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Abstract 
 

There are growing opportunities to leverage new 

technologies and data sources to address global 

problems related to sustainability, climate change, 

and biodiversity loss. The emerging discipline of 

GeoAI resulting from the convergence of AI and 

Geospatial science (Geo-AI) is enabling the 

possibility to harness the increasingly available open 

Earth Observation data collected from different 

constellations of satellites and sensors with high 

spatial, spectral and temporal resolutions. However, 

transforming these raw data into high-quality 

datasets that could be used for training AI and 

specifically deep learning models are technically 

challenging. This paper describes the process and 

results of synthesizing labelled-datasets that could be 

used for training AI (specifically Convolutional 

Neural Networks) models for determining 

agricultural land use pattern to support decisions for 

sustainable farming. In our opinion, this work is a 

significant step forward in addressing the paucity of 

usable datasets for developing scalable GeoAI 

models for sustainable agriculture.  
 

1. Introduction  
 

The need for spatial information about 

agricultural practices is expected to proliferate due to 

environmental, agronomic, and economic factors. 

Governments are increasingly concerned about food 

quality, creating the need for tracing the production 

and verifying agricultural practices [1].  

Modern agricultural practices are a significant 

cause of environmental pollution [2]. The increasing 

use of fertilizers, water, and arable land is largely 

responsible for tonnes of reactive nitrogen and 

phosphorus ending up in the environment, polluting 

waterways and coastal zones, accumulating in land 

systems, and being released to the atmosphere [2][3]. 

Meanwhile, the amount of land being used for 

agricultural purposes is increasing [4]. The Food and 

Agriculture Organization (FAO) estimates that 11% of 

the globe’s land surface (13.4 billion ha) is used for 

producing crops. Specifically, in Europe, this percentage 

is expected to rise to 53% of the total land surface [5]. 

FAO estimates that by 2050 food production will double 

due to the increase of the global population and the 

advent of biofuels [6]. There is an urgent need for more 

sustainable agricultural practices that are able to 

generate higher crop yields while minimizing the 

environmental footprint. Historically, crop rotation has 

been one of the first sustainable agricultural practices 

[7]. W. Claupein et al. [8] defines crops rotation as the 

regular and orderly alternation in the cultivation of 

different plant species in a temporal sequence in a given 

area. The National Organic Program under the U.S. 

Code of Federal Regulations requires the adoption of 

crop rotation practices for farms to receive organic 

certification [9]. The list of the benefits of crop rotation 

includes: a) interrupting harmful insect life-cycles, b) 

suppressing soilborne plant diseases, c) preventing soil 

erosion, d) building organic matter, e) fixing nitrogen 

and f) increasing biodiversity of the farm. 

In comparison with crops grown in monocropping, 

crops grown in rotations often yield more due to soil 

fertility improvements [10], while reducing the external 

dependency on agrochemicals [11], [12]. Despite the 

fact that crop rotation’s importance has been 

acknowledged for a long time, such a simple practice 

has been displaced with the widespread adoption of 

industrial agriculture. In the last couple of decades, the 

interest in crop rotations has been renewed due to its 

benefits, the current climate change situation and its 

promotion by many agroecological movements across 

the world  [13], [14]. If we are to meet the sustainability 

challenges presented, new incentives, policies, and 

technologies are required to monitor how agricultural 
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practices shape, fortunately not irreversibly, the 

surface of the Earth [15]. The situation described 

earlier highlights the importance of mapping and 

characterizing cropping practices. To this end, the 

literature suggests that remote sensing has been an 

effective tool for monitoring the land surface 

properties resulting from human practices. Despite 

significant efforts made in this area, an extensive 

literature review shows that only 9% of the total 

remote sensing and agriculture publications focus on 

cropping practices [16]. Moreover, due to the wide 

variety of agricultural practices and the complexity 

for describing them over large areas using satellite 

data, studies have been mostly limited to case studies 

[17]. Earth is continuously monitored by satellites, 

drones and different types of sensors as never before, 

providing rich data at different dimensions’ 

resolutions, while the internet has made it widely 

available and accessible. For instance, the two 

Sentinel-2 satellites provide worldwide and freely 

distributed images every five days, while Landsat-7 

and Landsat-8 missions offer an eight-day revisit 

time [18]. Despite this fact, most recent AI models or 

classifiers used in operational mapping generally use 

single date spectral data for classification, due to the 

technical challenge in leveraging the rich time-series 

data for characterizing land cover dynamics [19]. 

Recently, deep learning has shown outstanding 

results in many fields including remote sensing. 

Harnessing the ability of these models to learn 

feature representations exclusively from raw data 

without the need of domain-specific knowledge, deep 

neural networks have been used in tasks including 

image classification, object detection, semantic 

segmentation, classification from time series and 

anomaly detection [20], [21] in remotely sensed 

imagery. This emerging intersection of geospatial 

science and artificial intelligence is referred to in the 

literature and in the industry as GeoAI.  

In this work, we present a process (pipeline) that 

consumes satellite imagery and creates temporally-

sampled and labelled datasets that could be used for 

training Convolutional Neural Networks or deep 

learning models for mapping and identifying 

cropping practices.  

 

2. Background 
 

The availability of Earth Observation (EO) data is 

continuously increasing thanks to the contributions of 

Landsat and Sentinel archives [19]. At the same time, 

community-based geospatial databases collect a vast 

amount of crowdsourced georeferenced data that 

contribute to describing objects and things based on 

their location. It is estimated that 80% of the data 

created every day is georeferenced [22] indicating its 

relevance for discovering knowledge. The increasing 

volume and types variety of collected geospatial big 

data creates new opportunities but also poses additional 

challenges in storing, managing, processing, analyzing 

and visualizing data [22]. With the advent of cloud 

computing and GPUs and decreasing computing cost, 

hardware limitations and software barriers hindering 

large data processing have been largely lowered. The 

advances in computing power and data availability 

comes in parallel to significant developments in the 

field of artificial intelligence (AI) algorithms, in 

particular, deep learning. The availability of a plethora 

of AI solutions and strong industry support, offering 

affordable data processing services, has opened up 

opportunities for new applications. The term “GeoAI” 

has also been already widely utilized by the Industry 

and practitioners ahead of the majority of academic 

researchers and scientists in the domain who yet rarely 

refer to that term even though their works are strongly 

related. Microsoft and Esri joined their efforts to present 

the GeoAI data science virtual machine, integrating the 

popular ArcGIS Pro capabilities, such as geospatial 

analytics and visualization, with AI cloud technology 

and infrastructure 
1
. In this context, GeoAI is defined by 

T. Vopham et al. [23] as “an emerging scientific 

discipline that combines innovations in spatial science, 

artificial intelligence methods in machine learning (e.g., 

deep learning), data mining, and high-performance 

computing to extract knowledge from spatial big data” 

and [24] states that “the moulding together of artificial 

intelligence (AI) and the geographic/geographic 

information systems (GIS) dimension creates GeoAI”. 

 

2.1. GeoAI applications 
 

GeoAI models have been developed for different 

applications. In this section, we describe some specific 

contributions using GeoAI, and in section 2.2 we 

describe how these models can be utilized for advancing 

the mapping and classification of agricultural practices. 

The publications analyzed were the result of a search in 

the Scopus database using the keyword “geoai”. We 

also included three articles from the platform Medium
2
 

that we considered valuable to showcase GeoAI 

potential. We clustered the applications areas in four 

different categories: geospatial modeling, imagery 

processing, navigation and governance and societal and 

we briefly describe them next. 

                                                 
1 https://azure.microsoft.com/en-us/blog/microsoft-and-esri-launch-

geospatial-ai-on-azure/ 
2 https://medium.com/ 
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2.1.1. Geospatial modeling 

 

The ability to infer the behavior of different 

variables in the spatial dimension is key to 

understand how different phenomena and events 

occur and the interrelation between them. S. Law et 

al. [25] used Google Street View images and an 

abstract 3D model of a city created with Esri City 

Engine to train a Convolutional Neural Network 

(CNN) able to predict the probability of having an 

active frontage on every single street segment in 

London, providing important insights for urban 

design and security in public spaces. K. Elgarroussi 

et al. [26] created a spatiotemporal emotion change 

analysis framework that monitors and summarizes 

the change of positive and negative emotions over 

time and space. Authors used geolocated tweets 

collected in the state of New York in June 2014, a 

contour-based spatial clustering algorithm and 

VADER (a sentiment analysis tool) to assign an 

emotional score to each tweet. The study presents a 

novel approach for sentiment change storytelling. In 

the contribution of G. Xi et al. [27], authors used a 

geolocated dataset of influenza-like illnesses (ILI) 

activities in Shenzhen City, China to train a CNN 

with Residual learning able to predict influenza 

trends by integrating the spatial-temporal properties 

of influenza at an intra-urban scale. The experiments 

show that the model outperformed other four 

baselines models for one-week-ahead and two-week- 

ahead predictions. S. Srivastava et al. [28] trained a 

CNN using Google Street View imagery and a 

dataset of Amsterdam’s buildings to predict multiple 

co-occurring building function classes per building. 

The proposed model contemplates several zoom 

levels of the acquired images and outperformed other 

baseline CNN models. T. Vopham et al. [23] presents 

an overview of the use of GeoAI in environmental 

epidemiology. Authors state that the use of spatial 

and temporal big data integrated with high-

performance computing, data mining, deep learning, 

and big data infrastructures can help predict the 

amount of an environmental factor at a particular 

time and location and produce high-resolution 

exposure models that represent a particular 

environmental variable. They point out the potential 

use of GeoAI for addressing human health-related 

problems. In this way, [24] describes the importance 

of location in population and individual health and 

poses the increasing importance of GeoAI models 

and new sources of data for improving human health. 

Despite publicly-available mobility trajectory 

datasets are fundamental for algorithms’ training and 

performance assessment, genuine privacy concerns 

restrict their use. To address this problem, V. 

Kulkarni [29] used a Nokia Mobile mobility traces 

dataset of 191 users collected in Switzerland over two 

years to train a Long Short-term Memory (LSTM) 

recurrent neural network (RNN) that extracts 

substantive behavioral patterns of users from actual 

mobility traces datasets. This work aims to create new 

and larger datasets, that simulate the actual 

characteristics of users from a given dataset.  

 

2.1.2. Remotely sensed imagery processing 

 

Effective large aerial imagery datasets processing is 

of fundamental importance for many applications, 

including maps creation, land use mapping, geological 

processes, navigation, and place-based studies.  W. Li et 

al. [30], [31] utilized CNN to detect terrain features such 

as craters, lakes, volcanos, and sand dunes. The model 

was trained with remote sensing imagery and image 

augmentation and ensemble learning techniques were 

used for training. A. Tayyebi [32] used data 

augmentation techniques on 1-meter resolution remote 

imagery from National Agriculture Imagery Program 

(NAIP) from Alabama State to train a CNN able to 

segment land cover in buildings, roads or parking lots, 

water, harvested, open land or bare land, forest and 

planted or dark cropland. On the other hand, D. Jha et 

al. [33] used satellite imagery from the Esri World 

Imagery base map to train a CNN model that can detect 

swimming pools and classify them in neglect or not. In 

the study, authors were able to map all pools in the City 

of Redlands in 10 minutes using Google Cloud Services. 

C. B. Collins et al. [34] trained a super-resolution 

convolutional neural network (SRCNN) using low 

resolution images from the Advanced Wide Field 

Sensor (AWiFS) sensors and high-resolution images 

from the Linear Imaging Self Scanner (LISS-III) sensors 

aboard the Indian Space Research Organisation’s 

(ISRO) Resources at-1 and -2 missions to enhance low 

resolution imagery. Authors showed that the model 

performs well in places where no high-resolution 

imagery is available. 

 

2.1.3. Navigation 

 

Q. Li [35] trained CNN using sampled images from 

smartphone’s camera videos of indoor locations. 

Authors used Hidden Markov Model, Viterbi algorithm 

and a topological map to obtain location information by 

recognizing landmarks in the indoor environment. The 

trained CNN correctly recognized the landmarks in the 

scene. To minimize distance error between prediction 

and ground-truth traces of an actual car ride J. Murphy 

[36] trained a CNN that achieves human-level 

performance when classifying noise level of Global 

Positioning System (GPS) input data on a given route. 
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The algorithm conditionally selects between using 

the raw GPS data and the map-matched route as the 

best estimate of a driving path. In [37] the authors 

analyze several Unmanned Aerial Vehicles (UAV) 

image localization research papers. Authors describe 

traditional visual localization systems based on image 

retrieval and image localization based on deep 

learning approaches. The purpose of visual 

localization systems is to find the highest matching 

image between the reference image database and the 

UAVs aerial image, and output position information 

in an acceptable time. T. Sun et al. [38] trained a 

CNN model that combines satellite imagery and GPS 

data to improve road extraction quality. The study 

used 120 satellite images from Beijing, paved roads 

data from OpenStreetMap as ground truth, and GPS 

data of 65 taxis in Beijing (a total 192 hours of 

driving) and showed improved performance over 

other alternatives. N. Pourebrahim et al. [39] 

compared the performance of Neural Networks and 

Gravity Models to predict human mobility between 

cities using Twitter data. Authors used the Origin-

Destination Employment Statistics (LODES) for New 

York City from the U.S. Census Bureau as ground- 

truth data, containing workers home and employment 

locations with other characteristics such as age, 

earnings, industry distributions, and local workforce 

indicators. More than two million geolocated tweets 

posted in New York City from June 2015 to May 

2016 were also used for the study. Results proved 

that adding Twitter data to both models improved the 

performance. 

 

2.1.4. Governance and societal  

 

Governments are responsible for collecting and 

managing a vast amount of data, but their primary 

responsibility is to improve the quality of life of the 

citizens by making data-driven decisions. The 

previously described contribution of D. Jha et al. [33] 

for swimming pool detection, also suggests its 

utilization for vector-borne disease prevention, since 

the model can classify pools in neglect and non-

neglect, preventing the spread of viruses carried by 

mosquitoes. At the same time, governments can 

benefit from this model to update the records of 

swimming pools for taxes assessment. In the last 

time, 3D city models have become a vital tool for 

decision making. D. Kudinov et al. [40] used 200 

square miles of aerial LiDAR with 213,000 roof 

segments manually digitized by human editors 

including types such as flat, gable, hip, shed, dome, 

vault, and mansard to train a CNN that automatically 

generates segment polygons of roofs from a raster 

image. The model contributes to boosting human 

editors’ productivity and reduce the cost of creating and 

maintaining 3D city models. T. O. [41] proposed a deep 

learning semantic segmentation algorithm for post-

disaster damage mapping, taking as a case study the 

2011 Tohoku Earthquake-Tsunami and aiming at 

accelerating operational disaster response practice. 

High-resolution Worldview-2 images were collected 

before and after the earthquake, and ground truth data 

were collected from damage inventories for the study 

area. Although the model showed a good performance, 

the authors pointed out the limitation of the optical 

remote sensor in identifying below-roof damage. This 

study was carried out using the Microsoft Azure 

resources provided by AI for Earth grant program.  

As we can see from the applications described 

before, GeoAI models are generally supervised learning 

algorithms that rely heavily on the availability of 

labeled data for achieving acceptable performances. 

 

2.2. GeoAI models for sustainable agriculture 
 

Maged N. et al. [24] points out the potential 

applicability of GeoAI in capturing and modeling 

location-based features at a high spatiotemporal 

resolution. However, GeoAI solutions reviewed have 

not addressed the mapping and characterization of 

cropping practices by harnessing the temporal dynamics 

of land use. GeoAI models, especially CNN’s with 

convolutions applied in the temporal dimension, have 

the potential to harness significant amounts of data, 

including spectral and temporal characteristics of 

remotely sensed images, to classify agricultural 

practices. That would include unsustainable practices 

classes such as three years of soybean monocropping or 

three years of corn monocropping; and sustainable 

practices based on crop rotation schemas, such as alfalfa 

– fallow – corn rotation. A similar approach made use of 

single-date high spatial resolution imagery for 

classifying land use in six classes [32], as described 

before. Despite that one author considered using bi-

temporal (before and after disaster) satellite imagery for 

post-disaster damage mapping [41], the solution does 

not entirely rely on the pre-disaster imagery.  

Scarce examples on the application of deep learning 

techniques on remotely sensed time-series can be found 

out of the GeoAI term scope. Zhong, Liheng et al. [42] 

have exploited the intrinsic characteristics of time-series 

data to describe seasonal patterns and sequential 

relationships for classifying summer crops. They 

developed different deep neural network architectures 

and used Enhanced Vegetation Index (EVI) calculated 

from Landsat Level 2 product imagery bands and 

ground in-situ data from California Department of 

Water Resources (see Table 1). Their results, based on 

an architecture that includes one-dimension convolution 
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and an inception module, outperformed traditional 

algorithms for land use classification including 

XGBoost, Random Forest, Support Vector Machine 

and recurrent deep neural networks. Pelletier et al. 

[43] proposed a temporal convolutional neural 

network constructed with three convolutional layers, 

a dense layer and finally, a Softmax layer. Different 

to [42], authors of this study used three spectral 

bands of the available satellite imagery. Results show 

that the proposed architecture outperformed Random 

Forest algorithm by 2 to 3 % and based on the 

evidence gathered they point out the importance of 

using both spectral and temporal dimensions when 

computing the convolutions. 

 

3. Research Challenges 
 

Creating GeoAI models for mapping and 

characterizing sustainable agricultural practices (and 

also not sustainable practices) encompasses several 

challenges. Next, we list and classify them in data-

related (a-g) and model-related challenges (h-i). In 

our contribution, we address the challenges a-g 

related to time-series data acquisition and processing.  
a) Lack of ground in-situ data: Learning deep 

models for remote sensing images time-series 

requires geospatial and temporal labeled land use 

data, rich enough to understand the practices carried 

out in a specific period and at the pixel level 

(space). This type of data is usually collected by 

governmental organizations through land use 

surveys. Maged N. et al. [24] identified the 

challenge of scarce availability of labeled training 

data for GeoAI models. 

b) Prerequired ground in-situ data GIS processing: 

land use ground in-situ data is usually presented in 

a single year temporal resolution, while cropping 

patterns usually involve several years analysis. In 

this way, GIS processing tasks must be done to 

generate labels for each minimal homogeneous land 

parcel. Figure 1 shows an example of ground in-situ 

data GIS processing step for the years 2017-2018.  

c) Satellite data acquisition:  high temporal and 

spatial resolution satellite imagery is needed to 

create time-series observational data of required 

length, consistency and continuity to capture land 

use dynamics features for the study area.  

d) Temporal mismatch of available ground in-situ 

and satellite data: satellites have been launched in 

different dates. Several ground in-situ data sources 

available do not match, or partially match, the 

temporal availability of remotely sensed data for 

that place. Table 1 presents some identified sources 

of ground in-situ data together with their date range 

of availability.  

e) Table 2 lists available satellites providing free 

imagery together with the launch date, revision time 

and the number of bands.  

f) Pixel-level sampling: Time series can be created 

following a pixel-based or an object-based approach. 

In the first, the classification algorithms exploit the 

temporal variability of spectral characteristics between 

classes to classify a pixel. On the other hand, an 

object-based approach also exploits the spatial and 

textural information of a group of pixels grouped in a 

meaningful way, relying heavily on a previous perfect 

segmentation process [44]. Despite an object-based 

approach might be a valid option for a single year land 

use classification, where the agricultural fields are 

well defined [45], in our study we focus on the 

creation of labelled time-series representing 

agricultural practices across many years, thus, making 

the segmentation process dependent on the assumption 

that agricultural fields won’t change their boundaries 

during that period.  The pixel-level sampling process 

must ensure that the pixel data collected over time, 

always refer to the same point in the space, as shown 

in Figure 2.  

g) Clouds coverage and missing data handling: in 

areas of persistent clouds presence, or failure of the 

sensors, the availability of periodical observations can 

be compromised. The Best Available Pixel (BAP) 

strategy, used to create cloud-free and spatially-

contiguous image composites over large areas [46], is 

not applicable for time-series creation since each 

observation in time at the pixel level is important. 

h) Data format: time-series data should be converted to 

a tabular format indexing the bands' information at the 

pixel and date level, enabling its consumption using 

the state-of-the-art deep learning frameworks. 

i) Lack of temporal network architectures: popular 

deep learning architectures currently used in the 

GeoAI domain exploit only the spatial and spectral 

data of single images. Land use practices analysis 

involves harnessing temporal information, together 

with the spatial and spectral information from satellite 

images. This shift from single image analysis to time-

series analysis creates the need for developing novel 

architectures [21], [47].  

j) Spatial non-transferability of the models created: 

ground truth data is scarce or inexistent for many 

places on Earth. The differences in climate, soil and 

agricultural practices across geographically separated 

regions compromise the performance of the developed 

models.  

 

4. Methodology 
 

In our study, we focused on addressing the 

challenges a-g related to time-series data creation, 

Page 926



identified in section 3. Our methodology combines 

desk research and the quantitative experimental 

method of analysis to construct a pipeline that 

enables the consumption of satellite imagery and the 

creation of temporal-sampled and labeled time-series 

datasets. In particular, we investigated the most 

common approaches and tools for image acquisition 

and processing used by the geospatial community. 

 
Ground in-situ crops data for 
years 2017-2018.  

 
a. shows the distribution of the 

parcels of alfalfa, corn and 
fallow for the year 2017. 
b. shows the distribution of the 
crops over the same parcels 
but for the year 2018. The 
alfalfa parcel was divided in 
two, and soybean was grown in 
the left side sub-parcel, while 
alfalfa was planted again in the 
right side one. The fallow 
parcel remains the same, while 
the parcel where corn was 
grown for 2017 was replaced 
by sunflower next year.  
c. shows the final minimal 
homogeneous land parcel 
labels for two years of analysis. 

Figure 1. GIS ground in-situ data processing 

 
Table 1. Ground in-situ datasets identified 

 

Dataset Description 
Date 

range 
Link 

Californ

ia Land 

Use 

Survey 

Yearly land use survey 

conducted by the California 

Department of Water 

Resources. More than 95% 

of the developed 

agricultural areas are 

visited in each survey, and 

more than 70 crops 

categories are mapped. 

1976, 

1986, 

1988-

1991, 

1993-

2015 

https://water.ca.go

v/Programs/Water

-Use-And-

Efficiency/Land-

And-Water-

Use/Land-Use-

Surveys 

Crop-

Scape 

The Cropland Data Layer is 

a raster, geo-referenced, 

crop-specific land cover 

data layer created annually 

for the continental United 

States using moderate 

resolution satellite imagery 

and extensive agricultural 

ground truth 

1997-

2018 

https://nassgeodat

a.gmu.edu/CropS

cape/ 

CEH 

Land 

Cover® 

plus: 

Crops 

data 

Record of all land 

registered for agricultural 

use and are submitted 

annually by farmers 

2015-

2018 

https://www.ceh.a

c.uk/ceh-land-

cover-plus-crop-

map-quality-

assurance 

 

 
Table 2. Free access observation satellites 

 

Satellite Launch 
Revisit 
time 

Bands 
№ 

Resolution 

Landsat 7 15/04/1999 8 days 8 30 m to 60 m 

Landsat 8 11/02/2013 11 30 m to 100 m 

Sentinel-

2A 
22/06/2015 

5 days 
13 10 m to 60 m 

Sentinel-

2B 
07/03/2017 13 10 m to 60 m 

 

4.1. Context 

 
The context of this study is based on the 

characterization of agricultural practices in an area of 

San Jose, California, U.S.A. The region of interest was 

delimited by human observation at satellite-based maps 

and aiming at including an extended area of both 

agricultural activity and ground in-situ data availability. 

For the purposes of this study, we have a particular 

interest in analyzing how the Normalized Difference 

Vegetation Index (NDVI) varies depending on the 

different types of crops grown in a season. The practice 

of harvesting more than one crop in the same season is 

called sequential cropping and, as same as crop 

rotations, is also done as an ecological practice [17]. 

Thus, we will also analyze how the one-single crop a 

year and double-crop a year practices are reflected in the 

NDVI time-series. 

 
4.2. Imagery acquisition 

 
Optical satellite imagery can be consumed using 

several different tools and platforms. Lately, several 

online platforms started to provide access to EO data 

online [48]. During our study, we analyzed two of the 

most common ones
3,4

 and we concluded that the main 

advantage put forward by those tools is online 

processing on the infrastructure provided while 

extracting data from this environment is challenging. 

Therefore, we dismissed this source. If we consider the 

research challenge d) we can observe that Landsat 

constellation provides a lower revisit time than Sentinel, 

but the overlapped period with ground in-situ data 

available is much higher. Due to this fact, Landsat 

products were preferred for this study. Among the 

available Landsat products, Landsat Level 2 is a 

research-quality, application-ready science product 

derived from Landsat Level 1 data [49] and can be 

downloaded, on-demand, from USGS webpage
5
. 

Because these images are radiometric-calibrated and 

atmospheric-corrected, the imagery preprocessing task 

is significantly simplified, and thus, we decided to use 

this type of data in our study. Although the QGIS tool 

provides a popular plugin called “Semi-Automatic 

                                                 
3 https://www.onda-dias.eu/cms/  
4 https://earthengine.google.com/ 
5 https://earthexplorer.usgs.gov/ 
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Classification”, which allows different products 

downloads, the new U.S. Geological Survey (USGS) 

Landsat Level 2 product is not available.  

The download process requires the user to log in, 

select a Region of Interest (ROI), by either providing 

a shapefile or selecting a region from the map, and 

select the desired time range and image products. The 

metadata results are sent to the user email in a 

spreadsheet format. Last, the user needs to submit a 

list of Landsat Product Identifiers chosen from the 

received spreadsheet using the interface in Land 

Satellites Data System Science Research and 

Development webpage
6
. The contents available for 

request include Surface Reflectance for all 

multispectral bands and spectral indexes like NDVI 

and EVI. Once the order is processed, and the 

imagery is ready, the data can be downloaded using 

the bulk downloader script provided by this service.  

 

4.3. Ground in-situ data acquisition and 

processing 
 

Some identified and useful ground in-situ data 

sources are listed in Table 1. This type of geospatial 

data is usually distributed in vector or raster files. 

GIS software such as QGIS and ArcGIS are designed 

to handle and process this type of geospatial data and 

help create appropriate labels for the agricultural 

fields. 

 

4.4. Pixel sampling and extraction 

 
Once the images acquired are decompressed and 

the ground in-situ data that we want to use as labels 

for the time-series are also downloaded and pre-

processed, we face challenge f). This challenge 

addresses the need for taking pixel samples for each 

class in the ground in-situ data across all the satellite 

images, as depicted in Figure 2. The first step for 

tackling this challenge is to be able to manage all 

satellite images as a single file containing multiple 

bands. Virtual Rasters help solve this issue, managing 

all the images as a virtual single file. Geospatial Data 

Abstraction Library (GDAL) provides support for its 

creation 
7
. Orfeo ToolBox (OTB) 8 is an open-source 

project developed by the geospatial community for 

processing remote sensing images [50]. Despite that 

this library is very powerful in terms of scalability 

and versatility and it is widely used in the geospatial 

                                                 
6 https://espa.cr.usgs.gov/ 
7 https://gdal.org/ 
8 https://www.orfeo-toolbox.org 

community, it still does not provide a well-defined 

pipeline for automatically creating ordered time-series 

from several image sources. In this way, OTB provides 

support for Polygon Class Statistics, Sample Selection 

and Sample Extraction at the pixel level. 

 

 
Figure 2. Ground in-situ data and satellite images 

Despite that the tool allows the use of several bands 

during the sample extraction phase, the tool does not 

provide support for: 

1) automatically indexing the captured values at the 

pixel level by capture date; 2) performing temporal 

sampling; 3) filling the gaps caused by clouds or 

missing data; 4) handling the availability of more than 

one image in the area of interest, for a given date (as 

depicted in the example of img 1 and img 2 in Figure 

2). Furthermore, the tool exports its results in SQLite 

format, creating an additional gap towards fulfilling 

challenge h). Thus, challenges f), g), and h) remain 

unsolved. After identifying these issues, we leveraged 

the OTB processing module in Python addressing these 

needs. 

 

5. Results 
 

We developed an end to end pipeline that can 

consume a collection of satellite images and a ground 

in-situ shapefile dataset to create labeled, temporal 

sampled and linearly interpolated time series at the pixel 

level. Figure 3 presents a general overview of the 

pipeline. We have made our code available at 

https://github.com/agustingp/remoteSensingTimeSeries 

so that others build on our work. 

 
Figure 3. Pipeline schematic 

For showcasing the effectivity of our results, we 

used the pipeline for a collection of satellites images 

from San Jose, California, U.S.A using ground in-situ 

data gathered from California Land Use Survey (see 
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Table 1). Next, we describe the results for each of the 

steps. During Step 1, we downloaded 74 satellite 

images from Landsat 8 OLI/TIRS C1 Level-2 and 

Landsat 7 ETM+ C1 Level-2 products intersecting 

the area of interest (described previously in the 

context definition) corresponding to the year 2014 

and presenting less than 20% of cloud cover. The 

images were decompressed in a general directory 

containing a unique directory for each image product. 

Each image product consists of several bands, as 

depicted in Figure 4. 

 

 
Figure 4. Satellite image product structure 

In this case, as we are using Landsat Level-2 

processed data, each image product also has its 

correspondent Surface Reflectance, NDVI, and EVI 

layer. The ground in-situ data consists of a vector 

shapefile dataset for the year 2014 containing 

polygons mapping each agricultural parcel and 

providing different information at the polygon level. 

 

 

 
One-year pixels NDVI time-series for single-crop practices. 
The time dimension is represented using a 2-days grid. 

Figure 5. Single crops NDVI  
 In this case, as we are working with one-year 

temporal resolution ground in-situ data, there is no 

need to perform GIS processing to calculate the 

agricultural practices labels (as was the case for the 

example depicted in Figure 1, Section 3). 

In Step 2, pixel-level sampling and extraction are 

supported by the provided script named 

sampling_extraction.py. At this stage, the pipeline lets 

the user select the sampling strategy to be followed and 

the product band from which to extract the information. 

By default, all the samples available are extracted, and 

the pipeline uses NDVI product band, but multiple 

bands information can be extracted in parallel. The main 

output of this step is a tabulated structure containing, for 

each row, the geospatial information of the sample pixel 

and the bands (in this case NDVI) for each image of the 

collection. Missing values may occur, and no 

information about the capture date is yet available.  

 

  
One-year pixels NDVI time-series for double crop-practices. 
The time dimension is represented using a 2-days grid. 

Figure 6. Double crops NDVI 

During Step 3, temporal sampling is supported by 

the provided script named temporal_sampling.py. At 

this stage, the user can select the starting date for 

sampling. In this case, we selected “2014-01-01” and a 

frequency of two days. Considering that for our study 

area the minimum time distance between images 

acquired by Landsat 7 and Landsat 8 is one day (due to 

different orbits overlying the study area), we decided to 

establish a 2-day time grid, in order to minimize the 

distortion of this time relation while minimizing the 

overall time-series length. A 2-day grid will decrease 

the length of a single year time-series by half, while the 

worst possible time relation distortion will be of one 

day. For one year, the pipeline will create a grid of 183 

observations and will try to complete it using the 

available information from the images collection. A 

look ahead strategy is followed to consider the 

availability of images on the dates that do not appear in 

the created grid.  Missing values are still present. 

Missing data processing is supported by the 

provided script interpolation.py during Step 4. The gaps 
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produced by the absence of imagery, sensors failure, 

or clouds are filled using linear interpolation. Linear 

interpolation has demonstrated to be an effective 

method for remote sensing time series gap-filling 

[51], [52]. The tabulated structure is then saved in a 

CSV file, by using one row for each pixel and adding 

pixel-class information columns as required by the 

user, together with the time-indexed band values. 

Different bands values can be extracted for the same 

pixel, leveraging the satellite images spectral 

dimension. In Figure 5 and Figure 6 we present some 

temporal-sampled and labeled NDVI time-series for 

our region of interest. 

 

6. Discussion  
 

The need for high-quality geospatial datasets 

labeling and characterizing land-use dynamics 

traverse many areas of applications, including growth 

urbanization analysis, soil erosion and desertification 

assessment, floods risk assessment, rural unpaved 

paths flooding prediction, shore shrinking 

assessment, city vegetation mapping, agriculture, 

among others. We believe this paper contributes to 

advancing GeoAI science in many of the areas 

mentioned and helps to reduce the gap between 

geospatial sciences and the AI community. The 

limitations of this work include lack of interpolation 

errors assessment for missing data processing and 

lack of multi-satellite sensor support. Future work 

will address these issues and will include a 

segmentation step in the pipeline for enabling object-

based analysis approach complementing the pixel-

based approach followed in this publication, as well 

as a pixel-neighbourhood approach to also leverage 

the spatial dimension at the pixel level.  
 

7. Conclusions 
 

In this paper, we presented the challenges 

associated with the creation of high-quality 

geospatial temporally-sampled and labeled datasets 

for sustainable agriculture GeoAI models 

development. We designed a pipeline for addressing 

these challenges, and we provided the actual 

implementation of the scripts supporting this process. 

Finally, we discussed other areas of application of the 

presented solution as well as limitations and future 

work.  
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