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Abstract
In recent years, increasing tourism and development in the coastal dune area of the South East of Ireland have resulted in greater
pressure on the environment, resulting in issues including soil erosion, flooding and habitat loss. Topographic mapping across a
dune field is important for the development of targeted land management actions that maintain biodiversity and ecological
functions. Developments in surveying technology, including LiDAR, terrestrial laser scanners (TLS) and aerial surveying from
Remotely Piloted Aircraft Systems (RPAS), have enabled high-resolution and high-accuracy spatial data to be gathered quickly
and relatively easily for 3D topographic modelling of a coastal dune complex. To-date, however, the relative efficacies of these
three modelling methods, in the context of coastal dune modelling, has not been explored. This paper compares high-end
methods based on LiDAR, TLS and RPAS technologies, for the topographic modelling of coastal dune complexes with particular
reference to the Brittas-Buckroney dune complex in the South East of Ireland. The results identify the advantages and disad-
vantages of the respective technologies and highlight the efficacy of RPAS, in particular, for topographic modelling of coastal
dune complexes. These results can provide reference information for others when selecting suitable methods for topographic
modelling of similar environments.

Keywords Coastal dune complexes . Topographic modelling . LiDAR . Terrestrial laser scanners . Remotely piloted aircraft
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Introduction

Coastal zones comprise 2% of the earth’s land area and are the
transition areas between the marine and terrestrial environ-
ments (Acosta et al. 2005). Dune complexes are the main

structures at these coastal zones (Lucas et al. 2002). They play
an essential role in the preservation of ecosystem stability and
biological diversity as they provide habitat for special flora
and fauna, control soil erosion and flooding, and provide pro-
tection for nearby properties from other environmental haz-
ards (Clark 1977; Andrews et al. 2002). Human pressure on
coastal zones around the world has increased dramatically in
the last 50 years (Curr et al. 2000; Westley and McNeary
2014).

Concern for the increasing threat to coastal dune ecosys-
tems has generated a greater interest in coastal dune conser-
vation and management (MacLeod et al. 2002; Olbert et al.
2017). Accurate ‘baseline’ topographic mapping, with de-
tailed information concerning the earth’s surface, are consid-
ered critical to the development of an effective coastal envi-
ronmental management plan (Acosta et al. 2005). However,
high-resolution and high-accuracy topographic modelling is a
challenging task which requires a considerable investment in
time and resources (McKenna et al. 2005).

Aerial photogrammetry and optical satellite imagery have
been used for topographic mapping for various landscapes
including coastal ecosystems (Curr et al. 2000). However, a
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single dune complex is typically represented as a long and
narrow strip because such mapping is generally produced at
national and regional scales (Acosta et al. 2005). There are,
notwithstanding, a number of data processing approaches for
generating finer-scale mapping from the more traditional
sources (Lucas et al. 2002; Timm and McGarigal 2012;
Rapinel et al. 2014). Nevertheless, it remains quite difficult
to produce, from these sources, topographic mapping with
accurate and detailed land cover information for small coastal
dune complexes. A considerable limitation of optical satellite
imagery, in particular, is the influence of weather, especially
cloud-cover which can interfere with the view of the earth’s
surface (McGovern et al. 2002).

Aircraft-based Light Detection and Ranging (LiDAR) is an
alternative resource for 3D topographic models even for a
smaller target area e.g. 50–100 ha (Bolivar et al. 1995;
Grebby et al. 2014). It is often available from national map-
ping agencies (NMA’s), such as Ordnance Survey Ireland
(OSi). OSi quotes spatial resolutions and vertical accuracies
in rural areas of 0.5 m and 0.5 m respectively (OSi 2017) and
charges c. €250 per square kilometre for the data. LiDAR data
can be used to generate both Digital Terrain Models (DTM)
and Digital Surface Models (DSM) (Crapoulet et al. 2016).
For a study at a coastal dune complex in North Carolina, a
LiDAR dataset were used to represent coastal dunes for volu-
metric change analysis (Woolard and Colby 2002).

Ground surveying methods, including Total Station (TS)
and Global Navigation Satellite System (GNSS), are suitable
for topographic modelling of smaller target areas (D’iorio
et al. 2007; Lee et al. 2013). These on-site, data collection
methods provide more ground truth, and up-to-date and accu-
rate information than many alternatives (D’iorio et al. 2007).
The distance measurement accuracy of TS is 2 mm+ 2 ppm
over a distance of about 1 km (Lee et al. 2013). However, the
operation and performance of TS in field surveying projects is
limited by poor visibility circumstances, such as darkness,
rain, snow, thickets or physical occlusions (Schneider and
Panich 2008). There are three techniques based on GNSS to
enhance the precision of satellite position data. These are Post
Processing Kinematic (PPK), Real Time Kinematic (RTK)
and Network Real Time Kinematic (NRTK) (Li et al. 2015).
The accuracy of GNSS is 10–20 mm (Dow et al. 2009). With
lighter equipment and easier operation, these GNSS tech-
niques can save labour and time in collecting the same amount
of modelling data as TS (Mieczysław 2013).

In recent years, due to being non-contact, rapid, accurate
and complete, Terrestrial Laser Scanning (TLS) has been in-
creasingly used to build three-dimensional models (Parrish
et al. 2016). The positioning accuracy of TLS is of the order
of millimetres (Staiger 2003). The laser scanner is integrated
with a computing device to save the acquired point informa-
tion and also to control the scanning patterns. The operation of
the laser scanner is almost fully automatic which leaves little

room for operating error as human influence plays a less im-
portant role in the surveying process (Ersilia et al. 2012).

Most recently, Remotely Piloted Aircraft Systems (RPAS),
variously referred as Unmanned Aerial Systems (UAS),
Unmanned Aerial Vehicles (UAV’s), “Aerial Robots” or sim-
ply “drones”, have enabled high-quality data to be gathered
quickly and easily (Casella et al. 2014; Turner et al. 2016).
RPAS platforms are typically grouped into two main catego-
ries: rotary RPAS and fixed-wing RPAS (Gomez and Green
2017). Comparing both types, rotary RPAS has more complex
mechanics, which result in lower speeds and shorter flight
ranges while fixed-wing RPAS have a simpler structure pro-
viding more stable platforms. Furthermore, fixed-wing RPAS
enable longer flight duration and higher speeds, which are
more suitable for aerial surveys over larger areas.

RPAS, integrated with modern digital camera technology,
breaks the time and space constraint allowing a study site to be
remotely surveyed in a significantly reduced time using the
imagery acquired (Smith et al. 2009; Colomina and Molina
2014). RPAS imagery, using Structure from Motion (SfM)
processing techniques, has created a new opportunity for pho-
togrammetry to create 3D surface models from the large num-
ber of overlapping photographs (Hodgson et al. 2013). To
maintain the spatial accuracy of the data, the overlapping area
for each two images should be at least 60%, making sure
sufficient shared points can be recognised by the software
for map construction (Zelizn 2016). A multispectral camera
mounted on a RPAS allows both visible and multispectral
imagery to be captured that can be used for characterizing land
features, vegetation health and function (Fernández-
Guisuraga et al. 2018). RPAS is also a user-friendly and scal-
able methodology albeit with the requirement of specialized
software and with restrictive image collection conditions such
as high wind speed and poor light intensity (Bemis et al.
2014). For the management of RPAS, different countries have
different mandatory requirements, established by their nation-
al aviation authorities. And particular operating licenses and
insurances may be required before operating an RPAS
(Tomasello et al. 2016).

LiDAR, TLS and RPAS technologies are capable of creat-
ing digital topographic models of coastal dune complexes.
There are three different types of digital topographic model,
viz. Digital Surface Model (DSM), Digital Terrain Model
(DTM) and Digital Elevation Model (DEM). A DSM repre-
sents the natural and built features on the Earth’s surface
(Crapoulet et al. 2016). A DTM is defined as an array of
orderly values that are used to describe the spatial distribution
of various properties of the earth’s surface, for example, topo-
graphic information, natural resource and environment infor-
mation, and economic information (Liang et al. 2012).When
the DTM is used only to describe and express spatial informa-
tion, such as terrain relief and elevations, it is also called a
DEM (Liang et al. 2012). A DTM is a bare-earth raster grid
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referenced to a vertical datum (Hutchinson and Gallant 1999).
By filtering out non-ground points, e.g. building and vegeta-
tion cover in a DSM, a bare-earth DTM is created.

TLS and RPAS technologies create DSMs of a study site as
the ground features are not filtered. LiDAR use pules of laser
light to measure range. A single pulse can generate a number
of returns such that the first return can be used to create a DSM
and last return can be used to create a DTM.

The objective of this research was to compare three high-
end methods, viz. LiDAR, TLS and RPAS technology, for
topographic modelling of a coastal dune complex with partic-
ular reference to the Brittas-Buckroney dune complex (Fig. 1)
in Co. Wicklow, Ireland. By comparing the efficacy of these
different methods of spatial data collection, with respect to
accessibility, cost, convenience and data quality, the advan-
tages and disadvantages of these methods are considered in
the context of topographic modelling of coastal dune com-
plexes. The results can provide reference information for
others involved in topographic modelling of similar
environments.

Study site

The Brittas-Buckroney dune complex (Fig. 2) is located c.
10 km south of Wicklow town on the east coast of Ireland
and comprises two main sand dune systems, viz. Brittas Bay
and Buckroney Dunes (National Parks and Wildlife Service
(NPWS) 2013). The study site for this research is Buckroney
Dunes. The area of the Buckroney dune complex is c. 60 ha.

Within this site, ten habitats listed on the EU Habitats
Directive are present, including two priority habitats in

Ireland, viz. fixed dune and decalcified dune heath (National
Parks and Wildlife Service (NPWS) 2013). This site also con-
tains good examples of different dune types. At the northern
part of Buckroney dune complex, there are some representa-
tive parabolic dunes, while embryonic dunes mostly occur at
the southern part. Meanwhile, the site is notable for the pres-
ence of well-developed plant communities.

With land acquisition in recent years, the marginal areas of
the dune system have been reclaimed as farmland. The in-
creasing anthropogenic activities at the dune system, such as
farming and recreation activities, have brought pressure to the
dune ecosystems development, with hazards like soil erosion,
flooding and habitat loss. Proper environmental management
is required to ensure the continued survival of this coastal
habitat and to maintain the diversity and stability of the eco-
system on this site and accurate topographic modelling is con-
sidered a prerequisite for such management.

Methodology

This study considered three different surveying methods to
gather spatial data for the Brittas-Buckroney dune system.
These were LiDAR data acquired from the NMA, and two
on-site data collection technologies, viz. TLS and RPAS.

Data acquisition

LiDAR

LiDAR data of the study site were available from OSi. The
Lidar scanner used by OSi was an airborne Leica ALS50

Fig. 1 Morphology of the Brittas-
Buckroney dune complex
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(Ordnance Survey Ireland (OSI) 2017). This scanner emits
150,000 pulses every second creating a point cloud of millions
of pixels collected in X, Y, Z (easting, northing and elevation).
After capturing the raw point cloud each point is then classi-
fied into different layers, such as ground, buildings and vege-
tation. The final outputs are of high accuracy and provide
vertical accuracies between 0.15 m to 0.25 m.

In this research, the acquisition date of the dataset
was 28/04/2011. The data file contained the Easting,
Northing and Elevation information for each point re-
corded in the Irish Transverse Mercator (ITM) coordi-
nate system. The horizontal spatial resolution of the data
was 0.5 m and the vertical accuracy was 0.5 m
(Ordnance Survey Ireland (OSI) 2017).

TLS

The GLS2000 captures point cloud data with the scan rate of
120,000 pulses per second with an accuracy of 3.5 mm up to
150 m distance. The scanner has a 170° wide-angle camera
and the scan range over 350m. The field view of the scanner is
360° horizontally, and 320° vertically. A complete 3D model
of an object such as sand dune typically required several scans
from different locations which are subsequently registered to-
gether. These scans are captured at predetermined ground
control points (GCPs) to enable precise geolocation.

The coordinate positions of GCPs used in the TLS survey
of the study area were measured using a Trimble 5800 GNSS
receiver recording in the ITM coordinate system. The data

Fig. 2 Study site (a) General location and (b) Brittas-Buckroney dunes

 (a) (b)Fig. 3 a SenseFly eBee RPAS
surveyed on-site b GCPs set on
site for RPAS surveying
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from a TLS survey is in the form of a point cloud. All points
within the point cloud have X, Y, and Z coordinate and laser
return intensity values. The points were in an XYZIRGB for-
mat, representing X, Y, Z coordinate, return intensity, and
Red, Green, Blue colour values taken from the on-board dig-
ital camera.

RPAS

A SenseFly eBee RPAS (Fig. 3 (a)) was used to capture im-
ages of the study site. The SenseFly eBee RPAS can cover up
to 12 km2 in a single automated mapping flight, while flights
over smaller areas, at lower altitudes, can acquire images with
a ground sampling distance of down to 1.5 cm per pixel. The
resulting point cloud, with GCPs used for georeferencing, can
achieve horizontal and vertical accuracy of 3 cm – 5 cm, while
the resulting point cloud without GCPs has absolute horizon-
tal and vertical accuracy of 1 m − 5 m.

Thrity-two GCPs were established around the study site to
georeference the data from the RPAS. These were marked as
white crosses identifiable in the images captured by the RPAS
(Fig. 3 (b)). The GCPs were in the ITM coordinate system and
positions were determined using a Trimble 5800 GNSS re-
ceiver connected to the Trimble VRS commercial NRTK
system.

To maintain the high quality of the captured imagery, and
considering the 20 min - 25 min battery life for a single flight
of the RPAS, the study site was divided into three sections,
North, Centre and South. Settings for each flight included
70% overlap along lines and 60% side-lap between lines,
flight height of 120 m and flight times of c. 20 min optimizing
the data capture time with respect to battery life. In the three

sections, the number of images collected by the RPAS flight
was 212, 209, and 149 respectively for the North, Centre and
South sections.

Data processing

The raw datasets from LiDAR and TLS were point clouds,
whereas RPAS captured numerous overlapping images. By
matching different images captured by RPAS, a point cloud

Georeference, 
segment and 

filter data 

Georeference, 
segment and 

filter data

Download 
imagery, process 

and 
georeferencery

MicroSta�on 
and  TerraScan

Topcon 
Scanmaster and 

Trimble 
Realworks

Pix4D Mapper

Download data 
from data 
provider

Field work (5 ha for 
10 hours)

Field work (60 ha 
for 2 hours)

DSM, DTM DSM 
Point cloud, 

DSM, 
orthomosaic 

LiDAR TLS RPASFig. 4 The flowchart of data
processing fromLiDAR, TLS and
RPAS technologies

Fig. 5 Digital Surface Model (DSM) of Buckroney dune complex proc-
essed by LiDAR data
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of the ground surface was generated by SfM technology. Point
clouds from the LiDAR, TLS and RPAS surveys then were
used to generate DSMs for further study. To process the col-
lected datasets, specific software was required in each case.
Figure 4 outlines the processing steps of datasets acquired by
LiDAR, TLS and RPAS.

Model comparison

DSMs were generated from the datasets collected by the three
different methods, i.e. LiDAR, TLS and RPAS. Although it
was not practical to create a 3Dmodel for the whole study site
by TLS technology, the model created from TLS data was
used as reference data for an accuracy assessment of the
models generated by both the LiDAR and the RPAS data.
Single point accuracy based on TLS collection is 0.003 m
(Topcon Corporation 2014). Models based on LiDAR and
RPAS technology were compared with the single dune model
created by TLS data via CloudCompare software. The

calculated offset between the models represented the accuracy
of the models created by LiDAR and RPAS.

Outcomes

The results show the topographic models of the Buckroney
dune system created using the three surveying technologies,
viz. LiDAR, TLS and RPAS.

LiDAR

The LiDAR data is commonly segmented by using different
filters to extract the ground surface or the above-ground fea-
tures. Considering the first returns of laser light, DSM (Fig. 5)
and contour models of the site from LiDAR data were pro-
duced. The spatial resolution of the models was 0.2 m. In the
DSM, the colour variation from blue to red represents eleva-
tion in the range − 0.89 m – +24.39 m.

(a) (b)

Fig. 6 Selected dune area (a) general location (b) detail imagery

Fig. 7 DSM of selected dune
produced by TLS technology
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Terrestrial laser scanner

From the TLS data, a higher resolution DSM of the selected
dune in the white rectangle in Fig. 6 was created. The resolu-
tion of the model was 1 cm. This model was georeferenced to
the ITM coordinate system by reference to three GCPs. TLS
can collect multiple return signals from a target. The data pre-
sented in Fig. 7 used the first return signals to create the DSM.

RPAS

Using a dense image matching process, geo-referenced 3D
point clouds, orthomosaics, DSMs, contour lines, and textured
mesh models were generated for the study site from the RPAS
imagery. These outcomes were referenced to the ITM grid
coordinate system, with a spatial resolution of 0.034 m and a
spatial accuracy of 0.035 m when checked against 10 GCPs.

Pix4D software was used for the processing and a 3D point
cloud of the study site was generated from the overlapping im-
ages. The orthomosaic (Fig. 8) is a mosaic image adjusted for
topographic relief, lens distortion, and camera tilt so it can be
used to scale true distances. This high resolution orthomosaic is
a useful product suitable for land feature classification and vol-
umetrics analysis. The DSM (Fig. 9) when combined with the
position of land features, can provide the basic morphological
data for environmental modelling. Environmental models can
then contribute to the exploration and identification of important

processes at coastal dune complexes, for example, dunes forma-
tion, structure changes to dunes and vegetation, aeolian and
other environmental influences on morphology.

Fig. 8 Orthomosaic model of the
study site with a detailed extract

Fig. 9 DSM of study site produced from the RPAS survey
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Analysis

Based on the accuracy for a single point measurement of
0.003 m, and allowing for a typical error budget, the estimated
accuracy for the TLS model is ±0.010 m. Thus, the TLS mod-
el (Fig. 7) was used as the reference model for a comparison

with the LiDAR model (Fig. 5) and the RPAS model (Fig. 9).
A spatial accuracy assessment was carried out using package
cloud-to-cloud separation estimation in the CloudCompare
software package. The offset between TLS model and
LiDAR model was 0.27 m and standard deviation was
0.18 m (Fig. 10). The offset between TLS based model and

Fig. 10 Offset between the TLS model and the LiDAR model

Fig. 11 Offset between the TLS model and the RPAS model
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RPAS model was 0.11 m and standard deviation was 0.18 m
(Fig. 11).

LiDAR, TLS and RPAS are all options for generating
DSMs of a small coastal dune complex. However, the resolu-
tion, coverage and labour investment of these three methods
vary. Based on this study, Table 1 compares the three methods
considered for topographic models.

Based on these accuracy assessment figures (Figs. 10
and 11) and further comparison between the models
(Table 1), RPAS was considered as the better choice for the
topographic modelling of this 60 ha coastal dune complex for
this particular study.

Conclusion

In this study, three surveying methods for data collection
were explored for topographic modelling of the 60 ha
Buckroney coastal dune complex in Ireland, viz. LiDAR
data, TLS and RPAS. Using both existing LiDAR data and
RPAS technology, it was possible to complete the high
resolution topographic modelling of the site within one
day. In this timescale, TLS was only capable of generating
a topographic model of a single dune within the study site.
However, this model was of high resolution (0.01 m) and
high accuracy (0.010 m) and was used as the reference
model for an accuracy assessment of the models created
by LiDAR and RPAS. The results show the model based
on RPAS data has higher resolution (0.034 m) and higher
accuracy (0.11 m) than the model generated from the
LiDAR dataset. The RPAS solution also provided more
up-to-date and flexible data for modelling. Data collection

using RPAS was completed in one day for a 60 ha study
site which demonstrated the efficiency of the RPAS survey
method in dune complex areas. As the RPAS surveyed
remotely, it eased the difficulties of access through dunes
areas with deep slopes and difficult vegetation.

However, notwithstanding the many benefits and advan-
tages of RPAS technology in modelling, it still has some chal-
lenges with dune complexes surveying. RPAS is unable to
create DTMs of coastal dune complexes as it lacks bare-
earth data in areas of dense vegetation. RPAS is also sensitive
to certain environmental conditions, such as wind, precipita-
tion, low light. Although the use of RPAS can save significant
time at the on-site data collecting stage, more time is required
for data processing. Preliminary items need to be take into
consideration as well, such as arranging permits to fly and
training under RPAS regulations from the relevant aviation
authority.
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