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Abstract

The Maslov index of a not necessarily closed path M in the symplectic
group Sp(2n) is expressed by an integral formula. We have an explicit
formula for the integrand which is a rational 1-form on Sp(2n).
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1 Introduction

The homotopy class of a loop A(t) in the Lagrangian Grassmannian L(2n) in
standard symplectic space R?" is detected by an integer, the Maslov index.
Following Arnold, [I], this can be defined as an intersection number with a
certain subset of L(2n), the Maslov cycle. In [6] this definition of the Maslov
index was extended to not necessarily closed paths, and it is this index which
enters in the Gutzwiller trace formula in semiclassical quantisation, [2], see also
[4].

The group Sp(2n) of symplectic automorphisms of R?" acts transitively on
the set of Lagrangians and thus L(2n) = Sp(2n)/ H(2n) is a homogeneous space.
In applications the path A(t) is frequently given in the form M (¢)A¢ with a curve
M (t) € Sp(2n) of symplectic automorphisms and a fixed Lagrangian Ag. In view
of calculations of the Maslov index as in [3] it seems desirable to compute the
Maslov index p(A) = p(M) directly in terms of M.

In the present note we derive such a formula. We show that the Maslov
index is the line integral over a certain differential form xgp(2,) € ' (Sp(2n), R)
plus end point terms which are also given by an explicit function ® on Sp(2n).

For unitary paths, i.e. paths M(t) € U(n) C Sp(2n) in the unitary group
the (complex) Trace Trc on the Lie algebra u(n) is an invariant for the adjoint
representation, and therefore provides a bi-invariant 1-form on U(n). On the
symplectic group Sp(2n) however a nontrivial biinvariant 1-form does not exist.
The 1-form xgp(2n) and the function ® we construct are invariant under the



left action of Sp(2n) and under the right action of the stabilizer subgroup H(n)
which contains O(n).

We formulate our main result in the next section 2} Then, in section [3 we
compute the 1-form xsp(2,) explicitely in terms of the entries of the symplectic
matrix. Finally we prove our integral formula by verifying the axioms for the
Maslov index in section E

2 A local formula for the Maslov index

We need to introduce some notation and recall some well known facts from
symplectic geometry as may be found in [5], for instance. Let Ag be a Lagrangian
in R?" and Ag the orthogonal complement with respect to the standard scalar
product (-|-). The symplectic structure w on R?"™ can be written as

w(z,y) = (2| Jy)

where J is a complex structure, i.e. J € O(2n) with J? = —1,, and we have
JAo = Ag.

Usually we choose coordinates such that Ag = R™ x {0}, Ag = {0} x R and
so that the complex structure .J becomes

1
0o -1,
J(ln 0 ) , 1= 0 . 0 € Mat(n x n,R) . (1)
0 0 1
With respect to the orthogonal decomposition
R2" — Ao ® A(J]‘ (2)

we can write a (symplectic) matrix M as
a b
M= ( o ) 3)

a € Hom(Ag, Ag), b € Hom(Ag, Ag), ¢ € Hom(Ag,AF), d € Hom(Ag,AF) .

where

All these will be identified with Mat(n x n;R).
By means of the complex structure we can read a complex (n X n)-matrix

Y as a real (2n X 2n)-matrix g _aﬁ . The traces Trc over C respectively
Tr = Trg over R are related by
1 .
Tre(Y) = 5 Tr(Y) - %Tr(JY) = Tr(a) + i Tr(B) . (4)



The group Sp(2n) of symplectic automorphisms is
Sp(2n) = {M € G1(2n) | M'JM = J}
and acts transitively on the Lagrangian Grassmannian L(2n). The stabilizer

group, i.e. the isotropy group of this action at Ag = R™ x {0} is

H(n) = {( q (Afg,l ) | AcGl(n), AX € Mat(n x n,R) symmetric}

We will also need the subgroup H (n) consisting of those matrices in H(n) with
A upper triangular and positive. The unitary group U(n) and the orthogonal
group O(n) are naturally identified as subgroups of Sp(2n),

U(n) = {Me€Sp@2n)| MJ=JM}=Sp(2n)N0O(2n)
{M €Sp(2n) | MJ = JM and MAy = Ao} (5)

_ {(CS ;1)|T€O(n)}—H(n)ﬂO(2n)CU(n).

2
2
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With these identifications we can represent the Lagrangian Grassmannian as
homogeneous space,

L(2n) = Sp(2n)/ H(n) = U(n)/ O(n) . (6)
The square of the (complex) determinant
L(2n) = U(n)/ O(n) — U(1), F — detc(F)? (7)
induces an isomorphism of the fundamental groups
m(L(2n)) 27 (UQ1)) =Z .
The Jordan-, or QR~ decomposition, of the symplectic group is
Sp(2n) = U(n) - H' ()

and
Ht(n) = D" (n) x Sym(n)

is the semidirect product of the group of positive upper triangular matrices with
the vector group of symmetric matrices. In particular, we have a diffeomorphism
and a homotopy equivalence, both equivariant under the right action of H™ (n),

F: Sp(2n) = U(n) x H (n) = U(n) . (8)
We will also need the map

H: Sp(2n) = U(n) x H" (n) — H'(n) . 9)



These are defined by first decomposing a given M € Sp(2n), M = FH with
F € U(n), H € H"(n) uniquely determined by M. This can be done efficiently
by any of the algorithms for the QR-decomposition. Then we set F(M) := F
and H(M):=H

For the contribution of end points we need a function

®: Sp(2n) = R.

which is defined as follows: ®(M) is computed from the unitary part

F(M) = ( g - ) (10)

a
alone. Since F'F = 14, = FF" we have
ala+ ﬂtﬁ =1,, atﬂ = ﬂtaa

act + 86 =1,,, aft = pat.

From these relations it follows that a’«, 5?3 and o 3 commute and can therefore
be simultaneously diagonalized. Since Spec(5¢3) C [0, 1] we may set

X := arcsin ((ﬂtﬂ)l/z) € Mat(n x n;R) . (11)

Note that X is nonegative symmetric and Spec X C [0, §]. Now define T,,, T €
Mat(n x n;R) as

Tﬁ = ﬂSin(X)il PT (ker X)L > T, = aCOS(X)71 p (12)

Tker(X—%1,)"

where pr denotes the orthogonal projection on the subspace indicated. We then
have

B =Tssin(X), a="Tacos(X), T§Tp = Prixer xy2> Tala = Pl (x—51,)*

We define 1
(M) = —Tr (T;Tﬁ (X - gln» . (13)

This is to arrange for d ® = xgp(2,) on the complement of the Maslov cycle (see
Lemma |21 and in the proof of that Lemma).

We can now write down an integral formula for the Maslov index:

Theorem Let M: [0,1] — Sp(2n) be a differentiable path in the symplectic
group of R?™ and let Ag C R?" be a fized Lagrangian subspace. Then the
Maslov index ji(A) € LZ of the path A: [0,1] — L(2n), A(t) = M(t)Ao, in
the Lagrangian-Grassmannian of R?" is given by

(M) = p(A) = /M Xsp(zn) — P(M(1)) + 2(M(0)) (14)



where @ is as defined in and
1
Xspan) = —5— Tr (JM*A M) — Tr (JH(M)  d(H(M)))

This form is explicitely computed in in terms of the coefficients of M.

Recall that the stabilizer part H = H(M) € H"(n) C Mat(2n x 2n) is
uniquely determined from M by the following conditions (see (9)):

1. M'M = H'H),

o

H= ( 61 (fﬁi(_l ) w.r.t. the splitting R>" = Ag @ Ag,

3. A € Mat(n x n,R) is upper triangular with positive eigenvalues,

N

. X € Mat(n x n,R) is symmetric.

3 The 1-form on the symplectic group

We will now derive explicit formulas for the integrand in . The form x =
s=2"tdz on U(1) = S! C C detects the homotopy type of a loop in U(1). To

27

find the right 1-form for the Maslov index we first pull back x to U(n) via the
map det? in (7). Sine d(detc F) = detc(F) Tre(F~1d F) we get
* 1 _
XU(n) = (deté) X=_ Trc F'd F € Q'(U(n)) .

This already gives a formula, similiar to that for the winding number, for the
Maslov index of a unitary path F(t)Ao, F: [0,1] — U(n),

Yy

1
W(F) = = [ Tre(P aR) — B(F) + B(F(0)
The 1-form on Sp(2n) we are looking for is the pull back of xy() over the
map F in . We compute this explicitely.

Lemma 15 Denote by a,b, c,d € Mat(n x n,R) the components of a symplectic
matriz M, i.e the matrices such that

M:(Z 2) (16)

with respect to the decomposition . Then
* 1 —
Xsp(an) = F'xu(m) = — Tre (F(M)~tdF(M))

~ly (JM'dM — JH'd H)
2m

-1
— Tr [—btda—dtdc—i—atdb—l—ctdd

2
—(a'a+c'e)d [(a'a+ cte) H(a'b + 'd)]]
(17)



Proof: Let M € Sp(2n) and F = F(M) = MH~' € U(n) with H € H" (n).
We get

FYdF=HM YdM)H '+ HM*Md(H ') € Q'(Sp(2n),u(n)) .
Because of and since H'H = M'M,
1 1
Trc F7'dF = 5 Tr JF~HAF = o Tr (JHM ™Y (A M)H ™" + JHM M d (H™))
1

== Tr “'JHM'dM - JHH '(dH)H ')

(H
r(JHtHM 'dM - J(dH)H )
= r(JMtMM 'dM + J(dH)JH'J)
(

:—Tr JM'dM — JH'd H)
(18)

In view of we can simplify this further. First

¢ B 0 -1 at da db
Tr(JM dM)_Tr(1 0 )(bt dt de dd
=Tr(-b'da—d'dc+a'db+c'dd)

A AX

For the second summand in let H = ( 0 (A

pute

mran=n(§ 30) (e ) (3 i)

= Tr(—X'A'd A + A" d(AX))
= Tr(A'Ad X)

) € H"(n). We com-

since X is symmetric. As H'H = M'M we have A'A = ata + ctc and A'AX =
atb 4 ctd which yields

Tr (JH'dH) = Tr [(a'a+ c'c) d [(a'a + c'e) ' (a'b + ' d)]]

4 The axiomatic characterization of the Maslov
index

For the proof of the Theorem, denote by (M) the right hand side of for
a path M(¢) € Sp(2n). In order to show that g coincides with the Maslov



index, we will check that g satisfies the five properties which were shown to
characterize the Maslov index by Theorem 4.1 in [6].

We need two Lemmas. The first will permit us to move the path by paths
in O(n).
Lemma 19 The form xsp(2n) € Q(Sp(2n)) from and the function ® of
are left-O(n) and right-H(n)-invariant. Thus if M(t) € Sp(2n) and T(t) €
O(n), H(t) € H(n) are smooth paths, then
(M) = F(TMH) .
Proof: Let
M=FH" and H=T\H} with FcU), H" H} ¢ H"(n), T € O(n).
Then
F(TMH)=F(TFHTT\H') = F(TFT,H)) = TFT;
with some Ty = F(HTTH;") € O(n) and some Hy € HT (n), since
H(n) = O(n) - HT(n) = H"(n) - O(n). (20)
Now
Tre (TFT2) ' d(TFT3)) = Tre (TFT2) ' TF(dT2))
+ Tre (TFT2) 'T(d F)T»)
+ Trc (TFT) ' (dT)FTy)
=Trc(F'dF)
since T=1d T lies in the Lie algebra of O(n) and therefore Trc(7T-1dT) = 0.
For the invariance of the function ® of it suffices to prove left and right

invariance under O(n), because of as before. We also may assume M = F
unitary since right-H™ (n)-invariance of ® is clear from its definition. So let

(5 )

be unitary with real (n x n)-matrices @ and 3. We then have

T 0 a —f Ta -Tp
rr= (5 2)(5 7 )=(7 =)
From and we see that this replaces the matrices Ty, 13 used to define
® by T'T,,, TTs while leaving X unchanged. By definition O(TF) = d(F).
Similiarly, multiplying T" from the right, replaces «, 8 by oT', BT. Thus, by
and (1)), T, T, X are replaced by T,T, TsT and T~ XT, since sin(T~'XT) =
T~'sin(X)T. By and the conjugation invariance of the trace, ® again is
unchanged. [

By the next Lemma [z vanishes on a path M (¢) such that M (t)Ag stays away
from the Maslov cycle {A € L(2n) | AN Ag # 0}. Thus, away from the Maslov
cycle, the function ® is an integral of xgp(2n)-



Lemma 21 For M € Sp(2n) let B(M), (M) € Mat(n x n;R) be the matrices

i the unitary part
a(M) —p(M) )
F(M) =
0= ( 5ar) s
of M as in (10). Then on the set Sp™(2n) = {M | B(M) invertible } we have
d® = xsp2an)-
In particular fi vanishes on paths staying in Sp™(2n).

The set Sp* (2n) is the set of all M such that M (¢)AgNAg = 0. Thus Sp*(2n)
is the preimage of the complement of the Maslov cycle under the projection
Sp(2n) — L(2n).

Proof: It suffices to prove the Lemma on U*(n) = U(n) N Sp*(2n) since
both the form xgp(2n) and ® are right-H™ (n) invariant. We will now show that
[ Xtany = [®(F(t)]i=) for arbitrary paths F': [0,1] — U(n).

Let M = F € U*(n). Then the matrices X (F) and T3(F) defined as in

and are invertible and depend smoothly on F'. Let

™

X = (1—s)§1n+sX(F) for se€[0,1] and
as = Topycos(Xs) , Bs = Tpp)sin(Xs) .
The path
Qs _Bs
= ( o ) (22)

has F} = F = M and

0 =T, T 0

o 5(M)>:J< B(F) ):JT € JO(n) .
’ ( Tor) 0 0 Tar o "

Now by definition ® vanishes on J O(n), so ®(Fy) = 0. We integrate

1
/ XSp(2n) = ;/F Tr (ol d B, — BLdas)

s s

1
_ 1 / Tr (cos(Xs)T;(F)Tﬁ(F) cos(X,) d X, + sin(X,)Th p Tagr) sin(XS)dXs)
Fs

™

_ ;/F T (Tl ) Tory A X,

1
=T (T;(F)TB(F)(Xl — XO))

= %Tr (T;(F)TB(F) (X(F) N gln))
= O(F) = O(F) (23)
23

by definition of ®. Here we have used that X, d X, Té(F)Tg(F) commute,
together with the identity cos?(X,) + sin®(X,) = 1,,.



Since F, defined by depends smoothly on F, we have a deformation
retraction of U*(n) (and Sp*(2n)) on JO(n) = O(n). Therefore any path
F(t) € U*(n) is homotopic relative end points to the catenation a* T * b of two
paths a, b of type and a path 7" in J O(n). Since X gp(2n) is the pull back of
the closed form x on U(1) it is closed as well and therefore line integrals over
Xsp(2n) depend on the homotopy class relative end points only. For an arbitrary
path F in U*(n) we can therefore compute

/XSp(Qn) :/ XSp(2n) :/XSp(Zn) +/ XSp(2n) +/X5p(2n) .
F axTxb a T b

The integral over T vanishes since (JT)~'d(JT) = T~1dT has trace 0. The
integrals over a and b have been evaluated in . Thus we get that

ﬂx%wwzéwu»wa®>

for any path F(t) in U* (n) which proves the Lemma. |

We now proceed to verify the axioms from [6] for the Maslov index for .

1. Homotopy: Two paths in Sp(2n) are homotopic relative end points if
and only if the respective values of fi coincide.

Since xsp(an) = ((det) o F)* X is closed we have that ji is homotopy in-
variant relative end points. The map (det?) o F induces an injective map
m1(Sp(2n)) — m1(U(1)) and the isomorphism 71 (U(1)) & Z is given by inte-
grating the form y. For closed loops the end point terms cancel and the
claim follows.

2. Catenation: Let M;(t), i = 0,1 be paths in Sp(2n) with My(1) = M1(0)
and M = My * My denote the path with M(t) = My(2t) for t < 1/2 and
My(2t — 1) fort >1/2. Then p(M) = p(My) + p(My).

The contributions of the end points My(1) and M;(0) cancel. The claim
thus follows from the additivity of the integral.

M (t) 0
0

Ma(t) with M;(t) € Sp(2n;), ni +

3. Product: If M(t) = (
ng =n, then (M) + p(Ms) = p(M).

This follows from the analogous property of the trace.

4. Zero: Let M(t) be a path such that dim(M (t)Ag N Ag) = k > 0 is
constant for all t. Then p(M) = 0.

By lemma 19 we may replace M(t) by M(t)H (t) with H(t) € H(n) without
changing pi. We can thus achieve that that

meo =For0) = (5 ) e v

is unitary. We also have ker 3(t) = M (t)Ag N Ap which is of constant dimension
k by our assumption. Also «(t) maps ker 3(¢) isometrically into Ag. Therefore



replacing M (t) by Ti1(t)M (t)T»(t) with suitable paths T1(t), T2(t) € O(n), w
may assume that V' = ker 3(¢) is independent of ¢ and that «(t) is the 1dent1ty
on V. Again by Lemma [19] we have (M) = u(Ty MT3).

Let W be the orthogonal complement of V' in Ag. We then can split

"=VaeJV)e(WaeJW)

as the orthogonal sum of two symplectic subspaces. With respect to this split-

ting we now have
_( ygsv O
M) = ( 0 Q ) |

The path Q(t) € Sp™ (W & JW) = Sp*(2(n — k)) avoids the Maslov cycle. By
Lomma B} (M) = (1) + (Q) = 0.

5. Normalization: Let Y (t) € Sym(n) be a path of symmetric matrices

and M(t) = ( Y:Et) (1) ) the corresponding path of symplectic shears. Then

(M) = [sign(Y (1)) — sign(Y(0))]/2 ,

where the signature sign(Y') is the number of positive eigenvalues of Y minus
the number of negative eigenvalues.
To see this, let T'(t) € O(n) be such that

A1(t)
T Y (O)T(t) =

is diagonal. Then

By Lemma [I9] and the product property,

(M) = (T MT) = Zu( )

It suffices therefore to verify the normalization property in the case n = 1,

1 0 . . . .
Y(t) = A(t) and M (t) = AE) 1 ) The integral in (14)), i.e. the integral
over the form (L7)), becomes
-1 _ arctan(\(t))]1=}
/ XSp( ) = ﬁ —dA _ (1 4 )\2) d ((1 4 )\2) IA) — [ (ﬂ-( ))]t—O

10



For the end point term in we compute

10 1 1 -\
Per( )= (6 1)

which gives

Al
V142

in the notation of and . From we get

Larctan(A) — 3 if A>0
(M) = 0 if A=0

Larctan(A) + 35 if A<0

X = arcsin ( ) =arctan(|]A|) , Tp=sign(A) , T,=1

1
2

This yields p(M) = [sign(A\(1)) — sign(A(0))]/2 as required.
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