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Abstract
A 250-year (1766–2016) archive of reconstructed river flows is presented for 51 
catchments across Ireland. By leveraging meteorological data rescue efforts with 
gridded precipitation and temperature reconstructions, we develop monthly river 
flow reconstructions using the GR2M hydrological model and an Artificial Neural 
Network. Uncertainties in reconstructed flows associated with hydrological model 
structure and parameters are quantified. Reconstructions are evaluated by comparison 
with those derived from quality assured long-term precipitation series for the period 
1850–2000. Assessment of the reconstruction performance across all 51 catchments 
using metrics of MAE (9.3 mm/month; 13.3%), RMSE (12.6 mm/month; 18.0%) and 
mean bias (−1.16 mm/month; −1.7%), indicates good skill. Notable years with high-
est/lowest annual mean flows across all catchments were 1877/1855. Winter 2015/16 
had the highest seasonal mean flows and summer 1826 the lowest, whereas autumn 
1933 had notable low flows across most catchments. The reconstructed database will 
enable assessment of catchment specific responses to varying climatic conditions and 
extremes on annual, seasonal and monthly timescales.
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1 |  INTRODUCTION

Continuous, long-term river flow records are needed for eval-
uations of hydro-climatic variability and change, historical 
extremes and catchment processes (Machiwal and Jha, 2006). 
They also underpin water management and provide a means 
of stress-testing existing and planned systems to a range of 
variability and past droughts (Wilby and Murphy, 2019). 
Unfortunately, there are few continuous and homogeneous 
river flow records spanning a century or more (Mediero 
et al., 2015). Instead, available records are often impacted by 
confounding factors or large amounts of missing data (Wilby 
et al., 2017).

Various techniques exist for extending observations by 
reconstructing river flows. This typically involves forcing 
statistical or conceptual hydrological models with long-
term precipitation and temperature/evapotranspiration data 
provided by reanalysis (e.g. Kuentz et al., 2013; Brigode 
et al., 2016) or long-term historical data sets (e.g. Jones, 
1984; Spraggs et al., 2015; Crooks and Kay, 2015; Rudd 
et al., 2017; Hanel et al., 2018; Smith et al., 2019; Noone 
and Murphy, 2020). Others have leveraged international data 
rescue initiatives to generate gridded historical weather vari-
ables (Casty et al., 2007). Whilst these kinds of information 
have been used to reconstruct river flows in parts of Europe 
(e.g. Moravec et al., 2019), they have yet to be deployed in 
the British-Irish Isles.

Here, we develop a data set of reconstructed monthly river 
flows for 51 catchments across the island of Ireland back to 
1766. This was achieved using gridded historical meteoro-
logical data, bias corrected to contemporary observations 
in each catchment. These data provided the input to a con-
ceptual hydrological model and an artificial neural network 
(ANN), both of which were trained and verified using river 
flow observations. In addition, we use recently rescued pre-
cipitation data to evaluate model reconstructions for selected 
catchments during the period 1850–2010. The following sec-
tions describe the catchments, data sets and modelling ap-
proaches, before we present the derived reconstructions.

2 |  DATA PRODUCTION 
METHODS

2.1 | Catchments and data

Reconstructions were generated for 51 catchments (Table 1 
and Figure 1) that are relatively free from artificial influences 
(following criteria applied by Murphy et al. (2013): they 
have at least 25 years of record and acceptable quality rating 
curves). The catchments are broadly representative of hydro-
climatological conditions across the island, with a recognized 
under-representation of upland catchments along coastal 

margins (Broderick et al., 2019). Urban extent averages <2% 
of the combined area of all catchments, which individually 
vary in size between 10 and 2,418 km2. However, given the 
extent of arterial drainage works undertaken in Ireland, it is 
unavoidable that some catchments have been impacted by 
such activities. We note which catchments are known to be 
affected by arterial drainage in Table 1.

Daily flow series were obtained from the Office of Public 
Works (OPW; http://water level.ie/) and the Environmental 
Protection Agency (http://www.epa.ie/hydro net/) and then 
aggregated to monthly mean flows. The average amount of 
missing data was <6% across the 51 catchments, with a no-
table outlier of 31% being the Blackwater at Duarrigle (ID: 
18050). Of the total missing days (11% overall), the major-
ity have been previously infilled using rainfall–runoff mod-
elling techniques (Murphy et al., 2013). As the remaining 
missing data only represented 1% of the total, they were not 
repopulated.

We use gridded (1  ×  1  km) monthly precipitation and 
temperature series (Walsh, 2012) area-averaged for each 
catchment, alongside concurrent river flow records, to cali-
brate the hydrological models (see below). Monthly potential 
evapotranspiration (PET) was estimated from air temperature 
and radiation following the method of Oudin et al. (2005). 
We favoured this over more physically based methods (e.g. 
Penman-Monteith), because the latter have greater data re-
quirements (e.g. wind speed, humidity) that cannot be met 
over the full duration of the reconstruction period. Instead, 
the sensitivity of monthly river flow simulations to PET es-
timation methods was tested for periods with complete vari-
able sets. Six PET estimation methods (Penman–Monteith 
Penman (1948), Monteith (1965), Blaney and Criddle 
(1950), Hamon (1961), Oudin et al. (2005), Thornthwaite 
(1948) and Kharrufa (1985)) were evaluated using the hydro-
logical model GR2M. This revealed that the Oudin method 
performed similarly to the Penman–Monteith method, with 
an average RMSE of 3.6 mm between flows generated from 
the two methodologies for five catchments for the period 
1974–2000 (equating to 4.5% of mean annual flows).

2.2 | Historical gridded precipitation and 
temperature data

Casty et al. (2007) (henceforth Casty data) produced gridded 
(0.5° × 0.5°) monthly temperature and precipitation series for 
Europe covering the period 1766–2000 using non-linear prin-
ciple component regression of a spatial network of available 
station data against reanalysis data, with independent predic-
tors used for different variables (Casty et al., 2007). Monthly 
mean temperature and total precipitation were extracted and 
averaged for grids overlying each catchment for the years 
1766–2000. Quantile mapping (Maraun, 2016) was used to 

http://waterlevel.ie/
http://www.epa.ie/hydronet/
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bias correct Casty data to catchment averages using the afore-
mentioned gridded (1  ×  1  km) monthly precipitation and 
temperature series. We perform quantile mapping by interpo-
lating the empirical quantiles using local linear least square 
regression to robustly estimate the values of the quantile–
quantile relationship between the Casty and observed data 
for each catchment. For values outside the historical range, a 
constant correction—equivalent to the highest quantile in that 

series—was applied (Boé et al., 2007). Bias correction was 
carried out on a monthly basis using the ‘qmap’ R package 
(Gudmundsson, 2016). Sample bias correction plots for nine 
catchments are shown in Figure 2 (temperature) and Figure 3 
(precipitation). Across the 51 catchments, the bias adjustment 
produced minimal change in mean annual temperature values 
(−0.15°C). Precipitation corrections were more substantial, 
with a mean increase of 94.2 mm/year (7.7% of mean annual 

F I G U R E  1  The 51 study catchments along with the locations of corresponding flow stations and island of Ireland precipitation (IIP) series 
synoptic stations
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precipitation). Once bias corrected, observed temperature 
and precipitation were appended to each catchment series to 
bring values up to 2016. The Oudin method was then used 
to derive PET estimates from the Casty temperature data for 
each catchment.

2.3 | Hydrological models and 
calibration procedures

To ascertain the contribution to uncertainty generated by 
model structure, two model types were implemented—a 
conceptual hydrological model (GR2M) and an empirical 
based Artificial Neural Network (ANN). These models are 
explained below.

2.3.1 | The GR2M conceptual model

GR2M is a simple water balance model (Mouelhi et al., 
2006), originally developed for French catchments, now 
available via the airGR R hydrological modelling package 
(Coron et al., 2017). The monthly flow model contains two 
reservoirs representing a soil store and routing reservoir 
(Figure 4) governed by two parameters: the production store 
capacity and groundwater exchange coefficient. GR2M has 
been widely deployed across diverse catchment types and 

applications (e.g. Louvet et al., 2016), including for flow re-
constructions (Dieppois et al., 2016).

For each catchment, GR2M was calibrated and validated 
on observed data before using the bias corrected Casty data 
to reconstruct flows. A split record for calibration/validation 
was applied as this allows direct comparison between GR2M 
and ANN model outputs on a catchment-by-catchment basis. 
Calibration for all catchments (including a 1-year warm-up 
period) was undertaken from the start of the flow record up 
to December 2000. This time interval captures periods of 
large flow variability ranging from the drought rich 1970s 
to the flood rich 1980s. Validation was undertaken using the 
15 years postcalibration (2001–2016) for all catchments (see 
Table 1).

Uncertainty in GR2M model parameters was sampled 
using Monte Carlo methods. For each parameter, 20,000 
values were randomly drawn from a uniform distribution of 
[0–2500] for the production store capacity and [0–2] for the 
groundwater exchange coefficient. Each parameter set was 
used to simulate flows for the calibration period (yielding 
a 20,000-member ensemble). The performance of parame-
ter sets was evaluated using two objective functions to en-
sure robust performance across the flow regime: the Nash 
Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) de-
rived from log transformed flows (logNSE) and the modi-
fied Kling Gupta Efficiency (KGE) derived from raw flows 
(Gupta et al., 2009; Kling et al., 2012). Two steps were then 

F I G U R E  2  Annual bias corrected Casty temperature for nine catchments from the start of the respective observations up until the year 2000. 
R2 scores between bias corrected and observed temperature values are also provided
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undertaken to determine which parameter sets to retain. First, 
objective function scores were ranked by their performance, 
with the top 400 sets from each being retained. Second, 

retained simulations were evaluated by their absolute per 
cent bias (PBIAS) relative to observed flows, with the 200 
best performing parameter sets for both logNSE and KGE 

F I G U R E  3  Annual bias corrected Casty precipitation values for nine catchments from the start of the respective observations up until the year 
2000. R2 scores between bias corrected and observed precipitation values are also provided

F I G U R E  4  Outline of the structure of the GR2M model together with relevant equations defining the model structure. (Adapted from Mouelhi 
et al. (2013) and Lespinas et al. (2014)
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retained. The median (henceforth GR2M median) and 95th 
percentile confidence intervals of GR2M simulated flows, 
retained from this process, were then determined.

2.3.2 | The ANN Model

ANNs have been widely used for rainfall–runoff model-
ling (Dawson and Wilby, 1998; Dastorani et al., 2010). 
A backpropagation ANN was developed here using the 
neuralnet R package (Fritsch et al., 2019), with different 
combinations of inputs and neurons tested with two hid-
den layers. The same calibration and validation periods 
for individual catchments were employed as those for the 
GR2M, again using observed data to generate the model. 
When determining the ANN structure, input data were lim-
ited to observed variables that were also available for the 
full reconstruction period (temperature, precipitation and 
PET). Lagged variables (e.g. precipitation from previous 

months) were also included. The best performing ANN 
inputs were found to be temperature and precipitation 
from the current month, plus precipitation lagged by one, 
two and three months. An example ANN structure which 
generated the best efficiency scores for one catchment is 
shown in Figure 5.

Uncertainty in ANN model structure was explored by 
varying combinations of neurons in one or two hidden layers. 
Neuron permutations, varying from one to twenty for each 
hidden layer (giving 420 independent model structures in 
total), were used to simulate flows for the given calibration 
period. Each model structure was then independently evalu-
ated using logNSE and KGE and ranked in order of perfor-
mance. As per the GR2M model, the top 400 ANN model 
structures according to each objective function were identi-
fied and those which subsequently produced the 200 lowest 
PBIAS scores were retained. The median (henceforth ANN 
median) and 95th percentile confidence intervals of simu-
lated flows were then obtained.

F I G U R E  5  Schematic of a typical ANN model structure employed with five inputs, two hidden layers (with 12 and 9 neurons respectively) 
and monthly flow output. Negative one, two and three values represent the number of lagged months for precipitation
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Finally, a mixed ensemble was derived from both GR2M 
and ANN model structures and parameters by combining the 
200 retained simulations from each. The median (henceforth 
Ensemble median) and 95th percentile confidence intervals 
of simulated flows were obtained and used to evaluate model 
reconstructions.

2.3.3 | Validation results

Figure 6 displays the performance of the GR2M, ANN and 
Ensemble median simulations for all 51 catchments for the 
2001–2016 validation period according to logNSE, KGE and 
PBIAS scores. The ANN and GR2M simulations perform 

F I G U R E  6  Maps of logNSE, KGE and PBIAS scores for GR2M, ANN and Ensemble median simulations for all 51 catchments. Scores are 
derived from the observed versus modelled flows for the independent validation period (2001–2016) for each catchment
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equally well with average logNSE, KGE and PBIAS scores 
across all 51 catchments of 0.86, 0.83 and −3.04% for GR2M 
median and 0.85, 0.83 and −4.97% for ANN median. The 
combined Ensemble median returned scores of 0.87, 0.83 and 
−4.38%. Individual catchment results also show similar per-
formance for both model types.

Skill scores for GR2M, ANN and Ensemble median sim-
ulations during validation for each catchment are provided 
in Table 1. Poorest performances are evident for the Nire at 
Fourmilewater (ID: 16013) which has a logNSE score of 0.69 
(ANN median) and the Finn at Anlore (ID: 36015) with a KGE 
score of 0.65 (GR2M median). PBIAS scores vary between 
catchments with the largest bias evident for the Blackwater at 
Faulkland (ID: 3051) (−16.4%; ANN median) and a minimum 
of 0% for the Glenamoy at Glenamoy (ID: 33001) (GR2M me-
dian). PBIAS values are generally higher for the ANN median.

Observed and simulated monthly flows for the validation 
period for nine catchments are shown in Figure 7. This sub-
set represents a spread of the best (top row), average (mid-
dle row) and worst (bottom row) performing catchments. 
The proportion of observed variance (R2) captured by the 
Ensemble median simulation for each catchment is also pro-
vided—varying between 0.88 and 0.93 for the nine sample 
catchments. The average Ensemble median R2 value across 
all 51 catchments for the same validation period is 0.90. ANN 
and GR2M median simulations show good agreement for the 
majority of catchments. Whilst observed flows are largely 
contained within the uncertainty bounds for each of the catch-
ment reconstructions, some discrepancies are apparent in 
peak values. Arterial drainage works have been identified as 
a probable cause of this, with previous work showing the ten-
dency for elevated peak flows following drainage (Harrigan 
et al., 2014). Peak flows also tend to be underestimated for 
smaller catchments where gridded rainfall may not capture 
flood generating precipitation adequately.

3 |  RECONSTRUCTED FLOWS

3.1 | Assessment of reconstructed flows

Following calibration and validation with observed data, bias 
corrected Casty data (precipitation/temperature and Oudin 
PET) were input to the hydrological models to reconstruct 
monthly river flows back to 1766. The following sub-sec-
tions present the resulting annual, seasonal and monthly flow 
reconstructions across all 51 catchments.

3.1.1 | Annual flow reconstructions

The median of annual reconstructed flows for all 51 catch-
ments from 1766 is shown in Figure  8. GR2M and ANN 

median reconstructions show close agreement (R2 = 0.97). In 
Figure 8 and subsequent plots, observed flows from 1980 on-
ward are displayed as, by this year, observed values are avail-
able for over 84% of catchments. Overall, the percentage of 
median annual observed flow values across all 51 catchments 
contained within the uncertainty ranges of the median ensem-
ble (henceforth the containment value) is 97%. Observed and 
Ensemble median simulated series across all catchments show 
close agreement (R2 = 0.81). Some divergence is evident be-
tween modelled and observed flows around 1989 due to differ-
ences between Casty and observed precipitation at that time.

3.1.2 | Seasonal and monthly flow 
reconstructions

Seasonal and monthly flow reconstructions for all 51 catch-
ments are displayed in Figures 9 and 10, respectively, with 
reconstructions showing strong agreement with observations 
for 1980–2016 in all seasons. There is some evidence that 
summer flows are over-estimated in 1989, consistent with an-
nual flows. For all other periods and seasons, observed flows 
lie within uncertainty estimates (minimum containment 
value is 89%) and show good agreement with reconstructions 
(R2 between Ensemble median values and observations range 
from a high of 0.9 in summer [JJA] to a low of 0.76 in autumn 
[SON]). Close agreement is also evident between GR2M and 
ANN median reconstructions (R2 > 0.91) in all seasons. It is 
notable from Figure 9 that GR2M reconstructions for spring 
and summer are slightly higher and autumn values lower than 
ANN reconstructions.

Monthly reconstructions are displayed in Figure 10 for all 
51 catchments. Good agreement is evident between GR2M 
and ANN median reconstructions (R2 > 0.84 in all months). 
GR2M median reconstructions are slightly higher than the 
ANN in April, May, June and July, whilst GR2M output in 
September, October and November is lower than the ANN 
equivalent, concurrent with summer and autumn differences 
between GR2M and ANN values identified above. As ex-
pected, performance of monthly simulations is poorer than 
for seasonal and annual time steps. Monthly observed flows 
generally lie within uncertainty estimates (mean containment 
value across all months is 68%) and show satisfactory agree-
ment with observations (R2 for Ensemble median values vs. 
observations range between 0.56 in April and 0.91 in July).

3.2 | Comparison with reconstructions from 
long-term precipitation series

Monthly river flow reconstructions generated with the bias 
corrected Casty data were evaluated against reconstructions 
based on monthly precipitation data for stations within the 
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Island of Ireland Precipitation (IIP) network 1850–2010 
(Noone et al., 2016). For each catchment, we identified the 
nearest IIP station (see Figure 1) and then bias corrected data 

to catchment average precipitation, as per the Casty data. 
Bias corrected precipitation, together with bias corrected 
monthly temperature/PET derived from the Casty data, was 

F I G U R E  7  Observed and simulated annual mean flows for nine sample catchments representing best (top row), average (middle row) and 
worst (bottom row) performing models. Plotted are the GR2M (red), ANN (blue) and Ensemble median (black) simulations, together with observed 
flows (dashed dark-grey). 95% uncertainty range (grey) is derived from the Ensemble median simulations

F I G U R E  8  Median annual flow values across all 51 catchments for the period 1766–2016 for GR2M (red), ANN (blue) and Ensemble median 
(black) reconstructions. The median of observed flows across the catchment sample for years 1980–2016 are in dark-grey, whilst 95% uncertainty 
ranges (grey) are derived from the ensemble simulations
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used to reconstruct flows back to 1850, using the same meth-
ods as described above. Although some of the IIP data are 
likely contained within the Casty gridded precipitation (so 
there is a degree of circularity), it was deemed important to 
compare both data sources, given the different methods used 
in their construction.

Figure  11 shows the Ensemble median annual mean 
flow reconstructions from 1850 to 2016 for four exem-
plar catchments, using Casty precipitation or IIP as input. 
Strong agreement between the reconstructions is evident 
despite the different input data with IIP reconstructions 
largely contained within the uncertainty ranges of the 
Casty reconstructions. Across the four case study catch-
ments, the R2 between IIP and Casty reconstructed annual 
mean flows varies between 0.70 and 0.77. Differences 

between flows generated from the two data sources are not 
unexpected given that IIP data are station based and often 
located outside catchment boundaries, whereas Casty data 
are gridded.

3.3 | High- and low-flow assessment

The most notable extreme flow years for seasonal and an-
nual Casty reconstructions were identified (Table 2), with 
the top five highest and lowest flow year across all catch-
ments displayed for calendar years (1767–2016) as well 
as winter and summer seasons (1767–2016). The percent-
age anomaly relative to the mean of the full record is also 
provided. The most exceptional high-flow years across the 

F I G U R E  9  As in Figure 8 but for seasonal median flows: Winter [DJF], spring [MAM], summer [JJA], autumn [SON]
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sample include 1877, 1872 and 1916, whilst the most nota-
ble winter seasons include 2015/16, 1994/95 and 2013/14. 
In terms of exceptional low-flow years, 1855, 1933 and 
1971 standout across the catchments, whereas 1826, 1975 
and 1887 dominate the most notable low-flow years for 
summer. Annual flow anomalies across all 51 catchments 
range from 150% to 58% of the long-term mean for all 
catchments, whilst seasonally winter and summer extreme 

anomalies range from 173% to 37% of the respective long-
term seasonal mean values. Our extreme years and seasons 
show considerable agreement with a similar evaluation 
of reconstructed river flows (1865–2002) in the United 
Kingdom (Jones et al., 2006), with the previously identi-
fied exceptional high- and low-flow seasons and years 
(1865–2002) all found at least once in the top five equiva-
lent events for multiple catchments in that series.

F I G U R E  1 0  As in Figure 8 but for monthly median flows
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4 |  DATA SET ACCESS, USES AND 
LIMITATIONS

The derived monthly flow reconstructions (December 1766 
to November 2016 inclusive) for the 51 catchments are freely 
available for download from the PANGAEA data centre 
(https://doi.org/10.1594/PANGA EA.914306). Data are pre-
sented as five individual tab-delimited text files (ASCII), 
representing reconstructions for each catchment from the 
GR2M, ANN and Ensemble median simulations, along with 
2.5% and 97.5% quantiles derived from the Ensemble simu-
lation. Also included is a table providing the geographical 
co-ordinates of all 51 flow stations.

4.1 | Potential uses

The reconstructed flow series provide a resource for assess-
ing the impacts of extreme meteorological events, such as 
drought, on river flows across Ireland, extending the work 
of Noone et al. (2017) and Noone and Murphy (2020). Our 
reconstructions could also inform spatio-temporal assess-
ments of variability plus support detection of multi-centen-
nial changes in river flows (e.g. Wilby, 2006). Furthermore, 
the multi-centennial time scale of our reconstructions offers 
the potential to examine how modes of ocean and climate 
variability influence river flows over extended periods. For 
example, it is known that Atlantic multidecadal variability 

exerts an important control on Ireland's climate (McCarthy 
et al., 2015), but its impact on river flows is less clear. Our 
long-term data set offers the means to explore any potential 
control, including its stationarity. In turn, this could help fa-
cilitate improved seasonal forecasting (e.g. Wedgbrow et al., 
2002).

This work represents the first reconstruction of monthly 
flows for a large number of Irish catchments using long-term 
reanalysis data and observations. Given the uncertainties in-
volved, this data set should be treated as a benchmark and 
evaluated and improved by future products. The approach 
to flow reconstruction adopted here is easily transferable to 
other catchments in Europe (i.e. the domain of Casty data). 
By taking advantage of observed runoff data, available from 
the Global Runoff Data Centre (https://www.bafg.de/GRDC/
EN/Home/homep age_node.html), it would be possible to 
generate similar archives of monthly flow reconstructions for 
the entire continent.

4.2 | Limitations

There are several recognized limitations to reconstructed 
river flows. First, arterial drainage has had a pervasive im-
pact on Irish rivers. Catchments in this data set that have 
been drained tend to have higher peak flows during winter 
months than captured by the reconstructions. This is con-
sistent with the findings of Harrigan et al. (2014) for the 

F I G U R E  1 1  Reconstructed annual mean flow values for four sample catchments. Ensemble median simulations generated using Casty 
precipitation data (blue), and Island of Ireland Precipitation (IIP) data (red), together with observed flows (dashed dark-grey) are displayed for each 
catchment

https://doi.org/10.1594/PANGAEA.914306
https://www.bafg.de/GRDC/EN/Home/homepage_node.html
https://www.bafg.de/GRDC/EN/Home/homepage_node.html
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Boyne catchment. Hence, our reconstructions may be useful 
for quantifying the impact of arterial drainage on flow re-
sponse. Moreover, we note that there is limited knowledge 
about how arterial drainage affects low-flow and drought 
responses—again, our reconstructions may provide a useful 
point of reference.

Changes in land use can have considerable impacts 
on flows over time (Yan et al., 2013). Lack of metadata 
on historical land-use change hinders the quantification 
of such impacts. Moreover, Slater et al. (2019) highlight 
that rivers are treated as conduits of fixed conveyance by 
models even though changes in channel geometry and 
structure are known to occur in response to periods of 
hydro-climatic variability. Here, we assume that land-use 
and channel geomorphology remain static over the period 
of reconstruction; a common assumption attached to long-
term flow reconstructions. Jones (1984) asserts that such 
assumptions can be justified. Water resource infrastruc-
ture designs are based on flows relating to current land 
use as opposed to historical conditions, suggesting that 
catchment response tuned to present conditions are a use-
ful resource.

Second, potential biases or inaccuracies in precipitation 
data could propagate into the reconstructed flow series. The 
gridded Casty data set employed in this study was generated 
using both reanalysis and observed precipitation values, with 
principle component regression to interpolate across space. 
Interpolation of station data is more uncertain before the 
1900s as the number of stations decreases rapidly prior to 
this time. Casty et al. (2005) highlight that European wide 
precipitation patterns in the early part of their series should 
be treated with caution, especially before 1800 when station 
numbers are low. For Ireland, we believe that data prior to 
1850 should be treated with caution due to the sparseness of 
observed precipitation records on the island. A further source 
of uncertainty relates to the quality of early precipitation ob-
servations. Murphy et al. (2019) show that pre-1870 winter 
precipitation observations in the United Kingdom were likely 
affected by under-catch of snowfall due to gauge design and 
observer practice. It is likely that early Irish precipitation 
totals are affected by the same biases during winter months 
(Murphy et al., 2020).

Third, the sensitivity of hydrological model parameters 
to prevailing climatic conditions during the calibration pe-
riod can result in uncertainties when models are used to 
simulate conditions different to those used for training. 
Broderick et al. (2016) showed that changes in climatic 
conditions can affect model performance depending on 
catchment, model type and assessment criteria. A shift 
from relatively wet to dry conditions resulted in poorer re-
sults. Future work should assess the robustness of monthly 
reconstructions to the wetness or dryness of periods used 
for training.

5 |  SUMMARY

This paper presents a data set of monthly river flow recon-
structions back to 1766 for 51 Irish catchments. Gridded re-
constructions of monthly precipitation and temperature, bias 
corrected to observed catchment data sets, are used with de-
rived PET to force a conceptual hydrological model and an 
Artificial Neural Network to generate monthly flows span-
ning more than 250 years. Reconstructed flows are subject 
to uncertainties associated with hydrological response to ar-
terial drainage and land-use change, together with potential 
biases in early precipitation observations and non-stationary 
hydrological model parameters. With these caveats in mind, 
the data set is suitable for examining hydrological responses 
to arterial drainage, tracking hydrological variability and 
change, or testing the robustness of water plans and/or con-
textualizing modern hydrological droughts.
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