
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 134, Number 3, Pages 703–705
S 0002-9939(05)07925-6
Article electronically published on September 28, 2005

ADMISSIBLE MEASURES IN ONE DIMENSION

JANA BJÖRN, STEPHEN BUCKLEY, AND STEPHEN KEITH

(Communicated by Andreas Seeger)

Abstract. In this note we show that p-admissible measures in one dimension
(i.e. doubling measures admitting a p-Poincaré inequality) are precisely the
Muckenhoupt Ap-weights.

In the last two decades it has been observed that much of the theory for p-
harmonic functions can be extended to the situation when the Lebesgue measure
on Rn is replaced by another measure satisfying certain conditions; see e.g. Fabes–
Kenig–Serapioni [2] and Heinonen–Kilpeläinen–Martio [4]. More precisely, Theo-
rem 2 in Haj�lasz–Koskela [3] and Theorem 5.2 in Heinonen–Koskela [5] show that
the following two conditions are exactly what is needed for the theory to go through.

Definition 1. A measure µ on Rn is called p-admissible with p ≥ 1 if it satisfies
the following two conditions:

• It is doubling, i.e. there is a constant C > 0 such that

µ(2B) < Cµ(B)

for all balls B ⊂ Rn, where 2B denotes the ball concentric with B and with
twice the radius.

• It admits the weak p-Poincaré inequality, i.e. there exist C > 0 and λ ≥ 1
such that

1
µ(B)

∫
B

|u − uB| dµ ≤ Cr

(
1

µ(λB)

∫
λB

|∇u|p dµ

)1/p

holds whenever B is a ball with radius r and u is, say, a locally Lipschitz
function on λB. Here and in what follows, uB = µ(B)−1

∫
B

u dµ.
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The Hölder inequality implies that every p-admissible measure is also p′-admis-
sible for all p′ > p. Conversely, by a recent result due to Keith–Zhong [6], every
p-admissible measure with p > 1 is also p′-admissible for some p′ < p.

Unfortunately, in many situations, the Poincaré inequality is rather difficult to
verify. In this note we give a more straightforward characterization of admissible
measures in one dimension, namely we prove the following result.

Theorem 2. Let µ be a measure on R and let p ≥ 1. Then µ is p-admissible in
R if and only if dµ = w dx and w is a Muckenhoupt Ap-weight.

Definition 3. A nonnegative function w on Rn is a Muckenhoupt Ap-weight with
p ≥ 1, if for some C > 0 and all balls B ⊂ Rn,

1
|B|

∫
B

w dx <

⎧⎪⎨
⎪⎩

C

(
1
|B|

∫
B

w1/(1−p) dx

)1−p

for p > 1,

C ess inf
B

w for p = 1,

where |B| denotes the Lebesgue measure of B.

Remark 4. Note that Theorem 2 fails in Rn if n ≥ 2. By e.g. Corollary 15.35
in Heinonen–Kilpeläinen–Martio [4], the measures dµ = |x|α dx with α > 0 are
p-admissible in Rn, n ≥ 2, for all p > 1, but belong to Ap if and only if p > 1+nα.

To prove Theorem 2, we use the following lemma. For a proof, see the corollary
on p. 200 in Stein [7].

Lemma 5. Let µ be a nonnegative Borel measure on Rn and assume that there
exists C > 0 such that

1
|B|

∫
B

f(x) dx ≤ C

(
1

µ(B)

∫
B

fp dµ

)1/p

for all balls B ⊂ Rn and all nonnegative measurable functions f on B. Then µ is
absolutely continuous with respect to the Lebesgue measure, dµ = w dx and w is a
Muckenhoupt Ap-weight.

In the rest of this note, C > 0 denotes a constant whose value may vary with
each usage but depends only on the doubling constant of µ and on the constants
in the Poincaré inequality.

Proof of Theorem 2. The “if” part of the theorem is proved e.g. in Theorem 15.21
in Heinonen–Kilpeläinen–Martio [4]. To prove the “only if” part, let f ≥ 0 be a
measurable function supported on an interval I ⊂ R. For k ∈ N, let fk = min{f, k}
and

uk(x) =
∫ x

−∞
fk(t)χI(t) dt.

Then uk is Lipschitz and we can test the weak p-Poincaré inequality with it on the
concentric double 2I of I. On the right-hand side we have

C|I|
(

1
µ(2λI)

∫
2λI

(u′
k)p dµ

)1/p

≤ C|I|
(

1
µ(I)

∫
I

fp dµ

)1/p

.

To estimate the left-hand side in the Poincaré inequality, let I− and I+ denote
the parts of 2I \ I lying to the left and to the right of I, respectively. Then uk = 0
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on I− and

uk =
∫

I

fk(x) dx

on I+. Using the doubling property of µ, the left-hand side in the Poincaré inequal-
ity can be estimated as

1
µ(2I)

∫
2I

|uk−(uk)2I | dµ ≥ 1
µ(2I)

(∫
I−

(uk)2I dµ +
∫

I+

(∫
I

fk(x) dx−(uk)2I

)
dµ

)

≥ C

∫
I

fk(x) dx.

Inserting both estimates into the weak p-Poincaré inequality, together with the
monotone convergence theorem, shows that the assumptions in Lemma 5 are satis-
fied and hence dµ = w dx with w a Muckenhoupt Ap-weight. �
Remark 6. If we knew a priori that µ is absolutely continuous with respect to the
Lebesgue measure, then Theorem 2 could also be obtained after some calculation
from Theorem 1.4 in Chua–Wheeden [1].
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