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A Critical Comparison of Excitation Force
Estimators for Wave-Energy Devices
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Abstract— The implementation of energy-maximizing control
systems (EMCSs) can significantly increase the efficiency and
economic viability of resonant wave-energy converters (WECs).
To achieve optimal control and drive the WEC into resonance
with the incoming wave field, knowledge of the wave excitation
force is required. In operational conditions, this quantity is
immeasurable and, thus, has to be estimated. This article presents
a critical comparison of the available excitation force estimators
found in the literature. A reference measurement of the excitation
force is determined using computational fluid dynamics (CFD)
simulation, allowing an absolute comparison of the different
estimation strategies. The estimators are compared based on the
required input data, achieved accuracy, computational delay, and
estimation time. In total, 11 estimation strategies are compared,
with three, in particular, emerging with relatively superior
performance.

Index Terms— Excitation force estimation, Kalman filter (KF),
optimal control, unknown input estimation, wave energy, wave-
energy converter (WEC).

I. INTRODUCTION

WAVE energy has a higher energy density than other
renewable energy sources, such as solar or wind

energy, and shows potential to significantly contribute to the
global energy mix. However, since wave energy is still at
an early stage of development, its levelized cost of energy
(LCOE) is too high to be commercially competitive [1]–[3].
Therefore, considerable research effort has focused on the
development of control systems to maximize energy capture.
Energy-maximizing control systems (EMCSs) optimize the
power output of a wave-energy converter (WEC) by driving it
into resonance with the incident wave field [4].

Numerous EMCSs for WECs have been proposed in the
literature [5]. For the determination of the optimal control
inputs, the majority of these EMCSs require knowledge of
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the instantaneous and future wave-excitation force (Fex(t))
acting on the WEC [4]. Fex(t) represents the force acting on
a fixed or floating body due to the incoming waves. For a
fixed body, Fex(t) can simply be measured by integrating the
pressure over the submerged body surface. However, for a
nonfixed body, Fex(t) is an immeasurable quantity, since the
integrated pressure over the submerged body surface represents
the Fex(t) and other hydrodynamic forces, e.g., wave-radiation
force (FR(t)), wave hydrostatic restoring force (FH(t)), and so
on. Therefore, for a floating body, such as a WEC, Fex(t) can
only be estimated. To this end, various strategies have been
proposed in the literature, which attempt to estimate Fex(t)
based on measurable quantities, such as device position and
velocity or the pressure on the WEC hull.

Given the large number of published estimation strate-
gies, knowledge of their relative strengths and weaknesses
is important. Therefore, this study aims to review the Fex(t)
estimators found in the literature, and conduct a critical and
fair comparison. In this study, a total of 11 different Fex(t)
estimators are included. To the best of our knowledge, such
a comprehensive comparison has not yet been performed.
Reviews of different Fex(t) estimators have been presented
in [6]–[8]; however, these reviews only consider a maximum
of three different estimation strategies.

As shown in Section III, comparing different estimators is
not a trivial task. Since the Fex(t) on a moving body is an
immeasurable quantity, the definition of an unbiased reference
for the comparison poses a challenge. Therefore, this study
employs computational fluid dynamics (CFD) simulation to
create a benchmark for the estimator comparison. A 5-m
diameter, heaving sphere, point absorber WEC is chosen as the
case study for the presented comparison. The device is exposed
to a realistic, polychromatic sea state and a hydraulic power
take-off (PTO), with a simple resistive controller, implemented
in the model.

The remainder of this article is organized as follows.
Based on a complete literature review, Section II introduces
the different available Fex(t) estimators. Next, Section III
describes the methodology for the critical comparison. More
information on the case study for the comparison is then
presented in Section IV. Results of the comparison are shown
and discussed in Section V. Finally, some conclusions are
drawn in Section VI.

II. EXCITATION FORCE ESTIMATORS

Before reviewing the different estimation strategies and
introducing their theoretical background, let us first define
the (linear) hydrodynamic model used in the estimators to
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characterize the motion of a floating body, which is a form
of Cummin’s equation [9], and is defined as

m∗ z̈(t) + FR(t) + FH(t) + FPTO(t) = Fex(t) (1)

where m∗ = m + A∞, m is the mass of the body, and A∞ the
infinite-frequency added mass. z, ż, and z̈ denote the heave1

position, velocity, and acceleration of the device (see Fig. 1),
respectively. t denotes time, FR(t) = ∫ t

t0
kR(t − τ )ż(τ )dτ , kR

is the radiation force impulse response, FH(t) = SHz(t), SH is
the hydrostatic stiffness due to buoyancy, FPTO(t) = DPTO ż(t)
is the force of the PTO system, and DPTO is the PTO-damping
term. Assuming that the convolution term of the radiation force
is approximated using a parametric model, as shown in [10],
(1) can be expressed by the following continuous-time state-
space model:

ẋ(t) = Ax(t) + B Fex(t) (2a)

y(t) = Cx(t) + DFex(t) (2b)

where x(t) = [z(t) ż(t) xR(t)]T , xR(t) ∈ �nR is the state
vector of the radiation force convolution term approximation,
y(t) = [z(t) ż(t) z̈(t)]T , and the matrices A ∈ �n×n , B ∈ �n ,
C ∈ �q×n , and D ∈ �q are given by

A =
⎡
⎢⎣

0 1 0
−SH

m∗
−DPTO

m∗
−CR

m∗
0 BR AR

⎤
⎥⎦

B =
⎡
⎢⎣

0
1

m∗
0

⎤
⎥⎦

C =
⎡
⎢⎣

1 0 0
0 1 0

−SH

m∗
−DPTO

m∗
−CR

m∗

⎤
⎥⎦

D =
⎡
⎢⎣

0
0
1

m∗

⎤
⎥⎦ . (3)

Here, n = 2 + nR refers to the number of states, the symbol
0 stands for any zero element dimensioned according to the
context, and AR ∈ �nR×nR , BR ∈ �nR, and CR ∈ �nR are
the matrices of the state-space model for the approximation
of the radiation force convolution term. Although the default
outputs of system (2) are position, velocity, and acceleration
of the device, matrices C and D will be changed according
to the requirements of the different estimators. In addition,
the discrete-time equivalent of system (2) is given by

x(k + 1) = Adx(k) + Bd Fex(k) (4a)

y(k) = Cx(k) + DFex(k) (4b)

where k is the discrete time index (t = kTs ), with sampling
time Ts , and Ad and Bd refer to the discretized versions of
the matrices A and B , respectively, which can be computed
from system (2), as shown in [11].

Having defined the hydrodynamic model, the review of
the available estimators is presented in Sections II-A–II-J.

1For the sake of simplicity, only the heave motion is considered in this
work.

Fig. 1. Schematic of the heaving sphere point absorber WEC.

Information on the theory of the different estimation strategies
is kept to a minimum, for brevity. The interested reader is
referred to the provided references, for a more comprehensive
description of the different approaches. Based on the review
of the available estimators, some possible classifications of the
strategies are proposed in Section II-K.

A. Convolution With Predicted Wave Elevation

The convolution with predicted wave elevation (CPWE)
Fex(t) estimation strategy is based on the convolution product
between the wave elevation (η(t)) and the excitation force
impulse-response function (IRFFex(t)). The IRFFex(t) can be
obtained via inverse Fourier transform of the frequency-
response function (FRF) of the Fex(t), which, in turn, can be
computed using the boundary-element method (BEM) codes,
such as NEMOH [12] or WAMIT [13]. Another way to obtain
the IRFFex(t) is to identify it directly from physical wave tank
tests, as shown in [14].

The identification of the IRFFex(t) for the CPWE estimator
has three main drawbacks as follows.

1) Obtaining reliable η(t) measurements in a real multi-
directional sea scenario is a nontrivial task [15].

2) The IRFFex(t) is noncausal [16]. Hence, future η(t)
values (at the device location) are required in order
to obtain the instantaneous Fex(t) acting on the device
and must therefore be predicted. For the prediction,
the required time horizon (Thor) depends on the causal-
ization time (tcaus) of the IRFFex(t), which, in turn,
depends on the geometry (or the scale) of the device
under analysis.

3) For nonaxisymmetric bodies, the IRFFex(t) will be dif-
ferent, depending on the wave direction. Therefore,
in a real sea-state scenario, the different directional
components of η(t) need to be known (or estimated)
in order to estimate the Fex(t) acting on the WEC.

Having identified the IRFFex(t), the estimated Fex(t) for the
CPWE strategy (F̃CPWE

ex ) is given by

F̃CPWE
ex (t) =

∫ t+tcaus

−∞
kcaus

Fex
(t + tcaus − τ )η̂(τ )dτ (5)

where kcaus
Fex

is the causalized IRFFex(t), and η̂(τ ) refers to past
values of η(t) for τ < t , the instantaneous η(t) for τ = t , and
predicted values of η(t) for τ > t . This is further explained
in Section V-A.

Despite the aforementioned drawbacks, the CPWE strat-
egy is used in [8] and [17]. Owing to the small device
scale, the required causalization time is around 1 s, for
which an autoregressive (AR) model gives reasonably accurate
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predictions of η(t), using only past values, measured near the
WEC.2 In addition, the kcaus

Fex
is approximated using a finite-

order parametric model in order to reduce the computational
burden for evaluating the convolution product [8].

As demonstrated in [18], the accuracy of the η predic-
tion obtained using only past data decreases exponentially
with an increase in Thor. Therefore, for longer causalization
times, measurements from several points near the device may
be needed to increase the prediction accuracy [19]. Such
a technique is employed in [20], where η(t) is predicted
using up-wave information provided by a Doppler radar,
positioned at the WEC location. The required number of up-
wave measurement points to obtain an accurate prediction will
depend, mostly, on the directionality of the sea state, i.e., using
the information from a unique point can be enough for
unidirectional sea states [19]. In general, it can be stated that
the accuracy of the Fex(t) estimate, using the CPWE strategy,
will depend on both the accuracy of the η(t) prediction and
the definition of the IRFFex(t).

B. Kalman Filter With Random Walk

Omitting the use of η(t) for Fex(t) estimation, the Kalman
filter with random walk (KFRW) strategy considers Fex(t) as
an unknown input to the system and estimates the force, based
on the device motion measurements, using an observer. The
motion of the device (along with the corresponding Fex(t)) is
estimated and compared with the measured motion. Therefore,
the accuracy of the obtained Fex(t) estimation will highly
depend on how accurate the model, used in the KF, represents
the actual WEC. The dynamical model of the excitation force
is given by

FKFRW
ex (k + 1) = FKFRW

ex (k) + �Fex(k) (6)

where �Fex(k) is a random number (independently and iden-
tically distributed in size), so that, at each time step, FKFRW

ex
takes a random step away from its previous value. The aug-
mented model, including the dynamical description of Fex(t),
is defined as

x̃a(k + 1) = Ad
a x̃a(k) + �(k) (7a)

ỹ(k) = Ca x̃a(k) + μ(k). (7b)

Here, the subscript {·}a refers to the augmented {·}, and Ad
a ∈

�
(n+1)×(n+1), Ca ∈ �q×(n+1), and x̃a ∈ �(n+1) are given by

x̃a =
[

x̃
F̃KFRW

ex

]
, Ad

a =
[

Ad Bd

0 1

]
, Ca = [

C 0
]

(8)

where �(k) and μ(k) are the process and measurement white-
noises, whose covariance matrices are Q and R, respectively.
In addition, C is modified in this strategy to obtain just the
position and velocity as outputs.

It is now possible to define the linear, discrete-time KF used
by KFRW as follows:

Time Update (A Priori) :
x̃−

a (k) = Ad
a x̃a(k − 1) (9a)

P−(k) = Ad
a P(k − 1)AdT

a + Q. (9b)

2It can be assumed to be equal to η in the WEC location, since waves come
from a unique direction.

Measurement Update (A Posteriori) :
K (k) = P−(k)CT

a

(
Ca P−(k)CT

a + R
)−1 (9c)

P(k) = (In+1 − K (k)Ca)P−(k) (9d)

x̃a(k) = x̃−
a (k) + K (k)(y(k) − Ca x̃−

a (k)) (9e)

where the superscript {·}− denotes the a priori estimate of
{·} and {·}T the transpose of {·}. In+1 stands for the identity
matrix of size (n + 1) × (n + 1). The reader is referred to
[21] for more information on the KF. As demonstrated in [7],
the KFRW strategy is simple and, by using a KF, can optimally
handle the measurement noise (if the measurement noise is
Gaussian).

C. Kalman Filter With Harmonic Oscillator

While the KFRW estimator uses a random walk (RW) model
to describe the Fex(t) dynamics, the Kalman filter with a
harmonic oscillator (KFHO) uses a KF in conjunction with
a harmonic oscillator (HO) model to describe the dynamics
of the Fex(t). Therefore, the same process introduced for the
KFRW can be used for the KFHO, with an adaptation of the
matrices shown in (8), which are now given by

Ad
a =

[
Ad BdCHO
0 �HO

]
x̃a =

⎡
⎣ x̃

�̃

⎤
⎦ (10)

where �HO ∈ �2nω×2nω and �̃ ∈ �2nω are defined as

�HO =
nω⊕

i=1

[
0 ωi

−ωi 0

]
�̃ =

nω∑
i=1

enω
i ⊗

[
θ̃ωi˙̃θωi

]
(11)

where ωi , with i = (1, 2, . . . nω), are the frequencies of the
HO describing Fex(t), and the symbols

⊕nω
i=1 and ⊗ stand

for the direct sum of nω matrices and the Kronecker product,
respectively. en

i ∈ �n×1 denotes a vector with 1 in the i th
entry, and 0 elsewhere, and CHO = ∑nω

i=1 enωT
i ⊗ [1 0]. The

estimated Fex(t) is given by

F̃KFHO
ex (k) =

nω∑
i=1

θ̃ωi (k). (12)

Overall, this strategy is the most commonly used Fex(t)
estimator in the literature. In [6] and [22]–[24], the KFHO
approach is used to estimate the excitation force acting on a
heaving point absorber. In [25], the model used for the KFHO
strategy is amplified to include all the interactions between
the devices for different array configurations. In addition,
Ling [24] presents an approach for the calculation of the best
parameters for the KFHO estimator, based on optimization.

D. Extended Kalman Filter Harmonic Oscillator

In the extended KFHO (EKFHO), the HO model is
described by time-varying frequencies, allowing for the esti-
mation of the dominant frequencies of the Fex(t). For the
treatment of time-varying frequencies, the extended KF (EKF)
is employed [6], [24].

In addition to estimating the instantaneous Fex(t) frequency,
Fusco and Ringwood [26] adapt the EKFHO to also estimate
its instantaneous amplitude. A further extension is presented
in [27], where the amplitude, frequency, and phase of the
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different components of the Fex(t) signal are estimated.
Among the previously described variations in the EKFHO
strategy, the most complete one is chosen for this work,
estimating the Fex(t) amplitude, frequency, and phase [27].
Therefore, the FEKFHO

ex (t) is defined using multiple harmonic
signals

FEKFHO
ex (t) =

nω∑
i=1

λi sin(ωi t + φi ) (13)

where λi and φi are the corresponding amplitudes and phases.
The only difference between the continuous–discrete EKF,

used by the EKFHO strategy, and the KF shown in (9) is the
Time Update part [see (9a) and (9b)]. In the EKFHO, x̃−

a (k) is
obtained by propagating the state at the previous measurement
time, (k − 1), as

˙̃xa(t) = Aax̃a(t) + Ba F̃EKFHO
ex (t) + �(t) (14)

where Aa ∈ �(n+3nω)×(n+3nω) and x̃a ∈ �(n+3nω) are defined
as

Aa =
[

A 0
0 0

]
x̃a = [

x̃ T �̃T �̃T �̃T
]T

. (15)

�̃, �̃, and�̃ ∈ �nω are the vectors containing the estimates
of λ, ω, and φ, respectively. It should be noted that the
continuous–discrete EKF, used by this estimation strategy,
combines continuous-time nonlinear models with discrete-time
measurements and, therefore, the notation corresponding to
both continuous- and discrete-time are mixed in the definition
of the strategy, as shown in [21] and [28].

The covariance matrix P−(k), of (9b), is propagated from
the previous measurement time, (P(k−1)), using the following
Riccati equation:

Ṗ(t) = ϒ(x̃a(t))P(t) + P(t)ϒT (x̃a(t)) + Q (16)

where

ϒ(x̃a(t)) =
[

A B�(x̃a(t))
0 0

]
(17)

is computed using x̃a(k − 1), and

� =
[

∂ F̃EKFHO
ex

∂�̃

T
∂ F̃EKFHO

ex

∂�̃

T
∂ F̃EKFHO

ex

∂�̃

T
]

. (18)

E. Receding Horizon Estimation

Also considering Fex(t) as an unknown input, the receding
horizon estimation (RHE) strategy estimates Fex(t) without
assuming any dynamical model, employing RHE [7]. Nguyen
and Tona [7] claim that avoiding a dynamical model for Fex(t)
improves the obtained results. At every time instant k > N
(where N is the length of the moving window), Fex(t) is
estimated by minimizing the quadratic programming problem
shown in [7]. However, since no constraint is considered in
this work, the unique analytical solution of such a quadratic
programming problem can be obtained as

ξ̃∗(k)=(
P+�T

s R�s
)−1[ST �T

s RT
] ⎡
⎣F̃RHE

ex (k−N)
x̃(k−N)

Y (k)

⎤
⎦ (19)

where R ∈ �q N×q N is a diagonal weighting matrix to account
for the measurement noise, Y (k) ∈ �q N is a vector containing
all the values of y (assuming z and ż as outputs) from k −
N + 1 to k, �s = [�y �y �y] ∈ �q N×(N+n+nN) , and the
matrices P ∈ �(N+n+nN)×(N+n+nN) , �y ∈ �q N×N , �y ∈
�

q N×n , �y ∈ �q N×nN , and S ∈ �(1+N)×(N+n+nN) are given
by system (20).

In system (20), P−1
0 ∈ �n×n is a diagonal weighting matrix,

penalizing the error in the state estimate, Q ∈ �nN×nN is
a diagonal weighting matrix, penalizing the process noise,
and Q−1

0 ∈ � a scalar, penalizing the error of the Fex(t)
estimation. The size of the second column of S (which is full
of zeros) is (n +1)× (n +1), and λs ∈ � is a scalar to exploit
the fact that Fex(t) is smooth, which was first considered in [7].
To this end, the value of F̃RHE

ex (k) is given by the N th value
of the vector ξ̃∗(k) ∈ �(N+n+nN) of (19)

P =
⎡
⎣�1 0 0

0 P−1
0 0

0 0 Q

⎤
⎦

�y =

⎡
⎢⎢⎢⎣

C 0 · · · 0
C A C · · · 0
...

...
. . .

...

C AN−1 C AN−2 · · · C

⎤
⎥⎥⎥⎦

�y =

⎡
⎢⎢⎢⎣

C B 0 · · · 0
C AB C B · · · 0

...
...

. . .
...

C AN−1 B C AN−2 B · · · C B

⎤
⎥⎥⎥⎦

�y =

⎡
⎢⎢⎢⎣

C A
C A2

...

C AN

⎤
⎥⎥⎥⎦

�1 =

⎡
⎢⎢⎢⎢⎢⎣

Q−1
0 + λs − λs 0 · · · 0
−λs 2λs − λs · · · 0

0 − λs 2λs · · · 0
...

...
...

. . .
...

0 0 0 · · · λs

⎤
⎥⎥⎥⎥⎥⎦

S =
[

Q−1
0 0 0 0
0 0 P−1

0 0

]
. (20)

F. Fast Adaptive Unknown Input Estimation

The fast adaptive unknown input estimation (FAUIE)
observer, proposed in [15], attempts to ensure fast and accurate
estimation of Fex(t) by using proportional and integral terms
of the state estimation error as3

˙̃x(t) = Ax̃(t) + B F̃FAUIE
ex (t) − L1ey(t) − L2ėy(t) (21a)

ỹ(t) = Cx̃(t) (21b)

where F̃FAUIE
ex (t) = −�L3C(ėx (t) + σex(t)), ey(t) =

ỹ(t) − y(t), and ex(t) = x̃(t) − x(t). � ∈ � is the user-
defined learning rate, L2 ∈ �n×q and σ ∈ � are the design

3Since the used model is linear, the Lipschitz term in [15], accounting for
the nonlinearities, has been removed for this work.
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parameters, and both L1 ∈ �n×q and L3 ∈ �q are obtained by
solving the following set of linear matrix inequalities (LMIs):⎡

⎢⎢⎣
�11 �12 PL 0
� �22 0 B PL
� � − αIn 0
� � � �44

⎤
⎥⎥⎦ < 0 (22a)

[
ν̄In B PL − L3C
� ν̄In

]
> 0. (22b)

Here, �11 = he(PL A − YLC), YL = PL L1, �12 =
(γ̄ /σ )(CT Y T

L B − AT PL B), �22 = −(2γ̄ /σ )BT PL B +
(GL/σ μ̄), �44 = −(βσ/γ̄ )In , he({·}) = {·} + {·}T , � denotes
the symmetric part of the matrix, and α, β, μ̄, and γ̄ > 0 ∈ �
are the design parameters. Although the matrix C in (21) is
modified to obtain ỹ = [z̃ ˙̃z], measurements of the WEC
acceleration are also needed due to the term ėy . To this end,
the observer of (21) will give bounded estimation errors,
ex(t) and eFex(t), if positive-definite matrices PL ∈ �n×n and
GL ∈ � exist, and the constraints imposed in (22) hold, while,
at the same time, ν̄ > 0 ∈ � is minimized.

The main drawback of the FAUIE estimator is that there
is no term to account for the measurement noise, which may
significantly affect the accuracy of the estimated Fex(t).

G. Unknown Input Observer

The authors of the FAUIE, Abdelrahman et al. [15], present
another estimation strategy, termed unknown input observer
(UIO) [29]. The UIO of the application example, found in
[8], is designed to robustly estimate both Fex(t) and velocity
of the WEC. However, the UIO proposed for this work uses
position and velocity measurements (instead of position and
PTO current as in [8]). Before defining the required observer,
the following augmented system needs to be formulated:

ẋa(t) = Aaxa(t) + Dad(t, x) (23a)
y(t) = Caxa(t) (23b)

where xa ∈ �n+2, Aa ∈ �(n+2)×(n+2), Da ∈ �(n+2)×3, and
Ca ∈ �q×n+2 are defined as

xa(t) =
⎡
⎣ x(t)

Fex(t)
ξ̄ (t)

⎤
⎦ Aa =

[
A B 0
0 0 0
0 0 0

]
, Da =

[
D 0 0
0 1 0
0 0 1

]

Ca = [
C 0 �̄

]
, with D =[

0 1
]T and �̄=[−2 2

]T
.

(24)

The term d(t, x) can represent a model disturbance, while
ξ̄ (t) ∈ �s stands for any measurement noise or sensor fault,
with s = 1 for this work, representing only measurement
noise. The following observer is then used to estimate the
augmented state xa :

ζ̇ (t) = Mζ + Ly(t) (25a)

x̃a(t) = ζ(t) + H y(t) (25b)

where matrices M ∈ �
(n+1+s)×(n+1+s), L ∈ �

(n+1+s)×q ,
and H ∈ �(n+1+s)×q are obtained, as in the FAUIE estimator,
by solving the set of LMIs shown in (26). Thus, the estimation
error dynamics are stable and H∞ performance is guaranteed

with an attenuation level of γ , if there exists a symmetric
positive-definite matrix PL ∈ �

(n+1+s)×(n+1+s), and the
following LMI constraint holds:⎡
⎣he(PL Aa − M1Ca Aa − M2Ca) PL Da CT

a
� − γ I(q+1+s) 0
� � −γ Iq

⎤
⎦<0

(26)

where M1 = PL H , M2 = PL L1, L = L1 + L2, L2 = (E Aa −
L1Ca)H , E = I(n+1+s) − H Ca, and M = E Aa − L1Ca.

The two main advantages of the UIO strategy are that
the LMIs can be designed such that the observer is robust
against model uncertainties and that measurement noise can
be accounted for.

H. Unified Linear Input and State Estimator

Coe and Bacelli [30] introduce the unified linear input and
state estimator (ULISE), which can be shown as a gener-
alization of the KF for systems with unknown inputs [31].
Although two variants of the ULISE strategy are presented in
[30], one using only WEC motion information and another
one using pressure measurements, only the one using motion
measurements is employed in this comparison. The estimator
using pressure measurements requires a model that relates total
pressure and Fex(t), which is identified through wave tank
tests [32] in [30]. However, this model identification was not
possible for this study.

The three-phase filter proposed for the ULISE approach is
defined as follows.

Time Update:

x̃−(k) = Ad x̃(k − 1) + Bd F̃ULISE
ex (k − 1) (27a)

P−
x (k) = Ad Px (k − 1)AdT + Bd PT

x Fex
(k − 1)AdT + Q

+ Ad Px Fex(k − 1)BdT

+ Bd PFex(k − 1)BdT (27b)

R̄(k) = C P−
x (k)CT . (27c)

Measurement Update:

K (k) = P−
x (k)CT R̄−1(k) (27d)

L(k) = K (k)(In −D(DT R̄−1(k)D)−1 DT R̄−1(k))

(27e)

x̃(k) = x̃−(k) + L(k)(y(k) − Cx̃−(k)) (27f)

Px (k) = (In − L(k)C)P−
x (k)(In − L(k)C)T

+ L(k)RLT (k). (27g)

Estimation of Unknown Input:

R̄∗(k) = (In − C L(k))R̄(k)(In − C L(k))T (27h)

PFex(k) = (DT R̄∗−1(k)D)−1 (27i)

M(k) = PFex(k)DT R̄∗−1(k) (27j)

F̃ULISE
ex (k) = M(k)(y(k) − Cx̃(k)) (27k)

Px Fex(k) = −Px (k)CT MT (k) + L(k)RMT (k) (27l)

where Px ∈ �
n×n , PFex ∈ �, and Px Fex ∈ �

n are the
covariance matrices related to the state, Fex(t), and the relation
between the state and Fex(t), respectively. Since only position
and acceleration measurements are used here, only the first
and third rows of C and D from system (4) are considered.
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I. Pressure Acceleration Displacement Estimation

The pressure acceleration displacement estimation (PADE)
strategy proposed in [8] depends on the availability of pressure
measurement over the wetted surface of the device. Fex(t) is
estimated by subtracting all hydrodynamic forces (estimated
using motion measurements) other than Fex(t) from the total
wave force (Fw(t)), which can be calculated by integrating the
pressure over the wetted surface of the WEC [8]. Fex(t) can
thus be approximated as

F̃PADE
ex (t) = A∞z̈(t) + FR(t) + FH − Fw(t) + gm (28a)

Fw(t) =
np∑

j=1

Pj (t)a j
−→n j (28b)

where g is the gravitational constant, np is the number of
pressure sensors, Pj (t) is the total pressure measured by the
j th sensor, a j is the surface area around the sensor j , and−→n j is the normal vector to a j . Although the term gm is not
included in [8], it was found that this term is required to cancel
out an offset of the total pressure P .

The main disadvantage of PADE is that, since it cannot
handle measurement noise, signals need to be filtered before
using them for the estimation.

J. Extended Kalman Filter With Pressure Sensors

The last estimation technique found in the reviewed liter-
ature and considered in this study uses an extended Kalman
filter with pressure sensors (EKFPS) [28], [33]. Here, Fex(t)
estimation is carried out recursively by an EKF, using the
measurements of device position and pressure on the WEC
hull. Fex(t) is then modeled as the integration of the excitation
pressure [see (30)] over the wetted WEC surface, which
assumes that Fex(t) is given only by the Froude Krylov force,
neglecting the diffraction forces. Since the experiments are car-
ried out in deep-water waves, the F̃EKFPS

ex (t) is assumed to be

F̃EKFPS
ex (t)=ρg

np∑
j=1

a j
−→n j

nω∑
i=1

λi e
χi Z j cos(χi X j −ωi t + φi )

(29)

where χi = ω2
i/g, and X j and Z j are the distances of the

j th sensor from the x- and z-axes,4 respectively. It is also
assumed for this Fex(t) estimator that the pressure at each
sensor can be described as

Pj (t) = ρg
nω∑

i=1

λi e
χi Z j cos(χi X j − ωi t + φi )

− ρg(z(t) + X j ) − CRxR(t)

aT
(30)

where aT is the total submerged area of the device. Thus,
the output vector is given by ỹ = [z̃ P̃1 · · · P̃np ]T .

The continuous–discrete EKF used by the EKFPS differs
from that used for the EKFHO strategy. While the outputs
of the EKFHO [z(t) and ż(t)] are part of the state vector,

4Note that the definition of the coordinate system follows the standard
convention: the x-axis points in wave direction, and z is the normal to the
still water line, with z = 0 on the still water line (see Fig. 3)

the output of the EKFPS strategy is given by the nonlinear
combination of the states shown in (30). Therefore, the esti-
mation process required by the EKFPS can be summarized as
follows.

1) Propagate the state x̃a (which is as given in (15)) to
obtain x̃−

a (k) from x̃a(k − 1) using

˙̃xa(t) =

⎡
⎢⎢⎢⎣

ż(t)
FT(t)

m∗
BR ż(t) + ARxR(t)

0

⎤
⎥⎥⎥⎦ (31)

where FT(t) is the sum of all the forces, including
FPTO(t), F̃EKFPS

ex (t), FR(t), and FH(t), which is now
given by FH(t) = −ρg

∑np
i=1 ai

−→n i (z(t) + zi ).
2) Propagate the covariance matrix to get P̃−(k) using

the Riccati equation [see (16)], where ϒ(x̃(t), t) needs
to be computed, now considering F̃EKFPS

ex (instead of
F̃EKFHO

ex ), and the new description of FH (instead of the
term SH of the matrix A).

3) The Kalman gain is now given by

K (k) = P−(k)�(x̃−
a (k))T

· (�(x̃−
a (k))P−(k)�(x̃−

a (k))T + R
)−1 (32)

where � = (δy/δx̃a) ∈ �(np+1)×(n+3∗nω) is the Jacobian
matrix of the output, evaluated using x̃−

a (k).
4) Finally, update the covariance P−(k) and the current

state x̃−
a (k) using

x̃a(k) = x̃−
a (k) + K (k)

(
y(k) − ỹ

(
x̃−

a (k)
))

(33a)

P(k) = (
In+3nω − K (k)�

(
x̃−

a (k)
))

P−(k). (33b)

K. Classification of Estimators

From the descriptions of the Fex(t) estimators given in
Sections II-A–II-J, different classifications of the estimators
can be proposed. A first class distinguishes between the
open-loop and closed-loop estimators. While the CPWE and
the PADE are the only open-loop strategies, the remaining
estimators are closed-loop. It can be argued that closed-loop
estimators have an advantage, since, due to the feedback
mechanism, closed-loop estimators can better handle possible
uncertainty/noise.

Another possible classification is the use of linear versus
nonlinear WEC models. Some estimators require a nonlin-
ear combination of the states to characterize Fex(t). Thus,
the group of linear (model) estimators is composed of the
KFRW, KFHO, RHE, UIO, FAUIE, ULISE, and PADE strate-
gies, while the EKFHO and EKFPS estimation techniques are
inherently nonlinear. The CPWE approach can be linearized
by approximating the convolution product using a parametric
model, as shown in [17].

A final classification relies on the required measurements.
Three different groups of estimators can be distinguished via
this classification scheme: using η(t) measurements, using
device motion measurements, or using both device motion
and pressure measurements. The group of estimators using
η(t) measurements only includes just the CPWE. The group
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using only WEC motion measurement embraces the KFRW,
KFHO, EKFHO, RHE, FAUIE, UIO, and ULISE strategies.
Using WEC motion and pressure measurements, the PADE
and the EKFPS constitute the last group of this class.

Since the availability of measurement data is defined at the
stage of device design and construction, some measurements,
required for the Fex(t) estimator, may not be available and,
hence, rule out some strategies. Consequently, the remainder
of this article follows the classification based on the required
measurements, since this appears to be most important for the
practical implementation of the estimator.

III. COMPARISON METHODOLOGY

To compare the performance of the Fex(t) estimators,
the calculation of a reference value for the "true" Fex(t) value
is required to determine the accuracy of each Fex(t) estimator.
However, as mentioned in Section I, the excitation force is,
in general, an immeasurable quantity for an oscillating device.

To date, common practice in the literature for the deter-
mination of an Fex(t) reference is to simply generate a
random Fex(t) signal or calculate the signal from η(t) data.
By using a (linear or nonlinear) hydrodynamic model for
motion simulations, the corresponding response of the device
is determined using the Fex(t) reference signal as an input to
the simulation model. Fex(t) is subsequently estimated back
from the simulated motion of the device and compared with
the Fex(t) reference.

Although this procedure is a common practice in the field,
an important drawback can be identified. Assuming that a
specific hydrodynamic model is used for the simulation of the
device motion and an identical model is also used in the esti-
mation strategy, an unbiased comparison of these estimators
with the ones with different underlying hydrodynamic models
is impossible.

To avoid the use of the same model in both the WEC
motion simulation and the Fex(t) estimation stages, a CFD-
based numerical wave tank (CNWT) is employed for motion
simulation. This not only decouples the reference definition
and estimation stages but also delivers more realistic results
compared with commonly used hydrodynamic models [34].

For the Fex(t) reference definition, the following methodol-
ogy, adopted from [7], [14], and [22], is used in this article.

A set of waves is generated in the CNWT, in which the
device is fixed in its equilibrium position. For this diffraction
test case, since the device is not moving, radiation and
hydrostatic forces are zero and the total wave force Fw(t)
measured on the device is Fex(t). Since Fw(t), and thus Fex(t),
is given by the integral of the pressure over the wetted surface
of the device, it can be measured using numerical pressure
measurements at specific locations on the hull of the device.
For that, a finite number of numerical pressure probes are used
to mimic a realistic, physical, test setup. A detailed description
of the CNWT and the case study are given in Section IV.

Using the same input wave series, as for the above-
described wave diffraction test, simulations are performed
with an unconstrained device, free to move.5 From these

5Note that unconstrained here does not necessarily imply motion in all six
degrees of freedom (DoFs), but rather motion in the design DoFs.

TABLE I

STANDARD DEVIATION OF THE MEASUREMENT NOISE

simulations, measurements of the required quantities for the
different estimators are taken, i.e., η(t), WEC motion (z(t),
ż(t), z̈(t)), and pressure. The acquired data are then used in
the different Fex(t) estimators, and the results are compared
with the Fex(t) measured in the wave diffraction tests.

It is important to note that the calculation of Fex(t) obtained
from the wave diffraction test, as a reference for the motion
simulation, only holds under linear conditions. For large ampli-
tude relative motion between the body and η(t), the excitation
force may become nonlinear and equality between Fex(t) in
the wave diffraction and motion tests will not hold. To ensure
and verify a linear behavior, some metrics and methodologies
are provided in the literature, which are detailed in Section IV.

In order to quantify the accuracy of the analyzed strategies,
the estimated F̃ex(t) is compared with the Fex(t) measured
with the fixed body, in terms of the normalized root-mean-
square accuracy (NRMSA), which is given as

NRMSA = 1 −
√√√√∑LS

k=NS
(Fex(k) − F̃ex(k))2∑LS
k=NS

Fex(k)2
(34)

where LS is the number of total samples of the simulation
and NS the first sample considered to evaluate the NRMSA.
In this work, NS is set to 0.6LS, which is sufficient to
avoid the transient time and, therefore, obtain meaningful
results. Following (34), the highest accuracy is achieved by
an estimator with NRMSA = 1.

Throughout the comparison, Fex(t) will be estimated using
not only the noiseless measures of η(t), WEC motion (z(t),
ż(t), z̈(t)), and pressure from the CNWT but also the noisy
input data. For that, the numerical measurements will be
artificially polluted in a postprocessing step to the motion
simulation. This delivers more realistic characteristics of the
input data than the real measurement from physical sensors.
In particular, the noise added to the measurement signals is
normally distributed, with zero mean and standard deviations,
as specified in Table I.

IV. CASE STUDY

In this section, the case study for the critical comparison of
the Fex(t) estimators will be described. First, the device under
investigation is introduced, followed by a description of the
CNWT used for diffraction and motion simulation.

A. WEC Device

A heaving sphere point absorber WEC device (see Fig. 2),
with a diameter of 5 m and a draft of 2.5 m, is considered.
The hydraulic PTO system is modeled using the nonlinear
wave-to-wire model proposed in [35]. Resistive control, with a
damping factor of 170 kNs/m, is employed on the PTO system.
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The interested reader is referred to [35] for more details on the
PTO system. The sea state is chosen to be the representative
of real sea conditions. To this end, waves are generated based
on a JONSWAP spectrum [36], with a significant wave height
of Hs = 1.5 m and a peak period of Tp = 8 s.6 The water
depth is set to 70 m. The simulation length is 160 s, with a
sampling time of 0.01 s.

B. CNWT

NWTs are commonly used in ocean engineering to analyze
wave–structure interaction (WSI) [37]. Lower fidelity NWTs
are useful tools for parametric studies, which require fast
computations. Commonly solving the Laplace equation in a
BEM framework, to account for the WSI, and, therefore,
requiring relatively modest computational power, lower fidelity
models cannot fully replicate realistic conditions. In contrast,
high-fidelity CNWTs are able to provide a realistic, numerical,
test bench for WSI experiments, but are associated with rela-
tively high computational cost. However, with the continuing
increase in computer power, CNWTs for WEC experiments
are nowadays more commonly implemented (see the review
in [38]).

The CNWT model in this study is based on the open-source
CFD software, OpenFOAM [39]. The hydrodynamics in the
CNWT are captured by solving the incompressible Reynolds
averaged Navier–Stokes (RANS) equations (35a) and (35b),
describing the conservation of mass and momentum, respec-
tively. The volume of fluid (VoF) method, proposed by Hirt
and Nichols [40], is used to capture the water wave advection
[see (35c) and (35d)]

∇ · u = 0 (35a)
∂(ρu)

∂ t
+ ∇ · (ρuu) = −∇ p + ∇ · T + ρfb (35b)

∂ α

∂ t
+ ∇ · (uα) = 0 (35c)

� = α�water + (1 − α)�air (35d)

where u is the fluid velocity, p the fluid pressure, ρ the fluid
density, T the stress tensor, and fb is the external forces such
as gravity. α denotes the volume fraction of water and � is a
fluid quantity, such as density or viscosity.

Turbulence is modeled using a standard k-ω SST turbulence
model with standard wall functions for the turbulent kinetic
energy k, the turbulence frequency ω, and the eddy viscosity ν.

A range of numerical wave makers are available to generate
and absorb waves in a CNWT [41]. For the present case
study, the relaxation zone method, as implemented in the
waves2FOAM toolbox [42], is employed. The relaxation zone
layout is shown in Fig. 2(a).

The symmetry of the test case is exploited by implementing
a symmetry boundary condition in the domain, which reduces
the computational burden while retaining the accuracy of the
results. A schematic of the CNWT domain, with all relevant
dimensions, is shown in Fig. 2(b). For more details on the
spatial and temporal problem discretization, as well as the
mesh layout, the interested reader is referred to [35].

6It should be noted that both Hs and Tp are selected so that the obtained
simulation is linear, as explained in Section III.

Fig. 2. CNWT domain.

Fig. 3. Locations of the numerical pressure probes. The still water line is
located at z = 0 m.

To measure η(t), the CNWT is equipped with numerical
wave probes. Wave Probe 1 (WP1) is located in line with the
device center at a distance of 5 m in y-direction, perpendicular
to the wave direction. WP2 is located up-wave from the WEC’s
center at a distance of 20 m. The measurements for the WEC
position, velocity, and acceleration are directly given from
the motion solver. For the pressure measurements, numerical
pressure probes are positioned at specific locations on the
WEC hull, as shown in Fig. 3.

Although the CNWT is used for the diffraction and motion
simulation, BEM hydrodynamic coefficients, required by the
different estimators, have also to be computed. This is done
with a BEM-based NWT using the open-source software
NEMOH. In addition, the state-space model, to approximate
the radiation convolution term, has been calculated using
moment-matching, following the method in [10].

C. Linearity of the Case Study

It was stated, in Section III, that linear conditions are
required in order to use the Fex(t) obtained from the wave
diffraction tests as a reference for the case of a moving
WEC. To verify the linearity of the considered case study,
the nonlinearity measure proposed in [43] can be consulted.
By comparing the steady-state response of a model against the
best linear approximation, identified through a minimization
problem, the nonlinearity of the wave–device interaction can
be quantified. The obtained nonlinearity measure is 0.01 (with
a range from 0 to 1) for the case study at hand, confirming
that the case is practically linear.
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Fig. 4. Comparison between position and velocity obtained from CFD and
from the simulation with the linear BEM-based model for polychromatic
waves.

To further validate the linearity of the case study, a linear
hydrodynamic model, based on (1), was developed using data
obtained from a BEM solver. The device is excited with the
Fex(t) measured from the CNWT wave diffraction test. The
resulting device motion from the linear model can then be
compared with the motion measured in the CNWT. If the
models coincide, the linearity is further validated.

In Fig. 4, the position and the velocity obtained using
both the BEM model and the CFD simulation are plotted.
A relatively small deviation in the peaks of the signal can
be seen, which are expected due to some nonlinear effects,
such as viscous effects, which are neglected in the linear
hydrodynamic model.

V. CRITICAL COMPARISON

For the sake of clarity, the results obtained by the different
Fex(t) estimators are shown in three different sections, clas-
sified by the required measurements (as explained in II-K).
Section V-A considers only Fex(t) estimators requiring η(t)
measurements, while Section V-B considers the estimators
using the measurements of the WEC motion only. Section V-C
considers the Fex(t) estimators using the measurements of
the WEC motion and pressure on the WEC hull. In addi-
tion, in Section V-D, a summarizing table along with some
discussions are presented.

A. Using η(t) Measurements

Although only one estimator uses η(t) measurements
(CPWE), three different approaches are analyzed here, to show
how the forecasting accuracy affects the estimation accuracy:

1) CPWEperf: Assuming perfect knowledge of η(t) at the
WEC location [using η(t) measured in a simulation with
no body].

2) CPWEpast: Considering only past η(t) values at the
WEC location (measured at WP1).

3) CPWEup : Using up-wave measurements (measured at
WP2).

It should be noted that the CPWEpast requires knowledge of
η(t) values at the WEC location, which, since in the analyzed
case waves are unidirectional, can be considered approxi-
mately equal to the wave elevation measured at probe WP1.
In addition, because of the same assumption of unidirectional

Fig. 5. Non-causal (black solid line) and causalized (blue dashed line)
IRFFex (t) for the analyzed spherical WEC device.

Fig. 6. (a) Estimation accuracy for both CPWEpast and CPWEup depending
on the order used for the predictor. (b) Prediction accuracy for different Thor
obtained using CPWEpast and CPWEup.

waves, a unique up-wave measurement point can provide full
information of the expected η(t) at the WEC.

Initially, the required Thor must be determined. When com-
puting the convolution of (5), the value at time 0 of the
IRFFex(t), shown in Fig. 5, is multiplied by the instantaneous
η(t). The IRFFex(t) values for positive time instances are
multiplied by past η(t) values, and the forecasted η(t) is
multiplied by the IRFFex(t) values at negative time instances.
For this case, shifting the response Thor = 4s is enough to
move all the nonzero components of the IRFFex(t) to positive
time instances or, in other words, to causalize it.

The forecasting strategy used in this work is the direct linear
multi-step (DLMS) predictor introduced in [18].7 Note that,
as in [25], η(t) is resampled with Ts = 0.1 s (from Ts =
0.01 s), in order to reduce the size of the predictor.

As shown in Fig. 6(a), the best predictor orders are 15,
for the CPWEpast, and 60, for the CPWEup, achieving an
NRMSA of 0.857 and 0.872, respectively. One could argue
that the results obtained by both the CPWEpast and the
CPWEup are similar, while, in theory, using up-wave mea-
surements should lead to considerably better results than
using only past information. However, CPWEpast achieves
accurate estimation, because, even though the NRMSA of

7For the case of CPWEup, it is identified using up-wave η values in a similar
fashion to [25]
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Fig. 7. Fex(t) estimation using CPWEpast, CPWEup, and CPWEperf with an
obtained estimation accuracy of 0.857, 0.872, and 0.876, respectively, when
no measurement noise is considered.

the prediction (NRMSApred) decreases faster than that of the
CPWEup, the results obtained over Thor = [0, 1] are better
[see Fig. 6(b)], i.e., where the values of IRFFex(t) are higher
and, therefore, where the prediction accuracy has more effect
on the NRMSA (see time 0 to −1 s in Fig. 5). In addition,
it should be noted that the NRMSA achieved by the CPWEperf
is 0.876, which means that the CPWEup obtains similar results
compared to CPWEperf.

Fig. 7 shows the estimated Fex(t) obtained using the
CPWEpast, the CPWEup, and the CPWEperf, when no measure-
ment noise is considered. It can be observed that, although the
achieved accuracy is similar for the three CPWE variations,
the estimated Fex(t) shows some differences.

Surprisingly, even though the CPWE strategies do not have
a term to account for the measurement noise, the obtained
results, when considering measurement noise, are similar to
those obtained when no noise is considered (see Fig. 8). This
can be explained by the fact that the DLMS prediction strategy
acts as a low pass filter if the order is correctly chosen.

Since, for most of the following estimators, the results
obtained considering noise are similar to those obtained with-
out noise and the cases considering noise reflect a more real-
istic scenario, for the sake of brevity, only results considering
noise will be shown in the following.

B. Using Motion Measurements

For the sake of clarity, the results of this section are
divided into two different sets: those estimators using a model
to describe the dynamics of Fex(t) (KFRW, KFHO, and
EKFHO), and the strategies that do not assume any dynamical
model for Fex(t) (RHE, FAUIE, UIO, and ULISE).

1) Considering a Model for Fex(t): First, an analysis of the
effect of the HO order, nω, on estimation accuracy is carried
out, when using the KFHO and EKFHO strategies. As shown
in Fig. 9, while the NRMSA achieved by the KFHO improves
when increasing nω, no corresponding improvement can be
observed for the EKFHO. This is consistent with the findings
in [26]. Compared with the EKFHO, where the frequencies
ω are adaptive, the KFHO strategy has an additional potential

Fig. 8. Fex(t) estimation using both CPWEpast and CPWEup, with an
obtained estimation accuracy of 0.854 and 0.871, respectively, considering
measurement noise.

Fig. 9. Obtained NRMSA by the KFHO and EKFHO strategies for different
HO orders nω . The chosen orders for KFHO and EKFHO are nω = 5 and 1,
respectively (red cross).

pitfall, which is the choice of the frequencies of the HO. For
the presented test case, these frequencies are chosen to be
linearly spaced between 0.5 and 2 rad. However, the NRMSA
shown in Fig. 9 may increase if the value of the frequencies
used by KFHO is optimized for every nω [25].

Although the KFRW, KFHO, and EKFHO estimators obtain
similar NRMSAs for the case without noise (0.891, 0.907, and
0.903, respectively), this is not the case when measurement
noise is introduced. As shown in Fig. 10, the EKFHO shows
the lowest accuracy among the three, being the most affected
by measurement noise (the NRMSA is 0.066 less when
considering noise). Although the NRMSA achieved by the
KFRW is only reduced by 0.026, when introducing noise,
the resulting estimated Fex(t) is the noisiest among the three
signals (see Fig. 10). In contrast, since the model of the KFHO
gives the filter some information about the expected Fex(t)
dynamics, the KFHO estimate is the least noisy, resulting in
a decrease of 0.006 in accuracy with respect to the result
obtained when no noise is considered.

2) Without Considering a Model for Fex(t): As shown
in Fig. 11, the FAUIE strategy produces a relatively noisy
estimate, and the NRMSA decreases by 0.125 compared with
the noise-free case (see Fig. 12). This is expected since there
is no explicit term to account for the measurement noise,
as shown in Section II-F. The results obtained by FAUIE could
possibly be improved by low-pass filtering the measurements
in a preprocessing step; however, it would increase consider-
ably the delay of the excitation force estimate.
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Fig. 10. Fex(t) estimation using the KFRW, KFHO, and EKFHO strategies
obtaining an NRMSA of 0.865, 0.902, and 0.837, respectively, considering
measurement noise.

Fig. 11. Fex(t) estimation using the RHE, FAUIE, UIO, and ULISE strate-
gies obtaining an NRMSA of 0.828, 0.688, 0.856, and 0.901, respectively,
considering measurement noise.

Even though the UIO approach includes a term to account
for the measurement noise, from the visual inspection of
Figs. 11 and 12, it can be seen that the UIO estimate is
considerably affected by the presence of measurement noise
and, thus, the NRMSA decreases by 0.04.

For the RHE strategy, the window length is selected, such
that, for the chosen design parameters and for the case where
no noise is considered, the obtained NRMSA is maximized
and, for this case, N = 8 obtaining NRMSA = 0.859.

The NRMSA achieved by the RHE strategy is relatively
unaffected by the introduction of measurement noise and only
decreases from 0.847 to 0.828. Similarly, the effectiveness
of the ULISE in coping with measurement noise should
be highlighted, with a loss of just 0.002 in NRMSA when
measurement noise is considered.

C. Using Motion and Pressure Measurements

Regarding the set of estimators using motion and pressure
measurements, it has been found that, for the PADE strategy,
the number of pressure sensors directly affects the total wave
force Fw(t) estimate. In the presented test case, the error in
the estimation of Fw(t) leads to an offset of the F̃PADE

ex (t)
compared with Fex(t) (see Fig. 13). However, even though

Fig. 12. Fex(t) estimation using the RHE, FAUIE, UIO, and ULISE strategies
obtaining an NRMSA of 0.847, 0.813, 0.896, and 0.903, respectively, where
no measurement noise is considered.

Fig. 13. Fex(t) estimation using the PADE and EKFPS strategies obtaining
an NRMSA of 0.792 and 0.822, respectively, considering measurement noise.

the noisy measurements are directly used to estimate Fex(t),
the obtained results are not affected, which may be explained
by possible destructive interference of the different noisy
signals.

On the other hand, the EKFPS strategy (of order nω = 4)
gives a more accurate estimate, obtaining an NRMSA of 0.872
(compared with the 0.793 obtained by PADE), for the case
where measurement noise is not considered, and 0.822, for
the case where noise is included.

D. Summary

This section summarizes the results in the tabulated form.
For each Fex(t) estimator, Table II shows the measurements
required and the obtained accuracy for the cases with and
without measurement noise. Furthermore, the time delay
of F̃ex(t) relative to the reference is given, obtained via
cross-correlation. From an EMCS perspective, the delay time
is an important information, since a delay in the F̃ex(t) signal
could affect the performance of the controller [7]. Finally,
the required time for estimation, normalized against the fastest
strategy, is listed.

In terms of delay time, one can note that the open-loop
estimators (CPWE and PADE) are the only strategies obtaining
a negative delay, while the KFHO, EKFHO, and ULISE are
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TABLE II

COMPARISON TABLE WITH THE RESULTS OBTAINED
BY THE DIFFERENT ESTIMATORS

in phase with respect to Fex(t) and the KFRW, RHE, FAUIE,
UIO, and EKFPS are delayed.

Regarding the estimation time, it is found that the CPWE
is the fastest strategy to estimate the Fex(t) signal (requiring
about 1 · 10−6 s for one Fex(t) estimation step8), followed
by the KFRW, KFHO, PADE, RHE, ULISE, and UIO, which,
although they are slower than the CPWE, may still be con-
sidered fast, in absolute terms. Finally, the FAUIE, EKFHO,
and EKFPS are the slowest strategies, which, in the case of
EKFHO and EKFPS is expected, since the estimators are
inherently nonlinear and require linearization of the function
describing Fex(t) at each step. In the FAUIE, the computa-
tional burden is associated with the derivative error ėy [see
(21)], which creates an algebraic loop, slowing down the
estimation process.

In terms of measurement requirements, WEC motion mea-
surements are the easiest/cheapest to obtain, using inertial
measurement units (IMUs). In contrast, it should be noted that
pressure sensors are relatively expensive and the estimators
using pressure measurements do not show any particular
improvement with respect to the strategies using motion mea-
surements alone. In addition, past η(t) values, at the WEC
location, are physically immeasurable, and, therefore, in a real
sea scenario, the estimate has to be calculated on either up-
wave measurements or WEC motion. To estimate/predict η(t),
based on up-wave measurements in a real-sea scenario, several
measurement points are required [19], which are expensive to
obtain. In addition, using motion measurements to estimate
η(t) is suboptimal since two estimation stage errors are
accumulated, while directly estimating Fex(t) based on WEC
motion is a more straightforward approach.

VI. CONCLUSION

This article presents a critical and fair comparison of all
Fex(t) estimators found in the literature. Because of theoretical
restrictions, only a linear case is shown. To remove any bias
from the comparison, the Fex(t) reference signal has been
obtained using a CNWT, and thus decouples the model used
to evaluate the estimator performance and the model internally
used by the Fex(t) estimator.

8The test have been carried out in a computer with an Intel CORE i7 and
8-GB RAM.

Based on the obtained results, it can be concluded that
estimation techniques based on the WEC motion are the most
feasible, specifically the KFHO, ULISE, and UIO. The KFHO
and the ULISE show good performance in terms of achieved
accuracy and small delay times, i.e., no phase shift between
the estimated and the reference signal. Even though the UIO is
not the most accurate estimator, it is the only approachable to
consider model uncertainty, which could be important in a real
WEC device scenario. From Section V, one can note that other
estimation strategies also obtain accurate results. However,
since they do not show any improvement with respect to the
KFHO, ULISE, or UIO approaches, they are not highlighted
in this section.

A further study is required to assess how the different
strategies behave under nonlinear conditions, for which the
present CNWT framework is well suited. However, obtaining
the reference Fex(t) poses a challenge and perhaps loses mean-
ing in a case where the linear superposition and decomposition
of hydrodynamic force no longer apply. While the FAUIE
already includes a term to account for non-linearities, KF-
based strategies can easily be extended to include nonlinear
WEC models in a fashion similar to the EKFHO and EKFPS.
The extension of the remaining approaches should be further
analyzed. Finally, it is of interest if, under nonlinear condi-
tions, knowledge of pressure on the WEC hull improves the
Fex(t) estimate compared with the strategies using only motion
measurements. In addition, it is of interest to know how the
estimators perform, when considering multi-DoF.
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