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Abstract Wave energy converters (WECs) inher-
ently require appropriate control system technology to
ensuremaximum energy absorption from oceanwaves,
consequently reducing the associated levelised cost of
energy and facilitating their successful commerciali-
sation. Regardless of the control strategy, the defini-
tion of the control problem itself depends upon the
specification of a suitable WEC model. Not only is
the structure of the model relevant for the definition
of the control problem, but also its associated com-
plexity: given that the control law must be computed in
real-time, there is a limit to the computational complex-
ity of the WEC model employed in the control design
procedure, while there is also a limit to the (analytical)
complexity ofmathematicalmodels forwhich a control
solution can be efficiently found. This paper presents
a systematic nonlinear model reduction by moment-
matching framework forWEC systems, capable of pro-
viding control-oriented WEC models tailored for the
control application, which inherently preserves steady-
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state response characteristics. Existence and unique-
ness of the associated nonlinear moment for WECs
are proved in this paper, for a general class of sys-
tems. Given that the definition of nonlinear moments
depends upon the solution of a nonlinear partial differ-
ential equation, an approximation framework for the
computation of the nonlinear moment is proposed, tai-
lored for the WEC application. Finally, the use and
capabilities of the framework are illustrated by means
of case studies, using different WEC systems, under a
variety of wave conditions.

Keywords Nonlinear model reduction · Moment-
matching · Wave energy conversion · Nonlinear
hydrodynamics

1 Introduction

Control system technology can impact many aspects of
wave energy converters (WECs) design and operation,
including device sizing and configuration, maximising
energy extraction from waves, and optimising energy
conversion in the power take-off (PTO) actuator system
[23,33]. Tobeprecise, the central problem inWECcon-
trol is to find a technically feasible way to ‘act’ on the
device (via the PTO system), so that energy absorption
from waves is maximised while minimising the risk
of component damage. It is already clear that control
technology can enhance WECs performance in a wide
range of sea conditions, hence substantially reducing
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the associated levelised cost of energy (LCoE), consti-
tuting a fundamental stepping stone towards successful
commercialisation of WEC technology [34].

Regardless of the solution method selected to com-
pute this energy-maximising optimal control law, the
definition of the control problem itself depends upon1

the specification of a suitable WECmodelΣ . Not only
is the structure of the model relevant for the definition
of the control problem, but also its associated com-
plexity: given that the energy-maximising control law
must be computed in real-time, there is clearly a limit
to the computational complexity of the WEC model
employed in the control design procedure, while there
is also a limit to the (analytical) complexity of math-
ematical models for which a globally optimal control
solution can be efficiently found, or even whether it
exists (i.e. for which the control problem iswell-posed)
[8,12]. For linear systems, complexity is often under-
stood simply in terms of the dimension (order) of the
system. For nonlinear systems, this dimensional argu-
ment may be inappropriate, as one also has to take into
consideration the complexity of the functions involved
in the representation of the system.

That said, even in the most ‘simplistic’ physical
WEC modelling scenario, where linear hydrodynamic
conditions2 are assumed, model reduction techniques
are inherently required to provide a control-oriented
model: the equation of motion for a WEC under lin-
earity assumptions is nonparametric (due to the pres-
ence of a convolution operation associated with radia-
tion effects [13]), intrinsically requiring a model reduc-
tion procedure, both to alleviate the computational
demand of this nonparametric operator, and to express
the dynamical equation in a suitable form for con-
trol/estimation procedures (often in terms of a state-
space representation [9,40]). Furthermore, any model
reduction technique should compute a control-oriented
model which inherits the underlying physical proper-
ties of the WEC process, so that the approximating
structure is effectively representative, including, for

1 Though rare due to the inherent complexity behind the energy-
maximising control objective forWECs, we note that model-free
control techniques also exists within the wave energy control
literature. The interested reader is referred to, for instance, [15,
39].
2 Linear conditions refers to so-called linear potential flow the-
ory, see [13].

instance, internal stability.3 This is specifically impor-
tant for WEC control procedures, which often rely on
these dynamical properties to guarantee existence and
uniqueness of globally optimal solutions [8].

Even though linearity assumptions are often adopted,
mostly motivated by their simplicity, the importance
of having nonlinear control-oriented models has been
stressed in recent years [16,17]; WECs are, by their
nature, prone to show nonlinear effects,4 since their
principal aim, pursued by the optimal control strat-
egy, is to enhance the amplitude of motion to max-
imise power extraction. In other words, the assump-
tions under which the linearisation of WEC models
is performed are challenged by the controller itself,
particularly in relation to assumptions of small move-
ments around the equilibrium position [33]. This may
return poor results, both in terms of accuracy of motion
prediction, and power production assessment [16,17],
which are the key variables involved in any WEC con-
trol formulation, directly compromising the role of
control technology in maximising energy absorption.
The above discussion directly highlights the impor-
tance of having systematic nonlinear model reduc-
tion techniques, which can provide control-oriented
nonlinear models, with a level of complexity suitable
for the energy-maximising optimal control application.
While the availability of nonlinear model reduction
techniques would represent an extremely valuable tool,
not only for control/estimation procedures, but for a
variety of WEC applications (for instance, geometry
optimisation and power assessment, among others),
there is currently no literature addressing this issue
within the WEC community, to the best of the authors’
knowledge. A number of non-systematic model reduc-
tion studies, which produce simpler models by selec-
tively ‘ignoring’ or ‘discarding’ nonlinear effects, can
be found in, for instance, [30,38]. It is also worth men-
tioning that some effort has beenmade recently, in [29],
to provide a mathematically consistent measure of the
impact of each nonlinear effect, and assess which of
these significantly affects, for example, power absorp-
tion calculations.

3 Within the field of wave energy applications, internal stability
is a fundamental requirement of a model representing the phys-
ical system not only for control/estimation, but also for motion
simulation and power assessment purposes.
4 The reader is referred to, for instance, [16,27,43] for compre-
hensive discussions on different sources of nonlinear effects (and
associated modelling procedures) in WECs.
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Remark 1 If nonlinear effects are considered in con-
trol/ state-estimation for WEC applications, only the
issue regarding the nonparametric nature of Σ is
commonly tackled in the literature, by computing an
approximating model for the linear radiation dynam-
ics,5 and simply accommodating the nonlinear effects
in the corresponding (nowparametric) dynamical equa-
tion. In other words, there is no nonlinear model reduc-
tion process taking place, but rather that the linear sys-
tem is approximated with a parametric form, hence
avoiding the computational complexity and represen-
tational drawback of the associated convolution oper-
ator.

Motivated by the discussion provided above, and
the fundamental requirement of systematic model
reduction techniques capable of facilitating accurate
control-orientedmodels, this paper presents a nonlinear
model reduction by moment-matching framework for
WEC systems.Moment-matchingmethods [1,36], also
referred to as interpolation methods, are largely based
on the mathematical notion of moments. Moments are
intrinsically connected to the input–output characteris-
tics of the dynamical system under analysis, and pro-
vide a very specific parameterisation of the steady-
state output response (provided it exists) of such a
system. That said, the model reduction by moment-
matching technique consists of the interpolation of the
steady-state response of the output of the system to
be reduced: a model reduced by moment-matching is
such that its steady-state response exactly matches the
steady-state response of the system to be reduced. A
fundamental advantage is that the notion of moments
has been defined both for linear and nonlinear systems,
by means of a system-theoretic approach, initially pro-
posed in [1]. For linear differential systems, the com-
putation of moments depends upon the solution of a
Sylvester equation. For nonlinear differential systems
(which is our case of interest), moments arise as the
solution of a nonlinear partial differential (invariance)
equation.

To that end, the existence anduniqueness of the asso-
ciated nonlinear moment for WECs is discussed, and
ensured in this paper, for the case of wave energy sys-
tems. Given that the definition of nonlinear moments

5 Assuming that the nonparametric nature of Σ is only due to
linear radiation dynamics. This is not always necessarily the case,
since fnl can be potentially nonparametric.

depends upon the solution of a nonlinear partial differ-
ential equation, an approximation framework for the
computation of the nonlinear moment is proposed, tai-
lored for theWEC application. The use and capabilities
of the framework are illustrated by means of case stud-
ies, using different WEC systems, under a variety of
wave conditions.

The remainder of this paper is organised as fol-
lows. Notation and conventions utilised in this paper
are summarised in Sect. 1.1. The fundamentals behind
nonlinear model reduction by moment-matching are
discussed in Sect. 2, while WEC modelling is briefly
addressed in Sect. 3. A moment-based formulation for
the WEC is provided in Sect. 4, where the existence
and uniqueness of the associatedmoment are discussed
and ensured for the case of wave energy systems. An
approximation framework for the computation of the
nonlinear moment is proposed in Sect. 5, based on
the family of mean weighted residual methods (see,
for instance, [14]). Practical aspects and considerations
behind this approximation framework are discussed in
Sect. 6. Sections 7 and 8 discuss the case of model
reduction for WEC systems under regular, and irreg-
ular, wave excitation inputs, respectively. Finally, the
main conclusions of this paper are encompassed in
Sect. 9.

1.1 Notation and conventions

Standard notation is considered throughout this
manuscript, most of which is defined in this section.
If additional notation (not included in this section) is
introduced, this is defined in the relevant parts of the
paper at the point of introduction.

Sets

R+ (R−) denotes the set of non-negative (non-positive)
real numbers. C0 denotes the set of pure-imaginary
complex numbers, and C<0 denotes the set of com-
plex numbers with negative real part. The notationNq

indicates the set of all positive natural numbers up to q,
i.e. Nq = {1, 2, . . . , q}, while N≥q is reserved for the
set of natural numbers {q, q + 1, . . .} ⊂ N. The span
of the set X = {xi }ki=1 ⊂ Z , where Z is a vector
space over a field F, is denoted as span{X }.
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Scalars, vectors and matrices

The symbol 0 stands for any zero element, dimen-
sioned according to the context. The symbol In denotes
the identity matrix of the space Cn×n . The notation
1n×m is used to denote a Hadamard identity matrix,
i.e. a n × m matrix with all its entries equal to 1.
The spectrum of a matrix A ∈ Rn×n , i.e. the set
of its eigenvalues, is denoted as λ(A). The Frobe-
nius norm of a matrix is denoted as ‖A‖F. The sym-
bol
⊕

denotes the direct sum of n (square) matrices,
i.e.

⊕n
i=1 Ai = diag(A1, A2, . . . , An). The notation

�{z} and �{z}, with z ∈ C, stands for the real-part
and the imaginary-part of z, respectively. The symbol
eqi j ∈ Rq×q denote a matrix with 1 in the i j entry and

0 elsewhere. Likewise, eqi ∈ Rq denotes a vector with
1 in the i entry and 0 elsewhere.

Functions

Given two functions, f : Y → Z and g : X →
Y , the composite function ( f ◦ g)(x) = f (g(x)),
which maps all x ∈ X to f (g(x)) ∈ Z , is denoted
with f ◦ g. The convolution between two functions
f and g, with { f, g} ⊂ L2(R), over the set R, i.e.∫
R f (τ )g(t − τ)dτ is denoted as f ∗ g, and where
L2(R) = { f : R → R | ∫R | f (τ )|2dτ < +∞} is the
Hilbert space of square-integrable functions in R. Let
f and g be functions in L2(T ), with T ⊆ R. Then,
the standard inner-product between f and g is defined
(and denoted) as 〈 f, g〉 = ∫

T f (t)g(t)dt . Finally, the
Fourier transform of a function f (provided it exists),
is denoted as F(ω), ω ∈ R.

2 Model reduction by moment-matching:
preliminaries

This section briefly recalls some of the key con-
cepts behind nonlinear model reduction by moment-
matching (also often referred to as moment-based
framework throughout this paper), as developed and
discussed in key studies such as, for instance, [1,36], for
nonlinear single-input single-output (SISO) systems.
In particular, special emphasis is placed on the for-

mal definition of a moment, using a system-theoretic
approach.6

2.1 Definition of moments

Consider a nonlinear, deterministic, finite-dimensional,
SISO, continuous-time system, described, for t ∈ R+,
by the following set of equations7

ẋ = f (x, u),

y = h(x),
(1)

with x(t) ∈ Rn , u(t) ∈ R, y(t) ∈ R, and f and h suf-
ficiently smoothmappings defined in the neighborhood
of the origin ofRn . Assume system (1) is minimal, i.e.
observable and accessible (see [36, Chapter 2]), and
suppose that f (0, 0) = 0 and h(0) = 0.

Consider nowa signal generator (sometimes referred
to as exogenous system [20]) described, for t ∈ R+, by
the set of differential equations

ξ̇ = Sξ,

u = Lξ,
(2)

with ξ(t) ∈ Rν , S ∈ Rν×ν and Lᵀ ∈ Rν , and the
interconnected (or composite) system

ξ̇ = Sξ,

ẋ = f (x, Lξ),

y = h(x),

(3)

Following [36], a relevant set of assumptions is con-
sidered to later formalise the definition of nonlinear
moments.

Assumption 1 The triple of matrices (L , S, ξ(0)) is
minimal.

Remark 2 The minimality of the triple (L , S, ξ(0))
implies observability of the pair (S, L) and excitability
of the pair (S, ξ(0)). Excitability refers (with additional
technical assumptions, see [26]) to a geometric charac-
terisation of the property that all signals generated by
(2) are persistently exciting.

6 Similar considerations can be drawn for multiple-input–
multiple-output (MIMO) systems, by following the framework
presented in [10,28].
7 From now on, the dependence on t is dropped when clear from
the context.
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Remark 3 For linear systems, excitability is equivalent
to reachability, i.e. with ξ(0) playing the role of the
input matrix, see [26].

Assumption 1 stems from the fact that the signal gener-
ator defined in (2) does not have any input. As a matter
of fact, given that this signal generator characterises
inputs to the system under analysis, i.e. system (1), it is
rather natural to construct (2) in such a way that all the
modes of motion described by the dynamic matrix S
are excited, and that the inputs generated are effectively
observable.

Assumption 2 The signal generator (2) is such that
λ(S) ⊂ C0 with simple eigenvalues.8

Assumption 2 guarantees that the signal generator
(2) generates bounded trajectories. Note that this auto-
matically implies that the output signal u(t), i.e. the
input to system (1), is also bounded.

Remark 4 Both Assumptions 1 and 2 are in line with
‘practical’ scenarios and, as demonstrated throughout
Sect. 4, can be adopted without any loss of generality
for the WEC case. In particular, given that the signal
generator characterises the set of inputs to the system
under analysis, it is almost natural to guarantee that
the modes of motion described by the signal generator
(2) are excited (Assumption 1), and that any generated
output is bounded (Assumption 2).

We are now ready to introduce the following main
lemma.

Lemma 1 [36]SupposeAssumptions1and2hold, and
that the zero equilibrium of the system (1) is locally
exponentially stable in the Lyapunov sense. Then, there
exists a unique mapping π , locally9 defined in a neigh-
borhood Ξ of ξ = 0, with π(0) = 0, which is the
solution of the partial differential equation

∂π(ξ)

∂ξ
Sξ = f (π(ξ), Lξ), (4)

for all ξ ∈ Ξ , and the steady-state response of the
interconnected system (1)–(2) is xss(t) = π(ξ(t)), for
any x(0) and ξ(0) sufficiently small.

8 Let A ∈ Rn×n . An eigenvalue a ∈ λ(A) is said to be simple if
its algebraic multiplicity is equal to 1.
9 All statements are local, although global versions can be
straightforwardly derived.

Definition 1 Suppose the assumptions of Lemma 1 are
fulfilled. The mapping h ◦ π is the moment of system
(1) at the signal generator (2), i.e. at (S, L).

Remark 5 Note that the result of Lemma 1, and the
notion of moments stated in Definition 1, imply that
the moment of system (1) at (S, L) computed along
a particular trajectory ξ(t) coincides with the (well-
defined) steady-state response of the output of the inter-
connected system (3), i.e. yss(t) = h(π(ξ(t))).

2.2 Model reduction by moment-matching

The reduction techniquebasedon thenotionofmoments,
recalled in Sect. 2.1, consists of the interpolation of
the steady-state response of the output of the system
to be reduced10: a reduced-order model by moment-
matching is such that its steady-state response exactly
matches the steady-state response of system (1).

Following themoment-based theory of Sect. 2.1, the
notion of a reduced-order model by moment-matching
for nonlinear systems can now be introduced.

Definition 2 [36] Consider the signal generator in (2).
The system described by the equations

Θ̇ = φ(Θ, u),

θ = κ(Θ),
(5)

withΘ(t) ∈ Rν and θ(t) ∈ R, is a model of system (1)
at (S, L), if system (5) has the same moments at (S, L)

as system (1). In addition, system (5) is a reduced-order
model of system (1) at (S, L) if ν < n.

Lemma 2 [36]Consider system (1)and the signal gen-
erator (2). Suppose that Assumptions 1 and 2 hold and
that the zero equilibrium of system (1) is locally expo-
nentially stable. Then, system (5)matches the moments
of system (1) at (S, L) if the partial differential equa-
tion

∂p

∂ξ
Sξ = φ(p(ξ), Lξ), (6)

has a unique solution p such that

h(π(ξ)) = κ(p(ξ)), (7)

10 Throughout this manuscript, if a given system Σ is reduced
by moment-matching to a system Σ̃ , Σ and Σ̃ are referred to as
the target and approximating systems, respectively.
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where the mapping π is the unique solution of equation
(4).

Following the result of Lemma 2, a family of sys-
tems achieving moment-matching at (S, L) [36] can
be defined as

Θ̇ = (S − ρ(Θ)L)Θ + ρ(Θ)u,

θ = h(π(Θ)),
(8)

with ρ : Rν → Rν a free mapping. A particu-
larly interesting simplification can be achieved with
the selection ρ(Θ) = �, for any constant matrix �.
This choice produces a family of reduced-order mod-
els described by a linear differential equation with a
nonlinear output map, i.e. by a Wiener model.

Remark 6 Two advantages of the selection of the map-
ping ρ(Θ) = �, in the family of models (8), can
be clearly identified: the matrix � can be selected to
enforce additional properties on (8) such as a set of
prescribed eigenvalues, and the determination of the
reduced-order model achieving moment-matching at
(S, L) boils down to the computation of the mapping
h ◦ π .

Remark 7 Note that, though (8) provides a potentially
powerful result, it is virtually impossible to compute an
analytic expression for the moment h ◦ π for a general
nonlinear mapping f , due to the nature of the nonlinear
partial differential equation (4). In otherwords, without
a proper approximation framework, the theory recalled
in both Sects. 2.1 and 2.2 has little practical value. This
is specifically addressed in Sect. 5 of this paper, where
we propose a suitable approximation technique, tai-
lored for the wave energy application.

3 WEC dynamics and modelling

This section begins by recalling well-known facts
behind control-oriented WEC modelling (see, for
instance, [13]). For simplicity, a 1-degree-of-freedom
(DoF) device is assumed, given that a similar analysis
can be carried out for multi-DoF devices, by simply
following the moment-based multiple-input–multiple-
output approach presented in [10,11]. The equation of
motion for such a WEC can be expressed in the time

domain, in terms of the following system Σ :

Σ :
⎧
⎨

⎩

z̈ = M
(
fr + f lre + fe + fnl

)
,

y = ż,
(9)

where z : R+ → R is the device excursion (dis-
placement), fe : R+ → R, the wave excitation force
(external uncontrollable input due to the incoming
wave field), f lre the linear component of the hydrostatic
restoring force, fr the radiation force, and M ∈ R>0

is the inverse of the generalised mass matrix of the
device (see [13]). The mapping fnl : R+ → R,
t �→ fnl(t) represents potential nonlinear effects such
as, for instance, viscous drag forces and nonlinear
hydrostatic effects.11

The linear component of the hydrostatic force can
be written as f lre(t) = −shz(t), where sh denotes the
hydrostatic stiffness, which depends upon the device
geometry. The radiation force fr is modelled based on
linear potential theory and, using thewell-knownCum-
mins’ equation [7], can be written as

fr(t) = −m∞ z̈(t) −
∫

R+
kr(τ )ż(t − τ)dτ, (10)

where m∞ = limω→+∞ A(ω) > 0 is the added-
mass at infinite frequency, A(ω) is the radiation added
mass12 and kr : R+ → R+, kr ∈ L2(R), is the
(causal) radiation impulse response function contain-
ing the memory effect of the fluid response. Finally, the
equation of motion of the WEC is given by

Σ :
{
z̈ = M (−kr∗ ż − shz + fe + fnl) ,

y = ż.
(11)

Note that (nonparametric) Eq. (11) is of a Volterra
integro-differential form, specifically of the convolu-
tion class.13

11 In the case of nonlinear restoring effects, the division between
linear and nonlinear contributions is performed without any loss
of generality, and to subsequently analyse the local properties of
system (9) in Sect. 4.
12 See [13] for the definition of A(ω).
13 The interested reader is referred to [42] for further detail on
this class of integro-differential operators.

123



Nonlinear model reduction for wave energy systems 1221

4 Nonlinear moment-based WEC formulation for
model reduction

The nonlinear moment-based theory, recalled and dis-
cussed in Sect. 2, directly depends on the availability of
a state-space representation of the system tobe reduced,
which is not the case for the nonparametric equation
described by system Σ in (11). In the light of this, the
following equivalent representation is proposed:

Σ :
{

ẇ = f (w, fe) = Aw + B( fe − kr∗Cw) + f̂ (w),

y = h(w) = Cw,

(12)

for t ∈ R+, where w(t) = [z(t) ż(t)]ᵀ ∈ R2 contains
the displacement and velocity corresponding to system
Σ , and the (constant) matrices A ∈ R2×2, B ∈ R2 and
Cᵀ ∈ R2 are defined as

A =
[

0 1
−Msh 0

]

, B =
[
0
M

]

, C =
[
0
1

]ᵀ
. (13)

The nonlinear mapping f̂ : R2 → R2 is given by

f̂ (w) =
[

0
M fnl(w)

]

= B fnl(w). (14)

Remark 8 In line with the most utilised nonlinear
effects in WEC control/estimation applications (see
[8]), it is assumed that the mapping fnl depends only
on w, i.e. the displacement and velocity of the WEC
system involved. Nevertheless, note that if required by
a particular application, a more general class of non-
linear effects can be straightforwardly considered, for
instance, non-ideal PTO dynamics [3].

Within the moment-based theory recalled in Sect. 2,
the mapping corresponding to the external input fe is
written in terms of an autonomous single-output signal
generator (analogously to the case of Eq. (2)), i.e. the
set of equations

ξ̇ = Sξ,

fe = Lξ,
(15)

for t ∈ R+, with ξ(t) ∈ Rν , S ∈ Rν×ν and Lᵀ ∈ Rν .
The set of standing assumptions, i.e. Assumptions 1
and 2, are ensured as follows.

Assumption 2, which concerns the definition of the
spectrum of the matrix S, is addressed by recalling
(see, for instance, [24]) that ocean waves are numer-
ically generated as a finite sum of harmonics of a so-
called fundamental frequency ω0. To be precise, let
F = {h pω0}f

p=1 ⊂ R+, whereH = {h p}f
p=1 ⊂ N≥1,

with h1 < · · · < hf , be a set composed of a finite num-
ber of harmonics of the fundamental frequency ω0. In
particular, the matrix S is defined in a block-diagonal
form as

S =
f⊕

p=1

[
0 h pω0

−h pω0 0

]

, (16)

where ν = 2f , f ∈ N≥1, and the spectrum of S is given
byλ(S) = ( jF )∪(− jF ) ⊂ C0, so thatAssumption 2
clearly holds.

With respect to Assumption 1, this condition is
ensured (without any loss of generality) as follows:
From now, the output vector L is given by a Hadamard
identity on the space R1×ν , i.e. Lᵀ = 1ν , so that the
minimality of the triple (1ᵀ

ν , S, ξ(0)) holds as long
as the pair (S, ξ(0)) is excitable. The specific choice
for the structure of ξ(0) is discussed in the following
remark.

Remark 9 (On the definition of ξ(0)) Let ξ(0) =
∑f

p=1 e
f
p ⊗ [

αp βp
]ᵀ
, where the set of coefficients

{αp, βp}f
p=1 ⊂ R. Then, the vector ξ can be expanded

as

ξ(t) = eStξ(0) =
f∑

p=1

ef
p ⊗

[pξ+(t)
pξ−(t)

]

, (17)

where the mappings pξ are defined as

pξ+ : R+ → R, t �→ αp cos(h pω0t) + βp sin(h pω0t),
pξ− : R+ → R, t �→ βp cos(h pω0t) − αp sin(h pω0t).

(18)

Remark 10 Note that the excitability condition on the
pair (S, ξ(0)) holds as long as αp and βp are not simul-
taneously zero, for all p ∈ Nf .

Remark 11 Let the sets of functions X f
ξ = {pξ+,

pξ−}f
p=1 and X f

0 = {cos(h pω0t), sin(h pω0t)}f
p=1.

Note that, given the excitability condition on the
pair (S, ξ(0)), it is straightforward to check that
span{X f

ξ } = span{X f
0 }. As a consequence, the input
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fe is always T -periodic, where T = 2π/ω0 ∈ R+ is
the fundamental period14 of fe.

The following standard assumption on the nonlinear
mapping f̂ is posed to later prove existence and unique-
ness of the nonlinear moment of system (12) at the
signal generator (S, L).

Assumption 3 The mapping f̂ : R2 → R2 is such
that

f̂ (0) = 0,
∂ f̂ (w)

∂w

∣
∣
∣
∣
∣
w=0

= 0. (19)

Note that this assumption is without loss of general-
ity, since the matrices in (12), and the mapping f̂ , can
always be redefined to satisfy it.15

Finally, an assumption on the stability in the first
approximation of system (12), is introduced.

Assumption 4 The zero equilibrium of system

ẇ = Aw − B(kr∗Cw), (20)

is asymptotically stable in a Lyapunov sense.

As discussed in several studies, such as [13,37], the lin-
ear equation of motion (20) is asymptotically stable for
any meaningful values of the involved parameters (and
impulse response function kr). Thus, this assumption
is, in practice, also without loss of generality.

Lemma 3 Consider the WEC system (12) and the sig-
nal generator (15)–(16). Suppose the triple (L , S, ξ(0))
is minimal, and Assumption 3 and 4 hold. Then, there
exists a unique mapping π , locally defined in a neigh-
borhood Ξ of ξ = 0, which solves the partial differen-
tial equation

∂π(ξ)

∂ξ
Sξ = f (π(ξ), Lξ), (21)

and the moment of system (12) at the signal gener-
ator (S, L), i.e. the mapping h ◦ π , computed along

14 Practical implications of both f and T (or, equivalently, ω0)
in our model reduction framework, are discussed in detail in
Sect. 8.1.
15 This claim, which directly relates to Jacobian analysis, is con-
sidered standard in nonlinear dynamics. Further detail can be
found in, for instance, [20, Chapter 8].

a particular trajectory ξ(t), coincides with the well-
defined steady-state output response of such an inter-
connected system, i.e. yss(t) = h(π(ξ(t))).

Proof Let Lᵀ = 1ν and let the initial condition ξ(0) be
as defined in Remark 10. Then, it is straightforward to
check that minimality of the triple (L , S, ξ(0)) holds.
Moreover, note that the signal generator defined in Eqs.
(15)–(16) is always such that λ(S) ⊂ C0 with sim-
ple eigenvalues, in line with Assumption 2. Therefore,
Lemma 3 automatically holds as long as the zero equi-
libriumof system ẇ = f (w, 0) is locally exponentially
stable (see Lemma 1). Since this is ensured byAssump-
tion 4, the claim follows. ��

In slightly different words, Lemma 3 guarantees that
the steady-state response of system (12), driven by (15),
can be effectively computed using the corresponding
(well-defined) moment at (S, L). In particular, and fol-
lowing the result of Lemma 2, a family of reduced
models achieving moment-matching at (S, L) of order
(dimension) ν = 2f , for the WEC system defined in
Eq. (11) (alternatively (12)), can be written in terms of
the mapping h ◦ π , with π the solution of (21), as

Θ̇ = (S − �L)Θ + � fe,

ỹ = h(π(Θ)) = Cπ(Θ),
(22)

with � ∈ Rν a free (design) parameter.

Remark 12 If the mapping π is effectively known, the
family of models (22) exactly matches the steady-state
response of the target nonlinear WEC system Σ at the
signal generator (S, L).

Remark 13 The family of models defined in (22) is
input-to-state linear, and any nonlinear effects are (stat-
ically) present in the output mapping h ◦ π (i.e. (22)
is described by a Wiener model). Note that the set
λ(S−�L) can be assigned arbitrarily, as a consequence
of the observability of the pair (S, L).

Remark 14 Unlike the nonlinear system Σ in (11),
which is effectively nonparametric, the family of sys-
tems achieving moment-matching at (S, L) is in state-
space form. In other words, this model reduction pro-
cess not only reduces complexity, but inherently com-
putes a parametric form for theWEC system, in a single
‘step’.
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Though the family of models in (22) provides a
strong set of candidates to tackle the nonlinear model
reduction problem for WECs, there is clearly an intrin-
sic downside to its definition: As discussed in Sect. 2,
even if the existence and uniqueness of π (the solution
of (21)) are guaranteed by the result of Lemma 3, it
is virtually impossible to compute its analytic expres-
sion, given the nonlinearity of the mapping f . In other
words, the family of models defined in (22) lacks any
practical value, unless one can appropriately approxi-
mate the mapping π . This is explicitly addressed in the
following section.

5 On the approximation of π

The very nature of the mapping π intrinsically depends
on both the characteristics of the signal generator (15),
and the system dynamics (12) defined by the mapping
f . The following lemma, which is analogous to [12,
Proposition 2], is introduced, aiming to formally char-
acterise π .

Lemma 4 Suppose the triple (L , S, ξ(0)) is minimal,
and that Assumptions 3 and 4 hold. Then, for a given
trajectory ξ(t), each element of the mapping π , which
solves Eq. (21), i.e. πi , with i ∈ N2, belongs to the
Hilbert space L2(T ) with T = [0, T ] ⊂ R+, where
T = 2π/ω0.

Proof Given the nature of the signal generator defined
in Eq. (15), the function fe is T -periodic, with T =
2π/ω0 (see Remark 11). Moreover, under the above
assumptions, the zero equilibrium of ẇ = f (w, 0)
is locally exponentially stable and its (well-defined)
steady-state solution is also T -periodic [21, Sect. VI],
i.e. wss(t) = wss(t − T ). Given that, under the min-
imality of the triple (L , S, ξ(0)) and Assumptions 3
and 4, wss(t) = π(ξ(t)) (see Lemma 3), it is straight-
forward to conclude that each element of the mapping
π belongs to L2(T ). ��

Following the characterisation offered in the result
of Lemma4, and aiming to propose amethod to approx-
imate π , let the family of complex-valued mappings
ΩC

q : Rν → C, ξ �→ ΩC
q (ξ), with q ∈ N≥1, be

defined such as

ΩC
q (ξ) =

f∑

p=1

(γpξ)q/h p , (23)

where γ
ᵀ
p ∈ Cν is such that γ

ᵀ
p = eν

2p−1 + jeν
2p, for

all p ∈ Nf . This mapping can be effectively used to
span L2(T ), as explicitly demonstrated in the following
lemma.

Lemma 5 Let X k
0 = {cos(qω0t), sin(qω0t)}kq=1 be

a canonical set in L2(T ), with T = [0 T ] ⊂ R+,
T = 2π/ω0, and consider the family of real-valued
functions

Ω+
q : Rν → R, ξ �→ �

{
ΩC

q (ξ)
}

,

Ω−
q : Rν → R, ξ �→ �

{
ΩC

q (ξ)
}

.
(24)

Let the set X k
Ω = {Ω+

q (ξ),Ω−
q (ξ)}kq=1. Then,

span{X k
Ω } = span{X k

0 }. (25)

Proof Note that the key term, composing the family of
complex-valued mappings in (23), can be alternatively
written as

γpξ = pξ+ + j pξ− ∈ C, (26)

for all p ∈ Nf , and where each of the mappings pξ+
and pξ− are defined as in Eq. (18) (see also Remark 9).
Moreover, note that these functions can be equivalently
written as,

pξ+(t) = �
{
(αp + jβp)e

jh pω0t
}

,

pξ−(t) = �
{
(αp + jβp)e

jh pω0t
}

,
(27)

so that, clearly, the following expression
(
γpξ
)q/h p = (pξ+ + j pξ−)q/h p

= (αp + jβp)
q/h pe jqω0t , (28)

for all p ∈ Nf and q ∈ N≥1, holds. In other words,
only the q-th harmonic of the fundamental frequency,
i.e. qω0, is present in the output of the complex-
valued mapping ΩC

q . Given the excitability condition
on the pair (S, ξ(0)), αp and βp cannot be simultane-
ously zero, for all p ∈ Nf (see Remark 10), so that
span{Ω+

q (ξ),Ω−
q (ξ)} = span{cos(qω0t), sin(qω0t)},

and the proof follows. ��
Remark 15 Naturally, the set X k

Ω forms an orthogo-
nal basis of L2(T ), under the standard inner-product
operator of such a space, as k → ∞.
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The result of Lemma 5, together with Remark 15,
allows each element of the mapping π , i.e. πi , with
i ∈ N2, to be uniquely expressed in terms of the set
X k

Ω as a linear combination of its elements (see, for
instance, [2]), i.e.

πi (ξ) =
k∑

q=1

[
c+
q c−

q

]
[
Ω+

q (ξ)

Ω−
q (ξ)

]

+ εi (ξ)

= Π̃iΩ
k(ξ) + εi (ξ), (29)

with Ωk(ξ(t)) ∈ R2k such that Ωk(ξ) = ∑k
q=1 e

k
q ⊗

[
Ω+

q (ξ) Ω−
q (ξ)

]ᵀ
, and where the mapping εi : Rν →

R is given by,

εi (ξ) =
+∞∑

q=k+1

[
c+
q c−

q

]
[
Ω+

q (ξ)

Ω−
q (ξ)

]

. (30)

Remark 16 Note that, following Eq. (29), π can be
compactly expressed as

π(ξ) =
[
Π̃1

Π̃2

]

Ωk(ξ) +
[
ε1(ξ)

ε2(ξ)

]

= Π̃Ωk(ξ) + E(ξ),

(31)

where the operator E : Rν → R2 is the truncation
error.

If the truncation error E is ‘ignored’, themappingπ can
be effectively approximated as π ≈ π̃(ξ) = Π̃Ωk(ξ),
i.e. by its expansion on the 2k-dimensional set X k

Ω .
This motivates the following key definition.

Definition 3 The mapping h ◦ π̃ , where π̃(ξ) =
Π̃Ωk(ξ), is the approximated moment of system (12)
at the signal generator (S, L).

With this definition, and following Eq. (22), a family
of reduced models of order (dimension) ν = 2f , for the
WECsystemdefined inEq. (11), can bewritten in terms
of the approximated moment (see Definition 3) as

Σ ≈ Σ̃ :
{

Θ̇ = (S − �L)Θ + � fe,

ỹ = CΠ̃Ωk(Θ),
(32)

parameterised by the design matrix � ∈ Rν .

Remark 17 Note that not only is the family of systems
(32) input-to-state linear, but the user also has full con-
trol over the complexity of the output mapping, i.e. one

can define how ‘complex’ Ωk is by simply adjusting
the number k of harmonics utilised to approximate π

with π̃ . We note that a natural trade-off arises when
selecting k: While a higher value for k implies a bet-
ter approximating mapping π̃ (see also Remark 19), it
also intrinsically increases the complexity of the output
mapping in (32).

Within the proposed framework, the computation of
a reduced system by moment-matching, as defined in
Eq. (32), now boils down to the computation of the
matrix Π̃ , for a given selection of order k in Ωk , i.e.
a given number of harmonic functions associated with
the fundamental frequency ω0 (dictated by the nature
of the input fe). This is specifically addressed in Sect.
5.1.

5.1 A Galerkin-like approach

Aiming to propose a method to compute Π̃ , and
inspired by the family of meanweighted residual meth-
ods [4,14], the following residual mapping r : R2 →
R2 can be defined as

r(Π̃Ωk(ξ)) := Π̃
∂Ωk(ξ)

∂ξ
Sξ − f (Π̃Ωk(ξ), Lξ),

(33)

which directly arises from ‘replacing’ the mapping π

by the approximating function π̃ in Eq. (21).
Following the so-called Galerkin (or spectral)

approach (see, for instance, [41]), which effectively
belongs to the so-called family ofmeanweighted resid-
ual methods [14], the constant matrix Π̃ can be com-
puted by projecting the residualmapping onto the space
spanned by the set of k harmonics of the fundamental
frequency defined by X k

Ω , i.e. the entries of Ωk
Ω(ξ).

In contrast to the ‘traditional’ Galerkin formulation, a
Galerkin-like method is proposed, as detailed in the
following.

LetΩk
0 (t) =∑k

q=1 e
k
q⊗
[
cos(qω0t) − sin(qω0t)

]ᵀ ∈
R2k be a vector containing the 2k canonical harmonic
functions on L2(T ). Then, given a fixed trajectory ξ(t),
the constant matrix Π̃ ∈ R2×2k can be computed by
zeroing the projection of the residual mapping onto the
set spanned by the elements (entries) of the vector Ωk

0 ,
i.e. as the solution of the following algebraic system of
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4k equations:

〈
r(Π̃Ωk(ξ)),Ωkᵀ

0

〉
= 0, (34)

where 〈 〉 denotes the inner-product operator in L2(T ),
as defined in Sect. 1.1.

Remark 18 In the proposed Galerkin-like approach,
the canonical vector Ωk

0 is utilised when projecting the
residual mapping, instead of the entries of Ωk (which
would be the case in a ‘traditional’ Galerkin method
[4]). This substantially simplifies the computation of
the projections involved in (34), which are effectively
inner-product operations in L2(T ). This simplification
is specifically discussed in Sect. 6.1.

Remark 19 The existence of solutions of Eq. (34),
under the hypothesis of Lemma 4, is always guaranteed
for all sufficiently large k [41]. Moreover, the approxi-
mated moment π̃(ξ) = Π̃Ωk(ξ) converges uniformly
towards the exact solution (31) as k → ∞ (see also
[41]).

Remark 20 The system of algebraic Eq. (34) on the 4k
entries of Π̃ , can be computed using state-of-the-art
root finding algorithms, such as those described in, for
instance, [6].

6 Practical aspects and considerations

6.1 Projection of the residual mapping

This section begins by noting that the selection of the
vector Ωk

0 , involved in the projection of the residual
mappingwithin theGalerkin-like approach proposed in
Sect. 5.1, has a very specific purpose, which is detailed
in the following. Recall that the Fourier transform of
a T -periodic function, i.e. a function x ∈ L2(T ), is
always well-defined, and can be computed with the
expression

X (ω) =
∫

T
x(t)e− jωtdt

=
∫

T
x(t) cos(ωt)dt − i

∫

T
x(t) sin(ωt)dt.

(35)

Note that, due to the specific selection of the entries of
Ωk

0 , eachof the inner-product operations involved in the

Galerkin-like method proposed in (34) are, effectively,
either the real or the imaginary parts of the Fourier
transform of the residual mapping r , evaluated at each
of the k harmonics of the fundamental frequency ω0,
i.e. at the set {qω0}kq=1. In other words, the system of

Eq. (34) characterising Π̃ can be equivalently written
as

[�{R(ω0)} �{R(ω0)} . . . �{R(kω0)} �{R(kω0)}
] = 0,

(36)

where R : R → C2 denotes the Fourier transform of
the residual mapping r .

Remark 21 The evaluation of the Fourier transform at
each frequency qω0, can be done both efficiently and
robustly using well-established fast Fourier transform
(FFT) algorithms (see, for instance, [32]).

6.2 Extension to multiple trajectories

Until this point, a single trajectory ξ(t) has been con-
sidered, i.e. a single initial condition ξ(0) for the signal
generator (S, L). In other words, a single input fe(t) =
LeStξ(0) has been taken into account for the compu-
tation of the approximating π̃ . Though this might be
appropriate for some cases, such as, for instance, the
case of WECs under (deterministic) regular wave exci-
tation (further discussed in Sect. 7.1), constraining the
approximation method to a single initial condition can
be limiting for the case of WEC systems subject to
irregular wave excitation. This issue is addressed, for
the Galerkin-like approach of Sect. 5.1, as follows.16

Let ξ(0) ∈ Ξ , where Ξ = {ζi }li=1 ⊂ Rν represents
a set with l initial conditions,17 defined in a neighbour-
hood of ξ = 0. Suppose the pairs of matrices (S, ζi )

are excitable for all i ∈ Nl . Let the vector ξ , generated
as a function of the initial condition ζi , be denoted as
ξζi = eStζi . Then, the Galerkin-like procedure, pro-
posed in Sect. 5.1, can be adapted for the case of mul-
tiple trajectories, where the constant matrix Π̃ , which
completely characterises the approximating mapping

16 The extension tomultiple trajectories presented in this section
is proposed in the spirit of the so-called U /X variation [35].
17 The selection of l depends upon the specific nature of the
WEC input process. This is discussed in detailed in Sects. 7 and
8.
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π̃(ξ) = Π̃Ωk(ξ), is computed in terms of a minimisa-
tion procedure:

min
Π̃∈R2×2k

∥
∥
∥
∥
∥
∥
∥
∥
∥

⎡

⎢
⎢
⎢
⎣

〈
r(Π̃Ωk(ξζ1)),Ω

k
0 (ξζ1)

〉

...〈
r(Π̃Ωk(ξζl )),Ω

k
0 (ξζl )

〉

⎤

⎥
⎥
⎥
⎦

∥
∥
∥
∥
∥
∥
∥
∥
∥

2

F

, (37)

where the inner product operations, for each initial con-
dition ζi , with i ∈ Nl , can be computed using FFT
operations, as detailed in Sect. 6.1.

The minimisation procedure described in Eq. (37) is
effectively utilised both for the case of nonlinear model
reduction by moment-matching for WECs under reg-
ular, and irregular, wave excitation, further discussed
and illustrated in Sects. 7 and 8, respectively.

6.3 Modifications to the mapping Ωk

This section introduces a modification for the vector
valued function Ωk , utilised to approximate the non-
linear moment of system (11) at the signal generator
(15), aiming to ‘simplify’ the description of the output
mapping involved in (22). In particular, one canmodify
the entries of Ωk(ξ) such that only integer exponents
of ξ are required, and a fixed maximum number of har-
monics associatedwith a givenmultiple h pω0, involved
in the definition of the matrix S in Eq. (16), is consid-
ered, for each p ∈ N f . This is explicitly addressed in
the following.

Let kmax
p denote the maximum number of harmonics

of a givenmultiple of the fundamental frequency h pω0,
with p ∈ Nf . Then, the complex-valued mapping ΩC

q
defined inEq. (23),which fully characterises the entries
of Ωk , can be modified as follows:

ΩC
q (ξ) =

f∑

p=1

aqp(γpξ)q/h p , (38)

where the coefficients aqp are defined as

aqp =
{
1 if mod(q, h p) = 0 ∧ q

h p
≤ kmax

p ,

0 if mod(q, h p) �= 0 ∨ q
h p

> kmax
p ,

(39)

andmod : N×N≥1 → Ndenotes themodulooperator.

Remark 22 With the introduction of this set of coef-
ficients aqp, the mapping Ωk only depends on natu-
ral powers involving the entries of ξ , i.e. it becomes
polynomial. In other words, the output of the reduced
model ỹ (32) is always smooth. Note that this modifi-
cation does not pose any loss of generality with respect
to (23) as long as ω0 ∈ F .

To clarify the use and ‘evolution’ of the set of coef-
ficients aqp, for a given signal generator, an illustrative
example is considered in the following. Let the fun-
damental frequency be ω0 = 1 and consider a signal
generator with a dynamic matrix S given by

S =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 3 0 0
0 0 −3 0 0 0
0 0 0 0 0 4
0 0 0 0 −4 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (40)

where, clearly, the set of coefficients H = {h p}3p=1
is given by h1 = 1, h2 = 3 and h3 = 4. Suppose
the maximum number of harmonics associated with
each h p, to compute the vector Ωk , are set to kmax

1 =
10, kmax

2 = 3 and kmax
3 = 2. The coefficients aqp are

illustrated, for this example case, in Fig. 1, with q ∈
N10. Nonzero values of aqp are indicated with a black
dot.

Fig. 1 Coefficients aqp for
the mapping Ωk , for
h1 = 1, h2 = 3 and h3 = 4,
where q ∈ N10. Nonzero
values of aqp are indicated
with a black dot
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6.4 On the eigenvalues of the reduced model

As discussed in Remark 13, the family of reducedmod-
els by moment-matching defined in Eq. (32) is input-
to-state linear. Furthermore, the eigenvalues character-
ising such a system, i.e. the set λ(S − �L), can be
assigned arbitrarily, as a consequence of the observ-
ability of the pair (S, L).

It is proposed to assign such a set of eigenvalues
using information from the Jacobian linearisation of
system (11) about the origin, i.e. the nonparametric
linear Cummins’ equation (20). In particular, one can
estimate a set Λ ⊂ C<0 of ν eigenvalues for system
(20) in terms of the singular value decomposition of the
Hankel matrix Ĥ , constructed from the input-output
frequency-domain data of the WEC (see [10] for fur-
ther detail).

Once this setΛ is obtained, the matrix� can always
be computed such that λ(S − �L) = Λ, due to
the observability of (S, L), using standard algorithms
(such as, for instance, [22]).

7 WEC systems under regular wave excitation

To illustrate the performance of the model reduction by
moment-matching technique presented in this paper, a
clear distinction has to be made, in terms of the nature
of the wave excitation input, i.e. regular or irregular. In
particular, this section analyses a WEC system under
regular wave excitation, assuming two different cases
concerning thewave height: Deterministic and stochas-
tic.

Remark 23 Though the simplistic nature behind regu-
lar waves effectively misrepresents a realistic sea-state,
this type of waves are commonly considered in the
WEC literature to derive results of theoretical inter-
est, providing valuable insight into, for instance, the
underlying dynamics of a floating body. In addition,
note that the analysis provided in this section moti-
vates the methodology proposed for the more complex
irregular wave input case (which effectively represents
a realistic sea-state), described in Sect. 8.

For the remainder of this section, a spherical heaving
point absorber WEC is considered, with a radius of 2.5
[m]. Such a geometry is schematically illustrated in
Fig. 2.

Fig. 2 Spherical heaving point absorberWECconsidered for the
case of nonlinear model reduction under regular wave excitation

The nonlinear mapping fnl, characterising the non-
linear effects present in the nonparametric WEC equa-
tion (11) (alternatively (12)), is assumed to be given,
for this spherical heaving point absorber case, by:

fnl(z, ż) = f nlre (z) + fv(ż),

f nlre (z) = 1

3
ρgπ z3,

fv(ż) = −2ρπ(2.5)2Cd ż|ż|,
(41)

where ρ is the water density, g the gravitational con-
stant, and fv and f nlre represent nonlinear viscous and
hydrostatic restoring effects, respectively.18 The value
for the viscous drag coefficient is set to Cd = 1, fol-
lowing the study on consistency of viscous drag iden-
tification for WECs, performed in [18].

To illustrate the proposed nonlinearmodel reduction
by moment-matching technique for devices under reg-
ular excitation, it is assumed that the WEC is subject
to regular waves with a given frequency ω∗ and height
Hw. As a matter of fact, note that ω∗ is indeed the fun-
damental frequency defined in Sect. 4, i.e. ω0 = ω∗.
Under these conditions, the wave excitation input fe
can be written as,

fe(t) = A∗ cos(ω∗t), (42)

where A∗ = |Ke(ω
∗)| Hw

2 ∈ R+, with Ke : R →
C the Fourier transform of the so-called excitation
impulse response function (see, for instance, [13]). This
input can be clearly generated following Sect. 4, i.e. as
the output of a signal generator, analogously toEq. (15),
characterised by the one-dimensional set F = {ω∗}:
18 Themapping f nlre is geometry dependent and, for the spherical
heaving point absorber case, can be found in, for instance, [25].
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ξ̇ = Sξ =
[

0 ω∗
−ω∗ 0

]

ξ,

fe = Lξ = [1 1
]
ξ,

ξ(0) = [α β
]ᵀ =

[
A∗

2

A∗

2

]ᵀ
.

(43)

A clear distinction is now made with respect to the
nature of the wave height Hw and, hence, the amplitude
A∗ of the excitation signal fe. In particular, if the wave
height is assumed to be fixed and known, then a single
initial condition ξ(0) (as in Eq. (43)) is required to fully
characterise the approximating moment and, hence,
the corresponding reduced-order model by moment-
matching. This case is referred to as deterministic reg-
ular excitation, and is illustrated and discussed in Sect.
7.1. In contrast, if the wave height is only known to lie
within a given set, then a set of multiple initial con-
ditions is required to characterise the corresponding
reduced-order model, by following Sect. 6. This case
is referred to as stochastic regular excitation, and is
illustrated and discussed in Sect. 7.2.

7.1 Deterministic regular excitation

Recall that, for this regular excitation case, the so-called
fundamental frequency ω0 is indeed ω∗. As discussed
previously in Sect. 7, if the wave height is fixed and
known, then a single initial condition ξ(0) is required to
fully characterise the reduced-ordermodel bymoment-
matching, defined inEq. (32). Tobe precise, the compu-
tation of the matrix Π̃ , fully characterising the approx-
imating moment (as in Definition 3), can be computed
using the Galerkin-like approach proposed in Sect. 5.1,
without any further modifications. This case is explic-
itly discussed in the following.

Letω∗ = 0.8 [rad/s],which correspondswith awave
period of approximately Tw = 8 [s], and suppose the
wave height, which characterises the amplitude A∗ of
the wave excitation force, is fixed at Hw = 2 [m].
A nonlinear model, reduced by moment-matching, for
the heaving sphere considered in this section, can be
computed directly from (32) as

Σ ≈ Σ̃ :

⎧
⎨

⎩

Θ̇ =
([

0 0.8∗
−0.8∗ 0

]

− �
[
1 1
]
)

Θ + � fe,

ỹ = CΠ̃Ωk(Θ),

(44)

Fig. 3 Output of both the target nonlinear model (dashed) and
the moment-based reduced-order model (solid), with k = 3

where the mapping Ωk is characterised by Eq. (24),
for a given number of harmonics k of the fundamen-
tal frequency ω∗, and where the matrix Π̃ is com-
puted following Sect. 5.1. Note that the initial condi-
tion ξ(0), involved in the computation of Π̃ , is exactly
as described in Eq. (43). The matrix �, assigning the
eigenvalues of the reduced model (44), is computed
following Sect. 6.4.

Remark 24 Given that only the fundamental frequency
is explicitly present in the definition of the signal gener-
ator (43) and, hence, in the model reduced by moment-
matching defined in Eq. (44), the mappingΩk is, effec-
tively, polynomial (i.e. no fractional exponents of ξ are
required for the regular wave input case).

As an initial assessment of this case study, Fig. 3
illustrates the performance of a nonlinear moment-
based reduced model as in Eq. (44), computed with
k = 3 (i.e. with Ωk including three harmonics of the
fundamental frequency ω∗). In particular, Fig. 3 shows
both the output of the target (dashed) nonlinear model
of theWEC system (11), computedwith a Runge-Kutta
method (time-step19 of 10−4 [s]), where the nonpara-
metric convolution operator is explicitly solved, and
the output of the moment-based reduced-order model
(44) (solid), with k = 3.

It can be readily appreciated that, after the corre-
sponding transient period, the steady-state response of
both target and approximating models are effectively
indistinguishable, by virtue of the inherent moment-
matching feature of the reduced model. To illustrate
the improvement in (steady-state) accuracy for higher
values of k, Fig. 4 shows (in logarithmic scale) the abso-
lute value of the difference between target and approx-
imating output for k ∈ {3, 5, 7}, as a function of time.

19 A small time-step is selected (with respect to the dominant
system dynamics) to guarantee convergence in the benchmark
response.
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Table 1 NMAPE for the moment-based reduction strategy, for
WECs under regular excitation

# of harmonics NMAPE (%)

(Jacobian linearisation) 10.12

k = 3 0.76

k = 5 0.14

k = 7 0.04

In addition, the error corresponding with the output
of the system arising from Jacobian linearisation, i.e.
the linear Cummins’ equation in (20) (which naturally
does not include any information regarding the non-
linear mapping fnl), corresponding with the spherical
heaving point absorber considered in this section, is
also shown. Although, as can be concluded from both
Figs. 3 and 4, selecting k = 3 provides accurate results,
these can be improved by increasing k accordingly.

Aiming to provide a conclusive performance indi-
cator for this regular deterministic wave input case, the
normalised mean absolute percentage error (NMAPE)
is considered, defined as

NMAPE(ỹss) = 100

Ns

Ns∑

i=1

|ỹss(ti ) − yss(ti )|
max{|yss(ti )|} , (45)

where Ns ∈ N≥1 denotes the number of (time-domain)
samples available for the time-traces of the steady-state
target, and approximating output signals yss and ỹss,
respectively. Table 1 shows the NMAPE for the non-
linear moment-based models computed from Eq. (44),
with k ∈ {3, 5, 7}, and that corresponding with the
Jacobian linearisation about the origin, i.e. Eq. (20).
Clearly, a result consistent with that shown in Fig. 4
can be straightforwardly concluded.

7.2 Stochastic regular excitation

Section 7.1 discusses a case study where the amplitude
associated with the regular wave excitation input fe is
exactly known. In other words, a single trajectory ξ(t)
of the signal generator (43), obtained from a unique ini-
tial condition ξ(0), is required to fully characterise the
approximating moment h ◦ π̃ , in terms of the Galerkin-
like approach presented in Sect. 5.1. If the wave height,
characterising the wave excitation amplitude, is only

Fig. 4 Absolute value of the difference between target and
approximating output for k ∈ {3, 5, 7}, as a function of time.
In addition, the error corresponding with the output of the Jaco-
bian linearisation is also shown

known to lie within a certain set, i.e. Hw ∈ H , with
H = [Hmin

w , Hmax
w ] ⊂ R+, then the approximation

of the corresponding nonlinear moment depends on an
infinite number of initial conditions (each for every pos-
sible wave height in the setH ). Note that this stochas-
tic regularwave case is used as a ‘stepping stone’ for the
methodology proposed in the fully stochastic irregular
input case, developed in Sect. 8.

Though an adaptation of theGalerkin-like approach,
proposed in Sect. 5.1, is given in Sect. 6.2 for the mul-
tiple trajectory case, the number of initial conditions is
assumed to be finite. Motivated by this, a worst-case
approach20 is considered in the following: Only the
set of initial conditions Ξt = {ζmin, ζmax} ⊂ R2 are
taken into account for the computation of thematrix Π̃ ,
where ζmin and ζmax correspond with the inputs with
height Hmin

w and Hmax
w , respectively.

Remark 25 From now on, the elements of the set of
initial conditions Ξt , associated with the worst-case
approach described in this section, are referred to
as training initial conditions. Analogously, the tra-
jectories generated as a function of the set Ξt , i.e.
{ξζmin, ξζmax}, are referred to as training trajectories.

Note that the set of training initial conditions can be
computed analogously to Eq. (42), i.e.

20 The approach presented herein is simply one possibility: The
user is free to select a finite set of initial conditions using different
methods, according to specific application requirements.
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ζmin =
[
A∗
1

2

A∗
1

2

]ᵀ
, A∗

1 = |Ke(ω
∗)|H

min
w

2
,

ζmax =
[
A∗
2

2

A∗
2

2

]ᵀ
, A∗

2 = |Ke(ω
∗)|H

max
w

2
.

(46)

For this case study, it is assumed that Hmin
w = 1.6

[m] and Hmax
w = 2.4 [m], i.e. the actual value of the

wave height can vary ± 20% of the nominal value
Hw = 2 [m], adopted in Sect. 7.1. The approximat-
ing moment is then computed as detailed in Sect. 6.2,
for the set of training trajectories Ξt , and where, in the
light of the results computed for the deterministic case
of Sect. 7.1, the number of harmonics involved in the
definition of Ωk is set to k = 5. Figure 5 illustrates
the output of the nonlinear moment-based reduced-
order model (in steady-state, solid), for the inputs cor-
respondingwith the training trajectories ξζmin and ξζmax .
The target outputs, computed from system Σ in (11)
using a Runge-Kutta method with a time-step of 10−4

[s] (as in Sect. 7.1), are denoted with a dashed line.

Remark 26 Note that, as expected from the method
proposed in Sect. 6.1, the performance of the approx-
imating outputs for the training trajectories ξζmin and
ξζmax , is not as accurate as in the deterministic case
presented in Sect. 7.1. In particular, the latter is fully
characterised by a single trajectory ξ , and the approxi-
mating moment can be computed with the Galerkin-
like approach proposed in this paper, with an arbi-
trary degree of precision (facilitated by an appropri-
ate selection of k in the mapping Ωk). When multiple
trajectories for the signal generator (S, L) are consid-
ered, a minimisation approach is utilised, where a sin-
gle matrix Π̃ is computed to characterise the approx-
imating moment h ◦ π̃ for all the training trajectories
involved, hence providing a more versatile reduced-
order model (i.e. valid for a larger class of inputs) but,
naturally, with a corresponding loss in performance.

To illustrate the performance of the moment-based
reduced model computed in this section, a set of 1000
randomly generated realisations of regular wave inputs
with wave heights in the set [1.6, 2.4] [m], is consid-
ered. In particular, Fig. 6 shows the NMAPE (com-
puted as in Eq. (45)) for eachwave realisation involved.
Note that the averageNMAPEvalue is NMAPE ≈ 3%,
and the maximum error registered is of ≈ 4%. In other
words, using the methodology proposed in this section
for the selection of an appropriate set of training tra-
jectories to compute the approximating moment, the

Fig. 5 Output of the nonlinear moment-based reduced-order
model (in steady-state, solid), for the inputs corresponding with
the training trajectories ξζmin and ξζmax . The target outputs are
denoted with a dashed line

Fig. 6 NMAPE for 1000 realisations of regular wave inputs
with Hw ∈ [1.6, 2.4] [m]. The average value NMAPE ≈ 3% is
denoted with a horizontal black line

reduced-order model by moment-matching (44) is able
to successfully approximate the behaviour of the target
nonparametric WEC system Σ , for regular wave exci-
tation inputs with varying (stochastic) wave height.

8 WEC systems under irregular wave excitation

Thecaseofmodel order reductionbymoment-matching
for irregular sea states has a number of distinctive fea-
tures with respect to the regular wave excitation cases
discussed in Sect. 7, which, unless addressed appro-
priately, can substantially compromise the synthesis of
such a nonlinear reduced structure. To be precise, irreg-
ular ocean waves are commonly represented in terms
of a stochastic model: given a fixed location in space,
the time series of a wave corresponds with a spectral
density function (SDF) Sw : R → R, ω �→ Sw(ω),
characterising (stochastically) the behaviour of ocean
waves at this specific location. Examples of widely-
used (semi-empirical) SDFs are the JONSWAP spec-
trum [19], for wind-generated seas with fetch limita-
tions, the Bretschneider spectrum [5] for developing
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seas, and the Pierson-Moskowitz spectrum [31], for
fully-developed seas.

That said, in this irregular wave input scenario,
height and period are not exactly known, but only
knowledge of the so-called significant wave height H̄w

and peak period T̄w are commonly available, for a given
stochastic sea-state characterisation in termsof a partic-
ular SDF. This clearly has several implications, both on
the definition of the signal generator characterising the
wave excitation effect (as in Eq. (16)), and the method-
ology involved in the computation of the approximat-
ing moment. These implications are addressed and dis-
cussed in the following subsections.

8.1 On the definition of the signal generator

Recall that the signal generator (16) is composed of f
harmonics of a fundamental frequency ω0, i.e. the set
F = {h pω0}f

p=1, with H = {h p}f
p=1 ⊂ N≥1, and

where h1 < · · · < hf . Though this assumption is, in
principle, not restrictive (see [24]), an accurate repre-
sentation of wave excitation effects potentially requires
both a sufficiently small fundamental frequencyω0, and
a sufficiently large number of harmonics f . This, in turn,
has the following consequences:

(1) A small fundamental frequency implies that the
projection, involved in the Galerkin-like procedure
proposed to compute the approximating moment,
has to be performed on a larger time interval T =
[0, 2π/ω0]. Though this can be still performed effi-
ciently using FFTs (see Sect. 6), it can also increase
the computational complexity involved in the solu-
tion of the projected residual equation (34).

(2) A large number of harmonics f in the definition of
the signal generator (16) directly affects the com-
plexity of the resulting reduced model by moment-
matching: the order (dimension) ν of the family of
reduced-ordermodels achievingmoment-matching
(32) depends linearly on f .

The issue discussed in item (1) above, can be easily
overcome by a sensible selection of the fundamental
frequency, which should take into account the partic-
ular sea state under analysis (further discussed in the
case study provided in this section). Item (2) above can
be overcome in the spirit of the linear moment-based
technique for WECs proposed in [9,28]: Only a set of
dynamically relevant frequencies should be selected

to represent the wave excitation effects and, hence,
to characterise the corresponding reduced-order model
by moment-matching. As demonstrated in [9,28], this
set, for the WEC case, includes the resonant frequency
associated with the linearised behaviour of the WEC
system (i.e. the frequency characterising the H∞-norm
of the linearised system, see [44]), and the peak fre-
quency characterising the input SDF, i.e. ω̄w = 2π/T̄w.

8.2 On the definition of the set of training trajectories

Given the stochastic nature of the wave process, and
once the set of frequenciesF involved in the definition
of the corresponding signal generator is selected (fol-
lowing Sect. 8.1), a method to choose a set of training
trajectories is required, similarly to the case discussed
in Sect. 7.2.

Inspired by the worst-case approach defined for the
case of regular wave excitation with stochastic height,
the following procedure is proposed. Recall that every
initial condition ξ(0) can be written as in Remark 9, i.e.
in terms of a set of coefficients {αp, βp} fi=1 ⊂ R, asso-
ciated to each harmonic h pω0 involved in the definition

of the signal generator. Let Ap =
√

α2
p + β2

p ∈ R+,
with p ∈ Nf , be a set of positive real-valued ‘ampli-
tudes’ associated with21 each harmonic h p. Then:

– Generate a random set of Nt ∈ N≥1 initial con-
ditions Ξ = {ζi }Nt

i=1 (i.e. wave inputs), according
to the SDF Sw characterising the sea state under
analysis.

– Compute the set Ap = {Ai
p}Nt

i=1, with p ∈ Nf ,
for each randomly generated initial condition ζi ,
where Ai

p denotes the amplitude associated with
the harmonic h pω0.

– Select the set of initial conditionsΞt that maximise
and minimise each Ap, denoted as ζmin

p and ζmax
p ,

for every p ∈ Nf . Note that this automatically
implies that 2f initial conditions are selected (one
amplitude maximiser and one minimiser for each
harmonic h p involved in the definition of the signal
generator).

– Compute the set of training trajectories using Ξt ,
directly from the definition of the signal generator
(15), i.e. the set {ξζmin

p
, ξζmax

p
}f
p=1.

21 The use of the term ‘amplitude’ for Ap is justified in Remark
27.
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Fig. 7 Spherical heaving
point absorber WEC layout
considered for the case of
nonlinear model reduction
under irregular wave
excitation

Remark 27 The method proposed in this section is
indeed analogous to the worst-case approach proposed

in Sect. 7.2: Note that the value Ap =
√

α2
p + β2

p cor-

responds to the absolute value of the complex number
(αp + jβp)eh pω0t , which characterises the entries of
the trajectory ξ(t) associated with the harmonic h pω0

(see Remark 9). In other words, the method outlined in
this section retains, as training trajectories, only those
trajectories associated with the maximum and mini-
mum input amplitudes, for each harmonic h pω0, with
p ∈ Nf .

8.3 Numerical study

For the remainder of this numerical study of nonlinear
model reduction by moment-matching, under irregu-
lar wave excitation, an array of two identical spheri-
cal heaving point absorber WECs is considered, each
device with a radius of 2.5 [m] (as in Sect. 7), in the
layout configuration presented in Fig. 7. The distance
between devices is set to one diameter, i.e. d = 5 [m].

The nonlinear mapping fnl, characterising the non-
linear effects for this WEC system, is given by:

fnl(z, ż) =
[
f nlre (z1) + fv(ż1)
f nlre (z2) + fv(ż2)

]

, (47)

where the mappings f nlre and fv are defined as in Eq.
(41), and where z1 : R+ → R and z2 : R+ → R
denote the displacement of device 1 and 2, respectively.

Remark 28 Note that the WEC system, presented in
the layout of Fig. 7, can be regarded as a single-input
system: Given the direction of the incident waves, and
the underlying symmetry of the layout, the wave exci-
tation force experienced by both devices is indeed the
same. In other words, the single-output signal genera-
tor defined in Eq. (15) can be utilised to describe fe. In

Fig. 8 SDF corresponding with a JONSWAP spectrum utilised
to generate the wave input

addition, from now on, the velocity of device 1, i.e. ż1,
is selected as target output.22

The numerical generation of the irregular input
waves, for this case study, is fully characterised by a
JONSWAP spectrum with H̄w = 2 [m] and T̄w = 8
[s]. The so-called peak enhancement factor [19] is set
to γ = 3.3. The corresponding SDF Sw is that illus-
trated in Fig. 8.

Following Sect. 8.1, and given the specific SDF
selected for the generation of numerical waves, the
fundamental frequency is set to a value of ω0 = 0.1
[rad/s], which facilitates a sufficiently accurate repre-
sentation of the wave process for the synthesis of the
corresponding reduced-order model, as demonstrated
in the remainder of this section. In addition, the sig-
nal generator involved in the definition of the reduced
model by moment-matching, i.e. Eq. (15), is char-
acterised with the set of frequencies F = {0.8, 2},
where, given the selection of ω0 = 0.1 [rad/s], the set
H = {h1, h2} = {8, 20}.
Remark 29 Note that, as discussed in Sect. 8.1, the
selection of the setF is not arbitrary: 0.8 [rad/s] repre-

22 This is considered to simplify the case study, and focus on the
performance of the nonlinear reduction technique.
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sents the frequency corresponding with the peak char-
acterising the wave input SDF (see Fig. 8), while 2
[rad/s] is the frequency characterising the H∞-norm
of the Jacobian linearisation of the WEC system, i.e.
the resonant frequency corresponding to heave motion.

Remark 30 With the selection of frequencies in the
set F , the order (dimension) of the reduced model by
moment-matching (as in Eq. (32)) is ν = 2f = 4.

Remark 31 Thegeneration ofwaves for the assessment
of the proposed strategy, i.e. in the simulation stage, is
naturally performed using both a smaller value of ω0,
and a higher number of harmonics, than those specified
in the signal generator used to synthesise the moment-
based reduced model. This is specified and detailed in
the following paragraphs.

Once the set F is defined, the set of training tra-
jectories, utilised to compute an approximation of the
moment of the WEC system at the signal generator
(S, L), is obtained following Sect. 8.2. In particular,
a set of Nt = 50 random initial conditions is con-
sidered23 to compute the sets A1 = {Ai

1}50i=1 and
A2 = {Ai

2}50i=1, associated with the harmonics corre-
sponding with h1 = 8 (0.8 [rad/s]) and h2 = 20 (2
[rad/s]), respectively. These sets are illustrated in Fig. 9,
where the maximum and minimum values for each set
A are denoted using the black color.

With the result presented in Fig. 9, one can com-
pletely characterise the set of training trajectories , i.e.
the set of trajectories {ξζmin

1
, ξζmax

1
, ξζmin

2
, ξζmax

2
} ⊂ R4.

Finally, aiming to retain the output mapping, charac-
terising the reduced model by moment-matching, in a
polynomial form (analogously to the case of regular
input waves discussed in Sect. 7), the mapping Ωk ,
utilised to compute the approximating moment h ◦ π̃ ,
is chosen as described in Sect. 22. In particular, the
maximum number of harmonics associated with each
frequency in the setF is set to kmax

1 = 5 and kmax
2 = 3,

i.e. 5 and 3 harmonics associated with the frequencies
0.8 [rad/s] and 2 [rad/s], respectively. Analogously to
the regular input case with stochastic height of Fig. 5,
the steady-state output of the nonlinear moment-based
reduced-order model computed in this section, for the
inputs corresponding with each training trajectory, is
shown in Fig. 10 (solid). The target outputs, for each
corresponding training trajectory, are computed from

23 Computed randomly according to the SDF of Fig. 8.

the nonparametric WEC system Σ (as in Eq. (11)),
with a Runge-Kutta method (time-step of 10−4 [s]),
and can be appreciated in Fig. 10 with dashed lines.

To begin with the assessment of the resulting
reduced-order model by moment-matching, Fig. 11
presents results for a particular (randomly generated24)
sea state realisation, where the input waves, considered
for this simulation stage, are computed using a funda-
mental frequency ω0 = 0.01 [rad/s] and 400 harmon-
ics (i.e. with a so-called cut-off frequency of 4 [rad/s]).
As can be directly appreciated from Fig. 11, the out-
put of the reduced-order model by moment-matching
(solid) is effectively able to approximate the target out-
put (dashed), even during the transient period. Note
that the output corresponding with the Jacobian lineari-
sation about the origin, i.e. linear Cummins’ equation
(20) for the analysedWEC system, is also shown, using
a dotted line. A significant overprediction of veloc-
ity can be appreciated by the linear model, potentially
leading to an overprediction of power production. The
NMAPE, computed as in Eq. (45) for 100 [s] of sim-
ulation time (as shown in Fig. 11), is ≈ 4.6% for the
nonlinear reduced model computed in this section, and
≈ 40% for the case of the Jacobian linearisation.

A more detailed characterisation of the approxima-
tion error can be appreciated in Fig. 12, where the abso-
lute value of the difference between target and approxi-
mating output is shown, for both the reduced model by
moment-matching, and the output arising from Jaco-
bian linearisation.

To provide a conclusive illustration of the capabili-
ties and performance of the moment-based model, the
NMAPE for a set of 100 random realisations of wave
inputs, according to the JONSWAP spectrum consid-
ered (see Fig. 8), is explicitly shown in Fig. 13. Note
that the mean NMAPE is NMAPE ≈ 4.5%, with any
individual errors always below 6%, effectively show-
ing the capabilities of the moment-based strategy, pre-
sented in this paper, to approximate the behaviour of a
nonlinearWEC system under stochastic irregular wave
excitation.

Remark 32 (On potential changes in the sea-state
description) Note that, in general, there is no guar-
antee that a reduced model computed according to a
specific sea-state description is still representative in a
different input condition. While it is expected that the

24 The methodology employed herein uses random amplitudes.
The reader is referred to [24] for further detail.
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Fig. 9 Sets of amplitudes A1 = {Ai
1}50i=1 and A2 = {Ai

2}50i=1, associated with the harmonics corresponding with h1 = 8 and h2 = 20,
respectively

Fig. 10 Output of the nonlinear moment-based reduced-order model under irregular wave excitation (in steady-state, solid), for the
inputs corresponding with each training trajectory. The target outputs are denoted with a dashed line

reduced structure is well-behaved for reasonable small
variations in the nature of the sea-state, the user is rec-
ommended to re-compute a reduced model in such a
situation, according to the updated input description.

Finally, and aiming to assess the computational fea-
tures of the nonlinear moment-based reduced model
computed in this section, Fig. 14 shows:

(A) Normalised run-time25 for a parametric nonlin-
ear model of the WEC system, where the convo-

25 Ratio between the time required to compute the output of
each correspondingmodel, and the length of the simulation itself.
The computations are performed using Matlab®, running on a
PC composed of an Intel Core i7-5550U processor with 8GB of
RAM.

Fig. 11 Output of the reduced-order model by moment-
matching (solid) and target motion (dashed), for a randomly
generated sea-state realisation, with SDF as in Fig. 8. The output
corresponding with the Jacobian linearisation about the origin is
also shown, using a dotted blue line

lution operation associated with radiation forces
is replaced with a reduced-order model (in state-
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Fig. 12 Absolute value of the difference between target and
approximating output, for the case of irregular wave excitation.
The error corresponding with the output of the Jacobian lineari-
sation is also shown

Fig. 13 NMAPE for 100 realisations of irregular wave inputs
according to the SDF presented in Fig. 8. The average value
NMAPE ≈ 4.5% is denoted with a horizontal black line

space) of order 8, following the linear moment-
based strategy presented in [9] using the same fre-
quency interpolation set considered in this section,
i.e.F = {0.8, 2} [rad/s].

(B) Normalised run-time for the nonlinear reduced
model by moment-matching computed as detailed
in this section.

Remark 33 Note that for case A), detailed above, no
‘nonlinear model reduction’ takes place, but only the
linear convolution term is replaced with a state-space
form to alleviate the computational requirements of the
convolution itself (see also Remark 1).

It can be readily appreciated that the reduced non-
linear model, presented in this paper, computes in an
order of magnitude faster than the original parametric
model, which can be attributed to two main features.
Firstly, a smaller order (dimension) is required to rep-
resent the behaviour of the WEC system, which effec-
tively leads to faster computations. Secondly, andmore
importantly, the input-to-state dynamics are linear, and
only the output mapping presents nonlinear behaviour
(which is static). In other words, the main computa-
tional cost behind the moment-based reduced model

Fig. 14 Normalised run-time for a parametric nonlinear model
of the WEC system (circles, upper trace), where the convolution
operation is replacedwith a reduced-ordermodel (in state-space),
and for the nonlinear reduced model by moment-matching com-
puted as detailed in this section (diamonds, lower trace). Mean
values are indicated with black horizontal lines

is simply solving a set of first order linear ordinary
differential equations. This feature is indeed appealing
from a control/state-estimation perspective, where both
efficient and precise models are required.

9 Conclusions

This paper presents a nonlinearmodel reduction frame-
work for wave energy applications, based on moment-
matching techniques,which inherently preserve steady-
state response characteristics. This is, to the best of the
authors’ knowledge, the first truly systematic nonlinear
model reduction technique proposed in thewave energy
field. The first contribution of this study concerns the
proof of existence and uniqueness of the correspond-
ing nonlinear moment for the nonparametricWEC sys-
tem Σ . Secondly, and given the intrinsic necessity of
an analytic expression for the corresponding nonlinear
moment, a consistent approximation method is pre-
sented, by a suitably defined family of functions, in
terms of aGalerkin-likemethodology. Practical aspects
behind this approximation framework are given and
discussed, including the connection (and use) of well-
established algorithms, to efficiently compute such an
approximating moment.

The family of nonlinearmodels reduced bymoment-
matching proposed in this paper is inherently paramet-
ric (given specifically in state-space form), and input-
to-state linear, with any nonlinear behaviour confined
to the output mapping only. Moreover, given the nature
of the Galerkin-like method proposed to approximate
the correspondingmoment, the user canmanipulate the
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degree of complexity of this nonlinear output mapping,
hence having full control of the underlying character-
istics of the reduced structure, generating a continuum
of models with varying NMAPE/complexity tradeoff.

Two different model reduction cases are clearly
defined, in terms of the nature of the input: model
reduction of nonlinear WEC systems under regular,
and irregular, wave excitation. For WECs under reg-
ular wave excitation, both deterministic and stochastic
wave height cases are considered. In the deterministic
case, the wave height is assumed to be known, and the
approximating moment can be characterised in terms
of a single trajectory associated with the correspond-
ing signal generator. For the stochastic case, the wave
height is only assumed to lie within a certain (given)
set, which directly implies that, in principle, an infi-
nite number of inputs needs to be considered within the
approximation process. In the light of this, a worst-case
approach is proposed to select a finite set of so-called
training trajectories, representing the ‘limit’ cases asso-
ciatedwith the set of heights. Case studies are presented
for both deterministic and stochastic cases, in terms of a
spherical heaving point absorber WEC, including both
nonlinear viscous, and hydrostatic restoring effects. It
is shown that the nonlinearmodels reduced bymoment-
matching, can successfully approximate the nonlinear
target WEC system Σ , with a NMAPE always below
4%, clearly showing the capabilities of the strategy.

For the case of irregular waves, given the (fully)
stochastic nature of the wave input, methods are pro-
vided to select the characteristics describing the wave
excitation effects, both in terms of the fundamental fre-
quency, and the harmonics required in the definition of
the signal generator. In addition, and analogously to the
stochastic regular input case, a methodology to select
a set of training trajectories is provided, also based on
a worst-case approach. A numerical case study is pro-
vided, considering a WEC system composed of two
heaving point absorber devices, presenting nonlinear
behaviour (nonlinear viscous and hydrostatic restoring
effects). The average NMAPE for this case study is
≈ 4.5%, effectively showing the capabilities of the
proposed moment-based strategy to approximate the
behaviour of a nonlinear WEC system under stochas-
tic irregular wave excitation. Finally, a study on the
normalised run-time is provided, showing that the pre-
sented strategy computes in an order of magnitude
less than when solving the nonlinear Cummins’ equa-
tion (11) with a state-space description approximating

the nonparametric (convolution) terms. This signifi-
cant reduction in computational complexity, formodest
NMAPE values, gives the obtained models capabilities
to be used in design and synthesis of real-time WEC
controllers, hence directly contributing in the roadmap
towards WEC commercialisation.
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