) and let

< e1, · · · , ek > be the counterclockwise permutation of the edges of Pl(K)

incident to v. Define k new vertices that will replace v and denote them by

{e1, e2}, {e2, e3}, · · · , {ek, e1} (Figure 1 (a)).

2) Edges not in Pl(K). Let e ∈ E(Pl(K)). We will define an edge (w
′
1, w

′
2) to

replace e. If w1 is not from Pl(K) letw
′
1 = w1. Else denote by< e1, · · · , ek = e0 >

the edge-orbit of w1 and let ej be the first edge from Pl(K) in a counterclockwise

direction from e and let ej−1 be the first edge from Pl(K) in a clockwise direction.

Then define w
′
1 = {ei, ej}. Similarly define a vertex w

′
2 corresponding to w2.

Replace e = (w1, w2) by the edge (w
′
1, w

′
2), which we will denote by new(w1, w2).
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Fig. 1. The transformation of P l(K). (a) Replacing v by k new vertices. (b) Replacing

P l(K) by a simple cycle c. The arrows show the direction of the face walk.

3) Edges from Pl(K). Let e ∈ E(Pl(K)) and let e
′
be the first edge from Pl(K)

in a clockwise direction from e in the edge-orbit of w2 and let e
′′

be the first

edge from Pl(K) in a counterclockwise direction of the edge-orbit of w1. Define a

new edge −−→new(w2, w1) = ({e, e
′′
}, {e

′
, e}). Similarly, define an edge −−→new(w1, w2)

by swapping w1 and w2. Finally, replace e by the two edges −−→new(w2, w1) and

−−→new(w1, w2) (note that both those new edges are undirected).

4) Updating the edge-orbits. Next update the edge-orbits for the vertices inci-

dent to the new edges as follows. Let w be a vertex of Pl(K) and let < e1 =

(w, v1), · · · , ek = (w, vk) > be the counterclockwise permutation of the edges

of K incident to w. For any pair of edges (w, vi) and (w, vj), 1 ≤ i, j ≤ k,

such that (w, vj) is the first edge from Pl(K) in a counterclockwise direc-

tion from (w, vi) define the edge-orbit of the new vertex w(ei, ej) as follows:

< −−→new(w, vi), new(w, vi+1), · · · , new(w, vj−1),
−−→new(vj , w) >.

Denote by K
′
the resulting component, by µ̄(K

′
) its embedding, and by c the

cycle corresponding to Pl(K)..

In order to simplify notations, let VPl = V (Pl(K)), Vc = V (c). By construc-

tion, we have the following.

Lemma 5. The resulting component K ′, its embedding µ̄(K
′
), and the cycle c

constructed by the transformation of Pl(K) have the following properties:

(a) V (K) = V (K
′
) \ Vc ∪ VPl, E(K) = E(K

′
) \N(Vc) ∪N(VPl);

(b) {N(v) | v ∈ VPl} \ VPl = {N(v) | v ∈ Vc} \ Vc;
(c) The number of the faces of µ̄(K

′
) exceeds the number of the faces of µ(K)

by one.

By computing the Euler characteristic of µ̄(K
′
) we prove the following lemma.

Lemma 6. The embedding µ̄(K
′
) is planar.

3.3.3 Transforming µ̄(K′) into a Planar Drawing of K with a Small
Crossing Number

Recall that the cycle c in K
′
corresponds to the subgraph Pl(K) of K. Replacing

c with Pl(K) will transform K
′
back into K.

Without loss of generality assume that the face corresponding to c is not the

outer face. Remove all vertices from c and all of their incident edges. Denote by
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h the resulting face. Draw all vertices of Pl(K) inside h. By Lemma 5 (b), all

edges of K incident to a vertex in Pl(K) will have both their endpoints inside h.

Since there are no more than dnPl such original edges, they can be drawn inside

h with no more than (dnPl)
2

original crossings.

By Lemma 5 (a), the above operation transforms the embedding of K
′
into

a drawing of K. Let µ̄(K) denote the resulting drawing. We summarize the

properties of that drawing in the following lemma.

Lemma 7. µ̄(K) is a drawing of K in the plane that has no more than (dnPl)
2

original crossings.

3.3.4 Routing the Stubs of K to the Outer Face
Assign length 0 to all edges joining two vertices on level l

−
K and assign length

1 to all other edges of K. A length of a path in K is defined as the sum of the

lengths of its edges. We will make use of the following fact.

Lemma 8. Between any pair of vertices of K there exists a path entirely in K

of length no more than 2qK(r − 1) + qK − 1.

Finally, route all stubs of K to the outer face of µ̄(K) using Lemma 8. More

precisely, let s be a stub corresponding to an original edge and let p be the path

constructed by the procedure of Lemma 8 for s. Informally, s will be routed

along a path ”parallel” to p that avoids vertices of p and that, for the portions

of the path on level l
−
K , makes a ”shortcut” inside the corresponding faces in

order to minimize the number of intersections. More formally, remove all edges

incident to vertices of p on levels greater than l
−
K (i.e., that have lengths 1) or

on level l
−
K , but not on p. This operation creates a new face f that includes all

faces defined by the vertices on level l
−
K and that have at least one edge from p.

Route s inside f avoiding vertices from p. Then s will intersect no more than

l(s)·d original edges of G plus a number of stubs of K. (We will separately bound

the number of all intersecting pairs of original stubs in our analysis below.)

Recall that LK = N(V (K)) ∩ Li∗ , where Li∗ was defined in (2). The next

lemma summarizes the results of this section regarding the drawing of K.

Lemma 9. The constructed drawing of K has less than 8(dgKr)
2
+2wt(LK)

2
+

2dqKr original crossings.

When we apply the above algorithm to all non-planar components, the total

number of original crossings is estimated in the following lemma.

Lemma 10. All non-planar components of G can be drawn in the plane so that
the unattached endpoints of all stubs are in the outer face of the drawing and the
total number of original crossings is no more than 8(dgr)

2
+ 12dgr + 2(m/r)

2.

3.4 Drawing s-Planar Components

This case is similar to the case of non-planar components, except that there is

no need to planarize. We state the result in the following lemma.

Lemma 11. All s-planar components of G can be drawn in the plane so that
the unattached endpoints of all stubs are in the outer face and the total number
of original crossings is no more than 12dgr.
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3.5 Drawing l-Planar Components

Since l-planar components may have up to Ω(n) levels, the bound derived from

(2) on the number of edges that have to be routed is not sufficient to guaran-

tee a small crossing number. Hence, we have to additionally cut each l-planar

component along some small set of edges joining two consecutive levels.

Let K be any l-planar component and let l
−
K and l

+
K be the lowest and the

highest levels of K, respectively. By Lemma 1, the embedding of K
−

induced

by the embedding of G is planar.

Denote by f
−

and f
+

the faces defined by the set of the vertices on levels l
−
K

and l
+
K , respectively. We will make use of the following fact.

Lemma 12. Let v be a vertex on level i, where l
−
K ≤ i ≤ l

+
K . There exists a

continuous line in the plane joining v to a point inside f− (respectively f+) that
contains no other vertices of K except v and with no more than (i − l

−
K + 1)d

(respectively (l
+
K − i + 1)d) original crossings with edges from K, excluding the

edges joining a vertex on level i and a vertex on level i+ 1.

Lemma 13. There exists a drawing of K in the plane with at most |V (K)| +

wt(LK)
2 original crossings such that all stubs have their unattached endpoints

drawn in the outer face.

Proof. Find a level i such that the number of the original edges of K joining

a vertex on level i with a vertex on level i + 1 is minimum. Replace each edge

joining levels i and i+ 1 by a pair of stubs as we did with G in Section 3.1. This

splits K into components K
−
, induced by the vertices in K on levels less than

or equal to i, and K
+
, induced by the vertices in K on levels greater than i.

Convert µ(K
−

) into a drawing with an outer face f
−

. For any stub s of K
−

incident to a vertex from level i, use Lemma 12 to route s to f
−

so that s

intersects no more than (i− l
−
K + 1)d edges of K

−
. Repeat the procedure for all

other stubs of K
−

incident to vertices from level i. The total number of original

crossings produced in this step is no more than L(i)(i− l
−
K + 1)d ≤ |V (K

−
)|d,

where L(i) denotes the number of original edges joining a vertex on level i and

a vertex on level i+ 1.

Similarly, convert µ(K
+
) into a drawing with an outer face f

+
and route all

stubs of K
+

incident to vertices from level i+ 1 to f
+
, producing no more than

|V (K
+
)|d original crossings. Add to the drawing the one of K

−
found in the

previous step. Finally, merge any pair of stubs incident to vertices from levels

i and i + 1 into their parent edge of G. Since all stubs were already in the

outer face of the drawing, all new intersections are between stubs incident to

vertices from levels i and i+1. Hence the number of new original crossings is no

more than (L(i))
2
, resulting in a total number of original crossings no more than

|V (K
−

)|d+ |V (K
+
)|d+ (L(i))

2
= |V (K)|d+ (L(i))

2
≤ |V (K)|d+wt

2
(LK). ��

We summarize the results of this section in the following lemma.

Lemma 14. All l-planar components can be drawn in the plane so that the
unattached endpoints of all stubs are in the outer face of the drawing and the
total number of original crossings is no more than nd+ (m/r)

2.
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3.6 Reconnecting the Embedded Components

After all components of G−S are drawn in the plane by applying the algorithms

described in Subsections 3.3, 3.4, and 3.5, all the wt(Li∗) original stubs will have

their unattached endpoints in the outer face. Joining all pairs of original stubs

into their parent edges so that no two stubs intersect more than once will produce

at most wt(Li∗)
2

additional original crossings. This leads to the following result.

Theorem 1. Any n-vertex graph of maximum degree d embedded in Sg can be
drawn in the plane with O(dgn), if g = o(n), or O(g

2
), if g = Ω(n), edge

crossings.

Proof. By Lemmas 10, 11, and 14, the total number of original crossings from

drawing individual components is no more than 8(dgr)
2
+24dgr+nd+3(m/r)

2
=

O((dgr)
2
+nd+3(m/r)

2
, where m is the number of original edges of G. Choosing

r = �

√
m/(gd) � and adding the number of the original crossings resulting from

joining the stubs in the final step, which is bounded by wt
2
(Li∗) = O((m/r)

2
),

the number of all original crossings is O(dgm + dn) = O(dgm).

Without loss of generality we can assume that G is connected and has no

vertex of degree two. Then we have the inequalities m ≥ 3/2n and m ≥ 3/2f ,

which we will use next, where f is the number of the faces of the embedding.

If g = o(n), then from the Euler formula (1) and the above inequalities m =

O(n) and hence O(dgm) = O(dgn), which proves the theorem. If g = Ω(n),

then by (1) m = Ω(n) and g = Ω(m). Since any straightline drawing of G in

the plane has less than m
2

= O(g
2
) crossings, it satisfies the theorem. ��

Corollary 2. Let G be any n-vertex bounded degree graph and let 0 < g = o(n).
Then

cr(G) = O(crg(G) g + gn).

3.7 Complete Algorithm and Complexity Analysis

Here we describe the entire algorithm and analyze its complexity.

Algorithm DRAW

Input: An n-vertex, d-degree graph G, an embedding µ(G) of G in Sg.

Output: A drawing of G with O(max{dgn, g
2
}) crossings.

1. If g = Ω(n), construct an arbitrary straightline drawing of G and exit.

2. Triangulate µ(G) assigning weight 0 to any new edge and weight 1 to any

original edge of G.

3. Set r = �

√
|E(G)|/(gd) �. Divide the vertices of G into levels depending

on their distances to a chosen vertex. Cut a subset of selected edges joining

consecutive levels, as described in Section 3.1, producing components of the

following three types: (i) non-planar components, having at most r levels and

induced genus greater than zero; (ii) s-planar components, having at most

r levels and genus 0; and (iii) l-planar components, whose vertices on their

lowest and on their highest levels define single faces and that have genus 0.

Each cut edge is replaced by a pair of stubs.
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4. For each component K, draw K in the plane applying one of the Steps 5, 6,

or 7.

5. If K is non-planar, then

5.1. Construct a subgraph Pl(K) of K such that (i) Pl(K) contains at

most 2gK(r − 1) vertices not counting the vertices on the highest and

the lowest levels of K; (ii) converting Pl(K) into a simple cycle c that is

a face, denoted by f , of the new embedding as described in Section 3.3.2

transforms the embedding of K into an embedding of the updated graph,

denoted by K
′
, in S0. Moreover, Pl(K) and c have the same set, M , of

edges joining them to K and K
′
, respectively.

5.2. Draw K
′
in the plane with f as an outer face.

5.3. In order to transform K
′

back to K, remove c, draw the vertices of

Pl(K) in the resulting face, f
′
, and draw all edges of M . Since both

endpoints of any edge from M are on or inside f
′
, intersections will

occur only between pairs of edges from M .

5.4. Route any stubs of K to the infinite face of the drawing as described in

the proof of Lemma 8 and join matching pairs of stubs into their parent

edges.

6. If K is s-planar, then draw K in the plane with one of the cycles determined

by the vertices on the lowest level of K as outer face and continue as in

Step 5.4.

7. If K is l-planar, choose a pair of adjacent levels of K such that the total

weight of the edges between vertices on those levels is minimum. Replace

these edges by pairs of stubs and draw the resulting planar components on

the plane so that the cycles on the lowest and on the highest level of K are

outer faces. Route each stub to the corresponding outer face as in the proof

of Lemma 8. Merge all matching pairs of stubs with both endpoints in K

into their parent edges.

8. After all components are drawn in the plane, restore G by merging matching

pairs of the remaining stubs (all located in the infinite face) into their parent

edges.

Theorem 2. Algorithm DRAW constructs a drawing satisfying Theorem 1 of
any n-vertex d-degree graph embedded in Sg in O(dgn) time, if g = o(n), or in
O(g

2
) time, if g = Ω(n).
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Abstract. The minimum cost tree cover problem is to compute a min-
imum cost tree T in a given connected graph G with costs on the edges,
such that the vertices of T form a vertex cover for G. The problem is
supposed to arise in applications of vertex cover and edge dominating
set when connectivity is additionally required in solutions. Whereas a
linear-time 2-approximation algorithm for the unweighted case has been
known for quite a while, the best approximation ratio known for the
weighted case is 3. Moreover, the known 3-approximation algorithm for
such case is far from practical in its efficiency.

In this paper we present a fast, purely combinatorial 2-approximation
algorithm for the minimum cost tree cover problem. It constructs a good
approximate solution by trimming some leaves within a minimum span-
ning tree (MST), and to determine which leaves to trim, it uses both
of the primal-dual schema and the local ratio technique in an interlaced
fashion.

1 Introduction

In an undirected graph G = (V,E) a set C of vertices is a vertex cover if every

edge in G has at least one of its end-vertices in C, whereas an edge set D is an

edge dominating set if every edge not in D is adjacent to some edge in D. A tree

T ⊆ E in a connected graph G is called a tree cover if it is an edge dominating

set for G. Or equivalently, it is a tree such that the set of vertices induced by T

is a vertex cover for G. The minimum cost tree cover problem is to compute a

tree cover of minimum total cost in a given connected graph G = (V,E) with a

nonnegative cost le on each edge e ∈ E. The problem is clearly NP-hard even

in the unweighted case since it then becomes equivalent to the connected vertex
cover problem, which in fact is known to be as hard (to approximate) as the

vertex cover problem [11]. In fact, while it is possible to approximate minimum

vertex cover to within a factor slightly better than 2 [3,15,12], doing so within

any factor smaller than 10
√

5− 21 ≈ 1.36067 is NP-hard [6].
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The tree cover problem was introduced by Arkin, Halldórsson, and Hassin [1],

and they were partially motivated by closely related problems of locating tree-

shaped facilities on a graph such that all the vertices are dominated by chosen

facilities. They presented a 2-approximation algorithm for the unweighted ver-

sion, as well as a 3.55-approximation algorithm for the case of general costs. In

fact a simpler 2-approximation algorithm appeared earlier for the unweighted

case, due to Savage [17], although it was designed for vertex cover and not in-

tended for connected vertex cover. A better approximation algorithm was later

developed for minimum weight tree cover by Könemann et al. [14] and inde-

pendently by Fujito[8], lowering the approximation ratio down to 3, and it is

currently the best bound for the problem. Thus, whereas vertex cover, edge

dominating set [9,16], and many problems closely related to them are known

to be approximable to within a factor of 2, regardless of associated costs, it is

not the case for tree cover. Even worse, the algorithms of [14] and [8] are far

from practical in their efficiency; either one requires to solve optimally an LP of

huge size (see (P) in Sect. 1.1), and to do so, it inevitably resorts to calling the

ellipsoid method as their subroutine.

In this paper we present a fast, purely combinatorial 2-approximation algo-

rithm for the minimum cost tree cover problem. All the previous algorithms for

general costs [1,14,8] are in the similar style of computing a vertex cover C first,

and then connecting all the vertices in C by a Steiner tree. Our algorithm in

contrast is designed based on a hunch that a good approximate solution can be

always found in the vicinity of a minimum spanning tree (MST)
1
.

1.1 Bidirected Formulation

An instance of the minimum cost tree cover problem consists of an undirected

graph G = (V,E) and nonnegative costs le for all edges e ∈ E. Let �G = (V, �E)

denote the directed graph obtained by replacing every edge e = {u, v} of G by

two anti-parallel arcs, (u, v) and (v, u), each having the same cost c({u, v}) as

the original edge e. Pick one vertex in V as the root, and suppose �T ′
⊆

�E is a

branching (or a directed tree) rooted at r. It is assumed throughout that the

arcs in a branching are always directed away from the root to a leaf. (Note: we

will often use �T and T interchangeably, to denote a branching and an undirected

tree, respectively, with a root in common). In the bidirected formulation of the

tree cover problem, one seeks for a minimum cost branching �T
′
rooted at r in �G

such that T
′
is a tree cover rooted at r in G. We call either of such a branching

or an undirected tree an r-tree cover for �G (or G).

A set S ⊆ V − {r} is called dependent if S induces at least one edge in G,

and let D denote the family of such dependent sets. Let δ
−

(S) denote the set

of arcs with heads in S and tails out of S (when needed, we use δ
−
H() to specify

that only the arcs of graph H are considered). We call the arc set δ
−

(S) in �G

1 Interestingly, it was already tried by Arkin et al. [1] to use (a modification of) the
Prim’s or Kruskal’s algorithm for MST problem, and either of them was found not
to perform well.
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an r-edge cut if S ⊆ V − {r} is a dependent set. By using a max-flow/min-cut

argument, one can see that the bidirected formulation of the minimum cost tree

cover problem can be modeled by the integer program:

min{l
T
x | x ∈ {0, 1}

�E
, x(δ

−
(S)) ≥ 1, ∀S ∈ D},

where x(�F ) =
∑

a∈�F xa for �F ⊆
�E, as an r-tree cover must pick at least one arc

from every r-edge cut. Replacing the integrality constraints by x ≥ 0, we have

the LP relaxation of form:

min

∑
a∈ �E

laxa

(P) subject to: x(δ
−

(S)) ≥ 1 ∀S ∈ D

xa ≥ 0 ∀a ∈ �E

Unlike the algorithms of [8,14], our algorithm also makes good use of the LP

dual of (P):

max

∑
S∈D

yS

(D) subject to:

∑
S∈D:a∈δ−(S)

yS ≤ la ∀a ∈ �E

yS ≥ 0 ∀S ∈ D

At this point one may notice that the bidirected minimum cost tree cover

problem has some similarity with another well-known combinatorial optimization

problem, no matter how superficial it might be. In a directed graph D = (V,A)

with r ∈ V an r-arborescence A
′
⊆ A is a spanning tree of the underlying

undirected graph of D such that each vertex of D other than r is entered by

exactly one arc of A
′

(and no arc enters r). An arc set C ⊆ A is called an r-
cut if C = δ

−
(U) for some nonempty U ⊆ V − {r}. The shortest r-arborescence

problem is to, given D, r, and nonnegative costs la for all the arcs a ∈ A, compute

an r-arborescence of minimum cost.

Suppose now that the set of constraints in (P) concerning all the r-edge cuts is

enlarged such that it consists of x(δ
−

(S)) ≥ 1 for all nonempty S ⊆ V −{r}; that

is, replace D by D
′
= {S ⊆ V −{r} | S = ∅}, and denote it (P’). It was shown by

Edmonds that the shortest r-arborescence problem can be formulated exactly by

(P’) [7]. Likewise, replaceD byD
′
in (D), and call it (D’). Then, (D’), which is the

LP dual of (P’), formulates the problem of maximum (fractional) r-cut packing,
and it was shown by Fulkerson that (D’) has integer optimum solutions if l is

integral [10] (thus, there exist an r-arborescence and an integral r-cut packing

of the same cost). Recall now that original (P) and (D) are actually based on

graphs in bidirected forms of undirected graphs, and not on arbitrary digraphs,

and if graphs in (P’) are also restricted as such, the problem formulated by (P’)

reduces to the one on undirected graphs, namely, the minimum spanning tree
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problem. It is this observation that has motivated us to investigate the possibility

of whether an MST, as an integer optimal solutions in (P’), could give us a lead

when they are cast in (P) (or an r-cut packing when cast in (D)).

1.2 Primal-Dual Schema vs. Local Ratio Technique

Among various methods for design and analysis of approximation algorithms, the

primal-dual schema and the local ratio technique have been popular and applied

to a wide range of problems. While it is often possible to interpret algorithms in

one framework within the other [3,5,2], and moreover, these two methods have

been shown essentially equivalent [4], yet it could be of great use to have both

of them at our disposal, as they can provide different lines of approaches to a

problem of concern.

Certainly, the primal-dual method could be helpful in approximating the tree

cover problem. Consider, for instance, the Savage’s 2-approximation algorithm

for unweighted tree cover, which simply returns the tree Ttc remaining after all

the leaves are trimmed from a depth-first-search (DFS) spanning tree T [17].

The directed version �Ttc of Ttc rooted at r is clearly feasible to (P). To estimate

its cost |Ttc|, let M be a matching on T such that all the internal nodes of T

but r are matched by M (Note: it is easy to find such a matching). Since M is a

matching, r-edge cuts, δ
−

(e) and δ
−

(e
′
), are disjoint for any two different edges

e and e
′
of M . Hence, y with ye = 1 for each e ∈M and yD = 0 for all the other

dependent sets D, is feasible to (D). To show that |Ttc| is a factor of at most

2 away from the optimum, we need only to verify that |�Ttc| ≤ 2|M |, by simple

combinatorial arguments, for then, |�Ttc| ≤ 2
∑

yD ≤ 2(optimal value of (P)).

It does not look so easy, however, to find a way to go from here to the case of

arbitrary costs, under guidance of the known primal-dual schema only, and it was

not until introducing the local ratio technique on top of it that we could find one.

One basic scenario in the paradigm of local ratio technique is to “decompose”

a cost function w defined on a problem instance I into many “slices” of cost

functions w0, w1, . . . , wk−1, such that w =
∑

i wi and wi ≥ 0, ∀i. It is expected

that an easily computable solution such as a minimally feasible solution, is a

good enough approximation to the optimal one under each of wi’s, and if so,

putting all such solutions together would yield a good approximation in the

original instance.

A brief overview of our algorithm can be stated now as follows. It first de-

composes (G, c) into uniformly costed instances of (G0, c0), (G1, c1), . . . , (Gk−1,

ck−1), and it does so according to the costs of edges in an MST T . The algorithm

next employs the primal-dual schema on each slice of (Gi, ci)’s, and sets up a

dual solution y
i
for each of them. Finally, it determines which leaves of T to be

removed using these y
i
’s. So in our algorithm, both of the primal-dual schema

and the local ratio technique are used in an interlaced fashion. As mentioned

earlier, quite a number of approximation algorithms have been developed so far

using either of these two methods, yet to the best of our knowledge, no algorithm

has been designed based on both.
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2 Algorithm

Let S ⊆ V be the set of “special” nodes, and M be a matching on a spanning

tree T rooted at r. We say M is dense if

– r and all the special nodes are left unmatched by M , and

– every internal node (= r) of T with none of its children special is matched

by M .

(Note: it does not matter for M to be dense whether any internal node having

a special child or any leaf is matched by M or not). A dense matching M ⊆ T

can be efficiently computed by a DFS-like procedure (see Fig. 1).

Initialize M = ∅, and mark root r and all the special nodes “matched”.
Call DFS-MATCH(r).

DFS-MATCH(u)
If u is a leaf then return
If u is unmatched and has an unmatched child v then

Pick e = {u, v} and add it to M by setting M ← M ∪ {e}.
Mark both u and v “matched”.

For each child v of u do
Call DFS-MATCH(v).

Fig. 1. A DFS-like procedure for computing a dense matching M on tree T

Let T denote any MST in G. Suppose that T consists of edges with k different

costs, w0, w1, . . . , wk−1, (k ≤ n − 1) such that w0 < w1 < · · · < wk−1. Let

∆0 = w0 and ∆i = wi −wi−1 for 1 ≤ i ≤ k− 1 (so, ∆i > 0, ∀i). In the following

algorithm a sequence of trees, T1, T2, . . . , Tk−1, and a sequence of graphs, G1 =

(V1, E1), G2 = (V2, E2), . . . , Gk−1 = (Vk−1, Ek−1), will be generated from T0 = T

and the original graph G0 = G, respectively, in such a way that Ti+1 (Gi+1) is

the one obtained from Ti (Gi, resp.) by contracting all the edges of cost wi in Ti.

Such contractions might introduce parallel edges and/or self-loops in Gi’s (but

not in Ti’s), and we may keep all the parallel edges but none of the self-loops.

When tree edges are contracted, the set of vertices connected together by these

edges is replaced by a single new vertex (and it becomes a new root labeled r if

r is among those merged into one), and such vertices in Gi’s are called s-nodes
(for special nodes). Clearly, any s-node u in any Gi corresponds naturally to

some set S of vertices, all of them connected together by contracted edges, in

original G. Let D(u) ⊆ V denote the set of vertices merged into an s-node u.

Then, δGi(u) = δG(D(u)) for any s-node u ∈ Vi, and hence, δ
−
�Gi

(u) coincides

with the r-edge cut δ
−
�G
(D(u)) (for dependent D(u)) if u = r.

Given G = (V,E) and r ∈ V , the algorithm TC computes a tree cover rooted

at r (see Fig. 2). Starting with G0 = G and T0 = any MST T in G, it computes

a sequence of graphs, G1, . . . , Gk−1, and a sequence of trees, T1, . . . , Tk−1, for
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1. Set G0 ← G, T ← any MST in G, and T0 ← T . /* initialization */
2. For i = 0 to k − 1 do

/* Mi’s and Si’s are constructed in this phase */
2-1. Let Si be the set of s-nodes in Gi.

/* set yi
D = ∆i,∀D ∈ D(Si) */

2-2. Compute a dense matching Mi on Ti.
/* set yi

e = ∆i,∀e ∈ Mi */
2-3. Let Ti+1(Gi+1) be the tree (graph) obtained by contracting all the edges

of cost wi within Ti.
3. For each leaf edge e of T do

3-1. Set l̄e = le −∑i:e∈Mi
∆i. /* = le −

∑
e∈Mi

yi
e */

4. While there exists an edge f between two leaves of T , u and v, with
min{l̄e(u), l̄e(v)} > 0 do
4-1. Set yf = min{l̄e(u), l̄e(v)}.
4-2. Subtract yf from each of l̄e(u) and l̄e(v).

5. Let Ttc ← (T with any of its leaf edges e removed if l̄e > 0), and output Ttc.

Fig. 2. Algorithm TC for computing a tree cover T in G

each 0 ≤ i ≤ k − 2, by contracting all the edges of cost wi on Ti (in Step 2).

At the same time a set Si ⊆ Vi of s-nodes and a dense matching Mi ⊆ Ti are

constructed for each 0 ≤ i ≤ k − 1. Call an edge of a tree T leaf edge if it is

incident to a leaf u of T , and denote it e(u) (or call an arc of �T leaf arc, and

denote it �e(u)). In Step 3 the “residual” cost l̄e on each leaf edge e of T is set to

initial cost le less
∑

i:e∈Mi
∆i. Using these residual costs, duals on those edges

connecting leaves of T are maximally increased in Step 4; for any f between

leaves u and v, yf is set to a maximal value such that yf does not exceed either

of l̄e(u) and l̄e(v), yf is next subtracted from each of l̄e(u) and l̄e(v), and repeated

by going to any other edge connecting leaves of T , until no longer possible to

raise duals on such edges. So after this step, no residual cost remains positive

on at least one of leaf edges e(u) and e(v) for any pair of leaves u and v of T

connected by an edge. The algorithm outputs an r-tree cover Ttc by trimming

any leaf edge of T with a positive residual cost still remaining on it.

It is rather easy to see that Ttc thus computed is indeed an r-tree cover since

1) the internal structure of T (i.e., the subtree of T obtained by removing all the

leaves from T ) is completely maintained in Ttc, and 2) for any edge connecting

two leaves of T , at least one of them is kept in Ttc as well.

Now the whole algorithm is to pick any edge e = {u, v} in given G, compute

both of u- and v-tree covers by calling TC twice, and choose the lighter of them

as a tree cover for G.

3 Dual Solution and Its Feasibility

In this section we show how a dual feasible solution y is computed implicitly
within the algorithm, along with an r-tree cover Ttc, and that it is feasible to

(D). Let us begin with an easy but very basic observation:
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Lemma 1. For any e ∈ E, e ∈ Ei if le < wi.

Proof. For the sake of contradiction, suppose there exists e ∈ Ei with le < wi.

Since Ti is the tree resulting from contracting all the edges of cost < wi within

T , e cannot occur within Ti.

So, e ∈ Ei − Ti. Since we always shrink edges of spanning T , every Ti is a

spanning tree in Gi. If e not in Ti is lighter than any edge of Ti, a spanning tree

T
′
e strictly lighter than Ti would arise in Gi, by adding e to Ti and removing

some edge from Ti, say e
′
(recall that e cannot be a self-loop). But then, (T −

{e})∪ {e
′
}, which is strictly lighter than T , would be a spanning tree in G, and

this contradicts the fact that T is an MST in G. ��

During the first phase (i.e., within the for-loop of Step 2) of algorithm TC, a

dense matching Mi and a set Si of s-nodes are computed for each i. Recall

that D(u) ⊆ V denotes the set of those vertices merged into an s-node u by

edge contraction, and let Di = {D(u) | u ∈ Si}. A dual solution y is set up by

letting each of ye (e ∈Mi) and yD (D ∈ Di) be given a fixed nonnegative value

uniformly for each i as follows; y will then be determined by the component-wise

accumulation of them:

1. For each i

y
i
e =

{
∆i if e ∈Mi

0 otherwise

and ye =
∑

i y
i
e =
∑

i:e∈Mi
∆i for each edge e ∈ T ;

2. For each i

y
i
D =

{
∆i if D ∈ Di

0 otherwise

and yD =
∑

i y
i
D =

∑
D∈D(Si) ∆i for any dependent set D ⊆ V − {r}.

(Note: Quite possibly, an edge e ∈Mi could happen to be identical to D(u) ∈ Di′

for some s-node u ∈ Si′ if i = i
′
. If so, ye and yD(u) actually correspond to

the same component of y. For a clearer presentation, however, they will be

distinguished from each other in the sequel. )

Any edge in any Mi is certainly an edge of an MST T , and any D in any

D(Si) is the vertex set of some subtree of T as all the vertices in D are merged

into an s-node by contracting edges of T . We will also need to use an r-edge cut

of form δ
−

(D) such that D is not a part of T , and its value yD is to be explicitly

determined by the algorithm:

3. ye = as assigned at step 4 in algorithm TC, for any e joining leaves of T .

From the way the algorithm assigns values to these ye’s (at step 4) and that

any leaf edge f is removed at step 5 if l̄f > 0, it is clear that, for any leaf edge

f = e(u), lf =
∑

f∈Mi
∆i +

∑
(ye : e ∈ E connects u with another leaf of T ) if

f remains in Ttc.

By setting all the other dual variables to zero, the r-edge cut packing is

completed, and this is the dual solution y ∈ RD
which in what follows will be
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paired with the integral primal solution �Ttc ⊆ �E, the directed counterpart of the

r-tree cover computed.

Lemma 2. For all �e = (u, v) ∈ �E, Y�e =
∑

D∈D:�e∈δ−(D) yD ≤ le.

Proof. Let T be an MST used in algorithm TC.

Case v is an internal node of T . Notice first that the edges ∈ Mi and the

vertex sets ∈ Di = {D(u) | u ∈ Si} are mutually vertex disjoint in G for

each i since so are the edges ∈ Mi and the nodes ∈ Si in Gi. Therefore, at

most one among the edges ∈ Mi and the vertex sets ∈ Di contains v in it,

and hence, the contribution to Y�e from y
i
f ’s (f ∈ Mi) and y

i
D’s (D ∈ Di)

together is at most ∆i, for each 0 ≤ i ≤ k − 1. All the other dependent sets

with positive duals are such edges that are incident to leaves only, and they

do not show up within
∑

D∈D:�e∈δ−(D) yD.

By Lemma 1, if wj ≤ le < wj+1, e does not appear in Gi for i = j +

1, . . . , k − 1. Therefore,

Y�e ≤

∑
v∈e∈Mi

∆i +

∑
v∈D∈D

∆i

=

j∑
i=0

[(∆i : v ∈ e ∈Mi) + (∆i : v ∈ D ∈ D)]

≤ ∆0 +∆1 + · · ·+∆j

= w0 + (w1 − w0) + · · ·+ (wj − wj−1) = wj .

Case v is a leaf of T . Let f denote e(v), the leaf edge of T incident to v.

Suppose wj ≤ le < wj+1 and lf = wj′ . Because T is an MST in G it

must be the case that lf ≤ le, and thus, j
′
≤ j. Since lf =

∑j′

i=0 ∆i,

le ≥ wj =
∑j

i=0 ∆i = lf +
∑j

i=j′+1 ∆i.

Since v is a leaf of T , among the duals assigned on the edges of dense

matchings, only those placed on f can contribute to Y�e.

Certainly, v does not become an s-node before f = e(v) gets contracted

at i = j
′
+ 1, whereas e disappears at i = j + 1 and thereafter. Therefore,

if �e ∈ δ
−

(D(w)) for some s-node w, w can occur only in Gi’s for i = j
′
+

1, . . . , j, and the total contribution of yD(w)’s for s-nodes w to Y�e is at most∑j
i=j′+1 ∆i.

What remains to be accounted for are the duals on those edges joining

v with other leaves of T . Whereas actual values placed on those edges are

determined within the algorithm, it can be observed, from the way it works,

that ∑
(yg : g ∈ E joins v with another leaf of T ) ≤ l̄f

where l̄f = lf −
∑

(∆i : f ∈ a dense matching Mi). Therefore,
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Y�e ≤

∑
(∆i : f ∈ a dense matching Mi) +

j∑
i=j′+1

∆i + l̄f

= lf +

j∑
i=j′+1

∆i = wj .

��

It follows from this lemma that the dual solution y ∈ RD
set up as above is

feasible to (D).

4 Approximation Ratio

In approximation algorithms based on the primal-dual schema, the approxima-

tion ratios are obtained by relating the value of a computed integral (primal)

solution with that of a simultaneously computed dual solution, and these values

are usually related by means of complementary slackness conditions, in somehow

relaxed forms. In case of (P) and (D), these conditions can be stated as follows,

where α and β (with each ≥ 1) denote relaxation factors of the respective con-

ditions:

Primal Complementary Slackness Conditions (PCSC)
For each �e ∈ �E, x�e > 0 implies that le/α ≤

∑
D∈D:�e∈δ−(D) yD ≤ le.

Dual Complementary Slackness Conditions (DCSC)
For each D ∈ D, yD > 0 implies that 1 ≤ x(δ

−
(D)) ≤ β.

It can be shown that, if an algorithm produces x and y satisfying the conditions

above, its approximation ratio is at most αβ.

In case of algorithm TC, however, the primal solution �Ttc and the dual solution

y are not related in such a simple manner (even in the unweighted case of l = �1),

and the way they satisfy PCSC and DCSC can be seen to be as follows:

– for each �e ∈ �E with x�e > 0 (i.e., �e ∈ �Ttc),

• PCSC may not hold for any α if �e is not a leaf arc of �T ,

• PCSC is satisfied at α = 1 if �e is a leaf arc of �T , and

– for each D ∈ D with yD > 0,

• DCSC is satisfied at β = 1 if D is an edge in a dense matching Mi or

D = D(u) for some s-node u (Note: in either case D corresponds to a

subtree of T ),

• DCSC is satisfied at β = 2 if D is an edge connecting two leaves of T .

We will use more direct arguments in what follows to show that an r-tree cover

�Ttc computed by the algorithm is of cost no more than twice the cost of the dual

feasible solution y computed simultaneously.

The first idea is to “decompose” T into the uniformly weighted trees, T0, T1,

. . . , Tk−1, where every edge of Ti is of cost ∆i, and then to pay for at least half
the costs of all the internal (i.e., non-leaf) arcs of �Ti (and possibly more) by the
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duals associated with the edges in Mi and the nodes in Si, for each i. The dual

value placed on each e ∈Mi and each u ∈ Si is ∆i, and so we may use it to pay

for half the costs of two arcs in �Ti. Suppose we use y
i
e to pay for the costs of

�e itself and the arc preceding �e in �Ti, ∆i/2 to each, for each e ∈ Mi. Likewise,

y
i
D(u) is used to pay for the costs of the arc of �Ti entering to an s-node u and its

predecessor in �Ti, again ∆i/2 to each.

Lemma 3. Every non-leaf arc of �Ti gets at least half paid by the duals on
Mi and Si.

Proof. Let �e = (u, v) be a non-leaf arc of �Ti. If v is an s-node, �e gets half paid

by yD(v). Since v is not a leaf, it has at least one child, and if any of them is an

s-node, say w, then, as �e is a predecessor of (v, w), �e gets half paid by yD(w). So,

assume that neither of v nor any of its children is an s-node. Then, a matching

Mi on Ti must match v if it is dense. If so, e ∈Mi, or otherwise, {v, w} ∈Mi for

some child w of v, and in either case, �e gets half paid by either e or {v, w}. ��

Let us now say that an arc �e in �T is half paid if at least half of its cost, le/2, is

paid in total to e by the duals on Mi’s and D(Si)’s.

Lemma 4. Every non-leaf arc of �T gets half paid.

Proof. By Lemma 3, every non-leaf arc of �T gets paid for at least ∆i/2 everytime

it occurs in �Ti. Suppose le = wj . Then, e appears in G0, G1, . . . , up to Gj (but no

further). The total amount paid to �e is hence at least ∆0/2+∆1/2+· · ·+∆j/2 =

(∆0 +∆1 + · · ·+∆j)/2 = wj/2 = le/2. ��

To account next for the cost of any leaf arc �e(u) of �T remaining in �Ttc, let us

recall that l̄e = le −
∑

i:e∈Mi
∆i and that �e(u) remains in �Ttc only if the dual

values on the edges joining u with other leaves total to l̄e; that is,
∑

(yf : f ∈

E joins u with another leaf of T ) = l̄e. Thus, if we spend yf , for any f joining

two leaves w and z of T , to pay for the costs of the leaf arcs of �T , ∆i/2 each to

�e(w) and �e(z), a leaf arc �e avoids being got rid of only if it gets half paid. To

be precise, one half of
∑

i:e∈Mi
∆i and one half of l̄e get paid to �e, totaling to

(
∑

i:e∈Mi
∆i)/2 + (le −

∑
i:e∈Mi

∆i)/2 = le/2. Therefore,

Lemma 5. Every leaf edge of �T remaining in �Ttc also gets half paid.

It follows immediately from Lemmas 4 and 5 that algorithm TC computes an

r-tree cover �Ttc ⊆ �T and a dual feasible y ∈ RD
such that the cost l(�Ttc) of �Ttc

is no larger than twice the value
∑

D∈D yD of y. Therefore,

Theorem 6. The algorithm TC approximates the minimum cost r-tree cover to
within a factor of 2; consequently, the approximation ratio of the whole algorithm
for approximating the minimum cost tree cover is bounded by 2.

The integrality gap of (P) is known to be no smaller than 2 [14].

Corollary 7. The integrality gap of (P) is 2 when the graph is in the bidirected
form of an undirected graph.
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It is also clear, from the way the dual solution y ∈ RD
is determined as above,

that y can be ensured to be integral if l is integral:

Corollary 8. When l is integral and the graph is in the bidirected form of an
undirected graph in (D), there exists an integral r-edge cut packing the cost of
which is at least 1/2 of the cost of an optimal fractional r-edge cut packing.
Moreover, such an integral r-edge cut packing is efficiently computable.

5 Final Remarks

The paper has shown that the minimum cost tree cover can be efficiently ap-

proximated to within a factor of 2 of the optimum. As the minimum tree cover

problem is as hard to approximate as the minimum vertex cover problem [11],

a further improvement on this factor would imply that the minimum vertex

cover problem is approximable within a factor better than 2, which has been

conjectured by some to be highly unlikely [13].

A natural and equally interesting direction of further research would be in the

directed version of the tree cover (DTC) problem; given here is a directed graph

G, and it is required to compute a directed tree (a branching) T of minimum

cost in G such that either head or tail (or both of them) of every arc in G is

touched by T . As mentioned in [14], the problem has remained wide open. If

G is unweighted, however, it is not hard to find a 2-approximation for it, by

extending the approach of the current paper a bit further. Letting V
′
be the set

of vertices reachable from the root vertex r, compute an arborescence T spanning

V
′

entirely (and V
′

must be a vertex cover for G if it is a feasible instance of

DTC). Compute next a dense matching M on T (with no s-nodes), and while

there exists an arc connecting two unmatched leaves, add it to M . Finally trim

any leaf u from T if u is unmatched and there is no arc entering to u from V −V
′
.

Such an approach appears to fall short, however, once arbitrary arc costs are

allowed on G. In fact one can come up with an instance in which any feasible

solution contained in any spanning arborescence incurs such a cost larger than

the optimum by an unbounded factor. Thus, the approximability of minimum

cost DTC problem, as well as a related issue of the integrality gap of (P) on

arbitrary directed graphs, still remain wide open.
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Abstract. The S-connectivity λS
G(u, v) of (u, v) in a graph G is the ma-

ximum number of uv-paths that no two of them have an edge or a node
in S −{u, v} in common. The corresponding Connectivity Augmentation
(CA) problem is: given a graph G0 = (V, E0), S ⊆ V , and requirements
r(u, v) on V × V , find a minimum size set F of new edges (any edge
is allowed) so that λS

G0+F (u, v) ≥ r(u, v) for all u, v ∈ V . Extensively
studied particular cases are the edge-CA (when S = ∅) and the node-CA
(when S = V ). A. Frank gave a polynomial algorithm for undirected
edge-CA and observed that the directed case even with r(u, v) ∈ {0, 1}
is at least as hard as the Set-Cover problem. Both directed and undi-

rected node-CA have approximation threshold Ω(2log1−ε n). We give an
approximation algorithm that matches these approximation thresholds.
For both directed and undirected CA with arbitrary requirements our
approximation ratio is: O(log n) for S �= V arbitrary, and O(rmax · log n)
for S = V , where rmax = maxu,v∈V r(u, v).

1 Introduction and Preliminaries

1.1 The Problem and Previous Work

Let G = (V,E) be a graph and let S ⊆ V . The S-connectivity λSG(u, v) of (u, v)

in G is the maximum number of uv-paths such that no two of them have an edge

or a node in S − {u, v} in common. We consider the following problem:

Connectivity Augmentation (CA)
Instance: A directed/undirected graph G0 = (V,E0), S ⊆ V , and a nonnegative

integer requirement function r(u, v) on V × V .

Objective: Add a minimum size set F of new edges to G0 so that for G = G0 +F

λ
S
G(u, v) ≥ r(u, v) for all (u, v) ∈ V × V. (1)

CA is a particular case of the Generalized Steiner Network (GSN) prob-

lem: given a complete directed/undirected graph G = (V, E) with edge-costs

{ce : e ∈ E}, a node subset S ⊆ V , and a requirement function r(u, v) on V ×V ,

find a minimum cost spanning subgraph G of G so that (1) holds for G. Clearly,

GSN with {0, 1}-costs is the CA problem.

Extensively studied particular choices of S in CA/GSN instances are: S = ∅

(the edge-CA/GSN), S = V (the node-CA/GSN), and any S so that r(u, v) = 0

M. Bugliesi et al. (Eds.): ICALP 2006, Part I, LNCS 4051, pp. 443–452, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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whenever u ∈ S or v ∈ S (the element-CA/GSN). Except the general require-

ments, two special types of requirement functions are studied in the literature.

The uniform requirements when r(u, v) = k for all u, v ∈ V , and the rooted

(single source/sink) requirements when there is s ∈ V so that if r(u, v) > 0

then: u = s for directed graphs, and u = s or v = s for undirected graphs.

Similar variants (edge/node/element cases and general/uniform/rooted require-

ments) are also extensively studied for other types of GSN costs (e.g., general,

{1,∞}-costs, and metric costs). Note also that the Directed Steiner Tree problem

is the special case of directed GSN with rooted {0, 1}-requirements.

For undirected graphs the best known approximation ratios for GSN are as

follows. For edge-GSN Jain [19] gave a 2-approximation algorithm. This result

was extended to element-GSN in [5,9]. For node-GSN no nontrivial approxima-

tion algorithms for arbitrary costs are known. Recently, Cheriyan and Vetta [6]

gave an O(log n)-approximation algorithm for the undirected metric node-GSN
(namely, when S = V and the edge costs satisfy the triangle inequality). For

directed graphs, nontrivial approximation algorithms are known only for {0, 1}-

requirements (in this case all choices of S are equivalent). Dodis and Khanna [7]

showed that even this simple case cannot be approximated within O(2
log1−ε n

)

for any ε > 0 unless NP ⊆ DTIME

(
n
polylog(n)

)
. Charikar et. al [2] gave an

O(p
2/3

log
1/3

p)-approximation algorithm where p = |{(u, v) : r(u, v) = 1}| is the

number of pairs that are to be connected. Feldman and Ruhl [8] gave an exact

algorithm with running time O(n
4p

). For rooted {0, 1}-requirements (this is the

Directed Steiner Tree problem) [2] gave an O(n
ε
/ε

3
)-approximation algorithm

for any constant ε > 0. See also surveys in [23,27] on various GSN problems.

As CA is a particular case of GSN, these approximation ratios (but not

the hardness results) are valid for CA problems as well, except the O(log n)-

approximation algorithm for the undirected metric node-GSN of [6]. The result

of [6] is not valid for CA since in CA problems the costs are usually not metric;

furthermore, a polylogarithmic approximation for the node-CA is unlikely, since

as shown in [31], the node-CA cannot be approximated within O(2
log1−ε n

) for

any fixed ε > 0 unless NP ⊆ DTIME(n
polylog(n)

).

In many cases, for CA better approximation ratios are known than for its gen-

eralization GSN. For undirected CA the following results are known. A. Frank

[10] gave a polynomial algorithm for undirected edge-CA based on Mader’s

undirected splitting off theorem for edge-connectivity [29]. The node-CA (and

the element-CA) turned to be NP-hard even when the input graph G0 is con-

nected and r(u, v) ∈ {0, 2} (c.f., [30]). However, while the undirected element-

CA admits a 7/4-approximation algorithm [31], the undirected node-CA with

r(u, v) ∈ {0, k} cannot be approximated within O(2
log1−ε n

) for any fixed ε > 0,

unless NP ⊆ DTIME(n
polylog(n)

), see [31]. For uniform requirements r(u, v) = k

for all u, v ∈ V the complexity status is not known for undirected graphs, but

the problem is in P for directed graphs [13]; this implies a 2-approximation

algorithm for undirected graphs. For undirected graphs an algorithm that com-

putes a solution of size roughly opt+k(k−k0)/2 is given in [17], where k0 is the
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connectivity of G0; furthermore, for any fixed k an optimal solution can be com-

puted in polynomial time [18]. For rooted uniform requirements (in undirected

graphs) the situation is similar, see [32].

For directed graphs it was already observed by A. Frank [10] that even for

rooted {0, 1}-requirements the edge-CA is at least as hard as the Set-Cover prob-

lem. Combined with the result of [33] this implies an Ω(log n)-approximation

threshold for this simple variant (namely, the problem cannot be approximated

within c lnn for some universal constant c < 1, unless P=NP). By extending

the construction from [10], a similar threshold was shown in [32] for the undi-

rected rooted CA with root s and S = V −{s}, but for {0, k}-requirements with

k = Θ(n).

Summarizing, both directed and undirected CA have the following approxi-

mation thresholds. An Ω(log n)-approximation threshold for S = V (specifically,

for rooted requirements with S = V −{s}, where s is the ”root”) [10,32], and for

directed graphs this is so even for {0, 1}-requirements and S = ∅. An O(2
log1−ε n

)-

approximation threshold for S = V [31] and {0, k}-requirements with k = Θ(n).

For more work on CA problems see, e.g., [1,10,13,21,18,30,32,31], and surveys

in [10,11,12,34]. The only polylogarithmic approximation algorithm known for

CA on directed graphs is for the special case of rooted requirements. Even for

this special case the best previously known ratio is Θ(log
2
n) [32]. To the best

of our knowledge, no nontrivial approximation algorithms were known for the

general directed CA even for S = ∅, nor for undirected CA with S arbitrary.

For work on other types of GSN costs see c.f., [19,9,4,6,14,15,26,25,24], and

detailed surveys in [23,27] on known upper and lower bounds with respect to

approximation.

1.2 Our Result and Its Significance

Previous work on CA problems that does not follow from results for GSN dealt

mainly with algorithm for some special cases, for which were given either polyno-

mial algorithm (c.f., [35,10,13,11]), or constant ratio approximation algorithms

(c.f., [21,22,3,17,18,30,28,32,31]). We give a tight approximation algorithm for

the most general case of CA:

Theorem. Both directed and undirected CA admit an O(log n)-approximation
algorithm except the case S = V for which there exists an O(rmax · logn)-
approximation algorithm, where rmax = maxu,v∈V r(u, v) and n = |V |.

The first part of the Theorem extends to GSN, provided there is s ∈ V − S

so that only edges incident to s can be added. As was mentioned, even for

undirected graphs our result is the best possible, and it cannot be deduced from

the O(log n)-approximation algorithm for the undirected metric node-GSN of [6],

since for CA problems the costs are usually not metric, and since the node-CA
is unlikely to have a polylogarithmic approximation [31].

We elaborate on few more points that should be emphasized. Usually it seems

hard to give tight results to meaningful subproblems of the directed GSN. The

main reason that approximation algorithm for directed GSN are rare is that
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even for r(u, v) ∈ {0, 1} the {0, 1,∞}-costs case cannot be approximated within

2
log1−ε n

for any constant ε > 0 unless NP ⊆ DTIME(n
polylog(n)

) [7], while the

best known approximation ratio for this simplest case is O(n
1+ε

/ε
3
) = Ω(n) [2].

This hardness result is valid also for the metric costs case, which easily follows

by taking metric completion of the construction in [7]. In particular, for directed
graphs our result is unlikely to be extended to more general cost functions.

Even for GSN with rooted {0, 1}-requirements, which is the Directed Steiner

Tree problem, there is still a large gap between known approximation ratio and

threshold. For the Directed Steiner Tree problem the best known approximation

ratio is O(n
ε
/ε

3
) for any constant ε [2], while the known approximation threshold

is Ω(log
2−ε

n) [16].

This should be contrasted with the {0, 1}-costs variant studied here; we are

able to deal both with the most general type of connectivity – the S-connectivity

(bridging between edge- and node-connectivity) and directed graphs to get tight

results for (almost) all cases.

Another point is the following irregularity. Our approximation ratio is tight

for S = V since rooted CA has an Ω(lnn)-approximation threshold (for di-

rected graphs even for S = ∅ and {0, 1}-requirements). For S = V our ap-

proximation ratio is tight for small requirements, but may seem weak if rmax
is large. However, it might be that a much better approximation algorithm

does not exist: in [31] it is proved that for S = V and k = Θ(n), CA with

r(u, v) ∈ {0, k} cannot be approximated within 2
log1−ε n

for any constant ε > 0

unless NP ⊆ DTIME(n
polylog(n)

). Thus there is a large gap in approximability

between the case S = V \ {v} (for any v ∈ V ) for which we show an O(log n)-

approximation, and the substantially harder case S = V .

The techniques used for proving our result for directed CA (the undirected

case follows from the directed one) is a combination of some known techniques

in addition to some new ones. First, we show a new method to decompose the

problem into two subproblems, each one of an ”almost” rooted type, and consider

the subproblems separately. Second, for each subproblem, we use the well known

extension of the set-cover approximation techniques. This is ”submodular cover”

problems approximation techniques [36] that are based on density considerations

(c.f., [20]). Loosely speaking, the density is the “increase in feasibility” or the

”decrease in the deficiency” of an added edge set over its size. Our definition

of deficiency is different from the commonly used one that is based on ”setpair

formulation”, c.f., [13,9,5]. We define the deficiency of (u, v) as max{r(u, v) −

λ
S
(u, v), 0} and the total deficiency as the sum of the deficiencies of all the node

pairs. In order to prove that we can find a subset of appropriate density we use

the well known method of uncrossing deficient sets.

1.3 Notation and Preliminaries

An edge from u to v is denoted by uv. A uv-path is a path from u to v. For

arbitrary two sets A,B of nodes and edges (or graphs) A − B is the set (or

graph) obtained by deleting B from A (deletion of a node implies deletion of

the edges incident to it); similarly, A + B denotes the set (graph) obtained by
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adding B to A. Let H be a (possibly directed) graph or an edge set on node

set V . For disjoint X,Y ⊆ V we denote by δH(X,Y ) the set {uv ∈ E : u ∈

X, v ∈ Y } of the edges in H from X to Y and dH(X,Y ) = |δH(X,Y )|; for

brevity, δH(X) = δH(X,V −X) and dH(X) = |δH(X)|. Let ΓH(X) be the set

{v ∈ V −X : uv ∈ E for some u ∈ X} of neighbors of X in H . We sometimes

omit the subscripts if they are clear from the context. We call the new edges that

are added to a given graph links in order to distinguish them from the existing

edges. Let opt denote the optimal solution value of an instance at hand.

2 Proof of the Theorem

We need the following formulation of Menger’s theorem for S-connectivity, which

can be easily deduced from its original theorem by standard constructions. In

this formulation C represents a ”mixed” cut, which may include edges and nodes

from S − {u, v}.

Theorem 1 (Menger’s Theorem). Let u, v be two nodes of a (directed or
undirected) graph G = (V,E) and let S ⊆ V . Then

λ
S
G(u, v) = min{|C| : C ⊆ E + S − {u, v}, G− C has no uv-path} .

We prove the Theorem for the directed case and the statement for the undirected

CA follows the following proposition (c.f., [27]), which indicates that undirected

CA problems cannot be much harder to approximate than the directed ones.

Proposition 1. If there is a ρ-approximation algorithm for the directed CA then
there is a 2ρ-approximation algorithm for the undirected CA.

Let F
′
be an arbitrary solution to an instance G0, S, r of directed CA. Subdivide

every edge in F
′

by a new node, and then identify all these new nodes into a

node s. The obtained graph satisfies the requirements between nodes in V , and

the number of links incident to s is 2|F
′
|. Now, if V −S = ∅, then by identifying

s with some node v ∈ V − S we get that the new links added form a feasible

solution for G0, S, r. This implies:

Corollary 1. For any solution F
′ for directed CA with S = V and any s ∈

V −S, there exists a solution F with |F | ≤ 2|F
′
| such that all the links in F are

incident to s.

If S = V , we make rmax copies s1, . . . , srmax of s and of the links incident to

s, choose arbitrary rmax nodes {v1, . . . , vrmax}, and identify every si with vi.

Again, it is easy to see that the new links added form a feasible solution to the

CA instance, and that the number of links added is 2|F
′
|rmax.

Given an instance G0, S, r for directed CA, let H0 = G0 + s (note that s /∈

S). We say that a set F of links incident to s is a feasible solution for H0 if

H0 + F satisfies the S-connectivity requirements defined by r. The H0-problem
is to find a feasible solution for H0 of minimum size. We will give an O(log n)-

approximation algorithm for the H0-problem. This is done by approximating the
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following two problems. Let H
+
0 be obtained from H0 by adding rmax edges from

s to every node in V , and H
−
0 is obtained by adding rmax edges from every node

in V to s. We say that a set F
+

(F
−

) of links entering s (leaving s) is a feasible

solution for H
+
0 (for H

−
0 ) if H

+
0 +F

+
(if H

−
0 +F

−
) satisfies the S-connectivity

requirements defined by r. The H
+
0 -problem is to find a feasible solution for H

+
0

of minimum size, and the H
−
0 problem is defined similarly. From Corollary 1 it

follows that opt+, opt− ≤ opt, where opt+ and opt− denote the optimal solution

values for H
+

and H
−

, respectively, and opt is the optimal solution value for H0.

We will prove the following two statements:

Lemma 1. Let F+ and F
− be a feasible solution for the H

+
0 and for the H

−
0

problems, respectively. Then F = F
+

+ F
− is a feasible solution for the H0

problem.

Lemma 2. The H
+
0 -problem (and the H−

0 -problem) admits an O(log n)-appro-
ximation algorithm.

The algorithm for directed CA with S = V is as follows.

1. Using the algorithm from Lemma 2 find a solutions F
+

for the H
+
0 -problem

and F
−

for the H
−
0 -problem, so that |F

+
| = O(log n) · opt+ and |F

−
| =

O(log n) · opt−.

2. Let F = F
+

+ F
−

, and let H = H0 + F .

Obtain a graph G from H by identifying s with an arbitrary node in V −S.

The algorithm computes a feasible solution, by Corollary 1 and Lemma 1.

Since opt+, opt− ≤ opt the approximation ratio is O(log n), by Lemma 2.

To finish the proof of the Theorem it remains to prove Lemmas 1 and 2. We

need the following statement that stems from Menger’s Theorem.

Proposition 2. λSG(u, v) ≥ r(u, v) if, and only if, |Q|+ dG(X,Y ) ≥ r(u, v) for
any partition X,Q, Y of V with u ∈ X, v ∈ Y , and Q ⊆ S.

Proof of Lemma 1. Let H = H0 + F . Suppose to the contrary that there are

u, v ∈ V so that λ
S
H(u, v) ≤ r(u, v) − 1. Then by Fact 2 there exists a partition

X,Q, Y of V + s with u ∈ X , v ∈ Y , and Q ⊆ S such that |C| ≤ r(u, v) − 1

for C = Q + δH(X,Y ). Note that s /∈ C, so s ∈ X or s ∈ Y . If s ∈ X then

δH−(X,Y ) = δH(X,Y ), so H
−
− C has no uv-path. Since |C| ≤ r(u, v) − 1,

we conclude that λ
S
H−(u, v) ≤ r(u, v) − 1, contradicting that F

−
is a feasible

solution for H
−
0 . The proof of the case s ∈ Y is similar.

In the rest of this section we prove Lemma 2. We use a result due to Wolsey [36]

about the performance of the greedy algorithm for a certain type of covering

problems. A covering problem is defined as follows:

Instance: An integer non-decreasing function p given by an evaluation oracle on

subsets of a groundset E .

Objective: Find F ⊆ E of minimum size so that p(F ) = p(E).
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Note that the function p may not be given explicitly. The Greedy Algorithm
starts with F = ∅ and adds elements to the solution one after the other using

the following simple greedy rule. As long as p(F ) < p(E) it adds to F an element

e ∈ E that has maximum p(F + e) − p(F ); if this step can be performed in

polynomial time, then the algorithm can be implemented to run in polynomial

time. Let ∆p = maxe∈E(p(e) − p(∅)), and for an integer k let H(k) denote the

kth harmonic number.

Theorem 2 ([36]). Suppose that for an instance of a covering problem∑
e∈F2

(p(F1 + e)− p(F1)) ≥ p(F1 + F2)− p(F1) ∀F1, F2 ⊆ E , F1 ∩ F2 = ∅. (2)

Then the Greedy Algorithm produces a solution of size at most H(∆p) times the
optimal.

We formulate the H
+
0 -problem as a covering problem and using Theorem 2 show

that it admits an O(log n)-approximation algorithm. The set E is obtained by

taking rmax links from v to s for every v ∈ V . We also need to define a function

p on the subsets of E . For (u, v) ⊆ V × V and F
+
⊆ E , let q(F

+
, (u, v)) =

max{r(u, v)− λ
S
H+

0 +F+(u, v), 0} be the deficiency of (u, v) in H
+
0 + F

+
. Let

q(F
+

) =

∑
(u,v)∈V×V

q(F
+
, (u, v)) (3)

be the total deficiency of H
+
0 +F

+
. Then p(F

+
) = q(∅)−q(F

+
). In other words,

p(F
+
) is the decrease in the total deficiency as a result of adding F

+
to H

+
0 ; in

the corresponding covering problem, the goal is to find a minimum size F
+
⊆ E so

that p(F
+
) = p(E) (that is, q(F

+
) = 0). Clearly, p is monotone non-decreasing.

The Greedy Algorithm can be implemented in polynomial time, as p(F
+
) can be

computed in polynomial time for any link set F
+
. Clearly, ∆p ≤ n

2
. We prove

that (2) holds for p, and thus Theorem 2 implies that the Greedy Algorithm

produces a solution of size H(∆p) · opt+ ≤ H(n
2
) · opt+ = O(log n) · opt+.

Let F1, F2 ⊆ E be disjoint link sets. We need to prove that:∑
e∈F2

(p(F1 + e)− p(F1)) ≥ p(F1 + F2)− p(F1) .

To simplify the notation, denote J = H
+
0 +F1, F = F2, and denote by ∆(F (u, v))

the decrease in the deficiency of (u, v) as a result of adding F to J . Namely,

∆(F, (u, v)) is obtained by subtracting the deficiency of (u, v) in J +F from the

deficiency of (u, v) in J . Then for our choice of p, the last inequality is equivalent

to: ∑
e∈F

∑
(u,v)∈V×V

∆(e, (u, v)) ≥

∑
(u,v)∈V×V

∆(F, (u, v)) .

Consequently, it would be sufficient to show that:∑
e∈F

∆(e, (u, v)) ≥ ∆(F, (u, v)) ∀(u, v) ∈ V × V . (4)
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Let u, v ∈ V . If λ
S
J (u, v) ≥ r(u, v), then (4) is valid, since its both sides

are zero. Note that λJ+F (u, v) − λJ (u, v) ≥ ∆(F, (u, v)), while if ∆(e, (u, v)) =

λ
S
J+e(u, v) − λ

S
J (u, v) if λ

S
J (u, v) ≤ r(u, v) − 1. Thus if λ

S
J (u, v) ≤ r(u, v) − 1, it

would be sufficient to prove that for any link set F entering s:∑
e∈F

(
λ
S
J+e(u, v)− λ

S
J (u, v)

)
≥ λJ+F (u, v)− λJ (u, v) ∀(u, v) ∈ V × V .

Let us say that X ⊆ V is (u, v)-tight (in J) if there exists a partition X,Q, Y

of V with u ∈ X , v ∈ Y , and Q ⊆ S such that |Q|+ dJ (X,Y ) = λ
S
J (u, v). It is

well known and easy to show that:

Proposition 3. The intersection and union of two (u, v)-tight sets are also
(u, v)-tight. Thus an inclusion-minimal (u, v)-tight set is unique.

For u ∈ V let Xu be the unique minimal (u, v)-tight set in J . By Fact 2 and

the definition of J , λ
S
J+e(u, v) − λ

S
J (u, v) = 1 if e connects Xu with s. Let

t = λ
S
J+F (u, v) − λ

S
J (u, v). Then at least t links in F must connect Xv with s.

Thus, each one of these t links contributes 1 to
∑

e∈F
(
λ
S
J+e(u, v)− λ

S
J (u, v)

)
.

This finishes the proof of Lemma 2.
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Abstract. In this note, we give tighter bounds on the complexity of
the bipartite unique perfect matching problem, bipartite-UPM. We show
that the problem is in C=L and in NL⊕L, both subclasses of NC2.

We also consider the (unary) weighted version of the problem. We
show that testing uniqueness of the minimum-weight perfect matching
problem for bipartite graphs is in LC=L and in NL⊕L.

Furthermore, we show that bipartite-UPM is hard for NL.

1 Introduction

The perfect matching problem PM asks whether there exists a perfect matching

in a given graph. PM was shown to be in P by Edmonds [5], but it is still

open whether there is an NC-algorithm for PM. In fact, PM remains one of the

most prominent open questions in complexity theory regarding parallelizability.

It is known to be in randomized NC (RNC) by Lovász [12]; subsequently Karp,

Upfal and Wigderson [9], and then Mulmuley, Vazirani, and Vazirani [13] showed

that constructing a perfect matching, if one exists, is in RNC3
and RNC2

,

respectively. Recently, Allender, Reinhardt, and Zhou [3] showed that PM (both

decision and construction) is in non-uniform SPL. However, to date no NC
algorithm is known for PM.

In this paper we consider the complexity of the unique perfect matching prob-

lem posed by Lovász (see [10]), UPM for short. That is, for a given graph G,

one has to decide whether there is precisely one perfect matching in G. Fur-

thermore, we consider the problem of testing if a (unary) weighted graph has a

unique minimum-weight perfect matching. The latter problem has applications

in computational biology. The unique maximum-weight perfect matching can be

used to predict the folding structure of RNA molecules (see [17]).

Gabow, Kaplan, and Tarjan [6] observed that UPM is in P. Kozen, Vazirani,

and Vazirani [10,11] showed that UPM for bipartite graphs is in NC. Their

techniques don’t seem to generalize to arbitrary graphs (see Section 3.2 for more

detail)
1
.
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In this paper we give tighter bounds on the complexity of UPM for bipar-

tite graphs (bipartite-UPM, for short). Our bounds place bipartite-UPM into

complexity classes lying between logspace L and NC2
. The classes we consider

are non-deterministic logspace (NL), exact counting in logspace (C=L), and

logspace counting modulo 2 (⊕L). Some known relationships among these classes

and their relativized versions are as follows:

L ⊆ NL ⊆ C=L ⊆ LC=L
= NLC=L

⊆ NC2
, L ⊆ ⊕L ⊆ NL⊕L

⊆ NC2
.

These classes are important because they capture, via completeness, the com-

plexities of important naturally defined problems. Reachability in directed graphs

is complete for NL, as also 2-CNF-SAT. Testing whether a square matrix over

integers is singular is complete for C=L, and computing the rank of an integer

matrix is complete for LC=L
. A complete problem for ⊕L is deciding whether

the number of perfect matchings in a bipartite graph is odd.

Our results (from Section 3) place bipartite-UPM in C=L∩NL⊕L
. The first

upper bound implies that G is in bipartite-UPM if and only if an associated

matrix A, obtainable from G via very simple reductions (projections), is singular.

We show in Section 4 that (unary) weighted bipartite-UPM is in LC=L
∩NL⊕L

.

By the preceding upper bounds, it might well be the case that bipartite-UPM is

easier than the perfect matching problem. However, we show in Section 5 that

bipartite-UPM is hard for NL; thus the best known lower bounds for PM and

for UPM coincide. Our results thus place bipartite-UPM between NL and C=L.

Furthermore, our results provide a new complete problem for NL. This is the

problem of testing if a given perfect matching is unique in a bipartite graph.

2 Preliminaries

Complexity Classes: L and NL denote languages accepted by deterministic

and nondeterministic logspace bounded Turing machines, respectively. For a

nondeterministic Turing machine M , we denote the number of accepting and

rejecting computation paths on input x by accM (x) and by rejM (x), respec-

tively. The difference of these two quantities is gapM , i.e., for all x: gapM (x) =

accM (x)− rejM (x). The complexity class GapL is defined as the set of all func-

tions gapM (x) where M is a nondeterministic logspace bounded Turing machine.

The class C=L (Exact Counting in Logspace) is the class of sets A for which there

exists a function f ∈ GapL such that ∀ x : x ∈ A ⇐⇒ f(x) = 0. C=L is

closed under union and intersection, but is not known to be closed under com-

plement. ⊕L is the class of sets A for which there exists a function f ∈ GapL
such that ∀ x : x ∈ A ⇐⇒ f(x) ≡ 0 (mod 2). ⊕L is closed under Turing

reductions. Circuit classes NCk
are all families of languages or functions that

can be computed by polynomial-size circuits of depth O(log
k
n).

Perfect Matchings: Let G = (V,E) be an undirected graph. A matching in G

is a set M ⊆ E such that no two edges in M have a vertex in common. A

matching M is called perfect if every vertex from V occurs as the endpoint of

some edge in M . By # pm(G) we denote the number of perfect matchings in G.
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The perfect matching problem and the unique perfect matching problem are

defined as PM = {G | # pm(G) > 0 } and UPM = {G | # pm(G) = 1 }. Re-

stricted to bipartite graphs, we denote the problem bipartite-UPM. We also con-

sider the problem of testing whether there exists precisely one perfect matching

with minimal weight in a weighted graph.

For graph G with n vertices, the (order n) skew-symmetric adjacency matrix
A is as defined below:

ai,j =


1 if (i, j) ∈ E and i < j,

−1 if (i, j) ∈ E and i > j,

0 otherwise.

By transforming ai,j &→ ai,j(x) = ai,jxi,j , for indeterminate xi,j = xj,i, we

get a skew-symmetric variable matrix A(x) called the Tutte’s matrix of G.

Theorem 1 (Tutte 1952). G ∈ PM ⇐⇒ det(A(x)) = 0.

Since det(A(X)) is a symbolic multivariate polynomial, it can have exponential

length in n, when written as a sum of monomials. However, there are randomized

identity tests for polynomials that just need to evaluate a polynomial at a random

point [18,15]. Since the determinant of an integer matrix is complete for GapL,

a subclass of NC2
, Lovász observed that Tutte’s Theorem puts PM in RNC2

.

It is well known from linear algebra that, for an n×n skew-symmetric matrix

(A = −A
T
), det(A) = 0 if n is odd and det(A) = det(A

T
) ≥ 0 if n is even.

The following fact is a consequence of Tutte’s Theorem:

Fact 1. 1. # pm(G) = 0 =⇒ det(A) = 0,
2. G ∈ UPM =⇒ det(A) = 1.

Rabin and Vazirani [14] used Fact 1 for reconstructing the unique perfect match-

ing as follows. Let G be in UPM with the unique perfect matching M . Let

Gi,j = G−{i, j} denote the subgraph of G obtained by deleting vertices i and j,

and let Ai,j be the skew-symmetric adjacency matrix of Gi,j . For each edge

(i, j) ∈ E, one can decide whether (i, j) belongs to M or not by:

(i, j) ∈M =⇒ Gi,j ∈ UPM =⇒ det(Ai,j) = 1,

(i, j) ∈M =⇒ Gi,j ∈ PM =⇒ det(Ai,j) = 0.

Hence, if G ∈ UPM we can compute the perfect matching by looking at the

values det(Ai,j) for all edges (i, j) of G.

3 Testing Unique Perfect Matching

3.1 Bipartite UPM Is in LC=L ∩ NL⊕L

As seen in the last section, if G ∈ UPM then the unique perfect matching M

in G can be easily computed [14]. Our approach is to assume G ∈ UPM and
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attempt to construct some perfect matching M as above. If this succeeds, then

we check whether M is unique.

Note that any perfect matching can be represented as a symmetric permuta-

tion matrix. We construct the matrix B = (bi,j) of order n, where

bi,j = |ai,j | det(Ai,j).

Since A and each Ai,j are skew-symmetric, B is symmetric non-negative. From

the discussion above we have

Lemma 1. G ∈ UPM =⇒ B is a symmetric permutation matrix.

The first step of our algorithm for UPM is to check that the symmetric matrix B

is indeed a permutation matrix. This is so if and only if every row contains

precisely one 1 and all other entries are 0. This is equivalent to

n∑
i=1

 n∑
j=1

bij


− 1

2

= 0. (1)

Since all bij ’s can be computed in GapL, the expression on the left hand side

in equation (1) can be computed in GapL too. We conclude

Lemma 2. {G | B is a permutation matrix } ∈ C=L.

Now assume that B is a permutation matrix (if not, already G ∈ UPM), and

therefore defines a perfect matching M in G. Suppose there is another perfect

matching M
′
in G. Then the graph (V,M �M

′
) is a union of disjoint alternating

cycles, defined below.

Definition 1. Let M be a perfect matching in G. An alternating cycle in G

with respect to M is an even simple cycle that has alternate edges in M and not
in M .

Lemma 3. Let M be a perfect matching in G. G ∈ UPM if and only if G has
no alternating cycle with respect to M .

Alternating Cycle(G,B)

1 guess s ∈ V

2 i← s

3 repeat
4 guess j ∈ V

5 if bi,j = 0 then reject
6 guess k ∈ V \ {i}

7 if aj,k = 0 then reject
8 i← k

9 until k = s

10 accept

Given graph G and a permutation ma-

trix B that defines some perfect match-

ing M in G, algorithm Alternating
Cycle searches for an alternating cy-

cle in G with respect to M in nondeter-

ministic logspace. It guesses a node s

of an alternating cycle in G (line 1).

Assume that we are at node i in the

moment. Then Alternating Cycle
makes two steps away from i. The first

step is to node j such that (i, j) ∈ M

(line 4 and 5), the second step is to a
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neighbor k = i of j such that (j, k) ∈ M (line 6 and 7). If k = s in line 9 we

closed a cycle of length at least 4 that has edges alternating in M and not in M .

Note that the cycle may not be simple. However, if G is bipartite, then all cycles

in G have even length, and so we have visited at least one alternating cycle on

the way. Since NL equals co-NL [8,16], we have

Lemma 4. Given a bipartite graph G and a matching M in G, testing if G ∈

UPM is in NL.

Consider the setting that Alternating Cycle has just graph G as input, and

matrix B is provided by the oracle set S = { (G, i, j, c) | bi,j = c } ∈ C=L. Then

Alternating Cycle can be implemented in NLS . Note that the oracle access

is very simple: the queries are just a copy of the input and of some variables. In

particular, this fulfills the Ruzzo-Simon-Tompa restrictions for oracle access by

space bounded Turing machines. Since NLC=L
= LC=L

[2], we have

Lemma 5. Let G be a bipartite graph such that B is a permutation matrix.
Then in LC=L we can decide whether G is in UPM.

Combining the algorithms from Lemma 2 and 5, we obtain the following:

Theorem 2. bipartite-UPM ∈ LC=L.

Unfortunately, Alternating Cycle works correctly only for bipartite graphs,

since these do not have any odd cycles. On input of an non-bipartite graph, Al-
ternating Cycle might

accept a cycle of alternat-

ing edges with respect to

some perfect matching which

is not simple, thereby pos-

sibly giving a false answer.

4

6

5

3

1

2

The graph G alongside provides an example. The unique perfect matching is

M = {(1, 2), (3, 4), (5, 6)}, but Alternating Cycle outputs ’accept’.

Permutation(B)

1 for i← 1 to n do
2 k ← 0; l ← 0

3 for j ← 1 to n do
4 if bi,j ≡ 1 (mod 2)

then k ← k + 1

5 if bj,i ≡ 1 (mod 2)

then l← l + 1

6 if k = 1 or l = 1

then reject
7 accept

Interestingly, we can also obtain NL⊕L

as an upper bound for bipartite-UPM.

Recall the oracle set S we use in the

above algorithm. In all the queries we

have c = 0 or c = 1. Suppose we re-

place S by the set T ∈ ⊕L,

T = { (G, i, j, c) | bi,j ≡ c (mod 2) }.

It is easy to design a deterministic

logspace algorithm, see Permutation
alongside, that, with oracle access to T ,

checks whether B is a permutation ma-

trix over Z2.
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Since L⊕L
= ⊕L, we have

Lemma 6. {G | B is a permutation matrix } ∈ ⊕L.

Consider algorithm Alternating Cycle with oracle T . Although we might

get different oracle answers when switching from S to T , it is not hard to check

that we anyway get the correct final answer. Again we combine the two steps

and get

Corollary 1. bipartite-UPM ∈ NL⊕L.

3.2 Bipartite-UPM Is in C=L

Based on the method in [11], the upper bound LC=L
for bipartite UPM can be

improved to C=L. Note that we do not know whether LC=L
= C=L.

Let G = (U, V,E) be a bipartite graph with |U | = |V | = n. Let A be the

bipartite adjacency matrix of G; A is of order n. Then the skew-symmetric

adjacency matrix of G is of the form S =

(
0 A

−A
T 0

)
. Since det(S) = det

2
(A),

Fact 1 gives the following for bipartite graph G.

Fact 2. 1. # pm(G) = 0 =⇒ det(A) = 0,
2. G ∈ UPM =⇒ det(A) = ±1.

The following lemma puts the idea of Kozen, Vazirani, and Vazirani [10] in such

a way that we get C=L as an upper bound.

Lemma 7. For bipartite graph G with 2n vertices and bipartite adjacency ma-
trix A, define matrices B = (bi,j) and C of order n as follows

bi,j = ai,j det
2
(Ai|j), for 1 ≤ i, j ≤ n,

C = I −AB
T
,

where I is the n×n identity matrix and Ai|j is the sub-matrix obtained by deleting
the i-th row and the j-th column of A. Then G has a unique perfect matching if
and only if

(i) B is a permutation matrix, and
(ii) the characteristic polynomial of C is χC(x) = x

n.

We provide some intuition to the lemma. Just as in the general case of Lemma 2,

if B is a permutation matrix, then matrix B describes a perfect matching. The

product AB
T

puts the matching edges on the main diagonal of the matrix. Then

I−AB
T

takes out the matching edges. Now consider C as the adjacency matrix

of a (directed) graph, say H . This can be thought of as identifying vertex i from

the left-hand side with vertex i from the right-hand side of the bipartite graph

AB
T
. (i.e. if G has vertices U = {u1, . . . , un} and W = {w1, . . . , wn}, then AB

T
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matches ui with wi, and edge (i, j) in H corresponds to path (ui, wi, uj) in G.)

Then any cycle in graph H corresponds to an alternating cycle in G. Hence

there should be no cycles in H . Equivalently, all coefficients of the characteristic

polynomial of C should be 0.

Another way of seeing this is as follows: χC(x) = det(xI−C) = det((x−1)I+

AB
T
). But (x− 1)I+AB

T
is the bipartite adjacency matrix of G when vertices

are renumbered to get the matching edges (of B) on the main diagonal, and with

weights x on these matched edges, weights 1 on other edges. So condition (ii)

checks if the determinant of this matrix is x
n
.

We consider the complexity of checking the conditions of Lemma 7. Regard-

ing the condition (i), the problem of testing if B is a permutation matrix is

essentially the same as in the general case and can be done in C=L (Lemma 2).

Consider the condition (ii). Here the elements of matrix C are not given as input,

they are certain determinants. However, a result in [1] shows that composition

of determinants is computable again in GapL, i.e. the coefficients of the char-

acteristic polynomial of C can be computed in GapL and they can be verified

in C=L [7]. Therefore condition (ii) can be checked in C=L. We conclude:

Theorem 3. bipartite-UPM ∈ C=L.

The above technique doesn’t seem to generalize to non-bipartite graphs. The

graph G shown here provides an example where the technique doesn’t seem

to work. Observe that G ∈ UPM with the unique perfect matching M =

{(1, 2), (3, 4), (5, 6)}. Permute G and take out the edges of M as described above.

This leads to graph H . Since G ∈ UPM, H should have no directed cycles. But

H contains 4 directed cycles, one of them is (1, 4, 5, 3). Another problem comes

from the sign of the cycles in H .

61

2 5

4

G H

3
3 4

61

2 5

Considering the concept of the skew-symmetric matrix of a non-bipartite

graph, we ask whether there is an analog to Lemma 7. Namely, let A be the skew-

symmetric adjacency matrix of G, and let B be defined as: bi,j = ai,jdet(Ai,j|i,j).
(Ai,j|i,j is the skew-symmetric adjacency matrix of the graph Gi,j|i,j obtained

by deleting vertices i and j, so we delete these rows and columns from A.) Then

an analogous test for whether G ∈ UPM would be: Does B correspond to some

perfect matching M , and does weighting the edges of M with x give matrix Ax

with determinant x
n
? Unfortunately, this is not true.
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The graph G shown alongside provides

an example (even in the bipartite case).

Obviously, G is not in UPM. But the

matrix B = (bi,j) computed by the ex-

pression bi,j = ai,jdet(Ai,j|i,j) is a sym-

metric permutation matrix which corre-

sponds to the perfect matching M =

{(1, 2), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12),

(13, 14), (15, 16), (17, 18)}. Let B
′

be the

skew-symmetric adjacency matrix corre-

sponds to M . By Maple we get χC(x) =

x
18

where C = I −AB
′T

.

3
14

18

17

4

5

7

68

9

10

11

12

1

2

13

15

16

4 Unique Minimum-Weight Perfect Matching

We now consider graphs with positive edge-weights. We assume that the weights

are given in unary (or are bounded by a polynomial in the number of vertices). It

has been shown by Mulmuley, Vazirani, and Vazirani [13] that there is a RNC2

algorithm (by using Isolating Lemma) for computing some perfect matching

in graph G. This algorithm chooses random weights for the edges of G, then

the Isolating Lemma states that with high probability, there is a unique per-

fect matching of minimal weight. We describe briefly the procedure by [13] for

reconstructing that unique minimum-weight perfect matching.

Let wi,j be the weight of edge (i, j) in G. Consider the skew-symmetric ad-

jacency matrix D = (di,j) defined as follows: for i < j, di,j = 2
wi,j if (i, j) is

an edge and di,j = 0 if (i, j) is not an edge; for i > j, di,j = −dj,i. Then the

following facts hold:

1. If there is a unique minimum-weight perfect matching M with weight W ,

then det(D) = 0; moreover, the highest power of 2 dividing det(D) is 2
2W

.

2. Furthermore, edge (i, j) is in M if and only if
det(Di,j)2wi,j

22W is odd where

Di,j is obtained by deleting rows i, j and columns i, j of D.

In our case the weights belong to the input, so the Isolating Lemma does not

help. However, we can still use the above reconstruction procedure to construct

some perfect matching which is potentially of minimal weight, and then test the

uniqueness separately.

Constructing the unique minimum-weight perfect matching. For the first part

of our algorithm (finding a symmetric permutation matrix associated to a per-

fect matching), unfortunately we cannot argue as elegantly as in the case of

unweighted graphs that we treated in the last section, if we follow the recon-

struction procedure by [13]. The reason is that we need values of a GapL func-

tion modulo 2
k

for some k, and GapL is not known to be closed under integer

division. Thus a LC=L
upper bound as in the unweighted case may not hold
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by this way. Instead, we describe another method for computing the unique

minimum-weight perfect matching.

Let x be an indeterminate. We relabel all the edges (i, j) of G with x
wi,j .

Let G(x) be the new graph and A(x) its Tutte matrix. Then det(A(x)) is a

polynomial, p(x) = det(A(x)) = cNx
N

+ cN−1x
N−1

+ · · ·+ c0, cN = 0. Note

that the degree N of p is bounded by the sum of all edge-weights of G. Thus

when all the weights wi,j of G are polynomially bounded, N is also polynomially

bounded, and all coefficients of p(x) can be computed in GapL.

Assume for a moment that graph G has the unique minimum-weight perfect

matching M with weight W . Observe that M corresponds to the lowest term

x
2W

in p(x), moreover we have c2W = 1 and ci = 0, for all 0 ≤ i < 2W .

We denote by Gi,j(x) the graph obtained from G(x) by deleting the edge

(i, j) and by Ai,j(x) the Tutte matrix associated with Gi,j(x). Furthermore, let

pi,j(x) =
∑

k≥0 c
(i,j)
k x

k
= det(Ai,j(x)). Observe that

– If (i, j) ∈ M then c
(i,j)
2W = c

(i,j)
t = 0, for all 0 ≤ t ≤ 2W , because M can

not be the unique minimum-weight perfect matching in G − (i, j) which is

obtained from G by deleting the edge (i, j). Graph G− (i, j) has potentially

other perfect matchings with weights bigger than W .

– If (i, j) ∈M then c
(i,j)
2W = 1 = c2W and c

(i,j)
t = 0, for all 0 ≤ t < 2W , because

M remains as the unique minimum-weight perfect matching in G− (i, j).

Let A = (ai,j) be the adjacency matrix of G. Define symmetric matrices Bt =(
b
(t)
i,j

)
by

b
(t)
i,j = b

(t)
j,i = ai,j

t∑
k=0

(
ck − c

(i,j)
k

)
, for 0 ≤ t ≤ N. (2)

It is clear that the elements of Bt are GapL-computable. As a consequence of

the above observations we have the following fact.

Fact 3. If G has a perfect matching M with minimal weight W , then B2W is a
symmetric permutation matrix and Bt = 0, for all 0 ≤ t < 2W .

Since all elements of matrices Bt are computable in GapL, in C=L we can test

if Bt is a permutation matrix or a zero-matrix.

Lemma 8. If G has unique minimum-weight perfect matching, then there exists
0 ≤ t ≤ N that ct = 1, cs = 0, Bt is a symmetric permutation matrix, and
Bs = 0, for all 0 ≤ s < t. All these conditions can be tested in C=L.

Testing uniqueness. The second part of our algorithm is to test if a given perfect

matching M is unique with minimal weight in G. For weighted bipartite graphs

we can develop an NL-algorithm that has B as input, whereB is the permutation

matrix associated to M . In analogy to the unweighted version of UPM, we don’t

know whether there is an NC-algorithm for weighted non-bipartite UPM.

In the bipartite case we look for an alternating cycle C (with respect to M)

where the edges not in M have the same or less total weight than the edges of
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M . If such a cycle exists, then M �C gives another matching M
′
with weight

no more than that of M . If no such cycle exists, then M is the unique minimum-

weight perfect matching in G. Algorithm Alt-Weighted-Cycle nondetermin-

istically searches for such cycles.

With oracle access to B, the algorithm is in NL. Note that here too it is

crucial that weights are given in unary; thus the cumulative weights aM and aM

can be stored on a logspace tape.

Lemma 9. Algorithm Alt-Weighted-Cycle tests correctly if a given perfect
matching M is unique with minimal weight in a bipartite graph. It can be imple-
mented in NL.

Alt-Weighted-Cycle(G,B)

1 aM ← 0; aM ← 0

2 guess s ∈ V

3 i← s

4 repeat
5 guess j ∈ V

6 if bi,j = 0 then reject
7 guess k ∈ V \ {i}

8 if aj,k = 0 then reject
9 aM ← aM + wi,j

10 aM ← aM + wj,k

11 i← k

12 until k = s

13 if aM ≤ aM then reject
14 accept

By combining Lemma 8 and 9 we

can test if a bipartite graph G

has unique minimum-weight perfect

matching. Namely, the algorithm com-

putes all matrices Bt, then it searches

the potential perfect matching M by

Lemma 8. Thereafter G and M are the

inputs for algorithm Alt-Weighted-
Cycle. By this way we can show

that the weighted-bipartite UPM is in

NLC=L
which is equal to LC=L

.

In analogy to the unweighted case

we can modify the computation of

the perfect matching M by B
′
t = Bt

(mod 2). The matrices B
′
t are com-

puted in ⊕L. The rest of the algorithm

is the same, giving an upper bound of

NL⊕L
.

Theorem 4. Weighted-bipartite UPM with polynomially bounded weights is in
LC=L

∩NL⊕L.

5 Unique Perfect Matching Is Hard for NL

Chandra, Stockmeyer, and Vishkin [4] have shown that the perfect matching

problem is hard for NL. We modify their reduction to show that UPM is hard

for NL. Recall that UPM might be an easier problem than the general perfect

matching problem.

Let G = (V,E) be a directed acyclic graph, and let s, t ∈ V be two vertices. By

# path(G, s, t) we denote the number of paths in G from s to t. The connectivity

problem asks whether # path(G, s, t) > 0 and it is complete for NL. Since NL
is closed under complement [8,16], asking whether # path(G, s, t) = 0 is also

complete for NL.
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In [4], the following undirected graph H is constructed: H = (VH , EH),

VH = {sout, tin} ∪ { uin, uout | u ∈ V \ {s, t} }

EH = { (uin, uout) | u ∈ V \ {s, t} } ∪ { (uout, vin) | (u, v) ∈ E }

It is easy to see that # path(G, s, t) = # pm(H). Therefore sout is connected to

tin if and only if H ∈ PM.

Now obtain H
′
from H by adding the edge (sout, tin). Observe that H

′
has

at least one perfect matching, namely MH = {(sout, tin)} ∪ { (uin, uout) | u ∈

V − {s, t} }. Other than this, H
′
and H have the same perfect matchings. We

conclude that # pm(H)+1 = # pm(H
′
). In summary, # path(G, s, t) = 0 ⇐⇒

# pm(H
′
) = 1. Note that each edge in H

′
is of the form (uin, vout); thus the

partition S, VH \ S where S = {uin | uin ∈ VH} witnesses that H
′
is bipartite.

Theorem 5. UPM is hard for NL, even when restricted to bipartite graphs.

As a consequence of the hardness of UPM, we consider the problem of testing if

a given perfect matching M is unique in a graph G. The problem for bipartite

graphs can be solved in NL by Lemma 4. For non-bipartite graphs we don’t

know whether the considered problem is in NC (note that if this problem for

non-bipartite graph is in NC, then UPM for non-bipartite graphs is also in

NC, because the unique perfect matching can always be computed in NC).

Furthermore, the problem is hard for NL because in the above construction,

# path(G, s, t) = 0 if and only if the perfect matching MH is unique in the

constructed graph H
′
. Thus we have

Corollary 2. The problem of testing if a given perfect matching is unique in a
bipartite graph is complete for NL.

Summary and Open Problems
We showed in the paper that the unique perfect matching problem for bipartite

graphs for both cases weighted or unweighted is in NC. We have placed bipartite

UPM between NL and C=L ∩NL⊕L
and the unique minimum-weight perfect

matching problem between NL and LC=L
∩NL⊕L

. Some questions remain open:

1) Is non-bipartite UPM in NC? 2) Can we improve the lower bound NL for
UPM? A possible improvement seems to be important because if UPM is hard

for C=L, we could conclude that C=L ⊆ NL⊕L
(which is an open question), if

UPM is hard for ⊕L, we could conclude that ⊕L ⊆ LC=L
(which is open too).

The same question about the upper bound can be asked for weighted non-

bipartite graphs. Also, we restricted the weights to be polynomially bounded. It is

not clear how to handle exponential weights. The current technique to determine

one perfect matching would then lead to double exponential numbers. This is no

longer in NC2
. Note however, that the weight of an alternating cycle requires

summing up at most n weights, which can be done in NC2
.

Note that the results involving ⊕L, namely Lemma 6, Corollary 1 and Theo-

rem 4, carry over to ModpL for any p as well. The open questions listed above

concerning ⊕L are open for all these classes as well.

Clearly, the most important open problem is: Is the perfect matching problem
in NC?
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Abstract. Under the assumption that NP does not have p-measure 0,
we investigate reductions to NP-complete sets and prove the following:

1. Adaptive reductions are more powerful than nonadaptive reductions:
there is a problem that is Turing-complete for NP but not truth-
table-complete.

2. Strong nondeterministic reductions are more powerful than deter-
ministic reductions: there is a problem that is SNP-complete for NP
but not Turing-complete.

3. Every problem that is many-one complete for NP is complete under
length-increasing reductions that are computed by polynomial-size
circuits.

The first item solves one of Lutz and Mayordomo’s “Twelve Problems in
Resource-Bounded Measure” (1999). We also show that every problem
that is complete for NE is complete under one-to-one, length-increasing
reductions that are computed by polynomial-size circuits.

1 Introduction

A language L ∈ NP is NP-complete if every language in NP is reducible to L.

There are several possible interpretations of the word “reducible.” Polynomial-

time many-one reducible is the most typical meaning, but there are many other

reducibilities, each providing a potentially different NP-completeness notion. Are

there languages that are NP-complete using one type of reduction but not com-

plete under another type of reduction? Are there two apparently different no-

tions of reductions for which the corresponding completeness notions coincide?

We study these questions for several types of reductions.

1.1 Adaptive Versus Nonadaptive Reductions

A many-one reduction (≤
p
m) from A to B converts a question about membership

in A to an equivalent question about membership in B. Formally, there is a

function f such that x ∈ A if and only if f(x) ∈ B. A variation on this theme is

to allow the use of B as an oracle to solve A. Here there is an algorithm M that

takes as input an instance x of A and may ask multiple queries about instances

of B before outputting its decision for x. There are two basic forms of this type
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of reduction: adaptive and nonadaptive. In an adaptive reduction (also called a

Turing reduction, ≤
p
T) M receives the answer for each query before asking its

next query – subsequent queries may depend on the answers to previous queries.

In a nonadaptive reduction (also called a truth-table reduction, ≤
p
tt) M asks all

of its queries before receiving any answers.

Lutz and Mayordomo [23] showed that if NP does not have p-measure zero

(written µp(NP) = 0), then adaptive completeness for NP is different from many-

one completeness. In fact, they showed this hypothesis yields a problem that is

complete for NP under adaptive reductions that make only two queries, but is not

complete under many-one reductions. In the conclusion of their paper, Lutz and

Mayordomo conjectured that the measure hypothesis would yield separations

of other completeness notions between ≤

p
m and ≤

p
T for NP, similar to what is

known unconditionally for E and NE [29,9].

Since then there have been several results in this direction. Ambos-Spies and

Bentzien [5] used a genericity hypothesis on NP, an assumption which is implied

by the measure hypothesis, to separate essentially all bounded-query complete-

ness notions for NP. It is also known that some of these separations can be

obtained under bi-immunity hypotheses [27,18], which are even weaker assump-

tions. For a survey of these results see [25].

However, so far a separation of adaptive completeness from nonadaptive com-

pleteness for NP has been elusive. This question has been asked in several survey

papers [11,22,12,24], most prominently as one of Lutz and Mayordomo’s “Twelve

Problems in Resource-Bounded Measure,” Problem 9:

Does µp(NP) = 0 imply the existence of a problem that is ≤
p
T-complete,

but not ≤
p
tt-complete, for NP?

The only partial result on this problem was by Pavan and Selman [26] who

used a strong hypothesis about UP to separate these two completeness notions.

We affirmatively answer the above question. Our proof combines the connection

between the measure of NP and the NP-machine hypothesis [17] with results

about nonadaptive reductions to P-selective sets [10,28].

1.2 Nondetermistic Versus Deterministic Reductions

Adleman and Manders [1] observed that while most problems can be shown

to be NP-complete using polynomial-time reductions, some problems resist this

approach. To classify such problems, they proposed what are now called strong
nondeterministic many-one reductions. (Adleman and Manders called these re-

ductions γ-reductions.) If a language that is NP-complete under strong nondeter-

ministic reductions admits an efficient algorithm, then NP = coNP. Therefore, if

we believe NP = coNP, strong nondeterministic completeness can also be taken

as evidence that the problem in hand is intractable.

Adleman and Manders showed that some number-theoretic problems are

NP-complete under strong nondeterministic many-one reductions. Chung and

Ravikumar [13] showed that certain questions regarding comparator networks
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are also NP-complete under these reductions. It is not known whether these

problems remain complete if we use polynomial-time reductions.

This situation raises the following question: are there languages that are

complete under strong nondeterministic reductions, but not complete under

polynomial-time reductions? We show that if µp(NP) = 0, then the answer

to this question is yes, even if we consider polynomial-time adaptive reductions.

1.3 Length-Increasing Reductions

It has been observed that many NP-completeness results hold under very restric-

tive reductions. For example, SAT is complete under polynomial-time reductions

that are one-to-one and length-increasing. In fact, all known many-one complete

problems for NP are complete under this type of reduction [8]. This raises the

following question: are there languages that are complete under polynomial-

time many-one reductions but not complete under polynomial-time, one-to-one,

length-increasing reductions?

Berman [7] showed that every many-one complete set for E is complete under

one-to-one, length-increasing reductions. Thus for E, these two completeness

notions coincide. A weaker result is known for NE. Ganesan and Homer [15]

showed that all NE-complete sets are complete via one-to-one reductions that

are exponentially honest.

For NP, until very recently there had not been any progress on this question.

Agrawal [3] showed that if one-way permutations exist, then all NP-complete

sets are complete via one-to-one, length-increasing, p/poly-reductions. Agrawal’s

result also holds for the NE-complete sets under the same hypothesis.

In this paper, we show that if µp(NP) = 0, then all NP-complete sets are

complete via length-increasing, p/poly-reductions. We note that the measure hy-

pothesis on NP is apparently incomparable with Agrawal’s hypothesis that one-

way permutations exist. Regarding NE-completeness, we show that Agrawal’s

result can be made unconditional. That is, we unconditionally show that all NE-

complete sets are complete via one-to-one, length-increasing, p/poly-reductions.

2 Preliminaries

We assume that the readers are familiar with polynomial-time many-one re-

ductions. A language A is polynomial-time Turing reducible to B (A ≤

p
T B)

if there is a polynomial-time oracle Turing M such that A = L(M
B

). A lan-

guage A is polynomial-time truth-table reducible to a language B (A ≤

p
tt B) if

there exist polynomial-time computable functions g and h such that on input

x, g(x) = {q1, · · · , qm}, and x ∈ A if and only if h(x,B(q1), · · · , B(qm)) = 1.

Given a reducibility ≤
α
r , a set S in NP is ≤

α
r -complete for NP if every set in NP

is ≤
α
r -reducible to S.

2.1 Resource-Bounded Measure

Lutz [21] introduced resource-bounded measure to study the quantitative struc-

ture of complexity classes.
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A martingale is a function d : Σ
∗
→ Q with the property that for every

w ∈ Σ
∗
, 2d(w) = d(w0) + d(w1). A martingale d succeeds on a language A if

lim sup
n→∞

d(A|n) = ∞,

where A|n is the length n prefix of A’s characteristic sequence.

Given a time bound t(n), a language L is t(n)-random [6] if no O(t(n))-time

computable martingale succeeds on L. A class of languages X has p-measure

zero, written µp(X) = 0, if there exists a polynomial t such that every language

in X in not t(n)-random.

Lutz suggested studying the structure of the class NP under the hypothesis

“NP does not have p-measure 0,” which is written µp(NP) = 0. Since then several

believable consequences of this hypothesis have been obtained. For a survey of

these results see [22,24].

2.2 NP-Machine Hypothesis

Our proofs crucially make use of the following hypothesis. Several variants of

this hypothesis have been studied earlier [14,16].

NP-Machine Hypothesis. There exists an NP-machine M and ε > 0 such

that M accepts 0
∗

and no 2
nε

-time-bounded Turing machine computes infinitely

many accepting computations of M .

It is known that the measure hypothesis implies the NP-machine hypothesis.

Theorem 2.1. (Hitchcock and Pavan [17]) If µp(NP) = 0, then the NP-machine
hypothesis holds.

Observation 2.2. Assume that the NP-machine hypothesis is true and let p be
any polynomial. Then there exists an NP-machine N that accepts 0

∗, and no
2
p(n)-time-bounded machine computes infinitely many accepting computations

of N .

2.3 Reductions to P-Selective Sets

A set S is p-selective if there exists a polynomial-time computable function

f : Σ
∗
×Σ

∗
→ Σ

∗
such that for all x, y, f(x, y) ∈ {x, y}, and if at least one of

x and y belongs to S, then f(x, y) belongs to S.

Let P-sel denote the class of p-selective sets. For a reduction ≤
α
τ and a class

C, let

R
α
τ (C) = {A | (∃B ∈ C)A ≤

α
τ B}.

Theorem 2.3. (Buhrman and Longpré [10], Wang [28]) R
p
tt(P-sel) has p-mea-

sure 0.

Let ≤
t(n)�p
tt denote a truth-table reduction that is computable in t(n) time, but

where the number and length of the queries is bounded by a polynomial. It is

straightforward to extend the arguments in [10] or [28] to show that Theorem

2.3 extends to these reductions when t(n) is linear-exponential.

Theorem 2.4. For every c ∈ N, the class R2cn�p
tt (P-sel) has p-measure 0.
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3 Adaptive Versus Nonadaptive Reductions

We now present our solution to Problem 9 of Lutz and Mayordomo [24].

Theorem 3.1. If µp(NP) = 0, then there is a problem that is ≤p
T-complete for

NP but not ≤p
tt-complete.

Proof. Assume that µp(NP) = 0. From Theorem 2.1 and Observation 2.2 we

obtain an NP-machine M that accepts 0
∗

such that no 2
n2

-time machine can

compute infinitely many of its accepting computations.

For each n, let an be the lexicographically maximum accepting computation

of M(0
n
). Let a be the infinite sequence a = a0a1a2 . . .. Let

A = {〈x,w〉 | x ∈ SAT and w is an accepting computation of M(0
|x|

)},

B = L(a) = {x | x < a},

where < is the standard dictionary order. Let

C = 0A ∪ 1B.

Then C is ≤
p
T-complete for NP: to decide whether x ∈ SAT, we can adaptively

query B to find a|x| and then ask if 〈x, a|x|〉 ∈ A.

Suppose that C is ≤
p
tt-complete for NP. Then for every L ∈ NP, L ≤

p
tt C via

some reduction (g, h).

Claim 3.2. For all but finitely many x, all queries of g(x) to strings of the form

0〈y, w〉 must satisfy |y| ≤ |x|.

Proof of Claim 3.2. Consider the following algorithm.

input 0
n
;

for all x ∈ {0, 1}
<n

:

compute g(x);

for all queries in g(x) that are of the form 0〈y, w〉, where |y| = n:

if w is an accepting computation of M(0
n
)

output w and halt;

This algorithm runs in O(2
n
·poly(n)) time, and would compute infinitely many

accepting computations of M if the claim is false. � Claim 3.2

Claim 3.3. L ≤2n�p
tt B.

Proof of Claim 3.3. Given x, compute g(x). By Claim 3.2, all queries of g(x)

to strings of the form 0〈y, w〉 must satisfy |y| ≤ |x|. We can decide whether

these queries are in A in 2
n

time by checking if y ∈ SAT in exponential time

and whether w is an accepting computation of M(0
|y|

) in polynomial time. Our

reduction to B simply solves the queries to A directly. � Claim 3.3

Since B is a left-cut, it is p-selective, so it follows from Claim 3.3 that NP ⊆

R
2n�p
tt (P-sel). By Theorem 2.4, this implies µp(NP) = 0, a contradiction. �
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4 Nondeterministic Versus Deterministic Reductions

Definition. [1,20] A language A is strong nondeterministic many-one reducible
to a language B, written A ≤

SNP
m B, if there is a nondeterministic polynomial-

time machine M such that the following conditions hold.

– On an input x, every path of M either outputs a string y or outputs the

special symbol “?”. At least one path outputs a string.

– If x belongs to A, then every output y belongs to B, and if x does not belong

to A, then every output y does not belong to B.

Adleman and Manders [1] also called this γ-reducibility and denoted it ≤γ .

Long [20] showed that the following are equivalent:

– for all A,B, A ≤

SNP
m B implies A ≤

p
T B

– every NPMV total function has a polynomial-time refinement.

The latter has been called Proposition Q in [14]. To separate ≤
SNP
m -completeness

from ≤

p
T-completeness for NP, we clearly need a hypothesis that at least implies

Q is false. The NP-machine hypothesis fits the bill:

Theorem 4.1. If the NP-machine hypothesis holds, then there is a problem that
is ≤SNP

m -complete for NP but not ≤p
T-complete.

Proof. By Observation 2.2, there exists an NP machine M that accepts 0
∗

for

which no 2
3n

-time bounded machine can compute infinitely many accepting

computations. Consider the following language L

L = {〈x, a〉 | x ∈ SAT and a is an accepting computation of M(0
|x|

)}.

Then L ∈ NP, and we claim that L is strong nondeterministic many-one

complete. Consider a nondeterministic machine N that on input x guesses a

string a, and if a is an accepting computation of M(0
|x|

), then it outputs 〈x, a〉.

If a is not an accepting computation of M(0
|x|

), then N outputs ?. Then N is

a strong nondeterministic many-one reduction from SAT to L. It follows that L

is strong nondeterministic many-one complete for NP.

We will show that L is not Turing complete for NP. Suppose to the contrary

that it is Turing complete. Consider the following language S.

S = {〈0
n
, w〉 | w is a prefix of an accepting computation of M(0

n
)}.

Since S in in NP, there is a polynomial-time oracle Turing machine R such

that S = R
L
. Consider the following procedureA that tries to compute accepting

computations of M .

1. Input 0
n
.

2. Set y = ε.

3. Run R(〈0
n
, y0〉). When R generates a query q = 〈x, z〉, |x| = t do the

following:
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(a) If z is not an accepting computation of M(0
t
), then continue simulation

of R with answer “No”.

(b) Else, z is an accepting computation of M(0
t
).

(c) If t ≥ n, then Output “Unsuccessful”, print z and halt.

(d) Otherwise, decide whether 〈x, z〉 ∈ L by checking whether x ∈ SAT.

Since t < n this takes at most 2
n

time. Use this answer to continue the

simulation.

4. If R accepts 〈0
n
, y0〉, then set y = y0. Else set y = y1.

5. If y is an accepting computation of M(0
n
), then output y and halt. Else,

GoTo Step 3.

Observe that the most expensive step in the above computation is Step 3d.

This takes 2
n

time. Since this step is repeated at most polynomial number of

steps, the above algorithm halts in 2
2n

steps.

Next we make two claims about the behavior of the algorithm A.

Claim 4.2. If A(0
n
) outputs “Unsuccessful” for infinitely many n, then there

is a 2
3n

-time algorithm that outputs infinitely many accepting computations of

M(0
n
).

Proof of Claim 4.2. Observe that if A(0
n
) outputs “Unsuccessful”, then there

exists a t ≥ n and A(0
n
) outputs an accepting computation of M(0

t
). Thus

if there exist infinitely many n for which A(0
n
) outputs “Unsuccessful”, then

there exists infinitely many t for which there exists n ≤ t, and A(0
n
) outputs

an accepting computation of M(0
t
). Now consider the following algorithm: On

input 0
t
, run A(0

j
), 1 ≤ j ≤ t. If any of the runs of A outputs an accepting

computation of M(0
t
), then output that accepting computation.

This algorithm outputs an accepting computation of A(0
t
) for infinitely many

t. The running time of the algorithm is bounded by
∑t

j=1 2
2j
≤ 2

3t
. This estab-

lishes the claim. � Claim 4.2

Claim 4.3. If A(0
n
) does not output “Unsuccessful”, then it outputs an ac-

cepting computation of M(0
n
) in time 2

2n
.

Proof of Claim 4.3. Observe that A(0
n
) is trying to compute an accepting com-

putation of M(0
n
) by doing a prefix search. This is accomplished by running

the Turing reduction R, and whenever the reduction generates a query it is at-

tempting to find the answer to the query without actually making the query.

Thus if all the queries are answered correctly, it will compute an accepting com-

putation of M(0
n
). We argue that A(0

n
) computes all query answers correctly.

Let q = 〈x, y〉 be a query that is generated.

If y is not an accepting computation of M , then q does not belong to L. Thus

A answers the query correctly in 3a. So assume y is an accepting computation

of M(0
t
). Since A(0

n
) does not output “Unsuccessful”, t < n. Thus the algo-

rithm reaches Step 3d. In this step, it decides whether x ∈ SAT by a running a

deterministic algorithm for SAT. Thus the query answer is computed correctly

in this step.
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Thus A(0
n
) computes all query answers correctly. Thus A(0

n
) outputs an

accepting computation of M(0
n
). Recall that the running time of A is bounded

by 2
2n

. � Claim 4.3

Now, if A(0
n
) outputs “Unsuccessful” for infinitely many n, then, by Claim 4.2,

there is a 2
3n

-time algorithm that computes infinitely many accepting compu-

tations of M(0
n
). This contradicts the NP-machine hypothesis. Thus for all but

finitely many n, A(0
n
) does not output “Unsuccessful”. Thus, by Claim 4.3, for

all but finitely many n, A(0
n
) outputs an accepting computation of M(0

n
) in

time 2
2n

. This again contradicts the NP-machine hypothesis.

Thus there is no Turing reduction from S to L. Thus L is not Turing complete

for NP. �

By Theorem 2.1, we immediately have the following.

Corollary 4.4. If µp(NP) = 0, there is a problem that is ≤SNP
m -complete for

NP but not ≤p
T-complete.

5 Length-Increasing Reductions and Polynomial-Size
Circuits

In this section we study one-to-one, length-increasing reductions. (All reductions

in this section are many-one reductions. We say that a many-one reduction f is

length-increasing if |f(x)| > |x| for all strings x and that f is one-to-one if for

all strings x = y, f(x) = f(y).)

Berman proved [7] that every ≤
p
m-complete set for E is also is complete under

one-to-one, length-increasing reductions. This proof makes essential use of the

fact that E is closed under complementation, so it does not go through for

nondeterministic classes. As a partial result, Ganesan and Homer [15] showed

that every ≤
p
m-complete set for NE is complete under one-to-one, exponentially-

honest reductions. See also the survey paper [19] by Homer.

Agrawal [3] showed that if one-way permutations exist, then many-one com-

plete sets for NP and NE are complete via one-to-one, length-increasing, p/poly

reductions. (A p/poly reduction is computed by a nonuniform family of poly-

nomial-size circuits, one for each input length.) A well-known fact is that coNE ⊆

NE/poly: to determine if a string x is not in an NE language, we can give as

advice the number of strings in the language at x’s length. Then an NE machine

can guess all of these strings and determine whether or not x is in the language.

We make use of this idea and Berman’s technique to prove the following theorem.

Theorem 5.1. Every set that is ≤p
m-complete for NE is complete under one-to-

one, length-increasing, p/poly reductions.

Next we will show that if NP does not have p-measure zero, then all NP-complete

sets are complete via length-increasing p/poly reductions. In the proof we will

consider whether a language R has the following property.
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Property 5.2. There is a 2
cn

-time computable function f such that for every

n, f(0
n
) either outputs ⊥ or outputs a tuple 〈a, b, u, v〉. Whenever f(0

n
) =

〈a, b, u, v〉, the following hold.

– |a| = |b| = n.

– R(a)R(b) = uv, and uv is either 00 or 11.

And for infinitely many n, f(0
n
) = ⊥.

Informally, f either finds two strings such that at least one of them is in R, or

finds two strings such that at least one of them does not belong to R.

Lemma 5.3. If R has Property 5.2, then R is not nc-random.

Proof. We describe a martingale d that can win an infinite amount of money

while betting on R. Let d(n) denote the amount of money that the martingale

has before it starts betting on strings of length n. Before starting betting on

strings of length n, the martingale runs f(0
n
). If f(0

n
) = ⊥, then d does not bet

on any string of length n. Suppose f(0
n
) = 〈a, b, u, v〉. Without loss of generality

we can assume a < b. Consider the case uv = 00. In this case at least one of a

and b must be in R. The martingale bets 1/3rd of its amount on a ∈ R. If a

really belongs to R, then d does not bet on any other string of length n. So if

a ∈ R, then d(n + 1) = 4d(n)/3. However, if a /∈ R, then d is left with capital

2d(n)/3. However, since at least one of a and b must be in R, b must belong to

R. Now d bets all its money on b ∈ R. Thus in this case also d(n+1) = 4d(n)/3.

The case uv = 11 is handled via a symmetric argument.

Since f(0
n
) = ⊥ for infinitely many n, for infinitely many n, d(n + 1) ≥

4d(n)/3. Thus d(n) approaches infinity as n tends to ∞. Since f runs in 2
cn

-

time, d runs in time O(n
c
). Thus R is not n

c
-random. �

Now we are ready to prove the theorem regarding complete sets for NP.

Theorem 5.4. If µp(NP) = 0, then every NP-complete language is complete
under length-increasing, p/poly reductions.

Proof. Let L be any NP-complete language. We show that there is a p/poly,

length-increasing reduction from SAT to L. We first define an intermediate lan-

guage S such that SAT is p/poly, length increasing reducible to S, and S is

honest polynomial-time reducible to L. Combing these two reductions we obtain

the desired reduction from SAT to L. Let L ∈ DTIME(2
nk

).

If NP does not have p-measure 0, then there is an n
4
-random language R in

NP. The randomness of R implies that both R and R have at least one string

at each length. Let

S = {〈x, y, z〉 | |x| = |y| = |z| and MAJ{x ∈ R, y ∈ SAT, z ∈ R} = 1}.

Here MAJ{φ, ψ, τ} = 1 if a majority of φ, ψ, and τ are true.

It is clear that S is NP. For every n, fix two strings an and bn of length

n such that an ∈ R and bn /∈ R. Consider the following reduction from SAT
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to S: Given an input y of length n the reduction outputs 〈an, y, bn〉. Now y ∈

SAT ⇔ 〈an, y, bn〉 ∈ S. The reduction takes an and bn as advice. It is clear that

this reduction is length increasing. Therefore we have established that SAT is

p/poly, length-increasing reducible to S.

Since S is in NP and L is NP-complete, there is a many-one reduction f from

S to L. We now argue that f must be a honest reduction on strings of form

〈x, y, z〉 where |x| = |y| = |z|.

Claim 5.5. Let T = {〈x, y, z〉 | |x| = |y| = |z|}. For all but finitely many strings

w from T , |f(w)| ≥ n
1/k

.

Proof of Claim 5.5. Consider the following set

U = {w = 〈x, y, z〉 ∈ T | |x| = n, |f(w)| < n
1/k
}.

We show that if U is infinite, then R has Property 5.2.

Recall that L can be decided in time 2
nk

. Thus if a string w belongs to U ,

then the membership of f(w) in L can be decided in time 2
|f(w)|k

< 2
n
. Since

f is a many-one reduction from S to L, for every string w in U , its membership

in S can be computed in time 2
n
.

Define a function f as follows. In input 0
n
, cycle through all tuples w =

〈x, y, z〉, |x| = |y| = |z| = n, and check if w ∈ U by computing f(w). If none of

the w’s are in U , then output ⊥. Else, let w = 〈x, y, z〉 be the first string that

belongs to U .

Compute the membership of w in S. We first consider the case w ∈ S. In this

case,

MAJ{x ∈ R, y ∈ SAT, z ∈ R} = 1.

Thus it can not be the case that both x and z are out of R. So f outputs

〈x, z, 0, 0〉. Similarly, if w /∈ S, then it cannot be the case that both x and z are

in S. So f outputs 〈x, z, 1, 1, 〉.

Observe that the running time of f is bounded by O(2
3n

). If U is infinite, then

for infinitely many n, f(0
n
) = ⊥. So, if U is infinite, then R has Property 5.2,

and by Lemma 5.3, R is not n
3
-random. Since R is n

4
-random, U is finite.

Thus for all but finitely many strings from T , |f(w)| ≥ n
1/k

. � Claim 5.5

Now consider the following reduction g from SAT to L: On input y of length

n, output f(〈an, y, bn〉). By Claim 5.5, |f(〈an, y, bn〉)| ≥ n
1/k

. Thus g is an

honest, p/poly-reduction from SAT to L. Since SAT is paddable, there exists

a length-increasing p/poly-reduction from SAT to L. Thus L is complete via

length-increasing, p/poly reductions. �

6 Conclusion

We now know that the measure hypothesis separates nearly all polynomial-time

completeness notions for NP. It would be interesting to separate completeness

notions for NP under weaker hypotheses such as “NP is hard on average”.
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Theorem 4.1 gives evidence that when we give more resources to the reduc-

tions, we obtain a richer class of complete sets. What happens when we decrease

the resource bound of the reductions? Agrawal et al [4,2] showed that NC
0
-

completeness and AC
0
-completeness for NP coincide whereas AC

0
-completeness

and AC
0
[mod2]-completeness for NP differ. It would be interesting to extend

these results other resource bounds.

Results of Agrawal [3] and results in Section 5 indicate that complete sets

for NP and NE are complete under one-to-one, length-increasing reductions.

However these reductions need polynomial advice. Can we eliminate the advice?

Acknowledgments. We thank the anonymous reviewers for helpful comments

and corrections.
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Abstract. We identify a new genre of algorithmic problems – design
problems – and study them from an algorithmic and complexity-theoretic
view point. We use the learning techniques of Freund-Schapire [FS99] and
its generalizations to show that for a large class of problems, the design
version is as easy as the optimization version.

1 Introduction

Over the last four decades, theoreticians have identified several fundamental gen-

res of algorithmic problems and have studied their computational complexity and

the inter-relationships among them. These include decision, search, optimization,

counting, enumeration, random generation, and approximate counting problems.

In this paper, we define and study the complexity of design problems.

This new genre of algorithmic problems should come as no surprise. In the

past, several researchers have studied natural design problems – we provide some

prominent examples below. Moreover, practitioners have always been faced with

such problems and have sought intelligent solutions to them. However, to the best

of our knowledge, this genre has not been formally defined before and subjected

to a systematic complexity-theoretic study.

Every optimization problem leads to a natural design problem. This process

is formally defined in Section 2. Let us illustrate it in the context of the sparsest

cut problem. We are given an undirected graph G(V,E) and a bound B on the

total weight. The problem is to find a way to distribute weight B on the edges

of G so that the weight of the sparsest cut is maximized. Note that this design

problem is a maxmin problem.

Three examples of natural design problems considered in the past are: Boyd,

Diaconis and Xiao [BDX04] study the design of the Fastest Mixing Markov Chain

on a graph with a budget constraint on the weights of the edges of a fixed graph.

Elson, Karp, Papadimitriou and Shenker [EKPS04] study the Synchronization

Design Problem in sensornets. Baiou and Barahona [BB05] and Frederickson and

Solis-Oba [FSO99] study a cost-based design version of maximizing the minimum

weight spanning tree. A closely related problem of budgeted optimization was

studied by Juttner [J0̈3]

The main result in this paper is that for a large class of optimization problems,

the design version of a problem is as easy as the optimization version. We provide

several different techniques to show this:
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– In Section 3.1, we observe that if the objective functions in the minimization

(maximization) problem Π are concave (convex), then the maxmin (min-

max) design problem D(Π) can be set up as a convex optimization problem.

Moreover, Π itself appears as the separation oracle required in the ellipsoid

method. Thus D(Π) is no harder than Π in terms of complexity. Further, we

show using techniques of [JMS03] that if Π has an α-factor approximation

algorithm, then D(Π) also has an α-factor approximation.

– Since the ellipsoid method takes a long time in practice, we seek more effi-

cient methods. In Section 3.2 we observe that if the optimization problem

Π can be set up as a linear program, then the design problem D(Π) can be

set up as another linear program. If Π has an LP-relaxation which gives a

factor of α, then D(Π) also has an LP-based solution which gives factor α. In

Section 3.3 we show that if the optimization problem possesses certain struc-

tural (packing) properties, then we can use these to solve the design problem

more efficiently. We give examples to illustrate these specific methods.

– In Section 4, we give what is perhaps the central algorithmic result of this

paper – we provide a second general method for solving the design problem.

This method is much more efficient than the ellipsoid method of Section 3.1.

We set up the design problem as a two player zero-sum game and show

that the design problem seeks the minmax value of the game. We apply

the techniques of Freund-Schapire [FS99] in the additive case and that of

Zinkevich [Zin03] and Flaxman et.al [FKM05] in the convex/concave cases

to solve the game. This technique also requires an (approximation) algorithm

for the optimization problem. If this algorithm has a worst case factor of α,

then we will be able to solve the design problem upto a factor of α with an

additional additive error of an arbitrarily small ε.

– In Section 5 we ask how hard is the design version of a problem if the op-

timization version is NP-hard. We provide an example in which the design

version is in P and another in which the design version is NP-hard. In Sec-

tion 3.1 we have established that if the optimization version is in P then so

is the design version.

– In Section 6, we observe the close relationship between maxmin design prob-

lems and fractional packing of the corresponding combinatorial structures.

We use this to prove some results about fractional packings of spanning and

Steiner trees.

2 Problem Definition

We present a general framework to define the design version of optimization

problems. An optimization problem Π consists of a set of valid instances
IΠ . Each instance I is a triple (EI ,SI ,wI). EI is a universe of elements, and

each element e ∈ EI has an associated weight we, a rational number, giving

the vector wI . Each instance also has a set of feasible solutions SI , where each

S ∈ SI is a subset of E. The number of feasible solutions may be exponential

in |EI |. For an instance I = (EI ,SI ,wI), and a feasible solution S ∈ SI , the
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objective function value for S is given as some function of the solution and

the weight vector obj(S) = fS(wI). In most optimization problems like the

Travelling Salesman problem, Sparsest Cut problem, etc., the function fS is just

the sum of weights of elements in S. These class of problems are called additive
optimization problems. A more general class of problems is the one in which

the functions fS are a convex or concave function of the weight vector. In a

minimization (maximization) problem one wishes to find a feasible solution of

minimum (maximum) objective function value.

The maxmin design version D(Π) of a minimization problem Π is defined

as follows: For every collection of valid instances of Π of the form I = (EI ,SI , ·),

there is one valid instance of D(Π): J = (EJ ,SJ , BJ), where EJ = EI , SJ = SI ,

and BJ is a rational number, called the weight budget. A feasible solution to J is

a weight vector w = (we)e∈EJ , which satisfies the budget constraint
∑

e∈EJ
we ≤

BJ . Every feasible solution w to J leads to an instance I = (EI ,SI ,w) of the

optimization problem Π .

The goal of the maxmin design problem is to find a feasible solution w so that

the minimum objective function value of the resulting instance of the minimiza-

tion problem is as large as possible. That is,

OPTD(Π) ((E,S, B)) = max
w:
∑

e we≤B
OPTΠ((E,S,w))

The minmax design version of a maximization problem is defined similarly.

3 Solving Design Problems

3.1 A General Technique Based on the Ellipsoid Method

Let the design problem at hand be a maxmin design problem. The analysis for

minmax design problems is similar. Let (E,S, B) be an instance of the design

problem, and let fS(.) be the function giving the objective value for the solution

S ∈ S. In this section, we assume fS(.) to be a concave function in the weights
1
.

Consider the following program

max{ λ s.t. fS(w) ≥ λ ∀S ∈ S;

∑
e∈E

we ≤ B} (1)

Firstly note that the feasible region in the above program is convex, and thus

program 1 is a convex program. This is because if (λ,w) and (λ
′
,w′

) are feasible

solutions, then so is their convex combination: For any 0 ≤ µ ≤ 1, ∀ S ∈ S,

fS(µw + (1 − µ)w′
) ≥ µfS(w) + (1− µ)fS(w′

) ≥ µλ+ (1− µ)λ
′

where the first inequality uses the fact that fS is concave.

1 fS(.) can be a concave function of the weights of all elements in E, not just the
elements in S, which is used here only for indexing. Recall that we defined the
special case of additive functions to have fS(w) as the sum of weights of elements
in S.
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Therefore we can use the ellipsoid method to solve the convex program. Given

a candidate point (λ,w), the separation oracle needs to check whether it is

feasible or return a set S as a certificate of infeasibility. Note that solving the

optimization problem (E,S,w) suffices: if the minimum is greater than λ then

the solution is feasible, otherwise the set with the minimum objective value is

the certificate of infeasibility
2
. Thus we have the following theorem:

Theorem 1. If we have an algorithm which solves the optimization problem Π

in polynomial time, then for any ε > 0, we can solve the corresponding design
problem D(Π) up to an additive error of ε in time polynomial in n and log

1
ε .

Suppose we can not solve the optimization problem exactly but only have an

α-approximation for it, for some α ≥ 1. That is, we have a polytime algorithm

which, given (E,S,w), returns a set S with objective function value guaranteed

to be at most α-factor away from the actual optimum: fS(w) ≤ αminT∈S fT (w).

Then we can use the methods of [JMS03] to obtain an α approximation to the

convex program 1.

Theorem 2. If we have a polynomial time algorithm returning an α-approxi-
mation to the optimization problem Π, then we can find, for any ε > 0, an
approximation algorithm for the design problem D(Π), with a multiplicative fac-
tor of α and an additive error of ε.

Note that in both Theorems 1 and 2, if the problems are additive, then we do not

need the additive error of ε. The ellipsoid method may need to take a number

of steps equal to a large polynomial. In each step we need to solve an instance

of the optimization problem Π . The ellipsoid method also takes a huge time in

practice. This motivates us to look for faster algorithms for the design problem.

Below, we provide two techniques which are much faster and which apply if the

given problem has a special structure. In Section 4, we will provide a general

method which also works much faster.

3.2 A Technique Based on LP-Relaxation

Suppose we have a linear programming relaxation for the minimization prob-

lem Π , which yields an α-approximation algorithm, for some α ≥ 1. That is,

corresponding to (E,S,w) there is a linear program:

min{ w · x s.t Ax ≥ b; x ≥ 0 } (2)

with the property that the optimum value of the LP, call it L, is a lower bound

on the optimum of the given instance - ∀ T ∈ S, L ≤ fT (w). Moreover, there is

a guarantee that for any weight vector w, given an optimum solution to LP 2,

one can produce in polynomial time a set S such that fS(w) ≤ αL.

2 Here, and throughout, we will say that an (approximation) algorithm solves a opt-
mization problem if it gives the (approximately) optimum value as well as a set S
which achieves this (approximately) optimum value.
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To solve the design problem, we look at the dual of LP 2.

max{ b · y s.t yTA ≤ w; y ≥ 0 } (3)

We note that the weight vector w is no longer in the objective function but

appears in the constraints. Parametrizing the program on w, let the optimum

solution to LP 3 be D(w). From the previous supposition, we know there is an

algorithm giving a set S with the guarantee, D(w) ≤ fS(w) ≤ αD(w) for all

weight vectors w.

To solve the design problem, we consider w as a variable in LP 3, and add the

constraint that the total weight is bounded by B. Thus we solve the following

LP

max{ b · y s.t yTA−w ≤ 0; w · 1 ≤ B; y,w ≥ 0 } (4)

Let the optimum solution to LP 4 be D
∗
. Let w′

be the optimum vector

returned in the solution of LP 4. Note that for any weight vector w satisfying

w · 1 ≤ B, we have D(w) ≤ D
∗

with equality at w′
. Solve LP 2 with w′

and

obtain a set T with the guarantee D
∗
≤ fT (w′

) ≤ αD
∗
.

We now claim that T,w′
gives an α approximation to the design problem.

To see this, suppose w∗
was the weight vector acheiving the maxmin design.

Moreover, suppose S was the set that minimized its objective value given w∗
.

We need to show αfT (w′
) ≥ fS(w∗

). To see this note fS(w∗
) ≤ αD(w∗

) ≤

αD
∗
≤ αfT (w′

). Thus we have:

Theorem 3. If we have an LP relaxation for the optimization problem Π, and
a polynomial time algorithm producing a solution within α ≥ 1 times the LP op-
timum, then we can produce an α approximation algorithm for the corresponding
design problem D(Π) which requires solving an LP having one constraint more
than that of the LP relaxation.

As a corollary we get a logn approximation to maximum min-multicut, a logn

approximation to the maximum sparsity cut, a 2-approximation to the maximum

min weighted vertex cover and many such problems which have approximation

algorithms via LP-relaxations.

3.3 A Technique Based on Integral Packing

Suppose we have an instance of the additive minimization problem (E,S,w) with

the following structure: There exist solutions S1, S2, · · · , Sk which are disjoint.

In this case, we see that B/k is an upper bound on the optimum of the maxmin

design problem (E,S, B). This is because no matter how we distribute the weight

vector w, one of the sets Si will have
∑

e∈Si
we ≤ B/k, since these sets are

disjoint. If we can demonstrate a solution of value B/k, then this is optimal.

As an example, consider the maxmin s−t cut problem. If l is the length of the

shortest path from s to t, we can pack l edge disjoint s−t cuts, e.g. the level cuts

of the BFS tree from s to t. By the above argument, we have an upper bound

of B/l on the maxmin s− t cut. Now take any shortest path and distribute the
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weight B equally on all the edges in the path. Since any s − t cut contains at

least one of these edges, we see that this solution has value B/l, hence optimal.

A second example is the design version of minimum weight spanning tree in

a graph - find a weight distribution to maximize the weight of an MST. Here

the upper bound comes from the Nash-Williams and Tutte Theorem on packing

of edge disjoint spanning trees [NW61, Tut61] and can be achieved via giving

weights to the cross edges in the optimal partition. In fact, in Section 6 we shall

see a close relation between maxmin design problems and fractional packing of

solutions, and how the maxmin design framework can be used to prove results

about fractional packing.

4 Faster Algorithms for Design Problems

In this section we provide a general method to solve design problems which works

much faster than the method in Section 3.1. In Section 4.1 we solve the additive

case, before solving the more general concave/convex cases in Section 4.2.

4.1 Additive Design Problems, Zero-Sum Games and Multiplicative
Update

In the additive case, the maxmin design problem (E,S, B = 1) can be formulated

as a two-player zero-sum game G(E,S): The row player (the maxminimizer) has

|E| rows, corresponding to the elements, and the column player has |S| columns,

corresponding to the solutions. The |E| × |S| matrix has 0 or 1 entries, with the

entry (e, S) = 1 ⇐⇒ e ∈ S. This is the amount that the column player pays

the row player.

A probability distribution on the pure row strategies corresponds to a distri-

bution of the weight on the elements. Now the column player’s best responses

(in pure strategies) correspond to sets S ∈ S with mimimum weight with respect

to the given distribution of weight.

Proposition 1. The set of optimal weight distributions for the maxmin design
problem (E,S, B) is equal to the set of maxmin strategies for the row player in
the game G(E,S), scaled by B.

Thus the goal of the maxmin assignment problem is precisely to find a maxmin

strategy for the row player. Since |S| may be very large, one cannot just solve the

game by traditional means, say, using linear programming. We use the technique

developed in [FS99] to approximate zero-sum games to approximate design

problems. The algorithms and proofs remaining section mimic [FS99] in our

setting.

Assume B = 1 for notational ease. The algorithm proceeds in rounds. In each

round we define a new weight function wt. We assume that we have a polynomial

time oracle which given any weight vector, is guaranteed to return a solution of

cost within α times the minimum cost set. That is, at each round we get a

solution St such that fSt(wt) ≤ αminS fS(wt). Note that in this additive case,
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fS(w) =
∑

e∈S w(e).

We then apply the multiplicative update rule:

– Initialize ∀ e : z1(e) = 1. Let w1(e) = z1(e)/
∑

e z1(e).

– Multiplicative update: Suppose the oracle on input wt returns solution

St. Then the new weights are found as follows:

zt+1(e) = zt(e)β
M(e,St), wt+1(e) = zt+1(e)/

∑
e zt+1(e)

where M(e, St) = 1 if St contains e, 0 otherwise.

We run this algorithm for T steps. Define the regret after T steps as

RT := max
w:
∑

e w(e)=1

T∑
t=1

fSt(w)−

T∑
t=1

fSt(wt)

The following theorem was proved in [FS99].

Theorem FS: RT ≤
√

TO(
√

lnn)

Run the algorithm for T rounds, and take the average of all the weight vectors

over the T rounds: w :=
1
T

∑T
t=1 wt. We prove in the next lemma that w is an α

approximation with additive error to the maxmin design problem. In particular

we shall show

Lemma 1. minS fS(w) ≥
1
α maxw:

∑
e w(e)=1 minS fS(w)−O(

1
α

√
lnn
T )

Proof. We follow the proof as in [FS99]. In this when we use subscript w we

assume that sum of weights is equal to 1 and not explicitly mention it. We have

min
S

fS(w) = min
S

1
T

T∑
t=1

fS(wt) ( by linearity of fS)

≥

1
T

T∑
t=1

min
S

fS(wt)

≥

1
T

T∑
t=1

1
αfSt(wt) ( oracle is α approximate)

≥

1
α max

w

1
T

T∑
t=1

fSt(w)−O(
1
α

√
lnn
T ) ( by Theorem FS)

≥

1
α max

w
min
S

fS(w)−O(
1
α

√
lnn
T ) (minimum ≤ average)

Thus if we run for T =
lnn
ε rounds, we get an ε additive error. Thus we get the

following theorem

Theorem 4. Given a maxmin design problem (E,S, B), suppose we have (as a
black box) an approximation algorithm which solves the corresponding minimiza-
tion problem upto a factor α ≥ 1. Then we can design an algorithm which can
solve the maxmin design problem upto a factor of α.
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4.2 Extending the Framework to Concave Utility Functions and
Convex Cost Functions

In this section, we extend the technique described in Section 4.1 to solve maxmin

(minmax) design problems with concave utility functions (convex cost functions).

We use the following online optimization setting, defined in [Zin03] and modified

in [FKM05]: There is an unknown collection C of concave utility functions over

a convex feasible region F . The optimization proceeds in rounds. In round t, the

algorithm has to choose a vector wt ∈ F , and then the adversary will provide

a utility function ct ∈ C. The algorithm will suffer a cost of ct(wt). Zinkevich

[Zin03] considered the case when the function ct is revealed, while Flaxman et.al

[FKM05] considered the bandit setting: only the value ct(wt) is revealed. The

regret of the algorithm after T rounds is defined as

RT := max
w∈F

T∑
t=1

ct(w)−

T∑
t=1

ct(wt)

Flaxman et.al. [FKM05] provide an algorithm called Bandit Gradient Descent

(BGD), with the following guarantee:

Theorem (Flaxman et al.). If all the functions ct defined on a set S are

bounded in an interval [−C,C], the regret of the BGD algorithm is

RT ≤ 6nCT
5/6

(5)

where n is the dimension of the convex set.

For our application of this setting, we will take C to be the collection of functions

fS of the instance (E,S, B) of the design problem. Suppose there exists a poly-

time algorithm A which given a weight vector w returns a solution S such that

fS(w) ≤ αminT∈S fT (w). For our application, we will choose the adversary to

play ct = fSt where St is the solution returned by the algorithm A on input wt.

We shall also assume that all functions fS are bounded by a polynomial C(n),

where n is the number of elements. The BGD algorithm also requires that the

convex set S has a membership oracle. For our application, the convex set will

be the n-simplex corresponding to the weight distribution over the n elements.

We get the following theorem whose proof is similar to the previous subsection.

Theorem 5. Suppose we are given an approximation algorithm for the concave
minimization problem Π, then we can obtain an α-approximation algorithm for
the maxmin problem D(Π).

Example: Designing graphs to minimize commute time and cover time.
As an application of the framework for convex functions, we show how to design

the transition probabilities on a graph to minimize the maximum commute time

on a graph.
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Suppose we are given a budget B on the total weight and we have to assign

weight on each edge. These weights determine the transition probabilities of

a random walk: the probability of moving from a vertex u to a vertex v is

puv =
w(uv)∑
e∼u we

. The goal is to place weights in such a manner so that the

maximum commute time among all pairs of vertices is minimized. We note that

in a related result, Boyd et.al [BDX04] investigate a similar problem of assigning

transition probabilities to the edges of a graph such that the mixing time is

minimized.

We note that the commute time can be found in polynomial time (see for

example [MR95]). It is also known that the commute time is a convex function

of the edge weights (see [EKPS04], also [GBS06])
3
. Thus this problem falls in

the framework and thus we can apply the BGD algorithm to obtain the minmax

commute time. Moreover, the Matthews bound states that the cover time is

within logn of the maximum commute time. Thus we have

Theorem 6. Given a graph and a budget B on the total edge weights, one can
find (upto additive error) a weight distribution on the edges so that the maxi-
mum commute time between two vertices is minimized over all possible weight
distributions. Moreover, the same distribution also gives a logn approximation
to the minimum cover time over all possible distributions.

5 The Complexity of Design Problems

In this section we study the relationship of the complexity of design problems

and the complexity of the corresponding optimization problems.

The main result of this paper as described in Sections 3 and 4 is that solving a

design problem D(Π) is as easy as solving the corresponding optimization prob-

lem Π , for the class of concave (convex) minimization (maximization) problems

(upto arbitrarily small additive errors). This is proved via two different general

techniques to give Theorem 2 and Theorem 5.

A natural question is if the converse also holds, i.e. whether the complexity

of the optimization and design version of a problem are the same. The following

shows that this is not the case:

Theorem 7. There exists an additive minimization problem Π such that finding
the value of the minimum is NP-complete, but its design version D(Π) can be
solved in polynomial time.

Proof. Call a graph a bridged clique if it consists of two cliques K1 and K2, and

two edges (u, u
′
), (v, v

′
) with u, v ∈ K1 and u

′
, v

′
∈ K2. Consider the problem of

finding (the value of) the cheapest tour on a weighted bridged clique. This prob-

lem is NP-hard as it involves finding the cheapest hamiltonian paths between

u, v and u
′
, v

′
respectively. Now consider the design version of the problem. We

3 Note the problem is a minmax problem and hence we require convex objective func-
tions.
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have to find a distribution of the weight budget on a bridged clique so that the

cost of the minimum weight tour is maximized. Since any tour will have to pick

both edges of the bridge, the optimal strategy is to divide the weights only on

the bridge edges. Thus the design version of this problem can be solved trivally

in polynomial time. This construction extends to any NP-complete problem.

We have seen that all design problems are as easy as their optimization versions,

and that some are polynomial time sovable even though the optimization ver-

sions are NP-hard. To complete the picture we show below that not all design

problems are easy:

Theorem 8. There exists an NP-complete additive minimization problem such
that the corresponding design problem is also NP-complete.

Proof. Consider the problem of finding the minimum weight Steiner tree in a

weighted graph. We prove in Section 6 (Theorem 9) that the value of the maxmin

Steiner tree is exactly the reciprocal of the maximum number of Steiner trees

that can be fractionally packed in the weighted graph. However, the fractional

packing number of Steiner trees is known to be NP-hard, as proved by Jain et

al. [JMS03].

We mention here a related result of Fortnow et al. [FIKU05], in which they study

the complexity of solving a succinctly represented zero-sum game. Our setting

is different in that the number of row strategies is part of the input size, and we

have access to an (approximately) best-response oracle.

6 MaxMin Design Problems and Packing Problems

For lack of space we defer most of the definitions and proofs of this section to

the full version of the paper, while providing a sketch of the main results.

6.1 Fractional Packing and Maxmin Design

Consider an instance (E,S, 1) of a design problem with a budget of 1. A collection

of sets S1, S2, · · · , Sk ∈ S are said to pack fractionally with weights λ1, · · · , λk,

if for each element e,
∑

Si:e∈Si
λSi ≤ 1. The value of the packing is

∑
λi.

Theorem 9. Given a set of elements E and a collection of subsets S of E, the
maximum number of sets that can be packed fractionally is exactly equal to the
reciprocal of the maxmin design of the additive instance (E,S, 1).

Proof. (Sketch) The LPs for fractional packing and maxmin design are duals of

each other upto taking reciprocals.

6.2 Packing Steiner Trees Fractionally

In this subsection we look at the special case of Steiner trees. Given a graph

G(V,E) with a set of required nodes R and Steiner nodes S = V \R, a Steiner
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tree is a subtree of G containing all the nodes in R. Let τ denote the set of all

Steiner trees in G. Let kf denote the maximum number of Steiner trees that can

be packed fractionally. Thus

kf = max{

∑
T∈τ

λT s.t. ∀e ∈ E :

∑
T :e∈T

λT ≤ 1}

We shall call this the fractional packing number for Steiner trees. In this section,

we use the LP framework developed in Section 3.2 to relate the fractional packing

number of Steiner trees to a quantity called the strength of a graph via the well-

known bidirected LP relaxation for minimum weight Steiner tree.

Given a partition P of vertices with a required vertex in each partition, the

strength of a partition γ(P ) is defined as the ratio of the number of cross-edges

and the size of the partition minus 1. The strength of a graph, γ is defined

as the minimum over all partitions. The bidirected-cut relaxation is an LP-

relaxation for the minimum Steiner tree problem (see e.g. [Vaz00]). Evaluating

the integrality gap α of this relaxation is a major open problem and currently it

is known that 8/7 ≤ α ≤ 2. We prove the following result.

Theorem 10. Fractional Packing number of Steiner trees is within 2α of the
strength, that is, γ

2α ≤ kf ≤ γ.

The proof proceeds by proving that the maxmin Steiner tree is within 2α of the

reciprocal of the strength and by Theorem 9 we are done. This is proved by

giving feasible solutions to the LP relaxations obtained from the bidirected-cut

relaxation, as in Section 3.2.

For the special case of spanning trees, we prove a stronger result.

Theorem 11. The fractional packing number of spanning tree is exactly the
strength of the graph.

The proof uses the same techniques as the last proof and the fact that the span-

ning tree can be found via a greedy algorithm. All these proofs can be found in

the full version of the paper and have been omitted here for sake of brevity.

Remark. We note that Jain et.al [JMS03] proved that evaluating the fractional

packing number is NP-hard, and an α-approximation to the minimum Steiner

tree problem implies existence of an α-approximation to the fractional packing

problem. We note that they do not show any relation to the strength of the

graph while Theorem 10 wishes to investigate the relationship with strength.

Also, Theorem 11 can be directly inferred from the Nash-Williams and Tutte

theorems [NW61, Tut61], but our proof techniques do not use these theorems.

We find it an interesting question as to whether the relationship between pack-

ing and maxmin design problems can be used to produce other intersting packing

theorems in other combinatorial settings. Regarding the Steiner tree setting, it fol-

lows from a conjecture of Kriesell [Kri03], that the maximum number of Steiner

trees that can be packed integrally is within 2 times the strength of the graph. Re-

cently, Lap Chi Lau [Lau04] has proved this within a factor of 26. Improving this

factor and settling Kriesell’s conjecture seems to be a challenging problem.
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Abstract. While the 3-dimensional analogue of Sperner’s problem in
the plane was known to be complete in class PPAD, the complexity of
2D-SPERNER itself is not known to be PPAD-complete or not. In
this paper, we settle this open problem proposed by Papadimitriou [9]
fifteen years ago. The result also allows us to derive the computational
complexity characterization of a discrete version of the 2-dimensional
Brouwer fixed point problem, improving a recent result of Daskalakis,
Goldberg and Papadimitriou [4]. Those hardness results for the simplest
version of those problems provide very useful tools to the study of other
important problems in the PPAD class.

1 Introduction

The classical lemma of Sperner [11], which is the combinatorial characterization

behind Brouwer’s fixed point theorem, states that any admissible 3-coloring of

any triangulation of a triangle has a trichromatic triangle. Naturally, it defines

a search problem 2D-SPERNER of finding such a triangle in an admissible

3-coloring for an exponential size triangulation, typical of problems in PPAD,

a complexity class introduced by Papadimitriou to characterize mathematical

structures with the path-following proof technique [10]. Many important prob-

lems, such as the Brouwer fixed point, the search versions of Smith’s theorem, as

well as the Borsuk-Ulam theorem, belong to this class [10]. The computational

complexity issue for those problems is of interest only when the search space is

exponential in the input parameter.

For problem 2D-SPERNER as an example, with an input parameter n, we

consider a right angled triangle with a side length N = 2
n
. Its triangulation is

into right angled triangles of side length one. There is a (3-coloring) function

which, given any vertex in the triangulation, outputs its color in the coloring.

The color function is guaranteed to be admissible and is given by a polynomial-

time Turing machine. The problem is to find a triangle that has all three colors.

Its 3-dimensional analogue 3D-SPERNER is the first natural problem proved
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to be PPAD-complete [10]. Whether the 2-dimensional case is complete or not

was left as an open problem. Since then, progress has been made toward the

solution of this problem: In [7], Grigni defined a non-oriented version of 3D-
SPERNER and proved that it is PPA-complete. Friedl, Ivanyos, Santha and

Verhoevenproved showed [5,6] that the locally 2-dimensional case of Sperner’s

problem is complete in PPAD. Despite those efforts, the original 2-dimensional

Sperner’s problem remains elusive.

In this article, we prove that 2D-SPERNER is PPAD-complete and thus

settle the open problem proposed by Papadimitriou [9] fifteen years ago. Fur-

thermore, this result also allows us to derive the PPAD-completeness proof of a

discrete version of the 2D fixed point problem (2D-BROUWER). Our study is

motivated by the complexity results in [1] and [8] for finding a discrete Brouwer

fixed point in d-dimensional space with a function oracle. The combinatorial

structure there is similar to the one here. It was proved that, for any d ≥ 2, the

fixed point problem for the oracle model unconditionally requires an exponential

number (in consistency with d) of queries. Although the computational models

in these two problems are different, we moved into the direction of a hardness

proof expecting that the complexity hierarchy in Sperner’s problem may have a

similar structure with respect to the dimension.

The class PPAD is the set of problems that are polynomial-time reducible to

the problem called LEAFD [10]. It considers a directed graph of an exponen-

tial number, in the input parameter n, of vertices, numbered from 0 to N − 1

where N = 2
n
. Each vertex has at most one incoming edge and at most one

outgoing edge. There is a distinguished vertex, 0, which has no incoming edge

and has one outgoing edge. The required output is another vertex for which the

sum of its incoming degree and outgoing degree is one. To access the directed

graph, we have a polynomial-time Turing machine which, given any vertex as

an input, outputs its possible predecessor and successor. In examination into

the PPAD-completeness proof of problem 3D-SPERNER, we found that the

main idea is to embed complete graphs in 3-dimensional search spaces [10]. Such

an embedding, obviously impossible in the plane, would allow us to transform

any Turing machine which generates a directed graph in LEAFD to a Turing

machine which produces an admissible coloring on a 3-dimensional search space

of 3D-SPERNER.

We take a different approach for the proof which can be clearly divided into

two steps. First, we define a new search problem called RLEAFD (restricted-

LEAFD). While the input graph has the same property as those in problem

LEAFD (that is, both the incoming degree and outgoing degree of every vertex

are at most one), it is guaranteed to be a sub-graph of some predefined planar

grid graph. The interesting result obtained is that, even with such a strong res-

triction, the problem is still complete in PPAD. In the second step, we reduced

RLEAFD to 2D-SPERNER and proved that the latter is also complete. The

main idea represents an improved understanding of PPAD reductions and may

be of general applicability in related problems.
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The completeness result of 2D-SPERNER allows us to deduce that a dis-

crete version of the two dimensional Brouwer fixed point search problem is also

PPAD-complete. The discrete version considers a function g on a 2D grid such

that, for every point p in the grid, g(p) is equal to p plus an incremental vector

with only three possible values: (1, 0), (0, 1) and (−1,−1). A fixed point is a set

of four corners of an orthogonal unit square such that incremental vectors at

those point include all the three possibilities, an analogue to that of the three

dimensional case introduced in [4]. Such a definition of a fixed point, which is

different from the original Brouwer fixed point but is related to Sperner’s lemma,

has a natural connection with approximation [8], and is consistent in spirit with

the recent algorithmic studies on discrete fixed points [1]. On a first careful look

at the new definition, its natural link to the Sperner’s fully colored triangle is

only in one direction. We overcome the difficulty in the other direction to show

the reduction is indeed complete.

The PPAD-completeness of both 2D-SPERNER and 2D-BROUWER,

in their simplicities, can serve better benchmarks as well as provide the much

needed intuition to derive completeness proofs for complicated problems, such

as in the subsequent result of non-approximability (and also smoothed com-

plexity) of the bimatrix game Nash Equilibrium [3]. In particular, an important

key lemma in the non-approximability result is a PPAD-completeness proof of

a discrete fixed point problem on high-dimensional hypergrids with a constant

side length, which can be most conveniently derived from our hardness result on

the 2D discrete fixed point problem.

2 Preliminaries

2.1 TFNP and PPAD

Definition 1 (TFNP). Let R ⊂ {0, 1}
∗
× {0, 1}

∗ be a polynomial-time com-
putable, polynomially balanced relation (that is, there exists a polynomial p(n)

such that for every pair (x, y) ∈ R, |y | ≤ p(|x |)). The NP search problem QR

specified by R is this: given an input x ∈ {0, 1}∗, return a string y ∈ {0, 1}∗ such
that (x, y) ∈ R, if such a y exists, and return the string “no” otherwise.

An NP search problem QR is said to be total if for every x ∈ {0, 1}
∗, there

exists a y ∈ {0, 1}
∗ such that (x, y) ∈ R. We use TFNP to denote the class of

total NP search problems.

An NP search problem QR1 ∈ TFNP is polynomial-time reducible to problem

QR2 ∈ TFNP if there exists a pair of polynomial-time computable functions

(f, g) such that, for every input x of QR1 , if y satisfies (f(x), y) ∈ R2, then

(x, g(y)) ∈ R1. We now define a total NP search problem called LEAFD [10].

Definition 2 (LEAFD). The input of the problem is a pair (M, 0
k
) where M

is the description of a polynomial-time Turing machine which satisfies: 1). for
any v ∈ {0, 1}

k, M(v) is an ordered pair (u1, u2) where u1, u2 ∈ {0, 1}
k
∪{no};

2). M(0
k
) = {no, 1

k
} and the first component of M(1

k
) is 0

k. M generates a
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A0

A1

A2

Fig. 1. The standard 7 × 7 triangulation of a triangle

directed graph G = (V,E) where V = {0, 1}
k. An edge uv appears in E iff v is

the second component of M(u) and u is the first component of M(v).
The output is a directed leaf (with in-degree + out-degree = 1) other than 0

k.

PPAD [9] is the set of total NP search problems that are polynomial-time

reducible to LEAFD. From its definition, LEAFD is complete for PPAD.

2.2 2D-SPERNER

One of the most interesting problems in PPAD is 2D-SPERNER whose to-

tality is based on Sperner’s Lemma [11]: any admissible 3-coloring of any trian-

gulation of a triangle has a trichromatic triangle.

In problem 2D-SPERNER, we consider the standard n × n triangulation

of a triangle which is illustrated in Figure 1. Every vertex in the triangulation

corresponds to a point in Z2
. Here A0 = (0, 0), A1 = (0, n) and A2 = (n, 0)

are the three vertices of the original triangle. The vertex set Tn of the n × n

triangulation is defined as Tn = {p ∈ Z2
| p1 ≥ 0, p2 ≥ 0, p1 + p2 ≤ n }. A

3-coloring of the n × n triangulation is a function f from Tn to {0, 1, 2}. It is

said to be admissible if 1) f(Ai) = i, for all 0 ≤ i ≤ 2; 2) for every point p on

segment AiAj , f(p) = 3− i− j.

A unit size well-oriented triangle is a triple ∆ = (p0
,p1

,p2
) where pi ∈ Zd

for all 0 ≤ i ≤ 2. It satisfies either p1
= p0

+ e1, p2
= p0

+ e2 or p1
= p0

− e1,

p1
= p0

− e2. In other words, the triangle has a northwest oriented hypotenuse.

We use S to denote the set of all such triangles.

From Sperner’s Lemma, we define problem 2D-SPERNER as follows.

Definition 3 (2D-SPERNER[9]). The input instance is a pair (F, 0
k
) where

F is a polynomial-time Turing machine which produces an admissible 3-coloring
f on T2k . Here f(p) = F (p) ∈ {0, 1, 2}, for every vertex p ∈ T2k .

The output is a trichromatic triangle ∆ ∈ S of coloring f .

In [9], it was shown that 2D-SPERNER is in PPAD. They also defined a

3-dimensional analogue 3D-SPERNER of 2D-SPERNER and proved that

it is PPAD-complete. The completeness of the 2-dimensional case was left as

an open problem.
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3 Definition of Search Problem RLEAFD

Before the definition of problem RLEAFD, we describe a class of planar grid

graphs {Gi}i≥1, where Gn = (Vn, En) and vertex set

Vn =
{

u ∈ Z2
∣∣∣ 0 ≤ u1 ≤ 3(n

2
− 2), 0 ≤ u2 ≤ 3(2n− 1)

}
.

Informally speaking, Gn is a planar embedding of the complete graph Kn with

vertex set { 0, 1... n− 1 }. For every 0 ≤ i < n, vertex i of Kn corresponds to the

vertex (0, 6i) of Gn. For every edge ij ∈ Kn, we define a path Eij from vertex

(0, 6i) to (0, 6j). To obtain the edge set En of Gn, we start from an empty graph

(Vn, ∅), and then add all the paths Eij . There are O(n
2
) vertices in Vn, which

are at the intersection of two paths added previously. Since Kn is not a planar

graph when n ≥ 5, there is no embedding which can avoid those crossing points.

For each of those crossing points, we add four more edges into En.

We define En formally as follows. En can be divided into two parts: E
1
n and

E
2
n such that En = E

1
n ∪ E

2
n and E

1
n ∩ E

2
n = ∅. The first part E

1
n = ∪ij∈KnEij

and path Eij is defined as follows.

Definition 4. Let p1
,p2

∈ Z2 be two points with the same x-coordinate or the
same y-coordinate. Let u1

,u2
... um ∈ Z2 be all the integral points on segment

p1p2 which are labeled along the direction of p1p2. We use E(p1p2
) to denote

the path which consists of m− 1 directed edges : u1u2, u2u3, ... um−1um.

Definition 5. For every edge ij ∈ Kn where 0 ≤ i = j < n, we define a
path Eij as E(p1p2

) ∪ E(p2p3
) ∪ E(p3p4

) ∪ E(p4p5
), where p1

= (0, 6i),
p2

= (3(ni+ j), 6i), p3
= (3(ni+ j), 6j+ 3), p4

= (0, 6j+ 3) and p5
= (0, 6j).

One can show that, every vertex in Vn has at most 4 edges (including both

incoming and outgoing edges) in E
1
n. Moreover, if u has 4 edges, then 3 |u1 and

3 |u2. We now use {ui}1≤i≤8 to denote the eight vertices around u. For each

1 ≤ i ≤ 8, ui = u + xi where x1
= (−1, 1), x2

= (0, 1), x3
= (1, 1), x4

= (1, 0),

x5
= (1,−1), x6

= (0,−1), x7
= (−1,−1) and x8

= (−1, 0). If u ∈ Vn has 4

edges in E
1
n, then it must satisfy the following two properties:

1. either edges u4u,uu8
∈ E

1
n or u8u,uu4

∈ E
1
n;

2. either edges u2u,uu6
∈ E

1
n or u6u,uu2

∈ E
1
n.

Now for every vertex u ∈ Vn which has 4 edges in E
1
n, we add four more

edges into En. For example, if u4u,uu8
,u2u,uu6

∈ E
1
n (that is, the last case

in Figure 2), then u4u5
,u5u6

,u2u1
,u1u8

∈ E
2
n. All the four possible cases are

summarized in Figure 2.

An example (graph G3 ) is showed in Figure 3. We can draw it in two steps.

In the first step, for each ij ∈ K3, we add path Eij into the empty graph. In the

second step, we search for vertices of degree four. For each of them, 4 edges are

added according to Figure 2. One can prove the following property of Gn.
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u u u u

Fig. 2. Summary of cases in the construction of E2
n

Lemma 1. Every vertex in Gn has at most 4 edges. There is a polynomial-time
Turing machine M

∗ such that, for every input instance (n,u) where u ∈ Vn, it
outputs all the predecessors and successors of vertex u in graph Gn.

We use Cn to denote the set of graphs G = (Vn, E) such that E ⊂ En and for

every u ∈ Vn, both of its in-degree and out-degree are no more than one.

The new problem RLEAFD is similar to LEAFD. The only difference is

that, in RLEAFD, the directed graph G generated by the input pair (K, 0
k
)

always belongs to C2k . By Lemma 1, one can prove that RLEAFD ∈ PPAD.

Definition 6 (RLEAFD). The input instance is a pair (K, 0
k
) where K is the

description of a polynomial-time Turing machine which satisfies: 1). for every
vertex u ∈ V2k , K(u) is an ordered pair (u1

,u2
) where u1

,u2
∈ V2k ∪ {no}; 2).

K(0, 0) = (no, (1, 0)) and the first component of K(1, 0) is (0, 0). K generates a
directed graph G = (V2k , E) ∈ C2k . An edge uv appears in E iff v is the second
component of K(u), u is the first component of K(v) and edge uv ∈ E2k .

The output of the problem is a directed leaf other than (0, 0).

4 RLEAFD Is PPAD-Complete

In this section, we will describe a polynomial-time reduction from LEAFD to

RLEAFD and prove that RLEAFD is also complete in PPAD.

Let G be a directed graph with vertex set {0, 1...n− 1} which satisfies that

the in-degree and out-degree of every vertex are at most one. We now build the

graph C(G) ∈ Cn in two steps. An important observation here is that C(G) is

not a planar embedding of G, as the structure of G is mutated dramatically in

C(G). However, it preserves the leaf nodes of G and does not create any new

leaf node. Graph C(G) is constructed as follows.

1. Starting from an empty graph (Vn, ∅), for every ij ∈ G, add path Eij ;

2. For every u ∈ Vn of degree 4, remove all the four edges which have u as an

endpoint and add four edges around u using Figure 2.

One can check that, for each vertex in graph C(G), both of its in-degree and

out-degree are no more than one, and thus, we have C(G) ∈ Cn. For example,

Figure 4 shows C(G) where G = ({0, 1, 2}, {02, 21}). The following lemma is

easy to check.
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Fig. 3. The planar grid graph G3 Fig. 4. Graph C(G) ∈ C3

Lemma 2. Let G be a directed graph with vertex set {0, ...n−1} which satisfies
that the in-degree and out-degree of every vertex are at most one. For every
vertex 0 ≤ k ≤ n − 1 of G, it is a directed leaf of G iff u = (0, 6k) ∈ Vn is a
directed leaf of C(G). On the other hand, if u ∈ Vn is a directed leaf of C(G),
then u1 = 0 and 6 |u2.

Lemma 3. Search problem RLEAFD is PPAD-complete.

Proof. Let (M, 0
k
) be an input instance of search problem LEAFD, and G be

the directed graph specified by M . We can construct a TM K which satisfies the

conditions in Definition 6. The construction is described in the full version [2].

It’s tedious, but not hard to check that, pair (K, 0
k
), as an input of RLEAFD,

generates graph C(G) ∈ C2k . On the other hand, Lemma 2 shows that, given a

directed leaf of C(G), we can locate a directed leaf of G easily.

5 2D-SPERNER Is PPAD-Complete

In this section, we will present a polynomial-time reduction from RLEAFD to

2D-SPERNER and finish the completeness proof of 2D-SPERNER.

Let (K, 0
k
) be an input instance of RLEAFD and G ∈ C2k be the directed

graph generated by K. We will build a polynomial-time Turing machine F that

defines an admissible 3-coloring on T22k+5 . Given a trichromatic triangle ∆ ∈ S,

a directed leaf of G can be found easily. To clarify the presentation here, we use

u, v, w to denote vertices in V2k , and p, q, r to denote vertices in T22k+5 .

To construct F , we first define a mapping F from V2k to T22k+5 . Since G ∈

C2k , its edge set can be uniquely decomposed into a collection of paths and

cycles P1, P2, ... Pm. By using F , every Pi is mapped to a set I(Pi) ⊂ T22k+5 .

Only vertices in I(Pi) have color 0 (with several exceptions around A0 ). All

the other vertices in T22k+5 are colored carefully with either 1 or 2. Let ∆ ∈ S

be a trichromatic triangle of F and p be the point in ∆ with color 0, then the

construction of F guarantees that F
−1

(pi) ∈ V2k is a directed leaf of G, which

is different from (0, 0).
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Firstly, the mapping F from V2k to T22k+5 is defined as F(u) = p where

p1 = 3u1 + 3 and p2 = 3u2 + 3. For each uv ∈ E2k , we use I(uv) to denote the

set of four vertices in T22k+5 which lie on the segment between F(u) and F(v).

Let P = u1
...ut be a simple path or cycle in G2k where t > 1 ( if P is a cycle,

then u1
= ut ), then we define I(P ) = ∪

t−1
i=1 I(u

iui+1
) and O(P ) ⊂ T22k+5 as

O(P ) =
{

p ∈ T22k+5 and p /∈ I(P )
∣∣
∃ p′

∈ I(P ), ||p− p′
||∞ = 1

}
.

If P is a simple path, then we decompose O(P ) into {sP , eP } ∪ L(P ) ∪ R(P ).

Here sP = F(u1
) + (u1

− u2
) and eP = F(ut) + (ut − ut−1

). Starting from

sP , we enumerate vertices in O(P ) clockwise as sP ,q1
...qn1 , eP , r1

...rn2 , then

L(P ) =
{
q1
,q2

... qn1
}

and R(P ) =
{
r1
, r2

... rn2
}
.

If P is a simple cycle, then we decompose O(P ) into L(P ) ∪ R(P ) where L(P )

contains all the vertices on the left side of the cycle and R(P ) contains all the

vertices on the right side of the cycle.

As the graph G specified by (K, 0
k
) belongs to C2k , we can uniquely decom-

pose its edge set into P1, ... Pm. For every 1 ≤ i ≤ m, Pi is either a maximal

path (that is, no path in G contains Pi ), or a cycle in graph G. For both cases,

the length of Pi is at least 1. One can prove the following two lemmas.

Lemma 4. For every 1 ≤ i = j ≤ m, (I(Pi) ∪O(Pi)) ∩ (I(Pj) ∪O(Pj)) = ∅.

Lemma 5. Let (K, 0
k
) be an input instance of problem RLEAFD and G ∈ C2k

be the directed graph specified, we can construct a polynomial-time TM MK in
polynomial time. Given any vertex p ∈ T22k+5 , it outputs an integer t: 0 ≤ t ≤ 5.
Let the unique decomposition of graph G be P1, P2...Pm, then: if ∃ i, p ∈ I(Pi),
then t = 1; if ∃ i, p ∈ L(Pi), then t = 2; if ∃ i, p ∈ R(Pi), then t = 3; if ∃ i,
p = sPi , then t = 4; if ∃ i, p = ePi , then t = 5; otherwise, t = 0.

Turing machine F is described by the algorithm in Figure 5. For example, let

G ∈ C2 be the directed graph generated by pair (K, 0
1
), which is illustrated

in Figure 6, then Figure 7 shows the 3-coloring F on T128. As T128 contains so

many vertices, not all of them are drawn in Figure 7. For every omitted vertex

p ∈ T128, if p1 = 0, then F (p) = 1, otherwise, F (p) = 2.

One can prove the following two properties of TM F : 1). the 3-coloring f

specified by F is admissible; 2). let ∆ ∈ S be a trichromatic triangle and p be

the vertex in ∆ with color 0, then u = F

−1
(p) is a directed leaf of G, which is

different from (0, 0). By these two properties, we get the following theorem.

Theorem 1. Search problem 2D-SPERNER is PPAD-complete.

6 2D-BROUWER Is PPAD-Complete

Recently, Daskalakis, Goldberg and Papadimitriou [4] proved that the problem

of computing Nash equilibria in games with four players is PPAD-complete. In
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Turing Machine F with input p = (p1, p2) ∈ T22k+5

1: if p1 = 0 then

2: case p2 ≤ 3, output 0 ; case p2 > 3, output 1

3: else if p1 = 1 then

4: case p2 = 3, output 0 ; case p2 = 4, output 1 ; otherwise, output 2

5: else if p1 = 2 and p2 = 3 then

6: output 0

7: let t = MK(p). case t = 1, output 0 ; case t = 2, output 1 ; otherwise, output 2

Fig. 5. Behavior of Turing Machine F

Fig. 6. Graph G2 and G ∈ C2

A 0

Fig. 7. F : black – 0, gray – 1, white – 2

the proof, they define a 3-dimensional Brouwer fixed point problem and proved

it is PPAD-complete. By reducing it to 4-Nash, they show that the latter one

is also complete in PPAD.

In this section, we first define a new problem 2D-BROUWER which is a

2-dimensional analogue of the 3-dimensional problem in [4]. By reducing 2D-
SPERNER to 2D-BROUWER, we prove the latter is PPAD-complete.

For every n > 1, we let

Bn =
{

p = (p1, p2) ∈ Z2
∣∣∣ 0 ≤ p1 < n− 1 and 0 ≤ p2 < n− 1

}
.

The boundary of Bn is the set of points p ∈ Bn with pi ∈ {0, n− 1} for some

i ∈ {1, 2}. For every p ∈ Z2
, we let Kp = {q ∈ Z2

| qi = pi or pi + 1, ∀ i ∈
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Turing Machine F ′ with input p = (p1, p2) ∈ B3n

1: let p1 = 3l + i and p2 = 3k + j, where 0 ≤ i, j ≤ 2

2: if (i, j) = (0, 0), (1, 0) or (0, 1) then

3: F ′(p) = F (q) where q1 = l and q2 = k

4: else if (i, j) = (1, 1), (2, 0) or (2, 1) then

5: F ′(p) = F (q) where q1 = l + 1 and q2 = k

6: else [when j = 2 ]

7: F ′(p) = F (q) where q1 = l and q2 = k + 1

Fig. 8. The construction of Turing machine F ′

{1, 2} }. A 3-coloring of Bn is a function g from Bn to {0, 1, 2}. It is said to be

valid if for every p on the boundary of Bn: if p2 = 0, then g(p) = 2; if p2 = 0

and p1 = 0, then g(p) = 0; otherwise, g(p) = 1.

Definition 7 (2D-BROUWER). The input instance of 2D-BROUWER is
a pair (F, 0

k
) where F is a polynomial-time TM which produces a valid 3-color-

ing g on B2k . Here g(p) = F (p) ∈ {0, 1, 2} for every p ∈ B2k . The output is a
point p ∈ B2k such that Kp is trichromatic, that is, Kp has all the three colors.

The reason we relate this discrete problem to Brouwer’s fixed point theorem

is as follows. Let G be a continuous map from [0, n − 1] × [0, n − 1] to itself.

If G satisfies a Lipschitz condition with a large enough constant, then we can

construct a valid 3-coloring g on Bn such that:

1. For every point p ∈ Bn, g(p) only depends on G(p);

2. Once getting a point p ∈ Bn such that Kp is trichromatic, one can immedi-

ately locate an approximate fixed point of map G.

Details of the construction can be found in [1].

Notice that the output of 2D-BROUWER is a set Kp of 4 points which

have all the three colors. Of course, one can pick three vertices in Kp to form a

trichromatic triangle ∆, but it’s possible that ∆ /∈ S. Recall that every triangle

in S has a northwest oriented hypotenuse. In other words, the hypotenuse of

the trichromatic triangle in Kp might be northeast oriented. As a result, 2D-
BROUWER could be easier than 2D-SPERNER.

Motivated by the discussion above, we define a problem 2D-BROUWER∗

whose output is similar to 2D-SPERNER. One can reduce 2D-SPERNER
to 2D-BROUWER∗

easily and prove the latter is complete in PPAD.

Definition 8 (2D-BROUWER∗). The input instance is a pair (F, 0
k
) where

F is a polynomial-time Turing machine which generates a valid 3-coloring g on
B2k . Here g(p) = F (p) ∈ {0, 1, 2} for every p ∈ B2k .

The output is a trichromatic triangle ∆ ∈ S which has all the three colors.
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e1

e2 c3

c3 c3 c3

c1

c1

c4

c3 c4 c4

c1 c2c2

c2c2c2

3l 3l+ 1 3l+ 33l+ 2

3k

3k+ 1

3k+ 2

3k+ 3

Fig. 9. F ′: c1 = F (l, k), c2 = F (l + 1, k), c3 = F (l, k + 1) and c4 = F (l + 1, k + 1)

We now give a reduction from 2D-BROUWER∗
to 2D-BROUWER.

Let (F, 0
k
) be an input pair of problem 2D-BROUWER∗

, and n = 2
k
. In

Figure 8, we describe a new Turing machine F
′
which generates a 3-coloring on

B3n. For integers 0 ≤ l, k < n, Figure 9 shows the 3-coloring produced by F
′

on {3l, 3l + 1, 3l + 2, 3l + 3} × {3k, 3k + 1, 3k + 2, 3k + 3} ⊂ B3n. Clearly, F
′

is also a polynomial-time TM, which can be computed from F in polynomial

time. Besides, F
′
generates a valid 3-coloring on B3n. We prove that, for every

p ∈ B3n such that set Kp is trichromatic in F
′
, one can recover a trichromatic

triangle ∆ ∈ S in F easily.

Let p1 = 3l + i and p2 = 3k + j, where 0 ≤ i, j ≤ 2. By examining Figure 9,

we know that either (i, j) = (0, 1) or (i, j) = (2, 1). Furthermore,

1. if (i, j) = (0, 1), then ∆ = (p0
,p1

,p2
) ∈ S is a trichromatic triangle in F ,

where p0
= (k, l), p1

= p0
+ e1 and p2

= p0
+ e2;

2. if (i, j) = (2, 1), then ∆ = (p0
,p1

,p2
) ∈ S is a trichromatic triangle in F ,

where p0
= (k + 1, l + 1), p1

= p0
− e1 and p2

= p0
− e2.

Finally, we get an important corollary of Theorem 1.

Theorem 2. Search problem 2D-BROUWER is PPAD-complete.

7 Concluding Remarks

All the PPAD-completeness proofs of Sperner’s problems before rely heavily

on embeddings of complete graphs in the standard subdivisions. That is, edges

in the complete graph correspond to independent paths which are composed

of neighboring triangles or tetrahedrons in the standard subdivision. Such an

embedding is obviously impossible in the plane, as complete graphs with order

no less than 5 are not planar. We overcome this difficulty by placing a carefully

designed gadget (which looks like a switch with two states) at each intersection

of two paths. While the structure of the graph is mutated dramatically (e.g.

Figure 4), the property of a vertex being a leaf is well maintained.
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An important corollary of the PPAD-completeness of 2D-SPERNER is

that, the computation of discrete Brouwer fixed points in 2-dimensional spaces

(2D-BROUWER) is also PPAD-complete. Our new proof techniques may

provide helpful insight into the study of other related problems: Can we show

more problems complete for PPA and PPAD? For example, is 2D-TUCKER
[10] PPAD-complete? Can we find a natural complete problem for either PPA
or PPAD that doesn’t have an explicit Turing machine in the input? For ex-

ample, is SMITH [10] PPA-complete? Finally and most importantly, what is

the relationship between complexity classes PPA, PPAD and PPADS?
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Abstract. In this work we study weighted network congestion games with
player-specific latency functions where selfish players wish to route their traffic
through a shared network. We consider both the case of splittable and unsplittable
traffic. Our main findings are as follows:

– For routing games on parallel links with linear latency functions without a
constant term we introduce two new potential functions for unsplittable and
for splittable traffic respectively. We use these functions to derive results on
the convergence to pure Nash equilibria and the computation of equilibria.
We also show for several generalizations of these routing games that such
potential functions do not exist.

– We prove upper and lower bounds on the price of anarchy for games with
linear latency functions. For the case of unsplittable traffic the upper and
lower bound are asymptotically tight.

1 Introduction

Motivation and Framework. Large scale communication networks, like e.g. the In-
ternet, often lack a central regulation for several reasons. For instance the size of the
network may be too large, or the users may be free to act according to their private in-
terests. Such an environment – where users neither obey some central control instance
nor cooperate with each other – can be modeled as a non-cooperative game. The con-
cept of Nash equilibria [21] has become an important mathematical tool for analyzing
non-cooperative games. A Nash equilibrium is a state in which no player can improve
his private objective by unilaterally changing his strategy.

For a special class of non-cooperative games, now widely known as congestion
games, Rosenthal [23] showed the existence of pure Nash equilibria with the help of
a certain potential function. In a congestion game, the strategy set of each player is
a subset of the power set of given resources and the private cost function of a player
is defined as the sum (over the chosen resources) of functions in the number of play-
ers sharing this resource. An extension to congestion games in which the players have
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weights and thus different influence on the congestion of the resources are weighted
congestion games. Weighted congestion games provide us with a general framework
for modeling any kind of non-cooperative resource sharing problem. A typical resource
sharing problem is that of routing. In a routing game the strategy sets of the players cor-
respond to paths in a network. Routing games where the demand of the players cannot
be split among multiple paths are also called (weighted) network congestion games.

Another model for selfish routing where traffic flows can be split arbitrarily – the
Wardrop model – was already studied in the 1950’s (see e.g. [4,26]) in the context of
road traffic systems. In a Wardrop equilibrium each player assigns its traffic in such a
way that the latency experienced on all used paths is the same and minimum among all
possible paths for the player. The Wardrop model can be understood as a special net-
work congestion game with infinitely many players each carrying a negligible demand.

In order to measure the degradation of social welfare due to the selfish behavior,
Koutsoupias and Papadimitriou [17] used a global objective function, usually termed as
social cost. They defined the price of anarchy as the worst-case ratio between the value
of social cost in a Nash equilibrium and that of some social optimum. Thus, the price
of anarchy measures the extent to which non-cooperation approximates cooperation.

In weighted network congestion games, as well as in the Wardrop model, players
have complete information about the system. However in many cases users of a routing
network only have incomplete information about the system. Harsanyi [15] defined the
Harsanyi transformation that transforms strategic games with incomplete information
into Bayesian games where the players uncertainty is expressed in a probability distribu-
tion. A Bayesian routing game where players have incomplete information about each
others traffic was introduced and studied by Gairing et al. [13]. Georgiou et al. [14] in-
troduced a routing game where the players only have incomplete information about the
vector that contains all edge latency functions. Each user’s uncertainty about the latency
functions is modelled with a probability distribution over a set of different possible la-
tency function vectors. Georgiou et al. [14] showed, that such an incomplete informa-
tion routing game can be transformed into a complete information routing game where
the latency functions are player-specific. The resulting games with player-specific la-
tency functions were earlier studied by Milchtaich [19]. Monderer [20] showed that
games with player-specific latency functions are of particular importance since each
game in strategic form is isomorphic to a congestion game with player-specific latency
functions. In this paper we study routing games with player-specific latency functions
for both splittable and unsplittable traffic.

Related Work. Routing Games: The class of weighted congestion games has been ex-
tensively studied (see [12] for a survey). Fotakis et al. [10] proved that a pure Nash equi-
librium always exists if the latency functions are linear. For non-linear latency functions
they showed, that a pure Nash equilibrium might not exist, even if there are only 2 play-
ers (this was also observed earlier by Libman and Orda [18]). For the class of weighted
congestion games on parallel links a pure Nash equilibrium always exists, if all edge
latency functions are non-decreasing. The price of anarchy was studied for congestion
games with social cost defined as the total latency. For linear latency functions, it is
exactly 5

2
for unweighted [7] and 3+

√
5

2
for weighted congestion games [2]. The exact

price of anarchy is also known for polynomials with non-negative coefficients [1].
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Inspired by the arisen interest in the price of anarchy Roughgarden and Tardos [25]
re-investigated the Wardrop model and used the total latency as a social cost measure.
In this context the price of anarchy was shown to be 4

3
for linear latency functions [25]

and Θ( d
ln d

) for polynomials of degree at most d with non-negative coefficients [24].
If all latency functions are linear and do not include a constant, then every Wardrop
equilibrium has optimum social cost [25]. Since a Wardrop equilibrium is a solution to
a convex program it can be computed in polynomial time using the ellipsoid method
of Khachyan [16]. This results also implies that the total latency is the same for all
Wardrop equilibria. There are several papers (see e.g. [6,8,22]) studying games with a
finite number of atomic players where each player can split its traffic over the available
paths with the objective to minimize its latency. In this setting the price of anarchy is at
most 3

2 for linear latency functions [8].
Routing Games with Player-Specific Latency Functions: Weighted congestion games
on parallel links with player-specific latency functions were studied by Milchtaich [19].
For the case of unweighted players and non-decreasing latency functions, Milchtaich
showed that such games do in general not posses the finite improvement property but
always admit a pure Nash equilibrium. In case of weighted players a pure Nash equilib-
rium might not exist, even for a game with 3 players and 3 edges (links) [19]. This is a
tight result since such games possess the finite best-reply property in case of 2 players
and the finite improvement property in case of 2 edges [19]. Georgiou et al. [14] studied
the same class of games as Milchtaich but they only allowed linear latency functions
without a constant term. They were able to prove upper bounds on the price of anarchy
for both social cost defined as the maximum private cost of a player and social cost
defined as the sum over the private cost of all players. Furthermore they presented a
polynomial time algorithm to compute a pure Nash equilibrium in case of two edges.

Orda et al. [22] studied a splittable flow routing game with certain player-specific la-
tency functions and a finite number of players each minimizing its latency. They showed
that there is a unique Nash equilibrium for each game on parallel links. They also de-
scribed a game on a more complex graph possessing two different Nash equilibria.

Contribution. In this work we generalize weighted network congestion games and the
Wardrop model, to accommodate player-specific latency functions. Our main contribu-
tions are the definition of new potential functions and the extension of the techniques
from [2,7] to prove upper bounds on the price of anarchy also for games with player-
specific latency functions. More specifically, we prove:

– For routing games on parallel links with linear latency functions without a constant
term we introduce two new potential functions for unsplittable and for splittable
traffic respectively.

• In the case of unsplittable traffic we use our potential function to show that
games with unweighted players possess the finite improvement property. We
also show that games with weighted players do not possess the finite improve-
ment property even if n = 3.

• In the case of splittable traffic we show that our other convex potential function
is minimized if and only if the corresponding assignment is an equilibrium.
This result implies that an equilibrium can be computed in polynomial time.
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We also show for several generalizations of the above games that such potential
functions do not exist.

– We prove upper and lower bounds on the price of anarchy for games with linear
latency functions. For the case of unsplittable traffic the upper and lower bound are
asymptotically tight.

Road Map. In Sect. 2 we define the games we consider. We present our results for
unsplittable traffic in Sect. 3 and for splittable traffic in Sect. 4. Due to lack of space we
have to omit many proofs.

2 Notation

For all k ∈ N denote [k] = {1, . . . , k}. For a vector v = (v1, . . . , vn) let v−i =

(v1, . . . , vi−1, vi+1, . . . , vn) and (v−i, v
′
i) = (v1, . . . , vi−1, v

′
i, vi+1, . . . , vn).

Routing with Splittable Traffic. A Wardrop game with player-specific latency func-
tions is a tuple Υ = (n,G,w, Z, f). Here, n is the number of players and G = (V,E)

is an undirected (multi)graph. The vector w = (w1, . . . , wn) defines for every player
i ∈ [n] its traffic wi ∈ R+. For each player i ∈ [n] the set Zi ⊂ 2

E consists of all
possible routing paths in G = (V,E) from some node si ∈ V to some other node
ti ∈ V . Denote Z = Z1 × . . . × Zn. Edge latency functions f = (fi e)i∈[n],e∈E are
player-specific and fi e : R+

0 → R+
0 is the non-negative, non-decreasing, and continu-

ous player-specific latency function that player i ∈ [n] assigns to edge e ∈ E. Notice
that we are in the setting of the regular Wardrop game if fie = fke for all i, k ∈ [n],
e ∈ E. In the majority of cases we consider linear player-specific latency functions
fie(u) = aie · u + bie with aie, bie ≥ 0. For a Wardrop game Υ with linear latency
functions denote ∆(Υ ) = maxe∈E;i,k∈[n]{ai e/ak e; ai e < ∞, ak e < ∞} with the
understanding that 0

0 = 1 and c
0 = ∞ if c > 0. ∆(Υ ) describes the maximum factor

by which the slopes of the player-specific linear latency functions deviate. Note that
∆(Υ ) does not depend on the constants bie of the latency functions. We will use the
term Wardrop game with player-specific capacities to denote a game where all latency
functions are of the form fi e(u) = ai e · u, ai e > 0. In this case, we write a instead
of f to denote the vector a = (ai e)i∈[n],e∈E . We will often consider games on a par-
allel link multi-graph G = (V,E) that has two nodes V = {s, t}, s = s1 = . . . sn,
t = t1 = . . . tn, and |E| edges connecting these two nodes.

Strategies and Strategy Profiles. A player i ∈ [n] can split its traffic wi over the
paths in Zi. A (pure) strategy for player i ∈ [n] is a tuple xi = (xiRi )Ri∈Zi with∑

Ri∈Zi
xiRi = wi and xiRi ≥ 0 for all Ri ∈ Zi. Denote by Xi = {xi | xi is a strategy

for player i} the set of all strategies for player i. Note, that Xi is an infinite, compact
and convex set. A strategy profile x = (x1, . . . , xn) is an n-tuple of strategies for the
players. Define X = X1 × . . .×Xn as the set of all possible strategy profiles.

Wardrop Equilibria. For a strategy profile x the load δe(x) on an edge e ∈ E is given
by δe(x) =

∑
i∈[n]
∑

Ri∈Zi,Ri�e xiRi . A strategy profile x is a Wardrop equilibrium,
if for every player i ∈ [n], and every Ri, R

′
i ∈ Zi with xiRi > 0 it holds that∑

e∈Ri

fi e(δe(x)) ≤
∑
e∈R′

i

fi e(δe(x)).



Routing Games with Player-Specific Linear Latency Functions 505

Observe that in a Wardrop equilibrium all flow paths of a player have equal latency. We
can regard each player i ∈ [n] as a service provider who has many clients each handling
a negligible small amount of traffic. In a Wardrop equilibrium each service provider
satisfies all his clients because none of them can improve its experienced latency.

Social Cost and Price of Anarchy. Associated with a game and a strategy profile x is
the social cost SC(x) as a measure of social welfare:

SC(x) =
∑
i∈[n]

∑
Ri∈Zi

xiRi

∑
e∈Ri

fi e(δe(x)).

This social cost is motivated by the interpretation as a game with infinitely many players
with negligible demand and models the sum of the players latencies. The optimum as-
sociated with a game is defined by OPT = minx∈X SC(x). The price of anarchy, also
called coordination ratio and denoted PoA, is the maximum value, over all instances
and Wardrop equilibria x, of the ratio SC(x)

OPT .

Routing with Unsplittable Traffic. We also consider the case where players have to
assign their traffic integrally to a single path. Denote such a weighted network conges-
tion game with player-specific latency functions by Γ = (n,G,w, Z, f). The players
are unweighted if they are all of traffic 1, i.e. w1 = . . . = wn = 1. In this case we write
1 instead of w. A pure strategy xi for player i ∈ [n] is a tuple xi = (xiRi)Ri∈Zi with∑

Ri∈Zi
xiRi = wi and xiRi ∈ {0, wi} for all Ri ∈ Zi. Alternatively, with a slight

abuse of notation, we write R = (R1, . . . , Rn) where Ri ∈ Zi, 1 ≤ i ≤ n, to denote a
strategy profile such that xiRi = wi for all i ∈ [n]. In this setting, Z = Z1 × . . .× Zn

is the set of all pure strategy profiles. We define the private cost of player i ∈ [n] as the
sum over the player-specific latencies of all used edges: PCi(R) =

∑
e∈Ri

fi e(δe(R)).
Given a pure strategy profile R = (R1, . . . , Rn) a selfish step of a player i ∈ [n] is a

deviation to strategy profile (R−i, R′
i) where PCi(R−i, R′

i) < PCi(R) and R′
i ∈ Zi.

Such a selfish step is a greedy selfish step if there is for player i no strategy R′′
i ∈ Zi

such that PCi(R−i, R′′
i ) < PCi(R−i, R′

i).
A game Γ possesses the finite best-reply property if any sequence of greedy selfish

steps is finite. If even any sequence of selfish steps is finite it possesses in addition the
finite improvement property. Note, that the finite improvement property implies the fi-
nite best-reply property which again implies the existence of a pure Nash equilibrium.

We also consider mixed strategies Pi for the players. Then, Pi = (p(i, Ri))Ri∈Zi

is a probability distribution over Zi and p(i, Ri) denotes the probability that player i
chooses path Ri. A mixed strategy profile P = (P1, . . . ,Pn) is represented by an n tu-
ple of mixed strategies. For a mixed strategy profile P denote p(R) =

∏
i∈[n] p(i, Ri)

as the probability that the players choose the pure strategy profile R = (R1, . . . , Rn).

Nash Equilibrium, Social Cost, and Price of Anarchy. For a mixed strategy profile
P the private cost of player i ∈ [n] is PCi(P) =

∑
R∈Z p(R) · PCi(R). For a pure

strategy profile R the social cost SC(R) is defined as before whereas for a mixed strat-
egy profile P the social cost is given by SC(P) =

∑
R∈Z p(R) · SC(R). A strategy

profile P is a Nash equilibrium if no player i ∈ [n] can decrease its private cost PCi if
the other players stick to their strategies. More formally, P = (P1, . . . ,Pn) is a Nash
equilibrium if PCi(P) ≤ PCi(P−i,P′

i) for all probability distributions P′
i over Zi and
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for all i ∈ [n]. In the unsplittable setting the price of anarchy PoA is the worst-case ratio
between the social cost of a mixed Nash equilibrium and that of some social optimum.

3 Results for Unsplittable Traffic

3.1 Unweighted Players: Finite Improvement Property

Milchtaich [19] showed that network congestion games on parallel links with player-
specific latency functions and unweighted players do not possess the finite improvement
property in general. In Theorem 1 we show that we achieve the finite improvement prop-
erty if we restrict to player-specific capacities. In Theorem 2 we give counterexamples
to show that a slight deviation from this model yields a loss of the finite improve-
ment property. For the positive result in Theorem 1 we define for every strategy profile
R = (R1, . . . , Rn) the following potential function:

Φ(R) =
∏

i∈[n]

ai Ri ·
∏
e∈E

δe(R)!

In contrast to all other potential functions we know, Φ does not contain any summation.

Theorem 1. Every network congestion game on parallel links with unweighted players
and player-specific capacities possesses the finite improvement property.

Proof. Consider a selfish step R → R′ of a player i ∈ [n] from edge j ∈ E to
edge k ∈ E, i.e. R = (R1, . . . , Ri−1, j, Ri+1, . . . , Rn) and R′

= (R1, . . . , Ri−1, k,

Ri+1, . . . , Rn). If A denotes the common part of the expressions Φ(R) and Φ(R′
) they

can be written as Φ(R′
) = A · ai k · (δk(R) + 1) and Φ(R) = A · ai j · δj(R). Since

R → R′ is a selfish step we have that PCi(R′
) = ai k · (δk(R) + 1) < ai j · δj(R) =

PCi(R). Thus Φ(R′
) = A · PCi(R′

) < A · PCi(R) = Φ(R). The claim follows since
the number of strategy profiles is finite. ��

Theorem 2. Network congestion games on a graph G with unweighted players and
player-specific latency functions do (in general) not possess

(a) the finite best-reply property if the game has 3 players, linear latency functions, and
G is a parallel links graph.

(b) the finite improvement property if the game has 2 players, player-specific capaci-
ties, and G is a concatenation of 2 parallel link graphs connected in series.

(c) a pure Nash equilibrium if the game has 3 players, player-specific capacities, and
all paths in G are of length at most 2.

3.2 Weighted Players: Finite Improvement Property

For weighted congestion games on parallel links with player-specific capacities Geor-
giou et al. [14] showed that a Nash equilibrium always exists in the case of 3 players.
For arbitrary many players it is an open problem whether such a game still admits a
pure Nash equilibrium or not. Theorem 3 implies that the finite improvement property
can not be used to solve the open problem even if there are only 3 players. We would
like to note that for the case of 2 players we can give a potential function showing that
the finite improvement property is fulfilled.
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Theorem 3. There is a weighted congestion game on parallel links with 3 players and
player-specific capacities that does not possess the finite improvement property.

Proof. The 3 players of the game are of traffic w1 = 1, w2 = 2, and w3 = 79. The
player-specific capacities of the 11 edges are listed in this table (ε1, ε2, ε3 > 0 are small
numbers we will discuss later):

j 1 2 3 4 5 6 7 8 9 10 11

a1j
38

80
−ε3 ∞ 1 3−ε1 (3−ε1)

2 (3−ε1)
3 (3−ε1)

4 (3−ε1)
5 (3−ε1)

6 (3−ε1)
7 (3−ε1)

8

a2j ∞ 1 2
3
−ε1

22

32 −ε1
23

33 −ε1
24

34 −ε1
25

35 −ε1
26

36−ε1
27

37 −ε1
28

38 −ε1 ∞
a3j 1 ∞ 80

79
−ε1 ∞ ∞ ∞ ∞ ∞ ∞ 802

792 · 7981−ε2 ( 80
79
−ε1)

2

Our cycle of selfish steps starts in the initial strategy profile (3, 2, 1). We now perform
8 double-steps (A). A double-step (A) consists of a first step that moves player 2 from
an edge j to the edge k player 1 is assigned to and a second step to an empty edge
l that player 1 does. Both steps of a double-step (A) are selfish iff a2k/a2j < 2

3
and

a1l/a1k < 3. In each step of our 8 double-steps (A) the deviating player moves from
edge t to edge t+1. After the double-steps (A) the strategy profile (11, 10, 1) is reached.
Notice that all 16 steps performed up to now are selfish since ε1 > 0.

The cycle continues with double-steps (B). A double-step (B) starts with a move
of player 1 from edge j to the edge k used by player 3 followed by a step of player
3 to an empty edge l. Observe that (B) is a pair of selfish steps iff a1k/a1j < 1

80
and

a3l/a3k < 80
79

. We conduct 2 double-steps (B): (11,10,1) → (1,10,1) → (1,10,3) →
(3,10,3)→ (3,10,11). These steps are selfish if:

1 · (3 − ε1)
8 > 80 ·

(
38

80
− ε3

)
i.e. ε3 >

38

80
− (3 − ε1)

8

80
and (1)

1 ·
(

38

80
− ε3

)
> 80 · 1 i.e. ε3 <

38

80
− 80. (2)

Starting from the strategy profile (3,10,11) we proceed with a double-step (C) that
moves player 3 to the edge 10 player 2 is assigned to and continues with a step of player
2 to the empty edge 2. This double-step consists of selfish steps iff a3 10/a3 11 < 79

81
and

a2 2/a2 10 < 81
2

. The double-step (C) is selfish if:

79 ·
(

80

79
− ε1

)2

> 81 ·
(

802 · 79
792 · 81 − ε2

)
i.e. ε2 >

802

79 · 81 − 79

81

(
80

79
− ε1

)2

and (3)

81 ·
(

28

38
− ε1

)
> 2 · 1 i.e. ε1 <

28

38
− 2

81
. (4)

The 11 double-steps explained up to now are followed by a final step that moves player
3 back to edge 1: (3,2,10)→ (3,2,1). It is selfish if:

79 ·
(

802

792
· 79

81
− ε2

)
> 79 · 1 i.e. ε2 <

802

79 · 81 − 1. (5)

It is possible to select ε1, ε2, ε3 > 0 fulfilling (1) – (5). Thus the claim follows. ��
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3.3 General Networks and Linear Latency Functions: Price of Anarchy

In this section we study the price of anarchy for weighted congestion games with linear
player-specific latency functions. To prove our upper bound we use similar techniques
as Christodoulou and Koutsoupias [7] and Awerbuch et al. [2]. The proof is also based
on the following technical lemma.

Lemma 1. For all u, v ∈ R+
0 and c ∈ R+ we have v(u + v) ≤ c · u

2
+
(
1 +

1
4c

)
· v

2.

Theorem 4. Let Γ be a weighted network congestion game with player-specific linear
latency functions. Then, PoA ≤ 1

2
· [∆(Γ ) + 2 +

√
∆(Γ )(∆(Γ ) + 4)].

Proof. Let P = (P1, . . . , Pn) be a mixed Nash equilibrium and let Q be a pure strat-
egy profile with optimum social cost. Since P is a Nash equilibrium, player i cannot
improve by switching from strategy Pi to Qi. Thus,

PCi(P) ≤ PCi(P−i, Qi) =
∑
R∈Z

p(R)

 ∑
e∈Qi∩Ri

fie(δe(R)) +
∑

e∈Qi\Ri

fie(δe(R) + wi)


≤
∑
R∈Z

p(R)
∑

e∈Qi

fie(δe(R) + δe(Q)).

It follows that

SC(P) =
∑
R∈Z

p(R)
∑
i∈[n]

wi

∑
e∈Ri

fie(δe(R)) =
∑
i∈[n]

wi · PCi(P)

≤
∑
i∈[n]

∑
R∈Z

p(R)
∑

e∈Qi

wi · fie(δe(R) + δe(Q))

=
∑
R∈Z

p(R)
∑
e∈E

∑
i,Qi
e

wi · [aie(δe(R) + δe(Q)) + bie]

=
∑
R∈Z

p(R)
∑

e∈E,δe(Q)>0,

δe(R)>0

∑
i,Qi
e aiewi

δe(Q)
· δe(Q) · (δe(R) + δe(Q))

+
∑
R∈Z

p(R)
∑

e∈E,δe(Q)>0,

δe(R)=0

δe(Q) ·
∑

i,Qi
e

aiewi +
∑
R∈Z

p(R)
∑
e∈E

∑
i,Qi
e

wibie.

By Lemma 1 we get for c ∈ R+,

SC(P) ≤
∑
R∈Z

p(R)
∑

e∈E,δe(Q)>0,

δe(R)>0

∑
i,Qi
e aiewi

δe(Q)
·
[(

1 +
1

4c

)
· δe(Q)2 + c · δe(R)2

]

+
∑
R∈Z

p(R)
∑

e∈E,δe(Q)>0,

δe(R)=0

δe(Q) ·
∑

i,Qi
e

aiewi +
∑
R∈Z

p(R)
∑
e∈E

∑
i,Qi
e

wibie

≤
(

1 +
1

4c

) ∑
R∈Z

p(R)
∑
e∈E

 ∑
i,Qi
e

aiewi

 δe(Q) +
∑
R∈Z

p(R)
∑
e∈E

∑
i,Qi
e

wi · bie

+ c ·
∑
R∈Z

p(R)
∑

e∈E,δe(Q)>0,

δe(R)>0

∑
i,Qi
e aiewi

δe(Q)
· δe(R)2
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≤
(

1 +
1

4c

)
· SC(Q) + c ·

∑
R∈Z

p(R)
∑

e∈E,δe(Q)>0,

δe(R)>0

∑
i,Qi
e aiewi

δe(Q)
· δe(R)2.

Observe that 1
δe(Q) ·

∑
i,Qi�e aiewi is a weighted average slope of latency functions for

edge e ∈ E. With aie

ake
≤ ∆(Γ ) for all i, k ∈ [n] with aie, ake < ∞ it follows that

1
δe(Q) ·

∑
i,Qi�e aiewi ≤ ∆(Γ ) ·

1
δe(R) ·

∑
i,Ri�e aiewi. We get,

SC(P) ≤
(

1 +
1

4c

)
· SC(Q) + c ·

∑
R∈Z

p(R)
∑

e∈E,δe(Q)>0,

δe(R)>0

∆(Γ ) ·
∑

i,Ri
e aiewi

δe(R)
· δe(R)2

≤
(

1 +
1

4c

)
· SC(Q) + c ·

∑
R∈Z

p(R)
∑
e∈E

∆(Γ ) · δe(R) ·
∑

i,Ri
e

aiewi

≤
(

1 +
1

4c

)
· SC(Q) + c · ∆(Γ ) · SC(P).

Thus choosing c =
−∆(Γ )+

√

∆(Γ )(∆(Γ )+4)
4∆(Γ ) yields

SC(P)

SC(Q)
≤ 4c + 1

4c(1 − c∆(Γ ))
=

∆(Γ ) + 2 +
√

∆(Γ )(∆(Γ ) + 4)

2
.

Since P is an arbitrary (mixed) Nash equilibrium the claim follows. ��

Interestingly, we get with Theorem 4 an upper bound of 1
2 · (3 +

√

5) in the case of
∆(Γ ) = 1 which matches the exact price of anarchy for weighted congestion games [2]
even though our model still allows for player-specific constants bie = bke. We proceed
with a lower bound on the price of anarchy that is asymptotically tight. Variations of
the games used in the proof of the lower bound were also used in some recent papers to
show lower bounds on the price of anarchy in different settings (see e.g. [3,9,11]).

Theorem 5. For each l ∈ N and for each ε > 0 there is a congestion game Γ on
parallel links with unweighted players and player-specific capacities that possesses a
pure Nash equilibrium R such that ∆(Γ ) ≥ l and SC(R)/OPT ≥ (1− ε) ·∆(Γ ).

The construction in the proof of Theorem 5 uses a large number of players. However,
the price of anarchy is unbounded even for 2 player games.

Theorem 6. For every k ≥ 1 there is a weighted congestion game on parallel links
with 2 players and player-specific capacities that possesses a pure Nash equilibrium R
such that SC(R)/OPT > k.

4 Results for Splittable Traffic

4.1 Parallel Links and Player-Specific Capacities:
Existence of and Convergence to a Wardrop Equilibrium

In this section we consider Wardrop games on parallel links with player-specific capac-
ities. For such a game and a strategy profile x define the following function:

Ψ(x) =
∑
i∈[n]

∑
e∈E

xi e · ln(ai e) +
∑
e∈E,

δe(x)>0

δe(x) · ln(δe(x)).
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Note, that eΨ(x) has a similar form as the potential function Φ in Sect. 3. The next
theorem shows that Ψ plays a similar role as the potential function Φ.

Theorem 7. Let Υ be a Wardrop game on parallel links with player-specific capacities.
Moreover let x be a strategy profile for Υ so that there exists a player k ∈ [n], two edges
p, q ∈ E, and someΛ, 0 < Λ ≤ xk p such that: ak p ·(δp(x)− Λ) ≥ ak q ·(δq(x) + Λ) .

Define a new strategy profile y by:

yi j =

{
xk p − Λ if i = k, j = p,
xk q + Λ if i = k, j = q,
xi j otherwise.

Then Ψ(y) < Ψ(x).

We now show that Ψ(x) is minimized iff x is a Wardrop equilibrium.

Theorem 8. Let Υ be a Wardrop game on parallel links with player-specific capaci-
ties. Moreover let y be a strategy profile for Υ . Then the following two conditions are
equivalent:

(a) Ψ(y) = minx∈X Ψ(x),
(b) y is a Wardrop equilibrium.

Proof. (a) ⇒ (b) follows immediately with Theorem 7. It is possible to show (b) ⇒ (a)
with an argumentation based on the Karush-Kuhn-Tucker theorem (see [5]). ��

Since Ψ is a convex function it follows with Theorem 8 that the ellipsoid method of
Khachyan [16] can be used to compute a Wardrop equilibrium in time polynomial in
the size of the instance and the number of bits of precision required.

4.2 Does There Exist a Convex Potential Function for a More General Setting?

If a game can be described by a convex potential function then the set of Nash equilib-
ria forms a convex set. In this section we show that no such convex function exists for
general graphs with player-specific capacities (Theorem 9) whereas the existence re-
mains an open problem for parallel links with strictly increasing player-specific latency
functions (Theorem 10).

Theorem 9. There is a Wardrop game Υ with player-specific capacities that possesses
two Wardrop equilibria x and y where

(a) δj(x) = δj(y) for an edge j ∈ E and SC(x) = SC(y),
(b) the set of Wardrop equilibria for Υ does not form a convex set.

Theorem 10. Let Υ be a Wardrop game on parallel links with strictly increasing player-
specific latency functions. Let x and y be Wardrop equilibria for Υ . Then,

(a) δj(x) = δj(y) for all j ∈ E and SC(x) = SC(y),
(b) the set of Wardrop equilibria for Υ forms a convex set.
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4.3 General Networks and Player-Specific Latency Functions:
Existence of Wardrop Equilibria

Each Wardrop game possesses a Wardrop equilibrium (see [4]). It is possible to use
Brouwer’s fixed point theorem to prove the existence of equilibria for our more general
class of games.

Theorem 11. Every Wardrop game Υ with strictly increasing player-specific latency
functions possesses a Wardrop equilibrium.

4.4 General Networks and Linear Latency Functions: Price of Anarchy

In this section we give bounds on the price of anarchy. The proof of the upper bound
uses the same technique as the proof of Theorem 4.

Theorem 12. Let Υ be a Wardrop game with player-specific linear latency functions.
Then,

PoA ≤

{ 4
4−∆(Υ ) if ∆(Υ ) ≤ 2,

∆(Υ ) otherwise.

Theorem 13. For each n ∈ N there is a Wardrop game Υ on 2 parallel links with n

unweighted players and player-specific capacities that possesses a Wardrop equilibrium
x such that ∆(Υ ) = n

2 and SC(x)/OPT ≥

1
4 ·
√
∆(Υ ).

For the Wardrop model with linear latency functions, Roughgarden and Tardos [25]
showed that the price of anarchy is exactly 4

3 . Theorem 12 with ∆(Υ ) = 1 implies
that the price of anarchy does not change even if the linear latency functions of the
players have player-specific constants bie = bke. Although our upper bound is tight for
∆(Υ ) = 1 there is for large ∆(Υ ) still a gap between the upper bound of ∆(Υ ) and the
lower bound.
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Abstract. A recent sequence of results established that computing Nash equi-
libria in normal form games is a PPAD-complete problem even in the case of
two players [11,6,4]. By extending these techniques we prove a general theorem,
showing that, for a far more general class of families of succinctly representable
multiplayer games, the Nash equilibrium problem can also be reduced to the two-
player case. In view of empirically successful algorithms available for this prob-
lem, this is in essence a positive result — even though, due to the complexity of
the reductions, it is of no immediate practical significance. We further extend this
conclusion to extensive form games and network congestion games, two classes
which do not fall into the same succinct representation framework, and for which
no positive algorithmic result had been known.

1 Introduction

Nash proved in 1951 that every game has a mixed Nash equilibrium [15]. However, the
complexity of the computational problem of finding such an equilibrium had remained
open for more than half century, attacked with increased intensity over the past decades.
This question was resolved recently, when it was established that the problem is PPAD-
complete [6] (the appropriate complexity level, defined in [18]) and thus presumably
intractable, for the case of 4 players; this was subsequently improved to three players
[5,3] and, most remarkably, two players [4].

In particular, the combined results of [11,6,4] establish that the general Nash equi-
librium problem for normal form games (the standard and most explicit representation)
and for graphical agames (an important succinct representation, see the next paragraph)
can all be reduced to 2-player games. 2-player games in turn can be solved by several
techniques such as the Lemke-Howson algorithm [14,20], a simplex-like technique that
is known empirically to behave well even though exponential counterexamples do exist
[19]. In this paper we extend these results to essentially all known kinds of succinct
representations of games, as well as to more sophisticated concepts of equilibrium.

Besides this significant increase in our understanding of complexity issues, compu-
tational considerations also led to much interest in succinct representations of games.
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Computer scientists became interested in games because they help model networks and
auctions; thus we should mainly focus on games with many players. However, multi-
player games in normal form require in order to be described an amount of data that is
exponential in the number of players. When the number of players is large, the resulting
computational problems are hardly legitimate, and complexity issues are hopelessly dis-
torted. This has led the community to consider broad classes of succinctly representable
games, some of which had been studied by traditional game theory for decades, while
others (like the graphical games [13]) were invented by computer scientists spurred by
the motivations outline above. (We formally define succinct games in the next section,
but also deal in this paper with two cases, network congestion games and extensive form
games, that do not fit within this definition).

The first general positive algorithmic result for succinct games was obtained only
recently [17]: a polynomial-time algorithm for finding a correlated equilibrium (an im-
portant generalization of the Nash equilibrium due to Aumann [1]). The main result in
[17] states that a family of succinct games has a polynomial-time algorithm for corre-
lated equilibria provided that there is a polynomial time oracle which, given a strategy
profile, computes the expected utility of each player.

In this paper, using completely different techniques inspired from [11], we show a
general result (Theorem 2) that is remarkably parallel to that of [17]: The Nash equilib-
rium problem of a family of succinct games can be reduced to the 2-player case provided
that a (slightly constrained) polynomial-length straight-line arithmetic program exists
which computes, again, the expected utility of a given strategy profile (notice the ex-
tra algebraic requirement here, necessitated by the algebraic nature of our techniques).
We proceed to point out that for all major known families of succinct games such a
straight-line program exists (Corollary 1).

We also extend these techniques to two other game classes, Network congestion
games [7] and extensive form games, which do not fit into our succinctness framework,
because the number of strategies is exponential in the input, and for which the result of
[17] does not apply, Theorems 3 and 4, respectively).

2 Definitions and Background

In a game in normal form we have r ≥ 2 players (and for each player p ≤ r a finite set
Sp of pure strategies. We denote the Cartesian product of the Sp’s by S (the set of pure
strategy profiles) and the Cartesian product of the pure strategy sets of players other
than p by S−p. Finally, for each p ≤ r and s ∈ S we have a payoff ups .

A mixed strategy for player p is a distribution on Sp, that is, |Sp| nonnegative real
numbers adding to 1. Call a set of r mixed strategies xpj , p = 1, . . . , r, j ∈ Sp a Nash
equilibrium if, for each p, its expected payoff,

∑
s∈S u

p
s

∏r
q=1 x

q
sq

is maximized over
all mixed strategies of p. That is, a Nash equilibrium is a set of mixed strategies from
which no player has an incentive to deviate. For s ∈ S−p, let xs =

∏
q �=p x

q
sq

. It is
well-known (see, e.g., [16]) that the following is an equivalent condition for a set of
mixed strategies to be a Nash equilibrium:

∀p, j

∑
s∈S−p

u
p
jsxs >

∑
s∈S−p

u
p
j′sxs =⇒ x

p
j′ = 0. (1)
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Also, a set of mixed strategies is an ε-Nash equilibrium for some ε > 0 if the following
holds: ∑

s∈S−p

u
p
jsxs >

∑
s∈S−p

u
p
j′sxs + ε =⇒ x

p
j′ = 0. (2)

We next define the complexity class PPAD. An FNP search problem P is a set of
inputs IP ⊆ Σ

∗ such that for each x ∈ IP there is an associated set of solutions
Px ⊆ Σ

|x|k for some integer k, such that for each x ∈ IP and y ∈ Σ
|x|k whether

y ∈ Px is decidable in polynomial time (notice that this is precisely NP with an added
emphasis on finding a witness). For example, r-NASH is the search problemP in which
each x ∈ IP is an r-player game in normal form together with a binary integer A (the
accuracy specification), and Px is the set of 1

A -Nash equilibria of the game.
A search problem is total if Px = ∅ for all x ∈ IP . For example, Nash’s 1951

theorem [15] implies that r-NASH is total. The set of all total FNP search problems is
denoted TFNP. TFNP seems to have no generic complete problem, and so we study its
subclasses: PLS [12], PPP, PPA and PPAD [18]. In particular, PPAD is the class of all
total search problems reducible to the following:

END OF THE LINE: Given two circuits S and P with n input bits and n output bits,
such that P (0

n
) = 0

n
= S(0

n
), find an input x ∈ {0, 1}

n such that P (S(x)) = x or
S(P (x)) = x = 0

n.
Intuitively, END OF THE LINE creates a directed graph with vertex set {0, 1}n and

an edge from x to y whenever P (y) = x and S(x) = y (S and P stand for “successor
candidate” and “predecessor candidate”). This graph has indegree and outdegree at most
one, and at least one source, namely 0

n, so it must have a sink. We seek either a sink,
or a source other than 0

n. Thus, PPAD is the class of all total functions whose totality
is proven via the simple combinatorial argument outlined above.

A polynomially computable function f is a polynomial-time reduction from total
search problem P to total search problem Q if, for every input x of P , f(x) is an input
ofQ, and furthermore there is another polynomially computable function g such that for
every y ∈ Qf(x), g(y) ∈ Px. A search problem P in PPAD is called PPAD-complete
if all problems in PPAD reduce to it. Obviously, END OF THE LINE is PPAD-complete;
we now know that 2-NASH is PPAD-complete [6,4].

In this paper we are interested in succinct games. A succinct game [17]G = (I, T, U)

is a set of inputs I ∈ P, and two polynomial algorithms T and U . For each z ∈ I , T (z)

returns a type, that is, the number of players r ≤ |z| and an r-tuple (t1, . . . , tr) where
|Sp| = tp. We say that G is of polynomial type if all tp’s are bounded by a polyno-
mial in |z|. In this paper we are interested in games of both polynomial (Section 3) and
non-polynomial type (Sections 5 and 4). Finally, for any r-tuple of positive integers
s = (s1, . . . , sr), where sp ≤ tp, and p ≤ r, U(z, p, s) returns an integer standing for
the utility ups . The game in normal form thus encoded by z ∈ I is denoted by G(z).

Examples of succinct games (due to space constraints we omit the formal definitions,
see [17] for more details) are:

– graphical games [13], where players are nodes on a graph, and the utility of a player
depends only on the strategies of the players in its neighborhood.
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– congestion games [7], where strategies are sets of resources, and the utility of a
player is the sum of the delays of the resources in the set it chose, where the delay
is a resource-specific function of the number of players who chose this resource.

– network congestion games, where the strategies of each player are given implicitly
as paths from a source to a sink in a graph; since the number of strategies is poten-
tially exponential, this representation is not of polynomial type; we treat network
congestion games in Section 4.

– multimatrix games where each player plays a different 2-person game with each
other player, and the utilities are added.

– semi-anonymous games (a generalization of symmetric games not considered in
[17]) in which all players have the same set of strategies, and each player has a
utility function that depends solely on the number of other players who choose
each strategy (and not the identities of these players).

– several other classes such as local effect games, scheduling games, hypergraphical
games, network design games, facility location games, etc., as catalogued in [17].

Our main result, shown in the next section, implies that the problem finding a Nash
equilibrium in all of these classes of games can be reduced to 2-player games (equiva-
lently, belongs to the class PPAD).

Lastly, we define a bounded (division-free) straight-line program to be an arithmetic
binary circuit with nodes performing addition, subtraction, or multiplication on their
inputs, or evaluating to pre-set constants, with the additional constraint that the values
of all the nodes remain in [0, 1]. This restriction is not severe, as it can be shown that
an arithmetic circuit of size n with intermediate nodes bounded in absolute value by
2
poly(n) can be transformed in polynomial time to fit the above constraint (with the

output scaled down by a factor dependent only on the bound).

3 The Main Result

Given a succinct game, the following problem, called EXPECTED UTILITY, is of inter-
est: Given a mixed strategy profile x1

, . . . , x
r, compute the expected utility of player p.

Notice that the result sought is a polynomial in the input variables. It was shown in [17]
that a polynomial-time algorithm for EXPECTED UTILITY (for succinct games of poly-
nomial type) implies a polynomial-time algorithm for computing correlated equilibria
for the succinct game. Here we show a result of a similar flavor.

3.1 Mapping Succinct Games to Graphical Games

Theorem 1. If for a succinct game G of polynomial type there is a bounded division-
free straight-line program of polynomial length for computing EXPECTED UTILITY,
then G can be mapped in polynomial time to a graphical game G so that there is a
polynomially computable surjective mapping from the set of Nash equilibria of G to the
set of Nash equilibria of G.

Proof. Let G be a succinct game for which there is a bounded straight-line program
for computing EXPECTED UTILITY. In time polynomial in |G|, we will construct a
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graphical game G so that the statement of the theorem holds. Suppose that G has r
players, 1, . . . , r, with strategy sets Sp = {1, . . . , tp}, ∀p ≤ r. The players of game
G, which we shall call nodes in the following discussion to distinguish them from the
players of G, will have two strategies each, strategy 0 and strategy 1. We will interpret
the probability with which a node x of G chooses strategy 1 as a real number in [0, 1],
which we will denote, for convenience, by the same symbol x that we use for the node.

Below we describe the nodes of G as well as the role of every node in the construc-
tion. We will describe G as a directed network with vertices representing the nodes
(players) of G and directed edges denoting directed flow of information as in [11,6].

1. For every player p = 1, . . . , r of G and for every pure strategy j ∈ Sp, game G has
a node xpj . Value xpj should be interpreted as the probability with which player p
plays strategy j; in fact, we will establish later that, given a Nash equilibrium of G,
this interpretation yields a Nash equilibrium of G. As we will see in Item 4 below,
our construction will ensure that, at any Nash equilibrium,

∑tp
j=1 x

p
j = 1, ∀p ≤ r.

Therefore, it is legitimate to interpret the set of values {xpj}j as a mixed strategy
for player p in G.

2. For every player p = 1, . . . , r of G and for every pure strategy j ∈ Sp, game G has
nodes Up

j and Up
≤j . The construction of G will ensure that, at a Nash equilibrium,

value Up
j equals the utility of player p for playing pure strategy j if every other

player q = p plays the mixed strategy specified by the distribution {xqj}j . Also, the
construction will ensure that Up

≤j = maxj′≤j U
p
j′ . Without loss of generality, we

assume that all utilities in G are scaled down to lie in [0, 1].
3. For every node of type Up

j there is a set of nodes in G that simulate the intermediate
variables used by the straight-line program computing the expected utility of player
p for playing pure strategy j when the other players play according to the mixed
strategies specified by {{xqj}j}q �=p. This is possible due to our constraint on the
straight-line program.

4. For every player p of G, there is a set of nodes Ψp defining a component Gp of G
whose purpose is to guarantee the following at any Nash equilibrium of G:
(a)
∑tp

j=1 x
p
j = 1

(b) U
p
j > U

p
j′ =⇒ x

p
j′ = 0

The structure and the functionality of Gp are described in section 3 of [11], so its
details will be omitted here. Note that the nodes of set Ψp interact only with the
nodes {Up

j }j , {U
p
≤j}j and {xpj}j . The nodes of types Up

j and Up
≤j are not affected

by the nodes in Ψp and should be interpreted as “input” to Gp, whereas the nodes of
type xpj are only affected by Gp and not by the rest of the game and are the “output”
of Gp. The construction of Gp ensures that they satisfy Properties 4a and 4b.

Having borrowed the construction of the components Gp, p ≤ r, from [11], the only
components of G that remain to be specified are those that compute expected utilities.
With the bound on intermediate variable values, the construction of these components
can be easily done using the games G=, Gζ , G+, G−, G∗ for assignment, assignment of
a constant ζ, addition, subtraction and multiplication that were defined in [11]. Finally,
the components of G that give values to nodes of type Up

≤j can be easily constructed
using gamesGmax from [11]. It remains to argue that, given a Nash equilibrium of G, we
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can find in polynomial time a Nash equilibrium of G and moreover that this mapping is
onto. The first claim follows from the following lemma and the second is easy to verify.

Lemma 1. At a Nash equilibrium of game G, values {{xpj}j}p constitute a Nash equi-
librium of game G.

Proof. From the correctness of games Gp, p ≤ r, it follows that, at any Nash equilib-
rium of game G,

∑tp
j=1 x

p
j = 1, ∀p. Moreover, from the correctness of games G=, Gζ ,

G+, G−, G∗, it follows that, at any Nash equilibrium of game G, Up
j will be equal to

the utility of player p for playing pure strategy j when every other player q = p plays
as specified by the values {xqj}j . From the correctness of Gmax it follows that, at any
Nash equilibrium of game G, Up

≤j = maxj′≤j U
p
j′ , ∀p, j. Finally, from the correctness

of games Gp, p ≤ r, it follows that, at any Nash equilibrium of game G, for every p ≤ r

and for every j, j′ ∈ Sp, j = j
′: Up

j > U
p
j′ =⇒ x

p
j′ = 0. By combining the above it

follows that {{xpj}j}p constitute a Nash equilibrium of game G. �

3.2 Succinct Games in PPAD

We now explore how the mapping described in Theorem 1 can be used in deriving
complexity results for the problem of computing a Nash equilibrium in succinct games.

Theorem 2. If for a succinct game G of polynomial type there is a bounded division-
free straight-line program of polynomial length for computing EXPECTED UTILITY,
then the problem of computing a Nash equilibrium in the succinct game polynomially
reduces to the problem of computing a Nash equilibrium of a 2-player game.

Proof. We will describe a reduction from the problem of computing a Nash equilib-
rium in a succinct game to the problem of computing a Nash equilibrium in a graphical
game. This is sufficient since the latter can be reduced to the problem of computing a
Nash equilibrium in a 2-player game [6,4]. Note that the reduction sought does not fol-
low trivially from Theorem 1; the mapping there makes sure that the exact equilibrium
points of the graphical game can be efficiently mapped to exact equilibrium points of
the succinct game. Here we seek something stronger; we want every approximate Nash
equilibrium of the former to be efficiently mapped to an approximate Nash equilibrium
of the latter. This requirement turns out to be more delicate than the previous one.

Formally, let G be a succinct game for which there is a straight line program for
computing EXPECTED UTILITY and let ε be an accuracy specification. Suppose that G
has r players, 1, . . . , r, with strategy sets Sp = {1, . . . , tp}, ∀p ≤ r. In time polynomial
in |G|+ |1/ε|, we will specify a graphical game G and an accuracy ε′ with the property
that, given an ε′-Nash equilibrium of G, one can recover in polynomial time an ε-Nash
equilibrium of G. In our reduction, the graphical game G will be the same as the one
described in the proof of Theorem 1, while the accuracy specification will be of the
form ε

′
= ε/2

p(n), where p(n) is a polynomial in n = |G| that will be be specified
later. Using the same notation for the nodes of game G as we did in Theorem 1, let us
consider if the equivalent of Lemma 1 holds for approximate Nash equilibria.

Observation 1. For any ε′ > 0, there exist ε′-Nash equilibria of game G in which the
values {{xpj}j}p do not constitute an ε-Nash equilibrium of game G.
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Proof. A careful analysis of the mechanics of gadgets Gp, p ≤ r, shows that prop-
erty (2) which is the defining property of an approximate Nash equilibrium is not
guaranteed to hold. In fact, there are ε

′-equilibria of G in which
∑

s∈S−p
u
p
jsxs >∑

s∈S−p
u
p
j′sxs + ε

′ for some p ≤ r, j and j′, and, yet, xpj′ is any value in [0, tp · ε
′
].

The details are omitted. �

Moreover, the values {xpj}j do not necessarily constitute a distribution as specified by
the following observation.

Observation 2. For any ε′ > 0, for any p ≤ r, at an ε′-Nash equilibrium of game G,∑
j x

p
j is not necessarily equal to 1.

Proof. Again by carefully analyzing the behavior of gadgets Gp, p ≤ r, at an ε′-Nash
equilibrium of game G, it can be shown that there are equilibria in which

∑
j x

p
j can be

any value in 1± 2tpε
′. The details are omitted. �

Therefore, the extraction of an ε-Nash equilibrium of game G from an ε′-Nash equilib-
rium of game G cannot be done by just interpreting the values {xpj} as the probability
distribution of player p. What we show next is that, for the right choice of ε′, a trim
and renormalize strategy succeeds in deriving an ε-Nash equilibrium of game G from
an ε

′-Nash equilibrium of game G. For any p ≤ r, suppose that {x̂pj}j are the values
derived from {x

p
j}j as follows: make all values smaller than tpε

′ equal to zero (trim)
and renormalize the resulting values so that

∑
j x̂

p
j = 1. The argument will rely on the

tightness of the bounds mentioned above, also obtained from the gadgets’ properties:

Observation 3. In an ε
′-Nash equilibrium of game G, |

∑
j x

p
j − 1| ≤ 2tpε

′, and, if∑
s∈S−p

u
p
jsxs >

∑
s∈S−p

u
p
j′sxs + ε

′, then xpj′ ∈ [0, tp · ε
′
].

Lemma 2. There exists a polynomial p(n) such that, if ε′ = ε/2
p(n), then, at an ε

′-
Nash equilibrium of game G, the values {{x̂pj}j}p constitute an ε-Nash equilibrium of
game G.

Proof. We will denote by Upj (·) the function defined by the straight-line program that
computes the utility of player p for choosing pure strategy j. We need to compare
the values Upj (x̂) with the values of the nodes Up

j of the graphical game G at an ε
′-

Nash equilibrium. For convenience, let Ûp
j � U

p
j (x̂) be the expected utility of player p

for playing pure strategy j when the other players play according to {{x̂qj}j}q �=p. Our
ultimate goal is to show that, at an ε′-Nash equilibrium of game G, for all p ≤ r, j ≤ tp

Û
p
j > Û

p
j′ + ε =⇒ x̂

p
j′ = 0 (3)

Let us take c(n) to be the polynomial bound on 2tp. Using Observation 3, we get that,
for all p, j,

x̂
p
j (1− c(n)ε

′
) ≤ x

p
j ≤ max{c(n)ε

′
, x̂

p
j (1 + c(n)ε

′
)}

⇒ x̂
p
j − c(n)ε

′
≤ x

p
j ≤ x̂

p
j + c(n)ε

′ (4)
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To carry on the analysis, note that, although Ûp
j is the output of function Upj (·) on input

{x̂
p
j}j,p,Up

j is not the correct output ofUpj (·) on input {xpj}j,p. This is, because, at an ε′-
Nash equilibrium of game G, the games that simulate the gates of the arithmetic circuit
introduce an additive error of absolute value up to ε

′ per operation. So, to compare
U
p
j with Ûp

j , we shall compare the “erroneous” evaluation of the arithmetical circuit on
input {xpj}j,p carried inside G against the ideal evaluation of the circuit on input {x̂pj}j,p.
Let us assign a nonnegative “level” to every wire of the arithmetical circuit in the natural
way: the wires to which the input is provided are at level 0 and a wire out of a gate is
at level one plus the maximum level of the gate’s input wires. Since the arithmetical
circuits that compute expected utilities are assumed to be of polynomial length the
maximum level that a wire can be assigned to is q(n), q(·) being some polynomial. The
“erroneous” and the “ideal” evaluations of the circuit on inputs {xpj}j,p and {x̂pj}j,p
respectively satisfy the following property which can be shown by induction:

Lemma 3. Let v, v̂ be the values of a wire at level i of the circuit in the erroneous and
the ideal evaluation respectively. Then

v̂ − g(i)ε
′
≤ v ≤ v̂ + g(i)ε

′

where g(i) = 3
i
· (c(n) +

1
2 )−

1
2 .

By this lemma, the outputs of the two evaluations will satisfy

Û
p
j − (2

q(n)
· (c(n) + 1)− 1)ε

′
≤ U

p
j ≤ Û

p
j + (2

q(n)
· (c(n) + 1)− 1)ε

′

Thus, setting ε′ =
ε

8c(n)3q(n) yields |Up
j −Û

p
j | ≤ ε/4. After applying the same argument

to U
p
j′ and Û

p
j′ , we have that Ûp

j > Û
p
j′ + ε implies Up

j + ε/4 ≥ Û
p
j > Û

p
j′ + ε ≥

U
p
j′ + 3ε/4, and thus Up

j > U
p
j′ + ε/2 > U

p
j′ + ε

′. Then, from Observation 3, it follows
that xpj′ < tpε

′ and, from the definition of our trimming process, that x̂pj′ = 0. So (3) is
satisfied, therefore making {{x̂pj}j}p an ε-Nash equilibrium. �

In Section 3.4 we point out that the EXPECTED UTILITY problem in typical succinct
games of polynomial type is very hard. However, in all well known succinct games in
the literature, it turns out that there is a straight-line program of polynomial length that
computes EXPECTED UTILITY:

Corollary 1. The problem of computing a Nash equilibrium in the following families of
succinct games can be polynomially reduced to the same problem for 2-player games:
graphical games, congestion games, multimatrix games, semi-anonymous games, local
effect games, scheduling games, hypergraphical games, network design games, and
facility location games.

Proof. It turns out that, for all these families, there is indeed a straight-line program as
specified in Theorem 2. For graphical games, for example, the program computes ex-
plicitly the utility expectation of a player with respect to its neighbors; the other mixed
strategies do not matter. For multimatrix games, the program computes one quadratic
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form per constituent game, and adds the expectations (by linearity). For hypergraph-
ical games, the program combines the previous two ideas. For the remaining kinds,
the program combines results of several instances of the following problem (and pos-
sibly the two previous ideas, linearity of expectation and explicit expectation calcula-
tion): Given n Bernoulli variables x1, . . . , xn with Pr[xi = 1] = pi, calculate qj =

Pr[
∑n

i=1 xi = j] for j = 0, . . . , n. This can be done by dynamic programming, letting
q
k
j = Pr[

∑k
i=1 xi = j] (and omitting initializations): qkj+1 = (1 − pi)q

k−1
j + piq

k−1
j−1 ,

obviously a polynomial division-free straight-line program. �

3.3 An Alternative Proof

We had been looking for some time for an alternative proof of this result, not rely-
ing on the machinery of [11]. This proof would start by reducing the Nash equilib-
rium problem to Brouwer by the reduction of [10]. The Brouwer function in [10] maps
each mixed strategy profile x = (x1, . . . , xn) to another (y1, . . . , yn), where yi =

argmax (E(x−i,yi)[Ui]− ||yi − xi||
2
). That is, yi optimizes a trade-off between utility

and distance from xi. It should be possible, by symbolic differentiation of the straight-
line program, to approximate this optimum and thus the Brouwer function. There are,
though, difficulties in proceeding, because the next step (reduction to Sperner’s Lemma)
seems to require precision incompatible with guarantees obtained this way.

3.4 Intractability

Let us briefly explore the limits of the upper bound in this section.

Proposition 1. There are succinct games of polynomial type for which EXPECTED

UTILITY is #P-hard.

Proof. Consider the case in which each player has two strategies, true and false,
and the utility of player 1 is 1 if the chosen strategies satisfy a given Boolean formula.
Then the expected utility, when all players play each strategy with probability 1

2 is the
number of satisfying truth assignments divided by 2

n, a #P-hard problem. �

Thus, the sufficient condition of our Theorem is nontrivial, and there are games of
polynomial type that do not satisfy it. Are there games of polynomial type for which
computing Nash equilibria is intractable beyond PPAD? This is an important open
question. Naturally, computing a Nash equilibrium of a general succinct game is EXP-
hard (recall that it is so even for 2-person zero-sum games [8,9], and the nonzero version
can be easily seen to be complete for the exponential counterpart of PPAD).

Finally, it is interesting to ask whether our sufficient condition (polynomial com-
putability of EXPECTED UTILITY by a bounded division-free straight-line program) is
strictly weaker than the condition in [17] for correlated equilibria (polynomial com-
putability of EXPECTED UTILITY by Turing machines). It turns out1 that it is, unless
⊕P is in nonuniform polynomial time [2]. Determining the precise complexity nature
of this condition is another interesting open problem.

1 Many thanks to Peter Bürgisser for pointing this out to us.
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4 Network Congestion Games

A network congestion game [7] is specified by a network with delay functions, that is,
a directed graph (V,E) with a pair of nodes (ap, bp) for each player p, and also, for
each edge e ∈ E, a delay function de mapping [n] to the positive integers; for each
possible number of players “using” edge e, de assigns a delay. The set of strategies for
player p is the set of all paths from ap to bp. Finally, the payoffs are determined as
follows: If s = (s1, . . . , sn) is a pure strategy profile, define ce(s) = |{p : e ∈ sp}|

(here we consider paths as sets of edges); then the utility of player p under s is simply
−

∑
e∈sp

de(ce(s)), the negation of the total delay on the edges in p’s strategy. It was
shown in [7] that a pure Nash equilibrium of a network congestion game (known to
always exist) can be found in polynomial time when the game is symmetric (ap = a1
and bp = b1 for all p), and PLS-complete in the general case. There is no known
polynomial-time algorithm for finding Nash equilibria (or any kind of equilibria, such
as correlated [17]) in general network congestion games. We prove:

Theorem 3. The problem of computing a Nash equilibrium of a network congestion
game polynomially reduces to the problem of computing a Nash equilibrium of a 2-
player game.

Proof. (Sketch.) We will map a network congestion game to a graphical game G. To
finish the proof one needs to use techniques parallel to Section 3.2. To simulate network
congestion games by graphical games we use a nonstandard representation of mixed
strategy: We consider a mixed strategy for player p to be a unit flow from ap to bp, that
is, an assignment of nonnegative values fp(e) to the edges of the network such that all
nodes are balanced except for ap who has a deficit of 1 and bp who has a gain of 1.
Intuitively, fp(e) corresponds to the sum of the probabilities of all paths that use e.

It turns out that such flow can be set up in the simulating graphical game by a gadget
similar to the one that sets up the mixed strategy of each player. In particular, for every
player p and for every edge e of the network there will be a player in the graphical game
whose value will represent fp(e). Moreover, for every node v = ap, bp of the network,
there will be a player Spv in the graphical game whose value will be equal to the sum of
the flows of player p on the edges entering node v; there will also be a gadget Gpv similar
to the one used in proof of Theorem 1, whose purpose will be to distribute the flow of
player p entering v, i.e. value Spv , to the edges leaving node v, therefore guaranteeing
that Kirchhoff’s first law holds. The distribution of the value Spv on the edges leaving
v will be determined by finding the net delays between their endpoints and node bp as
specified by the next paragraphs. Finally, note that the gadgets for nodes ap and bp are
similar but will inject a gain of 1 at ap and a deficit of 1 at bp. Some scaling will be
needed to make sure that all computed values are in [0, 1].

The rest of the construction is based on the following Lemma, whose simple proof
we omit. Fix a player p and a set of unit flows fq for the other players. These induce an
expected delay on each edge e, E[de(ce(k))] where k is 1 (for player p) plus the sum of
n− 1 variables that are 1 with probability fq(e) and else 0. Call this quantity Dp(e).

Lemma 4. A set of unit flows fp(e), p = 1, . . . , n is an ε-Nash equilibrium if and only
if fp(e) > 0 implies that e lies on a path whose length (defined as net delay under Dp),
is at most ε above the length of the shortest path from ap to bp.
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We shall show that these conditions can be calculated by a straight-line program in
polynomial time; this implies the Theorem. This is done as follows: First we compute
the distances Dp(e) for all edges and players by dynamic programming, as in the proof
of Corollary 1. Then, for each player p and edge (u, v) we calculate the shortest path
distances, underDp, (a) from ap to bp; (b) from ap to u and (c) from v to bp. This is done
by the Bellman-Ford algorithm, which is a straight line program with the additional use
of the min operator (see [11] for gadget). The condition then requires that the sum of
the latter two and Dp(u, v) be at most the former plus ε. This completes the proof. �

5 Extensive form Games

An r-player extensive form game (see, e.g., [16]) is represented by a game tree with
each non-leaf vertex v assigned to a player p(v), who “plays” by choosing one of the
outgoing labeled edges, and with a vector of payoffs upx at each leaf x (let X be the
set of leaves). All edges have labels, with the constraint that l(v, v′) = l(v, v

′′
). The

vertex set is partitioned into information sets I ∈ I, with all v ∈ I owned by the same
player p(I), and having identical sets of outgoing edge labels LI . We also define Ip =

{I ∈ I|p(I) = p}. Information sets represent a player’s knowledge of the game state.
A behavioral strategy σp for player p is an assignment of distributions {σp,Ij }j∈LI over
the outgoing edge labels of each I ∈ Ip. A behavioral strategy profile σ = (σ

1
, . . . , σ

r
)

induces a distribution over the leaves of the game tree, and hence expected utilities. A
behavioral Nash equilibrium is the natural equivalent of the normal form’s mixed Nash
equilibrium: a σ such that no player p can change σp and increase his expected payoff.

Theorem 4. The problem of computing a behavioral Nash equilibrium (and, in fact,
a subgame perfect equilibrium [16]) in an extensive form game Γ is polynomially re-
ducible to computing a mixed Nash equilibrium in a 2-player normal form game.

Proof. (Sketch.) As in Section 4, we will map an extensive form congestion game to a
graphical game, and omit the rest of the argument, which is also akin to Section 3.2. The
graphical game construction is similar to that in Section 3.1. Using nodes with strategy
sets {0, 1},

1. For every information set I with p(I) = p and an outgoing edge label j ∈ LI ,
make a node σp,Ij , to represent the probability of picking j.

2. For every information set I and every j ∈ LI make a node UIj ; the value of UIj will
represent the utility of player p(I) resulting from the optimal choice of distributions
player p(I) can make in the part of the tree below information set I given that the
player arrived at information set I and chose j and assuming that the other players
play as prescribed by the values {σq,I

′
j }q=p(I′) �=p; the weighting of the vertices of

I when computing UIj is defined by the probabilities of the other players on the
edges that connect I to the closest information set of p(I) above I . Let UI be the
maximum over UIj . Assuming the values UI

′
for the information sets I ′ below I

are computed, value UIj can be found by arithmetic operations.
3. Finally, for every information set, take a gadget GI similar to Gp above that guaran-

tees that (i)
∑

j∈LI
σ
p(I),I
j = 1, and (ii) UIj > U

I
j′ =⇒ σ

p(I),I
j′ = 0.
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Further details are omitted. The construction works by arguments parallel to the proof
of Theorem 1. �
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Abstract. We study network and congestion games with atomic play-
ers that can split their flow. This type of games readily applies to com-
petition among freight companies, telecommunication network service
providers, intelligent transportation systems and manufacturing with
flexible machines. We analyze the worst-case inefficiency of Nash equi-
libria in those games and conclude that although self-interested agents
will not in general achieve a fully efficient solution, the loss is not too
large. We show how to compute several bounds for the worst-case inef-
ficiency, which depend on the characteristics of cost functions and the
market structure in the game. In addition, we show examples in which
market aggregation can adversely impact the aggregated competitors,
even though their market power increases. When the market structure
is simple enough, this counter-intuitive phenomenon does not arise.

1 Introduction

In this paper, we study network games with atomic players that can split flow

among multiple routes. This type of games readily applies to competition among

freight companies, telecommunication network service providers, intelligent

transportation systems and, by considering the generalization to congestion

games, it also applies to manufacturing with flexible machines. This class of

network games was first discussed by [17]. More recently, [25, 24, 8] considered

a similar model from the perspective of the price of anarchy, which is the frame-

work of this paper.

Consider a directed network G = (V,A) and players that wish to route flow

between origin-destination (OD) pairs. We denote the set of all players by [K] =

{1, . . . ,K}. Each player k ∈ [K] has to choose a flow x
k
∈ IR

A
+ that routes dk

units of flow from sk to tk. Note that players can divide their flows among many

paths. We refer collectively to the flows for all players by �x := (x
1
, . . . , x

K
). In

addition, to simplify notation we henceforth let x :=
∑

k∈[K] x
k

be the aggregate

flow induced by all K players.

As arcs are subject to adverse congestion effects, we associate a cost function

ca(·) : IR+ → IR+ to every arc. These functions map the total flow on the arc xa

to its per-unit cost ca(xa). Cost functions are assumed nondecreasing, differen-

tiable and convex although for some of our results the convexity assumption can

M. Bugliesi et al. (Eds.): ICALP 2006, Part I, LNCS 4051, pp. 525–536, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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be slightly relaxed. In addition, we only consider separable cost functions, i.e., the

cost in one arc only depends on the flow in the same arc. The goal of each com-

petitor is to send its demand minimizing its total cost C
k
(�x) :=

∑
a∈A x

k
aca(xa).

To understand the dependence between the inefficiency of equilibria and the cost

functions, we let C be an arbitrary but fixed set that contains the allowable cost

functions. Typical choices include polynomials of degree at most r with r fixed,

and the delay functions of M/M/1 queues.

A strategy distribution �x is a Nash equilibrium when no player has an incentive

to unilaterally change her strategy. In other words, the best reply strategy for

player k is the flow x
k

that solves the following optimization problem in which

flows x
i
are fixed for i = k. For ease of notation, we introduce a reverse arc with

zero cost between t
k

and s
k
.

(NE
k
) min C

k
(�x)∑

(u,v)∈A
x
k
(u,v) −

∑
(v,w)∈A

x
k
(v,w) =0 for all v ∈ V

x
k
(tk,sk) =dk

x
k
a ≥0 for all a ∈ A.

Note that our assumptions guarantee that these optimization problems are con-

vex, which implies that an equilibrium always exists [22]. The uniqueness of equi-

libria is a longstanding open question, except for some particular cases [17, 1].

Using the convexity of C
k
(�x) and the first order optimality conditions of (NE

k
),

we can characterize equilibria with a variational inequality. Indeed, �x is at equi-

librium if and only if, for all k ∈ [K], x
k

solves∑
a∈A

c
k
a(�xa)(y

k
a − x

k
a) ≥ 0 for any feasible flow y

k
for player k. (1)

Here, the modified cost function c
k
a(�xa) := ca(xa) + x

k
ac

′
a(xa) is the derivative

with respect to x
k
a of the term x

k
aca(xa) in C

k
(�x). Intuitively, the second term

accounts for player k’s ability to set prices in the arc.

Following [12], we also consider situations in which some OD pairs are con-

trolled by individual players while others are controlled by infinitely many of

them, each in charge of an arbitrary small portion of demand. These games can

be viewed as limits of games in which the number of players tends to infinity

but some of them retain market power to set prices while others are relegated

to be price-takers, and their equilibria can be characterized by a variational in-

equality similar to (1). The extreme case in which all users are price-takers was

first considered by Wardrop [28]. In this case, the game becomes nonatomic and

the corresponding solution concept is usually called a Wardrop equilibrium. In

other words Wardrop equilibria are those for which all flow-carrying paths are

of minimum cost (among all paths serving the same OD pair). Except were oth-

erwise stated, all results in this paper are valid for the three classes of equilibria

that we just mentioned because we work with arbitrary market powers.
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To measure the quality of equilibria, we need to introduce a social cost func-

tion. The most common measure for network models is the sum of the costs

among all players. This is easily computed as C(�x) = C(x) :=
∑

k∈[K] C
k
(�x) =∑

a∈A xaca(xa). (Notice that the total cost does not depend on �x directly, but

rather on the total flow x.) A socially optimal flow is a solution �x
opt

that mini-

mizes C(x) among all feasible solutions �x. It is well known that a system optimum

can have a strictly lower social cost than an equilibrium [20, 10]. Moreover, sys-

tem optima may even be better for all users compared to an equilibrium [4]; the

problem is that users may still have an incentive to deviate from it so it may

not be stable.

The main objective of this article is to study how much efficiency is lost when

competition arises. To that extent, [16] proposes to use the worst-case inefficiency

(in terms of ratio) of the social cost of equilibria with respect to that of social

optima as a way to quantify the impact of not being able to coordinate players in

a game. This ratio became known as the price of anarchy [18]. Roughgarden and

Tardos initiated the study of the price of anarchy in network games by proving

that the inefficiency loss because of selfish behavior in nonatomic network games

with affine cost functions is at most 33% [25]. Following their work, a series of

papers generalized these results to nonatomic network and congestion games,

under less and less restrictive assumptions [23, 27, 7, 5, 19]. Finally, [26, 8]

generalize the results to arbitrary nonatomic congestion games by noticing that

for the characterization of equilibria with variational inequalities, the network

structure is unnecessary.

In addition to nonatomic games, [25, 11, 2, 6] consider the atomic case with

unsplittable flows, meaning that competitors have to choose a single path to

route all the demand from their (single) origins to their (single) destinations.

Our Results. Section 2 shows an upper bound on the price of anarchy for

arbitrary networks when costs belong to a given set of cost functions. In addition,

we provide a lower bound that arises from a particular instance. Both the lower

and upper bounds are strictly higher than the price of anarchy in the nonatomic

case implying that price-setting behavior can hurt the system. These are the

first bounds of this type for atomic games. Section 3 concentrates in games with

a single OD pair. First, we provide bounds on the price of anarchy that depend

on the variability of the market power of the different players. To the best of our

knowledge, this is the first bound that depends on the market concentration. It

measures the price to pay—in the worst case—when going from monopolies to

oligopolies to markets with numerous similar players. Then, in Section 3.2, we

study the case in which players are symmetric, i.e., they all share the same OD

pair and they all control the same amount of flow. In this setting we are able to

give a potential function that characterizes equilibria and use this to show that

equilibria with atomic players are at least as efficient as the Wardrop equilibrium.

All results in this paper generalize to the more general atomic congestion games

with divisible demands.
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Due to space limitations, several proofs in this extended abstract are omitted

or only sketched. More details and further results can be found in the full version

of this article available at the authors’ website.

2 Atomic Games with General Players

In this section we study the price of anarchy for atomic games with arbitrary

networks and arbitrary configuration of OD pairs. Players with arbitrarily large

market power may coexist with price-taking players. As a warm-up exercise and

before considering arbitrary sets C, we derive a bound on the price of anarchy

for the case in which cost functions are affine functions. To this end, we define

an optimization problem whose first order optimality conditions correspond to

the equilibrium conditions. In particular, this optimization problem implies that

the equilibrium is essentially unique (although, as [3] points out, this is implied

by [22]).

Consider an affine cost function of the form c(x) = qx+r. Let us define a mod-

ified cost function ĉ : IR
K
+ → IR+ by ĉ(�x) :=

q
2 (
∑

k∈[K] x
k
)
2

+
q
2

∑
k∈[K](x

k
)
2

+

r
∑

k∈[K] x
k
. It is easy to see that ĉ(�x) is convex, or strictly convex when q > 0.

We define Problem (NLP-NE) as the minimization of the potential function

Ĉ(�x) :=
∑

a∈A ĉa(�xa) among all feasible flows �x. Strict convexity implies that

there is a single solution to the previous problem. As its first-order optimality

conditions coincide with the conditions that characterize a Nash equilibrium, the

latter has to be unique. In addition, (NLP-NE) can be used to approximate a

Nash equilibrium up to a fixed additive term in polynomial time [21]. One can-

not expect to do better than an additive approximation because an equilibrium

may require irrational numbers. We remark that this approach can be easily

extended to the setting of games with a mix of atomic and nonatomic players

introduced by [12].

As in other settings [25, 15], this potential function can be used to derive

bounds on the price of anarchy but those bounds turn out to be loose. Using the

variational inequality displayed in (1), we can prove a stronger upper bound on

the price of anarchy for atomic congestion games. The upper bound we provide

below originates in [24] using ideas from [7]. Let us define, for c ∈ C,

α
K

(c) := sup

�x,�y∈IRK
+

xc(x)

yc(y) +
∑

k∈[K](x
k
− yk)ck(�x)

. (2)

We remind the reader that we have defined �x :=(x
1
, . . . , x

K
) and x :=

∑
k∈[K] x

k
,

and similarly for �y. For this definition and the ones below to work, we shall

assume that 0/0 = 0. Roughgarden proved that α
K

(C) := supc∈C α
K

(c) is an

upper bound on the price of anarchy of atomic games [24]. To slightly simplify

the calculations, we define

β
K

(c) := sup

�x,�y∈IRK
+

∑
k∈[K]{(c

k
(�x)− c(y))y

k
+ (c(x) − c

k
(�x))x

k
}

xc(x)
,
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Fig. 1. Example with price of anarchy larger than 4/3

and β
K

(C) := supc∈C β
K

(c). It is straightforward to see that β
K

(C) ≥ 0 and

that α
K

(C) = (1− β
K

(C))
−1

when β
K

(C) < 1. To simplify notation we will not

explicitly distinguish the case of β
K

(C) ≥ 1 and assume that (1 − β
K

(C))
−1

=

+∞ in such a case. We now give a bound on the price of anarchy that depends

on β
K

(C). Note that this bound on the price of anarchy is also valid for the

mixed atomic and nonatomic games.

Proposition 2.1 ([24]). Consider an atomic congestion game with K players
and with separable cost functions drawn from C. Let �x ne be a Nash equilibrium
and �x

opt be a social optimum. Then, C(x
ne
) ≤ (1− β

K
(C))

−1
C(x

opt
).

Proof. Using (1) and the definition of β
K

(C) in order, we get that

C(x
ne
)=

∑
a∈A

∑
k∈[K]

{(ca(x
ne
a )− c

k
a(�x

ne
a ))x

ne,k
a + c

k
a(�x

ne
a )x

ne,k
a }

≤

∑
a∈A

∑
k∈[K]

{(ca(x
ne
a )−c

k
a(�x

ne
a ))x

ne,k
a +c

k
a(�x

ne
a )x

opt,k
a } ≤ β

K
(C)C(x

ne
)+C(�x

opt
).

��

Although [24, 8] independently claimed (by providing different proofs) that the

price of anarchy in the atomic case cannot exceed that of the nonatomic case, in

Fig. 1 we present an instance with affine cost functions that has a price of anarchy

larger than α(affine functions) = 4/3. The top OD pair is controlled by a single

player while the bottom one is nonatomic. At Nash equilibrium, the common arc

has 0.9 and 1 units of demand coming from the atomic and nonatomic OD pairs,

respectively, and the total cost is 3.89. Under the social optimum, the common

arc has 1 and 0 units of demand and the total cost is 2.9. Dividing, we get a price

of anarchy of approximately 1.341. Moreover, optimizing over the parameters,

we can get an instance with a price of anarchy of approximately 1.343. Notice

that the nonatomic OD pair is not necessary to be worse than in nonatomic

games. We could construct a similar example with a finite number of players.

That would require replacing the nonatomic OD pair by K − 1 atomic players,

each controlling 1/(K − 1) units of demand. If K is large, both equilibria are

similar by continuity (e.g., [13] proves that equilibria in atomic games converge

to those in nonatomic games when players lose market power).

We now provide a concrete expression for the price of anarchy under specific

sets of cost functions. The key is to first obtain a simpler expression for β
K

(c).
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Theorem 2.2. Assume that xc(x) is a convex function. Defining β
∞

(c) :=

sup0≤y≤x
y(c(x)−c(y)+c′(x)y/4)

xc(x) , we have that βK(c) ≤ β
∞

(c).

Proof. Starting from the definition of β
K

(c), we get

β
K

(c) = sup

�x,�y∈IRK
+

xc(x) − yc(y) +
∑

k∈[K] c
k
(�x)(y

k
− x

k
)

xc(x)

= sup

�x,�y∈IRK
+

yc(x)− yc(y) + c
′
(x)

(∑
k∈[K] y

k
x
k
−

∑
k∈[K](x

k
)
2
)

xc(x)
(3)

As c is nondecreasing, c
′
(x) ≥ 0. Thus, assuming w.l.o.g. that x

1
≥ x

k
for all

k ∈ [K], to make (3) as big as possible we have to set (y
1
, . . . , y

K
) to (y, 0, . . . , 0).

It follows that

β
K

(c) = sup

�x∈IRK
+ ;x1=max(�x);y∈IR+

y(c(x) − c(y)) + c
′
(x)

(
x

1
y −
∑

k∈[K](x
k
)
2
)

xc(x)
(4)

To find the best choice of �x, it is enough to solve max{x
1
y −
∑

k∈[K](x
k
)
2

: �x ∈

IR
K
+ , x

1
= max(�x)}. By symmetry, an optimal solution to this problem satisfies

x
2

= · · · = x
K

. Therefore, we replace x1 by u and the rest of the xk by v, and

solve

max
u≥v≥0; u+(K−1)v=x

uy − u
2
− (K − 1)v

2
. (5)

The optimal solution satisfies that u = min{x/K + y(K − 1)/2K,x}. Plugging

in x
1

= min{x/K + y(K − 1)/2K,x} and x
k

= max{x/K − y/2K, 0} for k =

2, . . . ,K in (4), we have that

β
K

(c) ≤ sup

x,y∈IR2
+

yc(x)− yc(y) + c
′
(x)

(
y2

4 −

(x−y/2)2
K

)
xc(x)

.

Under the convexity assumption, a calculation shows that the optimal solution

for the RHS is achieved at y ≤ x, from where the result follows. ��

The definition β
∞

(C) is very similar to that of β(C) := sup0≤y≤x
y(c(x)−c(y))

xc(x) ,

which provides a bound on the price of anarchy for nonatomic games [7]. The

only difference between the two expressions is the last term in the numerator of

β
∞

(C), which penalizes equilibria in the case of atomic players. Extending the

arguments of [7] to β
∞

(C), we can prove the following result. In particular, that

allows us to conclude that the price of anarchy is at most 3/2, 2.464 and 7.826,

for affine, quadratic and cubic cost functions, respectively.

Proposition 2.3. If C only contains polynomials of degree at most r, the price
of anarchy is at most (1−max 0≤u≤1 u(1− u

r
+ ru/4))

−1.
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Fig. 2. Example with pseudo-approximation guarantee larger than 2

2.1 Pseudo-approximations

We now concentrate on pseudo-approximation results (also known as bicreteria

results) which compare the Nash equilibrium to a social optimum in an instance

with expanded demands. Roughgarden and Tardos proved that the social cost

of a Wardrop equilibrium is bounded by that of a social optimum of a game

with demands doubled [25]. They extended the pseudo-approximation bound

to atomic games, which was based on a characterization of equilibria of atomic

congestion games. Unfortunately, this characterization is not correct. Figure 2

presents an example for which the Nash equilibrium is more costly than the

system optimum with demands doubled. The top OD pair is atomic and the

bottom one is nonatomic. Consider M := (1− ε)
n

+n(1/4− ε)(1− ε)
n−1

, where

ε is such that (1 − ε)
n
< 1/n. The parameters M and ε are chosen so that the

Nash equilibrium is the flow in which the nonatomic demand routes all its 3/4

units of flow in the middle arc and the atomic player splits its flow in 1/4 − ε

along the middle arc and the rest in the other. The social cost of the equilibrium

equals (1− ε)
n+1

+ (1/4 + ε)M . Consider the flow routing twice the demand in

which ε units of flow take the top arc, 1− ε units take the middle arc, and 3/2

units take the bottom arc. Therefore, the social cost of the system optimum is

at most εM +(1−ε)
n+1

+3/(2n). Comparing the two costs, we conclude that in

order to find a counterexample we need to find n and ε such that n(1− ε)
n
< 1

and Mn/6 > 1. This is achieved by taking ε = 0.1 and n = 34. Modifying the

example slightly, we can obtain a counterexample with polynomials of degree 26.

On the other hand, if we allow polynomials of arbitrary degree, it can be seen

that the cost of the Nash equilibrium can be made arbitrarily higher than that

of the system optimum with demands doubled.

In addition, one cannot expect to prove a theorem of this type with a constant

expansion factor if arbitrary cost functions are allowed. To see this, consider the

same example as in Fig. 2 and a parameter 0 < δ < 1. The nonatomic demand is

1− δ, the demand of the atomic player is 2δ, and the cost functions, from top to

bottom, are 2, a step function that is 0 for x ≤ 1 and 1 otherwise, and 0. It can

be seen that there is one equilibrium with total cost equal to 2δ while the system

optimum when the demand is amplified by 1/(2δ) has zero cost. The example

can be worked out for polynomial cost functions (of arbitrary high degree). The

previous discussion leads us to the following result.

Proposition 2.4. Let �x ne be a Nash equilibrium and, for an arbitrary α > 1, let
�x

opt be a social optimum of the game when demands are multiplied by α. Then,
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there exists an instance of the atomic network game with convex and increasing
cost functions such that C(x

ne
) > C(x

opt
).

In view of the previous negative results, we now prove a pseudo-approximation

result for atomic games that hinges on ideas of [8]. The following proposition

provides a bound that depends on the allowable cost functions C. For example,

in the case of affine cost functions, the expansion factor for which the social cost

of equilibria is bounded by that of the expanded system optimum is 4/3.

Proposition 2.5. Let �x ne be a Nash equilibrium of an atomic congestion game
with K players and with separable cost functions drawn from C. If �x opt denotes a
social optimum of the game with demands multiplied by 1+β

K
(C), then C(x

ne
) ≤

C(x
opt

).

Proof. Consider the flow �y = �x
opt

that optimally routes (1 + β
K

(C))dk units of

demand from sk to tk for k ∈ [K]. Then,

C(x
ne
) = (1+β

K
(C))

∑
a∈A

∑
k∈[K]

{(ca(x
ne
a )−c

k
a(�x

ne
a ))x

ne,k
a +c

k
a(�x

ne
a )x

ne,k
a }−β

K
(C)C(x

ne
)

≤(1+β
K

(C))

∑
a∈A

∑
k∈[K]

{
(ca(x

ne
a )−c

k
a(�x

ne
a ))x

ne,k
a +

c
k
a(�x

ne
a ) y

k
a

1+βK(C)

}
−β

K
(C)C(x

ne
),

where the inequality follows using (1) with y
k
a/(1+β

K
(C)). As ca(x

ne
a )−c

k
a(�x

ne
a )≤0,

C(x
ne
) ≤

∑
a∈A

∑
k∈[K]

{(ca(x
ne
a )− c

k
a(�x

ne
a ))x

ne,k
a + c

k
a(�x

ne
a )y

k
a} − β

K
(C)C(x

ne
),

≤ β
K

(C)C(x
ne
) + C(y)− β

K
(C)C(x

ne
) = C(y).

��

Remark 2.6. Note that the example above shows that for general cost functions

(continuous and convex), β
∞

(C) is unbounded.

3 Atomic Games with a Single OD Pair

In this section we concentrate on games played on networks with arbitrary topol-

ogy in which all K players share the same source s and sink t. Single-source

single-sink instances are easier to analyze because the total flow can be decom-

posed by player in an arc-by-arc fashion. This decomposition will allow us to

provide improved results compared to the general case. The presentation is di-

vided into two sections: In the first we consider the case in which different players

control different amounts of demand, resulting in different market shares. In the

second part, we consider the case of symmetric players in which all players have

the same demand to route through the network. These two alternatives have

previously been considered by [17], although it is assumed that the network only

consists of parallel links.
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3.1 Variable Market Power

We consider the case in which different players have different market power

as they control different amounts of demand. To that extent, we define the

Herfindahl index by H :=
∑

k∈[K](dk/D)
2
, where D :=

∑
k∈[K] dk is the total

demand. This index is a number between 1/K and 1. A higher index means

that the market is less competitive, and the case of H = 1 corresponds to a

monopoly. The case in which H = 1/K corresponds to symmetric players (see

next section). The following proposition reinterprets the definition of β
K

(c) to

improve the bound given by Theorem 2.2. The proof can be found in the full

paper.

Proposition 3.1. If we only consider instances with a single OD pair, the con-
stant βK(c) is at most sup 0≤y≤x

y(c(x)−c(y)+c′(x)yH/4)
xc(x) .

The difference compared to the expression provided by Theorem 2.2 is the factor

H in the last term of the numerator. Observe that as H ≤ 1, this result can only

reduce the price of anarchy. Moreover, if each player controls at most a fraction

φ(K) of the demand such that φ(K) → 0 when K →∞, the price of anarchy is

asymptotically equal to that in the nonatomic game. Indeed, the worst case for

the market power variability is that there are 1/φ(K) players, each controlling a

fraction φ(K) of the demand, while the rest of the players control an infinitesimal.

In that case H ≤ (1/φ(K))φ(K)
2

= φ(K) → 0. For example, in an oligopoly

with K players that control a total demand equal to K, but in which K/ lnK

players control lnK units of demand each and the rest of the players do not

have market power, the analysis above shows that this oligopoly approaches the

nonatomic game when K grows.

For the case of affine cost functions, the price of anarchy can be bounded by

(4 −H)/(3 −H). This generalizes that the price of anarchy is equal to 4/3 for

nonatomic games (H = 0) and at most 3/2 in general (arbitrary H). Neverthe-

less, we know that when H = 1, the price of anarchy equals 1. By perturbing

the monopolistic case we can show that the price of anarchy for the case of a

single OD pair is strictly less than 3/2. However, this analysis is quite technical

and it is unlikely to provide a bound that is tight.

Dafermos and Sparrow [9] proved that nonatomic games with general net-

works and cost functions of the form ca(xa) = qax
p
a for non-negative constants

qa and p, have fully efficient Nash equilibria. The situation for atomic games

is totally different: a carefully constructed instance with linear cost functions

(constant times flow) implies that the price of anarchy under linear costs is at

least 1.17. For games with a single OD pair, [1] proves that the flow that divides

a system optimum proportionally to the market power of different players is a

Nash equilibrium, implying that the price of anarchy is 1.

Providing bounds that depend on the market concentration for multiple

OD pairs is an interesting question that our work leaves open. Our techniques

do not easily extend to multiple OD pairs because it is not clear how to create

a feasible flow arc by arc. Nevertheless, as (1) holds when competitors have to
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route from multiple origins to multiple destinations, these results can presented

with more general assumptions.

3.2 Symmetric Players

When all players have the same demand d to route through the network, [17]

shows that there is a unique Nash equilibrium. Our first contribution in this

section is to provide a convex optimization problem whose optimum is the unique

equilibrium. This implies that the game with symmetric players is a potential

game. To facilitate notation, we add a reverse arc between t and s with zero

cost.

(SNE) min

∑
a∈A

xaca(xa) + (K − 1)

∑
a∈A

∫ xa

0
ca(τ)dτ∑

(u,v)∈A
x(u,v) −

∑
(v,w)∈A

x(v,w) =0 for all v ∈ V

x(t,s) =dK

xa ≥0 for all a ∈ A.

Interestingly, (SNE) consists in finding a feasible flow that minimizes a convex

combination between the objective functions of the problems used to compute a

system optimum and a Nash equilibrium of a nonatomic game. When there is a

single player the second part vanishes leaving the social cost only. Instead, when

there are many players the second part is dominant and the social cost becomes

negligible. It turns out that a solution is optimal for (SNE) if and only if it is a

Nash equilibrium. Therefore, if the cost functions are strictly increasing, there

is exactly one Nash equilibrium. By comparing the KKT conditions of (SNE)

and (NE
k
), we get the following result.

Theorem 3.2. If x solves (SNE), then �x = (x/K, . . . , x/K) is a Nash equilib-
rium of the symmetric game with atomic players.

We make use of the potential function to derive results on the efficiency of

equilibria and the monotonicity of the cost when the number of players increase.

Proposition 3.3. Let �x ∈ IR
K
+ be a Nash equilibrium in an atomic game with K

players who control d units of flow each; and let �y ∈ IR
K̃
+ be a Nash equilibrium

in an atomic game with K̃ < K players who control dK/K̃ units of flow each.
Then, C(y) ≤ C(x).

Proof. Using the optimality of x and y in their respective problems,

∑
a∈A

xaca(xa)+(K−1)

∑
a∈A

∫ xa

0
ca(τ)dτ ≤

∑
a∈A

yaca(ya)+(K−1)

∑
a∈A

∫ ya

0
ca(τ)dτ

≤

∑
a∈A

xaca(xa) + (K̃ − 1)

∑
a∈A

∫ xa

0
ca(τ)dτ + (K − K̃)

∑
a∈A

∫ ya

0
ca(τ)dτ.
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Thus,
∑

a∈A
∫ xa

0 ca(τ)dτ ≤
∑

a∈A
∫ ya

0 ca(τ)dτ , from where

∑
a∈A

yaca(ya) + (K̃−1)

∑
a∈A

∫ ya

0
ca(τ)dτ ≤

∑
a∈A

xaca(xa) + (K̃−1)

∑
a∈A

∫ xa

0
ca(τ)dτ

<

∑
a∈A

xaca(xa) + (K̃−1)

∑
a∈A

∫ ya

0
ca(τ)dτ.

��

The previous propositions imply that the price of anarchy in symmetric games

with K players increases as the number of players increases. Furthermore, it

approaches the price of anarchy in the nonatomic case when the number of

players goes to infinity. In particular, we can show that, for affine cost functions

the price of anarchy is exactly (4K
2
)/(K + 1)(3K − 1). The conclusion is that

for symmetric games non-atomicity does not degrade the quality of equilibria.

This stands in clear contrast to the case of atomic asymmetric games whose price

of anarchy is larger than that of nonatomic games. Independently of this work,

[14] have studied the effect of collusion in network games. In particular, their

results imply that, for an atomic game in a parallel link network and divisible

demands, the price of anarchy is at most that of the corresponding nonatomic

game. The results we just presented have a similar flavor: we have more restrictive

assumptions on the players, but our results are valid for arbitrary networks. We

believe that a more general result actually holds. Namely, we conjecture that for

atomic networks games with splittable flows and a single OD pair, the price of

anarchy is at most that of the corresponding nonatomic game.

The results for symmetric players can be generalized to the asymmetric case

(but still users that share a single OD pair) if we assume that all players have a

positive flow on all arcs ([17] referred to this assumption by “all-positive flows,”

and proved that in this case there is a unique Nash equilibrium). For those

extensions, we just need to decompose the flow in each arc proportionally to

the demand of each player (as we have done in Section 3.1). The assumption

guarantees that the decomposition is feasible for all players.
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Abstract. We use entropy rates and Schur concavity to prove that, for
every integer k ≥ 2, every nonzero rational number q, and every real
number α, the base-k expansions of α, q + α, and qα all have the same
finite-state dimension and the same finite-state strong dimension. This
extends, and gives a new proof of, Wall’s 1949 theorem stating that the
sum or product of a nonzero rational number and a Borel normal number
is always Borel normal.

1 Introduction

The finite-state dimension of a sequence S over a finite alphabet Σ is an asymp-

totic measure of the density of information in S as perceived by finite-state

automata. This quantity, denoted dimFS(S), is a finite-state effectivization of

classical Hausdorff dimension [15,12] introduced by Dai, Lathrop, Lutz, and

Mayordomo [9]. A dual quantity, the finite-state strong dimension of S, denoted

DimFS(S), is a finite-state effectivization of classical packing dimension [30,29,12]

introduced by Athreya, Hitchcock, Lutz, and Mayordomo [2]. (Explicit defini-

tions of dimFS(S) and DimFS(S) appear in section 2.) In fact both dimFS(S)

and DimFS(S) are asymptotic measures of the density of finite-state informa-

tion in S, with 0 ≤ dimFS(S) ≤ DimFS(S) ≤ 1 holding in general. The identity

dimFS(S) = DimFS(S) holds when S is sufficiently “regular”, but, for any two

real numbers 0 ≤ α ≤ β ≤ 1, there exists a sequence S with dimFS(S) = α and

DimFS(S) = β [13].

Although finite-state dimension and finite-state strong dimension were origi-

nally defined in terms of finite-state gamblers [9,2] (following the gambling ap-

proach used in the first effectivizations of classical fractal dimension [21,22]), they

have also been shown to admit equivalent definitions in terms of information-

lossless finite-state compressors [9,2], finite-state predictors in the log-loss model

[16,2], and block-entropy rates [6]. In each case, the definitions of dimFS(S) and

DimFS(S) are exactly dual, differing only that a limit inferior appears in one
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(IGERT) program.
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definition where a limit superior appears in the other. These two finite-state di-

mensions are thus, like their counterparts in fractal geometry, robust quantities

and not artifacts of a particular definition.

The sequences S satisfying dimFS(S) = 1 are precisely the (Borel) normal
sequences, i.e., those sequences in which each nonempty string w ∈ Σ

∗
appears

with limiting frequency |Σ|
−|w|

. (This fact was implicit in the work of Schnorr

and Stimm [27] and pointed out explicitly in [6].) The normal sequences, intro-

duced by Borel in 1909 [4], were extensively investigated in the twentieth century

[25,19,32,10,14]. Intuitively, the normal sequences are those sequences that are

random relative to finite-state automata. This statement may seem objectionable

when one first learns that the Champernowne sequence

0100011011000001010011100 . . . ,

obtained by concatenating all binary strings in standard order, is normal [8],

but it should be noted that a finite-state automaton scanning this sequence will

spend nearly all its time in the middle of long strings that are random in the

(stronger) sense of Kolmogorov complexity [20] and, having only finite memory,

will have no way of “knowing” where such strings begin or end. This perspective

is especially appropriate when modeling situations in which a data stream is

truly massive relative to the computational resources of the entity processing it.

An informative line of research on normal sequences concerns operations that

preserve normality. For example, in his 1949 Ph.D. thesis under D.H. Lehmer,

Wall [31] proved that every subsequence that is selected from a normal sequence

by taking all symbols at positions occurring in a given arithmetical progression

is itself normal. Agafonov [1] extended this by showing that every subsequence

of a normal sequence that is selected using a regular language is itself normal;

Kamae [17] and Kamae and Weiss [18] proved related results; and Merkle and

Reimann [24] proved that a subsequence selected from a normal sequence using

a context-free language need not be normal (in fact, can be constant, even if

selected by a one-counter language). For another example, again in his thesis,

Wall [31] (see also [19,5]) proved that, for every integer k ≥ 2, every nonzero

rational number q, and every real number α that is normal base k (i.e., has a

base-k expansion that is a normal sequence), the sum q+α and the product qα

are also normal base k. (It should be noted that a real number α may be normal

in one base but not in another [7,26].)

This paper initiates the study of operations that preserve finite-state dimen-

sion and finite-state strong dimension. This study is related to, but distinct from,

the study of operations that preserve normality. It is clear that every opera-

tion that preserves finite-state dimension must also preserve normality, but the

converse does not hold. For example, a subsequence selected from a sequence

according an arithmetical progression need not have the same finite-state di-

mension as the original sequence. This is because a sequence with finite-state

dimension less than 1 may have its information content distributed heteroge-

neously. Specifically, given a normal sequence S over the alphabet {0, 1}, define

a sequence T whose n
th

bit is the
n
2

th
bit of S if n is even and 0 otherwise.

Then the sequence S and the constant sequence 0
∞

are both selected from T
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according to arithmetic progressions, but it is easy to verify that dimFS(T ) =

DimFS(T ) =
1
2 , dimFS(0

∞
) = DimFS(0

∞
) = 0, and dimFS(S) = DimFS(S) = 1.

Hence, Wall’s first above-mentioned theorem does not extend to the preservation

of finite-state dimension. Of course, this holds a fortiori for the stronger results

by Agafonov, Kamae, and Weiss.

Our main theorem states that Wall’s second above-mentioned theorem, unlike

the first one, does extend to the preservation of finite-state dimension. That is,

we prove that, for every integer k ≥ 2, every nonzero rational number q, and

every real number α, the base-k expansions of α, q+α, and qα all have the same

finite-state dimension and the same finite-state strong dimension.

The proof of our main theorem does not, and probably cannot, resemble

Wall’s uniform distribution argument. Instead we use Bourke, Hitchcock, and

Vinodchandran’s block-entropy rate characterizations of dimFS and DimFS [6],

coupled with the Schur concavity of the entropy function [28,23,3], to prove that

finite-state dimension and finite-state strong dimension are contractive functions

with respect to a certain “logarithmic block dispersion” pseudometric that we

define on the set of all infinite k-ary sequences. (A function is contractive if the

distance between its values at sequences S and T is no more than the pseu-

dodistance between S and T .) This gives a general method for bounding the

difference between the finite-state dimensions, and the finite-state strong dimen-

sions, of two sequences. We then use this method to prove our main theorem. In

particular, this gives a new proof of Wall’s theorem on the sums and products

of rational numbers with normal numbers.

In summary, our main result is a fundamental theorem on finite-state dimen-

sion that is a quantitative extension of a classical theorem on normal numbers but

requires a different, more powerful proof technique than the classical theorem.

2 Preliminaries

Throughout this paper, Σ = {0, 1, . . . , k − 1}, where k ≥ 2 is an integer. All

strings are elements of Σ
∗
, and all sequences are elements of Σ

∞
. If x is a

string or sequence and i, j are integers, x[i . . j] denotes the string consisting of

the i
th

through j
th

symbols in x, provided that these symbols exist. We write

x[i] = x[i . . i] for the i
th

symbol in x, noting that x[0] is the leftmost symbol in

x. If w is a string and x is a string or sequence, we write w , x to indicate that

w = x[0 . . n− 1] for some nonnegative integer n.

A base-k expansion of a real number α ∈ [0, 1] is a sequence S ∈ Σ
∞

such that

α =

∞∑
n=0

S[n]k
−(n+1)

.

A sequence S ∈ Σ
∞

is (Borel) normal if, for every nonempty string w ∈ Σ
+

lim
n→∞

1

n

∣∣{u ∈ Σ
<n
∣∣ uw , S

}∣∣ = |Σ|
−|w|

,

i.e., if each string w appears with asymptotic frequency k
−|w|

in S.
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If Ω is a nonempty finite set, we write ∆(Ω) for the set of all (discrete)

probability measures on Ω, i.e., all functions π : Ω → [0, 1] satisfying
∑
w∈Ω

π(w)

= 1. We write ∆n = ∆({1, . . . , n}).

All logarithms in this paper are base 2. The Shannon entropy of a probability

measure π ∈ ∆(Ω) is

H(π) =

∑
w∈Ω

π(w) log
1

π(w)
,

where 0 log
1
0 = 0.

We briefly define finite-state dimension and finite-state strong dimension. As

noted in the introduction, several equivalent definitions of these dimensions are

now known. In this paper, it is most convenient to use the definitions in terms

of block-entropy rates, keeping in mind that Bourke, Hitchcock, and Vinodchan-

dran [6] proved that these definitions are equivalent to earlier ones.

For nonempty strings w, x ∈ Σ
+
, we write

#�(w, x) =

∣∣∣∣{m ≤

|x|

|w|
− 1

∣∣∣∣ w = x[m|w| . . (m + 1)|w| − 1]

}∣∣∣∣
for the number of block occurrences of w in x. Note that 0 ≤ #�(w, x) ≤

|x|
|w| .

For each sequence S ∈ Σ
∞

, positive integer n, and string w ∈ Σ
<n

, the n
th

block frequency of w in S is

πS,n(w) =
#�(w, S[0 . . n|w| − 1])

n
.

Note that, for all S ∈ Σ
∞

and 0 < l < n,∑
w∈Σl

πS,n(w) = 1,

i.e., π
(l)
S,n ∈ ∆(Σ

l
), where we write π

(l)
S,n for the restriction of πS,n to Σ

l
.

For each sequence S ∈ Σ
∞

and positive integer l, the l
th normalized lower

and upper block entropy rates of S are

H
−
l (S) =

1

l log k
lim inf
n→∞ H

(
π

(l)
S,n

)
and

H
+
l (S) =

1

l log k
lim sup
n→∞

H

(
π

(l)
S,n

)
,

respectively.

Definition 1. Let S ∈ Σ
∞.

1. The finite-state dimension of S is

dimFS(S) = inf
l∈Z+

H
−
l (S).
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2. The finite-state strong dimension of S is

DimFS(S) = inf
l∈Z+

H
+
l (S).

More discussion and properties of these dimensions appear in the references

cited in the introduction, but this material is not needed to follow the technical

arguments in the present paper.

3 Logarithmic Dispersion and Finite-State Dimension

In this section we prove a general theorem stating that the difference between two

sequences’ finite-state dimensions (or finite-state strong dimensions) is bounded

by a certain “pseudodistance” between the sequences. Recall that ∆n =

∆({1, . . . , n}) is the set of all probability measures on {1, . . . , n}.

Definition 2. Let n be a positive integer. The logarithmic dispersion (briefly,
the log-dispersion) between two probability measures π, µ ∈ ∆n is

δ(π, µ) = logm,

where m is the least positive integer for which there is an n×n nonnegative real
matrix A = (aij) with the following three properties.

(i) A is stochastic: each column of A sums to 1, i.e.,
∑n

i=1 aij = 1 holds for
all 1 ≤ j ≤ n.

(ii) Aπ = µ, i.e.,
∑n

j=1 aijπ(j) = µ(i) holds for all 1 ≤ i ≤ n.
(iii) No row or column of A contains more than m nonzero entries.

It is clear that δ : ∆n × ∆n → [0, logn]. We now extend δ to a normalized

function δ
+

: Σ
∞
× Σ

∞
→ [0, 1]. Recall the block-frequency functions π

(l)
S,n

defined in section 2.

Definition 3. The normalized upper logarithmic block dispersion between two
sequences S, T ∈ Σ

∞ is

δ
+
(S, T ) = lim sup

l→∞

1

l log k
lim sup
n→∞

δ

(
π

(l)
S,n, π

(l)
T,n

)
.

Recall that a pseudometric on a set X is a function d : X ×X → R satisfying

the following three conditions for all x, y, z ∈ X .

(i) d(x, y) ≥ 0, with equality if x = y. (nonnegativity)

(ii) d(x, y) = d(y, x). (symmetry)

(iii) d(x, z) ≤ d(x, y) + d(y, z). (triangle inequality)

(A pseudometric is a metric, or distance function, on X if it satisfies (i) with

“if” replaced by “if and only if”.) The following fact must be known, but we do

not know a reference at the time of this writing.
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Lemma 3.1. For each positive integer n, the log-dispersion function δ is a pseu-
dometric on ∆n.

It is easy to see that S is not a metric on ∆n for any n ≥ 2. For example, if π

is any nonuniform probability measure on {1, . . . , n} and µ obtained from π by

permuting the values of π nontrivially, then π = µ but δ(π, µ) = 0.

Lemma 3.1 has the following immediate consequence.

Corollary 3.2. The normalized upper log-block dispersion function δ
+ is a

pseudometric on Σ
∞.

If d is a pseudometric on a set X , then a function f : X → R is d-contractive if,

for all x, y ∈ X ,

|f(x)− f(y)| ≤ d(x, y),

i.e., the distance between f(x) and f(y) does not exceed the pseudodistance

between x and y.

Lemma 3.3. For each positive integer n, the Shannon entropy function
H : ∆n → [0, logn] is δ-contractive.

The following useful fact follows easily from Lemma 3.3.

Theorem 3.4. Finite-state dimension and finite-state strong dimension are δ+-
contractive. That is, for all S, T ∈ Σ

∞,

|dimFS(S)− dimFS(T )| ≤ δ
+
(S, T )

and
|DimFS(S)−DimFS(T )| ≤ δ

+
(S, T ).

In this paper, we only use the following special case of Theorem 3.4.

Corollary 3.5. Let S, T ∈ Σ
∞. If

lim sup
n→∞

δ

(
π

(l)
S,n, π

(l)
T,n

)
= o(l)

as l→∞, then
dimFS(S) = dimFS(T )

and
DimFS(S) = DimFS(T ).

4 Finite-State Dimension and Real Arithmetic

Our main theorem concerns real numbers rather than sequences, so the following

notation is convenient. For each real number α and each integer k ≥ 2, write

dim
(k)
FS (α) = dimFS(S)
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and

Dim
(k)
FS (α) = DimFS(S),

where S is a base-k expansion of α−�α�. Note that this notation is well-defined,

because a real number α has two base-k expansions if and only if it is a k-adic

rational, in which case both expansions are eventually periodic and hence have

finite-state strong dimension 0. It is routine to verify the following.

Observation 4.1. For every integer k ≥ 2, every positive integer m, and every
real number α,

dim
(k)
FS (m + α) = dim

(k)
FS (−α) = dim

(k)
FS (α)

and
Dim

(k)
FS (m + α) = Dim

(k)
FS (−α) = Dim

(k)
FS (α).

The following lemma contains most of the technical content of our main theorem.

Lemma 4.2 (main lemma). For every integer k ≥ 2, every positive integer
m, and every real number α ≥ 0,

dim
(k)
FS (mα) = dim

(k)
FS (α)

and
Dim

(k)
FS (mα) = Dim

(k)
FS (α).

Proof. Let k, m, and α be as given, let S, T ∈ Σ
∞

be the base-k expansions of

α− �α�, mα− �mα�, respectively, and write

π
(l)
α,n = π

(l)
S,n , π

(l)
mα,n = π

(l)
T,n

for each l, n ∈ Z+
. By Corollary 3.5, it suffices to show that

lim sup
n→∞

δ

(
π

(l)
α,n, π

(l)
mα,n

)
= o(l) (4.1)

as l→∞.

Let r = �logkm�, let

m =

r∑
i=0

mik
i

be the base-k expansion of m, and let

s =

r∑
i=0

mi.

The first thing to note is that, in base k, mα− �mα� is the sum, modulo 1, of s

copies of α− �α�, with mi of these copies shifted i symbols to the left, for each

0 ≤ i ≤ r.
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For each l ∈ Z+
and j ∈ N, let

u
(l)
j = S[jl . . (j + 1)l − 1],

v
(l)
j = T [jl . . (j + 1)l− 1]

be the j
th
l-symbol blocks of α− �α�, mα− �mα�, respectively. If we let

τ
(l)
j =

r∑
i=0

mi

∞∑
t=(j+1)l

S[t + i]k
−(t+1)

be the sum of the tails of the above-mentioned s copies of α − �α� lying to the

right of the j
th
l-symbol block, then the block v

(l)
j of mα− �mα� is completely

determined by u
(l)
j , the “carry”

c
(l)
j =

⌊
k

(j+1)l
τ

(l)
j

⌋
,

and the longest string of symbols shifted from the right, which is the string

u
(l)
j+1[0 . . r − 1]. To be more explicit, note that

0 ≤ c
(l)
j ≤ k

(j+1)l
τ

(l)
j ≤ k

(j+1)l
r∑
i=0

mi

∞∑
t=(j+1)l

(k − 1)k
−(t+1)

= s;

define the “advice”

h
(l)
j =

(
c
(l)
j , u

(l)
j [0 . . r − 1]

)
∈ {0, . . . , s} ×Σ

r
;

and define the function

f
(l)

: Σ
l
× {0, . . . , s} ×Σ

r
→ Σ

l

by letting f
(l)

(x, c, z) be the base-k expansion of the integer

mn
(k)
x + c +

r∑
i=0

mi

i−1∑
t=0

z[t]k
t mod k

l
,

where n
(k)
x is the nonnegative integer of which x is a base-k expansion, possibly

with leading 0’s. (Intuitively, the three terms here are the “block product”, the

“carry”, and the “shift”, respectively.) Then, for all integers l > 0 and j ≥ 0,

v
(l)
j = f

(l)
(u

(l)
j , h

(l)
j ).

For positive integers l and n, define the k
l
× k

l
matrix A

(l,n)
=

(
a
(l,n)
y,x

)
by

a(l,n)
y,x =



∣∣∣{ j < n
∣∣∣ u

(l)
j = x and f (l)

(
x, h

(l)
j (j)

)
= y
}∣∣∣

nπ
(l)
α,n(x)

if π
(l)
α,n(x) > 0

1 if π
(l)
α,n(x) = 0 and x = y

0 otherwise

for all x, y ∈ Σ
l
. It is routine to verify that
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y∈Σl

a
(l,n)
y,x = 1

for all x ∈ Σ
l
, i.e., A

(l,n)
is stochastic, and that∑
x∈Σl

a
(l,n)
y,x π

(l)
α,n(x) = π

(l)
mα,n(y)

for all y ∈ Σ
l
, i.e., A

(l,n)
π

(l)
α,n = π

(l)
mα,n. We complete the proof by bounding the

number of nonzero entries in each row and column of A
(l,n)

.

Fix a column x of A
(l,n)

. If π
(l)
α,n(x) = 0, then there is exactly one nonzero

entry in column x of A
(l,n)

. If π
(l)
α,n(x) > 0, then the number of nonzero entries

in column x is bounded by

|{0, . . . , s} ×Σ
r
| = (s + 1)k

r
≤ (s+ 1)m.

Hence there are at most (s+ 1)m nonzero entries in column x of A
(l,n)

.

Fix a row y of A
(l,n)

. Let g be the greatest common divisor of m and k
l
. Note

that, for all n1, n2 ∈ Z+
,

mn1 ≡ mn2 mod k
l

=⇒ k
l
| m(n2 − n1)

=⇒
k
l

g

∣∣∣∣ mg (n2 − n1)

=⇒
k
l

g

∣∣∣∣ n2 − n1

=⇒ n1 ≡ n2 mod
k
l

g
.

This implies that each string y ∈ Σ
l

has at most g preimages x under the

mapping that takes x to the base-k expansion of mn
(l)
x mod k

l
. This, in turn,

implies that there are at most g|{0, . . . , s}×Σ
r
| ≤ g(s+ 1)m nonzero entries in

row y of A
(l,n)

.

We have shown that, for each l, n ∈ Z+
, the matrix A

(l,n)
testifies that

δ

(
π

(l)
α,n, π

(l)
mα,n

)
≤ log(g(s + 1)m) ≤ log(m

2
(s + 1)).

Since this bound does not depend on l or n, this proves (4.1). ��

We now prove that addition and multiplication by nonzero rationals preserve

finite-state dimension and finite-state strong dimension.

Theorem 4.3 (main theorem). For every integer k ≥ 2, every nonzero ra-
tional number q, and every real number α,

dim
(k)
FS (q + α) = dim

(k)
FS (qα) = dim

(k)
FS (α)

and
Dim

(k)
FS (q + α) = Dim

(k)
FS (qα) = Dim

(k)
FS (α).
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Proof. Let k, q, and α be as given, and write q =
a
b , where a and b are integers

with a = 0 and b > 0. By Observation 4.1 and Lemma 4.2,

dim
(k)
FS (qα) = dim

(k)
FS

(
|a|

b
α

)
= dim

(k)
FS

(
b
|a|

b
α

)
= dim

(k)
FS (|a|α) = dim

(k)
FS (α),

and

dim
(k)
FS (q + α) = dim

(k)
FS

(
a

b
+ α

)
= dim

(k)
FS

(
a+ bα

b

)
= dim

(k)
FS

(
b
a+ bα

b

)
= dim

(k)
FS (a+ bα)

= dim
(k)
FS (bα) = dim

(k)
FS (α).

Similarly, Dim
(k)
FS (qα) = Dim

(k)
FS (α), and Dim

(k)
FS (q + α) = Dim

(k)
FS (α). ��

Finally, we note that Theorem 4.3 gives a new proof of the following classical

theorem.

Corollary 4.4. (Wall [31]) Let k ≥ 2. For every nonzero rational number q

and every real number α that is normal base k, the sum q + α and the product
qα are also normal base k.
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Abstract. We present exact algorithms with exponential running times
for variants of n-element set cover problems, based on divide-and-conquer
and on inclusion–exclusion characterisations.

We show that the Exact Satisfiability problem of size l with m clauses
can be solved in time 2mlO(1) and polynomial space. The same bounds
hold for counting the number of solutions. As a special case, we can count
the number of perfect matchings in an n-vertex graph in time 2nnO(1)

and polynomial space. We also show how to count the number of perfect
matchings in time O(1.732n) and exponential space.

Using the same techniques we show how to compute Chromatic Num-
ber of an n-vertex graph in time O(2.4423n) and polynomial space, or
time O(2.3236n) and exponential space.

1 Introduction

We present exact algorithms with exponential running times using two simple

techniques for a number of related NP-hard problems, including exact satisfi-

ability, disjoint set covering, counting the number of perfect matchings, graph

colouring, and TSP.

Our algorithms run in polynomial space and have running times of the form

O(c
n
), where n is a natural parameter of the instance, such as ‘number of vertices’

or ‘number of clauses,’ but smaller than the instance size. For some NP problems,

this can be achieved by exhaustive search: a maximum clique can be found by

inspecting all 2
|V |

vertex subsets. But in general, this fails: exhaustive search

for a Hamiltonian cycle would require checking
(
|V | − 1

)
! permutations. For the

problems in this paper, finding such algorithms was an open problem.

Techniques
The first idea is divide-and-conquer, where we divide the instance into an expo-
nential number of sub-instances, halving n at each step. This leads to running

times of the form

T (n) = 2
n
n
O(1)

T
(1

2n
)
,

which is O(c
n
), and the space is polynomial in n.

The second idea is inclusion–exclusion, in which we express the problem in

the form ∑
S⊆{1,...,n}

(−1)
|S|
f(S),
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where f(S) is some easier-to-calculate predicate depending on the problem. The

running time is 2
n

times the time used to calculate f(S), and the space is

dominated by the algorithm for f(S).

Both ideas obviously give rise to polynomial-space algorithms, but we will

also consider exponential-space algorithms that reduce the running times. For

the problems studied in this paper, the inclusion–exclusion approach always gives

the better worst-case time bounds. However, the divide-and-conquer approach is

more versatile and can be applied to natural variant problems, such as weighted

versions; it may also run faster in practice.

Both ideas also turn out to be old. Gurevich and Shelah used exponential

divide-and-conquer as a building block for an expected linear time algorithm

[13], and Feige and Kilian use it to compute the bandwidth in an unpublished

manuscript [12]. The idea of using inclusion-exclusion was used by Bax [2] to

find Hamiltonian Cycles. Before that, a much older example of relevance to the

present paper is the Ryser formula for the permanent [20], which counts the

number of matchings in a bipartite graph.

Exact Satisfiability
Most of the results and techniques of this paper can be presented in terms of

the Exact Satisfiability problem. It is equivalent to a set covering problem and

generalises perfect matching in graphs, see Sec. 2 for the precise relationships.

Given a formula in disjunctive normal form with m clauses in n variables and

total size l = O(mn), the Exact Satisfiability problem asks for the existence of

an assignment that satisfies exactly one literal of each clause. This can be solved

easily in polynomial space and 2
n
l
O(1)

time by considering all assignments, and

many papers have improved the 2
n

factor.

Here, we analyse the problem in terms of the number m of clauses. For or-

dinary (non-exact) satisfiability, the seminal result is the DPLL procedure from

1962 [9], which gives a polynomial space algorithm with running time 2
m
n
O(1)

.

Again, many papers have since improved this result.

However, for Exact Satisfiability, no such result was known; the best bounds

are exponential time and space 2
m
l
O(1)

using dynamic programming, or poly-

nomial space and time m!l
O(1)

[17]. Prior to the current paper, no polynomial

space algorithm with running time c
m
l
O(1)

was known for any constant c, an

open problem observed in [5,17].

Proposition 1 provides such an algorithm for many choices of m; the run-

ning time is bounded by c
m
l
O(1)

except when logn < m ≤ logn log logn. The

algorithm works for the weighted case as well. Our inclusion–exclusion based al-

gorithm in Proposition 2 is even simpler and faster in the worst case, achieving

the desired running time of 2
m
l
O(1)

. Both algorithms use space polynomial in l.

Number of perfect matchings
The inclusion–exclusion based algorithm actually counts the number of exactly

satisfying assignments and therefore solves the #P -complete counting variant

of XSAT. A well-studied special case of this is perfect matching: Given a graph

G = (V,E) on n vertices, find a subset M ⊆ E of disjoint edges that cover V .
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Although finding a perfect matching if there is one can be done in polynomial

time, counting the perfect matchings is #P -complete [22]. For bipartite graphs,

the best exact counting algorithm for perfect matchings is to apply the Ryser

formula for the permanent [20], which runs in time O(1.414
n
). More recently,

Jerrum, Sinclair, and Vigoda [15] discovered a fully polynomial time random-

ized approximation scheme for counting perfect matchings in bipartite graphs.

For general graphs, Chien’s approximation algorithm [6] runs in expected expo-

nential time O(1.3161
n
) and polynomial space. The dependency on the approxi-

mation ratio has the form ε
−2

, so his algorithm guarantees a O(c
n
) running time

(for some constant c) as long as the approximation guarantee is not better than

d
−n

(for some constant d).

We solve the exact problem, albeit slower. A 2
n
n
O(1)

time, polynomial space,

algorithm is immediate from our Prop. 2, and in exponential space we can im-

prove the time bound to O(1.732
n
) using Coppersmith–Winograd matrix mul-

tiplication [8] and a construction inspired by Williams [23].

TSP and colouring
The techniques used in the present paper suffice to address some open questions

about other covering-related graph problems.

First, we observe that the divide-and-conquer algorithm for Hamiltonian Path

[13] can be used for TSP without significant modification and obtains running

time O(4
n
n

logn
) while retaining the polynomial space guarantee. Such a result

was solicited in [17] and [25].

A graph’s chromatic number is the smallest integer χ ≤ n such that there is a

mapping V → {1, . . . , χ} that gives different values (‘colours’) to neighbouring

vertices. This is a well-studied problem with a rich history of exponential-time

algorithms. For polynomial space, the 1971 algorithm of Christofides [7] runs in

time n!n
O(1)

. Feder and Motwani [11] give a randomised linear space algorithm

with running time O
(
(χ/e)

n
)

(with high probability), and the running time of a

recent algorithm by Angelsmark and Thapper [1] can be given as O
(
(2+logχ)

n
)
,

an asymptotic improvement over Christofides’ result for all values of χ. Prior to

the current paper, no polynomial space algorithm with running time O(c
n
) was

known for any constant c, an open problem observed in [5,17]. We provide two

such algorithms, based on divide-and-conquer in time O(8.33
n
), and based on

inclusion–exclusion in time O(2.4423
n
).

Such time bounds were known for exponential space since 1976, with Lawler’s

algorithm [16] that uses time O(2.4423
n
) and space O(2

n
logn). This was im-

proved by Eppstein [10] to time O(2.4151
n
), and further by Byskov [4] to time

O(2.4023
n
) and O(2

n
) space, the fastest previous algorithm. We present an algo-

rithm with running time O(2.3236
n
) and space 2

n
n
O(1)

, which addresses Open

Problem 3.5 in [24].

Like many previous colouring algorithms, our running times all rely on the

Moon–Moser bound on the number of maximal independent subsets of a graph

[18]. Using a different approach we have recently improved the colouring re-

sults [3].
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2 Preliminaries

We write [n] = {1, . . . , n}. In a graph, e(U) denotes the number of edges between

vertices in U , and e(U,W ) denotes the edges between U and W .

Disjoint Set Cover. It is well-known that one can use resolution to reduce any

m-clauses XSAT instance to one where no variable appears negated [19]. This

‘monotone’ problem can be understood as the Disjoint Set Cover problem: Given

a family of subsets A1, . . . , An ⊆ [m], find a disjoint cover, i.e., a subfamily

indexed by I ⊆ [n] such that⋃
i∈I

Ai = [m], and Ai ∩Aj = ∅ for all i = j ∈ I. (1)

To see that this problem is equivalent to (monotone) XSAT let [m] represent the

clauses, and for 1 ≤ i ≤ n let Ai contain j if the variable xi appears in the jth

clause. We will adopt whichever formulation is most convenient.

Perfect Matchings. Given a graph G = (V,E), construct for each vertex v ∈ V

the set of its incident edges Ev. We can view this as an instance of XSAT where

the sets Ev are the clauses and the graph’s edges E are the variables. A satisfying

assignment M ⊆ E then corresponds to picking exactly one edge from each Ev;

in graph-theoretic terms a perfect matching.

3 Exact Satisfiability

3.1 Divide-and-Conquer

Proposition 1. Exact Satisfiability with n variables and m clauses can be solved
in polynomial space and time 4

m
l
O(logm).

Proof. After removing all negations according to [19] we may view every clause

as a subset c of the variables V .

Fix an ordering < of the variables. To motivate the algorithm consider a

specific exactly satisfying assignment A ⊆ V , viewed as a subset of variables.

We claim that there is some y ∈ A for which the clauses can be partitioned

into three subsets Cy, C1, C2 with |C1|, |C2| ≤
1
2m such that y appears only in

the clauses of Cy and such that clauses in C1 are satisfied by variables x < y

and clauses in C2 are satisfied by variables x > y.

To see that such a partition exists first partition the clauses into sets Sx for

x ∈ A according to which variable in A makes them true (by definition there

is exactly one for each clause). Let y ∈ A be the unique variable for which∑
x<y |Sx| <

1
2m but

∑
x≤y |Sx| ≥

1
2m. Then, Cy = Sy, C1 =

⋃
x<y Sx, and

C2 =
⋃
x>y Sx is a partition of the claimed kind.

This suggests the following algorithm: For every variable y ∈ V and for every

partition of the clauses into three sets Cy , C1, C2 with |C1|, |C2| ≤
1
2m. We
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construct two instances of Exact Satisfiability. Instance 1 contains the clauses of

C1, and all variables x < y not part of any clause in Cy∪C2. Similarly, Instance 2

consists of the clauses of C2 with all variables x > y not part of any clause in

Cy ∪ C1. The algorithm checks recursively if both instances admit an exactly

satisfying assignment and returns the answer.

For correctness, we already observed that if an exactly satisfying assignment

exists, then a partition with the desired properties exists. On the other hand, if

the algorithm finds exactly satisfying assignments for Instance 1 and Instance 2,

then the original instance can be satisfied by setting y to true, thereby satisfying

all clauses. Moreover, this assignment is exact because the construction ensures

that the variables appearing in both instances, and in any clause of Cy, are

disjoint.

For the time and space bounds, note that the number of clauses is halved at

each step of the recursion. Every recursive step checks n variables and fewer than

2
m

partitions, each in l
O(1)

time and space. The stated time bound follows. ��

The algorithm works with minor modifications also for weighted versions of

XSAT. Either the objective function is to maximise the number (or total weight)

of clauses that can be exactly satisfied, or the variables have weights and a

minimum (or maximum) total weight satisfying assignment is sought.

3.2 Inclusion–Exclusion

Lemma 1. Consider a family A of subsets of [m] and for each S ⊆ [m] define

A(S) = {A ∈ A : A ∩ S = ∅ },

the subfamily of subsets that avoid S. Let g(S) be the number of multisets of size
m obtained as the union of sets in A(S).

Then the number of disjoint set covers, i.e., subfamilies satisfying (1), is∑
S⊆[m]

(−1)
|S|
g(S). (2)

Proof. A disjoint set cover of [m] is an m-element sum of sets from A that

avoids no elements from [m], and thus these solutions are counted in g(∅) only.

Each other m-element multiset obtained as a sum of sets from A avoids some

elements T ⊆ [m] and therefore is counted in g(T ). It is also counted in g(S)

for all S ⊆ T , but not in any other g(S). Thus the multiset contributes once

to the term (−1)
|S|
g(S) for every S ⊆ T . However, these contributions cancel,

because every nonempty set T has the same number of odd sized and even sized

subsets. ��

Proposition 2. 1. Disjoint Set Cover for n subsets Ai ⊆ [m] of total size l

can be solved in polynomial space and time 2
m
l
O(1).

2. Exact Satisfiability with n variables and m clauses and total size l can be
solved in polynomial space and time 2

m
l
O(1).
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3. The number of perfect matchings in a graph on n vertices can be found in
polynomial space and time 2

n
n
O(1).

Proof. For Disjoint Set Cover, the algorithm evaluates the sum (2) and checks

if the result is nonzero. For each of the 2
m

terms, we calculate the size of A(S),

which can be accomplished in time O(l) by inspecting every Ai. Then g(S) can

be obtained through dynamic programming over the sizes of the sets in A(S),

in time l
O(1)

.

The other two claims are equivalent. ��

4 Number of Perfect Matchings

In the special case of perfect matchings the clause structure is given by a graph;

every edge being incident to exactly two vertices means that every ‘variable’ ap-

pears in exactly two ‘clauses.’ We can exploit this structure with an exponential

space algorithm to significantly reduce the time bound of Prop. 2.

Proposition 3. The number of perfect matchings in a graph on n vertices can
be found in time O(1.732

n
).

The remainder of this section establishes the above result. First, we need a

variation of (2):

Lemma 2. The number of perfect matchings in a graph with n vertices V is

1

(n/2)!

∑
X⊆V

(−1)
|X|(

e(V −X)
)n/2

. (3)

Proof. The term
(
e(V −X)

)n/2
counts the number of ways to pick n/2 ordered

edges between vertices in V −X with replacement. A perfect matching is such

a collection of n/2 edges, and is only counted in
(
e(V − ∅)

)n/2
in the above

formula, because every vertex is covered by some edge. Every other collection of

n/2 edges misses some vertices W , and therefore is counted once in
(
e(V −U)

)n/2
for every U ⊆W , but in no other terms. As before, these contributions cancel.

This approach counts every perfect matching (n/2)! times, once for every way

of ordering its edges. ��

Let G be a graph with n vertices V and m edges. Let a0(k) count the induced

subgraphs of G containing k edges and an even number of vertices, and let a1(k)

count those with an odd number. Rearranging (3) by summing over the possible

values of e(V −X) we can express the number of perfect matchings in G as

1

(n/2)!

m∑
k=1

(
a0(k)− a1(k)

)
k
n/2

. (4)

As we shall see, we can calculate ap(k) faster than the obvious 2
n
.
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We follow Williams [23] and divide the vertices of our graph in three sets

V0, V1, and V2 of equal size, assuming 3 divides n for readability. Next however,

the construction needs to be tailor-made to fit our application. For every triple

n0, n1, n2 ∈ {0, . . . ,
1
3n} and every triple e01, e12, e20 ∈ {0, . . . ,m} we build a

tripartite graph called H(n0, n1, n2, e01, e12, e20): The graph contains a vertex for

every size ni-subset of Vi (i = 0, 1, 2). An edge joins the vertices corresponding

to Xi ⊆ Vi and Xj ⊆ Vj for j = i + 1 (mod 3) whenever e(Xi, Xi ∪ Xj) =

eij . For p ∈ {0, 1} and k ∈ {0, . . . ,m} let Hp,k be the family of all graphs

H(n0, n1, n2, e01, e12, e20) satisfying

n0 + n1 + n2 = p (mod 2) and e01 + e12 + e20 = k. (5)

Lemma 3. The total number of triangles in Hp,k is ap(k).

Proof. We will in fact argue something stronger: the triangles in Hp,k correspond

one-to-one to the induced subgraphs of size of parity p containing exactly k edges.

Every triangle (X0, X1, X2) in a graph H(n0, n1, n2, e01, e12, e20) satisfying (5)

corresponds to an induced subgraph in G containing k edges whose intersection

with Vi is Xi, of size ni. In particular, two different triangles (X0, X1, X2) and

(Y0, Y1, Y2) represent different subgraphs. This is because either they were picked

from different graphs in Hp,k and thus |Xi| = |Yi| for some i = 0, 1, 2, or they

were selected from the same graph in which case Xi = Yi for some i = 0, 1, 2.

In the other direction, we note that any subgraph induced by the vertices

U ⊆ V containing k edges, is a triangle in the graph

H
(
|U0|, |U1|, |U2|, e(U0, U0 ∪ U1), e(U1, U1 ∪ U2), e(U2, U2 ∪ U0)

)
,

where Ui = U ∩ Vi for i = 0, 1, 2. ��

Lemma 4. The number of triangles in a graph on n vertices can be found in
time O(n

ω
) where ω = 2.376.

Proof. Let A be the adjacency matrix of the graph and compute A
2
. The sum of

all entries in A
2

whose corresponding entry in A is one is six times the number

of triangles. This is because the entry at row r and column c in A
2

counts the

number of paths of length two from vertex r to vertex c. Since each edge occurs

twice in A, the triangles are counted six times.

The matrix product is computed in the given time bound using the algorithm

of Coppersmith and Winograd [8]. ��

The graphs in Hp,k have at most 3 · 2
n/3

vertices and 3 · 2
2n/3

edges and can be

built within a polynomial factor of their size. Combining lemma 4 and lemma 3

for all choices of p ∈ {0, 1} and k ∈ {0, . . . ,m} after noting that |Hp,k| is n
O(1)

,

we conclude that we can calculate a table containing all the values ap(k) for

k ∈ [m] in time O
(
(2
n/3

)
ω
)

= O(1.732
n
). With such a table we can evaluate (4),

the incurred polynomial factor is absorbed by the asymptotic time bound. This

completes the proof of Prop. 3.
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5 Applications for TSP and Colouring

5.1 TSP

We observe that the algorithm of [13] can be applied to TSP with minimal

modifications.

Proposition 4. Traveling Salesman can be solved in polynomial space and run-
ning time O(4

n
n

logn
).

Proof. [Gurevich and Shelah] We consider the following variant: given n cities

with positive symmetric distances, find the shortest c1c2-path that visits every

city exactly once.

First observe that if such a path exists then the cities can be partitioned into

subsets C1 - c1, C2 - c2 of roughly equal size and a ‘middle’ city {m}, such

that the path first exhausts C1, then passes through m, and sub-sequentially

remains in C2. In other words, the path in Ci is a Hamiltonian cim-path in the

subproblem induced by Ci ∪ {m}, and it is the shortest of these paths.

This suggests the following algorithm: For all partitions {m} ∪ C1 ∪ C2 of

the cities with |C1| = �

1
2n�, |C2| =

⌊1
2 (n − 1)

⌋
, recursively find the shortest

Hamiltonian cim-paths Pi in the two instances induced by Ci ∪ {m} (i = 1, 2).

The combined path P1P2 is a Hamiltonian c1c2-path in the original instance.

Return the shortest of these paths.

At each level of the recursion, the algorithm considers (n− 2)
(

n−2
�(n−2)/2�

)
par-

titions and recurses on two instances with fewer than
1
2n + 1 cities. The time

bound follows.

The space required on each recursion level to enumerate all partitionings is

polynomial. Since the recursion depth is logarithmic in n, the polynomial space

bound is easily met. ��

5.2 Colouring

In a colouring χ, every colour class χ
−1

(k) is an independent set in the underlying

graph. Moreover, one of these classes C (for example, the largest) can be assumed

to be a maximal independent set (m.i.s.), i.e., not a proper subset of another

independent set. Otherwise, just change the colours of those vertices to C’s colour

and observe that this leads to no conflicts.

Proposition 5. The Chromatic Number of a graph with n vertices can be found
in polynomial space and time O(8.33

n
).

Proof. The colour classes correspond to a partition of the graph’s vertices into

independent sets I1 ∪ I2 ∪ · · · ∪ Ik, where I1 the largest of the sets and maximal

independent. The smaller k−1 sets can be collected into two families C1 and C2,

each containing at most
1
2n vertices in total. To see this, assume the Ii are ordered

according to size, largest first. Find the unique index r where |I1|+· · ·+|Ir| ≤
1
2n

but |I1|+ · · ·+ |Ir+1| >
1
2n. The family C1 consists of I2, . . . , Ir+1 and the family
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C2 consists of Ir+2, . . . , Ik. The two graphs induced by C1 and C2 can be viewed

as independent colouring problems.

This suggests the following algorithm: Consider all partitions of the vertices

into I ∪C1 ∪C2 with I maximal independent and both |Ci| at most
1
2n, and re-

cursively find the chromatic numbers χi of both Ci. Return the smallest resulting

1 + χ1 + χ2 among these partitions.

For the running time, all m.i.s. can be enumerated in time O(
3
√

3
n
n

3
) and

space O(n
3
) [21]. For each such choice we need to consider fewer than 2

n
parti-

tions of the remaining vertices into two sets. The instance size is halved at each

level, so the total running time amounts to (2
3
√

3)
2n
n
O(1)

= O(8.33
n
). At each

level of the recursion, the algorithm uses only polynomial space. ��

We provide an algorithm with a better worst-case running time in Prop. 6.

However, the technique presented here is potentially faster for some instances

after some modifications. A simple improvement is to add a test for bipartiteness

on the graph both before and after the removal of a m.i.s. on each level of

recursion.

The algorithm works with slight modifications also for Chromatic Sum (some-

times called Minimum Colour Sum), the problem of finding a colouring that

minimises
∑

v∈V χ(v).

5.3 Inclusion–Exclusion Algorithm for Colouring

Let M denote the family of maximal independent sets of a graph G = (V,E)

and let ck(G) denote the number of ways to cover G with k distinct, possi-

bly overlapping, maximal independent sets, i.e., the number of ways to chose

M1, . . . ,Mk ∈ M (without replacement) such that M1 ∪ · · · ∪Mk = V . We can

use this value to determine if the graph can be k-coloured:

Lemma 5. χ(G) = min{ k : ck(G) > 0 }.

Proof. First we note that whenever ck(G) > 0 then G can be k-coloured: If

I1, . . . , Ik is a set of independent subsets (disjoint or not) that cover G then

χ(v) = min{ r : v ∈ Ir } is a legal colouring.

Now assume χ(G) = k; we will show ck(G) > 0. If G can be k-coloured then

the colour classes provide a covering with k independent subsets, each of which

can be extended to a maximal independent one. Moreover, if the colouring is

optimal, these m.i.s. are all distinct. To see this, assume that C1 = χ
−1

(1) and

C2 = χ
−1

(2) are subsets of the same independent set. Then we could recolour

χ(C2) = 1, using only k − 1 colours in total. ��

This is useful because the number ck can be expressed by an inclusion–exclusion

formula.

Lemma 6. For every vertex subset S ⊆ V let a(S) denote the number of M ∈ M

that do not intersect S. Then

ck(G) =

∑
S⊆V

(−1)
|S|
(
a(S)

k

)
.
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Proof. A covering of G with k m.i.s. avoids no vertices. and thus contributes

to the term corresponding to S = ∅. On the other hand, every non-covering

family of k m.i.s. avoids some vertices T ⊂ V and thus contributes once to the

terms corresponding to every subset S ⊆ T but no other terms. As before, these

contributions cancel. ��

Proposition 6. The chromatic number of a graph can be found in time
O(2.4423

n
) and polynomial space.

Proof. The algorithm evaluates ck(G) using the above lemma for k = 1, 2, ..., n.

For every S, to calculate a(S) we enumerate all m.i.s. in G[V − S] and check

for each of them if it is maximal also in G. The number of maximal independent

sets in a graph on r vertices is at most 3
r/3

[18], and they can be listed in

polynomial space and polynomial overhead [21]. Furthermore, evaluating the

binomial coefficients
(
a(S)
k

)
is also a polynomial time task.

The total running time for an n vertex graph is

n
O(1)

n∑
r=0

(
n

r

)
3
r/3

= O(2.4423
n
).

Note that each
(
a(S)
k

)
is O(2

n2
), and thus polynomial space suffices to hold all

calculations. ��

The above polynomial space algorithm computes a(S) anew for each S. We can

improve the time bound using exponential space to store such computations,

relying on fast matrix multiplication [8] as we did in Prop. 3.

Proposition 7. The chromatic number of a graph can be found in time
O(2.3236

n
) and space 2

n
n
O(1).

Proof. Partition V into two equal size sets, U and U
′

(assume n is even for

simplicity). Construct two (0, 1)-matrices A and B as follows. The 2
n/2

× |M|

matrix A is indexed by subsets T ⊆ U and m.i.s. M ∈ M (in G) such that the

corresponding entry is 1 if and only if M avoids T :

AT,M =

{
1, if M ∩ T = ∅,
0, otherwise.

Similarly, the |M| × 2
n/2

matrix B is indexed by M ∈ M and T
′
⊆ U

′
. In the

product AB, the entry indexed by T, T
′
counts the number of m.i.s. (in G) that

avoid T ∪ T
′
. Thus, after computing the matrix product, we can find the value

of a(S) at the entry indexed by S ∩ U, S ∩ U
′
in constant time for each S ⊆ V .

The running time is dominated by the calculation of AB, which yields the

stated time bound. However, storing the two matrices A and B requires space

2
n/2

3
n/3

n
O(1)

at worst, which is larger than claimed.

We can save space by not storing all of A and B at the same time. De-

compose the matrices into r = �|M|/2
n/2

� square matrices of dimension 2
n/2

,
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A = (A1, A2, · · · , Ar) and B = (B1, B2, · · · , Br)
t
, possibly padding the last ones

with 0s. Then AB = A1B1 + A2B2 + · · · + ArBr. The algorithm computes the

partial sums A1B1+· · ·+AiBi for i = 1, 2, . . . , r, storing only the ith partial sum.

The next term Ai+1Bi+1 can be computed in space 2
n
n
O(1)

and time 2
ωn/2

. The

total running time is dominated by the r2
ωn/2

≤ |M|2
−n/2

2
ωn/2

≤ 3
n/3

2
(ω−1)n/2

steps to build the matrix (plus the time to perform the calculations of lemma

6), which evaluates to the stated bound, absorbing polynomial factors. ��

Remark. These bounds depend on the number of maximal independent sets in

the input instance; graphs with fewer m.i.s. have better guarantees. For example,

triangle-free graphs have at most 2
n/2

maximal independent sets [14], so for this

class of graphs, the above algorithm runs in time O(2
ωn/2

) = O(2.2784
n
).
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Abstract. Wavelet Trees have been introduced in [Grossi, Gupta and
Vitter, SODA ’03] and have been rapidly recognized as a very flexible
tool for the design of compressed full-text indexes and data compressors.
Although several papers have investigated the beauty and usefulness of
this data structure in the full-text indexing scenario, its impact on data
compression has not been fully explored. In this paper we provide a
complete theoretical analysis of a wide class of compression algorithms
based on Wavelet Trees. We also show how to improve their asymp-
totic performance by introducing a novel framework, called Generalized
Wavelet Trees, that aims for the best combination of binary compressors
(like, Run-Length encoders) versus non-binary compressors (like, Huff-
man and Arithmetic encoders) and Wavelet Trees of properly-designed
shapes. As a corollary, we prove high-order entropy bounds for the chal-
lenging combination of Burrows-Wheeler Transform and Wavelet Trees.

1 Introduction

The Burrows-Wheeler Transform [3] (bwt for short) has changed the way in

which fundamental tasks for string processing and data retrieval, such as com-

pression and indexing, are designed and engineered (see e.g. [4,5,7,9,10,11]). The

transform reduces the problem of high-order entropy compression to the appar-

ently simpler task of designing and engineering good order-zero (or memoryless)

compressors. This point has lead to the paradigm of compression boosting pre-

sented in [4]. However, despite nearly 60 years of investigation in the design of
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good memoryless compressors, no general theory for the design of order-zero

compressors suited for the bwt is available, since it poses special challenges. In-

deed, bwt is a string in which symbols following the same context (substring)

are grouped together, giving raise to clusters of nearly identical symbols. A good

order-zero compressor must both adapt fast to those rapidly changing contexts

and compress efficiently the runs of identical symbols. By now it is understood

that one needs a clever combination of classic order-zero compressors and run

length encoding techniques. However, such a design problem is mostly open. Re-

cently Grossi et al. [7,8] proposed an elegant and effective solution to the posed

design problem: the Wavelet Tree. It is a binary tree data structure that reduces

the compression of a string over a finite alphabet to the compression of a set of

binary strings. The latter problem is then solved via Run Length Encoding or

Gap Encoding techniques. A formal definition is given in Section 2.1.

Wavelet Trees are remarkably natural since they use a well known decompo-

sition of entropy in terms of binary entropy and, in this respect, it is surprising

that it took so long to define and put them to good use. The mentioned ground-

breaking work by Grossi et al. highlights the beauty and usefulness of this data

structure mainly in the context of full-text indexing, and investigates a few of

its virtues both theoretically and experimentally in the data compression setting

[6,8]. Yet, it is still open the fundamental question of whether Wavelet Trees can

provide a data structural paradigm based on which one can design good order-

zero compression algorithms for the Burrows-Wheeler Transform.

Our main contribution is to answer this question in the affirmative by pro-

viding a general paradigm, and associated analytic tools, for the design of good

order-zero compressors for the bwt. It is also rather fortunate that a part of our

theoretical results either strengthen the ones by Grossi et al. or fully support the

experimental evidence presented by those researchers and cleverly used in their

engineering choices. The remaining part of our results highlight new virtues of

Wavelet Trees. More specifically, in this paper:

(A) We provide a complete theoretical analysis of Wavelet Trees as stand-alone,
general purpose, order-zero compressors for an arbitrary string σ. We consider

both the case in which binary strings associated to the tree are compressed using

Run Length Encoding (Rle), and refer to it as Rle Wavelet Tree, and the case

in which Gap Encoding (Ge) is used, and refer to it as Ge Wavelet Tree. In both

cases, a generic prefix-free encoding of the integers is used as a subroutine, thus

dealing with the typical scenario of use for Wavelet Trees (see [6,7,8]). Our anal-

ysis is done in terms of the features of these prefix-free encodings and H
∗
0 (σ), the

modified order-zero entropy of the string σ, defined in Section 2. As a notable

Corollary, we also obtain an analysis of Inversion Frequencies coding [2] offering

a theoretical justification of the better compression observed in practice by this

technique with respect to Move-to-Front coding.

(B) We study the use of Wavelet Trees to compress the output of the bwt. We

show that Rle Wavelet Trees achieve a compression bound in terms of H
∗
k (σ).

The technical results are in Section 4 and they improve Theorem 3.2 in [8] in
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that our final bound does not contain the additive term |σ|. We also show that

Ge Wavelet Trees cannot achieve analogous bounds. A striking consequence of

our analytic results is to give full theoretic support to the engineering choices

made in [6,8] where, based on a punctual experimental analysis of the data, the

former method is preferred to the latter to compress the output of the bwt.

(C) We define Generalized Wavelet Trees that add to this class of data struc-

tures in several ways. In order to present our results here, we need to mention

some facts about Wavelet Trees, when they are used as stand-alone order-zero

compressors. The same considerations apply when they are used in (B). Wavelet

Trees reduce the problem of compressing a string to that of compressing a set of

binary strings. That set is uniquely identified by: (C.1) the shape (or topology)

of the binary tree underlying the Wavelet Tree; (C.2) an assignment of alphabet

symbols to the leaves of the tree. How to choose the best Wavelet Tree, in terms

of number of bits produced for compression, is open. Grossi et al. establish worst-

case bounds that hold for the entire family of Wavelet Trees and therefore they

do not depend on (C.1) and (C.2). They also bring some experimental evidence

that choosing the “best” Wavelet Tree may be difficult [8, Sect. 3.1]. It is possible

to exhibit an infinite family of strings over an alphabet Σ for which changing

the Wavelet Tree shape (C.1) influences the coding cost by a factor Θ(log |Σ|),

and changing the assignment of symbols to leaves (C.2) influences the coding

cost by a factor Θ(|Σ|). So, the choice of the best tree cannot be neglected and

remains open. Moreover, (C.3) Wavelet Trees commit to binary compressors,

loosing the potential advantage that might come from a mixed strategy in which

only some strings are binary and the others are defined on an arbitrary alphabet

(and compressed via general purpose order-zero compressors, such as Arithmetic

and Huffman coding). Again, it is possible to exhibit an infinite family of strings

for which a mixed strategy yields a constant multiplicative factor improvement

over standard Wavelet Trees. So, (C.3) is relevant and open.

We introduce the new paradigm of Generalized Wavelet Trees that allows

us to reduce the compression of a string σ to the identification of a set of

strings, for which only a part may be binary, that are compressed via the mixed

strategy sketched above. We develop a combinatorial optimization framework

so that one can address points (C.1)-(C.3) simultaneously. Moreover, we pro-

vide a polynomial-time algorithm for finding the optimal mixed strategy for a

Generalized Wavelet Tree of fixed shape (Theorem 5). In addition, we provide

a polynomial-time algorithm for selecting the optimal tree-shape for Generalized

Wavelet Trees when the size of the alphabet is constant and the assignment of

symbols to the leaves of the tree is fixed (Theorem 6). Apart from their intrinsic

interest, being Wavelet Trees a special case, those two results shed some light on

a problem implicitly posed in [8], where it is reported that a closer inspection

of the data did not yield any insights as to how to generate a space-optimizing

tree, even with the use of heuristics.

Due to space limitations some proofs will be either omitted or simply sketched.
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2 Background and Notation

Let s be a string over the alphabet Σ = {a1, . . . , ah} and, for each ai ∈ Σ, let ni

be the number of occurrences of ai in s. Throughout this paper we assume that

all logarithms are taken to the base 2 and 0 log 0 = 0. The 0-th order empirical
entropy of the string s is defined as H0(s) = −

∑h
i=1(ni/|s|) log(ni/|s|). It is

well known that H0 is the maximum compression we can achieve using a fixed

codeword for each alphabet symbol. We can achieve a greater compression if the

codeword we use for each symbol depends on the k symbols preceding it, since

the maximum compression is now bounded by the k-th order entropy Hk(s)

(see [11] for the formal definition).

For highly compressible strings, |s|Hk(s) fails to provide a reasonable bound

to the performance of compression algorithms (see discussion in [4,11]). For that

reason, [11] introduced the notion of 0-th order modified empirical entropy:

H
∗
0 (s) =

 0 if |s| = 0

(1 + �log |s|�)/|s| if |s| = 0 and H0(s) = 0

H0(s) otherwise.

(1)

Note that for a non-empty string s, |s|H
∗
0 (s) is at least equal to the number

of bits needed to write down the length of s in binary. The k-th order modified
empirical entropyH∗

k is then defined in terms ofH
∗
0 as the maximum compression

we can achieve by looking at no more than k symbols preceding the one to be

compressed.

2.1 Wavelet Trees

For ease of exposition we use a slightly more verbose notation than the one in [7].

Let TΣ be a complete binary tree with |Σ| leaves. We associate one-to-one the

symbols in Σ to the leaves of TΣ and refer to it as an alphabetic tree. Given a

string s over Σ the full Wavelet Tree Wf (s) is the labeled tree returned by the

procedure TreeLabel of Fig. 1 (see also Fig. 2). Note that to each internal node

u ∈ Wf (s) we associate two strings of equal length. The first one, assigned in

Step 1, is a string over Σ and we denote it by s(u). The second one, assigned

in Step 3, is a binary string and we denote it by s
01

(u). Note that the length of

these strings is equal to the number of occurrences in s of the symbols associated

to the leaves of the subtree rooted at u.

In this paper we use Σ
(s)

to denote the set of symbols that appear in s. If

Σ
(s)

= Σ, the Wavelet Tree Wf (s) has the same shape as TΣ and is therefore

a complete binary tree. If Σ
(s)

⊂ Σ, Wf (s) is not necessarily a complete binary

tree since it may contain unary paths. By contracting all unary paths we obtain

a pruned Wavelet Tree Wp(s) which is a complete binary tree with |Σ
(s)
| leaves

and |Σ
(s)
| − 1 internal nodes (see Fig. 2).

As observed in [7], we can always retrieve s given the binary strings s
01

(u)

associated to the internal nodes of a Wavelet Tree and the mapping between

leaves and alphabetic symbols. Hence, Wavelet Trees are a tool for encoding
arbitrary strings using only an encoder for binary strings. Let C denote any
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Procedure TreeLabel(u, s)

1. Assign string s to node u. If u has no children return.
2. Let uL (resp. uR) denote the left (resp. right) child of u. Let Σ(uL) (reps. Σ(uR)) be

the set of symbols associated to the leaves of the subtree rooted at uL (resp. uR).
3. Assign to node u the binary string obtained from s replacing the symbols in Σ(uL)

with 0, and the symbols in Σ(uR) with 1.
4. Let sL denote the string obtained from s removing the symbols in Σ(uR). If |sL| >

0, TreeLabel(uL, sL).
5. Let sR denote the string obtained from s removing the symbols in Σ(uL). If |sR| >

0, TreeLabel(uR, sR).

Fig. 1. Procedure TreeLabel for building the full Wavelet Tree Wf (s) given the alpha-

betic tree TΣ and the string s. The procedure is called with u = root(T ).

Fig. 2. An alphabetic tree (left) for the alphabet Σ = {a,b,c,d,e,f}. Given the string

s = fcdcfcffd, we show its full (center) and pruned (right) Wavelet Trees.

algorithm for encoding binary strings. For any internal node u we denote by

C
∗
(u) the length of the encoding of s

01
(u) via C, that is, C

∗
(u) = |C(s

01
(u))|.

With a little abuse of notation we write C
∗
(Wp(s)) to denote the total cost of

encoding the Wavelet Tree Wp(s). Namely, C
∗
(Wp(s)) =

∑
u∈Wp(s) C

∗
(u), where

the sum is done over the internal nodes only. C
∗
(Wf (s)) is defined similarly. The

following fundamental property of pruned Wavelet Trees was established in [7]

and shows that there is essentially no loss in compression performance when we

compress an arbitrary string s using Wavelet Trees and a binary encoder.

Theorem 1 (Grossi et al., ACM Soda 2003). Let C be a binary encoder
such that for any binary string z the bound |C(z)| ≤ λ|z|H0(z) + η|z| + µ holds
with constant λ, η, µ. Then, for a string s drawn from any alphabet Σ(s), we
have C∗

(Wp(s)) =
∑

u∈Wp(s) |C(s
01

(u))| ≤ λ|s|H0(s)+ η|s|+(|Σ
(s)
|− 1)µ. The

bound holds regardless of the shape of Wp(s). The same result holds when the
entropy H0 is replaced by the modified entropy H

∗
0 . ��
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3 Achieving 0-th Order Entropy with Wavelet Trees

This section contains a technical outline of the results claimed in (A) of the Intro-

duction, where Wavelet Trees are used as stand alone, general purpose, order-zero

compressors. In particular, we analyze the performance of Rle Wavelet Trees

(Section 3.1) and Ge Wavelet Trees (Section 3.2) showing that Ge is superior

to Rle as an order-zero compressor over Wavelet Trees. Nevertheless, we will

show in Section 4 that Ge Wavelet Trees, unlike Rle Wavelet Trees, are un-

able to achieve the k-th order entropy when used to compress the output of the

Burrows-Wheeler Transform. This provides a theoretical ground to the practical

choices and experimentation made in [6,8]. Moreover, a remarkable corollary of

this section is a theoretical analysis of Inversion Frequencies coding [2].

Let CPF denote a prefix-free encoding of the integers having logarithmic cost,

namely |CPF (n)| ≤ a logn + b, for n ≥ 1. Note that since |CPF (1)| ≤ b we must

have b ≥ 1. Also note that for γ codes we have a = 2 and b = 1. This means

that it is worthwhile to investigate only prefix codes with a ≤ 2. Indeed, a code

with a > 2 (and necessarily b ≥ 1) would be worse than γ codes for any n and

therefore not interesting. Hence in the following we assume a ≤ 2, b ≥ 1 and

thus a ≤ 2b and a ≤ b+ 1.

3.1 Analysis of Rle Wavelet Trees

For any binary string s = a
�1
1 a

�2
2 · · · a

�k

k , with ai ∈ {0, 1} and ai = ai+1, we define

CRLE(s) = a1CPF (�1)CPF (�2) · · · CPF (�k). Note that we need to store explicitly

the bit a1 since the values �1, . . . , �k alone are not sufficient to retrieve s.

Lemma 1. For any binary string s = a
�1
1 a

�2
2 · · · a

�k

k , with ai ∈ {0, 1} and ai =

ai+1, we have |CRLE(s)| = 1+
∑

i=1,k |CPF (�i)| ≤ 2 max(a, b)|s|H
∗
0 (s)+b+1. ��

Combining the above Lemma with Theorem 1 we immediately get:

Corollary 1. For any string s over the alphabet Σ(s), if the internal nodes of
the Wavelet Tree Wp(s) are encoded using Rle we have

C
∗
(Wp(s)) ≤ 2 max(a, b)|s|H

∗
0 (s) + (|Σ

(s)
| − 1)(b+ 1). ��

Consider now the algorithm rle wt defined as follows. We first encode |s| using

|CPF (|s|)| ≤ a log |s|+ b bits. Then we encode the internal nodes of the Wavelet

Tree using Rle. The internal nodes are encoded in a predetermined order—for

example heap order—such that the encoding of a node u always precedes the

encoding of its children (if any).
1

This ensures that from the output of rle wt we

can always retrieve s. To see this, we observe that when we start the decoding of

the string s
01

(u) we already know its length |s
01

(u)| and therefore no additional

bits are needed to mark the end of the run-length encoding. Since the output of

rle wt consists of |CPF (|s|)| + C
∗
(Wp(s)) bits, by Corollary 1 we get:

Theorem 2. For any string s over the alphabet Σ(s) we have

|rle wt(s)| ≤ 2 max(a, b)|s|H
∗
0 (s) + (b+ 1)|Σ

(s)
|+ a log |s| − 1. ��

1 We are assuming that the Wavelet Tree shape is hard-coded in the (de)compressor.
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Fig. 3. The skewed Wavelet Tree for the string s = dabbdabc. Symbol b is the most

frequent one and is therefore associated to the leftmost leaf.

3.2 Analysis of Ge Wavelet Trees

For any binary string s with exactly r 1’s, let p1, p2, . . . , pr denote their positions

in s, and let g1, . . . , gr be defined by g1 = p1, gi = pi − pi−1 for i = 2, . . . , r. We

denote by CGap(s) the concatenation CPF (g1)CPF (g2) · · · CPF (gr).

Lemma 2. Let s be a binary string with r 1’s. If 1 ≤ r ≤ |s|/2, we have

|CGap(s)| = |CPF (g1)|+ · · ·+ |CPF (gr)| ≤ max(a, b)|s|H0(s). ��

Let s be a string over the alphabet Σ
(s)

. Consider the following algorithm called

ge wt. First we encode the length of s using a log |s| + b bits and the number

of occurrences of each symbol using a total of |Σ
(s)
| �log |s|� bits. Then, we

build a Wavelet Tree completely skewed to the left such that the most frequent

symbol is associated to the leftmost leaf. The other symbols are associated to

the leaves in reverse alphabetic order (see Fig. 3). Finally, we use Ge to encode

the strings s
01

(u1), . . . , s
01

(u|Σ(s)|−1) associated to the internal nodes of such

Wavelet Tree. Note that this information is sufficient to reconstruct the input

string s. The crucial point is that the decoding starts with the retrieval of the

number of occurrences of each symbol. Hence, we can immediately determine

the association between leaves and symbols and when we later decode a string

s
01

(ui) we already know its length and the number of 1’s in it.

Theorem 3. For any string s, it is

|ge wt(s)| ≤ max(a, b)|s|H0(s) + |Σ
(s)
| �log |s|�+ a log |s|+ b.

Proof. We only need to show that
∑

i |CGap(s
01

(ui))| ≤ max(a, b)|s|H0(s). To

this end we observe that assigning the most frequent symbol to the leftmost

leaf ensures that each s
01

(ui) contains more 0’s than 1’s. The thesis follows by

Lemma 2 and Theorem 1. ��

Let us give a closer look to the ge wt algorithm when Σ = {a1, a2, . . . , ah}

and ah is the most frequent symbol. In this case, when we encode s
01

(ui) we

are encoding the positions of the symbol ai in the string s with the symbols

a1, . . . , ai−1 removed. In other words, we are encoding the number of occurrences
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of ai+1, . . . , ah between two consecutive occurrences of ai. This strategy is known

as Inversion Frequencies (If) and was first suggested in [2] as an alternative to

Move-to-Front (MTF) encoding. We have therefore the following result.

Corollary 2. The variant of If-coding in which the most frequent symbol is
processed last produces a sequence of integers that we can encode with CPF in at
most max(a, b)|s|H0(s) bits. ��

Standard analysis of MTF says that combining CPF with MTF outputs at most

a|s|H0(s) + b|s| bits. Hence, the above corollary is the first theoretical jus-

tification of the fact, observed by practitioners, that If-coding is superior to

MTF [1,2]. Corollary 2 also provides a theoretical justification for the strategy,

suggested in [1], of processing the symbols in order of increasing frequency.

4 Achieving H∗
k with Rle Wavelet Trees and bwt

This section provides the technical details about the results claimed in (B) of

the Introduction. In particular, we show that by using Rle Wavelet Trees as a

post-processor of the bwt one can achieve higher order entropy compression (cfr

[10]). We also show that the same result cannot hold for Ge Wavelet Trees.

We need to recall a key property of the Burrows-Wheeler Transform of a string

σ [11]: If s = bwt(σ) then for any k ≥ 0 there exists a partition s = s1s2 · · · st
such that

2
t ≤ |Σ|

k
and |σ|H

∗
k (σ) =

∑t
i=1 |si| H

∗
0 (si). In other words, the bwt

is a tool for achieving the k-th order entropy H
∗
k provided that we can achieve

the entropy H
∗
0 on each si. An analogous result holds for Hk as well.

The proof idea is to show that compressing the whole s via one Rle Wavelet

Tree is not much worse than compressing each string si separately. In order to

prove such a result, some care is needed. We can assume without loss of generality

that Σ
(s)

= Σ. However, Σ
(si) will not, in general, be equal to Σ

(s)
and this

creates some technical difficulties and forces us to consider both full and pruned

Wavelet Trees. Indeed, if we “slice” the Wavelet Tree Wp(s) according to the

partition s = s1 · · · st we get full Wavelet Trees for the strings si’s.

Our first lemma states that, for full Rle Wavelet Trees, partitioning a string

does not improve compression.

Lemma 3. Let α = α1α2 be a string over the alphabet Σ. We have C∗
(Wf (α)) ≤

C
∗
(Wf (α1)) + C

∗
(Wf (α2)). ��

Since Theorem 1 bounds the cost of pruned Wavelet Trees, in order to use

Lemma 3 we need to bound C
∗
(Wf (αi)) in terms of C

∗
(Wp(αi)), for i = 1, 2.

Lemma 4. Let β be a string over the alphabet Σ. We have

C
∗
(Wf (β)) ≤ C

∗
(Wp(β))+(|Σ|−1)(a log |β|+b+1). ��

2 For simplicity we ignore the end-of-file symbol and the first k symbols of σ that do
not belong to any si. We will take care of these details in the full version.
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We are now able to bound the size of a Rle Wavelet Tree over the string s =

bwt(σ) in terms of the k-th order entropy of σ.

Theorem 4. Let σ denote a string over the alphabet Σ = Σ
(s), and let s =

bwt(σ). For any k ≥ 0 we have

C
∗
(Wp(s)) ≤ 2 max(a, b)|σ|H

∗
k (σ) + |Σ|

k+1
(2b+ 2 + a log(|σ|)). (2)

In addition, if |Σ| = O(polylog(|σ|)), for all k ≤ α log|Σ| |σ|, constant 0 < α < 1,
we have

C
∗
(Wp(s)) ≤ 2 max(a, b)|σ|H

∗
k (σ) + o(|σ|). (3)

Proof. Let s = s1 · · · st denote the partition of s such that |σ| H
∗
k (σ) =∑t

i=1 |si| H
∗
0 (si). By Lemma 3, and the fact that Σ = Σ

(s)
, we have that

C
∗
(Wp(s)) = C

∗
(Wf (s)) ≤

∑t
i=1 C

∗
(Wf (si)). By Lemma 4, we get

C
∗
(Wp(s)) ≤

t∑
i=1

C
∗
(Wp(si)) + (|Σ| − 1)

t∑
i=1

(a log |si|+ b+ 1)

=

t∑
i=1

C
∗
(Wp(si)) + (|Σ| − 1)

t∑
i=1

a log |si|+ t(|Σ| − 1)(b+ 1)

Since
∑t

i=1 log |si| ≤ t log(|s|/t) and t ≤ |Σ|
k
, using Corollary 1 we get

C
∗
(Wp(s)) ≤ 2 max(a, b)

(∑t

i=1
|si|H

∗
0 (si)

)
+t(|Σ| − 1)a log(|s|/t) + 2t(|Σ| − 1)(b+ 1) (4)

≤ 2 max(a, b)|σ|H
∗
k (σ) + t(|Σ| − 1)(2b+ 2 + a log(|s|/t))

which implies (2) since |s| = |σ|. To prove (3) we start from (4) and note that

|Σ|’s size and the inequality t ≤ |Σ|
k

imply t|Σ| log(|s|/t) = o(|s|) = o(|σ|). ��

Theorem 4 shows that Rle Wavelet Trees achieve the k-th order entropy with the

same multiplicative constant 2 max(a, b) that Rle achieves with respect to H
∗
0

(Lemma 1). Thus, Wavelet Trees are a sort of booster for Rle (cfr. [4]). It is

possible to prove (details in the full paper) that if we apply the Compression

Boosting algorithm [4] to Rle we get slightly better bounds than the ones of

Theorem 4, the improvement being in the term not containing H
∗
k . However,

Compression Boosting makes use of a non trivial (even if linear time) partitioning

algorithm. It is therefore not obvious which approach is preferable in practice.

In proving Theorem 4 we have used some rather coarse upper bounds and we

believe that the result can be significantly improved. However, there are some

limits to the possible improvements. The following example shows that, even for

constant size alphabets, the o(|σ|) term in (3) cannot be reduced to Θ(1).

Example 1. LetΣ = {1, 2, . . . ,m}, and let σ = (123 · · ·m)
n
. We have |σ|H

∗
1 (σ) ≈

m logn and s = bwt(σ) = m
n
1
n
2
n
· · · (m−1)

n
. Consider a balanced Wavelet Tree
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of height �logm�. It is easy to see that there exists an alphabet ordering such that

the internal nodes of the Wavelet Tree all consist of alternate sequences of 0
n

and

1
n
. Even encoding these sequences with logn bits each would yield a total cost of

about (m logm) logn ≈ (logm)|σ|H
∗
1 (σ) bits. ��

Finally, it is natural to ask whether we can repeat the above analysis and prove

a bound for Ge Wavelet Trees in terms of the k-th order entropy. Unfortunately

the answer is no! The problem is that when we encode s with Ge we have

to make some global choices—e.g., the shape of the tree in ge wt, the role of

zeros or ones in each internal node in the algorithm of [8]—and these are not

necessarily good choices for every substring si. Hence, we can still splitWf (s) into

Wf (s1), . . . ,Wf (st), but it is not always true that Wf (si) ≤ λ|si|H0(si)+ o(|si|).

As a more concrete example, consider the string σ = (01)
n
. We have |σ|H

∗
1 (σ) =

Θ(logn) and s = bwt(σ) = 1
n
0
n
. Wp(s) consists only of the root with associated

string 1
n
0
n
, that can encode the gaps between either 1’s or 0’s. In both cases

the output will be Θ(n) bits, thus exponentially larger than |σ|H
∗
1 (σ).

5 Generalized Wavelet Trees

In point (C) of the Introduction we discussed the impact on the cost of a Wavelet

Tree of: (C.1) its (binary) shape, (C.2) the assignment of alphabet symbols to

its leaves, (C.3) the possible use of non-binary compressors to encode the strings

associated to its internal nodes. Those examples motivate us to introduce and

discuss Generalized Wavelet Trees, a new paradigm for the design of effective

order-zero compressors. Let C01 and CΣ be two compressors such that C01 is

specialized to binary strings while CΣ is a generic compressor. We assume that

C01 and CΣ satisfy the following property, which holds—for example—when C01
is Rle (with γ codes or order-2 Fibonacci codes used for the coding of integers,

see e.g. Lemma 1) and CΣ is Arithmetic or Huffman coding.

Property 1. (a) For any binary string x, |C01(x)| ≤ α|x|H
∗
0 (x) + β bits, where

α and β are constants; (b) For any string y, |CΣ(y)| ≤ |y|H0(y) + η|y|+ µ bits,

where η and µ are constants; (c) the running time of C01 and CΣ is a convex

function (say T01 and TΣ) and their working space is a non decreasing function

(say S01 and SΣ). ��

Given the Wavelet Tree Wp(s), a subset L of its nodes is a leaf cover if every

leaf of Wp(s) has a unique ancestor in L (see [4, Sect. 4]). Let L be a leaf cover

of Wp(s) and let W
L
p (s) be the tree obtained by removing all nodes in Wp(s)

descending from nodes in L. We assign colors to nodes of W
L
p (s) as follows:

all leaves are black and the remaining nodes red. We use C01 to compress all

binary strings s
01

(u), u ∈ W
L
p (s) and red, while we use CΣ to compress all

strings s(u), u ∈ W
L
p (s) and black. Nodes that are leaves of Wp(s) are ignored

(as usual). It is a simple exercise to work out the details on how to make this

encoding decodable.
3

The cost C
∗
(W

L
p (s)) is the total number of bits produced

3 Note that we need to encode which compressor is used at each node and (possibly)
the tree shape. For simplicity in the following we ignore this Θ(|Σ|) bits overhead.
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(1) If r is the only node, let Copt(r) ← |C01(s)| and L(r) ← {r}.
(2) Else, visit Wp(s) in post-order. Let u be the currently visited node.

(2.1) If u is a leaf, let Z(u) ← 0 and L(u) ← {u}. Return.
(2.2) Compute Z(u) ← min {|CΣ(s(u))|, |C01(s

01(u))| + Z(uL) + Z(uR)}.
(2.3) If Z(u) = |CΣ(s(u))| then L(u) ← {u}, else L(u) ← L(uL) ∪ L(uR).

(3) Set Lmin ← L(root(T )).

Fig. 4. The pseudocode for the linear-time computation of an optimal leaf cover Lmin

for a given decomposition tree Ts

by the encoding process just described. In particular, a red node u contributes

|C01(s
01

(u))| bits, while a black node contributes |CΣ(s(u))| bits.

Example 2. When L = root(Wp(s)) we compress s using CΣ only. By Prop-

erty 1(b) we have C
∗
(W

L
p (s)) ≤ |s|H0(s) + η|s| + µ. The other extreme case is

when L consists of all the leaves of Wp(s). In this case we never use CΣ and we

have C
∗
(W

L
p (s)) ≤ α|s|H

∗
0 (s)+β(|Σ|−1) by Property 1(a) and Theorem 1. ��

We note that when the algorithms C01 and CΣ are fixed, the cost C
∗
(W

L
p (s))

depends on two factors: the shape of the alphabetic tree TΣ , and the leaf cover L.

The former determines the shape of the Wavelet Tree, the latter determines the

assignment of C01 and CΣ to the nodes of Wp(s). It is natural to consider the

following two optimization problems.

Problem 1. Given a string s and a Wavelet Tree Wp(s), find the optimal leaf

cover Lmin that minimizes the cost function C
∗
(W

L
p (s)). Let C

∗
opt(Wp(s)) be the

corresponding optimal cost.

Problem 2. Given a string s, find an alphabetic tree TΣ and a leaf cover Lmin
for that tree giving the minimum of the function C

∗
opt(Wp(s)). That is, we are

interested in finding both a shape of the Wavelet Tree, and an assignment of C01
and CΣ to the Wavelet Tree nodes, so that the resulting compressed string is the

shortest possible.

Problem 2 is a global optimization problem, while Problem 1 is a much more con-

strained local optimization problem. Note that by Example 2 we haveC
∗
opt(Wp(s))

≤ min(|s|H
∗
0 (s) + η|s|+ µ, α|s|H

∗
0 (s) + β(|Σ| − 1)).

5.1 Optimization Algorithms (Sketch)

The first algorithm we sketch is an efficient algorithm for the solution of Prob-

lem 1. The pseudo-code is given in Figure 4. We have

Theorem 5. Given two compressors satisfying Property 1 and a Wavelet Tree
Wp(s), the algorithm in Figure 4 solves Problem 1 in O(|Σ|(T01(|s|) + TΣ(|s|)))

time and O(|s| log |s|+ max(S01(|s|), SΣ(|s|))) bits of space.

Proof. (Sketch). The correctness of the algorithm hinges on a decomposability
property of the cost functions associated to Lmin with respect to the subtrees of
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Wp(s). Such a property is essentially the same used in [4, Sect. 4.5], here exploited

to devise an optimal Generalized Wavelet Tree. As for the time analysis, it is

based on the convexity of the functions T01(·) and TΣ(·) which implies that on

any Wavelet Tree level we spend O(T01(|s|) + TΣ(|s|)) time. ��

Since we are assuming that the alphabet is of constant size, the algorithm of

Figure 4 can be turned into an exhaustive search procedure for the solution

of Problem 2. The time complexity would be polynomial in |s| but at least

exponential in |Σ|. Although we are not able to provide algorithms for the global

optima with time complexity polynomial both in |Σ| and |s|, we are able to settle

the important special case in which the ordering of the alphabet is assigned.

Using Dynamic Programming techniques, we can show:

Theorem 6. Consider a string s and fix an ordering ≺ of the alphabet symbols
appearing in the string. Then, one can solve Problem 2 constrained to that or-
dering of Σ, in O(|Σ|

4
(T01(|s|) + Tgen(|s|)) time. ��
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Abstract. We consider algorithmic questions concerning the existence,
tractability and quality of atomic congestion games, among users that
are considered to participate in (static) selfish coalitions. We carefully
define a coalitional congestion model among atomic players.

Our findings in this model are quite interesting, in the sense that we
demonstrate many similarities with the non–cooperative case. For exam-
ple, there exist potentials proving the existence of Pure Nash Equilibria
(PNE) in the (even unrelated) parallel links setting; the Finite Improve-
ment Property collapses as soon as we depart from linear delays, but
there is an exact potential (and thus PNE) for the case of linear de-
lays, in the network setting; the Price of Anarchy on identical parallel
links demonstrates a quite surprising threshold behavior: it persists on
being asymptotically equal to that in the case of the non–cooperative
KP–model, unless we enforce a sublogarithmic number of coalitions.

We also show crucial differences, mainly concerning the hardness of
algorithmic problems that are solved efficiently in the non–cooperative
case. Although we demonstrate convergence to robust PNE, we also prove
the hardness of computing them. On the other hand, we can easily con-
struct a generalized fully mixed Nash Equilibrium. Finally, we propose a
new improvement policy that converges to PNE that are robust against
(even dynamically forming) coalitions of small size, in pseudo–polynomial
time.

Keywords: Game Theory, Atomic Congestion Games, Coalitions, Con-
vergence to Equilibria, Price of Anarchy.

1 Introduction

The new research field of algorithmic game theory, till now, had its focus mostly

on non–cooperative strategic games. Indeed, the cases where dynamic game ele-

ments are studied are rather rare. In addition, the main concept of algorithmic
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game theory, namely, the price of anarchy (PoA), has been applied mostly to

non–cooperative selfish players with a variety of pure strategy sets and payoff

functions. Most of the examples are motivated from network traffic and conges-

tion problems. But real life examples justify the necessity for the consideration

of selfish coalitions, since in most cases there is some sort of hierarchy that needs

to be taken into account. For example, in a communication network, the service

providers are interested in minimizing their own cost for assuring a promised

quality of service (eg, bandwidth) to their users, but they are not actually inter-

ested in utilizing their users’ individual delays, so long as the maximum delay

is small. In fact, in some cases they have to sacrifice the utilization of some of

their users dictatorially, for the sake of their own (still private and selfish wrt

other coalitions) objective. In this scenario, each service provider can be seen

as a static coalition of users that tries to minimize the maximum cost that any

of its users has to pay. Alternatively, we may actually have altruistic (wrt their

participating users) coalitions that try to minimize the cumulative cost that all

their users have to pay, by performing joint decisions for all their members.

All these scenarios are captured by (static) coalitional congestion games, in

which the selfish players are actually the coalitions that may handle more than

one users at will. In this work we are not interested in how this coalitional cost is

shared among the members of the coalition, neither for the dynamics that lead

to coalition formation. Our main goal is to study the existence, convergence,

and quality of produced Nash Equilibria among given (static) coalitions, that

are robust not only against unilateral moves of the users, but also against joint

moves of subsets of any coalition.

1.1 Related Work

In this work we focus on coalitions of players in atomic congestion games. This im-

plies that each coalition selfishly governs a unique subset of atomic players, whose

traffic demands have to be routed via single paths (ie, unsplittably). Neverthe-

less, a coalition is allowed to choose different routes for different players that it

handles. Our concern is the existence and construction of Pure Nash Equilibria in

these games, as well as the effect of coalition formation to the quality of the game.

Existence of PNE and convergence issues have been extensively studied for the

non–cooperative KP Model (eg, [7,8,10,11,19,23] and references therein) and net-

works (eg, [12,13,9,19,23]). It is well known that there is always a PNE in the

non–cooperative KP Model, even for the case of unrelated parallel links. It is

quite impressive that convergence to PNE in the non–cooperative KP Model may

vary dramatically, depending on the families of improvement paths we consider.

The quality of atomic non–cooperative congestion games has also been a hot topic

in the recent literature, both for arbitrary Nash Equilibria (eg, [6,11,12,13,18,20]

and references therein) and only among pure Nash Equilibria (eg, [1,2]). For an

overview of recent developments on algorithmic questions on non–cooperative

atomic congestion games, the interested reader is referred to [16].

A concept similar to atomic coalitional congestion games was recently dis-

cussed by Roughgarden [24] and Correa et al. [5] in a different framework (called
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atomic splittable setting): Each coalition has its own atomic weight which it

routes selfishly from a source to a destination node in the network, but is al-

lowed to do it in a non–atomic fashion: this weight can be split to infinitesimally

small pieces that are then routed to the common destination. Indeed, Cominetti

et al. [3] have proved that the proofs in [5,24] have a basic flow and many of

the provided bounds on the price of anarchy are actually incorrect. They also

provided the correct (albeit slightly weaker) bounds in some cases. Very recently

(and independently), Hayrapetyan et al. [15] have dealt with the effect of coali-

tion formation in congestion games. They consider static coalitions as well, but

they focus on the TOTAL COST objective. They consider coalitions among split-

table flows (which is closely related to the atomic splittable congestion games

studied in [5,24]), as well as coalitions among atomic players (ie, whose traffic

demands cannot be split at all). But they only consider the case where each

atomic player has exactly unit traffic demand. They prove that coalition forma-

tion is not necessarily beneficial to the quality of the game (compared to the

coalition–free game), unless we have an atomic splittable congestion game in a

network of parallel links with convex link delay functions.

In our work, we mainly focus on a network of parallel links and coalitions

among atomic players with arbitrary (integer) traffic demands, that have to

assure a certain quality of service for the players, but are otherwise completely

selfish. Therefore, we consider the MAX COST objective. In our case, it is easy

to show that it is always beneficial (or at least, not worse) for the quality of the

game if the players formed coalitions. We also provide some preliminary results

for the TOTAL COST objective for the coalitions of unit size users in general

networks.

1.2 Our Contribution and Roadmap

In section 2 we define the coalitional congestion models that we study and pro-

vide the necessary definitions and notation. For the case of parallel links (aka the

KP Model [18]), in almost all cases (unless otherwise stated) we consider iden-

tical parallel links. Moreover, we consider the MAX COST (ie, the ∞−norm)

measure for the coalitions: Each coalition has to pay for the maximum delay

that any of its own users suffers. In section 3 we prove the existence of PNE in

the coalitional KP Model, even for dynamically forming coalitions and unrelated

parallel links.

In section 4 we prove pseudo–polynomial convergence time to 2−robust PNE

for a wide family of improvement paths (we call it SCF (2)), that combine selfish

(� 2−moves of even of dynamically forming coalitions, for identical parallel links.

This family of improvement paths always gives priority to selfish moves of smaller

coalitions that also involve the smallest number of links possible. We conjecture

that similar results hold for k−robust PNE, for any constant k � 2. For efficient

constructions of Nash Equilibria we have both bad and good news: Our bad news

is that it is NP−complete to compute PNE for coalitional congestion games on

parallel identical links, even if the number of coalitions is 1 + n(1 − δ), for any

constant δ ∈ (0, 1]. On the positive side, we show pseudo–polynomial convergence
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time for SCF (2), and also define a generalized fully mixed strategies profile for

the coalitions that we then prove to be a mixed Nash Equilibrium.

In section 5 we prove asymptotically tight bounds for the Price of Anarchy

of the Coalitional KP Model (with identical links). Indeed, we demonstrate a

threshold behavior of the Price of Anarchy wrt the number of coalitions: It is

as bad as in the case of the traditional (coalition–free) KP Model, so long as

there are Ω

(
logm

log logm

)
coalitions. From that point on, the Price of Anarchy drops

linearly with the number of coalitions.

Finally, in section 6 we deal with network congestion games that allow static

coalitions of unit-size users. Our results in this case are for the TOTAL COST

(ie, the 1−norm) measure for the coalitions: Each coalition pays for the sum of

delays that its own users have to suffer. We prove that even very simple single–

commodity network congestion games with linear or 2−wise linear (ie, max of two

linear functions) delay functions that allow static coalitions of players, may not

possess the Finite Improvement Property, although a PNE may exist. Therefore,

we cannot hope for potential–based arguments in these settings. On the other

hand, if we restrict delay functions of the network to be linear, then every multi–

commodity network congestion game that allows coalitions of players, possesses

an exact potential, which is actually identical to that of the non–cooperative

case [12].

Due to lack of space, the proofs are given in the full version of this work [14].

2 The Model of Static Coalitional Congestion Games

2.1 Coalitional KP Model

Consider a collection [m]
1

of identical parallel links and a collection [n] of tasks.

Each task must be uniquely allocated to any of the m available links. Each task

j ∈ [n] has an integer demand wj ∈ N+ (eg, the number of elementary operations

for the execution of task j). Let W̃ = {wj}j∈[n] be the multiset of the tasks’

demands. A set of k � 1 (static) coalitions C1, . . . , Ck is a partition of W̃ into k

nonempty multisets. Hence: (i) the union (as multisets) of these coalitions is ex-

actly W̃ , (ii) Cj = ∅, ∀j ∈ [k], and (iii) Ci∩Cj = ∅, ∀i, j ∈ [k] : i = j. For j ∈ [k]

let Cj = {w
1
j , . . . , w

nj

j }, so that
∑k

j=1 nj = n. Denote by Wj =
∑nj

i=1 w
i
j the cu-

mulative demand required by coalition Cj , while Wtot =
∑

j∈[k] Wj is the overall

demand required by the system. Wlog assume that w
1
j � · · · � w

nj

j , ∀j ∈ [k].

Strategies and Profiles. A pure strategy σj = (σ
i
j)i∈[nj ] for coalition Cj de-

fines the deterministic selection of a link σ
i
j ∈ [m] for each w

i
j ∈ Cj . Denote by

Σj the set of all pure strategies available to coalition Cj . Clearly, Σj = M
nj . A

mixed strategy for coalition Cj is a probability distribution pj on the set Σj of its

pure strategies (ie, a point of the simplex ∆(Σj) ≡ {q ∈ Rnj : q � 0; 1Tq = 1}).

In order to indicate the probability of pure strategy σj being chosen by Cj when

1 For any integer k � 1, [k] ≡ {1, . . . , k}.
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pj has been adopted, we use (for sake of simplicity) the functional notation

pj(σj), rather than the coordinate of the vector pj corresponding to σj .

A pure strategies profile or configuration is a collection σ = (σj)j∈[k] of pure

strategies, one per coalition. Σ ≡ ×j∈[k]Σj is the set of all the possible con-

figurations of the game (called the configuration space). (σ−j , αj) denotes the

configuration resulting from a configuration σ when coalition Cj unilaterally

changes its pure strategy from σj to αj . The simplotope ∆(Σ) ≡ ×j∈[k]∆(Σj)

is the mixed strategies space of the coalitional game. A mixed strategies pro-
file p = (pj)j∈[k] ∈ ∆(Σ) is a collection of mixed strategies, one per coalition.

The support of coalition Cj in the mixed profile p is the set Sj(p) = {σj ∈

Σj : pj(σj) > 0}; thus Sj(p) is the set of pure strategies that Cj chooses with

non-zero probability. If Sj(p) = Σj for all j ∈ [k] then p is a fully mixed profile.

A special case of particular interest is when the coalitions are enforced to

eventually choose consecutive links for their own tasks. In this case we shall

refer to the Coalitional Chains model.

Selfish Costs. Fix a configuration σ = (σj)j∈[k]. The load on link � ∈ M

due to coalition Cj is θ�(σj) ≡
∑

i∈[nj ]:σi
j=�

w
i
j . The total load on link � ∈ [m]

is the total demand on link� with respect to σ, ie, θ�(σ) =
∑k

j=1 θ�(σj) . The

load induced on link � ∈ [m] by all the coalitions, except for coalition Cj is

θ�(σ−j) =
∑

j′∈[k]\{j}
∑

i∈[nj′ ]:σi
j′=�

w
i
j′ . The selfish cost λj(σ) of coalition Cj is

the maximum load over the set of links it uses: λj(σ) = maxi∈[nj ]{θσi
j
(σ)} .

For a mixed profile p, the load on each link � ∈ [m] becomes a random

variable induced by the probability distributions pj for all j ∈ [k]. More specif-

ically, we define the expected load on link � ∈ [m] as the expectation of the

load on link � according to p: θ�(p) =
∑

σ∈Σ
[(∏

j∈[k] pj(sj)

)
· θ�(σ)

]
. We can

also determine the expected load that all the coalitions except for coalition Cj

induce to some link �: θ�(p−j) =
∑

σ−j∈Σ−j

[(∏
j′∈[k]\{j} pj′ (sj′)

)
· θ�(σ−j)

]
.

The conditional expected selfish cost of coalition j adopting the pure strategy

σj ∈ Σj, given that the other players follow the strategies indicated by p, is

defined as follows: λj(p, σj) = max�∈Sj(σj)

{(∑
i∈Cj :σi

j=�
wi

)
+ θ�(p−j)

}
. Ie,

coalition Cj pays for the the conditional expectation of its selfish cost, had it

adopted the pure strategy σj ∈ Σj. This is because coalition Cj has to encounter

all the possible alternatives for its own tasks prior to the other coalitions’ de-

termination of their actual action, knowing only their probability distributions.

The expected selfish cost of coalition Cj is defined as the expectation of coali-

tion Cj ’s conditional expected cost, over all possible actions that can be taken:

λj(p) =
∑

σj∈Σj
[pj(σj) · λj(p, σj)] . Observe that each coalition pays for the

expected maximum load that it would cause as if it was on its own, plus the

expected loads caused by the other coalitions to each of the links.

Nash Equilibria. The definition of expected selfish costs completes the defini-

tion of the finite non-cooperative game involving the κ coalitions of tasks that are

to be assigned to the m links: Γ = 〈[k], (Σj)j∈[k], (λj)j∈[k]〉. We are interested in
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the induced Nash Equilibria [22] of Γ . Informally, a Nash Equilibrium is a (pure

or mixed) profile such that no coalition can reduce its selfish cost by unilaterally

changing its strategy. Formally: A pure strategies profile σ = (σj)j∈[k] is a Pure
Nash Equilibrium (PNE) for Γ if, ∀j ∈ [k], ∀αj ∈ Σj, λj(σ) � λj(σ−j , αj).
A mixed strategies profile p is a Nash Equilibrium (NE) if, ∀j ∈ [k], ∀σj ∈ Σj ,

it holds that pj(σj) > 0 ⇒ σj ∈ arg minαj∈Σj {λj(p, αj)}.

Social Cost, Social Optimum and Price of Anarchy. For any configuration

σ = (σj)j∈[k], the social cost, denoted SC(σ), is the maximum load over the set

of links M with respect to σ, ie, SC(σ) = max�∈M{θ�(σ)} = maxj∈[k]{λj(σ)} .

For any mixed profile p the social cost is defined as the expectation, over all

random choices of the coalitions, of the maximum load over the set of links:

SC(p) =
∑

σ∈Σ
(∏k

j=1 pj(σj)

)
· max�∈[m] {θ�(σ)} . Now let σ

∗
be a configura-

tion that minimizes the social cost function, ie, σ
∗
∈ arg minσ {SC(σ)}. Thus

σ
∗

is an optimal configuration of the set of loads W̃ to the set of links [m]. We

denote this value by OPT = SC(σ
∗
). The Price of Anarchy (also referred to as

Coordination Ratio) [18], is the worst–case ratio of the social cost paid at any

NE over the value of the social optimum of the game: R = maxp is NE

{
SC(p)
OPT

}
.

Improvement Paths. When we discuss convergence issues, we shall frequently

refer to the notion of improvement paths: These are sequences of configurations

(ie, points in Σ), such that any two consecutive configurations differ only in the

pure strategy of exactly one coalition, and additionally the cost of this unique

coalition is strictly less in the latter configuration than in the former one.

2.2 Coalitional Players in Networks

Let G = (V,E) be a directed network with a non-decreasing delay function de(x)

for each e ∈ E. Consider also a multiset of users of identical traffic demands,
willing to be routed between unique source–destination pairs of nodes in the

network. A network congestion game with coalitions is defined as follows: The

set of players is the set of coalitions {C1, . . . , Ck}. Every coalition Cj consists of

nj users routing their traffic from sj to tj . Let Pj be the set of sj−tj paths in G.

The set of pure strategies of coalitionCj is P
nj

j . The load of any edge e ∈ E due to

the users of Cj in σj is θe(σj) = |{i ∈ Cj : e ∈ σ
i
j}|. Let σ = (σ)j∈[k] be arbitrary

configuration. For every edge e ∈ E, the load of e in σ is θe(σ) =
∑k

j=1 θe(σj).

For every path π ∈
⋃k
j=1 Pj , the delay along π in σ is dπ(σ) =

∑
e∈π de(θe(σ)) .

There are (at least) two natural notions of selfish cost of coalition Cj in σ. The

first is the maximum delay over all paths used by Cj , denoted λj(σ). Formally,

λj(σ) = maxi∈Cj{dσi
j
(σ)} . The second is the total delay of coalition Cj , denoted

τj(σ). Formally, τj(σ) =
∑

i∈Cj
dσi

j
(σ) =

∑
e∈E θe(σj)de(θe(σ)) . Both maximum

delay and total delay generalize the notion selfish cost used in congestion games

in a natural way. Total delay has been used before in the non-atomic setting (see

eg [23,24]). The definitions of Nash Equilibria, social costs and price of anarchy

extend in a straightforward manner to the case of network congestion games.
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3 Tractability of NE in the Coalitional KP Model

It is not hard to prove the existence of PNEs in coalitional congestion games,

even if we assume unrelated parallel links and we allow the players to form

dynamic coalitions (ie, consider the case of arbitrary combinations of players

that attempt a joint selfish move). This is done by showing the existence of a

generalized ordinal potential function which assures the convergence to a PNE

in a finite number of steps. For the case of unrelated parallel links (ie, ∀j ∈

[n], ∀� ∈ [m], wj(�) > 0 indicates the additional load that task j enforces to

link � due to its allocation to it), we prove that any improvement path that

combines selfish movements of (even dynamically forming) coalitions, has length

at most 2
Wtot where here (for the more general case of unrelated parallel links)

Wtot =
∑

j∈[n] max�∈[m]{wj(�)}:

Theorem 1. For the case of unrelated parallel links and selfish tasks with integer
weights, any improvement path that combines arbitrary selfish movements of
coalitions of players of size at most k (even if these are formed dynamically) has
length at most (2k)Wtot

2k−1 .

Proof. See the proof in the full version of the paper. ��

The above argument works not only for integer demands, but also (after some

trivial modification) for arbitrary demands. The only difference is that rather

than having a minimum difference of 1 when comparing loads, this will have to be

substituted with some (sufficiently small) positive quantity and the convergence

rate implied becomes much worse. Thus, the exponential potential used captures

the power of the lexicographic ordering arguments for convergence.

Despite the existence of PNE, it is actually hard to compute one, even if we

demand a very large number of coalitions of players, so long as we allow one

coalition have large cardinality. This is shown in the next theorem:

Theorem 2. For arbitrary static coalitional congestion games over identical
parallel links among players with integer weights, it is NP−complete to find a
PNE, even if we enforce a number of coalitions k = 1+n(1−δ), for any constant
δ ∈ (0, 1].

Proof. See the proof in the full version of the paper. ��

Observe that (by Theorem 1) any improvement path of maximal length that

allows arbitrary selfish (� k)−moves of players converges monotonically to a

PNE that is also robust against any (even dynamically forming) coalition of at

most k players. We call such a PNE a k−robust PNE. In the next section we

explore better than the previous bounds on arbitrary improvement paths that

end up with k−robust PNE, at least in the restricted case of identical links.

4 Convergence Time to Robust Equilibria

In this section we initiate the study on the speed of convergence to PNE that

are robust to arbitrary (even dynamically forming) selfish k−moves. Towards
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this direction, we seek for upper bounds of the convergence rate to 2−robust

PNE. The rate of convergence assured by the exponential potential we use for

the existence of PNEs, is rather poor. Our seek now is for a possibly better

rate of convergence, at least in the case of identical parallel links and tasks

with integer weights that we study in this paper. We already know that rather

than using the exponential potential of the unrelated links, in the case of selfish

1−moves in a system of identical parallel links and tasks with integer weights

there is a much better potential that assures pseudo–polynomial convergence to

a PNE. Indeed, for specific strategies one can be based on combinatorial argu-

ments to show either linear (for the max weight priority–best response
strategy) or quadratic (for the fifo priority–best response strategy) con-

vergence to an arbitrary PNE (for more details see [7]).But we are also interested

Fig. 1. An example of a selfish

2−move for which difference in

the value of F is −1 < 0

in the convergence rate of an arbitrary improve-

ment path with selfish 1−moves; one can use as

a (weighted) potential the square of the loads

of the links: F (t) =
∑

�∈[m](L�(t))
2
, in order

to prove pseudo–polynomial convergence time.

Unfortunately, F (t) is no longer a potential

when we allow joint (selfish) moves of players,

even if we consider only static coalitions of at

most 2 players each. This is shown by the exam-

ple of figure 1. Nevertheless, we shall consider a special family of improvement

paths with selfish (�k)−moves, for which F (t) is actually a potential. This fam-

ily consists of improvement paths that always give priority to selfish moves of

smaller coalitions (therefore we shall call the strategy that creates these paths

smaller coalitions first strategy, SCF (k) in short). In particular, we start

by allowing (in arbitrary order) selfish 1−moves, until no such move exists (ie,

we are already at some 1−robust PNE). Consequently we check whether there

is a selfish 2−move. If this is the case, then we make such a move, and then

we perform again a maximal number of selfish 1−moves. If not, we have al-

ready reached a 2−robust PNE, and check whether there is a selfish 3−move.

If there are selfish 3−moves, we allow one of them arbitrarily and consequently

we perform (first) a maximal number of selfish 1−moves and (from 1-robust

PNE) selfish 2−moves, before allowing another selfish 3−move. We proceed in

this manner, until we reach a k−robust PNE, in which case we stop.

In order to demonstrate the significance of this family of improvement paths,

we shall show that indeed for SCF (2) (which allows up to selfish 2−moves and

ends up with a 2−robust PNE), F (t) is indeed a generalized ordinal potential (ie,

the difference F (t) − F (t + 1) is positive for selfish (�2)−moves). This assures

a pseudo–polynomial length for arbitrary improvement paths that mix selfish

1−moves and 2−moves arbitrarily, but always give priority to selfish 1−moves.

Whenever a 2−coalition of tasks (i, j) selfishly defects from their current hosts

(�i, �j) respectively, towards two new links (�
′
i, �

′
j), we denote this by (i, j) �

(�i, �j) &→ (�
′
i, �

′
j). For �i = �j , the 2−move (i, j) � (�i, �j) &→ (�j , �i) is called

a 2−flip, while the 2−move (i, j) � (�i, �j) &→ (�j, �
′
j) such that �

′
j /∈ {�i, �j} is
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called a 2−chain. We first explain why we may focus only on selfish 2−flips and

2−chains for the paths of SCF (2):

Lemma 1. The only possible selfish 2−moves of any element of SCF (2) are
either 2−flips or 2−chains.

Proof. See the proof in the full version of the paper. ��

The following lemma implies that if we restrict our attention to members of

SCF (2) that only allow selfish 2−flips (and no 2–chains), then we are fair to

the coalitional players, in the sense that no coalition can gain more by doing

a 2−chain rather than its corresponding 2−flip. This is quite interesting, since

a selfish 2−flip seems much more “selfishly motivated” than a selfish 2−chain:

a selfish 2−flip is essentially equivalent to (actually, slightly stronger than) the

selfish 1−move of the difference of two weights from the link with the heavier load

to the link with the lesser load. In contrast, the 2−chain cannot be decomposed

into a sequence of selfish 1−moves of weights, since one of the two transfers of

weights may not be actually selfish.

Lemma 2. At an arbitrary PNE, the existence of a selfish 2−chain implies the
existence of a selfish 2−flip that assures at least the same improvement for the
coalitional player that performs the move.

Proof. See the proof in the full version of the paper. ��

The following theorem demonstrates the pseudo–polynomial convergence rate of

any element of SCF (2) that only allows selfish 2−flips:

Theorem 3. For an arbitrary system of identical parallel links and selfish users
with integer weights, the function F (t) =

∑
�∈[m](L�(t))

2 is a weighted potential
for all the members of SCF (2) that only allow selfish 1−moves and 2−flips, and
thus it assures their convergence to a 2−robust PNE in at most Wtot

2

2 steps.

Proof. See the proof in the full version of the paper. ��

Consequently we shall demonstrate the inexistence of Fully Mixed NE for coali-

tional congestion games with coalitions of cardinality at least 2. We shall also

prove the existence of the so–called generalized fully mixed NE, for any coali-

tional congestion game on identical parallel links:

Lemma 3. For the system of parallel identical links and users with arbitrary
weights, there exists a fully mixed NE if and only if nj = 1 for all the coalitions
j ∈ [k]. If on the other hand there are coalitions of more than one users, then
a generalized fully mixed NE that assures no conflict among players of the same
coalition, always exists.

Proof. See the proof in the full version of the paper. ��

Remark 1. If each coalition chooses uniformly at random from all the possible

optimal allocations (that are also lexicographically minimum wrt the load vector

of the links) of its own set of weights alone in the m links, then the produced

mixed profile is also a generalized fully mixed NE. This is a simple extension of

GFMNE to the cases of coalitions with more than m tasks.
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5 Price of Anarchy in the Coalitional KP Model

Assume that k = 1, ie, there is a single coalition C1 = W̃ = {w1, . . . , wn}. Then,

any NE must be an optimum assignment of the set of loads C1 to the set of

links [m] and vice versa, hence in any NE σ, SC(σ) = OPT and thus R = 1. For

k = n, ie, Cj = {wj} for all j ∈ [n], this case reduces to the standard KP model

[18] for which it is well known [17] that R = Θ

(
logm

log logm

)
.

In this section, we prove that the price of anarchy is Θ

(
min

{
k,

logm
log logm

})
,

where m denotes the number of links and k denotes the number of coalitions.

The lower bound (Theorem 4) holds even for identical tasks and coalitions of

equal cardinality. The upper bound (Theorem 5) holds for n integer weights

w1 � w2 � · · · � wn > 0 and arbitrary coalitions.

Theorem 4. The price of anarchy is Ω

(
min

{
k,

logm
log logm

})
even for identical

tasks and coalitions of equal cardinality.

Proof. We consider m identical parallel links and m unit size tasks partitioned

into k � 2 coalitions each with r ≡ m/k tasks (wlog we assume that m/k is an

integer). We first prove a lower bound for the Coalitional Chains Model:

Lemma 4. In the Coalitional Chains Model, when the number of coalitions is
κ = m

ε for arbitrary constant ε ∈ (0, 1], the price of anarchy is R = Ω

(
logm

log logm

)
.

Proof. See the proof in the full version of the paper. ��

For the general case where the coalitions may adopt any possible pure strategy,

we prove that the social cost of the GFMNE that we already proved to exist

in Lemma 3, is Ω

(
min

{
k,

logm
log logm

})
. Since the social optimum of the specific

instance is 1, we get the desired lower bound. See the complete proof in the full

version of the paper. ��

Theorem 5. For every NE p, SC(p) � O

(
min

{
k,

logm
log logm

})
OPT, where m

denotes the number of (identical) links.

Proof. See the proof in the full version of the paper. ��

6 NE in Coalitional Network Games

[23] shows that in a single–commodity network congestion game with coalitions

(in the splittable setting) and the selfish cost being the total coalition delay,

NE may not be unique even for two coalitions of different cardinalities and

very simple networks (see Figure 3.a in full paper). On the other hand, the

uniqueness of NE is established for the special case of two coalitions and edge

delays de(x) = aex
c
, for every c ∈ {1, . . . , 7}.
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Computing a coalition’s best response for total delay in a single–commodity

network congestion game can be performed by first applying a transformation

similar to that in [9, Theorem 2] and then computing a min-cost flow. On the

other hand, computing a coalition’s best response for maximum delay is NP-

hard even for single–commodity network congestion games with linear delays

and a coalition of size 2 (see eg [4, Theorem 3]).

In the following, we focus on the second notion of selfish cost (total delay of

coalition). We prove that a congestion game with coalitions is an exact potential

game if the edge delays are linear (cf. Theorem 6). On the other hand, we give a

simple example of a single–commodity network congestion game with coalitions

of equal cardinality and 2-wise linear edge delays that does not have the Finite
Improvement Property (FIP) (cf. Lemma 5). By [21, Lemma 2.5], this game does

not admit any kind of potential function, even a generalized ordinal one.

Lemma 5. There exist instances of single–commodity network congestion
games with coalitions of equal cardinality and edge delays being either linear
of 2-wise linear which do not have the Finite Improvement Property.

Proof. See the proof in the full version of the paper. ��

Theorem 6. Every multi–commodity (network) congestion game with coalitions
and linear edge delays is an exact potential game.

Proof. See the proof in the full version of the paper. ��
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Abstract. We consider the computation of equilibrium prices in market
settings where purchases of goods are subject to taxation. While this
scenario is a standard one in applied computational work, so far it has not
been an object of study in theoretical computer science. Taxes introduce
significant distortions: equilibria are no longer Pareto optimal, sufficient
conditions for uniqueness do not continue to guarantee it, existence itself
must be revisited. We analyze the effects of these distortions on scenarios
which, in the absence of taxes, admit polynomial time algorithms. In spite
of the loss of certain structural properties (including uniqueness), we are
able to obtain polynomial time algorithms or approximation schemes in
several instances where the model without taxes admitted them.

1 Introduction

The equilibrium problem for a pure exchange economy amounts to finding a set

of prices and allocations of goods to economic agents such that each agent max-

imizes her utility, subject to her budget constraints, and the market clears. The

equilibrium depends only on the agents’ utility functions and initial endowments

of goods.

If one aims at analyzing equilibrium problems arising from real world applica-

tions, the scenario outlined above has often to be extended. Indeed one needs to

take into account the presence of suitable distortions, which might be, depend-

ing on the specific application, transaction costs, transportation costs, tariffs,

and/or taxes.

In these frameworks, which are standard ones for applied computational work,

one has to deal with equilibrium conditions influenced by additional parameters

which often change the mathematical properties of the problem. For instance,

in models with taxes, (i) the equilibrium allocations might lose their Pareto

optimality; (ii) restrictions which imply, in the absence of taxes, the unique-

ness of equilibrium prices might become compatible with multiple disconnected

equilibria.

In this paper, we consider exchange economies with either uniform or differ-

entiated ad valorem taxes (see Section 2 for appropriate definitions). We explore

the effects of such tax distortions on models which admit - in the absence of taxes

- polynomial time algorithms. In spite of the loss of certain structural proper-

ties (including uniqueness), we are able to obtain polynomial time algorithms
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or approximation schemes in several instances where the model without taxes

admitted them.

Background. We now describe the model of an exchange economy, and pro-

vide some basic definitions. Let us consider m economic agents which repre-

sent traders of n goods. Let Rn
+ denote the subset of Rn

with all nonnegative

coordinates. The j-th coordinate in Rn
will stand for good j. Each trader i

has a concave utility function ui : Rn
+ → R+, which represents her prefer-

ences for the different bundles of goods, and an initial endowment of goods

wi = (wi1, . . . , win) ∈ Rn
+. At given prices π ∈ Rn

+, trader i will demand a

bundle of goods xi = (xi1, . . . , xin) ∈ Rn
+ which maximizes ui(x) subject to the

budget constraint π · x ≤ π · wi. Let Wj =
∑

iwij denote the total amount of

good j in the market.

An equilibrium is a vector of prices π = (π1, . . . , πn) ∈ Rn
+ at which, for

each trader i, there is a bundle x̄i = (x̄i1, . . . , x̄in) ∈ Rn
+ of goods such that

the following two conditions hold: (i) for each trader i, the vector x̄i maximizes

ui(x) subject to the constraints π · x ≤ π · wi and x ∈ Rn
+; (ii) for each good j,∑

i x̄ij ≤ Wj . The celebrated result of Arrow and Debreu [1] states that, under

quite mild assumptions, such an equilibrium exists.

For any price vector π, a vector xi(π) that maximizes ui(x) subject to the

constraints π ·x ≤ π ·wi and x ∈ Rn
+ is called the demand of the i-th trader. By

adding up the traders’ demands, one gets the market demand.
We now give the definition of approximate equilibrium. A bundle xi ∈ Rn

+
is an ε-approximate demand, for 0 < ε < 1, of trader i at prices π if ui(xi) ≥

(1−ε)u
∗

and π ·xi ≤ (1+ε)π ·wi, where u
∗

= max{ui(x)|x ∈ Rn
+, π ·x ≤ π ·wi}.

A price vector π ∈ Rn
+ is an ε-approximate equilibrium if there is a bundle xi for

each i such that (1) for each trader i, xi is an ε-approximate demand of trader

i at prices π, and (2)
∑

i xij ≤ (1 + ε)
∑

i wij for each good j.

An important special case of an exchange economy is the distributional econ-
omy, where the initial endowments are all collinear, i.e., wi = δiw, δi > 0, so that

the relative incomes of the traders are independent of the prices. This special

case is equivalent to Fisher’s model, which is a market of n goods desired by m

utility maximizing buyers with fixed incomes.

A utility function u(·) is homogeneous of degree one if it satisfies u(αx) =

αu(x), for all α > 0, while it is log-homogeneous if it satisfies u(αx) = u(x) +

logα, for all α > 0.

A linear utility function has the form ui(x) =
∑

j aijxij . A CES (constant

elasticity of substitution) utility function has the form u(xi) = (
∑

j(aijxij)
ρ
)
1/ρ

,

where −∞ < ρ < 1, ρ = 0. The Cobb-Douglas utility function has the form

ui(x) =
∏
j(xij)

aij , where aij ≥ 0 and
∑

j aij = 1.

Related Work. Substantial work has been done on extending equilibrium mod-

els to handle scenarios where good purchases are subject to taxation

[11,12,16,17,18]. Such efforts have provided existential results [16,17], evidence

of tax-induced multiplicity [18] and of the loss of Pareto-optimality of equilibria

[11,12]. Building upon this body of results, applied models have been designed to



586 B. Codenotti, L. Rademacher, and K. Varadarajan

explicitly take into account tax distortions (see for instance the popular GAMS-

MPSGE programming environment).

Previous work within theoretical computer science, which was initiated by [5],

has identified several restrictions under which the market equilibrium problem,

in its version without taxes, can be solved in polynomial time. These restrictions

include (i) distributional economies (the Fisher setting) where the traders have

homogeneous utility functions, (ii) exchange economies which satisfy weak gross
substitutability, and (iii) exchange economies with some families of CES and

nested CES utility functions. For detailed references, see the survey [3] and [10].

Our Results. We prove that a distributional economy (which is equivalent to

Fisher’s model) with uniform ad valorem taxes and homogeneous consumers

can be efficiently transformed into an equivalent two-trader exchange economy

without taxes (Section 3.1). We then develop a polynomial-time algorithm for

approximating the equilibrium (Section 3.2). To analyze some parameters re-

lated to the accuracy of the algorithm, we use the tool of implicit differentiation.

Note that a two-trader exchange economy with homogeneous consumers admits

multiple disconnected equilibria [9]. The example in [9] can be modified to model

an exchange economy that is equivalent to a distributional economy with uni-

form ad valorem taxes. Therefore our algorithm provides the first significant

example of polynomial time computation of equilibria in a setting with multiple

disconnected equilibria.

We then show that an n-good exchange economy with differentiated ad val-

orem taxes and m Cobb-Douglas consumers can be efficiently transformed into

an equivalent (n + 1)-good exchange economy without taxes, with m Cobb-

Douglas consumers (Section 2.2). Since the equilibrium for a Cobb-Douglas ex-

change economy can be computed in polynomial time [6], our reduction shows

that the same is possible for the model with non-uniform taxation.

We finally show that the approximation algorithm of Garg and Kapoor [8]

for linear utilities can be adapted to handle the differentiated tax scenario

(Section 4).

All the proofs are omitted from this extended abstract. The interested reader

can obtain from the web a version with proofs and additional results [4].

2 Exchange Economies with Taxes on Consumption

We describe the model of an exchange economy with ad valorem taxes as pre-

sented by Kehoe ([11], pp. 2127-2128), and distinguish between the uniform case,

where the tax rate is uniform across consumers, and the non-uniform case, where

the tax rate is differentiated among consumers.

2.1 Uniform Ad Valorem Taxes

Consider a trader i with utility function ui(xi) and initial endowment wi.

Let τj ≥ 0 be the uniform ad valorem tax associated with the consumption

of good j. This means that if consumer i purchases xij units of good j at price

πj , she will spend on this good the amount πjxij + τjπjxij .
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We postulate the presence of a special actor, the government, which will rebate

the tax revenues to consumers. Let θi ≥ 0, with
∑

i θi = 1, be the share of total

tax revenues rebated to consumer i as a lump sum.

Then the classical consumer’s maximization problem gets modified as follows:

max ui(xi) (1)

s.t.

∑
j

πj(1 + τj)xij ≤

∑
j

πjwij + θiR, (2)

where xi ∈ Rn
+, and R is the total amount of revenues distributed by the

government.

In this context, the market equilibrium problem consists of finding (π̄, x̄i, R̄)

such that

– at prices π̄, x̄i solves (1) (2), ∀i (optimality and budget constraint are satis-

fied for all consumers);

–
∑

i x̄ij =
∑

i wij , ∀j (the market clears all the goods);

– R̄ =
∑

j π̄jτj

∑
i x̄ij (the amount of taxes distributed is equal to the amount

of taxes collected).

We now show that the equilibria for such an economy are in a one-to-one

correspondence with the equilibria of an exchange economy without taxes, where

the traders have a different set of initial endowments, obtained by a suitable

redistribution of the original ones. This correspondence has been established in

[2] (see also Appendix A of [4]), where models of taxation were one of the targets

of some experimental work.

Whenever the equilibria of two economies are in a one-to-one correspondence,

and can be immediately computed one from the other, we say that the two

economies are equivalent.

Proposition 1. [2] Let E = E(ui(·), wi, τ, θ) be an exchange economy with uni-
form ad valorem taxes τ = (τ1, . . . , τn), and tax shares θ = (θ1, . . . , θm). E
is equivalent to an exchange economy without taxes E

′
= E

′
(ui(·), w

′
i) where

w
′
ij =

wij

1+τj
+ θi

τj

1+τj

∑
i wij .

2.2 Differentiated Taxes

We now consider a more general model in which the taxes on purchases are

different for each trader. We call this scheme specific taxation or differentiated
ad valorem taxation.

In an exchange economy with specific taxes, τij ≥ 0 is the tax rate imputed to

trader i on purchase of good j. The setting for an exchange economy with specific

taxes differs from that with uniform taxes in the budget constraint, which is now

given by ∑
j

πj(1 + τij)xij ≤ π · wi + θiR . (3)
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At equilibrium, we must have R =
∑

ij πjτijxij .

The lack of uniformity of this model, which differentiates between consumers,

prevents the possibility of a direct reduction to a pure exchange economy, ob-

tained by redistributing the individual endowments, as in Proposition 1. Nev-

ertheless, this model can be made similar to a pure exchange economy with an

extra good. Indeed, note that the budget constraint can be rewritten as

π · xi +Rxi,n+1 ≤ π · wi +Rθi (4)

where xi,n+1 =

∑
j πjτijxij

R .

If we interpret R as the price of an additional (fictitious) good, that we call

the “tax good”, and θi and xi,n+1 as the i-th trader’s initial endowment and

demand of such good, then inequality (4) corresponds to the budget constraint

of a consumer in a pure exchange economy with an extra good.

To get a reduction to an exchange economy without taxes, one would now

need to exhibit a utility function, defined on n+ 1 goods, which, combined with

the budget constraint (4), gives a demand of xij(π,R) for the first n goods, and

xi,n+1(π,R) =

∑
j πjτijxij

R for the “tax good”.

We do not know if such a reduction is possible in general. However we show

below (Proposition 2) that it can be done in the case of exchange economies

where the traders have Cobb-Douglas utility functions. See Appendix B of [4]

for the proof.

Proposition 2. Let n and m be the number of goods and the number of traders,
respectively. Let ui(·), i = 1, . . . ,m, be Cobb-Douglas utility functions. We denote
by En,m = En,m(ui(·), wi, τi, θ) a Cobb-Douglas exchange economy with differen-
tiated ad valorem taxes τi = (τi1, . . . , τin), and tax shares θ = (θ1, . . . , θm). En,m
is equivalent to an exchange economy without taxes E

′
n+1,m = E

′
n+1,m(vi(·), w

′
i)

where the vi(·)’s are Cobb-Douglas utility functions, and w
′
i = (wi1, . . . , win, θi).

3 Collinear Endowments Distorted by Uniform Taxation

The general reduction of Proposition 1 shows that uniform taxation does not af-

fect algorithms which compute equilibrium prices for exchange economies with-

out exploiting any particular property of the initial endowments. Therefore,

several results for pure exchange economies extend to the model with uniform

taxation. One interesting case where the redistribution of initial endowments

potentially carries negative computational consequences is that of exchange

economies with collinear endowments and homogeneous utilities. In this setting

an equilibrium (without taxes) can be computed in polynomial time by convex

programming, based on certain aggregation properties of the economy which im-

ply the existence of a representative consumer [7]. The redistribution of endow-

ments associated with taxation clearly destroys the collinearity of endowments,

and thus the collapse to a single consumer’s problem. We show that in an ex-

change economy with collinear endowments and homogeneous utilities, the model
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with uniform taxation is equivalent to an exchange economy with two represen-
tative consumers. Building upon this property, we then show how to compute

an approximate equilibrium in polynomial time for a wide family of problems.

3.1 Reduction to Two Representative Consumers

Recall that a distributional economy is an exchange economy where the initial

endowments of the traders are collinear. In other words, the k-th trader has

endowments of the form wk = γkw, for k = 1, . . . ,m, where w = (w1, . . . , wn)

describes the overall amount of each good in the market, and γk is a positive

constant less then one. We have
∑

k γk = 1. In this scenario, the relative incomes

of the traders are constants, so that the model is equivalent to Fisher’s model.

If we specialize the model of Section 2.1 to an economy with collinear initial

endowments, then the redistribution described by Proposition 1, gives w
′
ij =

γi
wj

1+τj
+ θi

τj

1+τj
wj .

Notice that the matrix whose columns represent the new initial endowments of

the traders has rank at most two. Indeed all the columns are linear combinations

of the vectors z and s, whose j-th entries are zj =
wj

1+τj
, and sj =

τj

1+τj
wj ,

respectively. Note that w
′
i = γiz+ θis. (Note also that w = z+ s and verify that∑

iw
′
i = w.) Thus the effect of uniform taxation on economies with proportional

endowments amounts to an increase of the rank of the endowment matrix from

one to two.

Whenever the consumers are homogeneous (or log-homogeneous), exchange

economies with a rank two endowment matrix can be reduced to a two-trader

economy, according to the following scheme:

1. Let z be the n-vector whose j-th component is
wj

1+τj
, and s be the n-vector

whose j-th component is
wjτj

1+τj
.

2. For all k, split the k-th trader into two traders, which have the same utility

function of the original trader and initial endowments γkz, and θks, respec-

tively. This procedure produces two groups of m traders each, where the

traders in each group have proportional endowments.

3. Based on the properties in [7], aggregate all the consumers from each group

into one representative consumer, with endowment given by the sum of their

endowments and utility function obtained by aggregating the utility func-

tions as in [7]. This gives a two-trader economy.

These arguments lead to the following result.

Proposition 3. Let ui(·), i = 1, . . . ,m, be log-homogeneous utility functions.
Let Em = E(ui(·), w, τ, θ, γ) be an m-trader distributional economy with uniform
ad valorem taxes τ = (τ1, . . . , τn), tax shares θ = (θ1, . . . , θm), and income shares
γ = (γ1, . . . , γm). Em is equivalent to a two-traders exchange economy without
taxes E

′
2 = E

′
2(v1(·), v2(·), z, s), where v1 and v2 are the log-homogeneous utility

functions of the two consumers, and z and s are their initial endowment vectors.
Here, v1(x) (resp. v2(x)) is defined to be the maximum of

∑
i γiui(xi) (resp.∑

i θiui(xi)) over all x1, . . . , xm ∈ Rn
+ such that

∑
i xi = x.
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3.2 The Algorithm

The reduction summarized in Proposition 3, combined with some results of Man-

tel [13] on two-trader economies, suggest the following algorithm, which we call

RSR (Reduce-Solve-Reconstruct), for the computation of an approximate equi-

librium. For the analysis, we assume that τj > 0 for each j. Let τmin = minj τj

and τmax = maxj τj .

Algorithm RSR

1. The input is given in terms of m log-homogeneous utility functions ui, i =

1, . . . ,m, and vectors w, γ, θ, τ .

2. Apply the transformation of Proposition 3, which returns an economy with

two log-homegeneous consumers (with utility functions v1 and v2, and initial

endowments z and s) and n goods.

3. Consider the following constrained maximization problem:

max αv1(x1) + (1 − α)v2(x2)

s.t. x1 + x2 = w

x1, x2 ≥ 0

For a given 0 ≤ α ≤ 1, let x1(α) and x2(α) be maximizing allocations, and

let π(α) be the vector of shadow prices (Lagrange multipliers). It can be

shown that π(α) · x1(α) = α, π(α) · x2(α) = 1 − α, and thus π(α) · w = 1.

Moreover, x1(α) and x2(α) have the “right shape” – they are proportional

to the optimal bundles demanded by the two traders at the price π(α).

Let B1(α) = π(α) · (z − x̄1(α)) and B2(α) = π(α) · (s − x̄2(α)) be the

functions expressing the (positive or negative) savings of consumer 1 and

2, respectively. Note that B1(α) + B2(α) = 0, since z + s = w. Thus, if

B1(α) = 0, then we have π(α) · x1(α) = π(α) · z, and π(α) · x2(α) = π(α) · s.

In this case, x1(α) and x2(α) are not merely proportional to the optimal

bundles, but they are the optimal bundles of the two traders at price π(α);

thus π(α) is an equilibrium for the two trader economy [14].

We therefore find an approximate equilibrium for the two-trader economy

by finding a value of α such that B1(α) and B2(α) are sufficiently close to

zero. In such a case, π(α), x1(α) and x2(α) form an approximate equilibrium,

provided that the functions Bi(α) are smooth enough (see the extensive

discussion below). The search for an appropriate value of α can be done

by the bisection method, i.e., binary search, guided by the value of Bi(α),

computed from the values xi(α) and π(α) returned by the solution of the

maximization problem above. The applicability of bisection method builds

upon some results by Mantel [13] on the global convergence of the welfare

adjustment process when applied to two-trader economies.

4. From the solution to the two-trader problem, reconstruct the solution to

the 2m-trader problem, i.e., the corresponding allocations, and then to the

m-trader problem without taxes.

5. Compute approximate equilibrium prices π̃j , j = 1, . . ., for the original econ-

omy with taxes, by scaling prices πj(α), i.e., π̃j =
πj(α)
1+τj

.
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3.3 Analysis of Algorithm RSR

For any price vector π, it is easy to see that
π·z
π·w lies in the interval [αmin =

1
1+τmax

, αmax =
1

1+τmin
]. Thus if B1(ᾱ) = 0, then ᾱ =

π(ᾱ)·x1(ᾱ)
π(ᾱ)·w =

π(ᾱ)·z
π(ᾱ)·w

lies in the range [αmin, αmax]. It is also easy to verify that B1(αmin) ≥ 0 and

B1(αmax) ≤ 0. So we perform our binary search in the interval [αmin, αmax].

The binary search is described and analyzed in Appendix C of [4], where

we show that Algorithm RSR computes an ε-approximate equilibrium in time

of the order of T (n)(logM + log
1
ε + log

1
αmin

+ log
1

(1−αmax) ), where T (n) is

the polynomial bound on the time required to solve the convex program, and

M is an upper bound on the absolute value of the derivative of B1(α) in the

interval [αmin, αmax]. The next section takes a close look at the parameter M

that influences the running time.

3.4 Sensitivity of the Welfare Maximization Problem

The running time of algorithm RSR depends on the logarithm of M , where M is

an upper bound on |B
′
1(α)| for α in [αmin, αmax]. We now show how to estimate

M for a wide family of utility functions. For lack of space the details of the

analysis are omitted from this extended abstract; the interested reader can find

them in [4].

The two-trader maximization problem occurring in step 3 of Algorithm RSR,

when written in its expanded form, becomes the 2m-tradermaximization problem:

max α

∑
i

γiu1i(x
1
i ) + (1− α)

∑
i

θiu2i(x
2
i )

s.t. x
1
1 + . . .+ x

1
m + x

2
1 + . . .+ x

2
m = w

x
1
i , x

2
i ≥ 0

where u1i() = u2i() = ui(). Let x
�
i(α) denote the solution of this problem, and

π(α) the corresponding shadow prices. We will simply denote x
�
i(α) by x

�
i and

π(α) by p. Since B1(α) = p · z − α, we can upper bound |B
′
1(α)| by bounding

the elements of the vector
∂p
∂α .

Let us consider the first order optimality conditions for the problem above,

which we will denote by

H(

y︷︸︸︷
x, p , α) = 0.

These equations can be explicitly written as:αγi∇u1i(x
1
i )− p = 0 ;

(1− α)θi∇u2i(x
2
i )− p = 0 ;

x
1
1 + . . .+ x

1
m + x

2
1 + . . .+ x

2
m − w = 0.

By Implicit Differentiation, from the first order conditions we obtain the fol-

lowing equation:
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∇yH(x, p, α)
∂

∂α
y(α) +

∂

∂α
H(x, p, α) = 0. (5)

Let Ai and Bi denote the Hessian αγi∇
2
u1i(x

1
i ), and (1 − α)θi∇

2
u2i(x

2
i ),

respectively. Equation 5 takes the form:

A1 −I

. . .
...

Am −I
B1 −I

. . .
...

Bm −I
I . . . I I . . . I 0





∂x1
1

∂α
...

∂x1
m

∂α
∂x2

1
∂α
...

∂x2
m

∂α
∂p
∂α


+



γ1∇u11(x
1
1)

...
γm∇u1m(x1

m)
−θ1∇u21(x

2
1)

...
−θm∇u2m(x2

m)
0


=



0
0
0
...
0
0
0



Assume that the Ai’s and Bi’s be nonsingular, i.e., that they are negative

definite. In this case the matrix of the linear system above has an inverse, which is

A−1
1 − A−1

1 KA−1
1 −A−1

1 KA−1
2 · · · −A−1

1 KB−1
m A−1

1 K
...

. . .
...

...
...

. . .
...

...
−B−1

m KA−1
1 . . . . . . B−1

m − B−1
m KB−1

m B−1
m K

−KA−1
1 . . . . . . −KB−1

m K


,

where K =
(
A

−1
1 + . . .+A

−1
m +B

−1
1 + . . .+B

−1
m

)−1
.

Let now d1i = γi∇u1i(x
1
i ), and d2i = θi∇u2i(x

2
i ). We obtain the expression

∂p

∂α
= −K(

∑
i

A
−1
i d1i −

∑
i

B
−1
i d2i), (6)

from which we can upper bound the absolute value of any element of
∂p
∂α in terms

of
∥∥A−1

i

∥∥, ∥∥B−1
i

∥∥, ‖K‖, and ∇u�i(x
�
i), where ‖·‖ denotes the spectral norm of a

matrix, which, in the case of semi-definite matrices, coincides with the spectral

radius.

Using a classical result from linear algebra (see [15], p. 192), we can then

bound the spectral norm of K in terms of those of Ai and Bi, .

This allows us to bound |B
′
1(α)| in terms of the Hessians of the utility functions

u�i evaluated at x
�
i .

For an interesting class of utility functions, one can proceed even further, and

obtain bounds in terms of the input data. This requires some calculations, which

are shown in [4].

4 Linear Exchange Economies with Differentiated Taxes

We consider an economy with m traders and n goods where each trader has a

linear utility function. Let ui =
∑

j aijxj denote the utility function of the i-th
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trader. Each trader has the initial endowment wi ∈ Rn
+. Let τij ≥ 0 denote the

tax rate of the i-th trader for the consumption of the j-th good. And let θi denote

the share of the i-th trader in the overall tax collected. We have
∑

i θi = 1. An

equilibrium is a price vector π = (π1, . . . , πn) and a number R ≥ 0 at which there

are bundles xi ∈ Rn
+ for each trader i such that (1) xi maximizes ui(x) over all

x ∈ Rn
+ such that the cost

∑
j πj(1 + τij)xj of bundle x is at most the income

θiR+
∑

j πjwij ; (2)
∑

i xij ≤
∑

iwij for each good j; and (3)
∑

i Ti(xi, π) = R,

where Ti(x, π) is defined to be
∑

j τijπjxj , the tax that i has to pay to consume

x at price π.

For ε > 0, we define an ε-approximate equilibrium to be a price vector π =

(π1, . . . , πn) and a number R ≥ 0 at which there are bundles xi ∈ Rn
+ for

each trader i such that (1) π · xi + T (xi, π) ≤ (1 + ε)(θiR +
∑

j πjwij), and

ui(xi) ≥ (1 − ε)vi(π,R), where vi(π,R) is the maximum value of ui(x) over all

x ∈ Rn
+ such that

∑
j πj(1+τij)xj ≤ θiR+

∑
j πjwij ; (2)

∑
i xij ≤ (1+ε)

∑
i wij

for each good j; and (3) (1− ε)R ≤

∑
i Ti(xi, π) ≤ (1 + ε)R.

We now describe our algorithm, an adaptation of the auction based algorithm

of Garg and Kapoor [8], for computing an approximate equilibrium of the model.

The analysis of the algorithm assumes that aij > 0 for each i and j. Let τmax

denote maxi,j τij . For simplifying some expressions, we also assume, without loss

of generality, that
∑

iwij = 1 for each j. Let wmin = mini,j wij . Our analysis

also assumes that wmin > 0. Let κ = 1/wmin.

Let δ =
ε

90n(1+τmax)κ . The algorithm has variables πj for the prices, and

a variable R that stands for the tax money that is distributed to the buyers.

The algorithm starts with all prices set to 1. From time to time, it increases

the price of some good by a multiplicative factor of 1 + δ. It has variables yij

and hij corresponding to the amounts of good j allocated to i at the current

price πj and the previous price πj/(1 + δ), respectively. Let xij = yij + hij . Let

T
′
i (yi, hi, π) =

∑
j τij(πjyij +

πj

1+δhij), the tax that i pays in consuming yi and

hi. Let

Di(π) = {j|
aij

(1 + τij)πj
≥

aik

(1 + τik)πk
for 1 ≤ k ≤ n}.

Initialize. Let πj = 1 for 1 ≤ j ≤ n, R = 1, yij = 0 and hij = 0 for each i

and j.

Phase 1

1. We make a call to the procedure Allocatemore(), described below.

2. If
∑

i T
′
i (yi, hi, π) = R, let R← R(1 + δ) and go to Step 1 of Phase 1.

3. If for each i, we have
∑

j(πjyij +
πj

1+δhij) + T
′
i (yi, hi, π) = θiR +

∑
j πjwij ,

the algorithm ends.

4. If for some i, we have
∑

j(πjyij +
πj

1+δhij) + T
′
i (yi, hi, π) < θiR+

∑
j πjwij ,

consider any j ∈ Di(π). An inspection of Allocatemore() tells us that we

must have hi′j = 0 for every trader i
′
and
∑

i′ yi′j = 1. We call Raiseprice(j).

If πk > 0 for every good k, we jump to Step 1 of Phase 2. Otherwise, return

to Step 1 of Phase 1.



594 B. Codenotti, L. Rademacher, and K. Varadarajan

Phase 2

1. If R ≤ δ
∑

j πjwij for each i, let R←

∑
i T

′
(yi, hi, π); the algorithm ends.

2. Make a call to Allocatemore().

3. If
∑

i T
′
i (yi, hi, π) = R, the algorithm ends.

4. If for each i, we have
∑

j(πjyij +
πj

1+δhij) + T
′
i (yi, hi, π) = θiR +

∑
j πjwij ,

the algorithm ends.

5. If for some i, we have
∑

j(πjyij +
πj

1+δhij) + T
′
i (yi, hi, π) < θiR+

∑
j πjwij ,

consider any j ∈ Di(π). We must have hi′j = 0 for every trader i
′

and∑
i′ yi′j = 1. We call Raiseprice(j) and return to Step 1 of Phase 2.

To complete the description of the algorithm, we need to specify the two

procedures Allocatemore and Raiseprice.

The procedure Allocatemore. In this procedure, we first solve a linear pro-

gram, which uses as data the current values of the variables π, y, h, and R. The

linear program has non-negative variables y
′
ij and h

′
ij for each trader i and good

j. The linear program is:

Maximize
∑
i,j

y′
ij

Subject to∑
i

(y′
ij + h′

ij) ≤ 1 for each j∑
i

(y′
ij + h′

ij) = 1 for each j such that πj > 1∑
i

T ′
i (y

′
i, h

′
i, π) ≤ R∑

j

πjy
′
ij +

πj

1 + δ
h′

ij + T ′
i (y

′
i, h

′
i, π) ≤ θiR +

∑
j

πjwij for each i

y′
ij = 0 for each i and j �∈ Di(π).

h′
ij = 0 for each i and j such that hij = 0.

As we argue below, this linear program will always be feasible. Thus the maxi-

mization is well defined. After solving the linear program, we set yij = y
′
ij and

hij = h
′
ij for each i and j. This completes the description of the procedure

Allocatemore.

The procedure Raiseprice(j). In this procedure, we set πj ← πj(1 + δ),

hij ← yij for each i, and yij ← 0 for each i. This completes the description of

Raiseprice.

Phases 1 and 2 of our algorithm are similar to the basic algorithm of Garg

and Kapoor [8] - a call to Allocatemore() replaces the sequence of steps in their

algorithm occurring between two price raises. Our algorithm needs to track the

relation of
∑

i T
′
(yi, hi, π) – the tax paid as a consequence of consumption – to

R, the tax that is distributed as income. The reason we have Phase 2 is that at

the end of Phase 1,
∑

i T
′
(yi, hi, π) can be significantly smaller than R.
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Theorem 1. For any ε > 0, our algorithm computes an ε-approximate equilib-
rium for the model in time that is polynomial in the input size, 1/ε, and κ.
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Abstract. A social choice function A is implementable with verifica-
tion if there exists a payment scheme P such that (A,P ) is a truthful
mechanism for verifiable agents [Nisan and Ronen, STOC 99]. We give
a simple sufficient condition for a social choice function to be imple-
mentable with verification for comparable types. Comparable types are
a generalization of the well-studied one-parameter agents. Based on this
characterization, we show that a large class of objective functions µ ad-
mit social choice functions that are implementable with verification and
minimize (or maximize) µ. We then focus on the well-studied case of one-
parameter agents. We give a general technique for constructing efficiently
computable social choice functions that minimize or approximately min-
imize objective functions that are non-increasing and neutral (these are
functions that do not depend on the valuations of agents that have no
work assigned to them). As a corollary we obtain efficient online and
offline mechanisms with verification for some hard scheduling problems
on related machines.

1 Introduction

Computations over the Internet often involve self-interested parties (selfish
agents) which may manipulate the system by misreporting a fundamental piece
of information they hold (their own type or valuation). The system runs some
algorithm which, because of the misreported information, is no longer guaran-
teed to return a “globally optimal” solution (optimality is naturally expressed as
a function of agents’ types) [1]. Since agents can manipulate the algorithm by
misreporting their types, one has to carefully design payment functions which
make disadvantageous for an agent to do so. A mechanism M = (A,P ) consists
of a social choice function A which, on input the reported types, chooses an out-
come, and a payment function P which, on input the reported types, associate
a payment to every agent. Payments should guarantee that it is in the agent’s
interest to report his type correctly. Social choice functions A for which there
exists a payment P that guarantees that the utility that an agent derives from
the chosen outcome and from the payment he receives is maximum when this
agent reports his type correctly are called implementable (see Sect. 1 for a
formal definition of these concepts). In this case the mechanism M = (A,P ) is
called truthful. The main difficulty in designing truthful mechanisms stems from

M. Bugliesi et al. (Eds.): ICALP 2006, Part I, LNCS 4051, pp. 596–607, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the fact that the utility itself depends on the type of the agent: for instance,
payments designed to “compensate” certain costs of the agents should make im-
possible for an agent to speculate. It is well-known that certain social choice
functions cannot be implemented. This poses severe limitations on the class of
optimization problems involving selfish agents that one can optimally solve (see
e.g. [1,2]).

Notation. The following notations will be useful. For a vector x = (x1, . . . , xm),
we let x−i denote the vector (x1, . . . , xi−1, xi+1, . . . , xm) and (y,x−i) the vector
(x1, . . . , xi−1, y, xi+1, . . . , xm). For sets D1, . . . , Dm, we let D denote the Carte-
sian product D1×· · ·×Dm and, for 1 ≤ i ≤ m, we let D−i denote the Cartesian
product D1 × · · · ×Di−1 ×Di+1 × · · · ×Dm.

Implementation with verification. In this paper we focus on so called mechanisms
with verification as introduced in [1] and studied in [3]. These mechanisms award
payments after the selected outcome has been “implemented” and this implemen-
tation allows some limited “verification” on the agents’ reported types. We have
a finite set O of possible outcomes and m selfish rational agents. Agent i has
a valuation (or type) vi taken from a finite set Di called the domain of agent
i. A valuation vi is a function vi : O → �; vi(X) represents how much agent
i likes outcome X ∈ O (higher valuations correspond to preferred outcomes).
The valuation vi is known to agent i only. A social choice function A : D → O

maps the agents’ valuations into a particular outcome A(v1, . . . , vm). A mecha-
nism M = (A,P ) is a social choice function A coupled with a payment scheme
P = (P1, . . . , Pm), where each Pi is a function Pi : D → �. The mechanism
elicits from each agent his valuation and we denote by bi ∈ Di the reported valu-
ation of agent i. On input the vector b = (b1, . . . , bm) of reported valuations, the
mechanism selects outcome X as X = A(b) and assigns agent i payment Pi(b).
We assume that agents have quasi-linear utilities; more specifically, the utility
u
M
i (b|vi) of agent i when b is the vector of reported valuations and vi is the

type of agent i is uMi (b|vi) = Pi(b) + vi(A(b)). Agents are selfish and rational
in the sense that each of them will report bi which maximizes the correspond-
ing utility. We stress that both the outcome and the payments depend on the
reported valuations b = (b1, . . . , bm). In particular, for a fixed b−i, the outcome
A(b−i, bi) is a function Ab−i(bi) of the reported valuation bi of agent i.

The classical notion of a mechanism assumes that there is no way of verify-
ing whether an agent reported his type truthfully (that is, whether bi = vi).
Therefore, a selfish rational agent can declare any type that will maximize his
utility. In some cases, though, it is reasonable to assume that the mechanism has
some limited way of verifying the reported types of the agents. In this paper,
we consider mechanisms with verification which can detect whether bi = vi if
and only if vi(Ab−i(bi)) < bi(Ab−i(bi)); in this case, agent i will not receive any
payment.

A scenario that is often considered when dealing with selfish rational agents
consists of a social choice function that has to share some work-load among
the agents. In this scenario, an outcome X specifies for each agent the task



598 V. Auletta et al.

that the agent has to complete. It is thus natural to assume that the valuation
vi(X) of agent i reflects how much time it takes agent i to complete the task
assigned to him. For example, one could have vi(X) = −Ti(X) where Ti(X) is
the time needed by agent i to complete the task assigned to him by X ; thus
higher valuations correspond to outcomes X that assign to agent i tasks that
can be completed faster. In this scenario, it is natural to assume that an agent
can report to be slower than he actually is and delay the completion of the task
assigned to him without being caught by the mechanism (this corresponds to
the case in which agent i declares bi such that bi(Ab−i(bi)) ≤ vi(Ab−i(bi)). On
the other hand, if agent i declares to be faster that he actually is (that is, he
declares bi such that bi(Ab−i(bi)) > vi(Ab−i(bi))) then agent i will complete
his task at time −vi(Ab−i(bi)) instead of time −bi(Ab−i(bi)) as expected by the
mechanism, given his declared valuation bi. The mechanism will thus punish
agent i by not giving him any payment. The well-studied class of one-parameter
agents [4,2] corresponds to the special case in which the task assigned to an agent
is described by a weight and the time needed to complete a task is proportional
to its weight. In this case, the type of the agent is determined by the time it
takes the agent to complete a task of unitary weight. Let us now proceed more
formally.

Definition 1 ([1]). A social choice function A is implementable with verifi-
cation if there exists P = (P1, . . . , Pm) such that for all i, all vi ∈ Di, all
b−i ∈ D−i, utility u

(A,P )
i (b|vi) of agent i is maximized by setting bi = vi.

In this case, M = (A,P ) is called a truthful mechanism with verification. It
is easy to see that, if A is implementable with verification then there exists
P = (P1, . . . , Pm) such that, for all vi, bi ∈ Di and b−i ∈ D−i, the following
inequalities hold:

vi(Ab−i(vi)) +Pi(vi,b−i)≥vi(Ab−i(bi)) if vi(Ab−i(bi))< bi(Ab−i(bi))(1)
vi(Ab−i(vi))+Pi(vi,b−i)≥ vi(Ab−i(bi)) + Pi(bi, b−i)if vi(Ab−i(bi))≥ bi(Ab−i(bi)).(2)

We are interested in social choice functions A which are implementable with
verification and that optimize some objective function µ(·) which depends on
the agents’ valuations v = (v1, . . . , vm). For maximization (resp., minimization)
functions, we let optµ(v) be maxX∈O µ(X,v) (resp., minX∈O µ(X,v)). An out-
come X ∈ O is an α-approximation of µ for v ∈ D if the ratio betweeen µ(X,v)

and the optimum is at most α. A social choice function A is α-approximate
for µ if, for every v ∈ D, A(v) is an α-approximation of µ for v. In partic-
ular, we say that social choice function A maximizes function µ if, for all v,
A(v) = arg maxX∈O µ(X,v).

Our results. We start by studying a generalization of one-parameter agents which
we call comparable types. We give a simple sufficient condition for social choice
function to be implementable with verification for comparable types and, based
on this characterization, we show that a large class of objective functions µ

admit social choice functions that are implementable with verification and min-
imize (or maximize) µ. In particular, we consider maximization (respectively,
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minimization) functions of the form µ(v1(X), . . . , vm(X)) which are monotone
non-decreasing (respectively, non-increasing) in each agent valuation vi(X). Ob-
serve that VCG mechanisms [5,6,7] can only deal with particular functions of
this form called affine maximizers and the Q||Cmax scheduling problem is an
example of an optimization problem involving a monotone non-decreasing func-
tion (thus our result applies to Q||Cmax) that is not an affine maximizer. We
remark that agents with comparable types are more general than one-parameter
agents. In the full version we shows a simple class of latencies (corresponding
to comparable types) for which optimization is not implementable if verifica-
tion is not allowed. We also characterize social choice functions implementable
with verification for agents with strongly comparable types, a reach subclass of
comparable types which has the well-studied one-parameter agents as a special
instance. In Section 3, the focus is on efficiently computable social choice func-
tions and one-parameter agents. We give a general transformation for turning
any polynomial-time α-approximate algorithm A for the optimization problem
with objective function µ into an α(1 + ε)-approximate social choice function
A
� that is implementable with verification. If the number of agents is constant,

A
� can be computed in polynomial-time and this gives immediate applications

to NP-hard scheduling problems (see Section 4). Most of the proofs are omitted
fromthis paper but can be found in the full version available from the authors’
web pages.

Related work. Mechanisms for one-parameter agents have been characterized in
[4,2]. Lavi, Mu’alem and Nisan [8] showed that a weak monotonicity condition
(W-MON) characterizes order-based domains with range constraints and this
result was extended, in a sequence of papers [9,10], to convex domains. These
results concern mechanisms which do not use verification and cannot be applied
to our case. We show that the “counterpart” of W-MON for mechanisms with
verification (which we term WMonVer) is not always sufficient, unlike the cases
considered in [8,9,10]. This gives evidence that the results about W-MON cannot
be imported in mechanisms with verification. The study of social choice functions
implementable with verification starts with the work of Nisan and Ronen [1], who
gave a truthful (1 + ε)-approximate mechanism for minimizing scheduling on a
constant number of unrelated machines. Similar results have been obtained by
Auletta et al. [3] for scheduling on any number of related machines (see also [11]
for the online case). Also the works of [12,13] give mechanisms for agents which
are verifiable.

2 Agents with Comparable Types

In this section we consider comparable types. The main result of this section
(see Theorem 4) shows that, for any monotone non-decreasing function µ, there
exists a social choice function A that maximizes µ and that is implementable
with verification. In Theorem 5, we give a necessary and sufficient condition for
a social choice function to be implementable with verification with respect to a
subclass of comparable types which includes one-parameter agents.
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Definition 2. Let a and b be valuations. We say that a is smaller or equal to
b, in symbols a ≤ b, if, for all X ∈ O, a(X) ≤ b(X). Domain D is comparable
if for any a, b ∈ D either a ≤ b or b ≤ a.

In this section we assume that for all i, the domain Di of agent i is comparable.
We also assume domains to have finite cardinality (even though this assumptions
can be relaxed in some cases, e.g., for one-parameter agents). For fixed i and
b−i, inequalities (1-2) give a system of linear inequalities with unknowns P x

:=

Pi(x,b−i), for x ∈ Di. For a, b ∈ Di with a ≤ b, Inequalities (1-2) are equivalent
to the following two inequalities

P
a
− P

b
≥ a(Ab−i(b))− a(Ab−i(a)) if a(Ab−i(b)) = b(Ab−i(b)), (3)

P
b
− P

a
≥ b(Ab−i(a))− b(Ab−i(b)). (4)

As before, for fixed i and b−i the two inequalities above give rise to a system
of inequalities as a and b with a ≤ b range over Di. This system of inequalities
is compactly encoded by the following graph that is a modification of the graph
introduced in [9] to study the case in which verification is not allowed.

Definition 3 (verification-graph). Let A be a social choice function. For ev-
ery i and b−i ∈ D−i, the verification-graph V(b−i) has a node for each type
in Di. The set of edges of V(b−i) is defined as follows. For every a ≤ b, add a
directed edge (b, a) of weight δb,a := b(Ab−i(b)) − b(Ab−i(a)) (encoding Inequal-
ity (4)). If a(Ab−i(b)) = b(Ab−i(b)), then also add directed edge (a, b) of weight
δa,b := a(Ab−i(a))− a(Ab−i(b)) (encoding Inequality (3)).

Theorem 1. A social choice function A is implementable with verification if
and only if, for all i and b−i ∈ D−i, the graph V(b−i) does not have negative
weight cycles.

The theorem follows from the observation that the system of linear inequalities
involving the payment functions is the linear programming dual of the shortest
path problem on the verification-graph. Therefore, a simple application of Farkas
lemma shows that the system of linear inequalities has solution if and only if the
verification-graph has no negative weight cycle. The same argument has been
used for the case in which verification is not allowed albeit on a different graph
(see [15] and [9]).

We next show that there exists an interesting class of social choice functions
whose verification graphs have no cycle with negative weights. As we shall prove
below, these functions can be used to design optimal truthful mechanisms with
verification.

Definition 4 (stable social choice function). A social choice function A is
stable if, for all i, for all b−i ∈ D−i, and for all a, b ∈ Di, with a ≤ b, if
a(Ab−i(b)) = b(Ab−i(b)), then we have that Ab−i(a) = Ab−i(b).

The following result is based on the fact that stable social choice functions guar-
antee that, if V(b−i) contains a cycle, then all edges in that cycle have zero
weight (see full version for a proof).
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Theorem 2. Every stable social choice function A is implementable with veri-
fication.

We use the above result to show that it is possible to implement social choice
functions which select the best outcome out of a fixed subset of possible out-
comes:

Theorem 3. For any X1, . . . , X� ∈ O, let A = MAXµ(X1, . . . , X�) be the so-
cial choice function that, on input (b1, . . . , bm) ∈ D, returns the solution Xj of
minimum index that maximizes the value

µ(b1(Xj), . . . , bm(Xj)).

If µ(·) is monotone non-decreasing in each of its arguments then A is stable.

Proof. Fix an agent i and the reported types b−i ∈ D−i of all the other agents.
Let a, b ∈ Di with a ≤ b, and denote Xia := Ab−i(a) and Xib := Ab−i(b). To
prove that A is stable we have to show that, if a(Ab−i(b)) = b(Ab−i(b)), then
Xia = Xib . Observe that

µ(b1(Xib), . . . , bi−1(Xib), b(Xib), . . . , bm(Xib)) = (by a(Xib) = b(Xib)) (5)
µ(b1(Xib), . . . , bi−1(Xib), a(Xib), . . . , bm(Xib)) ≤ (definition of A and Xia) (6)
µ(b1(Xia), . . . , bi−1(Xia), a(Xia), . . . , bm(Xia)) ≤ (a ≤ b and µ non decr.) (7)
µ(b1(Xia), . . . , bi−1(Xia), b(Xia), . . . , bm(Xia)) ≤ (definition of A and Xib) (8)
µ(b1(Xib), . . . , bi−1(Xib), b(Xib), . . . , bm(Xib)). (9)

This implies that all inequalities above hold with “=”. Since A chooses the opti-
mal solution of minimal index, equality between (5) and (8) yields ib ≤ ia. Sim-
ilarly, the equality between (7) and (6) yields ia ≤ ib, thus implying Xia = Xib .

Combining Theorem 3 and Theorem 2 we obtain the main result of this section.

Theorem 4. Let µ(·) be any function monotone non-decreasing in its arguments
b1(X), . . . , bm(X), with X ∈ O and bi ∈ Di. Then, there exists a social choice
function OPTµ which maximizes µ(·) and is implementable with verification.

In the full version we exhibit a social choice function which satisfies the hy-
pothesis of Theorem 3 (and thus is implementable with verification) but is not
implementable if verification is not allowed. This shows that, for comparable
types, verification does help.

If the set O of outcomes is very large, then social choice function A could
not be efficiently computable. Our next result can be used to derive efficiently-
computable social choice functions which approximate the objective function by
restricting the search to a suitable subset of the possible outcomes.

Definition 5 (approximation preserving). AsetO′
⊆ O is α-approximation

preserving for µ if, for every b ∈ D, the set O′ contains a solution X
′ which is an

α-approximation of µ for b.
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Theorem 3 implies the following.

Corollary 1. Let µ(·) be any optimization function monotone non-decreasing
in its arguments b1(X), . . . , bm(X), with X ∈ O and bi ∈ Di. For any α-
approximation preserving set O′

⊆ O the social choice function APXµ :=

MAX
X∈O′{X} is an α-approximation for µ and is implementable with veri-

fication. Moreover, social choice function APXµ(b) can be computed in time
proportional to the time needed for computing values µ(X,b), for X ∈ O

′.

Characterization. The following definition is adapted to the verification setting
from the W-MON condition (see [8]) which has been proved necessary and suf-
ficient for implementation without verification for convex domains.

Definition 6 (WMonVer). A social choice function A is WMonVer for do-
mains D1, . . . , Dm, if, for all i, for all b−i ∈ D−i, the graph V(b−i) does not
contain 2-cycles of negative weight.

Obviously, condition WMonVer is necessary for A to be implementable with
verification. Next we prove that for strongly comparable types (a restriction of
comparable types that includes one-parameter types) WMonVer is a necessary
and sufficient condition for a social choice-function A to be implementable with
verification. In the full version, we give an example of a WMonVer social choice
function that is not implementable with verification for comparable types.

Definition 7 (strongly comparable types). A domain with comparable types
Di is with strongly comparable types if there exists vi ∈ � such that, for all
X ∈ O: (i) a(X) ≤ vi, for all a ∈ Di, and (ii) for all a, b ∈ Di, a(X) = b(X)

implies a(X) = vi.

Theorem 5. For domains with strongly comparable types, social choice function
A is implementable with verification if and only if A is WMonVer.

3 One-Parameter Agents

In this section we present our results about one-parameter agents. One-parameter
agents are a special case of agents with strongly comparable types, and thus The-
orem 5 gives us a necessary and sufficient condition for a social choice function
to be implementable with verification. In this section, the focus is on efficiently
computable social choice functions (which will also be referred to as algorithms).
The main result of this section (see Theorem 9) shows, for a large class of opti-
mization functions µ (see Definitions 10 and 11), how to transform a polynomial-
time α-approximate algorithm for µ into an efficiently computable social choice
function that is implementable with verification for one-parameter agents and
α(1 + ε)-approximates µ. The class of function µ to which our transformation
applies include several classical scheduling problems (see Section 4). In Theo-
rem 11, we give a similar result for online settings.
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Definition 8. [2] The valuation vi of a one-parameter agent can be written as
vi(X) = −wi(X) · ti, for some publicly known non-negative function wi(·) and
some real number ti ≥ 0 that is privately known to agent i.

Observe that the valuation of a one-parameter agent is non-positive. We assume
that when asked to report his type, an agents replies with a real number ri,
implying that he reports his valuation to be bi(X) = −wi(X) · ri. We consider
optimization functions µ(X, b1, . . . , bm) (as opposed to functions of the form
µ(b1(X), . . . , bm(X)) of the previous section) that are non-decreasing in each
valuation bi and thus, equivalently, non-increasing in each reported type ri.

In the rest of this section, we will show how to design social choice functions
for one-parameter agents that are implementable with verification and that can
be computed in polynomial time. By virtue of Theorem 5, it suffices to focus
on social choice functions that are WMonVer for one-parameter agents. We first
observe the following:

Fact 1 For one-parameter agents, a social choice function A is WMonVer if
and only if, for all i, r−i there exists a critical value θi ∈ (�

+
∪ ∞) such that

(i) wi(ri, r−i) = 0 for ri > θi, and (ii) wi(ri, r−i) > 0 for ri < θi.

Notice that with a slight abuse of notation we have denoted the critical value
with θi even though it depends on i and r−i. The above property is called weak
monotonicity in [3], and Theorem 5 implies one of the main results in that work.
The MAX operator. We are given a function µ and want to design a social choice
function A that is implementable with verification (i.e., WMonVer) and, for a
given vector b of declared types, returns an outcome X such that µ(X,b) is
close to the maximum of µ over all choices of X ∈ O. Moreover, we want A
to be efficiently computable. A natural approach is to start from simple social
choice functions and combine them together. Mu’Alem and Nisan [14] consider
the following “MAX” operator:

MAXµ(A1,A2) operator
• compute X1 = A1(b) and X2 = A2(b);
• if µ(X1,b) ≥ µ(X2,b) then return X1 else return X2.

For minimization problems, one can simply consider a ‘MIN’ operator defined as
MINµ(A1, A2) := MAX −µ(A1, A2). Notice the slight abuse of notation in using
MAXµ both with social choice functions (as in the description of the MAXµ

operator) and outcomes (as in Theorem 3) as arguments. In general, the fact
that A1 and A2 are WMonVer does not guarantee that MAXµ(A1, A2) is also
WMonVer. We borrow (and adapt) the following definition.

Definition 9 ([14]). A social choice function A is bitonic w.r.t. µ(·) if it is
WMonVer and, for every i and r−i, one of the following two conditions holds
for the function g(x) := µ(A(x, r−i), (x, r−i)): (i) g(x) is non-increasing for
x < θi and non-decreasing for x ≥ θi; or (ii) g(x) is non-increasing for x ≤ θi

and non-decreasing for x > θi, where θi is the critical value.
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The following is the main technical contribution of this sections and will be used
to prove Theorem 9.

Theorem 6. If each Ai is bitonic w.r.t. µ(·) then social choice function MAXµ

(A1, A2, . . . , Ak):=MAXµ(MAXµ(A1, . . . , Ak−1),Ak) is bitonic w.r.t. µ(·) and
WMonVer for one-parameter agents.

The same results hold for the ‘MIN’ operator if each Ai is bitonic w.r.t. −µ(·).
Theorem 6 is proved by showing a connection between WMonVer social choice
functions and monotone social choice functions for known single minded bidders
(a special type of agents for combinatorial auctions studied in [14]).

Efficient WMonVer social choice functions. Theorem 6 provides a powerful tool
for efficiently building social choice functions starting from simpler ones. In par-
ticular, we will use this result to extend Theorem 3 to a wider class of optimiza-
tion functions of the form µ(X, b1, . . . , bm). This allows us to deal with certain
scheduling problems where the measure depends on the scheduling policy internal
to the machines and therefore cannot be expressed as the machines completion
times (i.e., as a function of wi(X) · ti). We start by defining the notion of neutral
functions.

Definition 10. A function µ(·) is neutral if, for every X such that wi(X) = 0,
it holds that µ(X, (bi,b−i)) = µ(X, (b

′
i,b−i)), for every bi, b

′
i and every b−i.

We have the following technical lemma.

Lemma 1. Let µ(X, b1, . . . , bm) be neutral and non-decreasing in each bi, for
every X ∈ O. Then any algorithm returning a fixed outcome X is bitonic w.r.t.
µ(·).

Theorem 7. Let µ(X, b1, . . . , bm) be neutral and non-decreasing in each bi,
for every X ∈ O. Then, for any X1, . . . , X� ∈ O, the social choice function
A = MAXµ(X1, . . . , X�) is bitonic w.r.t. µ(·). Hence A is implementable with
verification.

Proof Sketch. The proof is based on the observation that a fixed outcome
Xj can be seen as an algorithm returning Xj for all inputs. We show that such
an algorithm is bitonic and then apply Theorem 6. �

Theorem 7 above has two important consequences. First of all, we can obtain a
result (similar to Theorem 4) that shows that optimization of neutral monotone
functions µ(X, b1, . . . , bm) for one parameter agents can be implemented with
verification.

Theorem 8. For one-parameter agents and for any function µ(X, b1, . . . , bm)

which is neutral and non-decreasing in each bi, there exists a social choice func-
tion OPTµ that maximizes µ(·) and is implementable with verification.

Another consequence is that, if we have an α-approximation preserving set of
outcomes O′ for µ, we can apply the above theorem to all outcomes X ∈ O

′.
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This gives us a social choice function A which is implementable with verification,
α-approximates µ and can be computed in time polynomial in |O′

|.
We next introduce the class of smooth functions, for which there exists a small

α-approximation preserving set of outcomes.

Definition 11. Fix ε > 0 and γ > 1. A function µ is (γ, ε)–smooth if, for any
pair of declarations r and r̃ such that ri ≤ r̃i ≤ γri for i = 1, 2, . . . ,m, and for
all possible outcomes X, it holds that µ(X, r) ≤ µ(X, r̃) ≤ (1 + ε) · µ(X, r).

For smooth, neutral functions µ we can transform any α-approximate polyno-
mial-time algorithm A (which is not necessarily implementable with verifica-
tion) into a social choice function for a constant number of agents which is
computable in polynomial-time, implementable with verification and α(1 + ε)-
approximates µ.

Theorem 9. Let A be a polynomial-time α-approximate algorithm for a neu-
tral, non-decreasing (in each bi) (γ, ε)-smooth objective function µ(·). Then, for
any ε > 0, there exists an α(1 + ε)-approximate social choice function A

� im-
plementable with verification. If the number of agents is constant, A� can be
computed in polynomial time.

Proof Sketch. Let O′ be the set of outcomes returned by A when run on bid
vectors whose components are powers of γ. For m agents, |O′

| is O(maxi{logγ

|Di|}
m

) which is polynomial for fixed m, and, since µ is (γ, ε)-smooth, O′ is
an α(1 + ε)−approximation preserving set for µ. Consider social choice function
A
� that on input r outputs the outcome X ∈ O

′ that maximizes µ(X, r). By
Theorem 7, A� is WMonVer and α(1+ε)-approximates µ. Moreover, for constant
m, A� is polynomial-time computable. �

Online mechanism. A natural way of designing an online algorithm for schedul-
ing problems is to iterate a “basic-step” algorithm B which, given the current
assignment X , the processing requirement of the new job J and the reported
types b1, . . . , bm (that is, the reported speed of machine i is 1/ri) outputs the in-
dex B(X, J,b) of the machine to which the job must be assigned. For algorithm
B, the set of outcomes O consists of all allocations that can be obtained from
X by allocating job J to one of the m machines.

Algorithm B-iterated(b)

• X := ∅;
• while a new job J arrives do
• assign job J to machine of index B(X, J,b) and modify X accordingly.

Observe that a basic-step algorithm B that is implementable with verification
does not necessarily remains implementable with verification when iterated and
we need the stronger property of stability.

Theorem 10. If B is stable then algorithm B-iterated is stable as well.
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Therefore, by Theorem 2, B-iterated is implementable with verification. For ex-
ample, Graham’s [16] online greedy algorithm for Q||Cmax can be seen as the
iterated version of a simple basic stable step and thus it is implementable with
verification. This property holds more in general. Consider the greedy algorithm
which, at every step, assigns a newly arrived job to the machine that, given the
current assignment of previous jobs, maximizes the increase of the objective func-
tion µ(·); ties are broken in a fixed manner, and −µ(·) is typically a cost function
that one wishes to minimize (e.g., the Lp norm defined as p

√∑
i(wi(X) · ti)

p).
Then next Theorem says that greedy is stable and thus if the greedy algorithm
is α-approximating for µ(·), then one has a α-approximating algorithm imple-
mentable with verification.

Theorem 11. The greedy algorithm is stable for cost functions µ(X, b1, . . . , bm)

that are neutral and non-decreasing in each bi, for every X ∈ O.

4 Applications

We consider scheduling problems on related machines owned by selfish agents as
in [2]. We are given a set of m related machines and a set of n jobs. Each job has
a weight and a job can be assigned to any machine. Assigning a job to machine
i makes the work wi of that machine to increase by an amount equal to the
job weight. Each machine i has a speed si, and the completion time of machine
i is wi/si, where wi is the work assigned to machine i. In the online setting,
jobs arrive one-by-one, the k-th job must be scheduled before next one arrives,
and jobs cannot be reallocated. For an assignment X , we let wi(X) be the work
that this solution assigns to machine i. Each machine i corresponds to a selfish
agent whose valuation is −wi(X)/si = −wi(X) · ti for ti = 1/si. The speed of
machine i is known to agent i only (everything else is known to the mechanism)
and her valuation is the opposite of the completion time of her machine. An
agent can thus misreport her speed (i.e., declare ri = ti). Mechanisms with
verification compute, for each agent i, an associated payment and award agent
i her payment if and only if all jobs assigned to machine i have been released
by time wi(X) · ri, where X is the outcome selected by the mechanism [1,3].
Machine i can misreport her speed and still receive her associated payment if
one of the following happens: (i) the declared speed is worse (i.e., ri < ti) and
jobs are released accordingly by adding some delay; (ii) the declared speed is
better (i.e., ri < ti) but this makes the allocation algorithm A to compute an
allocation X which does not assign any job to machine i (i.e., wi(X) = 0, in
which case no verification is possible).

We consider several variants of this problem depending on the optimization
function adopted. All of these problems are minimization problems for which
it is NP-hard to compute exact solutions, even for m = 2. The table below
summarizes some of the applications of our techniques to scheduling problems.
For the first three problems, no mechanism without verification can attain an
approximation factor better than 2/

√

3 > 1, for all m ≥ 2 [2]. Our upper bounds
(in bold) are the first bounds on these problems which are all NP-hard to solve
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exactly; bounds for Q||
∑

j wjCj and Q|rj|
∑

j wjCj break the 2/
√

3 lower bound
in [2], which holds also for exponential-time mechanisms; upper bound for the Lp
norm is obtained via online mechanisms based on the greedy algorithm (for p = 2,
the bound is 1 +

√

2). Our techniques can be used also to obtain mechanisms
without verification for some graph problems (see full version).

Problem version Upper Bound
Exp Time (any m) Polytime (m constant)

Q||∑j wjCj OPT [3] (1 + ε)-approximate [Thm. 9 & [17]]
Q|rj|

∑
j wjCj OPT [Thm. 8] (1 + ε)-approximate [Thm. 9 & [17]]

Q|prec, rj |
∑

j wjCj OPT [Thm. 8] O(log m)-approximate [Thm. 9 & [18]]
Lp norm OPT [Thm. 8] O(p)-competitive [Thm. 11]
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Abstract. In this paper we address the open problem of bounding the
price of stability for network design with fair cost allocation for undi-
rected graphs posed in [1]. We consider the case where there is an agent
in every vertex. We show that the price of stability is O(log log n). We
prove this by defining a particular improving dynamics in a related graph.
This proof technique may have other applications and is of independent
interest.

1 Introduction

The price of stability [1] of a noncooperative game is the ratio between the cost

of the least expensive Nash equilibria and the cost of the social optimum. The

price of stability for network design games is motivated by the scenario where

one may have some centralized control for a limited time when the network is

set-up. But, once the network is up and running, it should be stable without

central control. Of course, the price of stability is not larger than the price of
anarchy [6] which is the ratio of the cost of the most expensive Nash Equilibrium

and the cost of the social optimum.

We consider the game of network design with fair cost allocation introduced

in [1]. In this game, agent i has to choose a path (strategy) from source node

si to destination node ti. The cost of an edge e, c(e), is shared equally by all

agents i whose chosen path pi = si, ..., ti includes e.

It follows from the potential function arguments of [7,8] that pure strategy

Nash equilibria always exist for general congestion games, and in particular for

the network design game that we consider here (both directed and undirected

versions)
1
. In the following, we consider the price of stability for this network

design game with respect to pure strategies.

The social optimum for this game is a minimum Steiner network connecting

all source-destination pairs. Anshelevich et al. [1] show that the price of stability

of this game is at most H(n) = 1 + 1/2 + · · · + 1/n, where n is the number of

agents. They also exhibit a directed network where this bound is tight.

For undirected graphs the upper bound of H(n) on the price of stability still

holds but the lower bound does not. Furthermore, for the case of two players

and an undirected graph with a single source Anshelevich et al. [1] prove a tight

1 Some weighted congestion games do not have Nash equilibria in pure strategies.

M. Bugliesi et al. (Eds.): ICALP 2006, Part I, LNCS 4051, pp. 608–618, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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bound on the price of stability of 4/3 which is less than H(2) = 3/2. Thus, [1]

left open the question of whether there is a tighter bound for undirected graphs.

Our Results. We prove that for undirected graphs with an agent in every vertex

and a distinguished source vertex r to which all agents must connect, the price of

stability of the network design game of [1] is O(log logn) where n is the number

of agents. In contrast, in directed graphs even when there is a single source and

an agent in every vertex the price of stability is still Θ(log n). This follows by a

slight modification of the lower bound example of [1].

Related Work on Network Games. Much of the work on network games

has focused on congestion games [7,8]. In particular, latency minimization and

some network construction/design games can be modeled as congestion games

or weighted congestion games.

Most of the previous work has been focused on bounding the price of anarchy.

The main focus was latency minimization for linear and polynomial latency

functions [3,5,9]. The price of stability for linear latency functions has been

studied by Christodoulou and Koutsoupias [4].

As most of previously considered games the game that we consider here is also

a congestion game where players are source-destination pairs and a strategy of a

player is a single path from the source to the destination. The difference is that

the cost that a player pays for each edge e on its path is c(e)/xe where xe is the

number of players using the edge. The price of anarchy for this game can be high

as shown in [1]. But we are interested in the price of stability. The price of stability

of a different connection game was also considered by Anshelevitz et al. [2].

2 Preliminaries

Our input is an undirected graph G = (V,E), along with a distinguished source

vertex r ∈ V , and a cost function c : E &→ R
+
. We will refer to c(e), e ∈ E, as

the cost of the edge e.

Associated with every vertex v ∈ V is a selfish player. The network design

game defines a strategy of a player v, to be a simple path in G connecting v to

the source r. Let Sv denote the strategy chosen by player v, we define the state
S to be the set of all paths Sv, for all players v. We define E(S) to be the set of

edges that appear in one or more of the paths in state S.
2

It follows that the graph (V,E(S)) is a subgraph of G. In state S, let xs(e) be

the number of players whose strategy contains edge e ∈ E. We define the cost

of player v in state S, CS(v), to be
∑

e∈Sv
c(e)/xs(e). A state S is in a Nash

equilibrium if no player can lower her cost by unilaterally changing her path to

the source r.

We shall use the standard potential function Φ, see e.g. [1,7], that maps every

state S into a numeric value: Φ(S) =
∑

e∈E c(e)H(xs(e)), where H(n) = 1 +

2 Note that if one allow non simple paths as strategies then for every non simple
strategy there is always a simple one which is strictly better.
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1/2 + 1/3 + · · ·+ 1/n is the n’th Harmonic number. If a single player v changes

her strategy then the difference between the potential of the new state and the

potential of the original state is exactly the change in the cost of player v. This

implies that the improving response dynamics converges to a Nash equilibrium

in pure strategies.

Notice that the sum of the costs of all players in state S is exactly the sum

of the costs of the edges of E(S). It follows that if the social cost function is

the sum of the costs of all players then the social optimum of this game is a

minimum spanning tree of the graph. We denote by OPT an arbitrary but fixed

minimum spanning tree. Let p be the path from vertex u to vertex v in OPT.

We define the distance between u and v in OPT, denoted by dopt(u, v), to be the

sum of the costs of the edges between vertex u and vertex v along p.

Let S be a state and let e = (x, y) ∈ Su. We say that u uses e in the direction
x→ y if y is closer than x to the r on Su. Similarly, we say that u uses e in the
direction y → x if x is closer than y to r on Su. We say that e appears in S in
the direction x → y (or simply x → y appears in S) if there is a player u such

that e appears in Su in the direction x→ y.

In the following definitions assume that v is the only player making the change,

and we denote the new state by S
′
which is identical to S except that we replace

Sv by S
′
v. We say that a player v makes an improvement move when the player

chooses a new strategy S
′
v such that CS′(v) < CS(v). We limit player v to choose

strategies S
′
v of the following three types.

EE (Existing Edges) – An improvement move such that E(S
′
) ⊆ E(S). Fur-

thermore, if S
′
v uses an edge e = (x, y) in the direction x → y then x → y

appears in S.

OPT – An improvement move such that E(S
′
) ⊆ E(S) ∪ OPT, but E(S

′
) �

E(S). Furthermore, if S
′
v uses an edge e = (x, y) /∈ OPT in the direction

x→ y then x→ y appears in S.

OPT – The first edge e = (v, w) on S
′
v is not in E(S)∪OPT, and E(S

′
)−{e} ⊆

E(S). Furthermore, if S
′
v uses an edge e

′
= (x, y), e

′
= e in the direction

x→ y then x→ y appears in S.

Remark 1. Note that if we start from OPT and perform only EE, OPT, and

OPT moves then in the state that we reach, no edge (x, y) /∈ OPT appears in

both directions, x→ y and y → x. It appears in the same direction determined

by the OPT move that added (x, y).

Overview. In Section 3 we prove that if no player has an improvement move

of type EE, OPT, or OPT then the state is a Nash equilibrium. We single out a

specific Nash equilibrium, denoted by N , that we reach by carefully scheduling

EE, OPT, and OPT moves. We then prove that the cost of N is larger than the

cost of OPT by a factor of at most O(log logn).

After an OPT move of a player u that adds the edge (u, v) into the current

state, we make further OPT and EE moves so that more players use (u, v). We

traverse players in increasing distance from u in OPT. Each player that improves
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her strategy by using the path to u in OPT following by the strategy of u makes

the corresponding improvement move.

Let c(u, v) = z. This scheduling has two effects which our proof exploits.

1. If there are O(log n) players whose distance to u in OPT is no larger than

z/4 then the potential decreases by O(z logn). Therefore, the total cost

introduced into N by such edges is O(OPT).

2. Edges in N \ OPT cannot be too close to each other in the metric defined

by OPT. This allows us to relate the cost of all other edges in N \ OPT to

the cost of OPT.

Our scheduling algorithm is described in Section 4. In Section 5 we prove

the bound on the price of stability of the Nash Equilibrium obtained by the

scheduler. Due to the space limit some of the proofs are omitted.

3 Improvement Moves Result in Nash Equilibria

We now show that if no player has an improvement move of type EE, OPT, or

OPT then the current set of strategies is a Nash equilibrium.

Lemma 1. Let S be a state such that no player has an improving move of type
EE. Then (V,E(S)) is a tree.

Proof. Assume that (V,E(S)) is not a tree. Since our strategies are simple paths

there must be some vertex w from which one can follow two paths to r; one path is

the strategy Sw of w, and the other path, denoted by Ŝw, is a suffix of some path

Su of a vertex u that goes through w. If
∑

e∈Ŝw
c(e)/xs(e) ≤

∑
e∈Sw

c(e)/xs(e)

then w has an improving EE move in which she replaces her path by Ŝw which

is a contradiction. On the other hand, if
∑

e∈Sw
c(e)/xs(e) ≤

∑
e∈Ŝw

c(e)/xs(e)

then u has an improving EE move in which she replaces the suffix Ŝw of Su by

Sw. ��

Lemma 2. Let S be a state in which no player can make an OPT, OPT, or EE
improvement move. Then S is in a Nash equilibrium.

4 Scheduling OPT, OPT, and EE Improvement Moves

For technical reasons that we will elaborate on later, instead of considering the

stability problem on the graph G, we switch to a related multigraph, G. It

would be clear from the definition of G that every minimum spanning tree in

G corresponds to a minimum spanning tree in G with the same cost and vice

versa. We also argue that a Nash equilibrium in the multigraph gives us a Nash

equilibrium in the original graph with the same cost.

We define G as follows. Associate with every edge e ∈ G, not in OPT, an

identical edge e
′
∈ G. Replace an edge e ∈ G that is in OPT by parallel edges

e
1

and e
2

in G, each of weight c(e). We say that e
1

and e
2

are associated with
e and vice versa. We can show that:
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Lemma 3. For every Nash equilibrium in G there is a Nash equilibrium in G

of the same cost.

We define EE, OPT, or OPT moves in G the same as we defined them in Section

2 where by edges of OPT in G we refer to both copies of each edge of OPT in G.

The scheduler: We start the scheduler on G from an initial state isomorphic

to OPT. We define the initial state S to consist of all edges e
1
∈ G associated

with some e ∈ OPT. The scheduler halts and the process converges when no EE,

OPT, or OPT moves are possible. The scheduler works in phases where in each

phase we make a single OPT move.

Let S be some state, that includes strategy Sv for player v and Sw for player w.

Given that w is a vertex on Sv, we define Follow(S, v, w) as a possible alternative

strategy for vertex v. Strategy Follow(S, v, w) consists of the prefix of Sv up to

and including vertex w, followed by Sw.

As an aid to the exposition, we use colors red and blue to label the parallel

edges of G. Initially, for every e ∈ OPT we assign the edge e
1

the color red

and the edge e
2

the color blue. In the beginning of a phase we may change the

assignment of the red/blue colors to the parallel edges.

OptFollow(S, v, w) is a strategy for player v that is defined if there is an

edge (v, w) that is a copy of an edge in OPT colored blue. The strategy

OptFollow(S, v, w) consists of the single edge (v, w) followed by Sw.

A phase of the scheduler: Let S be the state at the beginning of a phase. We

maintain the invariant that in S no player can make an improving OPT or EE

move, and thereby S is a tree according to Lemma 1. Before the phase starts

we make a Recoloring step. In this step we recolor red each edge in S which is

a copy of an edge in OPT, and we color blue the other copy of the edge which

not in S.

OPT-move: The phase starts with some player u changing her strategy by an

improving OPT move. We denote by S
′
the state after this OPT move of u at

the beginning of the phase.

OPT-loop: Following this OPT move we start a breadth first search of OPT

from u and for each player v in increasing order of dopt(u, v) we do the following.

Let CurS be the state right before we process v, and let p(v) be the parent

of v in the breadth first search tree. We check if OptFollow(CurS, v, p(v)) is

an improving strategy for v. If it is improving then v changes her strategy to

OptFollow(CurS, v, p(v)). If it is not improving then we truncate the breadth

first search at v. Note that all these OptFollow moves are defined since we started

the phase with a recoloring step. We call this part of the phase of the scheduler

the OPT-loop since all improvement moves made in this part are OPT moves.

We denote by D the set of players that includes u and players who performed

an OPT move in the OPT-loop.

EE-loop: For each player w ∈ D let Mw be the subset of descendants of w in

the tree S rooted at r, such that v ∈ Mw if and only if v /∈ D and w is the

first player in D along the path from v to r in S. In the second part of the

phase we traverse the vertices in
⋃
w∈DMw. For each player v ∈ Mw, let CurS
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be the state right after we process w, if the strategy Follow(CurS, v, w) is an

improving strategy for v, then v changes her strategy to Follow(CurS, v, w). We

call this part of the phase of the scheduler the EE-loop since all improvement

moves made in this part are EE moves.

In the last part of the scheduler we perform any improving OPT or EE moves

until no such improving move exists. Then the phase ends, and we start the next

one if there is an improving OPT move, or we stop if there isn’t.

5 The Price of Stability

In this section we bound the cost of the Nash equilibrium reached by the sched-

uler.

We introduce the following definitions. Let S be the state which is a tree.

Assume we root the tree at r. Let PS(v, w) be the path from vertex v to w in

state S and let LCAS(v, w) be the lowest common ancestor of v and w in state

S (when we root the tree at r). We remove the subscript S when it is clear from

the context.

Let P
v
w = P (w,LCA(v, w)) and define C

v
S(w) =

∑
e∈Pv

w

c(e)
xs(e)+1 +∑

e∈Sw−Pv
w

c(e)
xs(e) , where Sw is the strategy of w in state S. In other words, we

take into account an additional player on the path from w to LCA(v, w) in S.

One can think of C
v
S(w) as the cost of w after v changes her strategy to a strategy

in which she takes some path to w and then continues to the source according

to Sw. It is clear that C
v
S(w) ≤ CS(w) since the share of w in the cost of each

edge on P
v
w in C

v
S(w) is smaller than in CS(w).

Lemma 4. Assume that no improving OPT moves, and no improving EE moves
are possible in a state S. Then for every pair of players v and w the inequality
CS(v) ≤ C

v
S(w) + dopt(v, w) holds.

Proof. Suppose that CS(v) > C
v
S(w) + dopt(v, w). Consider the strategy S

′
v that

consists of the path of OPT edges from v to w followed by the strategy of w. The

strategy S
′
v has cost CS′(v) ≤ C

v
S(w) + dopt(v, w), so it is an improving OPT

move and we get a contradiction. ��

Let S
′
be the state after player u performs an OPT move during the execution

of the scheduler and let S be the state preceding this move. Let the cost of the

newly used edge e
′
= (u, v) be c(e

′
) = z. In the following lemma we show that

for every player w for which dopt(u,w) ≤
z
4 , w would pay less if she takes the

path in OPT to u and then continues as u in S
′
. The intuition of why this holds

is as follows: From Lemma 4 we know that when no OPT moves are possible

the cost of u in S could not be much larger than the cost of w. The difference is

about dopt(u,w) ≤
z
4 . So if we make w go through u in S her cost may increase

by at most z/2. It increases by at most z/4 for the path to get to u and by at

most z/4 since the cost of u may be larger by at most z/4 from the cost of w.

In S
′
however w will split the cost of the edge (u, v) with u, paying only z/2 to

go through it and thereby recovering the extra cost to get to u.
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Lemma 5. Let S be a state where no OPT moves and no EE moves which are
improving are possible. Let S′ be the new state after player u makes an improving
OPT move defined by the edge e

′
= (u, v). Let the cost of c(e′) be z. Then for

every player w for which dopt(u,w) ≤
z
4 , CS′(w) > CS′(v) +

z
2 + dopt(u,w).

Proof. The strategy of player u in S
′
is the edge (u, v) followed by the strategy

of player v, Sv, that is CS′(u) = CS′(v) + z. Since u performed an improving

OPT move, CS′(u) < CS(u), and thus

CS′(v) + z < CS(u) . (1)

Since in S there are no improving OPT moves and no improving EE moves,

then, by Lemma 4,

CS(u) ≤ C
u
S(w) + dopt(u,w) . (2)

We claim that C
u
S(w) ≤ CS′(w). First note that the strategy Sw is equal to the

strategy S
′
w, since only the strategy of u is different in S and S

′
. The cost of

w however may be different in S and S
′
. Split Sw into two pieces. One piece,

denoted by P1, from w to LCAS(u,w), and the other piece, denoted by P2,

from LCAS(u,w) to the source (see Figure 1). In S, player w shares with player

u the cost of the edges in P2, but this may not be true in S
′
, so for e ∈ P2,

xs(e) ≥ xs′(e). Consider P1. In S player w does not share with player u the cost

of the edges on P1, but she may share this cost with u in S
′
. So for e ∈ P1 we

have xs(e) + 1 ≥ xs′(e). In contrast C
u
S(w) is the tentative cost of w assuming

that she shares with u the cost for every edge of her strategy. Therefore,

C
u
S(w) =

∑
e∈P1

c(e)

xs(e) + 1
+

∑
e∈P2

c(e)

xs(e)
≤

∑
e∈S′

w

c(e)

xs′(e)
= CS′(w) , (3)

as we claimed. From inequalities (2) and (3) we obtain

CS(u) ≤ CS′(w) + dopt(u,w) . (4)

Considering inequalities (1) and (4) we get CS′(w) + dopt(u,w) > CS′(v) + z,

and therefore

CS′(w) > CS′(v) + z − dopt(u,w) .

For player w for which dopt(u,w) ≤
z
4 ,

CS′(w) > CS′(v) + z − dopt(u, w) ≥ CS′(v) +
3z

4
≥ CS′(v) +

z

2
+ dopt(u, w) . ��

Let S
′

be the state after player u performs an OPT move during the execu-

tion of the scheduler, defined by the edge eu = (u, v) whose cost is z. Let

w0, w1, w2, . . . , wm be the vertices with dopt(u,wi) ≤
z
4 . Assume that dopt(u,wi)

≤ dopt(u,wi+1). In particular w0 = u, and the vertex w1 is adjacent to u in

OPT. Lemma 5 implies that the strategy OptFollow(S,w1, u) is improving for

w1. But what happens after w1 changes her strategy? Can w2 still make an OPT

move using some edge which is not in S and lower her cost? The following lemma

shows that indeed this is the case.
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c(e′) = z

r

v

P1

P2

w

LCA(u,w)

u

Fig. 1. Player u makes an OPT-move and buys edge e′ = (u, v) of cost z. We assume

that dopt(u, w) ≤ z
4
.

Lemma 6. Let wk be the vertex following wi on the path from wi to u in OPT
(that is, wk is the parent of wi in the BFS tree traversed by the OPT-loop).
Let Si be the state just before the scheduler processes wi in its OPT-loop. Then
CSi(wi) > CSi(v) +

z
2 + dopt(u,wi), and therefore OptFollow(S

i
, wi, wk) is an

improvement move for wi and the scheduler changes the state of wi to this strat-
egy.

Remark 2. To make Lemma 6 work we had to introduce G. With one set of OPT
edges it is possible that when wi changes her strategy she uses OPT edges that

can be part of the strategy of w� for some � > i. If these edges are not in Sv,

and are not on the path between w� and u in OPT then this may lower the cost

of Sw�
such that when the scheduler gets to w� in the OPT-loop, her alternative

OptFollow move is not improving.

The following lemma gives a lower bound on the decrease in the potential during

a phase of the scheduler.

Lemma 7. Let u be the player making the OPT move at the beginning of a
phase. Let e′ = (u, v) be the first edge in the new strategy of player u, and let
z = c(e

′
). Let m be the number of players at distance at most z

4 from player u

in OPT (other than u itself). If m ≥ 2 then the potential of the state at the end
of the phase is smaller by Ω(zm) from the potential of the state at the beginning
of the phase.

Proof. Let w1, . . . , wm be the players such that dopt(u,wi) ≤

z
4 . Assume that

dopt(u,wi) ≤ dopt(u,wi+1). Let S
i

be the state right before the scheduler pro-

cesses wi in its OPT-loop.

By Lemma 6, when the scheduler processes player wi we have that CSi(wi) >

CSi(v)+
z
2 +dopt(u,wi). Also according to Lemma 6 players w1, . . . , wi−1 already

use the edge (u, v) in their strategy in S
i
. Therefore the cost of the new strategy

OptFollow(S
i
, wi, wk) for wi is at most CSi(v)+

z
i+1 +dopt(u,wi). (Here wk is the

vertex adjacent to wi on the path in OPT from wi to u.) It follows that player wi

decreases her cost by at least
z
2−

z
i+1 . Summing up the decrease in the cost of all

m players w1, . . . , wm, we get
∑m

i=1
z
2 −

z
i+1 = z(

m
2 − (H(m+ 1)− 1)) = Θ(zm).

This is also the decrease in the potential since when a single player changes her
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strategy the change in the potential is equal to the change in the cost of the

player. ��

As before, let S
′

be the state after player u performs an OPT move and uses

an edge e
′
= (u, v) ∈ OPT. Let D be the set of vertices accumulated while the

scheduler performed the OPT-loop, together with u, and let S
′′

be the state

after the execution of the EE-loop. Consider an edge e ∈ OPT which was the

first edge in the strategy Sw in state S, of some player w ∈ D. By the definition

of the scheduler, the first edge in the strategy of w in S
′′

would be an edge in

OPT (or e
′
for u) and not e. However, it could be that some descendant of w

still uses e in her strategy. We want to show that this could not be the case.

That is, while performing the EE-loop all these descendants take an alternative

strategy that does not use e.

Lemma 8. Consider a phase of the scheduler. Let S be the starting state, and
let D be the set of players that includes player u and the players that change
their strategy in the OPT-loop. Let e ∈ OPT be the first edge in a strategy Sw,
for some w ∈ D. Let S′′ be the state after the execution of the EE-loop. Then
e ∈ S

′′.

The total cost of the edges in N ∩ OPT is no larger than the cost of OPT. We

associate each edge (u, v) ∈ N \ OPT with player u that actually improved her

strategy by the OPT move that added the edge (u, v) to N . We further partition

the edges e = (u, v) in N \ OPT according to the number of vertices in OPT
in a neighborhood of size c(e)/4 around the associated player. Specifically, let

e = (u, v) ∈ N \ OPT be associated with player u. We say that e is crowded if

|{w | dopt(u,w) ≤
c(e)
4 }| ≥ logn, and we say that e is light otherwise.

Lemma 9. The total cost of all crowded edges is O(OPT).

Proof. Let e be a crowded edge in N \ OPT. By Lemma 7, in the phase that

started with the OPT move that put e into N , the potential dropped by

Ω(c(e) log n). Since initially the potential is at most OPT · log n, and is always

decreasing, the lemma follows. ��

Lemma 10. The total cost of all light edges in N is O(OPT · log logn).

Proof. Let U be the set of players assigned to light edges. For a player v ∈ U we

denote the associated light edge by ev. We define the cost of v to be the cost of

ev and denote it by zv.

We choose a subset F ⊆ U as follows. Start with T = U and F = ∅. Let v ∈ T

be a player of maximum cost in T . Let Uv = {w ∈ U | dopt(v, w) ≤ zv/4, zw ≤

zv/logn}. Add v to F and continue with T = T \ ({v} ∪ Uv) until T is empty.

Since every vertex v ∈ F is a light vertex, the total cost of all vertices in Uv

is at most zv, so its enough to prove that the total cost of all vertices in F is

O(OPT · log logn).

For v ∈ F , consider a ball, Bv, of radius zv/12 around v in OPT. According

to Lemma 4, zv < dopt(v, r), so the ball Bv contains at least one path of length
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at least zv/12. We prove that every point ξ ∈ OPT is contained in at most

log logn balls Bv for v ∈ F . Therefore the total cost of all vertices in F is

O(OPT · log logn).

Let e ∈ OPT and let ξ be some point on edge e. Let Aξ be the set of vertices

whose balls contain ξ. We show that |Aξ| ≤ log logn. Let v1, . . . , vm be the

vertices of Aξ in the order that their light edges ev1 , . . . , evm were added to N (if

some edge was added more than once, we consider the last time it was added).

Let 1 ≤ i < j ≤ m. By Remark 1, when vj makes the OPT move that adds evj , vi

was using evi in her strategy. Since evi ∈ N , that is vi did not change her strategy

in theOPT -loop of the phase where vj added evj , according to Lemma 8, we have

dopt(vi, vj) >
zvj

4
. (5)

Since dopt(vi, ξ) ≤ zvi/12 and dopt(vj , ξ) ≤ zvj/12, we obtain

dopt(vi, vj) ≤
zvi

12
+
zvj

12
. (6)

Substituting j = i + 1 and combining the Inequalities (5) and (6), we get

zvi+1 < zvi/2 and, by induction, zvi+1 <
zv1
2i . In particular, for every i we have

zvi+1 < zv1 , so by applying Equation 6 to vi+1 and v1 we get dopt(vi+1, v1) ≤

zv1/6. Therefore, by the definition of F , it must be that zvi+1 > zv1/logn. Since
zv1
logn < zvi+1 ≤

zv1
2i , we get that i < log logn, and therefore |Aξ| ≤ log logn. ��

The following theorem follows from Lemmas 9 and 10 and is the main result of

this work.

Theorem 1. For a graph with a source vertex and a player in every vertex the
price of stability is O(log logn).
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Abstract. This paper studies approximate distributed routing schemes
on dynamic communication networks. The paper focuses on dynamic
weighted general graphs where the vertices of the graph are fixed but
the weights of the edges may change. Our main contribution concerns
bounding the cost of adapting to dynamic changes. The update efficiency
of a routing scheme is measured by the number of messages that need
to be sent, following a weight change, in order to update the scheme.
Our results indicate that the graph theoretic parameter governing the
amortized message complexity of these updates is the local density D of
the underlying graph, and specifically, this complexity is Θ̃(D). The pa-
per also establishes upper and lower bounds on the size of the databases
required by the scheme at each site.

1 Introduction

Motivation: The basic function of a communication network, namely, message

delivery, is performed by its routing scheme. Subsequently, the performance of

the network as a whole may be dominated by the quality of the routing scheme.

Thus, constructing an efficient routing scheme is one of the most important tasks

when dealing with communication network design.

We distinguish between static and dynamic routing schemes. In a static rout-

ing scheme the databases of the processors are tailored to the particular network

topology. However, in most communication networks, the typical setting is highly

dynamic, namely, even when the physical infrastructure is relatively stable, the

network traffic load patterns undergo repeated changes. Therefore, for a routing

scheme to be useful in practice, it should be capable of reflecting up-to-date

load information in a dynamic setting, which may require occasional updates to

the databases. Ideally, upon a topological change, only a limited number of mes-

sages are sent in order to update the databases. We rank the update efficiency

of dynamic schemes by their message complexity, i.e., the amortized number

of messages sent per topological change. Note that the message complexity also
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bounds from above the amortized number of graph vertices whose database needs

to be modified per update operation, hence lower message complexity implies

also lower accounting efforts and fewer interruptions to the vertices.

The efficiency of a dynamic scheme is measured not only by its message com-

plexity but also by the quality of the routes it provides and by the memory com-

plexities associated with it. Route quality is measured by the stretch factor of the

scheme, i.e., the maximum ratio, over all pairs of nodes in the network, between

the length of the route provided for them by the routing scheme, and the actual

(weighted) distance between them in the network. We focus on β-approximate
routing schemes, namely, ones that produce a route whose weighted length is

perhaps not the shortest possible, but approximates it by a factor of at most β,

for some constant β > 1.

Another consideration is the amount of information stored at each vertex.

We distinguish between the internal database Data(v) used by each node v to

deduce the required information in response to online queries, and the additional

external storage Memory(v) at each node v, used during (offline) updates and

maintenance operations. For certain applications, the internal database Data(v)

is often kept in the router itself, whereas the additional storage Memory(v)

is kept on some external storage device. Subsequently, the size of Data(v) is

a more critical consideration than the total amount of storage needed for the

information maintenance.

The current paper investigates schemes on dynamic settings involving chang-

ing link weights. The model studied considers a network whose underlying topol-

ogy is a fixed graph, i.e., the vertices and edges of the network are fixed but the

(positive integer) weights of the edges may change. At each time the weight of

one of the edges can increase or decrease by a fixed quanta (which for notational

convenience is set to be 1), as long as the weight remains a positive integer.

(Our algorithms and bounds apply also for larger weight changes, as clearly, a

weight change of ∆ > 1 can be handled, albeit naively, by simulating it as ∆

individual weight changes of 1. As our focus is on establishing the complexity

bounds for the problem, no attempt was made to optimize the performance of

our algorithms in case of large weight changes.)

This paper introduces dynamic β-approximate routing schemes that are effi-

cient in terms of their message complexity. We also give lower bounds regarding

the complexities of dynamic routing schemes. Our results may indicate that the

graph theoretic parameter governing the message complexity is the local density

of the underlying graph, defined as follows. For a graph G and integer r ≥ 1, let

N(v, r) denote the set of vertices at distance at most r from the node v. Then

the local density of G is D = maxv,r{|N(v, r)|/2r}.

Related work: Many routing schemes and lower bounds for the resources re-

quired for routing were presented in the past (cf. [16]). The first studies attempt-

ing to characterize and bound the resource tradeoffs involved in routing schemes

for general networks were presented in [17,3,4] and were followed by a number

of improved constructions (cf. [5,10,11,12,19]). These studies focused on routing

schemes with compact routing tables and low stretch factors.
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Unfortunately, most known algorithms in this field apply only for static net-

works, and only a few papers consider dynamic networks. In [18] a partial solu-

tion is presented for limited cases of topology changes that keep the network in a

tree topology. The following dynamic routing schemes on trees assume that the

designer of the routing scheme has the freedom to choose the identities of the ver-

tices. In [2] a routing scheme is presented for the restricted case of dynamic grow-

ing trees using identities of size O(log
2
n), database size O(∆ log

3
n) (for graphs

of maximum degree ∆) and message complexity O(log n) where n is an upper

bound on the number of vertices in the growing tree. When an upper bound n on

the number of vertices in the growing tree is known in advance, a routing scheme

with message complexity O(
log n

log logn ) and polylogarithmic database size is given

in [14]. In the more general case where in each step, a leaf can either be added

to or removed from the tree, a routing scheme with O(log
2
n) message complex-

ity and O(log
2
n) database size is presented in [14] and a routing scheme with

Θ(log n) database size and sublinear message complexity is presented in [13]. All

the above mentioned dynamic routing schemes deal only with tree networks. For

general graphs there are even fewer results. A lower bound of Ω(n) is established

in [2] for the message complexity of constant approximation routing schemes on

general dynamic graphs (where edges may be added or deleted). The routing

scheme of [6] for dynamic graphs applies to a somewhat different networking

model based on virtual circuits, where the route quality is measured in terms

of the number of “super-hops” required for a route, hence those results cannot

be directly compared with ours. Also, the analysis therein does not consider the

length of the routes produced by the routing scheme, and in fact the scheme

may incur a linear stretch factor in some dynamic scenarios.

The maximum database size of β-approximate point-to-point routing schemes

(defined below) on general graphs was previously investigated in the static sce-

nario. A lower bound of Ω(n
1

2β+4 ) for β ≥ 2 was shown in [17] and a lower bound

of Ω(n log n) for 1 ≤ β < 2 was shown in [8].

In the sequential (non-distributed) model, dynamic data structures have been

studied extensively. For surveys on dynamic graph algorithms see [7,9].

Model: In this paper the underlying network topologies considered are gen-

eral graphs. Throughout the paper, denote by n the number of vertices in the

network. Let W be the maximum weight assigned to an edge in the network.

This paper studies two types of routing schemes. Source-directed routing

schemes are routing schemes in which the message originator computes the en-

tire route to the destination and attaches it to the message header. In contrast,

point-to-point routing schemes route messages on a hop by hop basis, with each

intermediate node along the route determining the next edge to be used.

Formally, we make the following definitions. A point-to-point β-approximate
routing scheme is composed of an update protocol for assigning each vertex v of

the graph with a local database Data(v), coupled with a router algorithm whose

inputs are the header of a message M , Data(v) and the identity of a vertex u.

If a vertex x wishes to send a message M to vertex y, it first prepares a header

for M and attaches it to M . Then x’s router algorithm outputs a port of x



622 A. Korman and D. Peleg

on which the message is delivered to the next vertex, until it reaches y. The

requirement is that the weighted length of the resulting path connecting x and

y is a β-approximation of the weighted distance between x and y at the time

the route starts. A source directed β-approximate routing scheme is composed

of an update protocol algorithm for assigning each vertex v of a graph with a

local database Data(v), coupled with a router algorithm that using only the

information in Data(v) and the identity of a vertex u, outputs a sequence of

port numbers representing a path connecting v and u whose weighted length is

a β-approximation of the distance between u and v.

Contributions: Our main contribution focuses on the message complexity of

dynamic routing schemes. We use the local density parameter in an attempt at

capturing the graph theoretic parameter governing the message complexity of

the problem.

In section 3 we present our β-approximate source directed scheme for the

class F(n,D) of n-vertex graphs with local density at most D. In section 4

we present our β-approximate point-to-point routing scheme for F(n,D). Both

schemes incur an amortized message complexity O(D log
2
n) per weight change.

We show that any β-approximate source directed routing scheme on F(n,D)

(for D > 1) must have amortized message complexity Ω(D) per weight change.

In the cases where 1 ≤ β < 3 we show that any β-approximate point-to-point

routing scheme on F(n,D) (for D > 1) must have message complexity Ω(D)

per weight change.

In terms of the database size, we show an upper bound of O(n logn) and

a lower bound of Ω(n) for the database size of β-approximate source directed

routing scheme on F(n,D) (for D ≥ 1.5). Our point-to-point β-approximate

routing scheme uses database size O(n log
2
n). Both schemes use O(|E| ·(logW+

logn)) bits of memory per vertex. The point-to-point routing scheme uses a

header size of O(log n) bits.

2 Preliminaries

We assume that the vertices and edges of the network are fixed and that the

edges of the network are assigned positive integer weights. For two vertices u and

v in a weighted graph G with edge weight function ω and for a time t, denote by

d
ω
G(u, v, t) the weighted distance between u and v at time t. Denote by dG(u, v)

the unweighted distance between u and v in G. For q > 0, the q-neighborhood of

v ∈ G, denoted Γ (v, q), is the subgraph of G induced by {w | dG(v, w) ≤ q}. We

omit the subscript G when the graph G is clear from the context. It is assumed

that the nodes of a given n-vertex graph have distinct identities in the range

1, · · · , n. The identity of a node v is denoted by id(v).

The dynamic model: In the dynamic network model considered in this paper,

it is assumed that the weights of the network links may change from time to time.

For example, the weights may represent the current loads on the links which may

change due to queue buildups and nonuniform arrival rates.
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The following events may occur:

1. Positive weight change: An edge increases its weight by one.

2. Negative weight change: An edge of weight ≥ 2 decreases its weight by one.

Subsequent to an event on an edge e = (u, v), its endpoints u and v are

informed of this event.

In this abstract we deal with scenarios in which at most n topological events

occur; in the full version of the paper we show how to deal with the general case.

Routing schemes: We start with the static setting. For fixed β > 1, a static

β-approximate source directed routing scheme πSD = 〈PSD,RSD〉 for a family

of graphs F is composed of the following components:

1. A preprocessing algorithm PSD that given a graph G ∈ F , assigns a local

database Data(v) to each vertex v ∈ G.

2. A polynomial time router algorithm RSD that given the database Data(u)

and id(v) for some vertices u and v in some graph G ∈ F , outputs a sequence

of port numbers representing a path P connecting u and v.

A static β-approximate point-to-point routing scheme πPTP = 〈PPTP ,RPTP 〉

for a family of graphs F is composed of the following components:

1. A preprocessing algorithm PPTP that given a graph G ∈ F , assigns a local

database Data(v) to each vertex v ∈ G.

2. A polynomial time router algorithm RPTP that given the database Data(u)

and id(v) for some vertices u and v in some graph G ∈ F and a header H

of a message M , outputs a port number of u and a new header for M .

Routing a message using a point-to-point routing scheme πPTP is done as

follows. If a vertex x wants to send a message M to the vertex y in G, it first

prepares a header H for M and attaches it to M . Then the message is delivered

via the portRPTP (Data(x), id(y), h) to x
′
, a neighbor of x. The vertex x

′
repeats

the process, using its own data base Data(x
′
). The message M is thus delivered

on the port RPTP (Data(x
′
), id(y), h) of x

′
to the next vertex and so forth. In

contrast, when using a source-directed routing scheme πSD, if a vertex x wants

to send a message M to the vertex y in G, x computes a path P connecting x

and y and attaches it to the message header. Each vertex on the route delivers

M to the next vertex on the path P until M reaches its destination y. For the

routing scheme (either source-directed or point-to-point) to be a β-approximate

routing scheme, the requirement is that the weighted length of resulting path

connecting x and y is a β-approximation of d
ω
G(x, y).

Let us now turn to dynamic routing schemes. In the asynchronous dynamic net-

work model the preprocessing algorithmP changes into an update protocolU (de-

noted USD for source directed routing and UPTP for point-to-point routing) that

initially assigns a local database Data(v) to each vertex v ∈ G. After the ini-

tial setup, U is activated after every topological change in order to maintain all

local databases so that the corresponding router algorithms work correctly. Ob-

serve that in the context of distributed networks, the update algorithms must be
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implemented as distributed update protocols. In particular, the messages sent by U

in order to maintain the databases are sent over the edges of the underlying graph.

It is easier to analyze our protocols assuming that the topological changes

occur sequentially and are sufficiently spaced so that the update protocol has

enough time to complete its operation in response to a given topological change

before the occurrence of the next change. However, our schemes can operate also

under weaker assumptions. Specifically, it is allowed for topological changes to

occur in rapid succession or even concurrently. Our statements concerning the

correctness of our source directed routing scheme (a scheme is correct if every

message sent will eventually reach its destination) still hold. Our point-to-point

scheme is also correct provided that the topological changes quiet down at some

later time for a sufficiently long time period. The quality of our schemes, however,

is affected by such behavior of the system as follows. We say that a time t is

quiet if all updates (of the relevant update protocol) concerning the previous

topological changes have occurred by time t. At a quiet time t, the system is

said to be quiet. Our demand from a dynamic β-approximate routing scheme

(either source directed or point-to-point) is that if a route from u to v starts at

some quiet time t and the system remains quiet throughout the rest of the route

then the weighted length of resulting route is a β-approximation to d
ω
(u, y, t).

The above demand is reasonable, as it can easily be shown that for any routing

scheme, if a route from u to v starts at a non-quiet time t then we cannot expect

the resulting route to be a β-approximation to d
ω
(u, v, t) for any β > 1.

For a dynamic β-approximate routing scheme π(β) = 〈U(β),R〉 on the family

F , we are interested in the following complexity measures.

Maximum Database Size, Data(π(β)): the maximum number of bits in Data(v)

taken over all vertices v and all scenarios on all n-vertex graphs G ∈ F .

Maximum Memory Complexity, MMC(π(β)): the maximum number of bits in

Memory(v) taken over all vertices v and all scenarios on all n-vertex G ∈ F .

Message Complexity, MC(π(β)): the maximum amortized number of messages

sent by U(β) per topological change, taken over all scenarios on all G ∈ F .

For the point-to-point routing scheme we are also interested in the following:

Header Size, HD(πPTP ): the maximum number of bits attached to the message

header by the router protocol πPTP at any step along the route.

3 General Intuition

Our schemes are based on the following ideas. After every change in a weight

of an edge e, one of e’s end nodes creates a ‘report’ of this event encoded on a

token that is sent to some vertices in the graph. A simple routing scheme would

require the update protocol to send each such token to all the vertices. For such

a scheme, on the one hand, all nodes have an up-to-date view of the graph and

the routings can be made over the shortest weighted paths, but on the other

hand, the message complexity is high, namely, Ω(n).

In order to reduce the message complexity, both our schemes are based on the

principle that updates are made in a gradual manner: the tokens are disseminated
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only to a limited distance and are then stored in intermediate bins of various

sizes. Nodes outside this range are thus unaware of the changes represented by

these tokens. Whenever sufficiently many tokens accumulate at a bin, they are

disseminated further, to a distance proportionate to their number. The analysis

of the approximation is based on bounding the possible overall error made in

the path selected by the router protocol. This bound is based on the maximal

distortion in the way the relevant vertices view the weights of the edges in some

subgraph in comparison to the reality. This distortion corresponds to the number

of delayed tokens ‘stuck’ in the various bins of this subgraph.

Algorithms based on the idea of gradual token passing appeared in [1,15,14].

However, a direct application of the method presented in the above papers would

not yield a routing scheme with the desired properties. Informally, the reason is

that the algorithms used in the above papers were designed for trees. Moreover,

using techniques similar to those in the above papers, one can only guarantee

that each node x knows an approximation of the weighted length of any path

in some spanning tree containing x, while for our purposes we are interested in

approximations of all paths in the graph that pass through x. In order to achieve

this, we extend the techniques of the above papers by separating the updates,

which are done on the graph, from the token passing, which is carried out on

the spanning tree. The token passing implicitly monitors the updates. Each time

a bin b becomes full, it is emptied and its contents are used to update vertices

on the graph at distance d(b) proportionate to the size of b. In addition, the

contents of b are transferred to b
′
, a bin on the spanning tree, at distance d

′
(b)

which is also proportionate to the size of b. Our performance bounds then rely

on the fact that d(b) = c · d
′
(b) for some constant c > 1.

When routing a message from x to y in our source directed routing scheme

x outputs RSD(Data(x), y), the shortest path from x to y (according to x’s

knowledge). It will follow from our analysis that RSD(Data(x), y) is a good

approximation to d
ω
(x, y). The problem becomes more difficult in the point-

to-point routing scheme. A natural approach for constructing the point-to-point

scheme would be to use the same data structure as in the source directed scheme,

except that whenever v receives a message addressed to y, v delivers the message

to the next node (i.e., its neighbor) on the pathRSD(Data(v), y). Unfortunately,

this may cause the routing process to end up with a message caught in an infinite

loop. For example, since Data(v) and Data(w) are not identical, v may think

that w is the next node on the shortest path from v to y, and w may think that

v is the next node on the shortest path from w to y.

The main technical contribution of this paper is based on the following idea

which is used by our point-to-point routing scheme in order to prevent the above

undesirable phenomenon from happening. When routing a message from x to y,

x first estimates d
ω
(x, y) as in the source directed scheme and uses this estimate

to define some value q = Θ(d
ω
(x, y)) that will be attached to the message header.

When getting a message destinated at y, the intermediate node v along the route

creates a collection Γ̃v(y, q) of estimates for the weights of all the edges in the

q-neighborhood of y, Γ (y, q). As established later, the estimations Γ̃v(y, q) have
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two important properties. The first property of these estimates is that they are

the same for all vertices v on the route. This property allows each intermediate

node v along the route to mimic the shortest path computation carried by x in

order to decide to which node it should pass the message, yielding consistency

between the decisions of the nodes on the route. The second property is that

although these estimates are potentially weaker than the corresponding estimates

obtained by the source directed routing scheme, they are still good enough to

ensure that the route is a β-approximation to d
ω
(x, y).

4 The Source Directed Routing Scheme πSD(β)

This section introduces our β-approximate source directed routing scheme

πSD(β) for the family F(n,D). As mentioned before, in this extended abstract we

assume that at most n topological changes occur in each scenario. This assump-

tion only affects the memory size of the scheme. In the full version we describe

how to descard this assumption without affecting our complexity bounds.

General structure: Let T (G) be a spanning tree of some graph G ∈ F(n,D),

rooted at some vertex r. Let T
′
(G) be the tree obtained from T (G) by extending

it with an imaginary n-node path Pr attached to r. Let r
′
be the end node of Pr

not attached to T (G). We view r
′

as the root of T
′
(G). In the current section

the vertices of G are considered as vertices of T
′
(G) and not of G.

The token passing mechanism (which we use in order to monitor the message

delivery mechanism of the update protocol) is inspired by [1] and [15]. Each node

v maintains two bins, a “local” bin bl and a “global” bin bg, storing a varying

number of tokens throughout the execution. Each token contains information

about some weight change in one of the edges. Specifically, a token is of the form

φ = 〈id(e), ω(e), c〉, indicating that the c’th weight change on the edge e sets

its weight to ω(e). In the following discussion, unless it might cause confusion,

we do not distinguish between a bin and the node holding that bin. Let H(v)

denote v’s unweighted (hop) distance from r
′
. For every node v of T

′
(G), apart

from r
′
, the bins bl and bg are assigned a level, defined as follows:

Level(bg) = max{i | 2
i
divides H(v)}, and Level(bl) = −1.

Note that the level of the bin determines whether it is of type bl or bg. Hence

hereafter,, we omit subscripts g and l unless confusion might arise. For each bin

b at node v, the closest ancestor bin in T
′
(G) (including possibly in v itself), b

′
,

satisfying Level(b
′
) = Level(b) + 1 is set to be the supervisor of b. If there is no

such bin, then the global bin of r
′

is set to be the supervisor of b. Let sup(b)

denote the supervisor bin of b. Note that the supervisor bin of a local bin is

either the global bin of the same node, or the global bin of its parent in T
′
(G).

This defines a bin hierarchy with the following easy to prove properties.

1. The highest level of the bin hierarchy is at most logn+ 2.

2. If Level(b) = l then the path from b to sup(b) have at most 3 · 2
l
nodes.

3. On any path of length p, the number of level l bins that are supervisors to

other bins in that path is at most
p

2l−1 .
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For β > 1, let α =
1 +

√

2β − 1

2
, δ = min

{√
β − 1,

α− 1

βα

}
.

The number of tokens stored at each bin b at a given time is denoted τ(b). The

capacity of each bin depends on its level. Specifically, a bin b on Level(b) = l

may store 0 ≤ τ(b) ≤ Cap(l) tokens, where Cap(l) = max{2
�log δ·2l

3D·(log n+2) �, 1}.
In fact, it will follow from the algorithm description that at any given moment,

a bin is either empty or half-full, namely, τ(b) ∈ {0, Cap(l)/2}. In particular, a

bin of capacity 1 is always empty and therefore, the number of tokens stored in

an l-level bin is at most
δ·2l−1

3D(logn+2) .

Update protocol USD(β): The memory structure Memory(v) of each vertex

v contains the adjacency matrix A(v) of the entire initial graph. For each edge

e, the counter c(e) counts the number of changes in e’s weight and is initially set

to be 0. Each entry e in A(v) contains two fields, denoted by ω(e, v) and c(e, v).

If the latest change in e’s weight that v heard about was the c0’th change, which

has led to the values c(e) = c0 and ω(e) = ω0, then e’s entry in A(v) is set to

〈ω(e, v), c(e, v)〉 = 〈ω0, c0〉.

For each edge e, one of its endpoints (say, the one with the smaller id) is said

to be responsible for e. A token φ = 〈id(e), ω(e), c〉 is said to be fresh w.r.t. the

matrix A(v) if c is larger than c(e, v). Intuitively, such a token can be used to

update the entry corresponding to e in A(v).

Let bg(v) denote the global bin of a vertex v ∈ T
′
(G). Let T

∗
(G) be the same

as T (G), with the same bin hierarchy, except that r has a number of additional

global bins. Specifically, the set of added global bins of r is {bg(w) | w ∈ Pr}. We

next describe the imaginary Protocol Bin on T
′
(G). In practice we run Protocol

Bin∗
on T

∗
(G), which is the same as Protocol Bin except that r uses its multiple

global bins to simulate the behavior of the imaginary path Pr in Protocol Bin.

For a level l bin b, let Q(b) denote the set of all nodes at unweighted distance at

most 2
5
· 2

l
from b (in G). Note that sup(b) ∈ Q(b).

The update protocol USD uses Protocol Bin described below to maintain the

databases of the vertices.

Protocol Bin

1. Initially all bins are empty.

2. For an edge e under u’s responsibility, each time u learns that the weight

ω(e) has increased or decreased by one, it adds +1 to c(e, u) and adds a

token to u’s local bin, making it full. This token is a triplet 〈id(e), ω(e), c(e)〉

where id(e) is the identity of the edge e, ω(e) is the new weight of e, and

c(e) is the value of the counter c(e, u).

3. Whenever a bin b on level l gets filled with tokens, the following happens.

(a) The bin b is emptied and its content is broadcast to all nodes in Q(b).

(b) If the sup(b) = r
′
then sup(b) adds the content of b to itself. (Note that

if sup(b) = r
′
then it does not keep these tokens.)
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(c) For each node z ∈ Q(b) and each token φ = 〈id(e), ω(e), c〉 in b: If φ is

fresh w.r.t. the adjacency matrix A(z), then z updates e’s entry in A(z)

to be (ω(e), c).

Data structure Data(v) and router protocol RSD(β): Let A
′
(v) be the

graph obtained by A(v) where the weight of an edge in A
′
(v) is ω(e, v), the first

field in the e’s entry of A(v). Using an algorithm similar to the Dijkstra or the

Bellman-ford algorithms on the graph A
′
(u), let Data(v) be the BFS tree of

A
′
(v) rooted at v. We therefore obtain the following lemma.

Lemma 1. Data(πSD(β)) = O(n logn).

Given Data(u) and id(v), RSD(β) outputs the simple path P connecting u and

v in the tree Data(u). The analysis is deferred to the full paper. We have the

following theorem.

Theorem 1. The scheme πSD = 〈USD,RSD〉 is a β-approximate source di-
rected routing scheme for the family F(n,D) with the following complexities.

1. MC(πSD(β)) = O(D log
2
n),

2. Data(πSD(β)) = O(n · logn),
3. MMC(πSD(β)) = O(|E| · (logW + log n)).

Lower bounds: We now establish lower bounds for the maximum database

size and message complexity of source directed routing schemes. The proofs of

the following lemmas are deferred to the full paper. Note that any graph with

maximum degree greater than 2 has local density greater than 1.5, therefore the

following two lemmas apply for all families F(n,D) except for F(n, 1).

Lemma 2. Any β-approximate source directed routing scheme πSD =

(USD,RSD) for the family F(n,D) for any D ≥ 1.5 has MMC(πSD) = Ω(n).

Lemma 3. Any exact source directed routing scheme πSD = (USD,RSD) for the
family F(n,D) for any D ≥ 1.5 incurs an message complexity of MC(πSD) =

Ω(n) in some scenario.

Lemma 4. For constant β and D > 1, MC(πSD(β)) = Ω(D) on F(n,D).

5 The Point-to-Point Routing Scheme πPTP(β)

In this section we introduce our β-approximate point-to-point routing scheme

πPTP (β) for the family F(n,D).

Update protocol UPTP (β): The memory structure Memory(v) of each vertex

v is 〈A(v), A0, L(v)〉 where A(v) is the memory structure given to v by the update

protocol USD of the source directed scheme, A0 is the initial matrix A(v) (which

corresponds to the initial graph) and L(v) is a table containing O(n) elements.

An element of L(v) is a tuple 〈φ, b〉 where b is a bin and φ is a token. For each
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token φ and vertex z, we maintain the invariant that at most one bin satisfies

〈φ, b〉 ∈ L(z).

The update protocol UPTP uses Protocol Bin′
instead of Protocol Bin. Pro-

tocol Bin′
is the same as Protocol Bin except that in step 3 we add one more

substep 3.(d), described below.

Substep 3.(d) of Bin′: Each node z ∈ Q(b) updates L(z) as follows. Let φ be

a token in b. If (φ, b
′
) ∈ L(z) for some bin b

′
and b is affected by b

′
then z extract

(φ, b
′
) from L(z) and adds (φ, b) instead. If (φ, b

′
) /∈ L(z) for any bin b

′
then z

adds (φ, b) to L(z).

Router protocol RPTP (β) and data structure Data(u): Let M be a

message originated at x and destined to y. The sender x initially calculates

h = d
ω
A′(x)(x, y), the weighted distance between x and y in A

′
(x). Let q =

min{βαh, n} and let l = �log q� (i.e., 2
l−1

< q ≤ 2
l
). The sender then attaches

the header H = (id(y), l) to the message M . Since H can be encoded with at

most 2 logn bits, we obtain that the header size HD(πPTP ) is O(log n).

Denote the subgraph of G induced by all vertices whose unweighted distance

to y is at most 2
l

by Ball(H) = Γ (y, 2
l
). Consider the vertices of Ball(H) as

vertices of T (G) and for every node ui ∈ Ball(H), let Ri be the path from ui to r
′

and let Ii be the subpath ofRi of length 2
l
containing ui. Let I(Ball(H)) =

⋃
i Ii.

A bin b is I(Ball(H))-universal if sup(b) is outside of I(Ball(H)).

In an intermediate node u along the route (including the sender x), algo-

rithm RPTP (β) operates as follows. Upon receiving H and Memory(u) as in-

put, RPTP (β) creates the following edge-weight matrix C(u,H) for Ball(H).

Initially C(u,H) is A0 restricted to Ball(H). Now u updates C(u,H) by in-

specting its table L(u). Let φ = 〈id(e), ω(e), c〉 be a token in some element of

(φ, b) ∈ L(u). If b is an I(Ball(H))-universal bin, φ corresponds to an event

happening in Ball(H) and φ is fresh w.r.t C(u,H), then C(u,H) updates e’s

entry to be (ω(e), c).

After calculating C(u,H), using an algorithm similar to the Dijkstra or the

Bellman-ford algorithms on the graph C(u,H), RPTP (β) efficiently calculates

and outputs a port number connecting u to the next vertex on a simple path P

(contained in Ball(H)) connecting u and y which satisfies P̃ = d
ω
C(u,H)(u, y).

The database size can be reduced further. For an intermediate node u along

the route from x to y, the port on which the message is to be delivered depends

only on Memory(u), l and the destination y. We let Data(u) contain a table

Dl for each integer l ≤ logn. Each such table contains n entries corresponding

to the vertices of G. The y’s entry in Dl contains RPTP (Memory(u), id(y), 2
l
).

Given Data(u) and H = (id(y), l), RPTP outputs the port in the y’s entry in

Dl. We therefore obtain the following lemma.

Lemma 5. Data(πPTP (β)) = O(n log
2
n).

The analysis is deferred to the full paper. We have the following theorem.

Theorem 2. The scheme πPTP (β) = 〈UPTP ,RPTP 〉 is a β-approximate point-
to-point routing scheme for the family F(n,D) with the following complexities.
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1. MC(πPTP (β)) = O(D log
2
n),

2. Data(πPTP (β)) = O(n · log
2
n),

3. MMC(πPTP (β)) = O(|E| · (logW + logn),
4. HD(πPTP ) = O(log n).

A lower bound on communication: The proof of the following lemma is

deferred to the full paper.

Lemma 6. For constant 1 ≤ β < 3 and D > 1, MC(πPTP (β)) = Ω(D) on
F(n,D).
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Abstract. Circuits composed of threshold gates (McCulloch-Pitts neu-
rons, or perceptrons) are simplified models of neural circuits with the
advantage that they are theoretically more tractable than their biolog-
ical counterparts. However, when such threshold circuits are designed
to perform a specific computational task they usually differ in one im-
portant respect from computations in the brain: they require very high
activity. On average every second threshold gate fires (sets a “1” as out-
put) during a computation. By contrast, the activity of neurons in the
brain is much more sparse, with only about 1% of neurons firing. This
mismatch between threshold and neuronal circuits is due to the partic-
ular complexity measures (circuit size and circuit depth) that have been
minimized in previous threshold circuit constructions. In this article we
investigate a new complexity measure for threshold circuits, energy com-
plexity, whose minimization yields computations with sparse activity. We
prove that all computations by threshold circuits of polynomial size with
entropy O(log n) can be restructured so that their energy complexity
is reduced to a level near the entropy of circuit states. This entropy of
circuit states is a novel circuit complexity measure, which is of interest
not only in the context of threshold circuits, but for circuit complexity
in general. As an example of how this measure can be applied we show
that any polynomial size threshold circuit with entropy O(log n) can be
simulated by a polynomial size threshold circuit of depth 3.

1 Introduction

The active outputs of neurons are stereotypical electrical pulses (action poten-

tials, or ”spikes”). The stereotypical form of these spikes suggests that the output

of neurons is analogous to the ”1” of a threshold gate. In fact, historically and

even currently, threshold circuits are commonly viewed as abstract computa-

tional models for circuits of biological neurons. Nevertheless, it has long been

recognized by neuroscientists that neurons are generally silent, and that infor-

mation processing in the brain is usually achieved with a sparse distribution of
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neural firing
1
. One reason for this sparse activation may be metabolic cost. For

example, a recent biological study on the energy cost of cortical computation

[6] concludes that “The cost of a single spike is high, and this limits, possi-

bly to fewer than 1 %, the number of neurons that can be substantially active

concurrently”. The metabolic cost of the active (’1”) state of a neuron is very

asymmetric. The production of a spike consumes a substantial amount of energy

(about 2.4 × 10
9

molecules of ATP according to [6]), whereas the energy cost

of the no-spike rest state, is substantially less. In contrast to neuronal circuits,

computations in feedforward threshold circuits (and many other circuit models

for digital computation) have the property that a large portion, usually around

50%, of gates in the circuit output a “1” during any computation. Common ab-

stract measures for the energy consumption of electronic circuits treat the cost

of the two output states 0 and 1 of a gate symmetrically, and focus instead on

the required number of switchings between these two states (see [5] and its ref-

erences, as well as [11]). An exception are [14,4,1], which provide Shannon-type

results for the number of gates that output a “1” in Boolean circuits consisting of

gates with bounded fan-in. Circuits of threshold gates (= linear threshold gates

= McCulloch-Pitts neurons) are an important class of circuits that are frequently

used as simplified models for computations in neural circuits [8,12,10,13]. In this

paper we consider how investigations of such abstract threshold circuits can be

reconciled with actual activity characteristics of biological neural networks.

In section 2 we give a precise definition of threshold circuits, and also define

their energy complexity, whose minimization yields threshold circuits that carry

out computations with sparse activity: on average few gates output a “1” during

a computation. In section 2 we also introduce another novel complexity measure,

the entropy of a computation. This measure is interesting for many types of

circuits, beyond the threshold circuits discussed in this paper. It measures the

total number of different patterns of gate states that arise during computations

on different circuits inputs. We show in section 3 that the entropy of circuit states

defines a coarse lower bound for its energy complexity. This result is relevant for

any attempt to simulate a given threshold circuit by another threshold circuit

with lower energy complexity, since the entropy of a circuit is directly linked

to the algorithm that it implements. Therefore, it is unlikely that there exists a

general method permitting any given circuit to be simulated by one with smaller

entropy. In this sense the entropy of a circuit defines a hard lower bound for any

general method that aims to simulate any given threshold circuit using a circuit

with lower energy complexity. However, we will prove in section 3 that there

exists a general method that reduces – if this entropy is O(log n) – the energy

complexity of a circuit to a level near the entropy of the circuit. Since the entropy

of a circuit is a complexity measure that is interesting in its own right, we also

offer in section 4 a first result on the computational power of threshold circuits

with low entropy. Some open problems related to the new concepts introduced

in this article are listed in section 5.

1 According to recent data [7] from whole cell recordings in awake animals the spon-
taneous firing rates are on average below 1 Hz.



Energy Complexity and Entropy of Threshold Circuits 633

2 Definitions

A threshold gate g (with weights w1, . . . , wn ∈ R and threshold t ∈ R) outputs

1 for any input X = (x1, . . . , xn) ∈ Rn
if
∑n

i=1 wixi ≥ t, otherwise 0. We write

g(X) = sign(
∑n

i=1 wixi − t) where sign(z) = 1 if z ≥ 0 and sign(z) = 0 if

z < 0. As usual we assume that threshold gates operate in discrete time, with

unit delays between gates.

For a threshold gate gi within a feedforward circuit C that receives X =

(x1, . . . , xn) as circuit input, we write gi(X) for the output that the gate gi

gives for this circuit input X (although the actual input to gate gi during this

computation will in general consist of just some variables xi from X , and in

addition, or even exclusively, of outputs of other gates in the circuit C).

We define the energy complexity of a circuit C consisting of threshold gates

g1, . . . , gm to be the expected number of 1’s that occur in a computation, for

some given distribution Q of circuit inputs X , i. e.

ECQ(C) := E[

m∑
i=1

gi(X)],

where the expectation is evaluated with regard to the distribution Q overX ∈ Rn

(or X ∈ {0, 1}
n
). Thus, for the case where Q is the uniform distribution over

{0, 1}
n
, we have ECuniform :=

1
2n

∑
X∈{0,1}n

∑m
i=1 gi(X) .

In some cases it is also interesting to consider the maximal energy consumption

of a circuit for any input X , defined by

ECmax(C) := max(

m∑
i=1

gi(X) : X ∈ Rn
).

We define the entropy of a (feedforward) circuit C to be

HQ(C) := −

∑
A∈{0,1}m

PC(A) · logPC(A),

where PC(A) is the probability that the internal gates g1, . . . , gm of the circuit

C assume the state A ∈ {0, 1}
m

during a computation of circuit C (for some

given distribution Q of circuit inputs X ∈ Rn
). We often write Hmax(C) for the

largest possible value that HQ(C) can assume for any distribution on a given

set of circuit states A. If MAX(C) is defined as the total number of different

circuit states that circuit C assumes for different inputs X ∈ Rn
, then one has

HQ(C) = Hmax(C) if Q is such that these MAX(C) circuit states all occur

with the same probability, and Hmax(C) is then equal to log2 MAX(C). Thus

2
Hmax(C)

is the maximal number of circuit states that a circuit C assumes for

arbitrary inputs X .

We write size(C) for the number m of gates in a circuit C, and depth(C) for

the length of the longest path in C from an input to its output node (which is

always assumed to be the node gm).
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3 Construction of Threshold Circuits with Sparse
Activity

Obviously, the number of 1’s in a computation limits the number of states that

the circuit can assume:

HQ(C) ≤ log(# of circuit states A that C assumes)

≤ log

ECmax(C)∑
j=0

(
size(C)

j

)
≤ log(size(C)

ECmax(C)
) = ECmax(C) · log size(C)

(for sufficiently large values of ECmax(C) and size(C); log always stands for log2
in this paper). Hence

ECmax(C) ≥ HQ(C)/ log size(C) . (1)

In fact, this argument shows that

ECmax(C) ≥ Hmax(C)/ log size(C) . (2)

Every Boolean function f : {0, 1}
n
→ {0, 1} can be computed by a threshold

circuit C of depth 2 that represents its disjunctive normal form, in such a way

that for every circuit input X at most a single gate on level 1 outputs a 1. This

circuit C has the property that ECmax(C) = 2 and HQ(C) = log(size(C) − 1)

for a suitable distribution Q of circuit inputs. Hence it is in some cases possible

to achieve ECmax(C) < HQ(C), and the factor log size(C) in (1) and (2) cannot

be eliminated or significantly reduced.

Threshold circuits that represent a Boolean function f in its disjunctive nor-

mal form allow us to compute any Boolean function with a circuit C that achieves

ECmax(C) = 2. However these circuits C have in general exponential size in n.

Therefore, the key question is whether one can also construct polynomial size

circuits C with small ECQ or ECmax. Because of the a-priori bounds (1) and

(2), this is only possible for those functions f that can be computed with a low

entropy of circuit states. The following results show that, on the other hand, the

existence of a circuit C that computes f with Hmax(C) = O(log n) is sufficient to

guarantee the existence of a circuit that computes f with low energy complexity.

Theorem 1. Assume that a Boolean function f : {0, 1}
n
→ {0, 1} can be com-

puted by some polynomial size threshold circuit C with Hmax(C) = O(log n).
Then f can also be computed by some polynomial size threshold circuit C′ with

ECmax(C
′
) ≤ Hmax(C) + 1 = O(log n). (3)

Furthermore, if Q is any distribution of inputs X ∈ {0, 1}
n, then it is possible

to construct a polynomial size threshold circuit C′′ with

ECQ(C
′′
) ≤

HQ(C)

2
+ 1 = O(log n). (4)
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Remark 1. The proof below shows that the following more general statements

hold for any function f and any distribution Q:

If f can be computed by some arbitrary (feedforward) threshold circuit C,

then f can also be computed by a threshold circuit C
′
with size(C

′
) ≤ 2

Hmax(C)
,

depth(C
′
) ≤ size(C)+1, Hmax(C

′
) ≤ Hmax(C), and ECmax(C

′
) ≤ Hmax(C)+1.

Furthermore, f can also be computed by a threshold circuit C
′′

with size(C
′′
)

≤ 2
Hmax(C)

, depth(C
′′
) ≤ size(C) + 1, HQ(C

′′
) ≤ HQ(C), and ECQ(C

′′
) ≤

HQ(C)
2 + 1.

Remark 2. The assumption Hmax(C) = O(log n) is satisfied by standard con-

structions of threshold circuits for many commonly considered functions f . Ex-

amples are all symmetric functions (hence in particular PARITY of n bits),

COMPARISON of binary numbers, and BINARY ADDRESSING (routing)

where the first k input bits represent an address for one of the 2
k

subsequent

input bits (thus n = k + 2
k
). In fact, to the best of our knowledge there is no

function known which can be computed by polynomial size threshold circuits,

but not by polynomial size threshold circuits C with Hmax(C) = O(log n).

Proof of Theorem 1. The proof is split up into a number of Lemmata

(Lemma 1 – 6). The idea is first to simulate in Lemma 1 the given circuit C

by a threshold decision tree (i.e., by a decision tree T with threshold gates at its

nodes, see Definition 1) that has at most 2
Hmax(C)

leaves. Then this threshold

decision tree is restructured in Lemma 3 in such a manner that every path in the

tree from the root to a leaf takes at most log(# of leaves) times, hence in this

case at most Hmax(C) times, the right branch at an internal node. Obviously

such an asymmetric cost measure is of interest when one wants to minimize an

asymmetric complexity measure such as EC, which assigns different costs to

gate outputs 0 and 1. Finally, we show in Lemma 5 that the computations of the

resulting threshold decision tree can be simulated by a threshold circuit where

some gate outputs a “1” whenever the simulated path in the decision tree moves

into the right subtree at an internal node of the tree. The proof of this Lemma 5

has to take into account that the control structures of decision trees and circuits

are quite different: A gate in a decision tree is activated only when the compu-

tation path happens to arrive at the corresponding node of the decision tree,

but a gate in a threshold circuit is activated in any computation of that circuit.

Hence a threshold decision tree with few threshold gates that output “1” does

not automatically yield a threshold circuit with low energy complexity. However,

we show that all gates in the simulating threshold circuit that do not correspond

to a node in the decision tree where the right branch is chosen, receive an addi-

tional input with a strongly negative weight (see Lemma 4), so that they output

a “0” when they get activated.

Finally, we show in Lemma 6 that the threshold decision tree can be restruc-

ture alternatively, so that the average number of times when a computation path

takes the right subtree at a node remains small (instead of the maximal number

of taking the right subtree). This manouvre yields the proof of the second part

of the claim of Theorem 1.
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Definition 1. A threshold decision tree(called a linear decision tree in [2]) T

is a binary tree in which each internal node has two children, a left and a right
one, and is labeled by a threshold gate that is applied to the input X ∈ {0, 1}

n

for the tree. All the leaves of threshold decision trees are labeled by 0 or 1. To
compute the output of a threshold decision tree T on an input X we apply the
following procedure from the root until reaching a leaf: we go left if the gate at
a node outputs 0, otherwise we go right. If we reach a leaf labeled by l ∈ {0, 1},
then l is the output of T for input X.

Note that the threshold gates in a threshold decision tree are only applied to

input variables from the external input X ∈ {0, 1}
n
, not to outputs of preceding

threshold gates. Hence it is obvious that computations in threshold decision

trees have a quite different structure from computations in threshold circuits,

although both models use the same type of computational operation at each

node.

The depth of a threshold decision tree is the maximum number of nodes from

the root to a leaf. We assign binary strings to nodes of T in the usual manner:

– ĝε denotes the root of the tree (where ε is the empty string)

– For a binary string s, let ĝs◦0 and ĝs◦1 be the left and right child of the node

with label ĝs, where ◦ denotes concatenation of strings.

For example, the ancestors of a node ĝ1011 are ĝε, ĝ1, ĝ10 and ĝ101. Let ST be

the set of all binary strings s that occur as indices of nodes ĝs in a threshold

decision tree T . Then all the descendants of node ĝs in T can be represented as

ĝs◦∗ for s ◦ ∗ ∈ ST .

The given threshold circuit C can be simulated in the following way by a

threshold decision tree:

Lemma 1. Let C be a threshold circuit computing a function f : {0, 1}
n
→

{0, 1} with m gates. Then one can construct a threshold decision tree T with at
most 2

Hmax(C) leaves and depth(T ) ≤ m which computes the same function f .

Proof. Assume that C consists of m gates. We number the gates g1, . . . , gm of

C in topological order. Since gi receives the circuit input X and the outputs of

gj only for j < i as its inputs, we can express the output gi(X) of gi for circuit

input X =< x1, . . . , xn > as gi(X) = sign(
∑n

j=1 w
i
jxj +

∑i−1
j=1 w

i
gj
gj(X) + ti) ,

where w
i
gj

is the weight which gi applies to the output of gj in circuit C.

Let S be the set of all binary strings of length up to m− 1. We define threshold

gates ĝs : X → {0, 1} for s ∈ S by ĝs(X) = sign(
∑n

j=1 w
|s|+1
j xj + ts) with

ts =
∑|s|

j=1 w
|s|+1
gj sj + t|s|+1, where sj is the j-th bit of string s and |s| is the

length of s. Obviously these gates ĝs are variations of gate gi with different

built-in assumptions s about the outputs of preceding gates.

Let T be the threshold decision tree consisting of gates ĝs for s ∈ S. That

is, gate ĝε = g1 is placed at the root of T . We let the left child of ĝs be ĝs◦0
and the right child of ĝs be ĝs◦1. We let each ĝs with |s| = m − 1 have a leaf

labeled by 0 as left child and a leaf labeled 1 as right child. Since ĝs computes
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the same function as g|s|+1 if the preceding gates gi output si for 1 ≤ i ≤ |s|,

T computes the same function f as C. We then remove all leaves from T for

which the associated paths correspond to circuit states A ∈ {0, 1}
m

that do not

occur in C for any circuit input X ∈ {0, 1}
n
. This reduces the number of leaves

in T to 2
Hmax(C)

. Finally, we iteratively remove all nodes without children, and

replace all nodes below which there exists just a single leaf by a leaf. In this way

we arrive again at a binary tree. ��

We now introduce a cost measure cost(T ) for trees T , that like the energy com-

plexity for circuits, measures for threshold decision trees how often a threshold

gate outputs a 1 during a computation:

Definition 2. We denote by cost(T ) the maximum number of times where a
path from the root to a leaf in a binary tree T goes to the right. If T is a leaf,
then cost(T ) = 0.

We will show later, in Lemma 5, that one can simulate any threshold decision tree

T
′
by a threshold circuit CT ′ with ECmax(CT ′) ≤ cost(T

′
) + 1. Hence it suffices

for the proof of Theorem 1 to simulate the threshold decision tree T resulting

from Lemma 1 by another threshold decision tree T
′
for which cost(T

′
) is small.

This is done in Lemma 4, where we will construct a tree T
′
that reduces cost(T

′
)

down to another cost measure rank(T ). This measure rank(T ) always has a value

≤ log(# of leaves of T ) according to Lemma 2, hence rank(T ) ≤ Hmax(C) for

the tree T constructed in Lemma 1.

Definition 3. The rank of a binary tree T is defined inductively as follows:

– If T is a leaf then rank(T ) = 0.
– If T has subtrees Tl and Tr then

rank(T ) =


rank(Tl), if rank(Tl) > rank(Tr)

rank(Tr) + 1, if rank(Tl) = rank(Tr)

rank(Tr), if rank(Tl) < rank(Tr) .

Lemma 2. Let T be any binary tree. Then rank(T ) ≤ log(# of leaves of T).
��

Lemma 3. Let T be a threshold decision tree computing a function f : {0, 1}
n
→

{0, 1}. Then f can also be computed by a threshold decision tree T ′ which has the
same depth and the same number of leaves as T , and which satisfies cost(T ′

) =

rank(t).

Proof. Let T consist of gates gs for s ∈ ST . We define T
s

as the subtree of

T whose root is gs. Let T
s
l (respectively, T

s
r ) denote the left(right) subtree below

the root of T
s
. We modify T inductively by the following procedure, starting

at the nodes gs of largest depth. If cost(T
s
l ) < cost(T

s
r ), we replace gs by its

complement, and swap the left subtree and the right subtree. The complement of

gs is here another threshold gate g that outputs 1 if and only if gs outputs 0. Such
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gate g exists since
∑n

i=1 wixi < t ⇔
∑n

i=1(−wi)xi > −t ⇔
∑n

i=1(−wi)xi ≥ t
′

for another threshold t
′
(which always exists if the xi assume only finitely many

values). Let T̂
s

be the threshold decision tree which is produced from T
s

by this

procedure. By construction it has the following properties:

– If the children of gs both are both leaves, then we have cost(T̂
s
) = 1.

– Otherwise,

cost(T̂
s
) =


cost(T̂

s
l ), if cost(T̂

s
l ) > cost(T̂

s
r )

cost(T̂
s
r ) + 1, if cost(T̂

s
l ) = cost(T̂

s
r )

cost(T̂
s
r ), if cost(T̂

s
l ) < cost(T̂

s
r ) ,

where T̂
s

has subtrees T̂
s
l and T̂

s
r .

Since this definition coincides with the definition of the rank, we have constructed

a tree T
′
with cost(T

′
) = rank(T ). This procedure preserves the function that

is computed, the depth of the tree, and the number of leaves. ��

We now show that the threshold decision tree that was constructed in Lemma 3

can be simulated by a threshold circuit with low energy complexity. As a prepa-

ration we first observe in Lemma 4 that one can “veto” any threshold gate g

through some extra input. This will be used in Lemma 5 in order to avoid the

event that gates in the simulating circuit that correspond to gates in an inactive

path of the simulated threshold decision tree increase the energy complexity of

the resulting circuit.

Lemma 4. Let g(x1, . . . , xn) = sign(
∑n

i=1 wixi − t) be a threshold gate. Then
one can construct a threshold gate g

′ using an additional input xn+1 which has
the following property:

g
′
(x1, . . . , xn, xn+1) =

{
0, if xn+1 = 1

g(x1, . . . , xn), if xn+1 = 0 .

Proof. We set wn+1 := −(
∑n

i=1 |wi| + |t| + 1). Apart from that g
′
uses the

same weights and threshold as g. It is obvious that the resulting gate g
′
has the

desired property. ��

Lemma 5. Let T be a threshold decision tree which consists of k internal nodes
and which computes a function f . Then one can construct a threshold circuit CT
with ECmax(CT ) ≤ cost(T ) + 1 that computes the same function f . In addition
CT satisfies depth(CT ) ≤ depth(T ) + 1 and size(CT ) ≤ k + 1.

Proof. We can assume without loss of generality that every leaf with label 1 in T

is the right child of its parent (if this is not the case, swap this leaf with the right

subtree of the parent, and replace the threshold gate at the parent node like in

the proof of Lemma 3 by another threshold gate that always outputs the negation

of the former gate; this procedure does not increase the cost of the tree, nor its

depth or number of internal nodes). Let now gs(X) = sign(
∑n

j=1 w
s
jxj − ts) be
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the threshold gate in T at the node with label s ∈ ST . Let w
s
n+1 be the weight

constructed in Lemma 4 for an additional input which can force gate gs to output

0. Set W := max{|w
s
n+1| : s ∈ ST }.

The threshold circuit CT that simulates T has a gate g
′
s for every gate gs in

T , and in addition an OR-gate which receives inputs from all gates g
′
s so that

gs has a leaf with label 1 (according to our preceding remark this leaf is reached

whenever the gate gs at node s ∈ ST gets activated and gs outputs a 1). We make

sure that any gate g
′
s in CT outputs 1 for a circuit input X if and only if the gate

gs in T gets activated for this input X , and outputs 1. This implies that only

gates g
′
s in CT can output 1 that correspond to gates gs in T with output 1 that

lie on the single path of T that gets activated for the present circuit input X .

Hence this construction automatically ensures that ECmax(CT ) ≤ cost(T ) + 1

(where the “+1”arises from the additional OR-gate in CT ).

In order to achieve this objective, g
′
s gets additional inputs from all gates g

′
s̃

in CT so that s̃ is a proper prefix of s. The weight for the additional input from

g
′
s̃ is −W if s̃ ◦ 0 is a prefix of s, and W otherwise. In addition the threshold of

g
′
s is increased by ls ·W , where ls is the number of 1

′
s in the binary string s. In

this way g
′
s can output 1 if and only if gs outputs 1 for the present circuit input

X, and all gates gs̃ of T for which gs lies in the right subtree below gs̃ output 1,
and all gates ĝs̃ of T for which gs lies in the left subtree below gs̃ output 0. Thus

g
′
s outputs 1 if and only if the path leading to gate gs gets activated in T and

gs outputs 1. ��

The proof of the first claim of Theorem 1 follows now immediately from the

Lemmata 1–5. Note that the number k of internal nodes in a binary tree is equal

to (# of leaves)−1, hence k ≤ 2
Hmax(C)

− 1 in the case of the decision tree T

resulting from applications of Lemma 1 and Lemma 3. This yields size(CT ) ≤

2
Hmax(C)

for the circuit CT that is constructed in Lemma 5 for this tree T .

The proof of the second claim of Theorem 1 follows by applying the subsequent

Lemma 6 instead of Lemma 3 to the threshold decision tree T resulting from

Lemma 1.

Lemma 6. Let T be a threshold decision tree computing f : {0, 1}n → {0, 1}.
Then for any given distribution Q of circuit inputs, there exists a threshold de-
cision tree T

′ computing f such that the expected number of 1’s with regard to
Q is at most HQ(C)/2.

Proof. Let P (s) be the probability (with regard to Q) that gate gs outputs 1.

We construct T
′
by modifying T inductively (starting at the nodes of the largest

depth m in T ) through the following procedure: If P (s) > 1/2, replace gs by a

threshold gate which computes its negation and swap the left and right subtree

below this node.

Let costQ(s) be the expected number of times where one goes to the right in

the subtree of T
′
whose root is the node labeled by s. By construction we have

P (s) ≤ 1/2 for every gate gs in T
′
. Furthermore we have:
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– If |s| = m− 1 then costQ(s) = P (s).

– If 0 ≤ |s| < m− 1, then P (s) ≤ 1/2 and

costQ(s) = P (s) + P (s)costQ(s ◦ 1) + (1− P (s))costQ(s ◦ 0) .

One can prove by induction on |s| that costQ(s) ≤ HQ(s)/2 for all s ∈ ST ′ , where

HQ(s) is the entropy of states of the ensemble of gates of T
′
in the subtree below

gate gs.

For the induction step one uses the convexity of the log-function, which implies

that P (s) = −P (s) · (−1) = −P (s) · log
P (s)+(1−P (s))

2 ≤

− P (s)

(
log(P (s))+log(1−P (s))

2

)
, and the fact that P (s) ≤ 1− P (s) to show that

costQ(s) ≤ P (s) + P (s) ·
HQ(s ◦ 1)

2
+ (1− P (s)) ·

HQ(s ◦ 0)

2

≤ −P (s) ·

(
logP (s) + log(1− P (s))

2

)
+

P (s)
HQ(s ◦ 1)

2
+ (1− P (s)) ·

HQ(s ◦ 0)

2

≤ −

P (s)

2
logP (s)−

(1− P (s))

2
log(1− P (s)) + P (s)

HQ(s ◦ 1)

2

+(1− P (s))
HQ(s ◦ 0)

2
≤

HQ(s)

2
.

��

Remark 3. The results of this section can also be applied to circuits that compute

arbitrary functions f : D → {0, 1} for some arbitrary finite set D ⊆ Rn
(instead

of {0, 1}
n
). For domains D ⊆ Rn

of infinite size a different proof would be

needed, since then one can no longer replace any given threshold gate by another

threshold gate that computes its negation (as used in the proofs of Lemma 3,

Lemma 5, and Lemma 6).

4 On the Computational Power of Circuits with Low
Entropy

The concepts discussed in this article raise the question which functions f :

{0, 1}
n
→ {0, 1} can be computed by polynomial size threshold circuits C with

Hmax(C) = O(log n). There is currently no function f in P (or even in NP )

known for which this is provably false. But the following result shows that if all

functions that can be computed by polynomial size threshold circuits of bounded

depth can be computed by a circuit C of the same type which satisfies in addition

Hmax(C) = O(log n), then this implies a collapse of the depth hierarchy for

polynomial size threshold circuits.

Theorem 2. Assume that a function f : {0, 1}
n
→ {0, 1} (or f : Rn

→ {0, 1})
can be computed by a threshold circuit C with polynomially in n many gates and
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Hmax(C) = O(log n) . Then one can compute f with a polynomial size threshold
circuit C′ of depth 3.

Proof. According to Lemma 1 there exists a threshold decision tree T with

polynomially in n many leaves and depth(T ) ≤ size(C). Design (similarly as in

[2]) for each path p from the root to a leaf with output 1 in T a threshold gate

gp on layer 2 of C
′
that outputs 1 if and only if this path p becomes active in T .

The output gate on layer 3 of C
′
is simply an OR of all these gates gp. ��

5 Discussion

In this article we introduced an energy complexity measure for threshold cir-

cuits that reflects the biological fact that the firing of a neuron consumes more

energy than its non-firing. We also have provided methods for restructuring a

given threshold circuit with high energy consumption by a threshold circuit that

computes the same function, but with brain-like sparse activity. Theorem 1 im-

plies that the computational power of such circuits is quite large. The resulting

circuits with sparse activity may help us to elucidate the way in which circuits

of neurons are designed in biological systems. In fact, the structure of computa-

tions in the threshold circuits with sparse activity that were constructed in the

proof of Theorem 1 is reminiscent of biological results on the structure of com-

putations in cortical circuits of neurons, where there is concern for the selection

of different pathways (“dynamic routing”) in dependence of the stimulus [9]. In

addition our constructions provide first steps towards the design of algorithms

for future extremely dense VLSI implementations of neurally inspired circuits,

where energy consumption and heat dissipation become critical factors.

The new concepts and results of this article suggest a number of interesting

open problems in computational complexity theory. At the beginning of section 3

we showed that the energy complexity of a threshold circuit that computes some

functions f cannot be less than the a-priori bound given by the minimal circuit

entropy required for computing such a function. This result suggests that the

entropy of circuit states required for various practically relevant functions should

be investigated. Another interesting open problem is the tradeoff between energy

complexity and computation speed in threshold circuits, both in general and

for concrete computational problems. Finally, we consider that both the energy

complexity and the entropy of threshold circuits are concepts that are of interest

in their own right. They give rise to interesting complexity classes that have not

been considered previously in computational complexity theory. In particular,

it may be possible to develop new lower bound methods for circuits with low

entropy, thereby enlarging the reservoir of lower bound techniques in circuit

complexity theory.
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Abstract. In this paper we revisit the classical regular expression
matching problem, namely, given a regular expression R and a string
Q consisting of m and n symbols, respectively, decide if Q matches one
of the strings specified by R. We present new algorithms designed for a
standard unit-cost RAM with word length w ≥ log n. We improve the
best known time bounds for algorithms that use O(m) space, and when-
ever w ≥ log2 n, we obtain the fastest known algorithms, regardless of
how much space is used.

1 Introduction

Regular expressions are a powerful and simple way to describe a set of strings.

For this reason, they are often chosen as the input language for text processing

applications. For instance, in the lexical analysis phase of compilers, regular ex-

pressions are often used to specify and distinguish tokens to be passed to the

syntax analysis phase. Utilities such as Grep, the programming language Perl,

and most modern text editors provide mechanisms for handling regular expres-

sions. These applications all need to solve the classical Regular Expression
Matching problem, namely, given a regular expression R and a string Q, decide

if Q matches one of the strings specified by R.

The standard textbook solution, proposed by Thompson [8] in 1968, con-

structs a non-deterministic finite automaton (NFA) accepting all strings match-

ing R. Subsequently, a state-set simulation checks if the NFA accepts Q. This

leads to a simple O(nm) time and O(m) space algorithm, where m and n are the

number of symbols in R and Q, respectively. The full details are reviewed later

in Sec. 2 and can found in most textbooks on compilers (e.g. Aho et. al. [1]).

Despite the importance of the problem, it took 24 years before the O(nm) time

bound was improved by Myers [6] in 1992, who achieved O(
nm
logn +(n+m) logn)

time and O(
nm
logn ) space. For most values of m and n this improves the O(nm)

algorithm by a O(log n) factor. Currently, this is the fastest known algorithm.

Recently, Bille and Farach-Colton [3] showed how to reduce the space of My-

ers’ solution to O(n). Alternatively, they showed how to achieve a speedup of

O(logm) while using O(m) space, as in Thompson’s algorithm. These results are

all valid on a unit-cost RAM with w-bit words and a standard instruction set

including addition, bitwise boolean operations, shifts, and multiplication. Each

M. Bugliesi et al. (Eds.): ICALP 2006, Part I, LNCS 4051, pp. 643–654, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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word is capable of holding a character of Q and hence w ≥ logn. The space

complexities refer to the number of words used by the algorithm, not counting

the input which is assumed to be read-only. All results presented here assume

the same model. In this paper we present new algorithms achieving the following

complexities:

Theorem 1. Given a regular expression R and a string Q of lengths m and n,
respectively, Regular Expression Matching can be solved using O(m) space
with the following running times:

O(n
m logw

w +m logw) if m > w

O(n logm+m logm) if
√

w < m ≤ w

O(min(n+m
2
, n logm+m logm) if m ≤

√

w.

This represents the best known time bound among algorithms using O(m) space.

To compare these with previous results, consider a conservative word length of

w = logn. When the regular expression is ”large”, e.g., m > logn, we achieve

an O(
logn

log log n ) speedup over Thompson’s algorithm using O(m) space. Hence, we

simultaneously match the best known time and space bounds for the problem,

with the exception of an O(log logn) factor in time. More interestingly, consider

the case when the regular expression is ”small”, e.g., m = O(log n). This is

usually the case in most applications. To beat the O(n log n) time of Thompson’s

algorithm, the fast algorithms [6,3] essentially convert the NFA mentioned above

into a deterministic finite automaton (DFA) and then simulate this instead.

Constructing and storing the DFA incurs an additional exponential time and

space cost in m, i.e., O(2
m

) = O(n). However, the DFA can now be simulated

in O(n) time, leading to an O(n) time and space algorithm. Surprisingly, our

result shows that this exponential blow-up in m can be avoided with very little

loss of efficiency. More precisely, we get an algorithm using O(n log logn) time

and O(log n) space. Hence, the space is improved exponentially at the cost of

an O(log logn) factor in time. In the case of an even smaller regular expression,

e.g., m = O(
√

logn), the slowdown can be eliminated and we achieve optimal

O(n) time. For larger word lengths our time bounds improve. In particular, when

w > logn log log n the bound is better in all cases, except for
√

w ≤ m ≤ w,

and when w > log
2
n it improves all known time bounds regardless of how much

space is used.

The key to obtain our results is to avoid explicitly converting small NFAs

into DFAs. Instead we show how to effectively simulate them directly using the

parallelism available at the word-level of the machine model. The kind of idea

is not new and has been applied to many other string matching problems, most

famously, the Shift-Or algorithm [2], and the approximate string matching algo-

rithm by Myers [7]. However, none of these algorithms can be easily extended to

Regular Expression Matching. The main problem is the complicated de-

pendencies between states in an NFA. Intuitively, a state may have long paths of

ε-transitions to a large number of other states, all of which have to be traversed

in parallel in the state-set simulation. To overcome this problem we develop sev-

eral new techniques ultimately leading to Theorem 1. For instance, we introduce
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a new hierarchical decomposition of NFAs suitable for a parallel state-set simu-

lation. We also show how state-set simulations of large NFAs efficiently reduces

to simulating small NFAs.

The results presented in this paper are primarily of theoretical interest. How-

ever, we believe that most of the ideas are useful in practice. The previous

algorithms require large tables for storing DFAs, and perform a long series of

lookups in these tables. As the tables become large we can expect a high number

of cache-misses during the lookups, thus limiting the speedup in practice. Since

we avoid these tables, our algorithms do not suffer from this defect.

The paper is organized as follows. In Sec. 2 we review Thompson’s NFA

construction, and in Sec. 3 we present the above mentioned reduction. In Sec. 4

we present our first simple algorithm for the problem which is then improved in

Sec. 5. Combining these algorithms with our reduction leads to Theorem 1.

2 Regular Expressions and Finite Automata

In this section we briefly review Thompson’s construction and the standard state-

set simulation. The set of regular expressions over an alphabet Σ are defined

recursively as follows: A character α ∈ Σ is a regular expression, and if S and T

are regular expressions, then so is the catenation, S · T , the union, S|T , and the

star, S∗
(we often remove the · when writing regular expressions). The language

L(R) generated by R is the set of all strings matching R. The parse tree T (R) of

R is the binary rooted tree representing the hiearchical structure of R. Each leaf

is labeled by a character in Σ and each internal node is labeled either ·, |, or ∗.

A finite automaton is a tuple A = (V,E, δ, θ, φ), where V is a set of nodes called

states, E is set of directed edges between states called transitions, δ : E → Σ∪{ε}

is a function assigning labels to transitions, and θ, φ ∈ V are distinguished

states called the start state and accepting state, respectively.
1

Intuitively, A is

an edge-labeled directed graph with special start and accepting nodes. A is a

deterministic finite automaton (DFA) if A does not contain any ε-transitions,

and all outgoing transitions of any state have different labels. Otherwise, A is a

non-deterministic automaton (NFA). We say that A accepts a string Q if there

is a path from θ to φ such that the concatenation of labels on the path spells out

Q. Thompson [8] showed how to recursively construct a NFA N(R) accepting

all strings in L(R). The rules are shown in Fig. 1.

Readers familiar with Thompson’s construction will notice that N(ST ) is

slightly different from the usual construction. This is done to simplify our later

presentation and does not affect the worst case complexity of the problem. Any

automaton produced by these rules we call a Thompson-NFA (TNFA). By con-

struction, N(R) has a single start and accepting state, denoted θ and φ, re-

spectively. θ has no incoming transitions and φ has no outgoing transitions.

The total number of states is 2m and since each state has at most 2 outgoing

transitions that the total number of transitions is at most 4m. Furthermore, all

1 Sometimes NFAs are allowed a set of accepting states, but this is not necessary for
our purposes.
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Fig. 1. Thompson’s NFA construction. The regular expression for a character α ∈ Σ

correspond to NFA (a). If S and T are regular expression then N(ST ), N(S|T ), and

N(S∗) correspond to NFAs (b), (c), and (d), respectively. Accepting nodes are marked

with a double circle.

incoming transitions have the same label, and we denote a state with incoming

α-transitions an α-state. Note that the star construction in Fig. 1(d) introduces

a transition from the accepting state of N(S) to the start state of N(S). All

such transitions are called back transitions and all other transitions are forward
transitions. We need the following property.

Lemma 1 (Myers [6]). Any cycle-free path in a TNFA contains at most one
back transition.

For a string Q of length n the standard state-set simulation of N(R) on Q

produces a sequence of state-sets S0, . . . , Sn. The ith set Si, 0 ≤ i ≤ n, consists

of all states in N(R) for which there is a path from θ that spells out the ith prefix

of Q. The simulation can be implemented with the following simple operations.

For a state-set S and a character α ∈ Σ, define

Move(S, α): Return the set of states reachable from S via a single α-transition.

Close(S): Return the set of states reachable from S via 0 or more ε-transitions.

Since the number of states and transitions in N(R) is O(m), both operations

can be easily implemented in O(m) time. The Close operation is often called

an ε-closure. The simulation proceeds as follows: Initially, S0 := Close({θ}). If

Q[j] = α, 1 ≤ j ≤ n, then Sj := Close(Move(Sj−1, α)). Finally, Q ∈ L(R) iff

φ ∈ Sn. Since each state-set Sj only depends on Sj−1 this algorithm uses O(mn)

time and O(m) space.

3 From Large to Small TNFAs

In this section we show how to simulate N(R) by simulating a number of smaller

TNFAs. We will use this to achieve our bounds when R is large.
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Fig. 2. (a) The parse tree for the regular expression ac|a∗b. (b) A clustering of (a)

into node-disjoint connected subtrees C1, C2, and C3, each with at most 3 nodes. (c)

The clustering from (b) extended with pseudo-nodes. (d) The nested decomposition of

N(ac|a∗b). (e) The TNFA corresponding to C1.

3.1 Clustering Parse Trees and Decomposing TNFAs

Let R be a regular expression of length m. We first show how to decompose

N(R) into smaller TNFAs. This decomposition is based on a simple clustering

of the parse tree T (R). A cluster C is a connected subgraph of T (R) and a cluster
partition CS is a partition of the nodes of T (R) into node-disjoint clusters. Since

T (R) is a binary tree with O(m) nodes, a simple top-down procedure provides

the following result:

Lemma 2. Given a regular expression R of length m and a parameter x, a
cluster partition CS of T (R) can be constructed in O(m) time such that |CS| =
O(�m/x�), and for any C ∈ CS, the number of nodes in C is at most x.

For a cluster partition CS, edges adjacent to two clusters are external edges and

all other edges are internal edges. Contracting all internal edges in CS induces

a macro tree, where each cluster is represented by a single macro node. Let Cv

and Cw be two clusters with corresponding macro nodes v and w. We say that

Cv is the parent cluster (resp. child cluster) of Cw if v is the parent (resp. child)

of w in the macro tree. The root cluster and leaf clusters are the clusters corre-

sponding to the root and the leaves of the macro tree. An example clustering of

a parse tree is shown in Fig. 2(b). Given a cluster partition CS of T (R) we show

how to divide N(R) into a set of small nested TNFAs. Each cluster C ∈ CS

will correspond to a TNFA A, and we use the terms child, parent, root, and

leaf for the TNFAs in the same way we do with clusters. For a cluster C ∈ CS

with children C1, . . . , Cl, insert a special pseudo-node pi, 1 ≤ i ≤ l, in the mid-

dle of the external edge connecting C with Ci. We label each pseudo-node by a
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special character β ∈ Σ. Let TC be the tree induced by the set of nodes in C and

{p1, . . . , pl}. Each leaf in TC is labeled with a character from Σ∪{β}, and hence

TC is a well-formed parse tree for some regular expression RC over Σ∪{β}. Now,

the TNFA A corresponding to C is N(RC). In A, child TNFA Ai is represented

by its start and accepting state θAi and φAi and a pseudo-transition labeled β

connecting them. An example of these definitions is given in Fig. 2. We call any

set of TNFAs obtained from a cluster partition as above a nested decomposition
AS of N(R). From Lemma 2 we have:

Lemma 3. Given a regular expression R of length m and a parameter x, a
nested decomposition AS of N(R) can be constructed in O(m) time such that
|AS| = O(�m/x�), and for any A ∈ AS, the number of states in A is at most x.

3.2 Simulating Large Automata

We now show how N(R) can be simulated using the TNFAs in a nested de-

composition. For this purpose we define a simple data structure to dynamically

maintain the TNFAs. Let AS be a nested decomposition of N(R) according to

Lemma 3, for some parameter x. Let A ∈ AS be a TNFA, let SA be a state-

set of A, let s be a state in A, and let α ∈ Σ. A simulation data structure
supports the five operations: MoveA(SA, α), CloseA(SA), MemberA(SA, s), and

InsertA(SA, s). Here, the operations MoveA and CloseA are defined exactly as in

Sec. 2, with the modification that they only work on A and not N(R). The oper-

ation MemberA(SA, s) return yes if s ∈ SA and no otherwise and InsertA(SA, s)

returns the set SA ∪ {s}.

In the following sections we consider various efficient implementations of sim-

ulation data structures. For now assume that we have a black-box data structure

for each A ∈ AS. To simulate N(R) we proceed as follows. First, fix an ordering

of the TNFAs in the nested decomposition AS, e.g., by a preorder traversal of

the tree represented given by the parent/child relationship of the TNFAs. The

collection of state-sets for each TNFA in AS are represented in a state-set array
X of length |AS|. The state-set array is indexed by the above numbering, that

is, X [i] is the state-set of the ith TNFA in AS. For notational convenience we

write X [A] to denote the entry in X corresponding to A. Note that a parent

TNFA share two states with each child, and therefore a state may be repre-

sented more than once in X . To avoid complications we will always assure that

X is consistent, meaning that if a state s is in included in the state-set of some

TNFA, then it is also included in the state-sets of all other TNFAs that share s.

If S = ∪A∈ASX [A] we say that X models the state-set S and write S ≡ X .

Next we show how to do a state-set simulation of N(R) using the operations

MoveAS and CloseAS , which we define below. These operations recursively up-

date a state-set array using the simulation data structures. For any A ∈ AS,

state-set array X , and α ∈ Σ define

MoveAS(A,X, α): 1. X [A] := MoveA(X [A], α)

2. For each child Ai of A do

(a) X := MoveAS(Ai, X, α)
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(b) If φAi ∈ X [Ai] then X [A] := InsertA(X [A], φAi)

3. Return X

CloseAS(A,X): 1. X [A] := CloseA(X [A])

2. For each child Ai of A in topological order do

(a) If θAi ∈ X [A] then X [Ai] := InsertAi(X [Ai], θAi)

(b) X := CloseAS(Ai, X)

(c) If φAi ∈ X [Ai] then X [A] := InsertA(X [A], φAi)

(d) X [A] := CloseA(X [A])

3. Return X

The MoveAS and CloseAS operations recursively traverses the nested decom-

position top-down processing the children in topological order. At each child

the shared start and accepting states are propagated in the state-set array. For

simplicity, we have written MemberA using the symbol ∈.

The state-set simulation of N(R) on a string Q of length n produces the

sequence of state-set arrays X0, . . . , Xn as follows: Let Ar be the root automa-

ton and let X be an empty state-set array (all entries in X are ∅). Initially,

set X [Ar] := InsertAr (X [Ar], θAr ) and compute X0 := CloseAS(Ar,CloseAS(Ar ,

X)). For i > 0 we compute Xi from Xi−1 as follows:

Xi := CloseAS(Ar,CloseAS(Ar ,MoveAS(Ar, Xi−1, Q[i])))

Finally, we output Q ∈ L(R) iff φAr ∈ Xn[Ar]. To see that this algorithm

correctly solves Regular Expression Matching it suffices to show that for

any i, 0 ≤ i ≤ n,Xi correctly models the ith state-set Si in the standard state-set

simulation. We need the following lemma.

Lemma 4. Let X be a state-set array and let Ar be the root TNFA in a nested
decomposition AS. If S is the state-set modeled by X, then

– Move(S, α) ≡ MoveAS(Ar , X, α) and
– Close(S) ≡ CloseAS(Ar ,CloseAS(Ar, X)).

The proof is left for the full version of the paper. Intuitively, the 2 calls to CloseAS
produce the set of states reachable via a path of forward ε-transitions, and the

set of states reachable via a path of forward ε-transitions and at most 1 back

transition, respectively. By Lemma 1 it follows that this is the correct set.

By Lemma 4 the state-set simulation can be done using the CloseAS and

MoveAS operations and the complexity now directly depends on the complexities

of the simulation data structure. Putting it all together the following reduction

easily follows:

Lemma 5. Let R be a regular expression of length m over alphabet Σ and let
Q a string of length n. Given a simulation data structure for TNFAs with x <

m states over alphabet Σ ∪ {β}, where β ∈ Σ, that supports all operations in
O(t(x)) time, using O(s(x)) space, and O(p(x)) preprocessing time, Regular
Expression Matching for R and Q can be solved in O(

nm·t(x)
x +

m·p(x)
x ) time

using O(
m·s(x)

x ) space.
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The idea of decomposing TNFAs is also present in Myers’ paper [6], though he

does not give a ”black-box” reduction as in Lemma 5. Essentially, he provides a

simulation data structure supporting all operations in O(1) time using O(x · 2
x
)

preprocessing time and space. For x ≤ log(n/ logn) this achieves the result

mentioned in the introduction. The result of Bille and Farach [3] does not use

Lemma 5. Instead they efficiently encode all possible simulation data structures

in total O(2
x

+m) time and space.

4 A Simple Algorithm

In this section we present a simple simulation data structure for TNFAs, and

develop some of the ideas for the improved result of the next section. Let A be

a TNFA with m = O(
√

w) states. We will show how to support all operations

in O(1) time using O(m) space and O(m
2
) preprocessing time.

To build our simulation data structure for A, first sort all states in A in

topological ignoring the back transitions. We require that the endpoints of an

α-transition are consecutive in this order. This is automatically guaranteed using

a standard O(m) time algorithm for topological sorting (see e.g. [4]). We will

refer to states in A by their rank in this order. A the state-set of A is represented

using a bitstring S = s1s2 . . . sm defined such that si = 1 iff node i is in the

state-set. The simulation data structure consists of the following bitstrings:

– For each α ∈ Σ, a string Dα = d1, . . . , dm such that di = 1 iff i is an α-state.

– A string E = 0e1,1e1,2 . . . e1,m0e2,1e2,2 . . . e2,m0 . . . 0em,1em,2 . . . em,m, where

ei,j = 1 iff i is ε-reachable from j. The zeros are test bits needed for the

algorithm.

– Three constants I = (10
m

)
m

, X = 1(0
m

1)
m−1

, and C = 1(0
m−1

1)
m−1

. Note

that I has a 1 in each test bit position.
2

The strings E, I, X , and C are easily computed in O(m
2
) time and use O(m

2
)

bits. Since m = O(
√

w) only O(1) space is needed to store these strings. We store

Dα in a hashtable indexed by α. Since the total number of different characters

in A can be at most m, the hashtable contains at most m entries. Using perfect

hashing Dα can be represented in O(m) space with O(1) worst-case lookup time.

The preprocessing time is expected O(m) w.h.p.. To get a worst-case bound we

use the deterministic dictionary of Hagerup et. al. [5] with O(m logm) worst-case

preprocessing time. In total the data structure requires O(m) space and O(m
2
)

preprocessing time.

Next we show how to support each of the operations on A. Suppose S =

s1 . . . sm is a bitstring representing a state-set of A and α ∈ Σ. The result of

MoveA(S, α) is given by

S
′
:= (S >> 1) &Dα.

This should be understood as C notation, where the right-shift is unsigned.

Readers familiar with the Shift-Or algorithm [2] will notice the similarity. To see

2 We use exponentiation to denote repetition, i.e., 130 = 1110.
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the correctness, observe that state i is put in S
′
iff state (i− 1) is in S and the

ith state is an α-state. Since the endpoints of α-transitions are consecutive in

the topological order it follows that S
′

is correct. Here, state (i − 1) can only

influence state i, and this makes the operation easy to implement in parallel.

However, this is not the case for CloseA. Here, any state can potentially affect a

large number of states reachable through long ε-paths. To deal with this we use

the following steps.

Y := (S ×X) & E

Z := ((Y | I)− (I >> m)) & I

S
′
:= ((Z × C) << w −m(m + 1)) >> w −m

We describe in detail why this, at first glance somewhat cryptic sequence, cor-

rectly computes S
′
as the result of CloseA(S). The variables Y and Z are simply

temporary variables inserted to increase the readability of the computation. Let

S = s1 . . . sm. Initially, S×X concatenates m copies of S with a zero bit between

each copy, that is, S ×X = s1 . . . sm × 1(0
m

1)
m−1

= (0s1 . . . sm)
m
. The bitwise

& with E gives Y = 0y1,1y1,2 . . . y1,m0y2,1y2,2 . . . y2,m0 . . . 0ym,1ym,2 . . . ym,m,

where yi,j = 1 iff state j is in S and state i is ε-reachable from j. In other words,

the substring Yi = yi,1 . . . yi,m indicates the set of states in S that have a path of

ε-transitions to i. Hence, state i should be included in CloseA(S) precisely if at

least one of the bits in Yi is 1. This is determined next. First (Y | I)− (I >> m)

sets all test bits to 1 and subtracts the test bits shifted right by m positions.

This ensures that if all positions in Yi are 0, the ith test bit in the result is 0 and

otherwise 1. The test bits are then extracted with a bitwise & with I, producing

the string Z = z10
m
z20

m
. . . zm0

m
. This is almost what we want since zi = 1 iff

state i is in CloseA(S). It is easy to check that Z × C produces a string, where

positions m(m − 1) + 1 through m
2

(from the left) contain the test bits com-

pressed into a string of length m. The two shifts zero all other bits and moves

this substring to the rightmost position in the word, producing the final result.

Since m = O(
√

w) all of the above operations can be done in constant time.

Finally, observe that InsertA and MemberA are trivially implemented in constant

time. Thus,

Lemma 6. For any TNFA with m = O(
√

w) states there is a simulation data
structure using O(m) space and O(m

2
) preprocessing time which supports all

operations in O(1) time.

The main bottleneck in the above data structure is the string E that represents

all ε-paths. On a TNFA with m states E requires at least m
2

bits and hence this

approach only works for m = O(
√

w). In this next section we show how to use

the structure of TNFAs to do better.

5 Overcoming the ε-Closure Bottleneck

In this section we show how to compute an ε-closure on a TNFA with m = O(w)

states in O(logm) time. Compared with the result of the previous section we
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quadratically increase the size of the TNFA at the expense of using logarithmic

time. The algorithm is easily extended to an efficient simulation data structure.

The key idea is a new hierarchical decomposition of TNFAs described below.

5.1 Partial-TNFAs and Separator Trees

First we need some definitions. Let A be a TNFA with parse tree T . Each node v

in T uniquely correspond to two states in the A, namely, the start and accepting

states θA′ and φA′ of the TNFA A
′
with the parse tree consisting of v and all

descendants of v. We say v associates the states S(v) = {θA′ , φA′}. In general, if

C is a cluster of T , i.e., any connected subgraph of T , we say C associates the set
of states S(C) = ∪v∈CS(v). We define the partial-TNFA (pTNFA) for C, as the

directed, labeled subgraph of A induced by the set of states S(C). In particular,

A is a pTNFA since it is induced by S(T ). The two states associated by the root

node of C are defined to be the start and accepting state of the corresponding

pTNFA. We need the following result.

Lemma 7. For any pTNFA P with m > 2 states there exists a partitioning of
P into two subgraphs PO and PI such that

(i) PO and PI are pTNFAs with at most 2/3m+ 2 states each,
(ii) any transition from PO to PI ends in θPI and any transition from PI to

PO starts in φPI , and
(iii) the partitioning can be computed in O(m) time.

The proof is left for the full version of the paper. Intuitively, if we draw P , PI is

”surrounded” by PO, and therefore we will often refer to PI and PO as the inner
pTNFA and the outer pTNFA, respectively. Applying Lemma 7 recursively gives

the following essential data structure. Let P be a pTNFA with m states. The

separator tree for P is a binary, rooted tree B defined as follows: If m = 2, i.e.,

P is a trivial pTNFA consisting of two states θP and φP , then B is a single leaf

node v that stores the set X(v) = {θP , φP }. Otherwise (m > 2), compute PO

and PI according to Lemma 7. The root v of B stores the set X(v) = {θPI , φPI},

and the children of v are roots of separator trees for PO and PI , respectively.

With the above construction each node in the separator tree naturally cor-

respond to a pTNFA, e.g., the root corresponds to P , the children to PI and

PO, and so on. We denote the pTNFA corresponding to node v in B by P (v). A

simple induction combined with Lemma 7(i) shows that if v is a node of depth k

then P (v) contains at most (
2
3 )
k
m + 6 states. Hence, the depth of B is at most

d = log3/2 m+O(1). By Lemma 7(iii) each level of B can be computed in O(m)

time and thus B can be computed in O(m logm) total time.

5.2 A Recursive ε-Closure Algorithm

We now present a simple ε-closure algorithm for a pTNFA, which recursively

traverses the separator tree B. We first give the high level idea and then show

how it can be implemented in O(1) time for each level of B. Since the depth of

B is O(logm) this leads to the desired result. For a pTNFA P with m states, a

separator tree B for P , and a node v in B define
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CloseP (v)(S): 1. Compute the set Z ⊆ X(v) of states in X(v) that are ε-

reachable from S in P (v).

2. If v is a leaf return S
′
:= Z, else let u and w be the children

of v, respectively:

(a) Compute the set G ⊆ V (P (v)) of states in P (v) that are

ε-reachable from Z.

(b) Return S
′
:= CloseP (u)((S∪G)∩V (P (u)))∪CloseP (w)((S∪

G) ∩ V (P (w))).

A simple case analysis shows the correctness of CloseP (v)(S). Next we show

how to efficiently implement the above algorithm in parallel. The key ingredient

is a compact mapping of states into positions in bitstrings. Suppose B is the

separator tree of depth d for a pTNFA P with m states. The separator mapping
M maps the states of P into an interval of integers [1, l], where l = 3 · 2

d
. The

mapping is defined recursively according to the separator tree. Let v be the root

of B. If v is a leaf node the interval is [1, 3]. The two states of P , θP and φP , are

mapped to positions 2 and 3, respectively, while position 1 is left intentionally

unmapped. Otherwise, let u and w be the children of v. Recursively, map P (u)

to the interval [1, l/2] and P (w) to the interval [l/2 + 1, l]. Since the separator

tree contains at most 2
d

leaves and each contribute 3 positions the mapping is

well-defined. The size of the interval for P is l = 3 · 2
log3/2 m+O(1)

= O(m). We

will use the unmapped positions as test bits in our algorithm.

The separator mapping compactly maps all pTNFAs represented in B into

small intervals. Specifically, if v is a node at depth k in B, then P (v) is mapped to

an interval of size l/2
k

of the form [(i−1) ·
l

2k +1, i ·
l

2k ], for some 1 ≤ i ≤ 2
k
. The

intervals that correspond to a pTNFA P (v) are mapped and all other intervals

are unmapped. We will refer to a state s of P by its mapped position M(s). A

state-set of P is represented by a bitstring S such that, for all mapped positions

i, S[i] = 1 iff the i is in the state-set. Since m = O(w), state-sets are represented

in a constant number of words.

To implement the algorithm we define a simple data structure consisting of

four length l bitstrings X
θ
k , X

φ
k , E

θ
k, and E

φ
k for each level k of the separa-

tor tree. For notational convenience, we will consider the strings at level k as

two-dimensional arrays consisting of 2
k

intervals of length l/2
k
, i.e., X

θ
k [i, j] is

position j in the ith interval of X
θ
k . If the ith interval at level k is unmapped

then all positions in this interval are 0 in all four strings. Otherwise, suppose

that the interval corresponds to a pTNFA P (v) and let X(v) = {θv, φv}. The

strings are defined as follows:

X
θ
k [i, j] = 1 iff θv is ε-reachable in P (v) from state j,

E
θ
k [i, j] = 1 iff state j is ε-reachable in P (v) from θv,

X
φ
k [i, j] = 1 iff φv is ε-reachable in P (v) from state j,

E
φ
k [i, j] = 1 iff state j is ε-reachable in P (v) from φv.

In addtion to these, we also store a string Ik containing a test bit for each

interval, that is, Ik[i, j] = 1 iff j = 1. Since the depth of B is O(logm) the strings
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use O(logm) words. With a simple depth-first search they can all be computed

in O(m logm) time. It is now a relatively simple matter to simulate the recursive

algorithm using techniques similar to those in Sec. 4. Due to lack of space we

leave the details for the full version of the paper.

Next we show how to get a full simulation data structure. First, note that in

the separator mapping the endpoints of the α-transitions are consecutive (as in

Sec. 4). It follows that we can use the same algorithm as in the previous section

to compute MoveA in O(1) time. This requires a dictionary of bitstrings, Dα,

using additionalO(m) space andO(m logm) preprocessing time. The InsertA and

MemberA operations are trivially implemented in O(1). Putting it all together

we have:

Lemma 8. For a TNFA with m = O(w) states there is a simulation data struc-
ture using O(m) space and O(m logm) preprocessing time which supports all
operations in O(logm) time.

Combining the simulation data structures from Lemmas 6 and 8 with the re-

duction from Lemma 5 and taking the best result gives Theorem 1. Note that

the simple simulation data structure is the fastest when m = O(
√

w) and n is

sufficiently large compared to m.
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Abstract. Matroid theory gives us powerful techniques for understand-
ing combinatorial optimization problems and for designing polynomial-
time algorithms. However, several natural matroid problems, such as
3-matroid intersection, are NP-hard. Here we investigate these problems
from the parameterized complexity point of view: instead of the trivial
O(nk) time brute force algorithm for finding a k-element solution, we try
to give algorithms with uniformly polynomial (i.e., f(k) · nO(1)) running
time. The main result is that if the ground set of a represented matroid
is partitioned into blocks of size �, then we can determine in f(k, �)·nO(1)

randomized time whether there is an independent set that is the union
of k blocks. As consequence, algorithms with similar running time are
obtained for other problems such as finding a k-set in the intersection of
� matroids, or finding k terminals in a network such that each of them
can be connected simultaneously to the source by � disjoint paths.

1 Introduction

Many of the classical combinatorial optimization problems can be studied in the

framework of matroid theory. The polynomial-time solvability of finding mini-

mum weight spanning trees, finding perfect matchings, and certain connectivity

problems all follow from the general algorithmic results on matroids.

Deciding whether there is an independent set of size k in the intersection of

two matroids can be done in polynomial time, but the problem becomes NP-

hard if we have to find a k-element set in the intersection of three matroids.

Of course, the problem can be solved in n
O(k)

time by brute force, hence it is

polynomial-time solvable for every fixed value of k. However, the running time

is prohibitively large, even for small values of k (e.g., k = 10) and moderate

values of n (e.g., n = 1000). The aim of parameterized complexity is to identify

problems that can be solved in uniformly polynomial time for every fixed value

of the problem parameter k, that is, the running time is of the form f(k) ·n
O(1)

.

A problem that can be solved in such time is called fixed-parameter tractable.
Notice the huge qualitative difference between running times such as O(2

k
· n

2
)

and n
k
: the former can be efficient even for, say, k = 15, while the latter has no

chance of working. For more background on parameterized complexity, see [1].

M. Bugliesi et al. (Eds.): ICALP 2006, Part I, LNCS 4051, pp. 655–666, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The question that we investigate in this paper is whether the NP-hard ma-

troid optimization problems can be solved in uniformly polynomial time, if the

parameter is the size of the object that we are looking for. The most general

result is the following:

Theorem 1 (Main). Let M(E, I) be a matroid where the ground set is parti-
tioned into blocks of size �. Given a representation A of M , it can be determined
in f(k, �) · ‖A‖

O(1) randomized time whether there is an independent set that is
the union of k blocks. (‖A‖ denotes the length of A in the input.)

For � = 2, this problem is exactly the matroid parity problem, which is polyno

mial-time solvable for represented matroids [4]. For � ≥ 3, the problem is NP-

hard.

As applications of the main result, we show that the following problems are

also solvable in f(k, �) · n
O(1)

randomized time:

1. Given a family of subsets each of size at most �, find k of them that are

pairwise disjoint.

2. Given a graph G, find k (edge) disjoint triangles in G.

3. Given � matroids over the same ground set, find a set of size k that is

independent in each matroid.

4. Feedback Edge Set with Budget Vectors: given a graph with �-

dimensional cost vectors on the edges, find a feedback edge set of size at most

k such that the total cost does not exceed a given vector C (see Section 5.3

for the precise definition).

5. Reliable Terminals: select k terminals and connect each of them to the

source with � paths such that these k · � paths are pairwise disjoint.

The fixed-parameter tractability of the first two problems is well-known: they can

be solved either with color coding or using representative systems. However, it is

interesting to see that randomized fixed-parameter tractability can be obtained

as a straightforward corollary of our results on matroids. We are not aware of

any parameterized investigations of the last three problems.

The algorithm behind the main result is inspired by the technique of repre-

sentative systems introduced by Monien [6] (see also [8,5] and [1, Section 8.2]).

Iteratively for i = 1, 2, . . . , �, we construct a collection Si that contains indepen-

dent sets arising as the union of i blocks (if there are such independent sets).

The crucial observation is that we can ensure that the size of each Si is at most

a constant depending only on k and �. In [5], this bound is obtained using Bol-

lobás’ Inequality. In our case, the bound can be obtained using a linear-algebraic

generalization of Bollobás’ Inequality due to Lovász [3, Theorem 4.8] (see also

[2, Chapter 31, Lemma 3.2]). However, we need an algorithmic way of bounding

the size of the Si’s, hence we do not state and use these inequalities here, but

rather reproduce the proof of Lovász in an algorithmic form (Lemma 12). The

proof of this lemma is a simple application of multilinear algebra.

The algorithms that we obtain are randomized in the sense that they use ran-

dom numbers and there is a small probability of not finding a solution even if it

exists. The randomized nature of the algorithm comes from the fact that we rely
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on the Zippel-Schwartz Lemma in some of the operations involving matroid rep-

resentations. Additionally, when working with representations over finite fields,

then some of the algebraic operations are most conveniently done randomized.

As the main result is randomized, we do not discuss whether these miscellaneous

algebraic operations can be derandomized.

Section 2 summarizes the most important notions of matroid theory. Section 3

discusses how certain operations can be performed on the representations of

matroids. Most of these constructions are either easy or folklore. The reason

why we discuss them in detail is that we need these results in algorithmic form.

The main result is presented in Section 4. In Section 5, the randomized fixed-

parameter tractability of certain problems are deduced as corollaries.

2 Preliminaries

A matroid M(E, I) is defined by a ground set E and a collection I ⊆ 2
E

of

independent sets satisfying the following three properties:

(I1) ∅ ∈ I

(I2) If X ⊆ Y and Y ∈ I, then X ∈ I.

(I3) If X,Y ∈ I and |X | < |Y |, then ∃e ∈ Y \X such that X ∪ {e} ∈ I.

An inclusionwise maximal set of I is called a basis of the matroid. It can be

shown that the bases of a matroid all have the same size. This size is called the

rank of the matroid M , and is denoted by r(M). The rank r(S) of a subset S is

the size of the largest independent set in S.

The definition of matroids was motivated by two classical examples. Let

G(V,E) be a graph, and let a subset X ⊆ E of edges be independent if X

does not contain any cycles. This results in a matroid, which is called the cycle
matroid of G. The second example comes from linear algebra. Let A be a matrix

over an arbitrary field F . Let E be the set of columns of A, and let X ⊆ E be

independent if these columns are linearly independent. The matroids that can

be defined by such a construction are called linear matroids, and if a matroid

can be defined by a matrix A over a field F , then we say that the matroid is rep-
resentable over F . In this paper we consider only representable matroids, hence

matroids are given by a matrix A over a field F . To avoid complications involving

the representations of the elements in the matrix, we assume that F is either a

finite field or the rationals. We denote by ‖A‖ the size of the representation A:

the total number of bits required to describe all elements of the matrix.

We say that an algorithm is randomized polynomial time if the running time

can be bounded by a polynomial of the input size and the error parameter P ,

and it produces incorrect answer with probability at most 2
−P

. Most of the

randomized algorithms in this paper are based on the following lemma:

Lemma 2 (Zippel-Schwartz [12,10]). Let p(x1, . . . , xn) be a nonzero poly-
nomial of degree d over some field F , and let S be an N element subset of F . If
each xi is independently assigned a value from S with uniform probability, then
p(x1, . . . , xn) = 0 with probability at most d/N .
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3 Representation Issues

The algorithm in Section 4 is based on algebraic manipulations, hence it requires

that the matroid is given by a linear representation in the input. Therefore, in

the proof of the main result and in its applications, we need algorithmic results

on how to find representations for certain matroids, and if some operation is

performed on a matroid, then how to obtain a representation of the result.

3.1 Dimension

The rank of a matroid represented by an m×n matrix is a most m: if the columns

are m-dimensional vectors, then more than m of them cannot be independent.

Conversely, every linear matroid of rank r has a representation with r rows:

Proposition 3. Given a matroid M of rank r with a representation A over F ,
we can find in polynomial time a representation A

′ over F having r rows. ��

3.2 Increasing the Size of the Field

The applications of Lemma 2 requires N to be large, so the probability of ac-

cidentally finding a root is small. However, N can be large only if the field F

contains a sufficient number of elements. Therefore, if a matroid representation

is given over some small field F , then we need a method of transforming this

representation to a representation over a field F
′
having at least N elements.

Let |F | = q and let n = �logq N�. We construct a field F
′

having q
n
≥ N

elements. In order to do this, an irreducible polynomial p(x) of degree n over F

is required. Such a polynomial p(x) can be found for example by the randomized

algorithm of Shoup [11] in time polynomial in n and log q. Now the ring of degree

n polynomials over F modulo p(x) is a field F
′

of size q
n
. If a representation

over F is given, then each element can be replaced by the corresponding degree

0 polynomial from F
′
, which yields a representation over F

′
.

Proposition 4. Let A be the representation of a matroid M over some field F .
For every N , it is possible to construct a representation A

′ of M over some field
F

′ with |F ′
| ≥ N in (‖A‖ · logN)

O(1) randomized time. ��

3.3 Direct Sum

Let M1(E1, I1) and M2(E2, I2) be two matroids with E1 ∩ E2 = ∅. The direct
sum M1 ⊕M2 is a matroid over E := E1 ∪ E2 such that X ⊆ E is independent

if and only if X ∩ E1 ∈ I1 and X ∩ E2 ∈ I2. The notion can be generalized for

the sum of more than two matroids.

Proposition 5. Given representations of matroids M1, . . . , Mk over the same
field F , a representation of their direct sum can be found in polynomial time. ��

3.4 Uniform and Partition Matroids

The uniform matroid Un,k has an n-element ground set E, and a set X ⊆ E

is independent if and only if |X | ≤ k. Every uniform matroid is linear and can
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be represented over the rationals by a k × n matrix where the element in the

i-th column of j-th row is i
(j−1)

. Clearly, no set of size larger than k can be

independent in this representation, and every set of k columns is independent,

as they form a Vandermonde matrix.

A partition matroid is given by a ground set E partitioned into k blocks E1,

. . . , Ek, and by k integers a1, . . . , ak. A set X ⊆ E is independent if and only if

|X ∩Ei| ≤ ai holds for every i = 1, . . . , k. As this partition matroid is the direct

sum of uniform matroids U|E1|,a1 , . . . , U|Ek|,ak
, we have

Proposition 6. A representation over the rationals of a partition matroid can
be constructed in polynomial time. ��

3.5 Dual

The dual of a matroid M(E, I) is a matroid M
∗
(E, I

∗
) over the same ground

set where a set B ⊆ E is a basis of M
∗

if and only if E \B is a basis of M .

Proposition 7. Given a representation A of a matroid M , a representation of
the dual matroid M

∗ can be found in polynomial time.

Proof. Let r be the rank of the matroid M . By Prop. 3, it can be assumed that

A is of the form (Ir×r B), where Ir×r is the unit matrix of size n× n, and B is

a matrix of size r× (n− r). Now the matrix A
∗

= (B
�

I(n−r)×(n−r)) represents

the dual matroid M
∗
, see any text on matroid theory (e.g., [9]). ��

3.6 Truncation

The k-truncation of a matroid M(E, I) is a matroid M
′
(E, I

′
) such that S ⊆ E

is independent in M
′
if and only if |S| ≤ k and S is independent in M .

Proposition 8. Given a matroid M with a representation A over a finite field
F and an integer k, a representation of the k-truncation M

′ can be found in
randomized polynomial time.

Proof. By Prop. 3 and 4, it can be assumed that A is of size r × n and the size

of F is at least N := 2
P
· kn

k
. Let R be a random matrix of size k × r, where

each element is taken from F with uniform distribution. We claim that with high

probability, RA is a representation of the k-truncation. Since RA cannot have

more than k independent columns, all we have to show is that a k-element set is

independent in M
′
if and only if it is independent in M . Let S be a set of size k,

let A0 be the r× k submatrix of A formed by the corresponding k columns, and

let B0 = RA0 be the corresponding k columns in RA. If S is not independent

in M , then the columns of B0 are not independent either. This means that S is

not independent in the matroid M
′
represented by RA. Assume now that S is

independent in M . The columns of A0 are independent, thus detRA0 = 0 with

positive probability (e.g., there is a matrix R such that RA0 is the unit matrix).

We use Lemma 2 to show that this probability is at least 1−2
−P

/n
k
. The value

detRA0 can be considered as a polynomial, with the kr elements of the matrix
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R being the variables. Since detRA0 is not always zero, the polynomial is not

identically zero. As the degree of this polynomial is k, Lemma 2 ensures that

detRA0 = 0 with probability at most k/N = 2
−P

/n
k
. Thus the probability that

a particular k-element independent set of M is not independent in M
′
is at most

2
−P

/n
k
. As M has not more than n

k
independent set of size k, the probability

that M
′
is not the k-truncation of M is at most 2

−P
. ��

3.7 Cycle Matroids

The cycle matroid of G(V,E) can be represented over the 2-element field: con-

sider the |V | × |E| incidence matrix of G, where the i-th element of the j-row is

1 if and only if the i-th vertex is an endpoint of the j-th edge.

Proposition 9. Given a graph, a representation of the cycle matroid over the
two element field can be constructed in polynomial time. ��

3.8 Transversal Matroids

Let G(A,B;E) be a bipartite graph. The transversal matroid M of G has A as

its ground set, and a subset X ⊆ A is independent in M if and only if there is

a matching that covers X . That is, X is independent if and only if there is an

injective mapping φ : X → B such that φ(v) is a neighbor of v for every v ∈ X .

Proposition 10. Given a bipartite graph G(A,B;E), a representation of its
transversal matroid can be constructed in randomized polynomial time.

Proof. Let R be a |B| × |A| matrix, where the i-th element in the j-th row is

– a random integer between 1 and N := 2
P
· |A| · 2

|A|
if the i-th element of A

and the j-th element of B are adjacent, and

– 0 otherwise.

We claim that with high probability, R represents the transversal matroid of

M . Assume that a subset X of columns is independent. These columns have a

|X |×|X | submatrix with nonzero determinant, hence there is at least one nonzero

term in the expansion of this determinant. The nonzero term is a product of |X |

nonzero cells, and these cells define a matching covering X .

Assume now that X ⊆ A is independent in the transversal matroid: it can

be matched with elements Y ⊆ B. This means that the determinant of the

|Y | × |X | submatrix R0 of R corresponding to X and Y has a term that is the

product of nonzero elements. The determinant of R0 can be considered as a

polynomial of degree at most |A|, where the variables are the random elements

of R0. The existence of the matching and the corresponding nonzero term in the

determinant shows that this polynomial is not identically zero. By Lemma 2, the

probability that the determinant of R0 is zero is at most 2
−P

/2
|A|

, implying that

the columns X are independent with high probability. There are at most 2
|A|

independent sets in M , thus the probability that not all of them are independent

in the matroid represented by R is at most 2
−P

. ��
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4 The Main Result

In this section we give a randomized fixed-parameter tractable algorithm for

determining whether there are k blocks whose union is independent, if a matroid

is given with a partition of the ground set into blocks of size �. The idea is to

construct for i = 1, . . . , k the set Si of all independent sets that arise as the union

of i blocks. A solution exists if and only if Sk is not empty. The set Si is easy to

construct if Si−1 is already known. The problem is that the size of Si can be as

large as n
Ω(i)

, hence we cannot handle sets of this size in uniformly polynomial

time. The crucial idea is that we retain only a constant size subset of each Si in

such a way that we do not throw away any sets essential for the solution. The

property that this reduced collection has to satisfy is the following:

Definition 11. Given a matroid M(E, I) and a collection S of subsets of E,
we say that a subsystem S

∗
⊆ S is r-representative for S if the following holds:

for every set Y ⊆ E of size at most r, if there is a set X ∈ S disjoint from Y

with X ∪ Y ∈ I, then there is a set X∗
∈ S

∗ disjoint from Y with X
∗
∪ Y ∈ I.

That is, if an independent set in S can be extended to an independent set by

r new elements, then there is a set in S

∗
that can be extended by the same r

elements. 0-representative means that S
∗

is not empty if S is not empty. We use

the following lemma to obtain a representative subcollection of constant size:

Lemma 12. Let M be a linear matroid of rank r+ s, and let S = {S1, . . . , Sm}

be a collection of independent sets, each of size s. If |S| >
(
r+s
s

)
, then there is

a set S ∈ S such that S \ {S} is r-representative for S. Furthermore, given a
representation A of M , we can find such a set S in f(r, s) · (‖A‖m)

O(1) time.

Proof. Assume that M is represented by an (r+ s)×n matrix A over some field

F . Let E be the ground set of the matroid M , and for each element e ∈ E, let xe

be the corresponding (r+s)-dimensional column vector of A. Let wi =
∧
e∈Si

xe,

a vector in the exterior algebra of the linear space F
r+s

. As every wi is the wedge

product of s vectors, the wi’s span a space of dimension at most
(
r+s
s

)
. Therefore,

if |S| >
(
r+s
s

)
, then the wi’s are not independent. Thus it can be assumed that

some vector wk can be expressed as the linear combination of the other vectors.

We claim that if Sk is removed from S, then the resulting subsystem is r-

representative for S. Assume that, on the contrary, there is a set Y of size at

most r such that Sk ∩ Y = ∅ and Sk ∪ Y is independent, but this does not hold

for any other Si with i = k. Let y = ∧e∈Y xe. A crucial property of the wedge

product is that the product of some vectors in F
r+s

is zero if and only if they are

not independent. Therefore, wk ∧y = 0, but wi∧y = 0 for every i = k. However,

wk is the linear combination of the other wi’s, thus, by the multilinearity of the

wedge product, wk ∧ y = 0 is a linear combination of the values wi ∧ y = 0 for

i = k, which is a contradiction.

It is straightforward to make this proof algorithmic. First we determine the vec-

tors wi, then a vector wk that is spanned by the other vectors can be found by

standard techniques of linear algebra. Let us fix a basis of F
r+s

, and express the
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vectorsxe as the linear combination of the basis vectors. The vectorwi is the wedge

product of s vectors, hence, using the multilinearity of the wedge product, eachwi

can be expressed as the sum of (r+ s)
s

terms. Each term is the wedge product of

basis vectors of F
r+s

; therefore, the antisymmetry property can be used to reduce

each term to 0 or a basis vector of the exterior algebra. Thus we obtain each wi

as a linear combination of basis vectors. Now Gaussian elimination can be used

to determine the rank of the subspace spanned by the wi’s, and to check whether

the rank remains the same if one of the vectors is removed. If so, then the set cor-

responding to this vector can be removed from S, and the resulting subsystem S

∗

is representative for S. The running time of the algorithm can be bounded by a

polynomial of the number of vectors n, the number of terms in the expression of a

wi (i.e., (r+ s)
s
), the dimension of the subspace spanned by the wi’s (i.e.,

(
r+s
s

)
),

and the size of the representation of M . Therefore, the algorithm is polynomial-

time for every fixed value of r and s. ��

Now we are ready to prove the main result:

Proof (of Theorem 1). First we obtain a representation A
′
for the k�-truncation

of the matroid. By Prop 8, this can be done in time polynomial in ‖A‖. Using A
′

instead of A does not change the answer to the problem, as we consider the inde-

pendence of the union of at most k blocks. However, when invoking Lemma 12,

it will be important that the elements are represented as k�-dimensional vectors.

For i = 1, . . . , k, let Si be the set system containing those independent sets

that arise as the union of i blocks. Clearly, the task is to determine whether Sk

is empty or not. For each i, we construct a subsystem S

∗
i ⊆ Si that is (k − i)�-

representative for Si. As S
∗
k is 0-representative for Sk, the emptiness of Sk can

be checked by checking whether S
∗
k is empty.

The set system S1 is easy to construct, hence we can take S
∗
1 = S1. As-

sume now that we have a set system S

∗
i as above. The set system S

∗
i+1 can be

constructed as follows. First, if |S
∗
i | >

(
i�+(k−i)�

i�

)
=
(
k�
i�

)
, then by Lemma 12,

we can throw away an element of S
∗
i in such a way that S

∗
i remains (k − i)�-

representative for Si. Therefore, it can be assumed that |S
∗
i | ≤

(
k�
i�

)
. To obtain

S

∗
i+1, we enumerate every set S in S

∗
i and every block B, and if S and B are

disjoint and S ∪ B is independent, then S ∪ B is put into S
∗
i+1. We claim that

the resulting system is (k − i − 1)�-representative for Si+1 provided that S
∗
i is

(k − i)�-representative for Si. Assume that there is a set X ∈ Si+1 and a set Y

of size (k− i−1)� such that X ∩Y = ∅ and X ∪Y is independent. By definition,

X is the union of i+1 blocks; let B be an arbitrary block of X . Let X0 = X \B

and Y0 = Y ∪B. Now X0 is in Si, and we have X0∩Y0 = ∅ and X0∪Y0 = X∪Y

is independent. Therefore, there is a set X
∗
0 ∈ S

∗
i with X

∗
0 ∩Y0 = ∅ and X

∗
0 ∪Y0

independent. This means that the independent set X
∗

:= X
∗
0 ∪ B is put into

S

∗
i+1, and it satisfies X

∗
∩ Y = ∅ and X

∗
∪ Y independent.

When constructing the set system S

∗
i+1, the amount of work to be done is

polynomial in ‖A
′
‖ for each member S of S

∗
i . As discussed above, the size of

each S
∗
i can be bounded by

(
k�
i�

)
, thus the running time is f(k, �) · ‖A

′
‖

O(1)
. ��
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5 Applications

In this section we derive some consequences of the main result: we list problems

that can be solved using the algorithm of Theorem 1.

5.1 Matroid Intersection

Given matroids M1(E, I1), . . . , M�(E, I�) over a common ground set, their in-
tersection is the set system I1 ∩ · · · ∩ I�. In general, the resulting set system

is not a matroid, even for k = 2. Deciding whether there is a k-element set in

the intersection of two matroids is polynomial-time solvable (cf. [9]), but NP-

hard for more than two matroids. Here we show that the problem is randomized

fixed-parameter tractable for a fixed number of represented matroids:

Theorem 13. Let M1, . . . , M� be matroids over the same set, given by their
representations A1, . . . , A� over F . We can decide in f(k, �) · (

∑�
i=1 ‖Ai‖)

O(1)

randomized time if there is a k-element set that is independent in every Mi.

Proof. Let E = {e1, . . . , en}. We rename the elements of the matroids to make

the ground sets pairwise disjoint: let e
(i)
j be the copy of ej in Mi. By Prop. 5, a

representation of M := M1⊕ · · ·⊕M� can be obtained. Partition the ground set

of M into blocks of size �: for 1 ≤ j ≤ n, block Bj is {e
(1)
j , . . . , e

(�)
j }. If M has an

independent set that is the union of k blocks, then the corresponding k elements

of E is independent in each of M1, . . . , M�. Conversely, if X ⊆ E is independent

in every matroid, then the union of the corresponding blocks is independent in

M . Therefore, the algorithm of Theorem 1 answers the question. ��

5.2 Disjoint Sets

Packing problems form a well-studied class of combinatorial optimization prob-

lems. Here we study the case when the objects to be packed are small:

Theorem 14. Let S = {S1, . . . , Sn} be a collection of subsets of E, each of size
at most �. There is an f(k, �) · n

O(1) time randomized algorithm for deciding
whether it is possible to select k pairwise disjoint subsets from S.

Proof. By adding dummy elements, it can be assumed that each Si is of size

exactly �. Let V = {vi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ �}. We define a partition matroid

over V as follows. For every element e ∈ E, let Ve ⊆ V contain vi,j if and only if

the j-th element of Si is e. Clearly, the Ve’s form a partition of V . Consider the

partition matroid M where a set is independent if and only if it contains at most

1 element from each class of the partition. Let block Bi be {vi,1, . . . , vi,�}. If k

disjoint sets can be selected from S, then the union of the corresponding k blocks

is independent in M as every element is contained in at most one of the selected

sets. The converse is also true: if the union of k blocks is independent, then the

corresponding k sets are disjoint, hence the result follows from Theorem 1. ��

Theorem 14 immediately implies the existence of randomized fixed-parameter

tractable algorithms for two well-know problems: Disjoint Triangles and



664 D. Marx

Edge Disjoint Triangles. In these problems the task is to find, given a graph

G and an integer k, a collection of k triangles that are pairwise (edge) disjoint.

If E is the set of vertices (edges) of G, and the sets in S are the triangles of G,

then it is clear that the algorithm of Theorem 14 solves the problem.

5.3 Feedback Edge Set with Budget Vectors

Given a graph G(V,E), a feedback edge set is a subset X of edges such that

G(V,E \ X) is acyclic. If the edges of the graph are weighted, then finding a

minimum weight feedback edge set is the same as finding a maximum weight

spanning forest, hence it is polynomial time solvable. Here we study a general-

ization of the problem, where each edge has a vector of integer weights:

Feedback Edge Set with Budget Vectors
Input: A graph G(V,E), a vector xe ∈ [0, 1, . . . ,m]

�
for

each e ∈ E, a vector C ∈ Z�+, and an integer k.

Parameter: k, �,m
Question: Find a feedback edge set X of ≤ k edges such that∑

e∈X xe ≤ C.

Theorem 15. Feedback Edge Set with Budget Vectors can be solved
in f(k, �,m) · n

O(1) randomized time.

Proof. It can be assumed that k = |E| − |V |+ c(G) (where c(G) is the number

of components of G): if k is smaller, then there is no solution; if k is larger, then

it can be decreased without changing the problem. Let M0(E, I0) be the dual of

the cycle matroid of G. The rank of M0 is k, and a set X of k edges is a basis

of M if and only if the complement of X is a spanning forest.

Let C = [c1, . . . , c�] and n = |E|. For i = 1, . . . , �, let Mi(Ei, Ii) be the

uniform matroid Unm,ci. By Props. 9, 4, 7, 6, and 5, a representation of the

direct sum M = M0⊕M1⊕· · ·⊕Mk can be constructed in polynomial time. For

each e ∈ E, let Be be a block containing e ∈ E and x
(i)
e arbitrary elements of Ei

for every i = 1, . . . , � (where x
(i)
e ≤ m denotes the i-th component of xe). The

set Ei contains nm elements, which is sufficiently large to make the blocks Bi

disjoint. The size of each block is at most �
′
:= 1 + m�, hence the algorithm of

Theorem 1 can be used to determine in f(k, �
′
) ·n

O(1)
randomized time whether

there is an independent set that is the union of k blocks. It is clear that every

such independent set corresponds to a feedback edge set such that the total

weight of the edges does not exceed C at any component. ��

5.4 Reliable Terminals

In this section we give a randomized fixed-parameter tractable algorithm for a

combinatorial problem motivated by network design applications.
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Reliable Terminals
Input: A directed graph D(V,A), a source vertex s ∈ V , a

set T ⊆ V \ {s} of possible terminals.

Parameter: k, �
Question: Select k terminals t1, . . . , tk ∈ T and k · � internally

vertex disjoint paths Pi,j (1 ≤ i ≤ k, 1 ≤ j ≤ �)

such that path Pi,j goes from s to ti.

The problem models the situation when k terminals have to be selected that

receive k different data streams (hence the paths going to different terminals

should be disjoint due to capacity constraints) and each data stream is protected

from �−1 node failures (hence the � paths of each data stream should be disjoint).

Let D(V,A) be a directed graph, and let S ⊆ A be a subset of vertices. We

say that a subset X ⊆ S is linked to S if there are |X | vertex disjoint paths going

from S to X . (Note that here we require that the paths are disjoint, not only

internally disjoint. Furthermore, zero-length paths are also allowed if X∩S = ∅.)

A result due to Perfect shows that the set of linked vertices form a matroid:

Theorem 16 (Perfect [7]). Let D(V,A) be a directed graph, and let S ⊆ A

be a subset of vertices. The subsets that are linked to S form the independent
sets of a matroid over V . Furthermore, a representation of this matroid can be
obtained in randomized polynomial time.

Proof. Let V = {v1, . . . , vn} and assume that no arc enters S. Let G(U,W ;E)

be a bipartite graph where a vertex ui ∈ U corresponds to each vertex vi ∈ V ,

and a vertex wi ∈ W corresponds to each vertex vi ∈ V \ S. For each vi ∈ V ,

there is an edge wiui ∈ E, and for each
−−→

vivj ∈ A, there is an edge uiwj ∈ E.

The size of a maximum matching in G is at most |W | = n−|S|. Furthermore,

a matching of size n − |S| can be obtained by taking the edges uiwi for every

vi ∈ S. Let V0 ⊆ V be a subset of size |S|, and let U0 be the corresponding subset

of U . We claim that V0 is linked to S if and only G has a matching covering

U \U0. Assume first that there are |S| disjoint paths going from S to V0. Consider

the matching where wi ∈W is matched to uj if one of the paths enters vi from

vj , and wi is matched to ui otherwise. This means that ui is matched if one of

the paths reaches vi and continues further on, or if none of the paths reaches vi.

Thus the unmatched ui’s corresponds to the end points of the paths, as required.

To see the other direction, consider a matching covering U \U0. As |U \U0| =

n−|S|, this is only possible if the matching fully covers W . Let vi1 be a vertex of

S. Let ui2 be the pair of wi1 in the matching, let ui3 be the pair of wi2 , etc. We

can continue this until a vertex uik is found that is not covered in the matching.

Now vi1 , vi2 , . . . , vik is a path going from S to vik ∈ V0. If this procedure

is repeated for every vertex of S, then we obtain |S| paths that are pairwise

disjoint, and each of them ends in a vertex of V0.

If X is linked to S, then X can be extended to a linked set of size exactly |S| by

adding vertices of S to it (as they are connected to S by zero-length paths). The

observation above shows that linked sets of size |S| are exactly the bases of the
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dual of the transversal matroid of G, which means that the linked sets are exactly

the independent sets of this matroid. By Props. 10 and 7, a representation of

this matroid can be constructed in randomized polynomial time. ��

Theorem 17. Reliable Terminals is solvable in f(k, �) · n
O(1) randomized

time.

Proof. Let us replace the vertex s with k·� independent vertices S = {s1, . . . , sk�}

such that each new vertex has the same neighborhood as s. Similarly, each t ∈ T

is replaced with � vertices t
(1)

, . . . , t
(�)

, but now we remove every outgoing edge

from t
(2)

, . . . , t
(�)

. Denote by D
′
the new graph. It is easy to see that a set of

terminals t1, . . . , tk form a solution for the Reliable Terminals problem if and

only if the set {t
(j)
i : 1 ≤ i ≤ k, 1 ≤ j ≤ �} is linked to S. Using Theorem 16, we

can construct a representation of the matroid whose independent sets are exactly

the sets linked to S in D
′
. Delete the columns that do not correspond to vertices

in T , hence the ground set of the matroid has �|T | elements. Partition the ground

set into blocks of size �: for every t ∈ T , there is a block Bt = {t
1
, . . . , t

�
}. Clearly,

the Reliable Terminals problem has a solution if and only if the matroid has

an independent set that is the union of k blocks. Therefore, Theorem 1 can be

used to solve the problem. ��
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Abstract. We consider the problem of finding a Steiner minimum tree
in a hypercube. Specifically, given n terminal vertices in an m dimen-
sional cube and a parameter q, we compute the Steiner minimum tree
in time O(72q + 8qnm2), under the assumption that the length of the
minimum Steiner tree is at most m + q.

This problem has extensive applications in taxonomy and biology. The
Steiner tree problem in hypercubes is equivalent to the phylogeny (evo-
lutionary tree) reconstruction problem under the maximum parsimony
criterion, when each taxon is defined over binary states. The taxa, char-
acter set and mutation of a phylogeny correspond to terminal vertices,
dimensions and traversal of a dimension in a Steiner tree. Phylogenetic
trees that mutate each character exactly once are called perfect phylo-
genies and their size is bounded by the number of characters. When
a perfect phylogeny consistent with the data set exists it can be con-
structed in linear time. However, real data sets often do not admit per-
fect phylogenies. In this paper, we consider the problem of reconstructing
near-perfect phylogenetic trees (referred to as BNPP). A near-perfect
phylogeny relaxes the perfect phylogeny assumption by allowing at most
q additional mutations. We show for the first time that the BNPP prob-
lem is fixed parameter tractable (FPT) and significantly improve the
previous asymptotic bounds.

1 Introduction

One of the core areas of computational biology is phylogenetics, the reconstruc-

tion of evolutionary trees [13,21]. This problem is often phrased in terms of a
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parsimony objective, in which one seeks the simplest possible tree to explain a

set of observed taxa. Parsimony is a particularly appropriate objective for trees

representing short time scales, such as those for inferring evolutionary relation-

ships among individuals within a single species or a few closely related species.

Such phylogeny problems have become especially important since we now have

identified millions of single nucleotide polymorphisms (SNPs) [16,17], sites at

which a single DNA base takes on two common variants. Simply stated, if we

examine any specific SNP site on the human genome, then all the individuals in

the data sets can be classified into two classes. Therefore an individual’s A, C,
G, T string can be represented as a binary string with no loss of information.

Consider a n×m input matrix I, where each row represents an input taxon

and is a string over states Σ. The columns of I are called characters. A phylogeny

is a tree where vertices represent taxa and edges mutations. A phylogeny T for I

is a tree that contains all the taxa in I and its length is the sum of the Hamming

distances of adjacent vertices. Minimizing the length of a phylogeny is the prob-

lem of finding the most parsimonious tree, a well known NP-complete problem,

even when |Σ| = 2 [10]. Researchers have thus focused on either sophisticated

heuristics (e.g. [4,11]) or solving optimally for special cases (e.g. [1,18]).

In this work, we focus on the case when the set of states is binary, |Σ| = 2.

The taxa can therefore be viewed as vertices of an m-cube, and the problem is

equivalent to finding the Steiner minimum tree in an m-cube. In this setting, a

phylogeny for I is called perfect if its length equals m. Gusfield showed that

such phylogenies can be reconstructed in linear time [12]. If there exists no per-

fect phylogeny for input I, then one option is to slightly modify I so that a

perfect phylogeny can be constructed for the resulting input. Upper bounds and

negative results have been established for such problems. For instance, Day and

Sankoff [6], showed that finding the maximum subset of characters containing

a perfect phylogeny is NP-complete while Damaschke [7] showed fixed parame-

ter tractability for the same problem. The problem of reconstructing the most

parsimonious tree without modifying the input I seems significantly harder.

In the general case when |Σ| = s, a phylogeny for I is called perfect if the

length is m(s − 1). In this setting, Bodlaender et al. [3] proved a number of

crucial negative results, among them that finding the perfect phylogeny when

the number of characters is a parameter is W [t]-hard for all t. A problem is

fixed parameter tractable on parameter k if there exists an algorithm that runs

in time O(f(k)poly(|I|)) where |I| is the input size. Since FPT ⊆ W [1], this

shows in particular that the problem is not fixed parameter tractable (unless the

complexity classes collapse).

Fernandez-Baca and Lagergren considered the problem of reconstructing op-

timum near-perfect phylogenies [9]. A phylogeny is q-near-perfect if its length is

m(s−1)+q. They find the optimum phylogeny in time nm
O(q)

2
O(q2s2)

, assuming

a q-near-perfect phylogeny exists. This bound may be impractical for sizes of m

to be expected from SNP data (binary states), even for moderate q. Given the

importance of SNP data, it would therefore be valuable to develop methods able

to handle large m for the special case of s = 2, when all taxa are represented
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by binary strings. This problem is called Binary Near-Perfect Phylogenetic tree

reconstruction (BNPP).

In a prior work, Sridhar et al. [20] solve the BNPP problem in time O(
(
m
q

)
72

q

nm + nm
2
). The main contribution of the prior work is two-fold: they simplify

the previous algorithm [9] which results in the reduction of the exponent in

the run-time to q and demonstrate the first empirical results on near-perfect

phylogenies. For real data sets that were solved, the range of values for n,m

and q were: 15-150, 49-1510 and 1-7 respectively. However, many instances were

unsolvable because of the high running time.

Our Work: Here, we present a new algorithm for the BNPP problem that runs

in time O(72
q
+8

q
nm

2
). This result significantly improves the prior running time.

Fernandez-Baca and Lagergren [9] in concluding remarks state that the most

important open problem in the area is to develop a parameterized algorithm or

prove W [t] hardness for the near-perfect phylogeny problem. We make progress

on this open problem by showing for the first time that BNPP is fixed parameter

tractable (FPT). To achieve this, we use a divide and conquer algorithm. Each

divide step involves performing a ‘guess’ (or enumeration) with cost exponential

in q. Finding the Steiner minimum tree on a q-cube dominates the run-time

when the algorithm bottoms out.

2 Preliminaries

In defining formal models for parsimony-based phylogeny construction, we bor-

row definitions and notations from a couple of previous works [9,21]. The input

to a phylogeny problem is an n × m binary matrix I where rows R(I) repre-

sent input taxa and are binary strings. The column numbers C = {1, · · · ,m}

are referred to as characters. In a phylogenetic tree, or phylogeny, each vertex v

corresponds to a taxon (not necessarily in the input) and has an associated label

l(v) ∈ {0, 1}
m

.

Definition 1. A phylogeny for matrix I is a tree T (V,E) with the following
properties: R(I) ⊆ l(V (T )) and l({v ∈ V (T )|degree(v) ≤ 2}) ⊆ R(I). That is,
every input taxon appears in T and every leaf or degree-2 vertex is an input
taxon.

Definition 2. A vertex v of phylogeny T is terminal if l(v) ∈ R(I) and Steiner

otherwise.

Definition 3. For a phylogeny T , length(T ) =
∑

(u,v)∈E(T ) d(l(u), l(v)), where
d is the Hamming distance.

A phylogeny is called an optimum phylogeny if its length is minimized. We will

assume that both states 0, 1 are present in all characters. Therefore the length

of an optimum phylogeny is at least m. This leads to the following definition.

Definition 4. For a phylogeny T on input I, penalty(T ) = length(T ) − m;

penalty(I) = penalty(T opt), where T
opt is any optimum phylogeny on I.
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Definition 5. A phylogeny T is called q-near-perfect if penalty(T ) = q and
perfect if penalty(T ) = 0.

Note that in an optimum phylogeny, no two vertices share the same label.

Therefore, we can equivalently define an edge of a phylogeny as (t1, t2) where

ti ∈ {0, 1}
m

. Since we will always be dealing with optimum phylogenies, we will

drop the label function l(v) and use v to refer to both a vertex and the taxon it

represents in a phylogeny.

The BNPP problem: Given an integer q and an n×m binary input matrix I,

if penalty(I) ≤ q, then return an optimum phylogeny T , else declare NIL. The

problem is equivalent to finding the minimum Steiner tree on an m-cube if the

optimum tree is at most q larger than the number of dimensions m or declaring

NIL otherwise. An optimum Steiner tree can easily be converted to an optimum

phylogeny by removing degree-two Steiner vertices. The problem is fundamental

and therefore expected to have diverse applications besides phylogenies.

Definition 6. We define the following notations.

– r[i] ∈ {0, 1}: the state in character i of taxon r

– µ(e) : E(T ) → 2
C: the set of all characters corresponding to edge e = (u, v)

with the property for any i ∈ µ(e), u[i] = v[i]

– for a set of taxa M , we use T
∗
M to denote an optimum phylogeny on M

We say that an edge e mutates character i if i ∈ µ(e). We will use the following

well known definition and lemma on phylogenies.

Definition 7. Given matrix I, the set of gametes Gi,j for characters i, j is
defined as: Gi,j = {(r[i], r[j])|r ∈ R(I)}. Two characters i, j share t gametes in
I i.f.f. |Gi,j | = t.

In other words, the set of gametes Gi,j is a projection on the i, j dimensions.

Lemma 1. [12] An optimum phylogeny for input I is not perfect i.f.f. there
exists two characters i, j that share (all) four gametes in I.

Definition 8. (Conflict Graph [15]): A conflict graph G for matrix I with
character set C is defined as follows. Every vertex v of G corresponds to unique
character c(v) ∈ C. An edge (u, v) is added to G i.f.f. c(u), c(v) share all four
gametes in I. Such a pair of characters are defined to be in conflict. Notice that
if G contains no edges, then a perfect phylogeny can be constructed for I.

Simplifications: We assume that the all zeros taxon is present in the input.

If not, using our freedom of labeling, we convert the data into an equivalent

input containing the all zeros taxon (see section 2.2 of Eskin et al [8] for details).

We now remove any character that contains only one state. Such characters do

not mutate in the whole phylogeny and are therefore useless in any phylogeny

reconstruction. The BNPP problem asks for the reconstruction of an unrooted

tree. For the sake of analysis, we will however assume that all the phylogenies

are rooted at the all zeros taxon.
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3 Algorithm

This section deals with the complete description and analysis of our algorithm

for the BNPP problem. For ease of exposition, we first describe a randomized

algorithm for the BNPP problem that runs in time O(18
q
+ qnm

2
) and returns

an optimum phylogeny with probability at least 8
−q

. We later show how to

derandomize it. In sub-section 3.1, we first provide the complete pseudo-code

and describe it. In sub-section 3.2 we prove the correctness of the algorithm.

Finally, in sub-section 3.3 we upper bound the running time for the randomized

and derandomized algorithms and the probability that the randomized algorithm

returns an optimum phylogeny.

3.1 Description

We begin with a high level description of our randomized algorithm. The algo-

rithm iteratively finds a set of edges E that decomposes an optimum phylogeny

T
∗
I into at most q components. An optimum phylogeny for each component is

then constructed using a simple method and returned along with edges E as an

optimum phylogeny for I.

We can alternatively think of the algorithm as a recursive, divide and con-

quer procedure. Each recursive call to the algorithm attempts to reconstruct an

optimum phylogeny for an input matrix M . The algorithm identifies a character

c s.t. there exists an optimum phylogeny T
∗
M in which c mutates exactly once.

Therefore, there is exactly one edge e ∈ T
∗
M for which c ∈ µ(e). The algorithm,

then guesses the vertices that are adjacent to e as r, p. The matrix M can now be

partitioned into matrices M0 and M1 based on the state at character c. Clearly

all the taxa in M1 reside on one side of e and all the taxa in M0 reside on

the other side. The algorithm adds r to M1, p to M0 and recursively computes

the optimum phylogeny for M0 and M1. An optimum phylogeny for M can be

reconstructed as the union of any optimum phylogeny for M0 and M1 along

with the edge (r, p). We require at most q recursive calls. When the recursion

bottoms out, we use a simple method to solve for the optimum phylogeny.

We describe and analyze the iterative method which flattens the above re-

cursion. This makes the analysis easier. For the sake of simplicity we define the

following notations.

– For the set of taxa M , M(i, s) refers to the subset of taxa that contains state

s at character i.

– For a phylogeny T and character i that mutates exactly once in T , T (i, s)

refers to the maximal subtree of T that contains state s on character i.

The pseudo-code for the above described algorithm is provided in Figure 1.

The algorithm performs ‘guesses’ at Steps 2a and 2c. If all the guesses performed

by the algorithm are ‘correct’ then it returns an optimum phylogeny. Guess at

Step 2a is correct i.f.f. there exists T
∗
Mj

where c(v) mutates exactly once. Guess at

Step 2c is correct i.f.f. there exists T
∗
Mj

where c(v) mutates exactly once and edge
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buildNPP(input matrix I)

1. let L := {I}, E := ∅
2. while | ∪Mi∈L N(Mi)| > q

(a) guess vertex v from ∪Mi∈LN(Mi), let v ∈ N(Mj)
(b) let M0 := Mj(c(v), 0) and M1 := Mj(c(v), 1)
(c) guess taxa r and p
(d) add r to M1, p to M0 and (r, p) to E
(e) remove Mj from L, add M0 and M1 to L

3. for each Mi ∈ L compute an optimum phylogeny Ti

4. return E ∪ (∪iTi)

Fig. 1. Pseudo-code to solve the BNPP problem. For all Mi ∈ L, N(Mi) is the set of

non-isolated vertices in the conflict graph of Mi. Guess at Step 2a is correct i.f.f. there

exists T ∗
Mj

where c(v) mutates exactly once. Guess at Step 2c is correct i.f.f. there exists

T ∗
Mj

where c(v) mutates exactly once and edge (r, p) ∈ T ∗
Mj

with r[c(v)] = 1, p[c(v)] = 0.

Implementation details for Steps 2a, 2c and 3 are provided in Section 3.3.

(r, p) ∈ T
∗
Mj

with r[c(v)] = 1, p[c(v)] = 0. Implementation details for Steps 2a,

2c and 3 are provided in Section 3.3. An example illustrating the reconstruction

is provided in Figure 2.

3.2 Correctness

We will now prove the correctness of the pseudo-code under the assumption that

all the guesses performed by our algorithm are correct. Specifically, we will show

that if penalty(I) ≤ q then function buildNPP returns an optimum phylogeny.

The following lemma proves the correctness of our algorithm.

Lemma 2. At any point in execution of the algorithm, an optimum phylogeny
for I can be constructed as E ∪ (∪iTi), where Ti is any optimum phylogeny for
Mi ∈ L.

Proof. We prove the lemma using induction. The lemma is clearly true at the

beginning of the routine when L = {I}, E = ∅. As inductive hypothesis, assume

that the above property is true right before an execution of Step 2e. Consider

any optimum phylogeny T
∗
Mj

where c(v) mutates exactly once and on the edge

(r, p). Phylogeny T
∗
Mj

can be decomposed into T
∗
Mj

(c(v), 0)∪T
∗
Mj

(c(v), 1)∪ (r, p)

with length l = length(T ∗
Mj

(c(v), 0)) + length(T ∗
Mj

(c(v), 1)) + d(r, p). Again,

since c(v) mutates exactly once in T
∗
Mj

, all the taxa in M0 and M1 are also

in T
∗
Mj

(c(v), 0) and T
∗
Mj

(c(v), 1) respectively. Let T
′
, T

′′
be arbitrary optimum

phylogenies forM0 andM1 respectively. Since p ∈M0 and r ∈M1 we know that

T
′
∪T

′′
∪(r, p) is a phylogeny forMj with cost length(T ′

)+length(T ′′
)+d(r, p) ≤

l. By the inductive hypothesis we know that an optimum phylogeny for I can be

constructed using any optimum phylogeny forMj . We have now shown that using

any optimum phylogeny for M0 and M1 and adding edge (r, p) we can construct

an optimum phylogeny for Mj . Therefore the proof follows by induction. ��
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Fig. 2. Example illustrating the reconstruction. Underlying phylogeny is T ∗
I ; taxa r and

p (both could be Steiner) are guessed to create E = {(10000, 10100), (01000, 01010)};
E induces three components in T ∗

I . When all taxa in T ∗
I are considered, character 3

conflicts with 1, 2 and 5 and character 4 conflicts with 1 and 2; two components are

perfect (penalty 0) and one has penalty 2; penalty(I) =def penalty(T ∗
I ) = 7.

3.3 Bounds

In this sub-section we bound the probability of correct guesses, analyze the

running time and show how to derandomize the algorithm. We perform two

guesses at Steps 2a and 2c. Lemmas 3 and 5 bound the probability that all the

guesses performed at these Steps are correct throughout the execution of the

algorithm.

Lemma 3. The probability that all guesses performed at Step 2a are correct is
at least 4

−q.

Proof. Implementation: The guess at Step 2a is implemented by selecting v uni-

formly at random from ∪iN(Mi).

To prove the lemma, we first show that the number of iterations of the while
loop (step 2) is at most q. Consider any one iteration of the while loop. Since v

is a non-isolated vertex of the conflict graph, c(v) shares all four gametes with

some other character c
′

in some Mj. Therefore, in every optimum phylogeny

T
∗
Mj

that mutates c(v) exactly once, there exists a path P starting with edge

e1 and ending with e3 both mutating c
′
, and containing edge e2 mutating c(v).

Furthermore, the path P contains no other mutations of c(v) or c
′
. At the end

of the current iteration, Mj is replaced with M0 and M1. Both subtrees of T
∗
Mj

containing M0 and M1 contain (at least) one mutation of c
′

each. Therefore,

penalty(M0)+penalty(M1) < penalty(Mj). Since penalty(I) ≤ q, there can

be at most q iterations of the while loop.

We now bound the probability. Intuitively, if |∪iN(Mi)| is very large, then the

probability of a correct guess is large, since at most q out of |∪iN(Mi)| characters

can mutate multiple times in T
∗
Mj

. On the other hand if | ∪iN(Mi)| = q then we
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terminate the loop. Formally, at each iteration | ∪i N(Mi)| reduces by at least

1 (guessed vertex v is no longer in ∪iN(Mi)). Therefore, in the worst case (to

minimize the probability of correct guesses), we can have q iterations of the loop,

with q+ 1 non-isolated vertices in the last iteration and 2q in the first iteration.

The probability in such a case that all guesses are correct is at least

(
q

2q
)×(

q − 1

2q − 1
)× . . .×(

1

q + 1
) =

1(2q
q

) ≥ 2
−2q

. ��

Buneman Graphs. We now show that r, p can be found efficiently. To prove

this we need some tools from the theory of Buneman graphs [21].

Let M be a set of taxa defined by character set C of size m. A Buneman

graph F for M is a vertex induced subgraph of the m-cube. Graph F contains

vertices v i.f.f. for every pair of characters i, j ∈ C, (v[i], v[j]) ∈ Gi,j . Recall that

Gi,j is the set of gametes (or projection of M on dimensions i, j). Each edge of

the Buneman graph is labeled with the character at which the adjacent vertices

differ.

Buneman graphs have been defined in previous works on matrices M in which

no two characters share exactly two gametes. The definition can be extended

to allow such characters while preserving the following lemmas (see expanded

version for details). We say that a subgraph F
′
of F is the same as an edge labeled

tree T if F
′
is a tree and T can be obtained from F

′
by suppressing degree-two

vertices. A phylogeny T is contained in a graph F if there exists an edge-labeled

subgraph F
′
that is the same as the edge labeled (by function µ) phylogeny T . A

Buneman graph F for input M has the property that every optimum phylogeny

for M is contained in F [21]. From the definition of the Buneman graph F , we

know that there exists no vertex v ∈ F for which (v[i], v[j]) /∈ Gi,j . Therefore,

using the above property, we have:

Lemma 4. In every optimum phylogeny T
∗
M , the conflict graph on the set of

taxa in T
∗
M (Steiner vertices included) is the same as the conflict graph on M .

Lemma 5. The probability that all guesses performed at Step 2c are correct is
at least 2

−q.

Proof. Implementation: We first show how to perform the guess efficiently. For

every character i, we perform the following steps in order.

1. if all taxa in M0 contain the same state s in i, then fix r[i] = s

2. if all taxa in M1 contain the same state s in i, then fix r[i] = s

3. if r[i] is unfixed then guess r[i] uniformly at random from {0, 1}

Assuming that the guess at Step 2a (Figure 1) is correct, we know that there

exists an optimum phylogeny T
∗
Mj

on Mj where c(v) mutates exactly once. Let

e ∈ T
∗
Mj

s.t. c(v) ∈ µ(e). Let r
′

be an end point of e s.t. r
′
[c(v)] = 1 and p

′

be the other end point. If the first two conditions hold with the same state s,
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then character i does not mutate in Mj . In such a case we know that r
′
[i] = s,

since T
∗
Mj

is optimal and the above method ensures that r[i] = s. Notice that

if both conditions are satisfied simultaneously with different values of s then i

and c(v) share exactly two gametes in Mj and therefore i, c(v) ∈ µ(e). Hence,

r
′
[i] = r[i]. We now consider the remaining cases when exactly one of the above

conditions hold. We show that if r[i] is fixed to s then r
′
[i] = s. Note that in

such a case at least one of M0,M1 contain both the states on i and i, c(v) share

at least 3 gametes in Mj. The proof can be split into two symmetric cases based

on whether r is fixed on condition 1 or 2. One case is presented below:

Taxon r[i] is fixed based on condition 1: In this case, all the taxa in

M0 contain the same state s on i. Therefore, the taxa in M1 should contain

both states on i. Hence i mutates in T
∗
Mj

(c(v), 1). For the sake of contradiction,

assume that r
′
[i] = s. If i /∈ µ(e) then p

′
[i] = s. However all the taxa in M0

contain state s. This implies that i mutates in T
∗
Mj

(c(v), 0) as well. Therefore

i and c(v) share all four gametes on T
∗
Mj

. However i and c(v) share at most 3

gametes in Mj - one in M0 and at most two in M1. This leads to a contradic-

tion to Lemma 4. Once r is guessed correctly, p can be computed since it is is

identical to r in all characters except c(v) and those that share two gametes with

c(v) in Mj . We make a note here that we are assuming that e does not mutate

any character that does not share two gametes with c(v) in Mj . This creates

a small problem that although the length of the tree constructed is optimal, r

and p could be degree-two Steiner vertices. If after constructing the optimum

phylogenies for M0 and M1, we realize that this is the case, then we simply

add the mutation adjacent to r and p to the edge (r, p) and return the resulting

phylogeny where both r and p are not degree-two Steiner vertices.

The above implementation therefore requires only guessing states correspond-

ing to the remaining unfixed characters of r. If a character i violates the first

two conditions, then i mutates once in T
∗
Mj

(i, 0) and once in T
∗
Mj

(i, 1). If r[i] has

not been fixed, then we can associate a pair of mutations of the same character

i with it. At the end of the current iteration Mj is replaced with M0 and M1

and each contains exactly one of the two associated mutations. Therefore if q
′

characters are unfixed then penalty(M0) + penalty(M1) ≤ penalty(Mj)− q
′
.

Since penalty(I) ≤ q, throughout the execution of the algorithm there are q un-

fixed states. Therefore the probability of all the guesses being correct is 2
−q

. ��

This completes our analysis for upper bounding the probability that the algo-

rithm returns an optimum phylogeny. We now analyze the running time. We use

the following lemma to show that we can efficiently construct optimum phylo-

genies at Step 3 in the pseudo-code.

Lemma 6. For a set of taxa M , if the number of non-isolated vertices of the
associated conflict graph is t, then an optimum phylogeny T ∗

M can be constructed
in time O(3

s
6
t
+ nm

2
), where s = penalty(M).
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Proof. We use the approach described by Gusfield and Bansal (see Section 7

of [14]) that relies on the Decomposition Optimality Theorem for recurrent muta-

tions. We first construct the conflict graph and identify the non-trivial connected

components of it in time O(nm
2
). Let κi be the set of characters associated with

component i. We compute the Steiner minimum tree Ti for character set κi. The

remaining conflict-free characters in C \ ∪iκi can be added by contracting each

Ti to vertices and solving the perfect phylogeny problem using Gusfield’s linear

time algorithm [12].

Since penalty(M) = s, there are at most s+ t+ 1 distinct bit strings defined

over character set ∪iκi. The Steiner space is bounded by 2
t
, since | ∪i κi| = t.

Using the Dreyfus-Wagner recursion [19] the total run-time for solving all Steiner

tree instances is O(3
s+t

2
t
). ��

Lemma 7. The algorithm described solves the BNPP problem in time O(18
q
+

qnm
2
) with probability at least 8

−q.

Proof. For a set of taxa Mi ∈ L (Step 3, Figure 1), using Lemma 6 an optimum

phylogeny can be constructed in time O(3
si6

ti +nm
2
) where si = penalty(Mi)

and ti is the number of non-isolated vertices in the conflict graph of Mi. We

know that
∑

i si ≤ q (since penalty(I) ≤ q) and
∑

i ti ≤ q (stopping condition

of the while loop). Therefore, the total time to reconstruct optimum phylogenies

for all Mi ∈ L is bounded by O(18
q

+ qnm
2
). The running time for the while

loop is bounded by O(qnm
2
). Therefore the total running time of the algorithm

is O(18
q

+ qnm
2
). Combining Lemmas 3 and 5, the total probability that all

guesses performed by the algorithm is correct is at least 8
−q

. ��

Lemma 8. The algorithm described above can be derandomized to run in time
O(72

q
+ 8

q
nm

2
).

Proof. It is easy to see that Step 2c can be derandomized by exploring all possible

states for the unfixed characters. Since there are at most q unfixed characters

throughout the execution, there are 2
q

possibilities for the states.

However, Step 2a cannot be derandomized naively. We use the technique of

bounded search tree [5] to derandomize it efficiently. We select an arbitrary

vertex v from ∪iN(Mi). We explore both the possibilities on whether v mutates

once or multiple times. We can associate a search (binary) tree with the execution

of the algorithm, where each node of the tree represents a selection v from

∪iN(Mi). One child edge represents the execution of the algorithm assuming v

mutates once and the other assuming v mutates multiple times. In the execution

where v mutates multiple times, we select a different vertex from ∪iN(Mi) and

again explore both paths. The height of this search tree can be bounded by 2q

because at most q characters can mutate multiple times. The path of height

2q in the search tree is an interleaving of q characters that mutate once and q

characters that mutate multiple times. Therefore, the size of the search tree is

bounded by 4
q
.

Combining the two results, the algorithm can be derandomized by solving at

most 8
q

different instances of Step 3 while traversing the while loop 8
q

times
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for a total running time of O(144
q
+8

q
nm

2
). This is, however, an over-estimate.

Consider any iteration of the while loop when Mj is replaced with M0 and M1. If

a state in character c is unfixed and therefore guessed, we know that there are two

associated mutations of character c in both M0 and M1. Therefore at iteration i,

if q
′
i states are unfixed, then penalty(M0)+penalty(M1) ≤ penalty(Mj)− q

′
i.

At the end of the iteration we can reduce the value of q used in Step 2 by q
′
i,

since the penalty has reduced by q
′
i. Intuitively this implies that if we perform

a total of q
′
guesses (or enumerations) at Step 2c, then at Step 3 we only need

to solve Steiner trees on q− q
′
characters. The additional cost 2

q′
that we incur

results in reducing the running time of Step 3 to O(18
q−q′

+ qnm
2
). Therefore

the total running time is O(72
q
+ 8

q
nm

2
). ��

4 Discussion and Conclusions

Discussion: If all Steiner tree problem instances on the q-cube are solved in

a pre-processing step, then our running time just depends on the number of

iterations of the while loop, which is O(8
q
nm

2
). Such pre-processing would be

impossible to perform with previous methods. Alternate algorithms for solving

Steiner trees may be faster in practice as well.

In Lemma 8, we showed that the guesses performed at Step 2c do not affect

the overall running time. We can also establish a trade-off along similar lines

for Step 2a that can reduce the theoretical run-time bounds. Details of such

trade-offs will be analyzed in the expanded version.

Conclusions: We have presented an algorithm to solve the BNPP problem

that is theoretically superior to existing methods. In an empirical evaluation [20],

the prior algorithm reconstructed optimum phylogenies for values of q up to 7.

Our algorithm should solve for larger values of q since it is clearly expected to

out-perform prior methods and its own worst case guarantees. The algorithm is

intuitive and simple and hence is one of the few theoretically sound phylogenetic

tree reconstruction algorithms that is also expected to be practical.
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Abstract. An L-length-bounded cut in a graph G with source s, and
sink t is a cut that destroys all s-t-paths of length at most L. An L-
length-bounded flow is a flow in which only flow paths of length at most
L are used. We show that the minimum length-bounded cut problem
in graphs with unit edge lengths is NP-hard to approximate within a
factor of at least 1.1377 for L ≥ 5 in the case of node-cuts and for L ≥ 4
in the case of edge-cuts. We also give approximation algorithms of ratio
min{L, n/L} in the node case and min{L, n2/L2,

√
m} in the edge case,

where n denotes the number of nodes and m denotes the number of edges.
We discuss the integrality gaps of the LP relaxations of length-bounded
flow and cut problems, analyze the structure of optimal solutions, and
present further complexity results for special cases.

1 Introduction

In a classical article Menger [1], shows a strong relation between cuts and systems

of disjoint paths: let G be a graph and s, t two nodes of G, then the maximum

number of edge-/node-disjoint s-t-paths equals the minimum size of an s-t-edge-

/node-cut (Menger’s Theorem); see also Dantzig and Fulkerson [2] and Kotzig [3].

Ford and Fulkerson [4] and Elias, Feinstein, and Shannon [5] generalized the

theorem of Menger to flows in graphs with capacities on the arcs and provided

algorithms to find an s-t-flow and an s-t-cut of the same value.

Lovász, Neumann Lara, and Plummer [6] consider the maximum length-

bounded node-disjoint s-t-paths problem. For length-bounds 2, 3, and 4 a re-

lation holds that is analogous to Menger’s theorem, but with a new suitable cut

definition. For length-bounds greater than 4, they give upper and lower bounds

for the gap between the maximum number of length-bounded node-disjoint paths

and the minimum cardinality of a cut. Furthermore, they provide examples show-

ing that some of the bounds are tight. The results were extended independently

to edge-disjoint paths by Exoo [7] and Niepel and Safaŕıková [8].
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According to Bondy and Murty [9], Lovász conjectured that there is a con-

stant C such that the size of a minimum L-length-bounded s-t-node-cut, i. e., a

minimum node-set disjoint to {s, t} which hits each L-length-bounded s-t-path,

is at most a factor of C ·

√

L larger than the cardinality of a maximum system

of node-disjoint s-t-paths of length at most L. Exoo and Boyles [10] disprove

this conjecture. They construct for each length-bound L > 0 a graph and a node

pair s, t, such that the minimum L-length-bounded s-t-node-cut has size greater

than C · L times the maximum number of node-disjoint s-t-paths of length at

most L; the constant C is roughly 1/4.

Itai, Perl, and Shiloach [11] give efficient algorithms to find the maximum

number of node-/edge-disjoint s-t-paths with at most 2 or 3 edges; the node-

disjoint case is also solved for length-bound 4. On the complexity side they

show that the node- and edge-disjoint length-bounded s-t-paths problem is NP-

complete for length-bounds greater than 4. Instead of fixing the path length, one

can fix the number of paths and look for the minimal value bounding all path

lengths. Again both the node- and edge-disjoint version is NP-complete for two

paths already.

Guruswami et al. [12] show that the edge-disjoint length-bounded s-t-paths

problem is MAX SNP-hard even in undirected networks, and they give an

O(
√

m)-approximation algorithm for it. For directed networks, they can show

that the problem is hard to approximate within a factor n
1
2−ε, for any ε > 0.

For fractional length-bounded multi-commodity flows in graphs with edge-

capacities and edge lengths Baier [13] gives a fully polynomial time approxima-

tion scheme (FPTAS). This FPTAS also yields a polynomial time algorithm for

fractional length-bounded multi-commodity flows and fractional length-bounded

edge-(multi-)cuts in unit-length graphs.

Mahjoub and McCormick [14] present a polynomial algorithm for the 3-length-

bounded edge-cut in undirected graphs. Furthermore, they show that the frac-

tional versions of the length-bounded flow- and cut problem are polynomial even

if L is part of the input, but that the integral versions are strongly NP-hard

even if L is fixed.

Length-bounded path problems arise naturally in a variety of real world op-

timization problems and therefore many heuristics for finding large systems of

length-bounded paths have been developed, see e.g. [15,16,17,18].

Our Contribution. We present various results concerning the complexity and

approximability of length-bounded cut and flow problems. After the preliminar-

ies, in Section 3, we show that the minimum length-bounded cut problem in

graphs with unit edge-lengths is NP-hard to approximate within a factor of at

least 1.1377 for L ≥ 5 in the case of node-cuts and for L ≥ 4 in the case of

edge-cuts; see Table 1 for an overview of known and new complexity results. We

also give approximation algorithms of ratio min{L, n/L} in the node case and

min{L, n
2
/L

2
,
√

m} in the edge case. For classes of graphs such as constant de-

gree expanders, hypercubes, and butterflies, we state an O(log n)-approximation

algorithm pointed out by [19]. Furthermore, we give instances for which the in-

tegrality gap of the LP relaxation is Ω(
√

n). Section 4 discusses the maximum
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Table 1. Known and new (bold type) complexity results; ε ∈ R+ and c ∈ N are

constants, ε can be arbitrarily small

L node-cut edge-cut

1 — poly.
2 poly. poly.
3 poly. poly. [14] (undirected)
4 poly. [6] (undirected) inapprox. within 1.1377

(directed & undirected)
5 . . . �n1−ε� inapprox. within 1.1377 inapprox. within 1.1377

(directed & undirected) (directed & undirected)
n − c poly. (directed & undirected)

length-bounded flow problem. For series-parallel graphs with unit edge lengths

and unit edge-capacities, we proof a lower bound of Ω(
√

n) on the integrality

gap of the LP formulation. Furthermore, we show that edge- and path-flows are

not polynomially equivalent for length-bounded flows: there is no polynomial

algorithm to transform an edge-flow which is known to correspond to a length-

bounded path-flow into a length-bounded path-flow. We analyze the structure

of optimal solutions and give instances where each maximum flow ships a large

percentage of the flow along paths with an arbitrarily small flow value.

2 Preliminaries

We consider (directed or undirected) graphsG = (V,E) with node set V = V (G)

and edge set E = E(G). The number of nodes are denoted by n and the number

of edges are denoted by m. A graph may contain multi-edges, i.e. parallel edges,

in which case the graph will be called a multi-graph. Sometimes, we call an

edge simple to distinguish it clearly from multi-edges. The graph G possesses

two independent weights, an edge-capacity function u : E → Q>0 and an edge-

length function d : E → Q≥0. If not stated otherwise, we assume unit-lengths

and capacities.

Length-Bounded Cuts. Let s, t ∈ V be two distinct nodes. We call a subset of

edges Ce of G an s-t-edge-cut, if no path remains from s to t in G \ Ce. The

value (or capacity) of Ce is the number of edges in Ce (or the total capacity of

edges in Ce, if edge-capacities are not unit). Similarly, a node set Cn of G which

separates s and t (and contains neither s nor t) is defined as an s-t-node-cut; its

value is the number of nodes in Cn.

Let Ps,t(L) denote the set of all s-t-paths with length at most L. We call a

subset of edges C
L
e of G an L-length-bounded s-t-edge-cut, if the nodes s and t

have a distance greater than L in G \ C
L
e . This means that C

L
e must hit every

path in Ps,t(L). Similarly, a subset C
L
n of the node set of G is called L-length-

bounded s-t-node-cut if it destroys all paths in Ps,t(L). All of our cuts are s-t-cuts

and therefore we will often omit the s-t-prefix. If the type of a cut is clear from
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the context, we will also omit the superscript L of C as well as the indices e

and n of C. The value (or capacity) of a length-bounded cut is defined as in the

standard cut case. In the Minimum Length-Bounded Cut problem we are looking

for a length-bounded cut of minimum value.

In the linear programming relaxation of the minimum length-bounded edge-

cut problem one has to assign to each edge e ∈ E a dual length �e such that the

dual length of a shortest s-t-path from Ps,t(L) is at least 1 (the LP relaxation

for node-cuts is analogous):

min

∑
e∈E

ue�e s.t.

∑
e∈P

�e ≥ 1 (P ∈ Ps,t(L)), �e ≥ 0 (e ∈ E) . (1)

An integral solution to this linear program corresponds to a length-bounded s-

t-cut, and vice versa. In particular, the minimum length-bounded s-t-cut value

and the value of a minimum integral solution are equal. We will refer to feasible

solutions of (1) as fractional cuts since only a fraction of an edge may contribute

to the cut.

Length-Bounded Flows. Length-bounded flows are flows along paths such that

the length of every path is bounded. More precisely, an L-length-bounded s-t-flow
is a function f : Ps,t(L) → R≥0 assigning a flow value fP to each s-t-path P in G

of length at most L. The sum
∑

P∈Ps,t(L) fP is called the s-t-flow value of f .

The flow f is feasible, if edge-capacities are obeyed, i. e., for each edge e ∈ E

the sum of the flow values of paths containing this edge must be bounded by its

capacity ue. Since all our flows are s-t-flows, we will often omit the s-t-prefix.

A natural optimization objective is to find a feasible length-bounded s-t-flow

of maximum value. We can formulate this problem as a linear program:

max

∑
P∈Ps,t(L)

fP s.t.

∑
P :e∈P

fP ≤ ue (e ∈ E), fP ≥ 0 (P ∈ Ps,t(L)) . (2)

We will refer to feasible solutions of this linear program as path-flows. Note that

the dual of (2) is the linear program (1) for the minimum length-bounded cut

problem. One way to prove the maximum-flow minimum-cut equality for stan-

dard flows is to apply duality theory of linear programming. In the case of multi-

ple commodities, a source- and sink-node pair (si, ti) and a length-bound Li ≥ 0

is given for each commodity i = 1, . . . , k. An (L1, . . . , Lk)-length-bounded multi-
commodity flow f is a set of Li-length-bounded si-ti-flows fi, for i = 1, . . . , k.

3 Length-Bounded Cuts

It follows from linear programming duality that the maximum fractional length-

bounded flow value equals the minimum fractional length-bounded cut value.

In the case of standard flows, this equality holds for (integral) cuts as well. In

the presence of a length-bound, the maximum flow value and the minimum cut

value may be different. This is an immediate consequence of the integrality gap

that we state in the following theorem.
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ts

k + 1

2k + 1

Fig. 1. Example of a large integrality gap of the linear program (1) of the minimum

length-bounded cut. The straight s-t-path (in gray) contains 2k+1 edges. Each of these

edges is accompanied by k + 1 parallel paths of length 2.

Theorem 1. For (un-)directed series-parallel graphs the ratio of the minimum
integral length-bounded edge-/node-cut value to the minimum fractional one can
be of order Ω(

√

n). In particular, the ratio of the minimum length-bounded edge-
/node-cut size to the maximum number of length-bounded edge-disjoint paths can
be of order Ω(

√

n).

Proof (sketch). The class of graphs depicted in Fig. 1 for L = 3k + 1 have

a fractional length-bounded edge-cut value less than 2 but an integral length-

bounded edge-cut value k + 1 ∈ θ(
√

n). The result for node-cuts follows by

considering the corresponding line graph. ��

3.1 Complexity and Polynomially Solvable Cases

We present a simple polynomial time algorithm for length-bounded node-cuts

with L = n− c, where c ∈ N is an arbitrary constant.

Theorem 2. If c ∈ N is constant and L = n−c, then a minimum length-bounded
node-cut can be computed in polynomial time in (un-)directed graphs.

Proof. Enumerate all V
′
⊆ V with |V

′
| ≤ c and return the smallest V

′
which

is a length-bounded node-cut, if there is any. Otherwise, any length-bounded

node-cut V
′
contains at least c+ 1 nodes so that the longest remaining s-t-path

has length at most n− c− 1 and therefore V
′
actually cuts all s-t-paths. Thus,

returning a standard minimum node-cut suffices. ��

Note that Theorem 2 does not carry over to the edge version of the problem,

since by removing c edges one cannot guarantee that a standard cut suffices.

Theorem 3. For any ε > 0 and L ∈ {5, . . . , �n
1−ε

�}, it is NP-hard to ap-
proximate the minimum length-bounded node-cut in (un-)directed graphs within
a factor of 1.1377.

Proof. We first look at the case L = 5 and give a reduction from the well known

Vertex Cover problem which has been shown to be NP-hard to approxi-

mate within a factor ≈ 1.3606 [20]. Given a Vertex Cover instance Gvc with
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rvlv mv

mu ru

ts s t

node gadget for v node gadget for v

node gadget for u

u

v

lu

node gadget for u

G for node-cut: Gvc : G for edge-cut:

Fig. 2. Gadgets for the reduction of Vertex Cover to length-bounded node-cut (left)

and length-bounded edge-cut (right), respectively. Both correspond to two connected

nodes u, v of the given Vertex Cover instance, shown in the middle. The highlighted

nodes (edges) are in the cut / vertex cover.

nvc = |Vvc| nodes, we construct a length-bounded node-cut instance G = (V,E)

as follows: start with V = {s, t} and no edges. For each node v ∈ Vvc we add a

node gadget to G consisting of seven nodes which are interconnected with s, t and

themselves as shown in Fig. 2 (left) – the nodes in the bottom half surrounded

by a gray box. For each edge {u, v} ∈ Evc we add an edge gadget consisting of

four nodes and six edges connecting them to the node gadgets corresponding to

u and v as shown in Fig. 2 (left).

Lemma 1. From a vertex cover V ′
vc in Gvc of size x one can always construct

a node-cut V ′ in G of size nvc + x and vice versa, for x < nvc.

We only deal with the easy direction “⇒” in Lemma 1 and omit all further details

due to space limitations. Let V
′
vc ⊆ Vvc be a vertex cover with |V

′
vc| = x. For each

node v ∈ V
′
vc we add lv and rv to our cut V

′
⊆ V and for each node u ∈ Vvc \V

′
vc

we add mu to V
′
(see Fig. 2 for an example). Note that |V

′
| = nvc + x and that

no path of length at most 5 remains after removing V
′
from G.

The proof of Theorem 1.1 in [20] gives the following gap. There are graphs Gvc
for which it is NP-hard to distinguish between two cases: the case where a vertex

cover of size nvc ·(1−p+ε
′
) exists, and the case where any vertex cover has size at

least nvc · (1−4p
3
+3p

4
−ε

′
), for any ε

′
∈ R+

and p = (3−
√

5)/2. If we plug this

into the result of Lemma 1, we have shown that the length-bounded node-cut is

hard to approximate within a factor (there is an ε
′
∈ R+

for which the inequality

holds): (nvc + nvc · (1 − 4p
3
+ 3p

4
− ε

′
))/(nvc + nvc · (1− p+ ε

′
)) > 1.1377.

For other values of L ∈ {5, . . . , �n
1−ε

�}, we modify the construction of G as

follows: (1) Add a path of length L− 5 from a new source node s
′
to s. Let s

′
be

our new source. (2) Stepwise replace each node on this path after s
′
and until s

(inclusive) by a group of c · nvc nodes, for some constant c. For each of these

groups connect all new nodes with all neighbors of the replaced node. We omit
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t

an/∞a2/∞a1/∞

s

0/a1 0/a2 0/an

Fig. 3. Reduction of 2-Partition to the length-bounded cut problem. The labels de-

note length/capacity.

all further details. To see that the reduction also works for undirected graphs,

observe that by removing the edge directions in the gadgets, no new undirected

paths of length less than L are introduced. ��

The proof of the following theorem is similar to the proof of Theorem 3 with

the difference that the adapted gadgets given in Fig. 2 (right) are used, which

already work for length-bound L = 4.

Theorem 4. For any ε > 0 and L ∈ {4, . . . , �n
1−ε

�}, it is NP-hard to ap-
proximate the length-bounded edge-cut in (un-)directed (simple) graphs within a
factor of 1.1377.

Lemma 2. For a series-parallel and outer-planar (un-)directed graph with edge-
capacities and lengths it is NP-hard to decide whether there is a length-bounded
edge-cut of size less than a given value.

Proof. We give a reduction from 2-Partition. Take an arbitrary 2-Partition
instance a1, . . . , ak ∈ N and consider the graph in Fig. 3. Let the length-bound

be L = B − 1. It is not difficult to see that there is an edge-cut of size at most

B if and only if the instance of 2-Partition is a yes-instance. ��

We will show in Theorem 8 that it is NP-hard to decide whether a fractional

length-bounded flow of given flow value exists even if the graph is outer-planar.

Since the primal and dual programs have identical optimal objective function

values, the same holds for the fractional length-bounded edge-cut problem.

3.2 Approximation Algorithms

If the length-bound L is so large that the system of L-length-bounded s-t-paths

contains the set of all s-t-paths, then length-bounded cuts and flows reduce to

standard cuts and flows. The maximum-flow minimum-cut equality holds and

there are many efficient algorithms to compute minimum cuts and maximum

flows exactly. Another extreme case is if the length-bound equals the distance

between s and t, denoted by dist(s, t). Lovász, Neumann Lara, and Plummer [6]

show a special version of the following theorem in the context of length-bounded

node-disjoint paths.

Theorem 5. In (un-)directed multi-graphs with edge-capacities and lengths, for
L = dist(s, t) the minimum length-bounded edge-/node-cut and the maximum
length-bounded flow problem can be solved efficiently. In particular, the max flow
value and the min cut value coincide if L = dist(s, t).
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The proof of this theorem is based on considering the sub-graph induced by all

edges which are contained in at least one shortest s-t-path. For suitable length

functions, like unit-edge-lengths, Theorem 5 yields the following approximation

result for the minimum length-bounded cut problem.

Corollary 1. In (un-)directed multi-graphs one can find an (L+ 1− dist(s, t))-
approximation to the minimum L-length-bounded cut.

Proof (sketch). Repeatedly compute and remove a minimum dist(s, t)-length-

bounded cut from the graph until dist(s, t) > L. ��

It can be shown that the given performance ratio bound is tight for the sketched

algorithm. The next theorem establishes bounds on the absolute difference be-

tween the sizes of standard minimum cuts and length-bounded minimum cuts.

Theorem 6. Let G = (V,E) be a (un-)directed multi-graph. A minimum node-
cut in G is larger than a minimum length-bounded node-cut by at most n

L . If G
is a simple graph, a minimum edge-cut is larger than a minimum length-bounded
edge-cut by at most O(

n2

L2 ).

Proof. The size of a minimum node-cut is equal to the maximum number of node-

disjoint s-t-paths by Menger’s theorem. Let C1 be an optimal length-bounded

node-cut. We construct a node-cut C of size at most |C1| +
n
L . In G \ C1, all

s-t-paths have length at least L+1. Thus, the number of node-disjoint s-t-paths

in G \ C1 is at most (n − 2)/L ≤ n/L. Therefore, a minimum node-cut C2 in

G \C1 has cardinality at most n/L. Then C = C1 ∪C2 is a node-cut in G of the

desired cardinality. The proof for edge-cuts is similar. It applies a helpful lemma

from [21] which states that if a (directed or undirected) simple graph contains k

edge-disjoint s-t-paths, the shortest of these has length O(n/
√

k). ��

One can show that the bound of
n
L on the gap between standard and length-

bounded node-cuts given in Theorem 6 is tight with a graph consisting of parallel

paths of length L + 1 except for one of them having length L. Theorem 6 leads

to the following corollary.

Corollary 2. For (un-)directed multi-graphs there exists an O(
n
L)-approxima-

tion algorithm for the minimum length-bounded node-cut problem. For simple
graphs (directed or undirected) there exists an O(

n2

L2 )-approximation algorithm
for the minimum length-bounded edge-cut problem.

Now we show that there are approximation algorithms with ratio O(
√

n) for

length-bounded node-cuts and with ratio O(
√

m) for length-bounded edge-cuts.

Theorem 7. For (un-)directed graphs there exists an O(min{L, n/L,
√

n})-ap-
proximation algorithm for the minimum length-bounded node-cut problem and
an O(min{L, n

2
/L

2
,
√

m})-approximation algorithm for the minimum length-
bounded edge-cut problem.
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Proof. The upper bounds of min{L, n/L} in the node case and min{L, n
2
/L

2
}

in the edge case follow from Corollaries 1 and 2. Furthermore, we have

min{L, n/L} ≤
√

n, so the claimed ratio for length-bounded node cuts follows di-

rectly. It remains to show that ratio O(
√

m) can be achieved for length-bounded

edge-cuts.

Let OPT denote the size of a smallest length-bounded edge-cut. If L ≤
√

m,

we simply apply the algorithm from Corollary 1. If L >
√

m, we repeatedly find

an s-t-path of length at most �
√

m�, add all its edges to the cut, and remove

these edges from the graph. Let C1 denote the set of edges added to the cut in

this process. Note that |C1| ≤ �

√

m� ·OPT.

If G \ C1 does not contain an s-t-path of length at most L, we output C1.

Otherwise, we compute a minimum edge-cut C2 in G \ C1 and output C1 ∪ C2.

It suffices to show that |C2| ≤
√

m. Let Vi denote the set of nodes at distance i

from s in G\C1. Note that the distance from s to t in G\C1 is at least �
√

m�+1.

Let Ei be the set of edges in G\C1 with tail in Vi and head in Vi+1. Note that Ei

is an edge-cut. Let j be such that Ej has minimum cardinality among the sets

Ei for 0 ≤ i ≤ �

√

m� − 1. Observe that |Ej | ≤ m/�
√

m� ≤
√

m. ��

For a large class of graphs a better approximation ratio is possible [19]: let F be

the flow number of G, as defined in [22]. By the Shortening Lemma [22] it follows

that if L is at least 4 ·F , a standard minimum-cut is an O(1)-approximation for

the L-length-bounded cut. By Corollary 1 this gives an O(F )-approximation for

arbitrary L. Since F = O(∆α
−1

logn), where ∆ is the maximum degree and α

the expansion, (cf. [22]) we obtain O(log n)-approximations for classes of graphs

such as constant degree expanders, hypercubes, and butterflies.

4 Length-Bounded Flows

4.1 Edge-Based vs. Path-Based Flows: Complexity

When looking at a given length-bounded flow, we can infer from linear program-

ming theory the existence of a corresponding path-decomposition of small size,

where all paths fulfil the length-bound.

Proposition 1. Given a length-bounded (multi-commodity) path-flow in a graph
with edge-capacities and lengths, and m edges. There exists a length-bounded
(multi-commodity) path-flow with the same length bound and the same flow value
per edge and commodity that uses at most m paths for each commodity.

The proof of Proposition 1 follows from the fact, that the linear program in (2)

has only m linear constraints. Thus, the theory of linear programming can be

used to show that there is always a path-flow of maximum flow value which has

a small size. Nevertheless, linear programming cannot be used to find maximum

fractional length-bounded flows efficiently, unless P = NP .

Theorem 8. For a single-commodity length-bounded flow problem in an (un-)
directed outer-planar graph with edge-capacities and lengths it is NP-complete
to decide whether there is a fractional length-bounded flow of given flow value.
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ts

k + 1

u

k + 1

Fig. 4. Graph Gk in which the unique maximum length-bounded flow sends more than

one half of the flow along paths with small flow values

Proof (sketch.). The 2-Partition problem can be reduced to the integral

length-bounded flow problem for a flow of value 2 (similar to the proof of

Lemma 2; see also Fig. 3). In a second step one shows that a fractional flow

of value 2 in this special graph induces an integral flow of value 2. ��

Finding a maximum length-bounded flow is computationally more difficult than

finding a standard maximum flow. Standard flows are usually modeled as edge-

flows. Each flow in a path formulation can easily be transformed into an edge-

flow. For standard flows the reverse transformation is also possible. If length-

bounds are present, one may try to use an edge-flow formulation, too. However,

as the following theorem shows, edge- and path-flows are not polynomially equiv-

alent for length-bounded flows. The following result is an immediate consequence

of the proof of Theorem 8 and has been shown independently by Correa et al. [23,

Corollary 3.4].

Corollary 3. Unless P = NP, there is no polynomial algorithm to transform
an edge-flow which is known to correspond to a length-bounded path-flow into a
length-bounded path-flow, even if the graph is outer-planar.

4.2 Structure of Optimal Solutions and Integrality Gap

For standard single-commodity flows with integral capacities there is always an

integral maximum flow. The situation is completely different in the presence of

length constraints. We will not only show that there need not exist an integral

maximum flow, but also that there are instances where each maximum flow ships

a large percentage of the flow along paths with very small flow values.

Theorem 9. There are unit-capacity outer-planar graphs of order n such that
every maximum length-bounded flow ships more than one half of the total flow
along paths with flow values O(1/n).

Proof (sketch). Consider the family of unit-capacity and unit-length graphs de-

picted in Fig. 4. One can show that the unique maximum (2k+2)-length-bounded

flow contains k + 1 paths each with flow value
1

k+1 and one path with flow

value
k

k+1 (using the sub-path of length k + 1 between nodes s and u). ��

For integral length-bounded flows there is a surprising structural difference be-

tween path- and edge-flows which is stated in Theorem 10.
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s t

3

v

Fig. 5. A unit-length graph with an integral edge-flow of value 4 that corresponds to

a maximum fractional 6-length-bounded path-flow but which has no integral 6-length-

bounded path-decomposition: edge vt has capacity 3, all other edges have unit capacity

Theorem 10. An integral (maximum) edge-flow corresponding to a (fractional)
length-bounded flow in an (un-)directed graph with unit-edge-lengths does not
need to have an integral length-bounded path decomposition.

Proof (sketch). The graph in Fig. 5 has a unique maximum 6-length-bounded

flow of value 4. The flow on each edge equals its capacity and is thus integral.

But the unique length-bounded path decomposition is half-integral. ��

In [13] it was shown that the length-bounded flow problem can be approximated

within arbitrary precision. Having this in mind, it is interesting how far the value

of such a fractional solution is away from the maximum integral solution.

Theorem 11. For unit-capacity graphs with n nodes, the integrality gap of the
integer program in (2) can be of order Ω(

√

n) even for unit-edge-lengths and
planar graphs. The length-bound used is of order Θ(

√

n).

The proof is based on a unit-capacity graph with n nodes, a maximum in-

tegral length-bounded flow of value 1, and a maximum half-integral flow of

value Ω(
√

n). The structure of this graph is a refinement of half a k by k grid.

The construction is inspired by Guruswami et al. [12]. We omit all further details

in this extended abstract.

The big integrality gap in Theorem 11 is tied to the unit-capacities of the

graph used in the proof. Raising the edge-capacities in this graph to 2 brings

the integrality gap down to 2. Indeed, the integrality gap is constant for high ca-

pacity graphs. The following result is a consequence of the randomized rounding

technique of Raghavan and Thompson [24].

Theorem 12. Consider a graph with minimal edge-capacity at least c logn, for
a suitable constant c. Using randomized rounding one can convert any fractional
length-bounded flow into an integral length-bounded flow whose value is at most
a constant factor smaller (with high probability). In particular, the integrality
gap is constant for high capacity graphs.
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Abstract. We study random instances of a general graph partition-
ing problem: the vertex set of the random input graph G consists of
k classes V1, . . . , Vk, and Vi-Vj-edges are present with probabilities pij

independently. The main result is that with high probability a parti-
tion S1, . . . , Sk of G that coincides with V1, . . . , Vk on a huge subgraph
core(G) can be computed in polynomial time via spectral techniques.
The result covers the case of sparse graphs (average degree O(1)) as well
as the massive case (average degree #V (G) − O(1)). Furthermore, the
spectral algorithm is adaptive in the sense that it does not require any
information about the desired partition beyond the number k of classes.

1 Introduction and Results

1.1 Spectral Techniques for Graph Partitioning

To solve various types of graph partitioning problems, spectral heuristics are in

common use. Such heuristics represent a given graph by a matrix and compute its

eigenvalues and -vectors to solve the combinatorial problem in question. Spectral

techniques are used either to deal with “classical” NP-hard problems such as

Graph Coloring or Max Cut, or to solve less well defined problems such as

recovering a “latent” clustering of the graph. In the present paper we mainly

deal with the latter.

Despite their popularity in applications, for most of the known spectral heuris-

tics there are counterexamples known showing that these algorithms perform

badly in the worst case. Therefore, to provide a better understanding of such

heuristics, quite a few authors have contributed rigorous analyses of their perfor-

mance on suitable models of random graphs. For example, Alon and Kahale [1]

invented and analyzed a spectral technique for Graph Coloring, Alon, Kriv-

elevich, Sudakov [2] dealt with the Maximum Clique problem, and Boppana [3]

and Coja-Oghlan [5] studied Minimum Bisection.

Though the basic ideas of [1,2,3,5] are related, these heuristics are really

tailored for the concrete problems (and random graph models) studied in the

respective articles. Therefore, McSherry’s work [10] on a general spectral parti-

tioning heuristic is quite remarkable. McSherry studied a random graph model

Gn,k(ψ,p) that encompasses all the models in [1,2,3,5]. The parameters are the

M. Bugliesi et al. (Eds.): ICALP 2006, Part I, LNCS 4051, pp. 691–702, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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following: n, k are positive integers, and ψ is a map {1, . . . , n} → {1, . . . , k}.

Moreover, p = (pij)1≤i,j≤k is a symmetric k×k matrix with entries in [0, 1]. Now,

the vertex set of Gn,k(ψ,p) is V = {1, . . . , n}, and for any two vertices v, w ∈ V

the edge {v, w} is present in Gn,k(ψ,p) with probability pψ(v)ψ(w) independently.

Thus, Gn,k(ψ,p) has a planted partition V1 = ψ
−1

(1), . . . , Vk = ψ
−1

(k). We say

that Gn,k(ψ,p) has a certain property P with high probability (w.h.p.) if the

probability that P holds tends to one as n→∞.

McSherry’s spectral heuristic recovers the planted partition V1, . . . , Vk of a

given graph G = Gn,k(ψ,p) w.h.p. if the parameters n, k,p, ψ satisfy the follow-

ing condition. Let E = (evw)v,w∈V be the matrix with entries evw = pψ(v)ψ(w),

let Ev = (evw)w∈V denote its v-column, and let σ
2
max = max1≤i,j≤k pij(1 − pij).

Then the assumption is that for all u, v ∈ V such that ψ(u) = ψ(v) we have

‖Eu − Ev‖
2
≥ c0k ·max

{
σ

2
max,

ln
6
n

n

}
·

[
n

min1≤i≤k #Vi
+ lnn

]
, (1)

where c0 > 0 is a certain constant. In addition to the graph G = Gn,k(ψ,p),

the heuristic requires (suitable lower bounds on) minu,v:ψ(u) �=ψ(v) ‖Eu − Ev‖ and

min1≤i≤k #Vi at the input.

The occurrence of the lnn-terms in (1) implies that the average degree of

Gn,k(ψ,p) must at least be ln
3
n and at most n− ln

3
n, which is indeed instru-

mental for the arguments in [10] to go through. The contribution of the present

paper is a general partitioning algorithm that also applies to both sparse graphs
with average degree O(1) and massive graphs with average degree n− O(1), or

mixtures of both. Indeed, graph partitioning seems to be considerably more dif-

ficult in the sparse (or massive) case than for graphs with a “moderate” average

degree between polylog(n) and n−polylog(n) (cf. the comments in [1,5]). Also in

the present setting the sparse (or massive) case requires new algorithmic ideas,

because, as we shall see, there occur considerable fluctuations of the vertex de-

grees, which cause the spectral methods from [10] to fail. A further novel aspect

is that the new algorithm is adaptive in the sense that its input only consists of

the graph G = Gn,k(ψ,p) and the number k, but no further parameters.

1.2 The Main Result

In this paper we show that a planted partition can be recovered w.h.p. under

a different assumption than (1). The new assumption allows for graphs with

bounded average degree.

Theorem 1. There is a polynomial time algorithm Partition that satisfies the
following. Let k be a number independent of n. Suppose that

1. µ∗
= max1≤j≤k

∑k
i=1 #Vipij(1 − pij) ≥ ln

2
(n/minj #Vj),

2. min1≤i≤k #Vi ≥ ln
10
n, and

3. for all u, v ∈ V such that ψ(u) = ψ(v) the inequality
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‖Eu − Ev‖
2
≥ ρ

2
= c0

k3
µ
∗

nmin
+ ln

(
µ
∗

+
n

nmin

)
max
i

k∑
j=1

pij(1 − pij)

 (2)

holds, where nmin = mini #Vi and c0 is a large enough constant.

Then w.h.p. G = Gn,k(ψ,p) has an induced subgraph core(G) on ≥ n− µ
∗−10

·

mini #Vi vertices that enjoys the following property. On input (G, k) the algo-
rithm outputs a partition S1, . . . , Sk of G such that Si∩core(G) = Vτ(i)∩core(G)

for all i = 1, . . . , k, where τ is a permutation of the indices 1, . . . , k.

In the remainder of this section we discuss Theorem 1. First, we explain the

conditions (1), (2) and how they relate. Then, we discuss why in the sparse (or

massive) case it is impossible to recover the planted partition perfectly w.h.p.,

and explain the subgraph core(G). Finally, we illustrate Theorem 1 with the

examples of Minimum Bisection and Graph Coloring.

To explain (2), we let e(v, Vj) signify the number of v-Vj -edges. Moreover, for

each v ∈ V we define a vector dv = (dvw)w∈V by letting dvw = e(v, Vj)/#Vj for

all w ∈ Vj and 1 ≤ j ≤ k. Thus, dvw is the actual edge density between v and

the class of w. Then the entries evw of the matrix E are just the expectations

evw = E(dvw), so that E(‖Ev−dv‖
2
) quantifies the “variance” of d(v). For v ∈ Vi

we can bound this by

E(‖Ev − dv‖
2
) =

k∑
j=1

∑
w∈Vj

E
[
(evw − dvw)

2]
≤

µ
∗

nmin
.

Thus, µ
∗
/nmin bounds the influence of “random noise” on the vector dv. Fur-

thermore, if ψ(v) = ψ(w), then ‖Ev − Ew‖
2

quantifies how much the planted

partition influences dv − dw. Hence, (2) basically says that Partition can (al-

most) recover the planted classes V1, . . . , Vk if the influence ‖Ev − Ew‖
2

exceeds

the bound µ
∗
/nmin on the “random noise” by a certain amount.

The two conditions (1) and (2) compare as follows. Since nσ
2
max ≥ µ

∗
, (1)

also relates the influence ‖Ev − Ew‖
2

of the planted partition with a bound on

the effect of random noise. However, due to the lnn-terms occurring in (1), the

condition implies that for each i there is a j such that #Vjpij ≥ ln
3
n. Thus, if

(1) holds, then Gn,k(ψ,p) has average degree at least ln
3
n (and ≤ n − ln

3
n).

By contrast, Theorem 1 also comprises the following three types of graphs.

Sparse graphs. Suppose that nmin = Ω(n). Then condition (2) allows that the

mean #Vjevw of e(v, Vj) is O(1) as n → ∞ for all v ∈ Vi, w ∈ Vj , and all

1 ≤ i, j ≤ k. In this case the average degree of Gn,k(ψ,p) is O(1).

Massive graphs. Similarly, it is possible that e(v, Vj) has mean #Vj − O(1)

for all v, j. Then Gn,k(ψ,p) is a massive graph, i.e., the average degree is

n−O(1).

Mixtures of both. The most difficult case algorithmically is a “mixture” of

the above two cases: e(v, Vj) has mean either O(1) or #Vj − O(1) for all

v, j; i.e., some of the subgraphs induced on two sets Vi, Vj are sparse, while

others are massive.
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Furthermore, nσ
2
max may exceed µ

∗
significantly if Gn,k(ψ,p) features a “small”

part of medium density (say,
1
2 ). In this case (2) can be considerably weaker

than (1). Nevertheless, (2) does not strictly improve (1), because if nσ
2
max =

O(µ
∗
), then (2) may be bigger than (1) by a factor of k

2
.

Why can’t Partition recover the entire planted solution V1, . . . , Vk in gen-

eral? Let us assume that #Vjpij = Θ(1) for all i, j. Then the average degree

of G = Gn,k(ψ,p) is Θ(1). Moreover, for all v and all i the number e(v, Vi) of

v-Vi-edges is asymptotically Poisson with a bounded mean. Therefore, for any

constant ζ the probability that e(v, Vi) = ζ is bounded away from zero. In effect,

there occur a linear number of vertices such that dv deviates significantly from

its mean Ev. Indeed, for Ω(n) vertices v ∈ Vi the vector dv will be closer to Ew for

some w ∈ Vj = Vi than to Ev. Consequently, v “looks more like” a vertex in Vj

than like a vertex in Vi. Hence, it is simply impossible to recognize that v ∈ Vi,

and thus no algorithm can recover the partition V1, . . . , Vk perfectly w.h.p.

Nonetheless, Theorem 1 states that for on a huge share core(G) we can ac-

tually compute the planted solution correctly. The subgraph core(G) basically

consists of those vertices for which dv is close to its mean Ev; core(G) is actually

a “canonically” defined subgraph, and not an artefact produced by the algorithm

(cf. Section 2 for a precise definition).

In summary, Theorem 1 extends [10] in the following respects.

– The most important point is that Partition can cope with the three types

of graphs described above (sparse, massive, and mixed).

– The new algorithm requires only the graph G and the number k of classes

at the input, but does not need any further information about the desired

partition. Hence, the algorithm is “adaptive” in the sense that it finds out

“on the fly” what kind of partition it is actually looking for. By comparison,

the algorithm as it is described in [10] requires some further information

(e.g., a lower bound on ‖Ev − Ew‖ for v, w in distinct classes).

– Partition is deterministic, while the algorithm in [10] is randomized.

Example 2. The following model for Minimum Bisection was considered in

[3,5]. Let k = 2, and choose ψ : V → {1, 2} such that #ψ
−1

(1) = #ψ
−1

(2) =
n
2

at random. Let p = (pij)i,j=1,2, where p11 = p22 = p
′
> p12 = p21 = p. Then

Gn,k(ψ,p) is a random graph with a planted bisection V1, V2. In this case the

conditions (1) and (2) can be rephrased in terms of n, p, p
′
as follows:

– (1) requires that n(p
′
− p) ≥ c

√

np′ lnn for some constant c > 0; this is

exactly the regime addressed in [3].

– (2) reads n(p
′
− p) ≥ c

√
np′ ln(np′); this is precisely the assumption needed

in [5].

Thus, in the first case we must have np
′
≥ c

2
lnn, while in the second case it

is possible that np
′

= O(1) as n → ∞. Since for each vertex v ∈ Vi we have

E(e(v, Vi) − e(v, V3−i)) ∼ n
2 (p

′
− p) > 0, the planted partition V1, V2 should

be a “good” bisection of G. However, if np
′
= O(1), then w.h.p. there are Ω(n)

“exceptional” vertices v ∈ Vi such that e(v, Vi) < e(v, V3−i) w.h.p. Hence, on the
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one hand (V1, V2) is no optimal solution, and on the other hand Partition (or

any other algorithm) cannot recognize that v ∈ Vi. Nonetheless, using dynamic

programming one can w.h.p. extend the partition S1, S2 that Partition(G)

produces to an optimal bisection in polynomial time (cf. [5]) – hence, even though

Partition does not quite yield the planted solution, its output is rather useful.

By contrast, if np
′
≥ c

2
lnn, then matters are simpler: w.h.p. we have e(v, Vi) >

e(v, V3−i) for all i, v, and hence (V1, V2) is in fact an optimal bisection that can

be computed by applying Partition directly w.h.p.

Example 3. Alon and Kahale [1] studied the following model of k-colorable

graphs. Let ψ : V → {1, . . . , k} be a random mapping, and let pij = p if i = j

and pii = 0 for all i, j. Then V1, . . . , Vk is a planted k-coloring of G = Gn,k(ψ,p).

To satisfy (1), we need that p ≥ c(ln
3
n)/n for a constant c = c(k) > 0. By com-

parison, (2) only requires that p ≥ c
′
/n for a constant c

′
= c

′
(k) > 0. This

is the same regime as addressed in [1], where the authors actually point out

that the case np = O(1) is more challenging algorithmically than the dense case

np0 lnn. While in the latter situation all vertices v ∈ Vi have ∼ np/k neighbors

in all other classes Vj , j = i w.h.p., in the case np = O(1) some vertices, e.g.,

v ∈ V1 have no neighbors in, e.g., V2 at all w.h.p. Thus, there is no way to tell

whether v ∈ V1 or v ∈ V2. Nevertheless, the arguments in [1] show that w.h.p.

the partition S1, . . . , Sk of core(G) produced by Partition can be extended to

a k-coloring of the entire graph G in polynomial time.

1.3 Further Related Work

Partition generalizes the spectral methods in [1,2,3,5], and in fact the results

on Graph Coloring, Clique, and Minimum Bisection in these papers can

be derived from Theorem 1 by adding just a few problem specific details. In

addition, the techniques behind Theorem 1 can also be adapted to rederive the

results of Flaxman [8] for random 3-SAT, and Chen and Frieze [4] for hypergraph

2-coloring.

Dasgupta, Hopcroft, and McSherry [6] suggested an even more general model

than Gn,k(ψ,p), namely a random graph with a planted partition featuring a

“skewed” degree distribution. This model is very interesting, because it covers,

e.g., random “power law” graphs. The main result is that the planted partition

can be recovered also in this case w.h.p. under a similar assumption as (1).

Thus, also in [6] it is assumed that the graphs are dense enough (average degree

≥ polylog(n)).

1.4 Techniques and Outline

The algorithm Partition for Theorem 1 generalizes/extends the methods de-

veloped by Alon and Kahale [1] and McSherry [10]. The approach in [10] is

basically the following. Given G = Gn,k(ψ,p), the algorithm tries to compute

an approximation Â of the matrix E using the eigenvalues and eigenvectors of

the adjacency matrix A = A(G) of G. This matrix Â is close to E in the sense

that Âv is close to Ev for most v. Hence, as (1) requires that for vertices v, w
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such that ψ(v) = ψ(w) the distance ‖Ev − Ew‖ is large, partitioning the vertices

according to the columns Âv should get us close to V1, . . . , Vk; in fact, McSherry

shows that this yields exactly the planted partition w.h.p. if (1) holds. More

precisely, the matrix Â is a rank k approximation of A: let P the projection

onto a space generated by k eigenvectors of A corresponding to the k largest

eigenvalues in absolute value. Then Â = PAP .

By comparison, Partition also approximates E by a certain matrix Â, but

given just the assumption (2) instead of (1) it is no longer feasible to just let Â

be a rank k approximation of A. For example, in the case µ
∗

= O(1) fluctuations

of the vertex degrees “jumble up” the spectrum of A(G) so that the k largest

eigenvalues just correspond to the tails of the degree distribution but not to the

planted partition. Therefore, Partition needs to “filter” the spectrum. While a

related approach was already used in [1], the present general situation is more

delicate, because the algorithm does not know the expected degrees in advance.

Once Partition has obtained a suitable matrix Â, the algorithm tries to

produce classes S1, . . . , Sk such that ‖Âv − Âw‖ is “small” if v, w ∈ Si and

“large” if v ∈ Si and w ∈ Sj (i = j). Finally, the algorithm starts a local

improvement procedure from S1, . . . , Sk that converges to the planted solution

V1, . . . , Vk on core(G) w.h.p. This procedure is a generalized version of the greedy

heuristics used in [1,5].

In the next section we give the precise definition of the subgraph core(G)

mentioned in Theorem 1. Then, in Section 3 we present Partition in detail.

1.5 Notation

We let V = {1, . . . , n}. IfG = (V,E) is a graph, then A(G) signifies the adjacency

matrix. Moreover, for X,Y ⊂ V we let e(X,Y ) = eG(X,Y ) denote the number of

X-Y -edges, and we set e(X) = e(X,X). Further, µ(X,Y ) signifies the expected
number of X-Y -edges in Gn,k(ψ,p). In addition, by dG(v) we denote the degree

of v in G.

If M = (mvw)v,w∈V is a matrix and v ∈ V , then Mv = (mvw)w∈V is the

v-column of M . We let ‖M‖ = maxξ:‖ξ‖=1 ‖Mξ‖ denote the norm and ‖M‖F =∑
v∈V ‖Mv‖

2
the Frobenius norm of M .

2 The Core

The subgraph core(G) basically consists of those vertices v ∈ V for which the

numbers e(v, Vi) of v-Vi-edges do not deviate from their means “too much”. More

precisely, for any two vertices v, w ∈ V we set d(v, w) = e(v, Vψ(w))/#Vψ(w).

Then, we define a vector d(v) = (d(v, w))w∈V ∈ RV
that contains the actual

numbers of e(v, Vi)-edges. By comparison, the vector Ev (i.e., the v-column of

the matrix E) represents the expected numbers of v-Vi-edges.

CR1. Initially, remove all vertices v such that ‖d(v) − Ev‖ > ερ
2

from G; that

is, set H = G− {v ∈ V : ‖d(v)− Ev‖ > ερ
2
}. (Here ρ

2
is the r.h.s. of (2),

and ε > 0 is some small enough constant.)
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However, in general the result H of CR1 will not be such that e(v, Vi ∩ H)

approximates µ(v, Vi) well for all v ∈ H . The reason is that there might occur a

few vertices v such that “many” neighbors of v get removed. To deal with this,

we decompose G into a “sparse” part G1 and a “dense” part, which are defined

as follows. Let Φ = (Φvw)v,w∈V be the matrix with entries

Φvw = 1 if pψ(v)ψ(w) >
1
2 , and Φvw = 0 otherwise. (3)

Then G1 = (V, {{v, w} ∈ E : Φvw = 0}). Moreover, G2 = (V, {{v, w} ∈ E :

Φvw = 1}). Now, as the expected degrees dGi(v) for i = 1, 2 and all v ∈ V are

≤ 2µ
∗
, step CR2 first removes all vertices v such that dGi(v) is atypically large.

Then, we iteratively remove all vertices that have plenty of neighbors that were

removed earlier.

CR2. Remove all vertices v ∈ H such that maxi=1,2 dGi(v) > 10µ
∗

from H .

Then, while there is a vertex v ∈ H such that maxi=1,2 eGi(v,G−H) >

100, remove v from H .

The final outcome of the process CR1–CR2 is core(G) = H ; specialized versions

of the core also played an instrumental role in [1,4,5,8].

Proposition 4. Suppose that (2) holds. Then w.h.p. core(Gn,k(ψ,p)) contains
at least n− nminµ

∗−10 vertices.

3 The Algorithm Partition

3.1 Outline

Throughout, we let G = Gn,k(ψ,p) be a random graph whose parameters sat-
isfy (2). Partition proceeds in three phases. In the first phase (Steps 1–2),

the objective is to compute a matrix Â of rank ≤ 2k that approximates the

expectation E of A(Gn,k(ψ,p)) well; more precisely, ‖Â − E‖ ≤ Ck
√

µ∗ for a

constant C > 0. Then, since we are assuming that for vertices v, w ∈ V such

that ψ(v) = ψ(w) the corresponding columns Ev, Ew are “far apart”, at least for

most such v, w the vectors Âv, Âw will have a large distance as well. Therefore,

the second phase uses the columns Âv to obtain an initial partition S1, . . . , Sk
of G. Finally, in the third phase we improve this partition S1, . . . , Sk locally.

Algorithm 5. Partition(G, k)
Input: A graph G = (V,E) and an integer k.

Output: A partition S1, . . . , Sk of G.

1. Run the procedure Identify(G).

2. If Identify fails, then let Â be a rank k approximation of A; oth-

erwise let ϕ = (ϕvw)v,w∈V be the output of Identify, and let Â =

Approx(G,ϕ).

3. Let (S1, . . . , Sk, ξ1, . . . , ξk) = Initial(Â, k).
4. Let (T1, . . . , Tk) = Improve(G,S1, . . . , Sk, ξ1, . . . , ξk).
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With respect to the first phase, it is fairly easy to obtain a matrix Â that

approximates E well if the parameter µ
∗

is not too small – say, µ
∗
0 lnn: in this

case we just let Â be any rank k approximation of the adjacency matrix. Then

‖Â− E‖ ≤ (2 + o(1))k
√

µ∗ w.h.p.

By contrast, if µ
∗

is small (say, µ
∗

= O(1) as n → ∞) then G consists of

“extremely sparse” and/or “extremely dense” parts. Indeed, for any two indices

i, j and each vertex v ∈ Vi the expected number µ(v, Vj) of v-Vj-edges is either

as small as µ
∗

or as large as #Vj−µ
∗
. To obtain a good approximation Â of E , it

is instrumental to determine which parts of the graph are sparse and which are

dense. This is the aim of the procedure Identify, whose analysis is summarized

in the following proposition.

Proposition 6. W.h.p. the output of Identify satisfies the following.

1. Either Identify outputs “fail” or its output is the matrix Φ defined in (3).
2. If µ∗

≤ log
3
n, then the output is Φ.

Identify essentially performs a “coarse” spectral partitioning of G.

Using the result of Identify, Partition computes Â. If Identify fails, then

Partition assumes that µ
∗

is “large”, and thus Â is just a rank k approximation

of A(G). Otherwise the output ϕ of Identify is handed on to the subroutine

Approx, which w.h.p. yields a matrix Â as desired, cf. Section 3.2.

Proposition 7. The output Â of Approx is a matrix of rank ≤ 2k such that
w.h.p. ‖Â− E‖ ≤ Ck

√

µ∗ for a constant C > 0.

Thus, let us assume that Step 2 has successfully computed a matrix Â of rank

≤ 2k such that ‖E − Â‖ ≤ Ck
√

µ∗. Then it turns out that for “most” vertices

v the distance ‖Âv − Ev‖ is “small”. Therefore, Initial partitions the vertices

v ∈ V according to the vectors Âv. More precisely, Initial computes k “centers”

ξ1, . . . , ξk ∈ RV
and a partition S1, . . . , Sk of V such that essentially Si consists

of those vertices v that are close to ξi, cf. Section 3.3.

Proposition 8. After a suitable permutation of the indices the result of Initial
satisfies ‖ξi − Ei‖

2
≤ 0.001ρ

2 for all i and
∑k

i=1 #Si1Vi < 0.001nmin w.h.p.

While the initial partition S1, . . . , Sk is solely determined by the matrix Â, the

subroutine Improve actually investigates combinatorial properties of G. Improve
performs iteratively a local improvement of the initial partition S1, . . . , Sk that

restricted to the subgraph core(G) converges to the planted partition V1, . . . , Vk.

Proposition 9. W.h.p. there is a permutation τ such that the output T1, . . . , Tk
of Improve satisfies Ti ∩ core(G) = Vτ(i) ∩ core(G) for all i = 1, . . . , k.

A detailed description of Improve can be found in Section 3.4. Finally, since all

procedures run in polynomial time, Theorem 1 is an immediate consequence of

Propositions 4 and 6–9.
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3.2 Approximating the Expected Densities

Algorithm 10. Approx(G,ϕ)

Input: A graph G = (V,E) and a matrix ϕ = (ϕvw)v,w∈V . Output: A matrix Â.

1. Let Ĝ1 = (V,E∩ϕ
−1

(0)), Ĝ2 = (V,E ∩ ϕ−1(1)). Let ∆ = n. Set R0 = ∅

and A0 = (a0,vw)v,w∈V = A(G).

2. For t = 1, . . . , log2 ∆ do

3. Let ∆t = 2
−t
∆ and Rt = {v ∈ V : maxi=1,2 dGi(v) > ∆t}.

Let At = (at,vw)v,w∈V be the matrix with entries at,vw = ϕvw if

(v, w) ∈ Rt × V ∪ V ×Rt, and at,vw = at−1,vw otherwise.

If there is an 0 ≤ s < t such that ‖As − At‖ > 2C
′′
k∆

1/2
s , then

abort the for-loop; here C
′′

is a certain constant (cf. Lemma 11).

4. Let t̂ = max{0, t− 1} and return a rank k approximation of At̂.

The aim of Approx is to compute a low rank matrix Â that approximates E .

To this end, Approx analyses the spectrum of A, which is a “noisy” version of the

spectrum of E . If µ
∗
≥ ln

2
n is sufficiently large, then it is actually very simple

to recover the spectrum of E (approximately) from the spectrum of A: in this

case we just let Â be a rank k approximation of A (cf. Step 2 of Partition).
On the other hand, if µ

∗
is “small”, say µ

∗
= O(1), then the “relevant”

eigenvalues ofA do not stand out anymore but are actually hidden among “noise”

that is due to fluctuations of the vertex degrees. More precisely, remember the

decomposition of G into the “sparse” part G1 and the “dense” part G2 (cf.

Section 2). Then both G1, G2 are sparse (random) graphs with average degree

≤ (1 + o(1))µ
∗
. However, as µ

∗
= O(1) as n → ∞, the degree distributions of

G1, G2 w.h.p. feature heavy upper tails. Now, vertices of degree d 0 µ
∗

in G1
or G2 induce eigenvalues of A(G) which are as large as

√

d in absolute value. By

comparison, the “relevant” eigenvalues corresponding to the spectrum of E are

in general O(kµ
∗ 1/2

) 2
√

d. Hence, the eigenvalues induced by the high degree

vertices “hide” the relevant information.

Of course, if µ
∗

were known to the algorithm, then we could just delete all

vertices v such that max{dG1(v), dG2(v)} > 4µ
∗
, say, from G and compute a

low rank approximation Â of the remaining graph’s adjacency matrix. We do,

however, not assume that µ
∗

is given at the input. Now, one might object that

we could just try all possible values of µ
∗
. The problem is that possibly we could

not tell from the resulting partition which value of µ
∗

was correct. Indeed, for

a wrong value of µ
∗

the algorithm may easily miss some small planted class Vi

but instead split some other big class Vj into two pieces erroneously.

Therefore, Approx pursues the following “adaptive” approach. The algorithm

is given the graph G and the matrix ϕ produced by Identify, which equals

the matrix Φ defined in (3) w.h.p. (by Proposition 6). Thus, the two graphs

Ĝ1, Ĝ2 set up in Step 1 coincide with the graphs G1, G2 from Section 2 w.h.p.

Proceeding in ≤ log2 ∆ steps t = 1, . . . , log2 ∆, Step 2 of Approx computes sets

Rt of vertices of degree max{dG1(v), dG2(v)} ≥ ∆t = 2
−t
∆ and matrices At. The

At’s are obtained from A(G) by replacing all entries indexed by V ×Rt∪Rt×V

by the corresponding entries of ϕ. As soon as for some s < t the matrices At



700 A. Coja-Oghlan

and As differ “significantly”, the loop is aborted and the output is constructed

from the matrix At−1 obtained in the step before.

Why does this procedure yield a good approximation Â of E w.h.p.? Suppose

that ∆t > 2.1µ
∗
, say. Since the expectations of dGi(v) are ≤ 2µ

∗
for all v ∈ V

and i = 1, 2, the set Rt consists just of ≤ nmin/µ
∗ 10

vertices of atypically high

degree either in G1 or in G2 w.h.p. (by Chernoff bounds). Thus, deleting the

vertices Rt removes the eigenvalues caused by the fluctuations of the vertex

degrees > ∆t while leaving the planted partition essentially intact. Therefore,

using [7,9], we can estimate ‖At − E‖ as follows.

Lemma 11. Suppose that ∆t ≥ 2.1µ
∗. Then ‖At−E‖ ≤ Ck(∆t+µ

∗
)
1/2 w.h.p.,

where C
′′
> 0 is a constant.

Let s be such that 2.1µ
∗
≤ ∆s ≤ 4.2µ

∗
. Then by Lemma 11 ‖As − E‖ ≤

3C
′′
kµ

∗ 1/2
is “small” w.h.p. However, being not aware of µ

∗
, Approx does not

“notice” this, and may proceed with higher values of t > s. Nonetheless, the

exit condition in Step 3 ensures that Approx will cancel the for -loop as soon as

‖At − As‖ exceeds 2C
′′
k
√

µ∗. In effect, the final matrix At̂ obtained in Step 4

satisfies ‖At̂ − E‖ ≤ 3C
′′
k
√

µ∗, as desired.

3.3 Computing an Initial Partition

Algorithm 12. Initial(Â, k)
Input: A matrix Â and the parameter k.

Output: A partition S1, . . . , Sk of V and vectors ξ1, . . . , ξk ∈ RV
.

1. For j = 1, . . . , 2 logn do

2. Let ρj = n2
−j

and compute S
(j)

(v) = {w ∈ V : ‖Âw − Âv‖ ≤

10ερ
2
j} for all v ∈ V , where ε > 0 is some small constant. Then,

determine sets S
(j)
1 , . . . , S

(j)
k as follows: for i = 1, . . . , k do

Pick a vertex v ∈ V \

⋃i−1
l=1 S

(j)
i such that #S

(j)
(v) \

⋃i−1
l=1 S

(j)
i

is maximum. Set S
(j)
i = S

(j)
(v) \

⋃i−1
l=1 S

(j)
i and let ξ

(j)
i =∑

w∈S(j)
i

Âw/#S
(j)
i .

Extend S
(j)
1 , . . . , S

(j)
k to a partition of the entire set V by adding

each vertex v ∈ V \

⋃k
l=1 S

(j)
l to a set S

(j)
i such that ‖Âv − ξ

(j)
i ‖ is

minimum.

Set rj =
∑k

i=1
∑

v∈S(j)
i
‖Âv − ξ

(j)
i ‖

2
.

3. Let J be such that r
∗

= rJ is minimum.

Return S
(J)
1 , . . . , S

(J)
k and ξ

(J)
1 , . . . , ξ

(J)
k .

Initial is given the approximation Â of E and the parameter k, and its goal

is to compute a partition of V that is “close” to the planted partition V1, . . . , Vk.

By Proposition 7 we may assume that Â has rank ≤ 2k and ‖Â−E‖ ≤ O(k
√

µ∗).
Hence, with respect to the Frobenius norm we obtain

‖Â− E‖

2
F ≤ k

3
µ
∗
< ε

2
ρ
2
nmin (where ρ

2
is the r.h.s. of (2)). (4)
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If in addition we were given the parameter ρ, then we could partition G as

follows. Since z = #{v ∈ V : ‖Âv − Ev‖
2
> ερ

2
} satisfies ερ

2
z ≤ ‖Â− E‖

2
F , (2)

and (4) yield z ≤ εnmin. Now, consider a v ∈ Vi such that ‖Âv−Ev‖
2
≤ ερ

2
, and

define S(v) = {w ∈ V : ‖Âv − Âw‖
2
≤ 10ερ

2
} for v ∈ V . Since Ew = Ev for all

w ∈ Vi, we have #S(v)∩ Vi ≥ #Vi − z ≥ (1− ε)#Vi. Moreover, #S(v) \ Vi ≤ z,

because we assume that for all w ∈ V \ Vi we have ‖Ev − Ew‖ ≥ ρ
2
. Thus,

S(v) “almost” coincides with Vi. Hence, we could obtain a good approximation

of V1, . . . , Vk by just picking iteratively k vertices v1, . . . , vk such that vi+1 ∈

V \

⋃i−1
j=1 S(vj) and S(vi) has maximum cardinality. A very similar procedure is

used in [10], and this is also what Step 2 of Initial does.

However, since we do not assume that ρ is known to the algorithm, Initial
has to estimate ρ. To this end, Initial applies the clustering procedure de-

scribed in the previous paragraph for various candidate values ρj = n2
−j

,

1 ≤ j ≤ 2 log2 n. Thus, for each j Initial obtains a collection S
(j)
1 , . . . , S

(j)
k

of subsets of V and corresponding vectors ξ
(j)
i . The idea is that ξ

(j)
i should

approximate Ev for v ∈ Vi well if S
(j)
i is a good approximation of Vi. Hence,

rj =
∑k

i=1
∑

v∈S(j)
i

‖Âv − ξi‖
2

should be small if S
(j)
1 , . . . , S

(j)
k is close to the

planted partition V1, . . . , Vk. Therefore, the output of Initial is just the parti-

tion S
(j)
1 , . . . , S

(j)
k with minmal rj .

Lemma 13. There is a constant C > 0 such that in the case ρ ≤ ρj ≤ 2ρ we
have rj ≤ Ck

3
µ
∗ w.h.p.

Finally, Proposition 8 is a direct consequence of the following lemma.

Lemma 14. If r∗ ≤ Ck
3
µ
∗, then after a suitable permutation of the indices

the result of Initial satisfies ‖ξi − Ei‖
2
≤ 0.001ρ

2 for all i = 1, . . . , k, and∑k
i=1 #S

∗
i1Vi < 0.001nmin.

3.4 Local Improvement

Algorithm 15. Improve(G,S1, . . . , Sk, ξ1, . . . , ξk)

Input: The graph G = (V,E), a partition S1, . . . , Sk of V , and vectors ξ1, . . . , ξk.

Output: A partition of G.

1. Repeat the following logn times:

2. For all v ∈ V , all l = 1, . . . , k, and all w ∈ Sl compute the numbers

δ(v, w) = e(v, Sl)/#Sl. Let δ(v) = (δ(v, w))w∈V ∈ RV
.

For all v ∈ V pick 1 ≤ γ(v) ≤ k such that ‖δ(v) − ξγ(v)‖ =

min1≤i≤k ‖δ(v) − ξi‖ (ties are broken arbitrarily). Then, update

Si = γ
−1

(i) for i = 1, . . . , k.

3. Return the partition S1, . . . , Sk.

Having computed the initial partition S1, . . . , Sk with the “centers” ξ1, . . . , ξk,

finally Partition calls the procedure Improve to home in on the planted par-

tition V1, . . . , Vk on the subgraph core(G). In contrast to the previous steps of
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Partition, Improve does not rely on spectral methods anymore but just per-

forms a “local” combinatorial procedure.

By Lemma 14 we expect that ξ1, . . . , ξk approximate the expected densities

given by E well (after a suitable permutation of the indices). The basic idea

behind Improve is to compare for each vertex v the actual values e(v, Si) with

the expected values µ(v, Vi), where in turn the latter are approximated by the

entries of ξi. More precisely, for each vertex v Improve sets up the vector δ(v)

that encodes the densities e(v, Si)/#Si. Then, Improve updates the partition

S1, . . . , Sk by putting each vertex v into that class Sj such that ‖δ(v) − ξj‖ is

minimum. A detailed analysis of this process yields Proposition 9.
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Abstract. We establish a 1-1 correspondence between Valiant’s char-
acter theory of matchgate/matchcircuit [14] and his signature theory of
planar-matchgate/matchgrid [16], thus unifying the two theories in ex-
pressibility. In [3], we had established a complete characterization of gen-
eral matchgates, in terms of a set of useful Grassmann-Plücker identities.
With this correspondence, we give a corresponding set of identities which
completely characterizes planar-matchgates and their signatures. Apply-
ing this characterization we prove some negative results for holographic
algorithms. On the positive side, we also give a polynomial time algo-
rithm for a simultaneous node-edge deletion problem, using holographic
algorithms. Finally we give characterizations of symmetric signatures re-
alizable in the Hadamard basis.

1 Introduction

Recently Valiant has introduced a novel methodology in algorithm design. In

a ground breaking paper [14], Valiant initiated a new theory of matchgate/

matchcircuit computations. Subsequently, in [16], he further proposed the theory

of holographic algorithms, based on planar matchgates and matchgrids. Underly-

ing both theories are the beautiful ideas of (a) using perfect matchings to encode

and organize computations, and (b) applying the algebraic construct called the

Pfaffian.

A basic component in both theories is a matchgate. A matchgate is essen-

tially a finite graph with certain nodes designated as inputs or outputs. In the

matchcircuit theory, each matchgate defines a character matrix, with entries

defined in terms of the Pfaffian. In the theory of holographic algorithms, only

planar matchgates are considered, and each planar matchgate defines a signa-
ture matrix, which directly captures the properties of the matchgate under the

consideration of (perfect) matchings when certain input and/or output nodes

are retained or removed.

These matchgates are combined to form matchcircuits or matchgrids. For a

matchcircuit, some of its global properties can be interpreted as realizing cer-

tain computations which would seem to take exponential time in the size of the
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circuit. However, due to the way the matchcircuits are constructed and the al-

gebraic properties of Pfaffians defining the character matrices of the constituent

matchgates, these properties can in fact be computed in polynomial time. For

holographic algorithms, a new crucial ingredient was added—a choice of a set

of linear basis vectors, in terms of which the computation can be expressed and

interpreted. They are called holographic, because the algorithm introduces an

exponential number of solution fragments in a pattern of interference, analo-

gous to quantum computing. However, because of the planarity condition, the

computation by matchgrids can be expressed via the elegant Fisher-Kasteleyn-

Temperley (FKT) method [8,9,12] for planar perfect matchings, and therefore

computable in P. Valiant [14] used matchcircuits to show that a non-trivial frag-

ment of quantum circuits can be simulated classically in polynomial time. With

holographic algorithms, he was able to devise polynomial time algorithms for

several problems, which were not known to be in P, and certain minor variations

of which are NP-hard (or even #P-hard). It is not clear what are the ultimate

computational capabilities of either theories.

In a paper currently in submission [3], the present authors investigated a

number of interesting properties of matchgate computations. In particular, we

gave a necessary and sufficient condition, in terms of a set of useful Grassmann-

Plücker identities, which completely captures the realizability of matchgates with

given characters. The study of matchgate identities was already initiated by

Valiant in [15]. It was shown in [3] that the matchgates form an algebraic variety,

and a certain group action underlies the symmetry present in the character

matrices.

In this paper, we first unite the two theories: matchcircuit computation on the

one hand and matchgrid computation on the other. We show that, the planarity

restriction not withstanding, any matchcircuit computation can be simulated by

a matchgrid, and vice versa. In fact we will give an interpretation between the

characters and signatures in a one-to-one fashion. Thus, all important theorems

in [14] (e.g., its Matchcircuit Theorem and its Main Theorem) can be stated

in terms of planar matchgrids. Conversely, to design holographic algorithms,

one can ignore the planar restriction on the matchgates. For the proof of this

equivalence theorem, in one direction we use a cross-over gadget designed by

Valiant [16]; in the other direction we use the FKT method [8,9,12].

As part of this proof, we also define a notion of a naked character. Based on

our previous work reported in [3], we can derive a corresponding set of matchgate

identities, which are necessary and sufficient for naked characters. Then we prove

that a matrix is a naked character matrix iff it is a signature matrix. This gives

us a complete characterization on the realizability of planar matchgates in terms

of their signatures.

Such a characterization provides for the first time the possibility of proving

negative results for holographic algorithms. We note that, by definition, even

with a fixed number of input and output nodes, a matchgate may consist of an

arbitrarily large number of internal nodes. Thus one can prove the existence of a

matchgate fulfilling certain computational requirements by construction. But one
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cannot prove in this way the non-existence of such a matchgate. Our characteri-

zation makes this possible. Indeed, we define holographic templates to capture a

restricted but natural subclass of holographic algorithms, and prove certain non-

existence theorems. In particular, we prove that certain natural generalizations

of some of the problems solved by P-time algorithms in [16] do not have P-time

algorithms by holographic templates by linearly independent basis of dimension

2. In many of the problems in [16], a particular basis b2 (which can be called

the Hadamard basis) was particularly useful. We characterize the representable

matchgate signatures that are based on cardinality alone over this basis. This

uses the properties of Krawtchouk polynomials. We also give a positive result

by deriving a polynomial time algorithm for a problem using holographic tem-

plates. It is a simultaneous node-edge deletion problem for a graph to become

bipartite, for planar graphs with maximal degree 3. This generalizes both the

edge deletion problem, and the node deletion problem which was considered in

[16] for such graphs. We note that the edge deletion problem is the same as the

MAX-CUT problem
1
.

The most intriguing question is whether this new theory leads to any collapse

of complexity classes. The kinds of algorithms that are obtained by this theory

are quite unlike anything before and almost exotic. If our belief in NP = P

is based on the sense and experience that the usual algorithmic paradigms are

insufficient for NP-hard problems (certainly it is not due to strong lower bounds),

then we feel our erstwhile experience does not apply to these new algorithms.

Of course it is quite possible that the theory of matchcircuit and holographic

algorithms do not in the end lead to any collapse of complexity classes. But even

in this eventuality, as Valiant suggested in [16], “any proof of P = NP may need

to explain, and not only to imply, the unsolvability” of NP-hard problems using

this approach. Regardless of its final outcome, this paper is an attempt towards

such a fundamental understanding.

The rest of the paper is organized as follows: In Section 2, we give a brief

account of the background. In Section 3, we give the equivalence theorem of

the two theories. We also discuss matchgate identities for naked characters and

signatures. In Section 4, we give a positive result on the simultaneous node-edge

deletion problem. In Section 5 we define holographic templates, and give some

impossibility results. In Section 6, we characterize symmetric signatures for b2.

More proof details can be found in [4].

2 Background

Due to space limitations, most details are left out. The readers are referred to

[14,15,16,2,3].

Let G = (V,E,W ) be a weighted undirected graph. We represent the graph

by the skew-symmetric adjacency matrix M , where M(i, j) = w(ki, kj) if i < j,

M(i, j) = −w(ki, kj) if i > j, and M(i, i) = 0. The Pfaffian of an 2k × 2k

skew-symmetric matrix M is defined to be

1 MAX-CUT for planar graphs is known to be in P [5].
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Pf(M) =

∑
π

επw(i1, i2)w(i3, i4) . . . w(i2k−1, i2k),

where the sum is over all permutations π, where i1 < i2, i3 < i4, . . . , i2k−1 < i2k
and i1 < i3 < . . . < i2k−1, and επ ∈ {−1, 1}. The Pfaffian is computable

in polynomial time. In particular (Pf(M))
2

= det(M). We refer to [14,15] for

definitions of Pfaffian Sum PfS(M), Matchgates and Matchcircuits. Very briefly,

each matchgate is assigned a character matrix, where an entry of the matrix is

µ(Γ,Z)PfS(G−Z), where µ(Γ,Z) ∈ {−1, 1} is a modifier and Z is a set of deleted

vertices. A matchcircuit is a way of combining matchgates. The character of a

matchcircuit is defined in the same way as the character of a matchgate except

that there is no modifier µ.

Character matrices of matchgates satisfy a rich set of algebraic constraints

called matchgate identities. Valiant already derived a number of these identities

in [15]. They are derived from the Grassmann-Plücker identities [11].

Theorem 1. For any n×n skew-symmetric matrix M , and any I = {i1, . . . , iK}

⊆ [n] and J = {j1, . . . , jL} ⊆ [n],

L∑
l=1

(−1)
l
Pf(jl, i1, . . . , iK)Pf(j1, . . . , ĵl, . . . , jL)+

K∑
k=1

(−1)
k
Pf(i1, . . . , îk, . . . , iK)Pf(ik, j1, . . . , jL) = 0

In our paper [3] we derived a complete set of algebraic identities using the so-

called useful Grassmann-Plücker identities. Due to space limitation we will only

describe these for 4× 4 character matrices B.

Denote by D(ij, kl) =

∣∣∣∣Bik Bil

Bjk Bjl

∣∣∣∣, the 2 × 2 minor of B consisting of rows

i and j, and columns k and l. Let S denote the set of
(4
2

)
unordered pairs of

{1, 2, 3, 4}, S = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}. Define an involution

σ on S which exchanges the pair {1, 4} and {2, 3}, and leaves everything else

fixed. Then it is proved in [3] that B is a character matrix iff the following set

of identities hold:

D(p, q) = D(σ(p), σ(q)),

for any (p, q) ∈ S×S. E.g., B11B44−B14B41 = B22B33−B23B32 and B12B43−

B13B42 = B21B34 −B24B31, etc.

Theorem 2. [3] Let B be a 4 × 4 matrix over a field F . It satisfies the above
set of matchgate identities (there are ten non-trivial identities) iff there exists a
matchgate Γ such that χ(Γ ) = B.

Theorem 3. [3] There is an effectively constructible set of matchgate identities
which completely characterizes any k input l output matchgate.
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The matchgate identities have far reaching implications. On the positive side,

the proof in [3] indicates that whenever B is a 2
k
× 2

l
character matrix there is

a matchgate Γ of size O(k + l) realizing it, thus it can be found in a bounded

search. On the negative side, the complete characterization provides us with the

tools to prove non-existence for general k and l.

When the weighted graph G = (V,E,W ) is planar, we have a planar match-
gate Γ = (G,X, Y ) where X is the set of inputs and Y is the set of outputs and

we can associate a notion of a signature matrix with it. Planar matchgates can

be combined to form planar matchgrids. The central definition of the theory of

holographic algorithms is the Holant of a matchgrid.

The following Holant Theorem says that the Holant can be efficiently com-

puted using the FKT technique [8,9].

Theorem 4 (Valiant). For any matchgrid Ω over any basis β, let G be its
underlying weighted graph, then Holant(Ω) = PerfMatch(G).

For the details of the definitions and the proof, we refer the reader to [16] and [2].

3 An Equivalence Between Matchcircuits and Planar
Matchgrids

3.1 Naked Characters

In [3], we showed that the set of useful Grassmann-Plücker identities gives a

complete characterization of matchgate characters, i.e., every character matrix

satisfies these equations and any matrix satisfying these is the character of some

matchgate. A useful Grassmann-Plücker identity is derived from a Grassmann-

Plücker identity on (I, J), where I and J ⊆ V are subsets of nodes of the match-

gate containing all internal nodes. We refer to [3] for details. For convenience

of proof, we also define a naked character as a character without the modifiers.

Thus, the entries of the naked character of a k-input, l-output matchgate is sim-

ply PfS(G−Z) where Z varies over subsets of X∪Y . Since the modifier µ(Z) does

not depend on the internal nodes, the useful Grassmann-Plücker identities can

be considered as identities over the entries of the naked character matrix. These

identities completely characterize the naked character matrices of matchgates.

3.2 Equivalence of Matchgates and Planar Matchgates

In this subsection, we prove a surprising equivalence between matchgates (which

are generally not planar) and planar matchgates. Specifically, we can show that

the set of naked character matrices of k-input, l-output matchgates is the same as

the set of signature matrices of k-input, l-output planar matchgates. This theo-

rem has remarkable implications. In particular, it implies that the set of match-

gate identities (for naked characters) also characterize all signature matrices.

With this we obtain a complete algebraic characterization of planar matchgates.

This will enable us to prove some impossibility results.



708 J.-Y. Cai and V. Choudhary

Lemma 1. Given a matchgate Γ with naked character matrix B, there exists a
planar matchgate Γ

′ with signature B.

Proof. Recall that the vertices of Γ are numbered 1 through n with the first k

being inputs and the last l being outputs. Now arrange the vertices (with their

edges) on a strictly convex curve, e.g., a upper semicircle, such that as we move

clockwise from vertex 1, we encounter all the vertices in increasing order (see

Figure 1). By doing this, we have achieved the following: Any two edges (i, j)

and (k, l) overlap (i.e. i < k < j < l or k < i < l < j) iff they physically cross

each other as two straight line segments. If any such pair of overlapping edges is

present in a matching, it introduces a negative sign to the Pfaffian. Now we can

convert this graph into a planar graph by using the gadget given in Figure 8 in

[16]. We will replace any physical crossing by a local copy of the gadget. We then

use the properties of this gadget proved in Proposition 6.3 of [16]. We omit the

details, but it can be shown that the MatchSum polynomial of the new graph is

the same as the Pfaffian Sum of the original graph. It follows that the signature

of this planar graph is the same as the character of Γ except that the signature

doesn’t consider any external edges and hence, it doesn’t have any modifiers.

This means that the signature is actually equal to the naked character B. Note

that, in this construction, if omittable nodes are present, they are now all on the

outer face (in fact all the original nodes of Γ are now on the outer face).

Inputs

1

2
n−1
n

Outputs

Fig. 1. An example of converting a 2-input, 2-output matchgate to a planar matchgate

Lemma 2. Given a planar matchgate Γ with signature u, there is a matchgate
Γ

′ with naked character equal to u.

Proof. The underlying graph of Γ
′
is the same as that of Γ but we’ll change the

weights suitably. For that, we have to consider the orientation given to edges by

the FKT algorithm to count the number of perfect matchings as described in

[9]. For any edge (i, j) where i < j, if the direction assigned to it is i to j, then

we keep the weight as is, otherwise we multiply the weight by a −1. The matrix

whose Pfaffian we evaluate to count the number of perfect matchings in Γ is

exactly the same as the (skew-symmetric) adjacency matrix of the new graph.

That means that its character, after dropping the modifiers µ, is the same as

the signature of Γ .

If omittable nodes are present, we need to evaluate MatchSum. Since the

omittable nodes are all on the outer face, one single consistent orientation can

be chosen for all edges, as the result of FKT algorithm, simultaneously for all

terms of MatchSum. This reduces to a Pfaffian Sum.

Lemmas 1 and 2 prove the following theorem.



Some Results on Matchgates and Holographic Algorithms 709

Theorem 5. The set of signature matrices of planar matchgates is the same as
the set of naked character matrices of matchgates.

Using the same technique as in the proof above, we can show that matchcircuits

and planar matchgrids are computationally equivalent. In other words, we are

able to show that the same fragment of quantum computation that was simulated

by matchcircuits in [14] can be simulated by matchgrids. The exact statement

of the theorem and its proof can be found in [4].

4 Simultaneous Node-Edge Deletion

In this section we give a holographic algorithm for a simultaneous node-edge

deletion problem. This is the first poly-time algorithm for this problem. The

problem is a generalization of the PL-NODE-BIPARTITION problem for which

the first polynomial time algorithm was given by Valiant [16]. It also generalizes

the planar edge deletion problem, which is the same as MAX-CUT. Planar MAX-

CUT is known to be in P [5]. We note that the closely related problem of Planar-

Max-Bisection (where a bisection is a cut with two equal parts) was a long

standing open problem till Jerrum proved it NP-hard (see [6]). There has also

been important progress on its approximability [6]. We also note that the status

of Planar-Min-Bisection remains open.

PL-NODE-EDGE-BIPARTITION

Input: A planar graph G = (V,E) of maximum degree 3. A non-negative integer

k ≤ |V |. Output: The minimal l such that deletion of at most k nodes (including

all of their incident edges) and l more edges results in a bipartite graph.

Theorem 6. There is a polynomial time algorithm for PL-NODE-EDGE-
BIPARTITION.

Proof. We will use the method of holographic algorithms [16]. Let the given

input graph be G. First, note that we can simply delete any node of degree 1.

We will replace each remaining nodes by recognizers with symmetric signature

[1, x, x, 1] or [1, x, 1] depending on their degree. The edges will be replaced by

generators with symmetric signature [y, 1, y]. This forms a matchgrid Ω. It is

known that the above symmetric signatures are realizable in the Hadamard basis

b2 = [n, p] = [(1, 1), (1,−1)]. (See [16] and also Section 6.) Every term in the

Holant corresponds to an assignment of n or p to each end of every connecting

edge in Ω. This induces an assignment on the vertices of G. We consider vertices

in G that get nnn or nn (depending on the degree) are colored white and those

that get ppp or pp are colored black. The remaining vertices are not colored.

Now, every colored node contributes 1 to the Holant and every uncolored node

contributes x. Any edge that is assigned nn or pp contributes y and any edge

that is assigned np or pn contributes 1. It is clear that we can obtain a bipartite
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graph by deleting the uncolored vertices and the edges that are assigned nn or

pp. We define

�(k) = min{ l
′
| The coefficient of x

k
y
l′

in Holant is non-zero.}

l(k) = min{ l
′
| ∃ a subsetS ⊆ V of size k and some l

′
edges in G− S such that

removal of the l
′
edges from G− S gives a bipartite graph.}

From the discussion earlier, we can see that l(k) ≤ �(k).

Claim. l(k) is a strictly monotonic decreasing in k, until l(k) = 0.

Proof. Let k
′
< k. We show that if l(k

′
) > 0, then l(k

′
) > l(k). Let S ⊆ V be a

subset of size k
′
, such that the deletion of S and some l(k

′
) edges from G − S

results in a bipartite graph. Then, if we are allowed to delete k > k
′
vertices, we

can choose to delete S and some of the vertices to which the other l(k
′
) edges

are incident. Then, clearly, l(k) < l(k
′
).

Claim. �(k) ≤ l(k)

Proof. Let S ⊆ V be a subset of size k such that the deletion of S and some l(k)

other edges results in a bipartite graph. Assign nnn or nn to the vertices on the

left and ppp or pp to those on the right. This means that for a connecting edge

incident to a recognizer for a node on the left, we assign n to its end which is

incident to it. Similarly for a connecting edge incident to a recognizer for a node

on the right we assign p there. The generator corresponding to any edge present

in the bipartite graph gets np or pn and the l(k) deleted edges get nn or pp,

due to the minimality of l(k). The remaining edges can be of three types: having

one end point on the left side and one in S, having one end point on the right

and one in S, or having both end points in S. The generators corresponding to

all these edges are given np or pn in such a way that any output adjacent to

a recognizer on the left gets n and any output adjacent to a recognizer on the

right gets p. This can be done, since the remaining edges have at least on end

point in S, we have at least one free output.

It is easy to see that the degree of y in this term of the Holant is exactly

l(k). Note that all the vertices not in S are assigned nnn or ppp (or nn or pp)

and contribute 1 to the Holant. We further claim that no vertex in S gets nnn

or ppp (or nn or pp). Hence the coefficient of x
k
y
l(k)

is positive, and therefore

�(k) ≤ l(k). If some vertex in S were to get nnn or ppp (or nn or pp), we can

add those vertices and their incident edges to the bipartite graph, and we will

still have a bipartite graph, since all the edges incident to any vertex in S are

assigned either np or pn. This means that for some k
′
< k, l(k

′
) ≤ l(k) which is

impossible, by Claim 4.

The proof of the theorem is now easy. The required value is l = l(k). As l(k) =

�(k), we can find this by computing the Holant, which is a polynomial in x

and y of degree at most |V |+ |E|. This is done by evaluating Holant at several

values of x and y, and then by polynomial interpolation. Note that, since every
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term in the Holant contributes either a one or a zero to the coefficient of at most

one term in the polynomial, the coefficients are bounded by 2
2|E|

, i.e., O(|E|)

bits.

Valiant’s PL-NODE-BIPARTITION [16] asks for the minimal k such that l(k) =

0, while PL-EDGE-BIPARTITION (Planar MAX-CUT for degree ≤ 3) [5] asks

for l(0). This problem generalizes both.

5 Limitations of Holographic Algorithms

There is not yet any formal definition of what is computable by holographic

algorithms. In this section, we try to define the most basic kinds of holographic

algorithms and call these holographic templates. The aim is to capture essentially

what is computable by using only the Holant and nearly no other meaningful

polynomial time computation. Then we look at some generalizations of two of

the problems solved by Valiant using holographic algorithms in [16]. We show

that there are no holographic templates for these generalizations. To make the

impossibility results more meaningful, we will also need a formal definition of

the types of problems to which holographic templates can possibly be applied.

The formal definition of such problems and of holographic templates are omitted

due to space limitations (see [4] for details). The definition captures the notion

that local solution fragments of a counting problem are mapped to the non-zero

entries in the signature of planar matchgates in such a way that the Holant

of the matchcircuit is equal to the answer of the counting problem. All of the

holographic algorithms presented by Valiant can essentially be realized in this

notion of holographic templates.

By our definition, if there is holographic template for a problem then the

answer produced by it, i.e. the Holant of the holographic template, is the answer

of the counting problem. Below we will show the non-existence of holographic

template algorithms for some problems. Our negative results will only apply to

basis of dimension 2. We will only consider holographic templates using planar

matchgates and matchgrids without omittable nodes. The impossibility results

will be achieved by showing that there are no bases of dimension 2 in which

there are recognizers and generators having some required signatures. Suppose

we need to find a basis and some generators/recognizers with given signatures

w.r.t. the basis. We first translate the signature into standard signatures. The

entries of the standard signature will be in terms of the basis vectors. We will then

use our algebraic equations that characterize the signature matrices of planar

matchgates. These include the parity constraints and the matchgate identities.

By parity constraints, we mean the constraint that for any standard signature,

either all terms corresponding to deletion of an odd number of nodes are zero

or all terms corresponding to deletion of even number of nodes are zero. This is

a consequence of perfect matchings. For a number of problems, we will be able

to show that there are no bases for which the standard signature satisfies all

these constraints, thus concluding that these problems cannot be solved by this

method.
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Before moving on, we note that if a basis β consists of only two linearly

dependent two-dimensional vectors, then the span of any higher tensor β⊗f

will also be one-dimensional and thus ruling out any interesting signatures from

being in its span. So for the problems we consider, we will only look for linearly

independent bases without explicitly proving that any linearly dependent basis

of two vectors doesn’t work.

#X-Matchings

One problem solved by Valiant by a holographic algorithm [16] is called #X-

Matchings. This is motivated by its proximity to counting the number of (not

necessarily perfect) matchings in a planar graph, which was proved to be #P-

complete by Jerrum [7]. Vadhan [13] subsequently proved that it remains #P-

complete for planar bipartite graphs of degree 6. For degree two the problem

can be easily solved. For Valiant’s #X-Matchings, a planar bipartite graphs

G = (V,E,W ) is given with bipartition V = V1 ∪ V2, where nodes in V1 have

degree 2 and nodes in V2 have arbitrary degrees. The problem is to compute∑
M m(M), where M runs through all (not necessarily perfect) matchings, and

the mass m(M) is the product of (1) weights of e ∈ M and (2) the quantity

−(w1 + . . . + wk) for each unmatched node in V2, where wi are the weights of

edges incident to that node. One can use this to compute the total number of

matchings mod 5, if all vertices in V2 have degree 4.

Still, the quantity −(w1 + . . .+wk) seems artificial. If one were to be able to

replace −(w1+. . .+wk) by 1, then one would be able to count all (not necessarily

perfect) matchings in such planar bipartite graphs. However, we prove that this

is impossible using holographic templates.

Theorem 7. There is no holographic template using any basis of two linearly
independent vectors to solve the counting problem for all (not necessarily perfect)
matchings for such graphs, which is the same as the above problem with −(w1 +

. . .+ wk) replaced by 1.

The proof uses our characterizations of realizability of matchgates and the equiv-

alence theorems on characters and signatures.

Several other problems solved by Valiant in [16] use a matchgate with a sym-

metric signature which is logically a Not-All-Equal gate. This is typified by the

following problem:

#PL-3-NAE-ICE

Input: A planar graph G = (V,E) of maximum degree 3.

Output: The number of orientations such that no node has all edges directed

towards it or away from it.

If one were to relax the degree bound k = 3, some of his problems [16] are

known to be NP-hard. We prove that for any k > 3, one can not realize a

Not-All-Equal by a symmetric signature.
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Theorem 8. There is no holographic template using any basis of two linearly
independent vectors to solve the above ICE problem if we replace the degree bound
by any k > 3.

Again the proof uses our characterizations including matchgate identities, and is

omitted (see [4].) As the proof deals with the non-existence of certain matchgates

of prescribed signatures, this is applicable to other problems in addition to #PL-

3-NAE-ICE.

6 Symmetric Signatures in b2

The most versatile basis in the design of holographic algorithms so far has been

the Hadamard basis b2, namely [n, p] = [(1, 1), (1,−1)]. In [16], most often, it is

used to realize a symmetric signature that has a clear Boolean logical meaning,

such as the Not-All-Equal function. In this section, we give a complete character-

ization of all the symmetric signatures that can be realized by some generators

or recognizers (having no omittable nodes) in this basis.

Let T denote the matrix

(
1 1

1 −1

)
. T is symmetric and non-singular, and there-

fore T
⊗n

is a symmetric non-singular 2
n
× 2

n
matrix. It follows that for b2,

realizability for a recognizer is the same as for a generator.

The Hamming weight of a row or column index to T
⊗n

, which is a 0-1 vector

in binary representation, is the number of 1’s in it. Suppose we have a generator

having standard signature u and signature ub2 under b2. We claim that ub2 is a

symmetric signature iff u is. Since T
−1

=
1
2T , we only need to show this in one

direction.

Row vectors u and ub2 are related by u = ub2T
⊗n

. Suppose ub2 is a symmetric

signature. We sum the rows of equal Hamming weight in T
⊗n

to obtain an

(n + 1) × 2
n

matrix M . It is clear that M has a full row rank because any

linear combination of rows of M is a linear combination of rows of T
⊗n

, which

is non-singular. It can be seen that any two columns of M having indices of

the same Hamming weight are equal. So M has at most n+ 1 distinct columns.

Thus u is also symmetric. And since the rank of M is n + 1, there must be

exactly n+ 1 distinct columns, and they are linearly independent. Consider the

(n+ 1)× (n+ 1) matrix A = [aij ] obtained by taking the distinct columns from

M . A is non-singular.

In fact, these aij can be expressed by the Krawtchouk polynomials [10], the

properties of which can then be used to derive the theorem below.

Lemma 3. aij =
∑i

k=0(−1)
k
(
j
k

)(
n−j
i−k
)
. In particular, aij = (−1)

i
ai,n−j =

(−1)
j
an−i,j.

Theorem 9. A symmetric signature [x0, x1, . . . , xn] is realizable under the
Hadamard basis b2 iff it takes the following form: For all 0 ≤ i < n/2,

xi = λ
(
s
n−i

t
i
− t

n−i
s
i
)
,

where λ, s and t are arbitrary constants. In addition, for all 0 ≤ i < n/2, either
all xn−i = xi or all xn−i = −xi. Finally, for n even, xn

2
= 0.
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Abstract. We study the problem of assigning applicants to jobs. Each
applicant has a weight and provides a preference list, which may contain
ties, ranking a subset of the jobs. An applicant x may prefer one matching
over the other (or be indifferent between them, in case of a tie) based
on the jobs x gets in the two matchings and x’s personal preference. A
matching M is popular if there is no other matching M ′ such that the
weight of the applicants who prefer M ′ over M exceeds the weight of
those who prefer M over M ′.

We present two algorithms to find a popular matching, or in case
none exists, to establish so. For the case of strict preferences we develop
an O(n + m) time algorithm. When ties are allowed a more involved
algorithm solves the problem in O(min(k

√
n, n)m) time, where k is the

number of distinct weights the applicants are given.

1 Introduction

Consider the problem of assigning applicants to jobs where every applicant pro-

vides a preference list, which may contain ties, ranking a subset of the jobs.

Formally, an instance consists of a bipartite graph G = (A, J,E) with n ver-

tices and m edges between a set of applicants A and a set of jobs J . An edge

(x, p) ∈ E denotes that job p belongs to x’s list. Moreover, every edge (x, p) is

assigned a rank i, which means p is the ith choice on x’s list. An applicant x

prefers job p over q if the edge (x, p) is ranked higher than (x, q); if (x, p) and

(x, q) have the same rank we have a tie, and thus x is indifferent between them.

Likewise, we say x prefers one matching over the other or is indifferent between

them based on the two jobs x is assigned by the two matchings. Our ultimate

goal is to produce a matching in this graph.

While simple, this framework captures many real-world problems, for instance

the assignment of government-subsidized houses to families [9], and graduates to

training position [6]. The issue of what constitutes a fair or good assignment has

been studied in the Economics literature [1,9,10]. The least restrictive definition

of optimality is that of a Pareto optimal matching [2,1]. A matching M is Pareto

optimal if there is no matching M
′
such that at least one person prefers M

′
over

M and nobody prefers M over M
′
. In this paper we study a stronger definition

of optimality, that of popular matchings. We say M1 is more popular than M2

� Research supported by NSF Awards CCR 0113192 and CCF 0430650.

M. Bugliesi et al. (Eds.): ICALP 2006, Part I, LNCS 4051, pp. 715–726, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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if the applicants who prefer M1 over M2 outnumber those who prefer M2 over

M1; a matching M is popular if there is no matching more popular than M .

Popular matchings were first considered by Gardenfors [5] who showed that

not every instance allows a popular matching. Abraham et al. [3] gave the first

polynomial time algorithms to determine if a popular matching exists and if so,

to produce one. The first algorithm runs in O(n + m) time and works for the

special case of strict preference lists; a second O(
√

nm) time algorithm solves the

problem for the general case where ties are allowed. They noted that maximum

cardinality matching can be reduced to finding a popular matching in an instance

with ties (by letting every edge be of rank 1) thus a linear time algorithm for

the general case is unlikely.

Observe that the above definition of popular matching does not make any

distinction between individuals—the opinion of every applicant is valued equally.

But what if we had some preferred set of applicants we would like to give priority

over the rest? This option becomes particularly interesting when jobs are scarce

or there is a lot of contention for a few good jobs.

To answer this question we propose a new definition for the more popular

than relation under which every applicant x is given a positive weight w(x). The

satisfaction of M1 with respect to M2 is defined as the weight of the applicants

that prefer M1 over M2 minus the weight of those who prefer M2 over M1. Then

M1 is more popular than M2 if the satisfaction of M1 w.r.t. M2 is positive. We

believe this is an interesting generalization of popular matchings that addresses

the natural need to assign priorities (weights) to the applicants while retaining

the one-sided preferences of the original setup.

In this paper we develop algorithms to determine if in a given instance a

weighted popular matching exists, and if so, to produce one. For the case of strict

preference lists we give an O(n+m) time algorithm. When ties are allowed the

problem becomes more involved; a second algorithm solves the general case in

O(min(k
√

n, n)m) time, where k is the number of distinct weights the applicants

are given.

Our approach consists in developing an alternative characterization for pop-

ular matchings that will naturally lead to an efficient algorithm. First, we intro-

duce the notion of well-formed matching, and show that every popular matching

is well-formed. While in the unweighted case one can show [3] that every well-

formed matching is popular, this is not always the case when weights are intro-

duced. To weed out those well-formed matchings that are not popular we develop

a procedure that identifies and prunes certain bad edges which cannot be part

of any popular matching. Finally, we prove that every well-formed matching in

the pruned graph is indeed popular.

A related, but not equivalent, problem is that of computing a rank-maximal
matching. Here we want to maximize the number of rank 1 edges, and subject

to this, maximize the number of rank 2 edges, and so on. Irving et al. [7] showed

how to solve this problem in O(min(C
√

n), n)m) time where C is the rank of

the lowest ranked edge in a rank-maximal matching. Recent developments on
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popular matchings are the papers by Abraham et al. [4] on voting paths and by

Mahdian [8] on random popular matching.

2 Strict Preference Lists

We first study the case where the preference lists provided by the applicants are

strict but need not be complete. Let us partition A into categories C1, C2, . . . Ck,

such that the weight of applicants in category Ci is wi, and w1 > w2 > . . . >

wk > 0.

In order to ease the analysis we first modify the given instance slightly. For

every applicant x, we create a last resort job l(x) and place it at the end of

x’s preference list. This does not affect whether the instance allows a popu-

lar matching or not, but it does force every popular matching to be applicant

complete.

The plan is to develop an alternative characterization for popular matchings

that will allow us to efficiently test if a given instance admits a popular matching,

and if so to produce one. We define the notion of first and second jobs. For every

applicant x ∈ C1, let f(x) be the first job on x’s preference list, such a job is

said to be an f1-job; also let s(x) be the first non-f1-job on x’s list. For x ∈ Ci

we recursively define f(x) as the first non-f<i-job on x’s list, this will be an

fi-job; s(x) will be the first non-fj≤i-job. Notice that s(x) is ill defined when

f(x) = l(x). This, however, is not a problem since, as we will shortly see, the

second job is used only when there is contention for the first job, which by

definition never happens for l(x).

The following properties about first and second jobs are easy to check:

• The set of fi-jobs is disjoint from the set of fj-jobs for i = j.

• The set of fi-jobs is disjoint from the set of sj-jobs for i ≤ j, but may

not be for i > j.

Our alternative characterization for popular matchings will be based on well-
formed matchings.

Definition 1. A matching is well-formed if it has the following two properties:
every fi-job p is matched to x ∈ Ci where f(x) = p, and every applicant x is
matched either to f(x) or s(x).

Realize that when k = 1 our definition of well-formed matching becomes the

characterization proposed by Abraham et al. [3]. For the unweighted case (k = 1)

they show that a matching is popular if and only if it is well-formed. Unfortu-

nately, for k > 1, not every well-formed matching is popular. To exemplify this

consider the instance in Fig. 1. There are only two well-formed matchings: M1 =

{(x1, A), (x2, C), (x3, D), (x4, E)} and M2 = {(x1, A), (x2, C), (x3, E), (x4, D)}.

However, M1 is not popular because {(x2, A), (x3, C), (x4, D)} is more popular

than M1. On the other hand, as we will see, M2 is popular.

Nevertheless, we can still prove one direction of the implication.

Theorem 1. Let M be a popular matching, then M is well-formed.
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w(x1) = 7 x1 A B C

w(x2) = 4 x2 A C D

w(x3) = 2 x3 C A D E

w(x4) = 2 x4 A D E

A

x1 B

x2 C

x3 D

x4 E

Fig. 1. Instance with strict preferences. The graph on the right shows the first jobs

(solid lines) and second jobs (dashed lines).

One could be tempted to discard the current definition of well-formed matching

and seek a stronger one that will let us replace the if then of Theorem 1 with an

if and only if. As we will see, in proving the theorem we only use the fact that

wi > wi+1. Armed with this sole fact Theorem 1 is the best we can hope for

because if the weights are sufficiently spread apart (wi ≥ 2wi+1), one can show

that every well-formed matching is in fact popular.

We proceed to prove Theorem 1 by breaking it down into Lemmas 1 and 2.

Lemma 1. Let M be a popular matching, then every fi-job p is matched to an
applicant x ∈ Ci where f(x) = p

Proof. By induction on i. For the base case let x ∈ C1 and f(x) = p. For the

sake of contradiction assume p is matched to y and f(y) = p. If y ∈ Cs>1, then

promote x to p and demote y to l(y). The swap improves the satisfaction by

w1 − ws > 0, but this cannot be since M is popular. If y ∈ C1 then promote

x to p and y to f(y), and demote applicant z = M(f(y)). The improvement in

satisfaction is now w1 + w1 − w(z) > 0.

For the inductive case let x ∈ Ci. Assume like before that f(x) = p but

M(p) = y and f(y) = p. If y ∈ Cs>i, then promote x and demote y to get a

change in satisfaction of wi − ws > 0. If y ∈ Cs<i then by induction f(y) is

matched to z ∈ Cs, promoting x to p and y to f(y) while demoting z changes

the satisfaction by wi +ws −ws > 0. Finally, suppose y ∈ Ci. Let z = M(f(y)),

if z ∈ Ci the usual promotions change the satisfaction by wi > 0. Note that if

z ∈ Cs�=i then f(z) = f(y), letting y play the role of x above handles the case.

In every case we reach the contradiction that M is not popular, therefore the

lemma follows. ��

Lemma 2. Let M be a popular matching, then every x ∈ A is matched either
to f(x) or s(x).

Proof. As a corollary of Lemma 1 no applicant x can be matched to a job which

is strictly better than f(x) or in between f(x) and s(x). Hence we just need to

show that x cannot be matched to a job which is strictly worse than s(x). For

the sake of contradiction let us assume this is the case.

Let x ∈ Ci and p = s(x). Note that p must be matched to some applicant y,

otherwise we get an immediate improvement by promoting x to p. If y ∈ Cs>i

then promoting x and demoting y gives us a more popular matching because

wi − ws > 0. Otherwise y belongs to Cs≤i in which case f(y) = p. Lemma 1
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tells us that there exists z ∈ Cs matched to f(y). Promoting x to s(x) and y

to f(y) while demoting z improves the satisfaction by wi + ws − ws > 0. A

contradiction. ��

Let G
′
be a subgraph of G having only those edges between applicants and their

first and second jobs. See the graph on the right of Fig. 1. Theorem 1 tells us that

every popular matching must be contained in G
′
. Ideally we would like every

well-formed matching in G
′
to be popular, unfortunately this is not always the

case. To fix this situation, we will prune some edges from G
′
that cannot be part

of any popular matching. Then we will argue that every well-formed matching

in the pruned graph is popular. In order to understand the intuition behind the

pruning algorithm we need the notion of promotion path.

Definition 2. A promotion path w.r.t. a well-formed matching M is a sequence
p0, x0, . . . , ps, xs, such that pi = f(xi), (xi, pi) ∈M , and for all i < s, applicant
xi prefers pi+1 over pi.

Such a path can be used to free p0 by promoting xi to pi+1, for all i < s,

and leaving xs jobless. We say the cost (in terms of satisfaction) of the path

is w(xs) − w(x0) − . . . − w(xs−1), as everyone gets a better job except xs. To

illustrate this consider the instance in Fig. 1, and the well-formed matching

{(x1, A), (x2, C), (x3, D), (x4, E)}. The sequence D,x3, C, x2, A, x1 is a promo-

tion path with cost w(x1)− w(x2)− w(x3) = 1 that can be used to free D.

To see how promotion paths come into play, let M be a well-formed matching

and M
′
be any other matching. Suppose y prefers M

′
over M , we will construct

a promotion path starting at p0 = M
′
(y). Note that p0 is an f -job and must be

matched in M to x0 such that f(x0) = p0. Thus, our path starts with p0, x0.

To extend the path from xi, check if xi prefers M
′
over M , if that is the case,

pi+1 = M
′
(xi) and xi+1 = M(pi+1), otherwise the path ends at xi. Notice that

if xi ∈ Cs then xi+1 ∈ C<s; this is important as it implies that the path must

eventually end because when we reach xi ∈ C1, M
′
cannot improve on M(xi).

Coming back to y, the applicant who induced the path, note that if w(y) is

greater than the cost of the path, then M is not popular because using the

promotion path and promoting y to p0 gives us a more popular matching. On

the other hand it is easy to see that if for every applicant y, the cost of the path

induced by y is at least w(y), then M
′
is not more popular than M .

The pruning procedure keeps a label λ(p) for every fi-job p. Based on these

labels we will decide which edges to prune. The following invariant states the

meaning these labels carry.

Invariant 1. Let p be an fi-job and M be any well-formed matching contained
in the pruned graph. A minimum cost promotion path out of p w.r.t. M has cost
exactly λ(p).

We now describe the pruning procedure whose pseudo-code is given in Fig. 2.

The algorithm works in iterations. In the ith iteration we do two things. First,

we prune some edges incident to Ci, making sure that these edges do not belong
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prune-strict(G)
1 All f1-jobs get a label of w1.
2 for i = 2 to k
3 for x ∈ Ci

4 if λmin(x, f(x)) < wi

5 then return “no popular matching exists”
6 for p ∈ fi-job
7 let S be the set {x ∈ A|f(x) = p}
8 if S = {x}
9 then λ(p) = min(wi, λmin(x, f(x)) − wi)

10 else λ(p) = wi

11 for x ∈ S such that λmin(x, p) < 2wi

12 prune the edge (x, p)
13 for x ∈ A such that λmin(x, s(x)) < w(x)
14 prune the edge (x, s(x))

Fig. 2. Pruning the graph

to any popular matching. Second, we label all the fi-jobs such that Invariant 1

holds for them. Note that later pruning cannot falsify the invariant for fi-jobs as

promotion paths out of these jobs only use edges incident to applicants in C≤i.
In the first iteration we do not prune any edges. Notice that a promotion path

out of an f1-job must end in its C1 mate, therefore line 1 sets the label of all

f1-jobs to w1.

At the beginning of the ith iteration we know the invariant holds for all

f<i-jobs. Consider an applicant x ∈ Ci. Let q be a job x prefers over f(x). Note

that q must be an f<i-job, therefore, in any well-formed matching included in the

pruned graph the min cost promotion out q has cost λ(q). We can use the path

to free q and then promote x to it, the total change in satisfaction is wi − λ(q).

Therefore, if λ(q) < wi no popular matching exists. Lines 3–5 check for this, the

expression λmin(x, r) is a shorthand notation for minq λ(q) where q is a job x

prefers over r.

Let p be an fi-job and S be the set of applicants in Ci whose first job is p,

also let M be a well-formed matching contained in the pruned graph. Suppose

S consists of just one applicant x, then (x, p) must belong to M . A promotion

path out of p either ends at x or continues with another job which x prefers over

p. Therefore λ(p) = min(wi, λmin(x, f(x))−wi), which must be positive. On the

other hand, if |S| > 1, only one of these applicants will be matched to p while

the rest will get their second job. Suppose M(p) = x ∈ S. Invariant 1 tells us

that there exists a promotion path w.r.t. M out of p with cost λmin(x, p) − wi

that can be used to free p, which in turn allows us promote one of the other

applicants in S − x to p. Therefore if λmin(x, p) < 2wi, M is not popular, which

means the edge (x, p) cannot belong to any popular matching and can safely be

pruned. We set λ(p) = wi because in the pruned graph p can only be matched

to x ∈ S such that λmin(x, p) ≥ 2wi. Lines 6–12 capture exactly this.
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Finally, lines 13–14 prune edges (x, s(x)) that cannot be part of any popular

matching because of promotion paths out of jobs between f(x) and s(x) on x’s

list, with cost λmin(x, s(x)) < wi.

Running the pruning algorithm on the example in Fig. 1, the jobs are labeled

λ(A) = 7, λ(C) = 3, and λ(D) = 2. The only edge pruned is (x3, D) because

both x3 and x4 have D as their first job and λmin(x3, D) = 2 < 4 = 2w(x3).

We have argued that no pruned edge can be present in any popular matching,

let us now show that every well-formed matching M in the pruned graph is

indeed popular. Let M
′

be any other matching, our goal is to show that M
′

is not more popular than M . Suppose x prefers M
′

over M , this induces a

promotion path at M
′
(x) with respect to M . If x gets his first job in M then

the cost of such a path is at least λmin(x, f(x)) ≥ wi. Otherwise, M(x) = s(x)

and lines 13-14 make sure the cost at the promotion path is at least wi. Since

this holds for every applicant x, M
′
cannot be more popular than M .

It is entirely possible that the pruned graph does not contain any well-formed

matching. In this case we know that no popular matching exists.

Theorem 2. In the case of strict preferences lists, we can find a weighted pop-
ular matching, or determine that none exists, in O(n +m) time.

Let G
′

be the graph with edge set {(x, f(x)), (x, s(x)) |x ∈ A}. Assuming the

applicants are already partitioned into categories Ci, we can compute G
′

and

prune it in O(n+m) time. Thus, finding a popular matching reduces to finding

a well-formed matching in G
′
. Abraham et al. [3] showed how to build a well-

formed matching in G
′
, if one exists, within the same time bounds.

Recall that at the beginning we modified the instance by adding a dummy

last resort job at the end of everyone’s list. A natural objective would be to find

a popular matching that minimizes the number of applicants getting a dummy

job. The cited work shows how to do this in O(n +m) time, and thus it carries

over to our problem.

3 Preference Lists with Ties

Needless to say, if ties are allowed in the preference lists, the solution from

the previous section does not work anymore. We will work out an alternative

definition for first and second jobs which will lead to a new definition of well-

formed matchings. Like in the case without ties all popular matchings are well-

formed, but the other way around does not always hold. We will show how to

prune some edges that cannot be part of any popular matching to arrive at the

goal that every well-formed matching in this pruned graph is popular.

Let us start by revising the notion of first job. For x ∈ C1, let f(x) be the

set of jobs on x’s list with the highest rank. Let G1 be the graph with edges

between applicants in C1 and their first jobs. We say a job/applicant is critical
in G1 if it is always matched in every maximum matching of G1. For x ∈ Ci,

we inductively define f(x) as the highest ranked jobs on x’s list which are not

critical in Gi−1. The graph Gi includes Gi−1 and edges between Ci and their first
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jobs. A job/applicant is critical in Gi if it is always matched in every maximum

matching of Gi or was previously declared critical in G<i.

If x ∈ Ci is non-critical in Gi we define s(x) as the highest ranked set of jobs

on x’s list which are not critical in Gi. If x is critical then s(x) is the empty set.

When x is not critical we can show that all the jobs in f(x) are critical, therefore

f(x) and s(x) are always disjoint.

Definition 3. A matching M is well-formed if, for all 1 ≤ i ≤ k, the matching
Mi = M ∩ E[Gi] is maximum in Gi, and every applicant x is matched within
f(x) ∪ s(x).

Note that when there are no ties all these definitions are identical to the ones

given in the previous section. Before proceeding to prove Theorem 1 in the

context of ties we review some basic notions of matching theory.

The following definitions are all with respect to a given matching M . An

alternating path is one that alternates between matched and free edges. An

augmenting path is an alternating path that starts in a free vertex and ends

either in a free vertex or a matched edge
1
. Augmenting along an alternating

path P results in the matching M ⊕ P , the symmetric difference of M and P .

In our proofs we will make use of the following property of non-critical nodes,

which is part of the Gallai-Edmonds decomposition theorem. LetH be a bipartite

graph and v be a vertex such that there exists a maximum matching of H that

leaves v unmatched. Then, in every maximum matching M of H there exists

an alternating path starting at v and ending with a free vertex in the same

side of the bipartition as v. To see why this is true, consider another maximum

matching O which does not use v, then in O ⊕M there must be an alternating

path w.r.t. M of even length that starts at v and ends a free (w.r.t. M) vertex.

Lemma 3. Let M be a popular matching. Then, for all i, Mi = M ∩ E[Gi] is
maximum in Gi.

Proof. As usual, we use induction to prove the lemma. For the base case, suppose

M1 is not maximum, then there must be an augmenting path w.r.t. M1 starting

at x ∈ C1 and ending at p. If p is free in M then we augment along the path to

improve the satisfaction by w1, so let us assume there exists y = M(p). If y ∈

Cs>1 then augmenting and demoting y gives us an improvement in satisfaction of

w1−ws > 0. Suppose then that y ∈ C1, and let q be a job in f(y). Since (y, p) /∈

M1, applicant y must prefer q over p. If the job after x in the augmenting path

is q then we can replace x by y and augment, otherwise we can augment along

the old path and then promote y to q in which case the satisfaction improves by

w1 + w1 − w(M(q)) > 0. In every case we reach the contraction that M is not

popular, thus M1 must be maximum in G1.

For the inductive step, if Mi is not maximum we can find like before an

augmenting path starting at x ∈ Ci and ending at a job p. Assume p is matched

1 Observe that this is slightly different from usual definition that requieres the alter-
nating path to start and end in a free vertex.
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in M to y ∈ Cs≤i (the other cases are similar to the base case). Since (y, p) /∈

Mi, we know by inductive hypothesis that p must be strictly worse than f(y).

We augment along the path to get M
′
, in doing so we leave y unmatched. By

inductive hypothesis Ms is maximum in Gs<i, therefore so is M
′
s.

Let q be a job in f(y), there are three cases to consider. First, if y ∈ C1 then

we can promote y to q and demote whoever is matched to q, the total change in

satisfaction is at least wi+w1−w(M
′
(q)) > 0. Secondly, suppose y ∈ C1<s<i. By

definition of f(y), q is non-critical in Gs−1. Thus we can find an alternating path

in M
′
s−1 starting at q and ending at a free job r. Note that r cannot be free in

M
′
s, otherwise it would not be maximum in Gs, therefore r must be matched in

M
′
to z ∈ Cs. Promoting y to p and augmenting along the path, while demoting

z gives us a change in satisfaction of wi + ws − ws > 0. Finally, we need to

consider the case where y ∈ Ci; we proceed to find z as before, except now z

need not belong to Ci. A similar case analysis as in the proof of Lemma 1 finishes

the argument. ��

Armed with Lemma 3, it is easy to show the second part of the characterization,

which is stated without a proof due to lack of space.

Lemma 4. Let M be a popular matching, then every applicant x is matched
within f(x) ∪ s(x).

This finishes the proof of Theorem 1 under the new definition of well-formed

matching. Thus every popular matching is contained in G
′
, the graph consisting

only of those edges between applicants and their first and second jobs. Since the

new definition generalizes the one from the previous section we again encounter

the problem that not every well-formed matching is popular. We proceed as be-

fore, pruning certain edges which are not part of any popular matching. Finally,

we show that every well-formed matching in the pruned graph is popular.

It is time to revise the definition of promotion path. Let M be a well-formed

matching. Our promotion path starts at p0, a job critical in Gi0 , but non-critical

in Gi0−1. We find an alternating path in Gi0 w.r.t. Mi0 from p0 to x0 which

starts and ends with a matched edge; we augment along the path to get M
′
. Let

p1 be a job which according to x0 is better than f(x0) (or as good, but not in

f(x0)), moreover let p1 be critical in Gi1 , but not in Gi1−1. Since x0 ∈ C>i1 ,

the matching M
′
j is still maximum in Gj≤i1 . Find a similar alternating path in

Gi1 w.r.t. M
′
i1

from p1 to x1, update M
′
, and so on. Finally, every applicant

xi is assigned to pi+1, except for xs, the last applicant in the path, who is left

jobless. The cost of the path is defined as the satisfaction of M with respect to

M
′
, or equivalently, w(xs) minus the weight of those applicants xi<s who like

pi+1 better than f(xi), recall that pi+1 may be as good as, but not in, f(xi).

This is the price to pay, in terms of satisfaction, to free p0 using the path.

To see why this is the right definition, let M be a well-formed matching and

M
′

be any other matching. Suppose y prefers M
′

over M , we will construct

a promotion path starting at p0 = M
′
(y). Since M is well-formed, p0 must be

critical; let i0 be the smallest i such that p0 is critical in Gi. Taking Mi0⊕M
′
i0 we

can find an alternating path that starts with (p0,M(p0)) and ends at x0 which
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is free in M
′
i0

—the path cannot end in a job that is free in Mi0 because p0 is

critical. Either x0 gets a worse job under M
′
, in which case the promotion path

ends, or gets a job p1 which is better than f(x0), or just as good but does not

belong to f(x0). We continue growing the path until we run into an applicant

xs who prefers M over M
′
, notice that since ij > ij+1 we are bound to find such

an applicant. Now, if the cost of the path is less than w(y) then we know the

well-formed matching M is not popular after all. On the other hand, if the cost

of the path induced by y is at least w(y), for all such y, we can claim that M
′

is not more popular than M .

We are ready to discuss the algorithm for pruning the graph in the presence of

ties, which is given in Fig. 3. In the ith iteration we prune some edges incident to

applicants in Ci making sure these edges do not belong to any popular matching,

and label those jobs that became critical in Gi such that Invariant 2 holds for

them.

Invariant 2. Let p be a critical job in Gi, and M be a matching in the pruned
graph, maximum in all G≤i, i.e., Mj = M ∩ E[Gj ] is maximum in Gj for all
j ≤ i. A minimum cost promotion path out of p w.r.t. M has cost exactly λ(p).

In the first iteration we do not prune any edges from G1. Let p be a critical job

in G1, and M be a maximum matching in G1. Every promotion path w.r.t. M

out of p must end in some C1 applicant, therefore, in line 1 we set λ(p) = w1.

For the ith iteration we assume the invariant holds for those jobs critical in

Gi−1. Suppose there exists an applicant x ∈ Ci such that λmin(x, f(x)) < wi.

Then in every well-formed matching in the pruned graph we can use a promotion

path to free a job which x prefers over f(x), and then promote x to that job.

This improves the satisfaction by wi − λmin(x, f(x)) > 0. Therefore, no popular

matching exists. Lines 3–5 check for this.

Pick an arbitrary matching M in the pruned graph, maximum in all G≤i. Let

x ∈ Cj≤i be such that there exists an alternating path w.r.t. M from x to a free

applicant y ∈ Ci. Furthermore, suppose λmin(x, f(x)) < wj +wi or minq λ(q) <

wi where q is a job not in f(x), but as good as f(x). Now let O be a matching

in the pruned graph, also maximum in all G≤i. Suppose O(x) ∈ f(x). We know

there is an augmenting path w.r.t. O from x to some applicant y
′
, note that

w(y
′
) ≥ wi. Augment along the path to get O

′
. While the matching O

′
may not

be maximum in Gj (if w(x) < w(y
′
)), it is still maximum in all G<j . Invariant 2

tells us we can find a promotion path to free a certain job that x will be promoted

to. Theses changes improve the satisfaction of the matching, therefore O cannot

be popular, thus x cannot be matched within f(x) in any popular matching. If

x ∈ Ci then the edges from x to f(x) can be safely pruned. On the other hand,

if x ∈ Cj<i, then x must be critical (otherwise we would have pruned the edges

(x, f(x)) in the jth iteration) in which case there is no hope of finding a popular

matching. Lines 6–10 check for this.

Finally, we must compute λ(p) for jobs p that are critical in Gi but not in

Gi−1. A promotion path out of p must begin with an alternating path starting

and ending with a matched edge, going from p to some applicant x. It is not

hard to see that there is always such an alternating path to somebody in Ci,
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prune-ties(G)
1 All critical jobs in G1 get a label of w1.
2 for i = 2 to k
3 for x ∈ Ci

4 if λmin(x, f(x)) < wi

5 then return “no popular matching exists”
6 for x ∈ Cj≤i having an alternating path to a free applicant y ∈ Ci

7 and λmin(x, f(x)) < wj + wi or min q /∈f(x)
as good as f(x)

λ(q) < wi

8 if x ∈ Ci

9 then prune edges between x and f(x)
10 else return “no popular matching exists”
11 for p critical in Gi, but non-critical in Gi−1

12 let S = {x | ∃ alternating path from x to p}
13 λ(p) = minx∈S

{
wi, λmin(x, f(x)) − wi, min q /∈f(x)

as good as f(x)
λ(q)
}

14 for x ∈ A such that λmin(x, s(x)) < w(x)
15 prune the edges between x and s(x)

Fig. 3. Pruning the graph

thus λ(p) ≤ wi. Note that if x ∈ Cj is non-critical then λmin(x, f(x)) ≥ wj +

wi and min q /∈f(x)
as good as f(x)

λ(q) ≥ wi, otherwise the edges (x, f(x)) would have beeen

pruned earlier. We shall only explore alternating paths to critical applicants in

some arbitrary matching M included in the pruned graph which is maximum

in all G≤i. In fact we only care about reaching a critical applicant x ∈ Cj with

λmin(x, f(x)) < wj +wi or min q /∈f(x)
as good as f(x)

λ(q) < wi, as wi is already given for λ(p).

Since M is an arbitrary matching, we would like to claim that a similar path

can always be found in any other matching O included in the pruned graph,

maximum in all G≤i. To show this, augment along the path to get M
′
i , the

resulting matching is not maximum in Gi any more. Take M
′
i ⊕O, and consider

the alternating path out of p. This path must end at an applicant y, matched in

Oi, but free inM
′
i—otherwise, if it ends in a job free inOi, the job p is not critical.

For the sake of contradiction suppose that y = x. Since x is critical, there must

be a path in M
′
i ⊕Oi from x to y

′
, free in Oi. In order for O to be maximal in all

G≤i and x critical we must have w(y
′
) < w(x). But since wi ≤ w(y

′
), this kind of

path should have been found before in lines 6–9, we have reached a contradiction.

Thus we set λ(p) to the minimum of λmin(x, f(x)) − wi or min q /∈f(x)
as good as f(x)

λ(q), for

those applicants x that can be reached from p with an alternating path. Lines

11–13 do this.

The last thing to consider are non-critical applicants x who may get their

second job. We can promote them to a job p strictly better than s(x) and

start a promotion path from there. If such exchange improves the satisfac-

tion then the edges (x, s(s)) must be pruned. This is done in lines 14–15.
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Theorem 3. In the presence of ties we can find a weighted popular matching
or determine that none exists in O(min(k

√

n, n)m) time.

Due to lack of space the implementation details and the complexity analysis of

the algorithm are deferred to the journal version of this paper.

4 Conclusion

We have developed efficient algorithms for finding weighted popular matchings,

a natural generalization of popular matchings. It would be interesting to study

other definitions of the more popular than relation. For example, define the satis-

faction of M over R to be the sum (or any linear combination) of the differences

of the ranks of the jobs each applicant gets in M and R. Finding a popular

matching under this new definition can be reduced to maximum weight match-

ing, and vice versa. Defining the satisfaction to be a linear combination of the

sign of the differences we get weighted popular matchings. We leave as an open

problem to study other definitions that use a function “in between” these two

extremes. Ideally, we would like to have efficient algorithms that can handle any

odd step function.

Acknowledgment. Many thanks to Samir Khuller for suggesting the notion of

weighted popular matchings and providing comments on earlier drafts.
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