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Abstract. In many areas of the globe, the installation of artificial drains on naturally poorly
drained soils is a necessary part of farm management. Identifying the location of artificially
drained areas is an important step in achieving environmentally sustainable agricultural produc-
tion. However, in many regions, data on the presence or the distribution of artificial drainage
systems are rare. We outline an approach to identify artificially drained soils using Earth obser-
vation (EO) satellite imagery and digital elevation data. The method exploits the contrasting
phenology of grass during a peak growth stage to identify artificially drained and undrained
soils. Two machine-learning techniques, support vector machine and random forest, were tested.
Classification accuracy up to 91% was achieved using photointerpreted accuracy points using
higher resolution satellite imagery. Additional investigations would be required to establish
whether the drained conditions identified were a result of artificial drainage or from naturally
well-drained soils occurring within larger soil units. Herein, the Republic of Ireland is used as
a test case. Based on our findings, the area of artificially drained grassland within the study area
could be revised upward, with 44% (or ∼345; 000 ha) of pasture currently classed as “poorly
drained” identified as “artificially drained.” At one location, a change in the modeled drainage
condition at field level was demonstrated following drain installation. The presented method
demonstrates the ability of EO satellites to quickly and accurately map field drainage status
at farm management scales over a wide area. This has the potential to improve management
decisions at local scales, but also has implications in terms of national policy development and
regulation in areas such as water quality and climate change mitigation. © 2020 Society of Photo-
Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.14.034508]

Keywords: Landsat; heavy soils; artificial drainage; grassland.
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1 Introduction

Farms situated on poorly drained (wet) mineral soils can be less agriculturally productive and
less environmentally sustainable than farms located on drained (drier) soils.1 For example,
previous studies have demonstrated how pasture farms on poorly drained soils have reduced
grass growth and grass utilization, restricted access to fields for livestock and machine traffic,
and lowered stocking rates and yields.2–4 Sometimes referred to as “heavy” soils because they are
sticky and difficult to work, poorly drained mineral soils are characterized by low porosity and
compacted structure that reduces their ability to transport water. They can be found in lowland
settings over shallow water tables, or where groundwater exudes from surface seepage or
springs. Conversely, “drained” soils tend to have coarser texture (greater proportion of sand),
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higher porosity and are not disadvantaged in terms of landscape position or groundwater
breakout.

Heavy soils can be improved for intensive agricultural production by installing artificial
drainage (also referred to as field drainage or land drainage) to control groundwater levels
and/or improve soil permeability.5 If the correct type of system is installed and correctly main-
tained, it should provide an economic benefit with improved yields and greater access for live-
stock and machinery with less risk of soil compaction.6 However, the installation of artificial
drainage can have significant negative environmental impacts. For example, artificial drainage is
a major source of nutrient enrichment of surface water and groundwater, compromising water
quality and destroying aquatic habitats.7,8 The drainage of heavy soils also has complex impacts
on greenhouse gases (GHG) emissions,9,10 with drained soils potentially becoming a source11 or
a sink12 for atmospheric CO2, as well as potentially reducing nitrous oxide (N2O) emissions from
wet soils (denitrification).13 Functioning land drainage is an important indicator of intensive
agricultural management in some regions, with changes in drainage status and management
intensity over time a major source uncertainty in current GHG inventory accounting.14 Paul
et al.15 demonstrated how better definition of artificially drained soils could improve the accuracy
of carbon emission budget estimates. However, without access to detailed maps of drained soils,
the authors had to assume all poorly drained soils below 200 m above sea level on slopes
≤ 12 deg had artificial drainage in place. Accurate spatial data on artificially drained soils also
have broader applications in agrometeorological forecasting16 or in modeling variability in grass
production.3,17

Globally, the extent of artificially drained soils is not well documented. Estimates suggest
that ∼167 million hectars (ha) of (rain-fed) farmland has some form of artificial drainage in
place; however, few countries collect data on drained areas in any harmonized or systematic
way.18 General soil maps will often include a natural soil drainage classification based on field
observations of water table depth, soil wetness, landscape position, and soil morphological
characteristics.19 However, these maps are typically produced at a very coarse scale and do not
capture the high spatial and temporal heterogeneity of soil drainage regimes at the field level.
They cannot capture dynamic events, for example, where poorly drained soils have been arti-
ficially drained, where drains exist but no longer function correctly, or where wetland conditions
are being reinstated either through poor management or intentionally as a result of rewetting.

Remote sensing (RS) and in particular Earth observation (EO) satellites are increasingly used
to supplement conventional soil mapping techniques by providing spatially continuous data on
surface properties.20 These data can be used to disaggregate existing coarse resolution soil
maps.21 Mapping soil drainage using EO data is based on the underlying principle that plants
growing under persistently wet conditions will display signs of abiotic stress (lower leaf biomass
and reduced photosynthetic activity) when compared with nonstressed plants.22 The effect on
individual plants can be detected at canopy level using multispectral EO imagery, and satellite
imagery has been used in the past to predict soil drainage or artificial drainage over wide areas
and to monitor vegetation recovery or agricultural improvement following drainage.23–26 In other
cases, soil drainage class has been predicted using topographic or soil data covariates27,28 to
understand how the permanent landscape can influence soil drainage properties. EO and RS
data have also been used to map individual drainage systems at very high spatial resolution
using geophysical sensors29,30 or by optical or thermal imagery,31,32 but such are not currently
cost-effective over large geographical footprints. The spatially continuous nature of EO imagery
compared with traditional soil survey methods has often resulted in higher overall accuracy EO-
based maps being more accurate than conventional soil drainage maps when compared against
ground truth data.24,33 EO-based approaches can be constrained by the number of drainage
classes that can be adequately resolved and are usually more successful in defining extreme
classes28 or very broad drainage classes.34

A range of image classification algorithms have been adopted to map soil drainage, including
decision trees, logistic modeling, neural networks, and discriminant analysis.24–26,28,34 There has
been an accelerated adoption of machine learning (ML) image classification in the last decade
driven by the need to process increasing volumes of EO data and facilitated by the wider
availability of ML algorithms through free and open source software.37 For example,
Cho et al.35 mapped artificial drainage using ML and Google Earth Engine to predict artificial
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drainage (and its expansion over time) with an area of >10 million ha. Support vector machine
(SVM) and random forest (RF) are two popular ML algorithms for land cover mapping. SVM is
optimized for two-class data segmentation problems by identifying the broadest possible margin
(or optimal hyperplane) between two linearly separable classes.36 On the other hand, RF is an
ensemble approach that assigns class labels based on the pooled results of randomly created
decision tree classifiers. The algorithm uses bootstrapped training data to develop individual
trees where each node split is on randomly selected predictor variables. This reduces the impor-
tance of individual trees or variables and reduces correlation between individual trees.37 Both
algorithms consistently achieve high overall accuracy and are shown to be quite robust with
limited training in comparative studies.38,39

In this paper, we compare SVM and RF algorithms for mapping artificially drained heavy
soils under pasture in the Republic of Ireland using satellite imagery and topographic variables.
Initially, the two algorithms are compared for accuracy against photointerpreted validation points
from high-resolution satellite imagery. Subsequently, a comparison of interannual normalized
difference vegetation indices (NDVI) imagery is used to assess improvement following drainage
at a particular site. Additionally, the ML approach is assessed to determine whether it can detect
changes in drainage extent at field level following drain installation. This technique could be
deployed on similar soils to identify drained grassland in similar regions and has the potential to
optimize agricultural and environmental modeling in the range of research areas that can benefit
from more accurate estimation of drained heavy soils.

2 Materials and Methods

2.1 Study Area

The study area was heavy grassland soils in the border, midlands, and western (BMW) region of
the Republic of Ireland (Fig. 1). The total area of interest was 808,494 ha. Farm Awas located
within this region. This was a 3-ha field on an intensively managed pasture farm that had a
groundwater drainage system installed in 2014 to reduce soil saturation and increase grass
growth.

Geographically, the physical characteristics of the region are mixed. A highland zone
stretches along much of the western seaboard. This gives way to a topographically diverse land-
scape in the east that is comprised of sediments and landforms deposited at the end of the last
Ice Age. Bedrock geology over the region is varied but is dominated by Carboniferous period
sedimentary rocks, particularly limestone, sandstone, and shale. Quaternary sediments are
largely comprised of fine textured glacial tills and glaciolacustrine deposits.40 Extensive tracts
of blanket bog and raised bog are present within the study area. Drumlin belts occur within the
region. These present a range of drainage characteristics, with the tops and sides typically well
drained while the interdrumlin areas are wetter.

Poor soil drainage is compounded by high annual rainfall (<800 to 2500 mm∕year).
Precipitation is highly spatially variable, and is greatest in western coastal areas and upland
regions. Evapotranspiration is relatively stable in the study area (∼400 to 450 mm∕year).
The large volume of precipitation must, therefore, be recycled through drainage, either as surface
runoff or within the soil matrix. As the soils within the region tend to have low infiltration rates,
many remain waterlogged for prolonged periods and have developed histic, gleyic, or stagnic
characteristics that can significantly constrain agricultural production.1

Land drainage is a common treatment within the study area to make farming a profitable
enterprise. A previous analysis of land drainage grants issued to farms in the region in the period
from 1940 to 1986 suggested an average of 23% of farmland across the region had been poten-
tially drained within this period.41 Drainage projects have traditionally been managed privately,
with no legal requirement to register or map new drain locations. In the present day (and only
since 2011), land drainage schemes in the region have required screening by the Irish
Department of Agriculture only if they exceed 15 ha in area, or are expected to have a significant
environmental impact. Screening determines whether an environmental impact assessment is
required and it relates to new drainage operations, not the maintenance of existing drains.42
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Furthermore, the 15-ha criterion applies to the area of drains and their immediate vicinity. Most
farms in the region are small and fragmented holdings with the average farm size just ∼27 ha.43

Consequently, the majority of drainage schemes in the study area still occur without being
registered or recorded.

2.2 Datasets and Data Preprocessing

The datasets used for this study were Landsat 8 optical bands (bands 2 to 7) and terrain attributes
derived from a digital elevation model (DEM). All available Landsat 8 scenes covering the
region (orbital paths 206 to 209 and rows 21 to 23) acquired during April or May 2014 to
2016 were selected. A total of 46 images (13, 16, and 17 images from 2014, 2015, and 2016,
respectively). Spring images were chosen because unstressed grass canopies would be expected
to be growing vigorously during this period. Previous research indicated that grassland types and
grassland management systems in this region are most readily distinguishable in springtime
imagery.14 Satellite images were downloaded from the USGS Earth Explorer portal as Level

Fig. 1 Map of the study area with grassland on poorly drained soils indicated in the BMW region of
the Republic of Ireland. Location of farm A indicated.
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1TP products (radiometrically calibrated and terrain corrected). These were processed to surface
reflectance using the LEDAPS algorithm.44 Cloud and cloud shadow were removed using the
F-mask algorithm.45 Individual scenes were subsequently combined into a single multitemporal
mosaic based on mean surface reflectance.

For the experiment at farm A, Landsat 8 was available for 2015 and 2016. Landsat 5 and
Landsat 7 images were used in 2010 (April) and 2013 (May) when Landsat 8 imagery was not
available. No images were available in 2014 due to extensive cloud cover over the target. Surface
reflectance for the Landsat 5 and 7 images was also calculated using LEDAPS to minimize any
inconsistencies in calculation of reflectance and reduce the potential for error in comparing
reflectance from the three different sensors.

Vegetation indices (VI) sensitive to chlorophyll production (NDVI) and leaf water content
[normalized difference water index (NDWI)] were used. These VI were chosen as they provide
valuable information about the density, health, and leaf water content of vegetation. NDVI and
NDWI are ubiquitous for most EO sensors and can be easily replicated with other sensors in
other regions. Previous mapping projects within the study area demonstrated the ability of VI,
and NDVI in particular, to distinguish contrasting grassland types.14 VI were created according
to their standard equations,46,47 where

EQ-TARGET;temp:intralink-;e001;116;532NDVI ¼ NIR − RED

NIRþ RED
(1)

and

EQ-TARGET;temp:intralink-;e002;116;478NDWI ¼ NIR − SWIR

NIRþ SWIR
; (2)

where RED (red), NIR, and SWIR are the red (band 4 0.64 to 0.67 μm), near-infrared
(band 5, 0.85 to 0.88 μm), and shortwave infrared (band 6, 1.57 to 1.65 μm) bands, respectively,
of Landsat 8.

Terrain attributes were selected based on a review of agrometeorological influences within
the region48 and through a review of previous EO-based soil drainage mapping.24,25 Selected
attributes were chosen for their potential influence on surface, or near surface, hydrology.
They were included to assess whether including ancillary topographic data improved the
identification of artificially drained soils. Euclidean distance to drainage, distance along slope
to drainage, slope, aspect,49 height above nearest drainage (HAND),50 and topographic wetness
index (TWI)51 were derived from a 20-m DEM (vertical accuracy �2.5 m). The DEM was
resampled (bilinear interpolation) to 30 m to match the spatial resolution of Landsat 8. The
source DEM was a national elevation model supplied by the national mapping agency. Terrain
attributes were created using SAGA GIS (v.4.1.0). Slope and aspect have a role in the magnitude and
direction of surface runoff. HAND normalizes topography according to local relative heights
above drainage networks. Distance to drainage quantifies how far surface runoff must travel
to an outlet. TWI is a function of local slope and specific contributing area that is used widely
to quantify topographical control on surface hydrological processes. HAND, Euclidean distance,
and distance along slope were used with national mapping vector data, which included surface
water (streams and rivers), lakes, and open drains.52 The raster datasets were masked to
poorly drained mineral soil using an existing soil map.53 The conventional soil drainage classes
making up the poorly drained class used in this study are listed in Table 1. In the absence of
a national landcover dataset, grass land cover was masked using the coarse resolution CORINE
2012 land cover inventory.54 Building footprints and existing forestry stands within area were
masked using available vector datasets.52,55

2.3 Algorithm Choice and Parameterization

SVM and RF algorithms were available through R statistical software packages “e1071”
(v.1.6-8) and “randomForest” (v.4.6-12). Three parameters are required for SVM: kernel type,
kernel size γ (to transform linearly inseparable data), and a penalization term C (which defines
the acceptable margin of error at class margins). The type of kernel used in this study was a radial
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basis function (RBF) kernel, which was found to have marginally better overall accuracy com-
pared with other available types (Table 2). The broad suitability of the RBF kernel to land cover
mapping has been reported in comparative studies.41 Two parameters are required for RF:
the number of variables to randomly sample at each split (ntree) and the total number of trees to
grow (mtry). Values for the mtry parameter were determined using the tuneRF function within R.
Optimal values were calculated for each model/training data combination and mtry values
were automatically updated for each new calculation. Out-of-the-box (OOB) error rate was
calculated for a range of ntree values from 101 to 2001 in incremental steps of 100. The lowest
OOB error rate (4.8%) was recorded at the default value. Lower ntree values had higher error
rates (≥5.6%). The default ntree value (501) was used as a higher ntree value would have
increased computation time without reducing the error rate.

The RF algorithm also measures variable importance by calculating the mean decrease in
accuracy (MDA) as random variables are omitted (see Sec. 3.3). Each algorithm was trained
using three different levels of training with different combinations of variables (Table 3).
Initially, variable combinations were mixed to identify the relative importance of satellite obser-
vations and VI of conditions during the study period with terrain attributes of the permanent
landscape.

2.4 Training Data

Training data were based on higher spatial resolution satellite imagery (Google Earth). Both
algorithms were trained on a binary model of poorly drained and artificially drained classes.
Class labels were assigned through photointerpretation of high-resolution Google Earth images
that were available in 2014. Three independent sets of training pixels were created using
increasing numbers of pixels (60, 200, and 500 pixels) to test whether increasing pixel count
had an impact on the outcome. At each training point, an assessment of drainage regime

Table 2 Performance assessment of the effect of kernel type on SVM model accuracy (OA,
overall accuracy; K, kappa statistic; PA, producer accuracy; and UA, user accuracy).

n ¼ 920

SVM

OA K

Artificially drained Poorly drained

PA UA PA UA

Kernel RBF 0.838 0.65 0.674 0.893 0.946 0.814

Polynomial 0.836 0.64 0.671 0.893 0.946 0.812

Linear 0.826 0.62 0.659 0.871 0.936 0.806

Table 1 Conventional drainage descriptions making up the “poorly drained” class in the current
study. Based on Fealy et al.53

Drainage class Description

Imperfectly drained Partly reduced (gray color with some gray-brown and brown)
below 30 cm with mottling. Above 30-cm natural colors
(gray-brown and brown) with or without mottling

Poorly drained Reduced gray throughout profile with many prominent mottles to
the surface or a definite reduced layer at any depth below 30 cm and
mottling to the surface

Very poorly drained Reduced gray or gray-blue throughout profile with few mottles allowable;
with or without organic surface layer

O’Hara et al.: Identifying artificially drained pasture soils using machine learning. . .

Journal of Applied Remote Sensing 034508-6 Jul–Sep 2020 • Vol. 14(3)



(artificially drained or poorly drained) was made for a 30-m diameter buffer around each point
(corresponding to the approximate area of a Landsat 8 pixel). Visual assessment of this nature
favored the distinguishing of extreme drainage classes. If the drainage status at a point was
ambiguous or unclear it was disregarded. Areas with extensive growth of water-tolerant vegeta-
tion (reeds and rushes) (in ≥10% of the buffer area) or areas where low infiltration was observed
(water pooling at the surface) were classed as poorly drained. In contrast, artificially drained
areas had verdant growth with no indication or water tolerant plants or surface water (see Fig. 2).
Consideration was also made of surrounding conditions, for example, where surrounding
farm infrastructure indicated good overall management practices (e.g., fenced off walkways,
paddocks, and open ditches).

Fig. 2 Examples of drainage conditions used to train each model. Each square corresponds to
the area of a single Landsat 8 pixel on heavy soils.

Table 3 Variable combinations.

Model Variables

1 All variables Landsat 8, NDVI, NDWI, slope,
aspect, HAND, distance, and TWI

2 Landsat 8

3 Landsat 8 and NDVI

4 Landsat 8 and NDWI

5 Landsat 8, NDVI, and NDWI

6 NDVI, NDWI, slope, aspect, HAND, distance, and TWI

7 Landsat 8, slope, aspect, HAND, distance, TWI

8 NDVI, slope, aspect, HAND, distance, and TWI

9 NDWI, slope, aspect, HAND, distance, and TWI

10 Slope, aspect, HAND, distance, and TWI
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2.5 Accuracy Assessment Dataset

High-resolution satellite imagery was also used as pseudoground truth to validate the map. Class
labels were assigned to 920 randomly sampled points distributed across the region (Fig. 3)
following the same method outlined in Sec. 2.4. A minimum distance of 30 m was maintained
between accuracy points and field boundaries and/or structures to reduce potential sources error
from mixed land cover or boundary shadow. Overall accuracy and producer/user accuracy (with
95% confidence intervals) were computed using an error matrix.56 Kappa statistics are also
reported. Relative accuracy between models are based on Z statistics and p values in the method
described by Rossiter.57

3 Results

3.1 Spectral Properties for Poorly Drained and Artificially Drained Classes

Comparing the Landsat 8 spectral signals of training data for each drainage class, the artificially
drained class exhibited lower reflectance (greater absorption) at RED and SWIR wavelengths,

Fig. 3 Distribution of photointerpreted accuracy points.
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with higher reflectance at the NIR wavelength (Fig. 4) This signal is consistent with greater
production of chlorophyll in healthy grass canopy. The relatively lower NIR reflectance and
higher SWIR reflectance signal in the poorly drained class was expected for canopy growing
under a persistent stress. The separation in reflectance between classes was lowest in the green
band and greatest at NIR wavelengths, but there were significant differences in mean reflectance
values at each of the Landsat 8 bands, suggesting each band had some information to provide on
canopy health and drainage status within the study area.

Anomalous growth patterns were compared for each drainage class by calculating month-on-
month differences in mean NDVI between February and November 2014 to 2016 (217 images in
total) (Fig. 5). There was a clear seasonal trend visible for each class. Each class exhibited pos-
itive, increasing NDVI values fromMarch and April, peaking in May. The magnitude of increase
was greatest for the artificially drained class. Previous studies also reported a disparity in spring
grass yields on farms with contrasting drainage regimes.2 A separation of classes was also
observed in summer with marginally higher values for the drained class. The trend was reversed
in the late summer period where higher values were observed for the poorly drained class during
August/September. The reversal possibly corresponds to higher volumes of soil moisture on
poorly drained soils offsetting the effect of drought on drained soils.

3.2 Algorithm Performance

Full accuracy metrics for each iteration of model/training data are presented in Table 4.
SVM performed strongly, with overall accuracies of 86.9% [84.7%, 89.1%], 89.6% [87.7%,

91.6%], and 87.3% [85.1%, 89.4%] at each respective training level. However, RF consistently
achieved higher accuracies. At the lowest number of training points (60 pixels) per class,

Fig. 4 Mean canopy reflectance for artificially drained and poorly drained classes using Landsat 8.
Abbreviations: arrows (indicating 95% confidence intervals) placed at each band center
wavelength.

Fig. 5 Monthly differences in mean NDVI over a typical growing season (2014 to 2016) for arti-
ficially drained and poorly drained classes.
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Table 4 Accuracy assessment for each algorithm (SVM and RF) by models at different levels of
training data.

Model

SVM RF

OA K

Artificially
drained

Poorly
drained

OA K

Artificially
drained

Poorly
drained

PA UA PA UA PA UA PA UA

60 training points

1 83.37 0.64 95.3 80.55 65.49 90.26 90.76 0.78 94.1 92.8 82.97 85.77

2 85.65 0.68 95.62 83.61 69.34 90.64 88.04 0.72 94 88.82 75.91 86.14

3 86.96 0.71 95.87 85.3 71.68 91.01 91.3 0.79 94.14 93.57 84.5 85.77

4 86.1 0.69 95.81 84.07 70.03 91.01 89.13 0.75 94.38 90.05 78.11 86.89

5 86.63 0.7 96.01 84.69 70.93 91.39 91.41 0.79 94.15 93.72 84.81 85.77

6 80.54 0.59 95.75 75.96 60.95 91.76 88.91 0.74 93.11 91.12 79.36 83.52

7 75.65 0.5 95.54 68.91 54.79 92.13 88.15 0.73 94.74 88.21 75.32 88.01

8 78.59 0.54 94.19 74.43 58.66 88.76 88.15 0.72 93.56 89.43 76.69 85.02

9 75.65 0.5 94.97 69.37 54.85 91.01 82.72 0.61 92.88 81.93 65.7 84.64

10 52.11 0.12 79.34 44.1 34.47 71.91 50.98 0.06 74.88 46..55 32.1 61.8

200 training points

1 85.54 0.67 95.14 83.92 69.48 89.51 91.2 0.79 93.87 93.72 84.7 85.02

2 88.91 0.72 91.93 92.5 81.37 80.15 90.54 0.77 93.4 93.26 83.58 83.9

3 89.67 0.75 92.79 92.65 82.09 82.4 90.98 0.78 93.85 93.42 84.07 85.02

4 88.26 0.72 92.12 91.21 79.12 80.9 89.78 0.75 93.47 92.04 81.23 84.27

5 89.13 0.74 93.68 90.81 79.09 85.02 91.09 0.78 93.86 93.57 84.39 85.02

6 82.83 0.62 93.19 81.78 65.71 85.39 88.37 0.73 91.17 89..13 76.43 86.52

7 85.76 0.67 93.79 85.6 70.93 86.14 88.37 0.73 94.17 89.13 76.49 86.52

8 82.5 0.61 92.41 82.08 65.59 83.52 88.26 0.72 94.45 88.67 75.9 87.27

9 79.35 0.55 92.01 77.64 60.43 83.52 85.43 0.67 93.18 85.76 70.85 84.64

10 53.48 0.06 73.68 53.6 31.91 53.18 57.93 0.08 74.18 62.48 33.78 46.82

500 training points

1 83.37 0.64 95.29 80.55 65.49 90.26 88.15 0.73 94.74 88.21 75.32 88.01

2 86.3 0.69 94.53 85.6 71.43 88.01 88.04 0.72 92.76 90.2 77.54 82.77

3 87.07 0.71 95.25 86.06 72.42 89.51 89.02 0.74 94.52 89.74 77.67 87.27

4 87.28 0.71 95.27 86.37 72.87 89.51 86.2 0.68 93.26 86.83 72.44 84.64

5 87.17 0.71 95.57 85.91 72.31 90.26 88.7 0.74 94.78 88.91 76.55 88.01

6 85.0 0.67 95.1 83.15 68.48 89.51 87.72 0.72 94.55 87.75 74.52 87.64

7 83.48 0.64 95.14 80.86 65.75 89.89 87.28 0.7 92.81 88.91 75.51 83.15

8 84.35 0.65 93.5 83.77 68.36 85.77 87.5 0.71 94.24 87.75 74.36 86.89

9 81.09 0.58 92.84 79.48 62.88 85.02 82.39 0.61 93.61 80.7 64.71 86.52

10 49.24 0.03 72.91 45.33 30.54 58.8 50.87 0.05 73.54 48.09 31.24 57.68

OA, overall accuracy (%); K, kappa statistic; PA, producer accuracy (%); and UA, user accuracy (%). Highest
OA highlighted in bold.
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the model with the highest overall accuracy {91.4% (95% CI [89.6%, 93.2%])} was an RF
classification of Landsat 8 optical bands NDVI and NDWI (model 5 in Table 3). Using this
model, 44% (345,000 ha) of the initial study area (∼808;495 ha) was classed as artificially
drained. These were areas where grass canopy showed no indication of persistent stress
[Fig. 6(a)]. The corresponding extent of the poorly drained class is illustrated in Fig. 6(b).
At 200 training samples, an RF model applied to all spectral and topographical layers achieved
an overall accuracy of 91.1% (95% CI [89.2%, 92.9%]) (model 1 in Table 3). At 500 training
samples, an RF model applied to Landsat bands and NDVI had an overall accuracy of 89.0%
(95% CI [87.0%, 91.0%]) (model 3 in Table 3).

Outcomes at each level of training between algorithms were compared using a two-tailed,
binomial z-score test. There was a significant difference (z ¼ 3.08, p ¼ 0.002) in overall
accuracy between RF and SVM algorithms at the lowest level of training. Although there was
a marginal decrease in overall accuracy using 500 training pixels for both algorithms, there
was no significant difference in accuracy between algorithms at 200 and 500 training pixels,
respectively (z ¼ 1.03, p ¼ 0.3 and z ¼ 1.15, p ¼ 0.2). The decrease in accuracy using
500 training pixels was unexpected and was probably caused by an unidentified change in land
cover or land use between the date of acquisition of the high-resolution satellite imagery and
the Landsat images used for the study.

3.3 Variable Importance

Variable importance was based on the MDA function within the RF algorithm (Fig. 7). The
spectral band with the greatest influence on map accuracy was NIR (Landsat 8 band 5).
The VI (NDVI and NDWI) were also key variables. Both use NIR in their calculation.
Individually, however, the two SWIR bands ranked low in overall importance. Terrain attributes
had a minor impact on overall model accuracy, but elevation, aspect, and Euclidean distance to
drainage were among the highest-ranking terrain attributes where included.

3.4 Observing Changes in Drainage Class Following Drain Installation

Following drain installation at farm A in 2014, increases to minimum, mean and maximum
NDVI values were observed. Mean and maximum NDVI increased during the following
spring (2015) (Table 5). The difference between mean NDVI in 2013 and 2015 was significant

Fig. 6 (a) Extent and distribution of artificially drained soils in the study area and (b) revised poorly
drained soils in the study area.

O’Hara et al.: Identifying artificially drained pasture soils using machine learning. . .

Journal of Applied Remote Sensing 034508-11 Jul–Sep 2020 • Vol. 14(3)



[tð32Þ ¼ 7.695, p < 0.0001]. There was an initial drop in minimum NDVI values in 2015, pos-
sibly as a result of groundworks at the site where bare earth was exposed. Minimum NDVI
values increased in 2016 relative to each of the previous years. Difference in mean NDVI for
pre-2014 imagery and post-2014 imagery were statistically significantly [tð32Þ ¼ 5.166,
p < 0.0001]. The improvements in mean, minimum, and maximum values for amalgamated
imagery before and after 2014 are visible in Fig. 8. The improvement in overall NDVI metrics
was matched by concomitant increases in the area of the field characterized as artificially drained

Table 5 Descriptive statistics for spring NDVI values from
farm A before and after drain installation.

Year Min Max Mean Standard deviation

2010 0.651 0.815 0.729 0.04

2011 No data available (cloud cover)

2012 No data available (cloud cover)

2013 0.713 0.866 0.798 0.04

2014 No data available (cloud cover)

Drainage installed July/August

2015 0.685 0.914 0.849 0.09

2016 0.759 0.936 0.864 0.05

Fig. 7 Variable importance derived from RF MDA function.

Fig. 8 Increases to minimum, mean, and maximum NDVI values at farm A following drain instal-
lation. The graph aggregates available image data into two groups before and after 2014.
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by the RF algorithm. In 2010, the drained proportion of the field classed was 0.72 ha (25% of the
area). Following drainage, this had increased to 1.8 ha (58%) in 2015 and 2.1 ha in 2016 (68%).

4 Discussion

4.1 Extent of Artificially Drained Grassland

Identifying current or dynamic drainage regimes at the field scale is challenging and not typically
possible using traditional soil mapping approaches. Our method has shown how larger soil map
units can be spatially disaggregated using EO imagery to identify discreet areas of artificially
drained heavy soils at a farm management scale. The approach has a straightforward implemen-
tation based on the effect of soil saturation on grass yields2 and photosynthetic activity22 that can
be observed using freely available EO imagery without the need for additional covariates.

Using RF, ∼44% (345,000 ha) of the initial study area of 808,494 ha could be reclassified as
artificially drained. This is the first time that the extent of drained heavy soils has been mapped in
a consistent way across the region. Estimates of drained area for the current study and the earlier
assessments are presented in Table 6. It is difficult to directly compare the accuracy of this model
with earlier approaches as they are based on different criteria. Bruton and Convery41 compiled
drainage estimates using records of drainage grants. They reported the average area of drained
farmland per county was 23% versus 44% for the current study. Although the area predicted in
the current study was greater than that suggested by Bruton and Convery, there was similarity
in the overall ranking of drained areas. Counties reporting the highest (Laois, Offaly, and
Westmeath), and lowest (Sligo and Leitrim) area of drained land in each study were identical.
Mockler et al.58 assumed land drainage on all poorly drained soils below 200-m above sea level
on slopes ≤12 deg, which represented 55% of the farmland in the region. This same approach
was adopted by Paul et al.15 Again, there was similarity between the predicted areas per county,
but there was a large over prediction of drained area for some counties.

Table 6 County-by-county assessment of artificially drained area based on current study and
previous research.

Initial area Current study
Bruton and
Convery Mocker et al.

Poorly drained
pasture (ha)

Poorly
drained (ha)

Artificially
drained (ha)

Grassland
artificially

drained (%)

Farmland
artificially

drained (%)

Farmland
artificially

drained (%)

Cavan 119,848 67,965 51,813 43 26 84

Donegal 109,475 72,066 39,206 36 24 73

Galway 86,806 48,300 38,459 44 22 36

Laois 56,463 21,679 33,445 59 37 53

Leitrim 69,439 51,678 16,552 24 13 89

Longford 26,042 12,162 12,700 49 17 49

Louth 14,675 7987 6455 43 19 38

Mayo 97,098 65,230 33,228 34 24 52

Monaghan 61,278 30,363 31,022 50 25 60

Offaly 35,371 12,527 23,117 65 31 48

Roscommon 82,873 38,265 46,134 56 15 61

Sligo 29,233 18,137 9,611 33 13 45

Westmeath 19,893 9,005 11,388 57 31 27

O’Hara et al.: Identifying artificially drained pasture soils using machine learning. . .

Journal of Applied Remote Sensing 034508-13 Jul–Sep 2020 • Vol. 14(3)



This overstates the significance of drain flow as a hydrological pathway in agricultural catch-
ments in these counties, potentially inflating estimates of nutrient losses or GHG emissions from
agricultural lands in these areas. The current study has not identified specific drainage types
within the mapped area, though higher resolution EO techniques could be applied to that prob-
lem, for example, using low-altitude RS to identify thermal or spectral anomalies surrounding
buried pipes.31 Additional investigations are required to establish with certainty that the drained
conditions identified through this method are a result of artificial drainage, or whether some are
naturally draining soils within poorly drained soil units. An elaboration of this approach that
could prove beneficial would be to consider the contrasting canopy reflectance over different
seasons. As suggested by Fig. 4, drainage class could be distinguished in the later summer period
when periods of droughts were less impactful on poorly drained soils.

It was necessary to use CORINE land cover data despite the known issues with this dataset in
this region (coarse spatial resolution versus highly fragmented landscape).14 The spatial reso-
lution of the underlying land cover dataset will have included nongrass landcover. Every effort
was made to mask nongrass landcover with available spatial datasets, but some nongrass classes
will remain. Changes to land cover/land use will also have occurred over the period of the study.
Most importantly, artificial drainage may have been installed in some areas. But changes in
landcover also occurred. Afforestation records indicated ∼9700 ha of new forestry was planted
in the study area between 2014 and 2016.59 Construction figures suggested >3000 new rural
housing units were built in the same period.60 Assuming the change in landcover in both of these
cases was from poorly drained grassland, then 1.2% of the initial study underwent landcover
change within the three years of the study. These changes would introduce a small amount of
error into the overall result.

4.2 Variable Importance

The variables with the greatest impact on model accuracy were NDVI and the NIR band,
followed by NDWI, blue, and red bands. The importance of NIR, blue, and red bands is not
surprising. Grass growing without an underlying stress will preferentially absorb light at blue
and red wavelengths to power photosynthesis and consequently reflect a higher proportion of
NIR. NIR and NDVI were important in previous studies.24 SWIR bands have also proven useful
in the previous studies over bare soils26 but were less important in this study. Other sensors with
different spectral resolutions would have different variable amounts of importance. For example,
the three red-edge bands (∼0.68 to 0.74 μm) on Sentinel 2 would be expected to have increased
sensitivity to canopy chlorophyll content.61 Hyperspectral data have also been quite successful in
distinguishing saturation and drainage class over several wavelengths.62,63 Terrain attributes had
little overall impact on accuracy, and when used without additional spectral data performed very
poorly (see results for model 10 in Table 4). However, where included, elevation, aspect, and
distance to drainage were consistently among the highest-ranking variables. Elevation, aspect
influence of precipitation volume, and incoming solar radiation impact soil temperature, soil
moisture content, and the number of degree days.48 Elevation was important in the previous
studies.24,26 Slope had the lowest importance of all variables despite being used widely in the
previous studies.32,64

4.3 Observed Changes Following Drain Installation

Identifying changes in drainage conditions over time, for example, as drainage regime improves
or deteriorates, is critical for monitoring changes in land management that may impact the
wider environment. The experiment at farm A demonstrated how multitemporal satellite
imagery observed changes in drainage status within a 3-ha field following drainage. At farm A,
the increase in mean NDVI in the years after 2014 are consistent with the removal of underlying
stress and concomitant improvement in primary production. The increase in NDVI in 2016
was remarkable considering the region experienced record-breaking volumes of rainfall
throughout the winter of 2015/16, which resulted in extensive waterlogging of soils that lasted
for several weeks and depressed NDVI values over the region until midsummer 2016.65

Improved growth characterized by increasing NDVI following drainage was observed by
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Kobryn et al.,23 who used Landsat 7 NDVI to map the areas surrounding deep drains that
benefited from improved soil conditions.

Unfortunately, extensive cloud covers over farm A in the years on either side of 2014 required
additional Landsat sensors to be used to complete the temporal series over the target at sufficient
resolution. The marginally different sensor configurations between Landsat-5, -7, and -8 may
have had some impact on the differences in NDVI between years. Despite this risk, it was
necessary to use alternative sensors to monitor changes in NDVI within the field a at similar
resolution to Landsat 8.

Although not specifically tested here, it is possible that deterioration in drainage status could
also monitored, for example, where growth is impeded where drains stop functioning, or where
formerly drained lands are reverting to wetlands, either through poor management or through
intentional rewetting. Linking an EO-based model of land drainage extent and drainage function
to soil moisture deficit (SMD) could have important implications for agrometereological
modeling. Currently in Ireland, SMD is modeled by the national meteorological service from
synoptic weather data and soil/terrain properties for three drainage classes (well drained, mod-
erately drained, and poorly drained).16 Integrating an up-to-date EO-based map of artificially
drained soils could improve the current model, which is the existing SMD model, giving more
precise spatial and temporal characterization of land drainage at farm management scale, sup-
porting on-farm decision making for grass growth and utilization,3 trafficability, and fertilizer
management.66

4.4 Misclassification Error

Cloud masking of the initial Landsat 8 scenes created mosaics with extensive areas of missing
data. There was less data available in these areas to calculate mean reflectance over the study
period. Mean pixel values derived from fewer contributing images are potentially susceptible to
antecedent meteorological conditions at the time of acquisition. For example, drained areas
may appear poorly drained where the days preceding image acquisition were unusually wet.
Similarly, poorly drained areas could appear to be drained if there has been a prolonged dry
spell. Figure 9 illustrates how the number of contributing images possible influenced model
accuracy. Misclassification error was greatest where there were fewer numbers of contributing
images. At farm A, it was not possible to create multitemporal mosaics and single-date acquis-
itions were used. As we can see from the regional study, this will have increased the possibility of
error in estimating drainage extent in all years.

Missing data as a result of cloud cover are unavoidable in the study area where cloud cover is
frequently extensive. This presents considerable challenges for mapping land cover using
optical sensors such as Landsat 8. At farm A, data from previous Landsat missions still in
orbit were used to fill the in gaps, but as noted above, this can be problematic where there are
different radiometric configurations, narrower bandwidths, and different wavelength centers.
Such differences can lead to potentially significant differences in surface reflectance that
propagate into band ratios or spectral indices.67 The same principle applies to integrating

Fig. 9 A decrease in misclassification error was observed where the number of images contrib-
uting to the final mosaic increased.
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Sentinel 2 imagery. Coarser resolution imagery from MODIS or Sentinel 3 imagery could be
used to produce a more complete time series and would likely introduce further error due to the
nature of the landscape in the region.14 For more precise mapping, drones carrying multispectral
sensors could map individual fields or farms at very high resolution. Drones are already used in
some regions for mapping individual drainage systems for assessment of drain function.31

5 Conclusions

Accurate mapping of field drainage is essential to inform specific farm management decisions,
national policy, and accounting in areas such as surface water quality and GHG emission esti-
mates. This paper presents an EO-based method using multitemporal, multispectral Landsat 8
imagery to map artificially drained pasture on heavy soils by disaggregating larger soil drainage
units from an existing soil map.

The key findings of this study were that artificially drained pasture on heavy soils could be
distinguished in Landsat 8 images by lower reflectance of red and SWIR wavelengths and
higher reflectance at NIR wavelengths. Furthermore, differences in the rate of grass growth for
artificially drained soils were demonstrated using monthly increases in mean NDVI, where
the magnitude of increase in NDVI in April/May was greatest on artificially drained soils
(see Fig. 5).

In overall classification accuracy, RF outperformed SVM at each respective training level.
The difference in accuracy between algorithms was significant (p ¼ 0.002) at the lowest level of
training, but not when further training pixels were introduced (p ¼ 0.3 and p ¼ 0.2 at 200 and
500 training pixels, respectively). The model with highest overall accuracy {91.4% (95% CI
[89.6%, 93.2%])} was an RF classification of Landsat 8 optical bands and the two VI with
60 training pixels per class. Using this model, 44% (345,000 ha) of the initial study area was
reclassed as artificially drained. Classification accuracy was related to the number of images
contributing to the multitemporal mosaic.

At farm A, improved mean NDVI values were observed following installation of field drains
in 2014 (p < 0.0001). An improvement in overall NDVI metrics (mean, minimum, and maxi-
mum) was mirrored by concomitant increases in the area of field characterized as artificially
drained from 0.72 ha (25% of area) in 2010 to 2.1 ha (68%) in 2016. This approach has potential
for providing mapping current local drainage conditions, which are a significant source of uncer-
tainty in hydrological modeling or GHG estimations.14 The described method can be extended to
cover pasture or other crops on drained mineral and peat soils as a means of identifying hotspots
for diffuse nutrient loss, for more precise accounting of GHG emissions, or for identifying
degrading agricultural land. Although this study has shown that the combination of EO and
ML is a feasible approach for mapping artificially drained areas, additional field observations
validating the presence of artificial drainage would be desirable to confirm that the observed
conditions are a result of artificial drainage and not from other soil or environmental factors.

Acknowledgments

This work was funded through the Teagasc Walsh Scholarship Program. Information on the
drainage system installed at farm A was supplied by the Teagasc Heavy Soils Program.
Disclosure: The authors declare no conflicts of interest.

References

1. R. P. O. Schulte et al., “A review of the role of excess soil moisture conditions in con-
straining farm practices under Atlantic conditions,” Soil Use Manag. 28(4), 580–589 (2012).

2. A. J. Brereton and M. Hope-Cawdery, “Drumlin soils: the depression of herbage yield by
shallow water table depth,” Irish J. Agric. Res. 27(2/3), 167–178 (1988).

3. J. B. Fitzgerald, A. J. Brereton, and N. M. Holden, “Simulation of the influence of poor soil
drainage on grass-based dairy production systems in Ireland,” Grass Forage Sci. 63(3),
380–389 (2008).

O’Hara et al.: Identifying artificially drained pasture soils using machine learning. . .

Journal of Applied Remote Sensing 034508-16 Jul–Sep 2020 • Vol. 14(3)

https://doi.org/10.1111/j.1475-2743.2012.00437.x
https://doi.org/10.1111/j.1365-2494.2008.00637.x


4. L. Shalloo et al., “Comparison of a pasture based system of milk production on a high
rainfall, heavy clay soil with that on a lower rainfall, free draining soil,” Grass Forage Sci.
59, 157–168 (2004).

5. L. F. Galvin, “The drainage of impermeable soils in high rainfall areas,” Irish J. Agric. Res.
22(2/3), 161–187 (1983).

6. A. C. Armstrong and E. A. Garwood, “Hydrological consequences of artificial drainage of
grassland,” Hydrol. Process. 5(2), 157–174 (1991).

7. R. W. Skaggs, M. A. Brevé, and J. W. Gilliam, “Hydrologic and water quality impacts of
agricultural drainage,” Crit. Rev. Environ. Sci. Technol. 24(1), 1–32 (1994).

8. T. G. Ibrahim et al., “Spatial and temporal variations of nutrient loads in overland flow and
subsurface drainage from a marginal land site in south east Ireland,” Biol. Environ. Proc. R.
Irish Acad. 113B(2), 169–186 (2013).

9. N. Valbuena et al., “Greenhouse gas emissions from temperate permanent grassland on
clay loam soil following the installation of artificial drainage,” Agric. Ecosyst. Environ.
269, 39–50 (2018).

10. E. Clagnan et al., “Influence of artificial drainage system design on the nitrogen attenuation
potential of gley soils: evidence from hydrochemical and isotope studies under field-scale
conditions,” J. Environ. Manage. 206, 1028–1038 (2018).

11. K. Leiber-Sauheitl et al., “High CO2 fluxes from grassland on histic Gleysol along soil
carbon and drainage gradients,” Biogeosciences 11(3), 749–761 (2014).

12. K. Byrne, G. Kiely, and P. Leahy, “Carbon sequestration determined using farm scale carbon
balance and eddy covariance,” Agric. Ecosyst. Environ. 121, 357–364 (2007).

13. N. Valbuena-Parralejo et al., “Phosphorus and nitrogen losses from temperate permanent
grassland on clay-loam soil after the installation of artificial mole and gravel mole drainage,”
Sci. Total Environ. 659, 1428–1436 (2018).

14. F. Cawkwell et al., “The Irish Land Mapping Observatory: mapping and monitoring land
cover, use and change,” Environmental Protection Agency, Ireland (2017).

15. C. Paul et al., “Assessing the role of artificially drained agricultural land for climate change
mitigation in Ireland,” Environ. Sci. Policy 80, 95–104 (2018).

16. R. P. Schulte et al., “A note on the hybrid soil moisture deficit model v2.0,” Irish J. Agric.
Food Res. 54(2), 126–131 (2015).

17. P. Sharma, J. Humphreys, and N. M. Holden, “The effect of local climate and soil drainage
on the environmental impact of grass-based milk production,” Int. J. Life Cycle Assess.
23(1), 26–40 (2018).

18. S. Feick, S. Siebert, and P. Doell, A Digital Global Map of Artificially Drained Agricultural
Areas, Johann Wolfgang Goethe-Universität, Frankfurt, Germany (2005).

19. A. B. McBratney, M. L. Mendonça Santos, and B. Minasny, “On digital soil mapping,”
Geoderma 117(1), 3–52 (2003).

20. V. L. Mulder et al., “The use of remote sensing in soil and terrain mapping: a review,”
Geoderma 162, 1–19 (2011).

21. E. E. Frisbee et al., “Remote sensing for soil map unit boundary detection,” GSA Rev. Eng.
Geol. 22, 119–129 (2014).

22. N. McFarlane, T. Ciavarella, and K. F. Smith, “The effects of waterlogging on growth,
photosynthesis and biomass allocation in perennial ryegrass (Lolium perenne L.) genotypes
with contrasting root development,” J. Agric. Sci. 141(2), 241–248 (2003).

23. H. T. Kobryn et al., “Remote sensing for assessing the zone of benefit where deep drains
improve productivity of land affected by shallow saline groundwater,” J. Environ. Manage.
150(Suppl. C), 138–148 (2015).

24. A. Cialella et al., “Predicting soil drainage class using remotely sensed and digital elevation
data,” Photogramm. Eng. Remote Sens. 63, 171–178 (1997).

25. P. Campling, A. Gobin, and J. Feyen, “Logistic modeling to spatially predict the probability
of soil drainage classes,” Soil Sci. Soc. Am. J. 66(4), 1390–1401 (2002).

26. A. B. Møller et al., “Predicting artificially drained areas by means of a selective model
ensemble,” Geoderma 320, 30–42 (2018).

27. J. C. Bell, R. L. Cunningham, and M. W. Havens, “Soil drainage class probability mapping
using a soil-landscape model,” Soil Sci. Soc. Am. J. 58(2), 464–470 (1994).

O’Hara et al.: Identifying artificially drained pasture soils using machine learning. . .

Journal of Applied Remote Sensing 034508-17 Jul–Sep 2020 • Vol. 14(3)

https://doi.org/10.1111/j.1365-2494.2004.00415.x
https://doi.org/10.1002/hyp.3360050204
https://doi.org/10.1080/10643389409388459
https://doi.org/10.3318/BIOE.2013.13
https://doi.org/10.3318/BIOE.2013.13
https://doi.org/10.1016/j.agee.2018.09.011
https://doi.org/10.1016/j.jenvman.2017.11.069
https://doi.org/10.5194/bg-11-749-2014
https://doi.org/10.1016/j.agee.2006.11.015
https://doi.org/10.1016/j.scitotenv.2018.12.173
https://doi.org/10.1016/j.envsci.2017.11.004
https://doi.org/10.1515/ijafr-2015-0014
https://doi.org/10.1515/ijafr-2015-0014
https://doi.org/10.1007/s11367-017-1302-2
https://doi.org/10.1016/S0016-7061(03)00223-4
https://doi.org/10.1016/j.geoderma.2010.12.018
https://doi.org/10.1130/2014.4122(12)
https://doi.org/10.1130/2014.4122(12)
https://doi.org/10.1017/S0021859603003502
https://doi.org/10.1016/j.jenvman.2014.11.017
https://doi.org/10.2136/sssaj2002.1390
https://doi.org/10.1016/j.geoderma.2018.01.018
https://doi.org/10.2136/sssaj1994.03615995005800020031x


28. Z. Zhao, M. I. Ashraf, and F.-R. Meng, “Model prediction of soil drainage classes over
a large area using a limited number of field samples: a case study in the province of
Nova Scotia, Canada,” Can. J. Soil Sci. 93(1), 73–83 (2013).

29. B. Allred et al., “Detection of buried agricultural drainage pipe with geophysical methods,”
Appl. Eng. Agric. 20(3), 307–318 (2004).

30. M. Rogers, J. Cassidy, and M. Dragila, “Ground-based magnetic surveys as a new technique
to locate subsurface drainage pipes: a case study,” Appl. Eng. Agric. 21, 421–426 (2005).

31. B. Allred et al., “Overall results and key findings on the use of UAV visible-color, multi-
spectral, and thermal infrared imagery to map agricultural drainage pipes,” Agric. Water
Manag. 232, 106036 (2020).

32. B. Tetzlaff et al., “Aerial photograph-based delineation of artificially drained areas as a basis
for water balance and phosphorus modelling in large river basins,” Phys. Chem. Earth, Parts
A/B/C 34, 552–564 (2009).

33. W. Peng et al., “Delineating patterns of soil drainage class on bare soils using remote sensing
analyses,” Geoderma 115(3), 261–279 (2003).

34. A. Beucher, A. B. Møller, and M. Greve, “Artificial neural networks and decision tree
classification for predicting soil drainage classes in Denmark,” Geoderma 352, 351–359
(2017).

35. E. Cho et al., “Identifying subsurface drainage using satellite Big Data and machine learning
via Google Earth Engine,” Water Resour. Res. 55(10), 8028–8045 (2019).

36. C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn. 20(3), 273–297 (1995).
37. L. Breiman, “Random forests,” Mach. Learn. 45(1), 5–32 (2001).
38. G. Mountrakis, J. Im, and C. Ogole, “Support vector machines in remote sensing: a review,”

ISPRS J. Photogramm. Remote Sens. 66, 247–259 (2011).
39. M. Pal, “Random forest classifier for remote sensing classification,” Int. J. Remote Sens.

26(1), 217–222 (2005).
40. A. Sleeman, B. McConnell, and S. Gately, Understanding Earth Processes Rocks and the

Geology of Ireland, Geological Survey of Ireland, Dublin (2004).
41. R. Bruton and F. Convery, Land Drainage Policy in Ireland, Economic and Social Research

Institute, Dublin (1982).
42. DAFM, Environmental Impact Assessment (Agriculture) Regulations: Guide for Farmers,

DAFM, Dublin (2011).
43. CSO, “Farm structure survey 2016,” Central Statistics Office, Cork (2016).
44. J. G. Masek et al., LEDAPS Calibration, Reflectance, Atmospheric Correction Preprocess-

ing Code, Version 2, ORNL Distributed Active Archive Center, Oak Ridge, Tennessee
(2013).

45. Z. Zhu, S. Wang, and C. Woodcock, “Improvement and expansion of the Fmask algorithm:
cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images,”
Remote Sens. Environ. 159, 269–277 (2015).

46. J. W. Rouse et al., “Monitoring vegetation systems in the Great Plains with ERTS,” in 3rd
ERTS Symp., NASA, p. 8 (1973).

47. B. Gao, “NDWI—A normalized difference water index for remote sensing of vegetation
liquid water from space,” Remote Sens. Environ. 58(3), 257–266 (1996).

48. T. Keane and J. F. Collins, Climate, Weather and Irish Agriculture, 2nd ed., Joint Working
Group on Applied Agricultural Meteorology, Dublin (2004).

49. L. W. Zevenbergen and C. R. Thorne, “Quantitative analysis of land surface topography,”
Earth Surf. Process. Landforms 12(1), 47–56 (1987).

50. C. Rennó et al., “HAND, a new terrain descriptor using SRTM-DEM: mapping terra-firme
rainforest environments in Amazonia,” Remote Sens. Environ. 112, 3469–3481 (2008).

51. K. J. Beven and M. J. Kirkby, “A physically based, variable contributing area model of basin
hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin
versant,” Hydrol. Sci. Bull. 24(1), 43–69 (1979).

52. OSI, PRIME 2: Data Concepts & Data Model Overview, Ordnance Survey Ireland, Dublin
(2015).

53. R. Fealy et al., “Teagasc EPA soil and subsoils mapping project,” Environmental Protection
Agency, Ireland (2009).

O’Hara et al.: Identifying artificially drained pasture soils using machine learning. . .

Journal of Applied Remote Sensing 034508-18 Jul–Sep 2020 • Vol. 14(3)

https://doi.org/10.4141/cjss2011-095
https://doi.org/10.13031/2013.16067
https://doi.org/10.13031/2013.18461
https://doi.org/10.1016/j.agwat.2020.106036
https://doi.org/10.1016/j.agwat.2020.106036
https://doi.org/10.1016/j.pce.2009.02.002
https://doi.org/10.1016/j.pce.2009.02.002
https://doi.org/10.1016/S0016-7061(03)00066-1
https://doi.org/10.1016/j.geoderma.2017.11.004
https://doi.org/10.1029/2019WR024892
https://doi.org/10.1007/BF00994018
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.isprsjprs.2010.11.001
https://doi.org/10.1080/01431160412331269698
https://doi.org/10.1016/j.rse.2014.12.014
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1002/esp.3290120107
https://doi.org/10.1016/j.rse.2008.03.018
https://doi.org/10.1080/02626667909491834


54. EPA, “CORINE land cover 2012 Ireland Final Report,” Environmental Protection Agency,
Ireland (2012).

55. DAFM, The Second National Forest Inventory Republic of Ireland: Main Findings,
Department of Agriculture, Food and the Marine, Johnstown Castle (2013).

56. R. G. Congalton, “A review of assessing the accuracy of classification of remotely sensed
data,” Remote Sens. Environ. 37(1), 35–46 (1991).

57. D. Rossiter, “Technical Note: Statistical methods for accuracy assessment of classified the-
matic maps,” International Institute for Geo-information Science & Earth Observation,
Enschede, Netherlands (2014).

58. E. Mockler et al., Pathways Project Final Report Volume 4: Catchment Modelling Tool,
Environmental Protection Agency, Ireland (2014).

59. DAFM, “Integrated forestry information system,” https://www.agriculture.gov.ie/forestservice/
forestservicegeneralinformation/foreststatisticsandmapping/afforestationstatistics/ (accessed 5
July 2020).

60. DHPLG, “Building control management system,” https://www.housing.gov.ie/housing/
statistics/house-building-and-private-rented/construction-activity-starts (accessed 5 July
2020).

61. J. Delegido et al., “Evaluation of Sentinel-2 red-edge bands for empirical estimation of green
LAI and chlorophyll content,” Sensors (Basel). 11(7), 7063–7081 (2011).

62. E. J. Emengini, G. A. Blackburn, and J. C. Theobald, “Discrimination of plant stress caused
by oil pollution and waterlogging using hyperspectral and thermal remote sensing,” J. Appl.
Remote Sens. 7, 073476 (2013).

63. J. Liu et al., “Mapping within-field soil drainage using remote sensing, DEM and apparent
soil electrical conductivity,” Geoderma 143(3), 261–272 (2008).

64. B. S. Naz, S. Ale, and L. C. Bowling, “Detecting subsurface drainage systems and estimat-
ing drain spacing in intensively managed agricultural landscapes,” Agric. Water Manag.
96(4), 627–637 (2009).

65. R. O’Hara, S. Green, and T. McCarthy, “The agricultural impact of the 2015–2016 floods in
Ireland as mapped through Sentinel 1 satellite imagery,” Irish J. Agric. Food Res. 58, 44–65
(2019).

66. A. Kerebel and N. M. Holden, “The relationship between farmer opinion of suitable con-
ditions for nutrient application, soil moisture deficit and weather,” Soil Use Manag. 32(4),
613–622 (2016).

67. N. Flood, “Comparing Sentinel-2A and Landsat 7 and 8 Using Surface Reflectance over
Australia,” Remote Sens. 9(7), 659 (2017).

Rob O’Hara is a postdoctoral researcher at Teagasc and VistaMilk SFI Research Centre. His
PhD focused on EO methods of mapping artificially drained soils. Currently, he is researching
EO mapping of land use intensity / habitats on managed grasslands. He is a member of SPIE.

Stuart Green is a senior research officer in Teagasc, the Irish agriculture and food development
authority, researching the use of applied earth observation in grassland agriculture.

Owen Fenton is a principal research officer with Teagasc and works in the research area of soil
hydrology with particular emphasis on pollutants losses from agricultural systems.

Pat Tuohy is a research officer at Teagasc specialising in soil management, soil physics, hydrol-
ogy and land drainage.

Biographies of the other authors are not available.

O’Hara et al.: Identifying artificially drained pasture soils using machine learning. . .

Journal of Applied Remote Sensing 034508-19 Jul–Sep 2020 • Vol. 14(3)

View publication statsView publication stats

https://doi.org/10.1016/0034-4257(91)90048-B
https://www.agriculture.gov.ie/forestservice/forestservicegeneralinformation/foreststatisticsandmapping/afforestationstatistics/
https://www.agriculture.gov.ie/forestservice/forestservicegeneralinformation/foreststatisticsandmapping/afforestationstatistics/
https://www.agriculture.gov.ie/forestservice/forestservicegeneralinformation/foreststatisticsandmapping/afforestationstatistics/
https://www.agriculture.gov.ie/forestservice/forestservicegeneralinformation/foreststatisticsandmapping/afforestationstatistics/
https://www.agriculture.gov.ie/forestservice/forestservicegeneralinformation/foreststatisticsandmapping/afforestationstatistics/
https://www.housing.gov.ie/housing/statistics/house-building-and-private-rented/construction-activity-starts
https://www.housing.gov.ie/housing/statistics/house-building-and-private-rented/construction-activity-starts
https://www.housing.gov.ie/housing/statistics/house-building-and-private-rented/construction-activity-starts
https://www.housing.gov.ie/housing/statistics/house-building-and-private-rented/construction-activity-starts
https://www.housing.gov.ie/housing/statistics/house-building-and-private-rented/construction-activity-starts
https://doi.org/10.3390/s110707063
https://doi.org/10.1117/1.JRS.7.073476
https://doi.org/10.1117/1.JRS.7.073476
https://doi.org/10.1016/j.geoderma.2007.11.011
https://doi.org/10.1016/j.agwat.2008.10.002
https://doi.org/10.2478/ijafr-2019-0006
https://doi.org/10.1111/sum.12298
https://doi.org/10.3390/rs9070659
https://www.researchgate.net/publication/346811275

