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Abstract. This work concerns the computational complexity of a model
of computation that is inspired by optical computers. The model is called
the continuous space machine and operates in discrete timesteps over a
number of two-dimensional images of fixed size and arbitrary spatial res-
olution. The (constant time) operations on images include Fourier trans-
formation, multiplication, addition, thresholding, copying and scaling.
We survey some of the work to date on the continuous space machine.
This includes a characterisation of the power of an important discrete
restriction of the model. Parallel time corresponds, within a polynomial,
to sequential space on Turing machines, thus satisfying the parallel com-
putation thesis. A characterisation of the complexity class NC in terms
of the model is also given. Thus the model has computational power that
is (polynomially) equivalent to that of many well-known parallel models.
Such characterisations give a method to translate parallel algorithms to
optical algorithms and facilitate the application of the complexity the-
ory toolbox to optical computers. In the present work we improve on
these results. Specifically we tighten a lower bound and present some
new resource trade-offs.

1 Introduction

Over the years, optical computers were designed and built to emulate conven-
tional microprocessors (digital optical computing), and for image processing over
continuous wavefronts (analog optical computing). Here we are interested in the
latter class: optical computers that store data as images. Numerous physical
implementations exist and example applications include fast pattern recognition
and matrix-vector algebra [9,24]. There have been much resources devoted to
designs, implementations and algorithms for such optical information processing
architectures (for example see [1,4,6,9,12,13,14,15,22,24,31] and their references).
However the computational complexity theory of optical computers1 has received
1 That is, finding lower and upper bounds on computational power in terms of known

complexity classes.
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relatively little attention when compared with other nature-insired computing
paradigms. Some authors have even complained about the lack of suitable mod-
els [6,13].

We investigate the computational complexity of a model of computation
that is inspired by such optical computers. The model is relatively new and is
called the continuous space machine (CSM) [16,17,18,26,27,28,29,30]. The model
was originally proposed by Naughton [16,17]. The CSM computes in discrete
timesteps over a number of two-dimensional images of fixed size and arbitrary
spatial resolution. The data and program are stored as images. The (constant
time) operations on images include Fourier transformation, multiplication, addi-
tion, thresholding, copying and scaling. We analyse the model in terms of seven
complexity measures inspired by real-world resources.

Subsequent to the original [17] CSM definition, Naughton [16] showed that
the CSM (sequentially) simulates Turing machines, with a constant factor slow-
down in time, thus giving a lower bound on its computational power. Later it
was shown [18] that the model could simulate Type-2 Turing machines [25]. It
was also shown that the CSM definition was perhaps too general as there is an
ω-language that is Type-2 (and Turing machine) undecidable, but is CSM de-
cidable [18], and furthermore any language is decided in finite time (and infinite
space) [30]. In this paper we mostly focus on computational complexity results
for a restricted CSM called the C2-CSM. Section 2 surveys some of the work to
date on the model. This includes an analysis of complexity resources relevant to
the CSM. Optical information processing is a highly parallel form of computing
and we have made this intuition more concrete by relating the C2-CSM to par-
allel complexity theory. We discuss characterisations of C2-CSM computational
power in terms of sequential space complexity classes and NC. Section 3 presents
a new result that improves the lower bound for C2-CSM simulation of sequential
space.

2 CSM and C2-CSM

We begin by describing the model in its most general sense, this brief overview
is not intended to be complete and more details are to be found in [26].

2.1 CSM

A complex-valued image (or simply, image) is a function f : [0, 1)× [0, 1) → C,
where [0, 1) is the half-open real unit interval. We let I denote the set of complex-
valued images. Let N+ = {1, 2, 3, . . .}, N = N+ ∪ {0}, and for a given CSM M
let N be a countable set of images that encode M ’s addresses. Additionally, for a
given M there is an address encoding function E : N → N such that E is Turing
machine decidable, under some reasonable representation of images as words. An
address is an element of N× N.
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Definition 1 (CSM). A CSM is a quintuple M = (E, L, I, P,O), where
E : N → N is the address encoding function,
L = ((sξ, sη) , (aξ, aη) , (bξ, bη)) are the addresses: sta, a and b, where a �= b,
I and O are finite sets of input and output addresses, respectively,
P = {(ζ1, p1ξ

, p1η), . . . , (ζr, prξ
, prη)} are the r programming symbols ζj and

their addresses where ζj ∈ ({h, v, ∗, ·,+, ρ, st, ld, br, hlt} ∪ N ) ⊂ I.

Each address is an element from {0, . . . , Ξ−1}×{0, . . . ,Y−1} where Ξ,Y ∈ N+.

Addresses whose contents are not specified by P in a CSM definition are assumed
to contain the constant image f(x, y) = 0. We interpret this definition to mean
that M is (initially) defined on a grid of images bounded by the constants Ξ
and Y, in the horizontal and vertical directions respectively. The grid of images
may grow in size as the computation progresses.

In our grid notation the first and second elements of an address tuple refer
to the horizontal and vertical axes of the grid respectively, and image (0, 0) is
located at the lower left-hand corner of the grid. The images have the same
orientation as the grid. For example the value f(0, 0) is located at the lower
left-hand corner of the image f .

In Definition 1 the tuple P specifies the CSM program using programming
symbol images ζj that are from the (low-level) CSM programing language [26,30].
We refrain from giving a description of this programming language and instead
describe a less cumbersome high-level language [26]. Figure 1 gives the basic
instructions of this high-level language. The copy instruction is illustrated in
Figure 3. There are also if/else and while control ow instructions with con-
ditions of the form (fψ == fφ) where fψ and fφ are binary symbol images (see
Figures 2(a) and 2(b)).

Address sta is the start location for the program so the programmer should
write the first program instruction at sta. Addresses a and b define special im-
ages that are frequently used by some program instructions. The function E
is specified by the programmer and is used to map addresses to image pairs.
This enables the programmer to choose her own address encoding scheme. We
typically don’t want E to hide complicated behaviour thus the computational
power of this function should be somewhat restricted. For example we put such
a restriction on E in Definition 7. Configurations are defined in a straightforward
way as a tuple 〈c, e〉 where c is an address called the control and e represents
the grid contents.

2.2 Complexity Measures

Next we define some CSM complexity measures. All resource bounding functions
map from N into N and are assumed to have the usual properties [2]. Logarithms
are to the base 2.

Definition 2. The time complexity of a CSM M is the number of configura-
tions in the computation sequence of M , beginning with the initial configuration
and ending with the first final configuration.

lf
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h(i1;i2) : replace image at i2 with horizontal 1D Fourier transform of i1.
v(i1;i2) : replace image at i2 with vertical 1D Fourier transform of image at i1.
∗(i1;i2) : replace image at i2 with the complex conjugate of image at i1.
··· (i1,i2;i3) : pointwise multiply the two images at i1 and i2. Store result at i3.
+(i1,i2;i3) : pointwise addition of the two images at i1 and i2. Store result at i3.
ρ(i1,zl,zu;i2) : filter the image at i1 by amplitude using zl and zu as lower and upper

amplitude threshold images, respectively. Place result at i2.
[ξ′

1, ξ
′
2, η

′
1, η

′
2] ← [ξ1, ξ2, η1, η2] : copy the rectangle of images whose bottom left-hand

address is (ξ1, η1) and whose top right-hand address is (ξ2, η2) to the
rectangle of images whose bottom left-hand address is (ξ′

1, η
′
1) and whose

top right-hand address is (ξ′
2, η

′
2). See illustration in Figure 3.

Fig. 1. CSM high-level programming language instructions. In these instructions
i, zl, zu ∈ N × N are image addresses and ξ, η ∈ N. The control flow instructions are
described in the main text.

(a) (b) (c) (d) (e) (f)

Fig. 2. Representing binary data. The shaded areas denote value 1 and the white areas
denote value 0. (a) Binary symbol image representation of 1 and (b) of 0, (c) list (or
row) image representation of the word 1011, (d) column image representation of 1011,
(e) 3× 4 matrix image, (e) binary stack image representation of 1101. Dashed lines are
for illustration purposes only.

Definition 3. The grid complexity of a CSM M is the minimum number of
images, arranged in a rectangular grid, for M to compute correctly on all inputs.

Let S : I × (N × N) → I, where S(f(x, y), (Φ, Ψ)) is a raster image, with ΦΨ
constant-valued pixels arranged in Φ columns and Ψ rows, that approximates
f(x, y). If we choose a reasonable and realistic S then the details of S are not
important.

Definition 4. The spatialRes complexity of a CSM M is the minimum ΦΨ
such that if each image f(x, y) in the computation of M is replaced with
S(f(x, y), (Φ, Ψ)) then M computes correctly on all inputs.

Definition 5. The dyRange complexity of a CSM M is the ceiling of the max-
imum of all the amplitude values stored in all of M ’s images during M ’s com-
putation.

We also use complexity measures called amplRes, phaseRes and freq [26,30].
Roughly speaking, the amplRes of a CSM M is the number of discrete, evenly
spaced, amplitude values per unit amplitude of the complex numbers in the range
of M ’s images. The phaseRes of M is the total number (per 2π) of discrete
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ξ ξ + 3

η
i

Fig. 3. Illustration of the instruction i ← [ξ, ξ + 3, η, η] that copies four images to a
single image that is denoted i

evenly spaced phase values in the range of M ’s images. freq is a measure of the
optical frequency of M ’s images [30].

Often we wish to make analogies between space on some well-known model
and CSM ‘space-like’ resources. Thus we define the following convenient term.

Definition 6. The space complexity of a CSM M is the product of all of M ’s
complexity measures except time.

2.3 Representing Data as Images

There are many ways to represent data as images. Here we mention some data
representations that are commonly used and moreover are used in Section 3.
Figures 2(a) and 2(b) are the binary symbol image representations of 1 and 0
respectively. These images have an everywhere constant value of 1 and 0 respec-
tively, and both have spatialRes of 1. The row and column image represen-
tations of the word 1011 are respectively given in Figures 2(c) and 2(d). These
row and column images both have spatialRes of 4. In the matrix image repre-
sentation in Figure 2(e), the first matrix element is represented at the top left
corner and elements are ordered in the usual matrix way. This 3×4 matrix image
has spatialRes of 12. Finally the binary stack image representation, which has
exponential spatialRes of 16, is given in Figure 2(f). Section 3.1 discusses the
manipulation of stack images.

Figure 3 shows how we might form a list image by copying four images to
one in a single timestep. All of the above mentioned images have dyRange,
amplRes and phaseRes of 1.

2.4 Worst Case CSM Resource Usage

For the case of sequential computation it is usually obvious how the execution of a
single operation will effect resource usage. In parallel models, execution of a single
operation can lead to large growth in a single timestep. Characterising resource
growth is useful for proving upper bounds on power and choosing reasonable
model restrictions.

We investigated the growth of complexity resources over time, with respect to
CSM operations [26,28]. As expected, under certain operations some measures
do not grow at all. Others grow at rates comparable to massively parallel models.
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Table 1. CSM resource usage after one timestep. For a given operation and complexity
measure pair, the relevant table entry defines the worst case CSM resource usage at
time T + 1, in terms of the resources used at time T . At time T we have grid = GT ,
spatialRes = Rs,T , amplRes = Ra,T , dyRange = Rd,T , phaseRes = Rp,T and
freq = νT .

grid spatialRes amplRes dyRange phaseRes freq
h GT ∞ ∞ ∞ ∞ ∞
v GT ∞ ∞ ∞ ∞ ∞
∗ GT Rs,T Ra,T Rd,T Rp,T νT

· GT Rs,T (Ra,T )2 (Rd,T )2 Rp,T νT

+ GT Rs,T ∞ 2Rd,T ∞ νT

ρ unbounded Rs,T Ra,T Rd,T Rp,T νT

st unbounded Rs,T Ra,T Rd,T Rp,T νT

ld unbounded unbounded Ra,T Rd,T Rp,T unbounded
br GT Rs,T Ra,T Rd,T Rp,T νT

hlt GT Rs,T Ra,T Rd,T Rp,T νT

By allowing operations like the Fourier transform we are mixing the continuous
and discrete worlds, hence some measures grow to infinity in one timestep. This
gave strong motivation for CSM restrictions.

Table 1 summarises these results; the table defines the value of a complexity
measure after execution of an operation (at time T + 1). The complexity of
a configuration at time T + 1 is at least the value it was at time T , since
complexity functions are nondecreasing. Our definition of time assigns unit time
cost to each operation, hence we do not have a time column. Some entries are
immediate from the complexity measure definitions, for others proofs are given
in the references [26,28].

2.5 C2-CSM

Motivated by a desire to apply standard complexity theory tools to the model,
we defined [26,28] the C2-CSM, a restricted and more realistic class of CSM.

Definition 7 (C2-CSM). A C2-CSM is a CSM whose computation time is de-
fined for t ∈ {1, 2, . . . , T (n)} and has the following restrictions:

– For all time t both amplRes and phaseRes have constant value of 2.
– For all time t each of grid, spatialRes and dyRange is O(2t) and space

is redefined to be the product of all complexity measures except time and
freq.

– Operations h and v compute the discrete Fourier transform (DFT) in the
horizontal and vertical directions respectively.

– Given some reasonable binary word representation of the set of addresses N ,
the address encoding function E : N → N is decidable by a logspace Turing
machine.
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Let us discuss these restrictions. The restrictions on amplRes and phaseRes
imply that C2-CSM images are of the form f : [0, 1)×[0, 1)→{0,± 1

2 ,±1,± 3
2 , . . .}.

We have replaced the Fourier transform with the DFT [3], this essentially means
that freq is now solely dependent on spatialRes; hence freq is not an in-
teresting complexity measure for C2-CSMs and we do not analyse C2-CSMs in
terms of freq complexity [26,28]. Restricting the growth of space is not unique
to our model, such restrictions are to be found elsewhere [8,19,21].

In Section 2.1 we stated that the address encoding function E should be
Turing machine decidable, here we strengthen this condition. At first glance
sequential logspace computability may perhaps seem like a strong restriction,
but in fact it is quite weak. From an optical implementation point of view it
should be the case that E is not complicated, otherwise we cannot assume fast
addressing. Other (sequential/parallel) models usually have a very restricted ‘ad-
dressing function’: in most cases it is simply the identity function on N. Without
an explicit or implicit restriction on the computational complexity of E, find-
ing non-trivial upper bounds on the power of C2-CSMs is impossible as E could
encode an arbitrarily complex halting Turing machine. As a weaker restriction
we could give a specific E. However, this restricts the generality of the model
and prohibits the programmer from developing novel, reasonable, addressing
schemes.

2.6 C2-CSM and Parallel Complexity Theory

We have given lower bounds on the computational power of the C2-CSM by
showing that it is at least as powerful as models that verify the parallel com-
putation thesis [26,29]. This thesis [5,7] states that parallel time corresponds,
within a polynomial, to sequential space for reasonable parallel models. See, for
example, [10,11,19,23] for details. Let S(n) be a space bound that is Ω(log n).
The languages accepted by nondeterministic Turing machines in S(n) space are
accepted by C2-CSMs computing in time O(S4(n)).

Theorem 1 ([26,29]). NSPACE(S(n)) ⊆ C2-CSM–TIME(O(S4(n)))

For example polynomial time C2-CSMs accept the PSPACE languages. (Of
course any polynomial time C2-CSM algorithm that we could presently write
to solve PSPACE-complete or NP-complete problems would require exponen-
tial space.) Theorem 1 is established via C2-CSM simulation of vector ma-
chines [2,20,21]. In the simulation the space overhead is polynomial in vector
machine space. Using this fact we find that C2-CSMs that simultaneously use
polynomial space and polylogarithmic time accept the class NC.

Corollary 1 ([26,29]). NC ⊆ C2-CSM–SPACE,TIME(nO(1), logO(1) n)

We have also given the other of the two inclusions that are necessary in order to
verify the parallel computation thesis; C2-CSMs computing in time T (n) are no
more powerful than O(T 2(n)) space bounded deterministic Turing machines.
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Theorem 2 ([26,27]). C2-CSM-TIME(T (n)) ⊆ DSPACE(O(T 2(n)))

Via the proof of Theorem 2 we get another (stronger) result. C2-CSMs that simul-
taneously use polynomial space and polylogarithmic time accept at most NC.

Corollary 2 ([26,27]). C2-CSM-SPACE,TIME(nO(1), logO(1) n) ⊆ NC

The latter two inclusions are established via C2-CSM simulation by logspace uni-
form circuits of size and depth polynomial in space and time respectively. Thus
C2-CSMs that simultaneously use both polynomial space and polylogarithmic
time characterise NC.

It turns out that the C2-CSM simulation of sequential space can be made
more efficient. Theorem 3 in the next section improves the lower bound given
by Theorem 1.

3 Improved C2-CSM Lower Bound

In this section we improve the lower bound given by Theorem 1 by proving the
following result.

Theorem 3. NSPACE(S(n)) ⊆ C2-CSM–TIME(O(S2(n)))

Moreover the grid and dyRange complexities are both reduced from O(2S(n))
to O(1). However we see a trade-off here as the reduction in grid and dyRange
is swapped for an increase2 in spatialRes from O(2S(n)) to O(23S(n)S3). Thus
the space overhead in Theorem 3 has not decreased, nevertheless the trade-off is
interesting. Also the simulation is achieved3 with amplRes of 1 and phaseRes
of 1. In summary, we have tightened the relationship between the C2-CSM and
sequential space:

Corollary 3

NSPACE(S(n)) ⊆ C2-CSM–TIME(O(S(n))2) ⊆ DSPACE(O(S(n))4)

We prove Theorem 3 by giving a C2-CSM that efficiently generates (Lemma 1)
and squares (Lemma 2) the transition matrix of a S(n)=Ω(log n) space bounded
Turing machine.

We assume that Turing machines have a single tape, use only binary tape
symbols {0, 1} and are nondeterministic. At each timesstep the tape head moves
either left (denoted L) or right (denoted R). The proofs below are sketched in
the sense that we refrain from giving explicit code.
2 On a technical note we are abusing notation here. C2-CSMs are defined to use

spatialRes O(2t) after t timesteps. To save the reader the burden of new notation
we overload the notation “C2-CSM” by using it to also describe machines that are
C2-CSMs except for the fact that they have a O(2O(1)t) upperbound on spatialRes.
Although we omit the details, we note that Theorem 2 and Corollary 2 still hold for
such (more general) definitions of C2-CSM.

3 This is in contrast to the proof of the previous lower bound proof [26,29] where
amplRes and phaseRes were both 2. Subtraction (via addition of negative numbers)
and devision by 2 (via multiplication by 1/2) are not needed in the present proof.
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3.1 Iteration

In order to bound iterative loops we use a ‘counter image’. In previous work
[26,29] we used an image with value/range of k (and thus of dyRange k) as a
counter for k iterations. At each iteration the counter image is decremented by 1
(by adding an image of value −1), and tested for equality with 0 (by addressing).

Here we are restricted to constant dyRange so a different approach is adopted.
Our counter image for value k is a unary stack image that represents 1k. A unary
stack image is just like the binary stack illustrated in Figure 2(e) except that the
represented word is a list of ones. To access the ith bit in a stack image we ‘pop’ the
stack i times. Popping involves spreading the stack over two horizontally adjacent
images, the leftmost image now contains the topmost stack element, the rightmost
image contains the remainder of the stack. Popping the stack in this way uses
grid O(1) and time O(k) to pop the entire stack. After each pop we test if the
popped element is 0 by addressing, this happens only on pop k+1. The unary stack
image representation requires spatialRes of O(2k), and amplRes, phaseRes
and dyRange of 1.

In the sequel we simply write S(n) as S. In the proof of Lemma 1 below all
loops run for S or logS iterations. Thus their counter images have spatialRes
of O(2S), which is no more than the spatialRes of other parts of the algorithm.
A similar argument holds for Lemma 2.

3.2 Generating the Transition Matrix

The configuration graph of a space bounded Turing machine M is a graph with
exactly one node for each configuration of M . There is a path from node i
to node j iff configuration ci leads to configuration cj in exactly one step via
some transition rule of M (formally we write ci �M cj). On input w, given the
pair of nodes corresponding to the (unique) initial and accepting configurations,
simulating the computation of M(w) is the same as asking if there is a path
from the initial node to the accepting node. We simulate M by computing the
reflexive transitive closure of the transition graph. To do this we represent the
graph by a binary matrix which we call the transition matrix of M . There is one
row (respectively column) for each node. Entry (i, j) is 1 iff there is a path from
node i to node j. The reflexive transitive closure is computed by squaring the
matrix a number of times that is logarithmic in the number of nodes. Motivations
and further details are to be found in van Emde Boas’ survey [23].

We begin by constructing the binary transition matrix.

Lemma 1. Let M be a Turing machine that accepts L ∈ {0, 1}∗ in space S = 2i

for some i ∈ N. Then there is a C2-CSM that generates the transition ma-
trix of M in time O(S), spatialRes O(22SS2), grid O(1), dyRange O(1),
amplRes 1 and phaseRes 1.

Proof (sketch). Let Q be the states of M and t = (qx, σ1, σ2, D, qy) be an ar-
bitrary transition rule of M , with initial state qx, next state qy, read symbol
σ1 ∈ {0, 1}, write symbol σ2 ∈ {0, 1}, and tape head move direction D ∈ {L,R}.
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Before generating the matrix we precompute some special images.
A Turing machine tape word is represented in a straightforward way as a

binary list image. We quickly generate all 2S possible words of length S in time
O(log S)2 and spatialRes O(2SS). The output, denoted TapesVertical, is a list-
matrix image with 2S rows and S columns, where each row represents a unique
tape word. To do this we use an algorithm that (recursively) generates the matrix
image TapesVerticals/2 of all words of length S/2. We let f = TapesVerticals/2
then the following is repeated logS times: place one copy of f immediately
above another, scale the two to one image, call the new image f . After this
repeated scaling f contains S copies of TapesVerticals/2. We place f immediately
to the right of TapesVerticals/2 and the two are scaled to a single image to give
TapesVertical.

We generate the image TapesHorizontal that represents each possible tape
word repeated S times. More precisely, TapesHorizontal is the list image repre-
sentation of the binary word

(0S)S(0S−11)S(0S−210)S(0S−211)S . . . (1S)S

TapesHorizontal is generated in time O(S) and spatialRes O(2SS2) from
TapesVertical by copying and shifting subimages, the details are omitted.

A tape head position k ∈ {1, . . . , S} is encoded as the list image representation
of the word 0k−110S−k. There are S such words and we generate these in time
O(log S) and spatialRes O(S2) by copying and scaling. The output P is a S×S
matrix image with ones on the diagonal (Pi,i = 1) and zeros elswhere. Each row
represents a unique tape head position. The image PositionsVertical consists of
2S vertically juxtaposed copies of P and is easily generated in time O(S).

We generate the image PositionsHorizontal that represents the list of all pos-
sible position words, repeated 2S times. More precisely, PositionsHorizontal is
the list image representation of the binary word

(
(10S−1)(010S−2)(0010S−3) . . . (0S−11)

)2S

PositionsHorizontal is generated in time O(S) and spatialRes O(2SS2) from
PositionsVertical by copying and shifting subimages, the details are omitted.

Finally we precompute the image PR which is identical to P except that the
represented tapes have their head positions moved one cell to the right (if the
head was on the rightmost tape cell then it is moved to the leftmost tape cell).

We are now ready to generate the transition matrix. The Turing machine has
at most 8|Q|2 transition rules. For simplicity we assume that all 8|Q|2 possible
transition rules are explicitly given. We begin by generating the transition matrix
for one of these transition rules t that changes the machine from state q� to
state qm as follows: t = (q�, 1, 1, R, qm). Thus we are generating a matrix image
that represents a binary matrix with entry (i, j) equal to 1 iff ci � cj via t.

First we generate a column image, denoted σ̄1, with entry i ∈ {1, . . . , 2SS}
equal to 1 iff the read symbol of ci is σ1 = 1. We use PositionsVertical as a mask
to isolate the read symbols from TapesVertical; that is we pointwise multiply
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PositionsVertical and TapesVertical in time O(1). The resulting matrix is called
MaskedReadSymbols. We vertically split MaskedReadSymbols into a left image
and a right image, pointwise add the two, and repeat; after logS iterations the
output is the column image σ̄1.

Secondly we generate a row image, denoted σ̄2, where entry j ∈ {1, . . . , 2SS}
is 1 iff the write symbol of cj is σ2 = 1. We use PositionsHorizontal as a mask to
isolate the write symbols from TapesHorizontal; that is we pointwise multiply
PositionsHorizontal and TapesHorizontal in time O(1). The resulting matrix
is called MaskedWriteSymbols. We ‘shuffle’ this row of 2S lists to a column
of 2S lists, that is we repeat the following S times: vertically split into a left
image and a right image, place the left image above the right and scale to one
image. Then we vertically split the result (in half) into a left image and a right
image, pointwise add the two, and repeat for a total of logS iterations. We then
‘unshuffle’ this column to a row in time O(S) to get σ̄2.

Thirdly we generate a 2SS×2SS binary matrix image called positions, where
entry (i, j) is 1 iff the tape head position on configuration ci, after a move to
the right (recall D = R), is equal to the tape head position of configuration cj .
To do this we generate P ′

R which is a S × S2 matrix image with S copies of PR

side by side. We then pointwise multiply P ′
R by the row image that represents

(10S−1)(010S−2)(0010S−3) . . . (0S−11)

The result of this multiplication is a S × S2 matrix image. Then (using the
technique of shuffling and adding mentioned above) this S × S2 matrix image
is ‘shuffled’ logS times, vertically split and added logS times, and ‘unshuffled’
logS times. The resulting S × S matrix image is replicated 22S times to create
a ‘square’ 2SS × 2SS matrix image denoted positions.

We pointwise multiply σ̄1, σ̄2 and positions in time O(1), and threshold be-
tween 0 and 1, to get a 2SS×2SS binary matrix image. Entry (i, j) of this matrix
image is 1 iff ci yields cj in one step under the read symbol 1, write symbol 1
and tape head direction R.

This above procedure is repeated 8 times with different values for the triple
(σ1, σ2, D) where σ1, σ2 ∈ {0, 1} and D ∈ {L,R}. The resulting 8 matrix images
are pointwise added in time O(1) to give a matrix image denoted B. Entry (i, j)
inB is 1 iff ci yields cj in one step under any (σ1, σ2, D). We then create a |Q|×|Q|
matrix image where entry (i, j) is 1 iff state qi yields qj via some transition rule
(this can be computed sequentially in a straightforward way in time O(|Q|2), or
in parallel time O(log |Q|) using techniques similar to those above). We multiply
this by a 2SS|Q| × 2SS|Q| matrix image that consists of |Q|2 copies of B. The
result is the binary matrix image that represents the transition matrix of M . �


3.3 Squaring the Transition Matrix

Lemma 2. Let n be a power of 2 and let A by a n × n binary matrix. The
matrix A2 is computed by a C2-CSM, using the matrix image representation, in
time O(log n), spatialRes O(n3), grid O(1), dyRange O(1), amplRes 1
and phaseRes 1.
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Proof (sketch). In this proof the matrix, and its matrix image representation are
both denoted A. We being with some precomputation, then one parallel point-
wise multiplication step followed by logn additions completes the algorithm.

We generate the matrix image A1 that consists of n vertically juxtaposed
copies of A. This is computed by placing one copy of A above the other, scaling
to one image, and repeating to give a total of logn iterations. The image A1 is
constructed in time O(log n), grid O(1) and spatialRes O(n3).

Next we transpose A to the column image A2. The first n elements of A2 are
row 1 of A, the second n elements of A2 are row 2 of A, etc. This is computed
in time O(log n), grid O(1) and spatialRes O(n2) as follows.

Let A′ = A and i = 2n. We horizontally split A′ into a left image A′
L and

a right image A′
R. Then A′

L is pointwise multiplied (or masked) by the column
image that represents (10)i, in time O(1). Similarly A′

R is pointwise multiplied
(or masked) by the column image that represents (01)i. The masked images are
added. The resulting image has half the number of columns as A′ and double the
number of rows, and for example: row 1 consists of the first half of the elements
of row 1 of A′ and row 2 consists of the latter half of the elements of row 1 of A′.
We call the result A′ and we double the value of i. We repeat the process to give
a total of logn iterations. After these iterations the resulting column image is
denoted A2.

We pointwise multiply A1 and A2 to give A3 in time O(1), grid O(1) and
spatialRes O(n3).

To facilitate a straightforward addition we first transpose A3 in the following
way: A3 is vertically split into a bottom and a top image, the top image is
placed to the left of the bottom and the two are scaled to a single image, this
splitting and scaling is repeated to give a total of logn iterations and we call the
result A4. Then to perform the addition, we vertically split A4 into a bottom
and a top image. The top image is pointwise added to the bottom image and the
result is thresholded between 0 and 1. This splitting, adding and thresholding is
repeated a total of logn iterations to create A5. We ‘reverse’ the transposition
that created A4: image A5 is horizontally split into a left and a right image, the
left image is placed above the right and the two are scaled to a single image,
this splitting and scaling is repeated a total of logn iterations to give A2. �


3.4 Proof of Main Result

At this point we have all the main ingredients for the proof of Theorem 3 which
goes as follows. Using Lemma 1 we generate the 2SS|Q| × 2SS|Q| binary transi-
tion matrix within the stated resource bounds. We put ones on the diagonal of
this matrix by pointwise adding it to the 2SS|Q| × 2SS|Q| identity matrix and
thresholding the result between 0 and 1, all in constant time (however generating
the identity matrix takes time O(S)). In time O(S2) we compute the reflexive
and transitive closure of this matrix by squaring it O(S) times via Lemma 2. In
terms of M ’s input length n, the overall time is O(S2(n)) and both spatialRes
and space are O(23S(n)S3(n)).
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