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Abstract
A challenge for climate impact studies is the identification of a sub-set of climate
model projections from the many typically available. Sub-selection has potential
benefits, including making large datasets more meaningful and uncovering under-
lying relationships. We examine the ability of seven sub-selection methods to
capture low flow and drought characteristics simulated from a large ensemble of
climate models for two catchments. Methods include Multi-Cluster Feature Se-
lection (MCFS), Unsupervised Discriminative Features Selection (UDFS),
Diversity-Induced Self-Representation (DISR), Laplacian score (LScore), Structure
Preserving Unsupervised Feature Selection (SPUFS), Non-convex Regularized
Self-Representation (NRSR) and Katsavounidis–Kuo–Zhang (KKZ). We find that
sub-selection methods perform differently in capturing varying aspects of the
parent ensemble, i.e. median, lower or upper bounds. They also vary in their
effectiveness by catchment, flow metric and season, making it very difficult to
identify a best sub-selection method for widespread application. Rather, re-
searchers need to carefully judge sub-selection performance based on the aims
of their study, the needs of adaptation decision making and flow metrics of
interest, on a catchment by catchment basis.
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1 Introduction

General Circulation Models (GCMs) are essential for studying changes in the climate
system and informing adaptation. However, the unknown trajectory of future emis-
sions, differences in the sensitivity of GCMs to anthropogenic forcing and the chaotic
nature of the climate system, mean model projections are subject to much uncertainty
(Knutti et al., 2010). Best practice dictates that impact analyses adequately account for
uncertainty (Clark et al., 2016). Hence output from large-scale model experiments –
comprising simulations from multi-model and/or perturbed physics ensembles – e.g.
CMIP (Coupled Model Intercomparison Project; Taylor et al., 2012), CORDEX
(Giorgi et al., 2009) and climateprediction.net (Stainforth et al., 2005), represent an
invaluable resource. While large ensembles allow better investigation of climate risk,
such datasets are assembled on the basis of opportunity; consequently suffering from a
lack of model independence and biased representation of constituent uncertainties
(Pirtle et al. 2010; Knutti et al., 2010; Masson and Knutti, 2011; Mendlik and
Gobiet, 2016). Furthermore, in integrated assessments where additional stressors
(e.g. land-use change, socio-economic scenarios) must be considered, identifying a
reduced set of EMs helps integrate climate into already complex decision processes.
Similarly, for impact assessment, while large ensembles can provide a richer picture
of the range of possible changes (Fung et al., 2013), they may also limit the
complexity of impact models used and depth of analysis permissible (Christierson
et al., 2012), including of additional uncertainties (e.g. impact model, data uncer-
tainties) (Broderick et al., 2016; Broderick et al., 2019). Thus, sub-selection offers a
potential means of efficiently navigating the uncertainty cascade (Wilby and Dessai,
2010; Smith et al., 2018).

Many sub-selection methods have been developed and used in different
hydroclimatological studies. Mendlik and Gobiet (2016) developed a method for
sub-selection based on principal component and cluster analysis and showed that
their method reduced computational costs for climate impact modeling. Wang et al.
(2018) applied two selection methods, K means clustering and the Katsavounidis–
Kuo–Zhang (KKZ) method, to select subsets of 50 climate simulations over two sub-
catchments and found that KKZ performs better than K-means. Seo et al. (2019) also
used the KKZ algorithm for sub-selecting climate scenarios, demonstrating that KKZ
could reduce the number of GCMs in an ensemble while maintaining the ranges of
multiple climate extremes indices. Ross and Najjar (2019) compared the performance
of sub-selection methods including hierarchical clustering, K-means and KKZ on
projections of runoff change for five US watersheds. They found the KKZ model
performs satisfactorily over all watersheds and number of selected models.

Given their potential utility, we examine the ability of seven widely-used unsupervised sub-
selection methods to capture low flow and drought characteristics simulated from a large
ensemble of climate models for two Irish catchments. Sub-selection methods are applied to
identify reduced-size ensembles from monthly change factors of precipitation and temperature
from the CMIP5 ensemble. We focus on the ability to sub-selection methods to capture the
median and range (90% confidence intervals) simulated for each catchment by the CMIP5
ensemble. Finally, we test the sensitivity of sub-selection methods to the number of members
selected and discuss the value of sub-selection approaches for climate impact assessment and
adaptation decision-making.

http://climateprediction.net
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2 Data and Methods

2.1 Study Catchments and Hydrological Model

Study design is displayed in Fig. 1a. Both catchments are located in eastern Ireland (Fig. 1b)
and differ in terms of key characteristics, i.e. size, average annual precipitation and runoff
generation processes (as indicted by the baseflow index (BFI)). BFI measures the proportion
of streamflow derived from baseflow or saturated groundwater storage as opposed to direct
runoff (Gustard et al. 1992). For more details on how BFI is calculated, readers are referred
to Mills et al. (2014). Catchment 06030 is a small catchment (10.2 Km2) with average
precipitation of 1150 mm and mean annual temperature of 8.5 °C. Hydrological response is
dominated by surface runoff with a low BFI of 0.37. By contrast, catchment 14,019 has an
area of 1697 Km2, is located in the drier southeast with annual average precipitation of
869 mm, average annual temperature of 9.3 °C and a larger groundwater contribution to
streamflow with a BFI of 0.63. For each catchment daily discharge observations were
obtained from the Office of Public Works (OPW) for the years 1961–2017 for catchment
14,019 and 1975–2017 for catchment 6030. Observed daily precipitation and temperature
data were derived from 1 × 1 km grids (Walsh 2012) and area-averaged for each catchment
for the period concurrent with discharge observations. To calculate potential evapotranspi-
ration we used the formula proposed by Oudin et al. (2005):

PET ¼ Re

λρ
Ta þ 5

100
if Ta > 0

PET ¼ 0 Otherwise
ð1Þ

where PET is the rate of evapotranspiration (mm/day), Re is extraterrestrial radiation (MJ
kh−1), λ is latent heat flux in (MJ kg-1), ρ is density of water (kgm-3) and Ta is mean daily air
temperature (Co). Extraterrestrial radiation is a highly regular variable and thus temperature
is the key component explaining fluctuations of PET (Koutsoyiannis 2013). Consequently,
as we just consider the effects of precipitation and temperature as the main drivers for
climate change in our study, we neglect projections of extraterrestrial radiation.

We employ the GR4J hydrological model to simulate observed and projected changes in
discharge. The ability of this model to capture multiple hydrological signatures for Irish
catchments, including groundwater dominated catchments has been shown by Broderick
et al. (2016) and Broderick et al. (2019). GR4J is a simple lumped two-storage conceptual
rainfall-runoff model developed as part of the airGR R hydrological modelling package
(Coron et al. 2017). The model takes precipitation (P) and potential evapotranspiration
(PET) as inputs and is based on four parameters: X1, the maximum soil moisture storage
(mm); X2, the groundwater exchange coefficient (mm); X3, the maximum capacity of the
routing storage (mm); and X4, the time peak ordinate of hydrograph unit UH1 or flow delay
(day). Fig. S1 shows the structure of the GR4J model.

Observations prior to 2002 were used for model calibration and post 2002 used for
verification. The first year of observations was used as a warmup period. To calibrate
parameters, we applied Memetic Algorithms with Local Search Chains (MA-LS-Chains).
These are hybridizations of genetic algorithms with local search methods (Bergmeir et al.,
2016). The non-parametric Kling-Gupta efficiency (KGE) (Pool et al. 2018) was considered as
the objective function:

https://www.sciencedirect.com/topics/earth--and--planetary--sciences/groundwater


Fig. 1 a) A diagram of the modeling framework of this study and b) Location of the selected catchments In
Ireland
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KGE ¼ 1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rs−1ð Þ2 þ β−1ð Þ2 þ αNP−1ð Þ2

q
ð2Þ

β ¼ Qsim

Qobs
ð3Þ

αNP ¼ 1−0:5∑
Qsim I kð Þð Þ
nQsim

−
Qobs J kð Þð Þ

nQobs

�����
����� ð4Þ

Where rs is Spearman’s rank correlation, (k) and J(k) are the time steps when the kth largest

flow occurs within the simulated and observed times series, respectively. Qobs and Qsim are
average flow for observed and simulated datasets, respectively. The non-parametric Kling-
Gupta efficiencies range from −∞ to 1. The closer to 1, the more accurate the model is. In
comparison to ordinary KGE (Gupta et al. 2009), non-parametric KGE doesn’t require
assumptions about data linearity, normality or outliers.

2.2 Design of Model Experiment

For both catchments we extract change factors for precipitation (P) and temperature (T) from
the ensemble of climate models within the CMIP5 archive. To establish the central estimate
and range of change projected for low flow and drought metrics from the full ensemble, we use
all derived change factors to force GR4J to examine changes in low flow and drought
indicators for a period representing mid-century. To compare the effectiveness of sub-
selection methods to capture the central estimate and range of change in flow indicators
derived from the full ensemble we take the following steps. First, to identify the size of sub-
selected ensembles, cluster analysis is performed on change factors for P and T from the full
ensemble using two different approaches (Gap Statsitics and Dedrograms). Next, we examine
seven different sub-selection routines for their ability to capture key features of the full
ensemble. For each sub-selection method, change factors representing the selected climate
model members are used to force GR4J to examine changes in flow indicators for the 2050s.
Lastly, we compare changes in flow indicators derived from both the full CMIP5 ensemble
and sub-selected ensembles to evaluate differences.

2.3 Climate Change Projections

To quantify future climate change we employ the large ensemble of climate model
projections contained within the Coupled Model Intercomparison Project Phase 5
(henceforth CMIP5) (Taylor et al., 2011). Only GCMs forced with Representative
Concentration Pathway (RCP) 8.5 are employed to maximize distinction between
simulated and observed values. Table S1 of supplementary information details the
CMIP5 members used. We employ a simple downscaling technique using deriving
monthly change factors for temperature and precipitation based on differences between
our baseline (1976–2005) and the 2050s (2040–2069). The CF approach assumes that



while GCMs may be affected by biases in simulating baseline climatology, their
response to altered forcing and associated climate change signal is well represented.
While it has a number of limitations, the method allows rapid assessment of climate
impacts and can be expanded to include other (higher order) statistics.

Monthly series for precipitation and temperature were extracted for each CMIP5 ensemble
member for the grid(s) overlying the respective catchments. Once derived, CFs based on
relative (precipitation) and absolute (temperature) differences between the baseline (1976–
2005) and 2050s (2040–2069) were estimated and applied to baseline observations. Equations
1 and 2, outline the scaling used for temperature and precipitation respectively.

Tscal;fut;s ¼ Tobs;s þ TGCM ;fut;s−TGCM ; base;s

� �
ð5Þ

Pscal;fut;s ¼ Pobs;s � PGCM ;fut;s=PGCM ; base;s

� �
ð6Þ

Here observed temperature (Tobs, s ) for the baseline period is adjusted to obtain a seasonal
mean (s) value representative of future conditions (Tscal, fut, s) by adding the difference in

temperature projected by each EM TGCM ;fut;s−TGCM ; base;s
� �

. For precipitation (Pscal, fut, s) the

observed data (Pobs, s) is multiplied using the ratio of future to baseline simulated periods

PGCM ;fut;s=PGCM ; base;s
� �

. The adjusted P and T (PET) were then used to force the calibrated
conceptual hydrological model, GR4J for the selected catchments.

2.4 Flow Indicators Evaluated

The following indicators were used to evaluate the ability of sub-selection methods to capture the
median and 90% uncertainty ranges of projected changes in hydrological droughts and low flows.

• Average monthly discharge.
• Seasonal minimum 7-day low flows: the minimum cumulative discharge for running 7-

days totals for each season. Seasons are winter [DJF], spring [MAM], summer [JJA] and
autumn [SON].

• Standardised River Flow Index (SRI): used to evaluate drought events and derived using a
non-parametric standardization approach (Hao el al. 2014, Farahmand and AghaKouchak
2015). First, the empirical probabilities of the simulated/observed discharge values are com-
puted. By applying an empirical approach, we avoid assumptions about the underlying
distribution of discharge data (Farahmand and AghaKouchak 2015). To capture seasonal
variation, standardisation is applied to 3 month accumulated runoff (SRI3). A drought event
was identified when SRI3 drops below a threshold (zero). The ability of various sub-selection
methods to capture changes in drought characteristics from the parent ensemble is evaluated
using the percent error in number of drought events, drought duration and average drought
intensity. Percent relative error in the number of drought events for different sub-selection
methods (NoEvsun − selection) compared to the case with all GCMs (NoEvAll _GCM) is calculated as
follows:

Percent Error %ð Þ ¼ NoEvAll GCM−NoEvsub−selectionð Þ
NoEvAll GCM

� 100 ð7Þ
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2.5 Selecting the Number of Sub-Ensemble Members

The primary aim of sub-selection is to reduce the effective size of the parent ensemble by
removing redundant model simulations, while retaining as much spread in the ensemble
distribution as possible. We employ cluster analysis (gap statistics and dendrograms) to inform
the number of independent members to be retained in sub-selected ensembles. We also
evaluate the sensitivity of results to number of clusters selected, varying the optimum number
by ± 50%.

2.5.1 Gap Statistics

The Gap statistic is a standard method for determining the number of clusters in a dataset. The
Gap statistic standardizes the graph of logWk, where Wk is the intra-cluster dispersion, by
comparing it to its expectation under an appropriate null reference distribution of the data. The
following measure represents the sum of intra-cluster distances between points in a given
cluster Ck containing nk points:

Dk ¼ ∑xi∈Ck
∑x j∈Ck

xi−x j
�� ��2 ¼ 2nk∑xi∈Ck

xi−μkk k2 ð8Þ

Adding the normalized intra-cluster sum of squares gives a measure of the compactness of our
clustering:

Wk ¼ ∑xi∈Ck

1

2nk
Dk ð9Þ

The Gap Statistic approach aims to standardize the comparison of logWk with a null reference
distribution of the data, i.e. a distribution with no obvious clustering (Tibshirani et al., 2001).
The estimate for the optimal number of clusters K is the value for which logWk falls the farthest
below this reference curve. This information is contained in the following formula for the gap
statistic:

Gapn kð Þ ¼ E*
n logWkf g−logWk ð10Þ

Where E*
n denotes expectation under a sample of size n from the reference distribution. Our

estimate bk will be the value maximizing Gapn(k) after accounting for the sampling distribution.
For more details see Tibshirani et al. (2001).

2.5.2 Dendrograms

Agglomerative hierarchical clustering algorithms build a cluster hierarchy commonly
displayed as a dendrogram. The algorithm begins with each object in a separate cluster. At
each step, the two clusters most similar are joined into a single new cluster. The height of the
dendrogram represents the distance or dissimilarity between clusters (Koga et al., 2007). The
larger the height difference between two agglomerations (or clusters), the larger their dissim-
ilarity. To measure dissimilarity between two clusters (cluster centers), different distance
measures, e.g. Euclidean can be used.
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2.6 Sub-Selection Methods

We consider seven unsupervised sub-selection methods.

2.6.1 Diversity-Induced Self-Representation (DISR)

Diversity-Induced Self-Representation (DISR) is an unsupervised feature selection method
(Liu et al. 2017) that effectively selects features with both representativeness and diversity. The
similarity between the ith and jth models can be calculated using their dot product weight as:

Sij ¼ f Ti : f j; i; j ¼ 1; 2;…;m ð11Þ
where m is the number of models. Each Sij indicates how well fi differentiatesfj. Readers are
referred to Liu et al. (2017) for more details.

2.6.2 Laplacian Score (LScore)

Laplacian Score (LScore) is an unsupervised linear feature extraction method. For each
feature/variable, it computes the Laplacian score based on an observation that data from the
same class are often close to each other. Let Lr denote the Laplacian Score of the r-th feature
(model). Let fri denote the i-th sample of the r-th feature, i = 1,…, p. The LScore algorithm can
be stated as follows (He et al. 2006):

1. Construct a nearest neighbor graph Gwith p nodes. The i-th node corresponds to xi . An
edge can be put between nodes i and j if xi and xj are “close”, i.e. xi is among k nearest
neighbors of xj or xj is among k nearest neighbors of xi. When the label information is
available, one can put an edge between two nodes sharing the same label.

2. If nodes i and j are connected (or are neighbors), put Sij ¼ e− xi−x jk k 2

t, where t is a suitable
constant. Otherwise, put Sij = 0. The weight matrix S of the graph models the local
structure of the data space.

3. For the r-th feature (model), we define:

f r ¼ f r1; f r2;…; f rp
h iT

;D ¼ diag S1ð Þ; 1 ¼ 1;…; 1½ �T ; L ¼ D−S ð12Þ

where the matrix L is often called the graph Laplacian. Let

ef r ¼ f r−
fTr D1
1TD1

ð13Þ

4. Compute the Laplacian Score of the r-th feature as follows:

Lr ¼
efTr Lef refTr Def r ð14Þ
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2.6.3 Multi-Cluster Feature Selection (MCFS)

By using spectral analysis techniques, Multi-Cluster Feature Selection (MCFS) suggests a
principled way to measure the correlations between different features without label information
(Cai et al., 2010). MCFS has been shown to preserve the cluster structure of data. This method
utilizes spectral regression with l1- norm regularization to select the features. For more details,
readers are referred to Cai et al. (2010).

2.6.4 Non-convex Regularized Self-Representation (NRSR)

In the Non-convex Regularized Self-Representation (NRSR) algorithm, features can be
represented by a linear combination of other features, and propose to impose L2, p -norm (0
< p < 1) regularization on self-representation coefficients for unsupervised feature selection.
This method is more efficient in selecting salient features compared to methods using
conventional L2, 1 norm regularization. For more details, readers are referred to Wang et al.
(2015) and Zhu et al. (2017).

2.6.5 Structure Preserving Unsupervised Feature Selection (SPUFS)

Structure Preserving Unsupervised Feature Selection (SPUFS) is an unsupervised feature
selection method based on a self-expression model to capture the relationships between the
features without learning the cluster labels. In this method, there is a cost function which has
two penalties, sparsity and preservation of local structure. Each feature is reconstructed
through a linear combination of all features in the original feature space and considering the
local manifold structure of the data using an object similarity matrix. More details and
formulation can be found in Lu et al. (2018).

2.6.6 Unsupervised Discriminative Features Selection (UDFS)

UDFS aims to find discriminative features under an unsupervised learning framework. The
class label can be predicted by a linear classifier and iteratively updates its discriminative
nature using ℓ2, 1-norm minimization while attaining row-sparsity scores for selecting features.
It has been shown that this algorithm can outperform other unsupervised algorithms to select
discriminative features for data representation (Yang et al., 2011). However, its orthogonal
constraint on the feature selection projection matrix is unreasonable since feature weight
vectors are not necessarily orthogonal with each other in nature (Qian and Zhai, 2013).

2.6.7 Katsavounidis–Kuo–Zhang (KKZ)

The Katsavounidis–Kuo–Zhang (KKZ) method (Katsavounidis et al. 1994) identifies a set of
optimal seed cases as initial centroids in K means clustering, and was introduced by Cannon
(2015) for selection of subsets of climate simulations. The KKZ algorithm selects members in
a recursive manner that cover a spread of multivariate space comprehensively.

The specific procedure is as follows:

1. The climate simulation closest to the centroid of the whole ensemble is selected
as the first simulation.

Evaluation of Sub-Selection Methods for Assessing Climate Change Impacts... 121
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2. The simulation farthest from the first selected simulation is selected as the second
simulation. The Euclidean distance is applied to calculate the distance, d(i, j), between
two models (the ith and jth models):

d i; jð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑P

p¼1 yip−yjp
� �2

r
ð15Þ

Where yip and yjp represents the value of the pth variable for the ith and jth models,
respectively.

3. Subsequent simulations are selected as follows.

1 For each remaining simulation, its distances to every previously selected simulation are
calculated.

2 Each remaining simulation is designated with the minimum distance among all distances
calculated in step 3(i).

3 The simulation with the largest minimum distance, which is designated in step 3(ii), is
selected as the next selected simulation.

3 Results and Discussion

3.1 Model Calibration and Verification

For catchments 6030 and 14,019, the non-parametric KGE scores derived are 0.93 and
0.92 for calibration and 0.85 and 0.88 for validation, respectively. Calibrated X1, X2,
X3 and X4 parameters are 100(mm), 0.63(mm), 33.38(mm) and 1.4(day) for catchment
6030 and 523.04(mm), 0.07(mm), 32.84(mm) and 2.82(day) for catchment 14,019.
Fig. S2 shows the scatterplot of simulated-observed flow for training and verification
periods. The correlation coefficient equaled to 0.86 and 0.70 for catchment 6030 and
0.92 and 0.91 for catchment 14,019 over training and verification. RMSE of 1.57 and
0.37 for training and 3.62 and 0.46 for verification were returned for catchment 6030
and 14,019, respectively. Hydrological model performance for the groundwater-
dominated catchment (14019) is better, compared to the surface water dominated
catchment (6030).

3.2 Cluster Analysis

Based on the Gap-statistics method (Fig. S3) 11 clusters/members are proposed for catchment
6030 and 10 clusters for catchment 14,019. Using the dendrogram method, the approximate
number of clusters was obtained by cutting the dendrogram tree with a horizontal line at a
height where the line can traverse the maximum distance up and down without intersecting the
merging point. For example in our case (Fig. S4), using the Gap-statistics method, the cutting
height should be between 0.75 and 0.80 which suggests 10 clusters for both catchments. Given
the similar results of both methods, 10 clusters were selected for both study catchments.
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3.3 Sub-Selection and Evaluation of Low Flows

Table S2 (supplementary material) provides the resultant 10-member sub-ensembles selected
using each of the seven sub-selection methods. There is considerable difference between the
selected members identified using each sub-selection algorithm. Some methods, i.e. KKZ,
SPUFS and UDFS, selected different versions of same GCMs while others, e.g. DISR and
NRSR, have more variability among selected GCMs to represent the whole ensemble range.

To examine how well sub-selection methods represent the entire CMIP5 ensemble, we
compare simulated flow metrics from each sub-selected ensemble with those forced using the
full CMIP5 ensemble. Figure 2 shows results for average monthly discharge. For catchment
6030, riverflow is not well represented in low flow months, i.e. July, August and September
using LScore and MCFS methods, but all other sub-ensembles performed satisfactory and
similarly to the CMIP5 ensemble in other months. This may be attributed to the challenge of
capturing low-flows. It has been shown by many researchers that low-flow simulation highly
depends on the study region, season and also performance criteria the hydrological models are
calibrated based on (Nicolle et al., 2014). For catchment 14,019, DISR and UDFS didn’t
preserve the upper and lower ranges in low flow months (July, August and September) while

Fig. 2 Average monthly streamflow for catchment 6030 using CFs from the full CMIP5 ensemble and those
from sub-selection methods for 2050s under RCP8.5. Black line shows the observed streamflow, red line shows
the median of the simulated streamflow and the grey area shows the 90% uncertainty band for Catchments a)
6030 and b) 14,019. Grey region: the 95% uncertainty band, red line: 50% quantile flow, black line: Average
observed monthly flow (Correlation between observed flow and simulated with 5, 50 and 95% probabilities are
included for further comparison)

Evaluation of Sub-Selection Methods for Assessing Climate Change Impacts... 123



NRSR, SPUFS KKZ and MCFS show considerable difference for high flow months (i.e.
January, February and March), relative to the full ensemble.

Using the entire CMIP5 ensemble as the reference, Taylor diagrams in Fig. S5 show the
performance of different sub-selection methods in capturing the upper (95%) and lower (5%)
uncertainty ranges, together with the median simulated changes in average monthly discharge.
Different sub-selection models perform well and very similarly in replicating the CMIP5
ensemble median. However, greater differences are evident in capturing the upper/ lower
bounds of the parent ensemble. For the lower bound (5%), all methods except DISR and UPFS
for catchment 6030 and DISR and LScore for catchment 14,019 performed well. For the upper
bound (95%), more dispersion is evident, while the performance of all sub-selection methods
are worse compared to their ability to replicate the CMIP5 median and lower bound. DISR,
MCFS and KKZ for catchment 6030 and DISR, LScore and UDFS for catchment 14,019 show
the best performance in capturing the upper bound of simulations. In general, it can be deduced
that the sub-selection methods evaluated performed best at capturing the characteristics of
CMIP5 ensemble for the median, than for lower bound and worst for upper bound.

Figure 3 and Fig. S6 (Supplementary Information) examine the ability of each 10 member
sub-selected ensemble to capture key characteristics of the CMIP5 ensemble for summer and
autumn 7-day low flows, respectively. In summer, SPUFS and NRSR performed better over

Fig. 2 (continued)
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both catchments, while LScore and MCFS for catchment 6030 and UDFS and DISR for
catchment 14,019, had the worst performance. In autumn, KKZ and NRSR for catchment
6010 and KKZ, SPUFS and MCFS for catchment 14,019 show better skill in preserving the
90% uncertainty bounds of the entire CMIP5 ensemble. DISR and LScore had the worst
performance over both catchments.

Figure 4 examines the ability of different sub-selection methods to capture the median,
upper and lower uncertainty bounds of the CMIP5 ensemble for summer and autumn
minimum 7-day low flows in each catchment. For summer in catchment 14,019, UDFS and
KKZ followed by LScore and NRSR performed best in capturing the upper bound, while
DISR, MCFS, LScore and SPUFS followed by NRSR performed best in capturing the median
and lower bound from the full ensemble. For autumn in catchment 6030, DISR and NRSR
followed by SPUFS do best at replicating the upper bound. For the median, LScore and NRSR
followed by UDFS perform best, while KKZ and NRSR followed by UDFS have slightly
better performance in capturing the lower bound of the full ensemble.

Using the Standardized Streamflow Index (SSI), we extracted statistics on the number of
drought events, drought duration and intensities for all sub-selected ensembles and compared
results with the case considering all CMIP5 GCMs. The relative errors (%) in replicating the
CMIP5 ensemble median, upper and lower bounds for average drought intensity, average

Fig. 3 Time series of 7-day lowflow values in summer simulated for the full CMIP5 ensemble and different sub-
selection methods for Catchments a) 6030 and b) 14,019. Grey region: the 95% uncertainty band, red line: 50%
quantile flow, black line: Average observed monthly flow (Correlation between observed flow and simulated
with 5, 50 and 95% probabilities are included for further comparison)
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drought duration and number of drought events are presented in Table 1. For both catchments,
all sub-selected ensembles perform very satisfactory with percent relative errors below 5% in
most cases. For catchment 6030, MCFS and LScore followed by KKZ perform better for the
CMIP5 upper bound. For the median, UDFS and DISR followed by NRSR and MCFS and for
the lower bound KKZ followed by LScore and UDFS performs slightly better. For catchment
14,019, DISR and UDFS performed better for the upper bound, while NRSR and MCFS/
UDFS and KKZ performed better for the median/lower bound, respectively.

Based on the above, it is very difficult to identify a best sub-selection method for
widespread application. Our results show that sub-selection methods perform differently in
capturing aspects of the parent ensemble, i.e. median, lower or upper bounds. They also vary
in their effectiveness by catchment, flow metric and season. For catchment 14,019 while DISR
is one of the weakest methods for 7-day low flows, it performs the best in drought analysis
using SSI-based characteristics Other research also confirmed that there were not any single
best sub-selection methods for their application data (e.g. Afzal and Torkar, 2016). Among
sub-selection methods evaluated, the most consistent performance was found for KKZ, SPUFS
and NRSR in terms of preserving 7-day low flow uncertainty bounds and SSI-based charac-
teristics, however they were not always the best, i.e. their performance varied unpredictably
based on metrics/criteria assessed. Others have reported similar results, e.g. Ross and Najjar
(2019) and Cannon (2015).

Fig. 3 (continued)
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Our results further show that whether ensemble members are selected from entirely
different GCM families (e.g. NRSR with 8 different GCM families for both catchments) or
are allowed to contain greater membership from the same family of GCMs (e.g. KKZ with 5
and 6 and SPUFS with 4 and 7 GCM families for catchment 6030 and 14,019, respectively),

Fig. 4 Barplot of the average seasonal 7-day lowflow simulated based on different sub-selection methods for
Catchments a) 6030 and b) 14,019 (blue = 5% lower bound, light green =median and dark green = 95% upper
bound)
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the results can be very similar in terms of preserving the uncertainty bounds of the entire
CMIP5 archive. Furthermore, while the same CMIP5 ensemble members are often represented
in the majority of sub-selection methods for a specific catchment, the overlap of members for
both catchment and sub-selection methods is very limited. Therefore, it is not practical to
extend a subset of CMIP5 ensembles that are selected based on a particular sub-selection
method over a single catchment/region to another catchment/region within the same geograph-
ical domain. Other studies also shown that the results of climate impact studies depend greatly
on sub-selection method, available GCM models and the performance criteria (Evans et al.,
2013; Kiesel et al., 2020).

3.4 Sensitivity of Results to Number of Ensemble Members

To examine the sensitivity of results to number of clusters/members identified to construct our
sub-selected ensembles, we extended the study to consider 5 and 15 members. Results, relative
to the full CMIP5 ensemble are compared with those for the 10-member ensemble for seasonal
7-day low flow values and drought characteristics derived from the SSI series (Fig. S7).
Differences in the sensitivity of sub-selection methods to ensemble members are evident
between catchments. The groundwater-dominated catchment (14019) tends to be less sensitive
to sub-ensemble size in comparison to the runoff dominated catchment (6030). However, this
finding is also sensitive to the specific sub-selection method. DISR and KKZ tend to be most
robust to ensemble size in simulating summer and autumn 7-day low flows, with errors being
similar for 10 and 15 members. There is no consistent increase or decrease in the performance
of sub-selection methods as the sub-ensemble member size increases or decreases. Sub-
selection methods performed differently based on different seasons and number of clusters
over each catchment. For example, in winter DISR, LScore, MCFS and NRSR performed
better in catchment 14,019 while KKZ, LScore and MCFS have the best performance in
catchment 6030. Table 2 summarizes the percent relative error of varying sub-ensemble size in
replicating drought characteristics from the CMIP5 ensemble. In both catchments the results
are sensitive to number of clusters/ensemble members, however it is notable that for SSI
drought metrics the smallest errors are typically found for an ensemble size of 10 for almost all
sub-selection methods.

4 Conclusion

In this study, we presented a methodology for evaluating the effectiveness of sub-selection
methods at replicating the characteristics (median, upper and lower bound) of the CMIP5
ensemble in simulating monthly mean discharge, low-flow and drought characteristics for two
Irish catchments. Our results show that sub-selection methods perform differently in capturing
aspects of the parent ensemble, i.e. median, lower or upper bounds. They also vary in their
effectiveness by catchment, flow metric and season. Therefore, researchers need to carefully
evaluate sub-selection performance based on the aims of their study and the flow metrics of
interest, on a catchment by catchment basis.

Moreover, results from sub-selection methods are sensitive to the number of clusters/
ensemble size. This was particularly the case for the runoff dominated catchment, with errors
in replicating the parent ensemble showing little consistency with ensemble size. Interestingly,
the simulation of drought characteristics was less sensitive to sub-ensemble size in comparison
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to absolute low flows, as characterized by the minimum 7-day low flows. Given these findings
we recommend that before choosing sub-selection methods that thought is given to which
aspects of the uncertainty are most important for decision making. For drought and low flow
analyses, it is perhaps most important to preserve estimation of the median and lower bound
for stress-testing adaptation responses in water systems. Finally, while sub-selection methods
hold promise for reducing the complexity of larger ensembles they are subject to considerable
challenges in their application with no clear guidance possible on which methods to use where,
or for which metrics. This is even more complex when dealing with low-flow processes which
have more inherent complexity and uncertainty due to surface-groundwater interactions, as
evident in this study. Application of these approaches should therefore be undertaken with
care, with the aims of the modelling activity clearly in mind.
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