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a b s t r a c t

The neural baroreflex, which regulates mean arterial pressure (MAP) via the action of the

brain, consists of baroreceptors which measure MAP, and actuators that can produce a

change in MAP, such as the heart and parts of the peripheral resistance containing

innervated smooth muscle. The brain is the controlling unit, maintaining an appropriate

MAP in spite of various disturbances. Under certain circumstances, including haemorrhage

and other states of distress, the gain of the neural baroreflex can change, causing low

frequency (LF) oscillations (sometimes termed Mayer waves) in blood pressure (BP). Though

their purpose is unclear, the origins of these LF oscillations has previously been explained

via a nonlinear feedback model, though focusing on the peripheral resistance as an MAP

actuator only. The present paper now includes analytical and simulation results explaining

the LF oscillation phenomenon for the full neural baroreflex, containing both peripheral

resistance (PR) and cardiac branches. However, the main contribution of the paper is to

examine the effect of blood pulsatility, or a lack of pulsatility, on the neural baroreflex, and

how it's effect can manifest in the presence of LF oscillations. This may have importance in

cases where pulsatility is reduced (for example where left-ventricular assist devices are

present), or completely absent (for example in turbine-based artificial hearts).
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1. Introduction

The human body displays a variety of oscillatory phenomena,
many related to the necessary natural means by which flow (of
both air and fluids) can be generated. In particular, the
rhythms of respiration and blood flow are well known and
understood, though some rhythms are less so, for example the
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low frequency (LF) oscillations in blood pressure (BP), often
termed Mayer waves [1], occurring at roughly 0.1 Hz in
humans. It should be noted that the frequency of this LF
oscillation is species dependent, occurring at roughly 0.3 Hz in
rabbits and 0.4 Hz in rats [2].

Since we use the same inlet and outlet pathway for breath,
it makes sense that a reciprocating (oscillating) flow is
employed. However, in the case of the closed-cycle circulatory
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system, there is a choice between a turbine-type pump and a
pulsatile pump. Pulsatility in blood flow is something that we
take for granted in healthy humans and animals, and is an
inevitable consequence of nature's relative difficulty in
synthesising a turbine-type heart, with Moazami et al. [3]
contending that ‘‘evolution has favored a pulsatile heart pump
to be able to deliver the maximum flow at different levels of
systemic vascular resistance, confer kinetic energy to the flow
of blood past areas of stenosis and generate low shear stress on
blood elements’’. Thus, we may imagine that blood flow (and
pressure) pulsatility is an unavoidable 'side effect' of an
inability to synthesise a constant-flow pump. However, some
evidence now suggests that pulsatility may have an important
function in maintaining perfusion to ensure that there is an
adequate supply of oxygen and nutrients to vital organs. For
example [4] demonstrates that when a subject was dependant
on a non-pulsatile heart, the perfusion to a number of
capillaries was reduced significantly, but not restored to some
capillaries when pulsatility was recovered.

In the case where healthy hearts become diseased or lose
some of their pumping potential, patients may be fitted with
an artificial heart, or left-ventricular assist device (LVAD).
Given the artificial nature of these devices, there is a choice as
to the use of pulsatile- or continuous-flow designs. In general,
turbine-based models are favoured, motivated by the short
lifetime and large abdominal cavity required by comparable
pulsatile devices [5]. While the benefits of continuous-flow
devices are also demonstrated by improvements in patient
outcomes [6], there is still some concern regarding the long
term physiological effects of diminished blood flow pulsatility.

To some extent, the effect of LVAD insertion on LF
oscillations has been considered in the literature, with Cooley
et al. [7] show that the presence of an LVAD significantly
increases the presence of LF oscillations in R-R interval. While
not specifically addressing the issue of LF oscillations, the
studies in [8,9] examine broader aspects of non-pulsatile vs.
pulsatile blood flow.

Other models for the neural baroreflex, combining both
resistance and cardiac branches have been proposed, but
employ different analytical tools, and pursue different
objectives. For example, [10] employs cross-recurrence analy-
sis to examine the coupling between heart-rate and vascular
sympathetic tone, while [11,12] examine heart-rate variability
for chaotic behaviour. The model of [13] is used to examine the
effect of disease on cardiovascular autonomic regulation, and
[14] examines the haemodynamic response to blood volume
perturbations.

The studies in [15] and [16] are among the very few to give
consideration to the role of pulsatility within the baroreflex
loop. The baroreflex model of Ursino [15] includes a compre-
hensive circulatory model, with both sides of the heart
simulated. It also models heart pulsatility, and provides
simulation results and comparative experimental results,
but conclusions relating baroreflex characteristics to pulsati-
lity are limited to static loading cases. The study in [16] also
considers pulsatility, but models pulsatility simply as a ramp
signal, and considers the effect of pulsatility on the baroreflex
in a qualitative, rather then quantitative way.

This paper, through the development of a mathematical
baroreflex model, combined with analysis techniques from
the control sciences, examines the role of pulsatility in
moderating the neural baroreflex and, inter alia, shows a
relationship between BP pulsatility and LF (Mayer) waves. In
particular, the analysis in the paper shows that, with reduced
or absent pulsatility, baroreflex gain may significantly increase
with potential consequences for long-term healthy BP
dynamics. The analysis in the paper also shows that the
increase in baroreflex gain is also generally accompanied by
an increase in incidence of LF oscillations [17], which can
potentially be used as a surrogate diagnostic tool for
baroreflex gain.

This paper extends the work reported in a number of
previous publications, notably [2], which examine the condi-
tions under which LF oscillations take place, but only consider
the peripheral resistance (PR) baroreflex. [18] considers both PR
and cardiac branches, but ignores both BP pulsatility and
arterial compliance. [19] articulates the effect of pulsatility on
the baroreflex gain, but uses a simplified model of the
baroreflex, containing only the PR loop and also ignores
arterial compliance. Finally, [20] includes both cardiac and PR
branches, along with pulsatility, but omits arterial compliance.
The results in [20] are exclusively simulation based. In
contrast, the current paper has a comprehensive model for
the neural baroreflex, containing both cardiac and PR
branches, includes arterial compliance and pulsatility, and
develops an analytical solution for the presence of LF
oscillations, which is shown to have a solution consistent
with results from computer simulation of the model, and also
those determined experimentally [21]. Furthermore, we
include an analysis which examines the relative importance
of individual cardiac (sympathetic and parasympathetic)
branches and peripheral resistance branches in mediating
LF oscillations. This is performed both through an analytical
sensitivity analysis and simulation.

2. Materials and methods

2.1. The neural baroreflex

In essence, the neural baroreflex activates smooth muscle in
the peripheral resistance, and modulates heart rate, in
response to disturbances in mean arterial pressure (MAP) or
metabolic needs. In order to provide a feedback mechanism,
BP is measured in the aortic arch and the carotid sinus, with
the central nervous system (CNS) using these measurements
to provide an appropriate control signal to the BP 'actuators'
i.e. the PR and heart, via sympathetic and parasympathetic
pathways. In our analysis, we assume that a notional MAP set
point is present in the CNS [22], which may be varied,
depending on metabolic needs, etc. We also assume that
conduction velocity (dromotropy), contraction (inotropy), and
relaxation (lusitropy) have more minor effects than cardiac
rate (chronotropy), though they are also mediated through
sympathetic and parasympathetic neural control [23].

The complete neural baroreflex model [18] is illustrated in
Fig. 1, highlighting the baroreceptors, CNS, heart, peripheral
resistance and arterial compliance [24] subsystems. The model
is parameterised for a New Zealand white rabbit. Note that,
while it is beyond the scope of this paper to provide overall



Fig. 1 – The neural baroreflex, containing both peripheral resistance and cardiac branches. P denotes the blood pressure
pulsatility component.

Table 1 – Time delays for baroreflex model [25].

tpc tsc tsr ta

0.3 0.8 0.85 0.5

Fig. 2 – Generic tanS1( ) function related to (2), used to
parameterise steady state response of baroreflex to
deviations in BP from set point, validated against
experimental data in [27].
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model validation with experimental data, each validated
model component has been taken from a reliable source.

2.1.1. Baroreceptors
The baroreceptors are simply modelled as a nerve conduction
delay of ta (see Table 1), which also includes the afferent nerve
delay [25]. Some researchers [26] have suggested that the
baroreceptors may have high-pass frequency characteristics,
though it is not entirely clear whether such characteristics are
due to the baroreceptors themselves, or the CNS, since typical
experiments measure the response in sympathetic nerve
activity (SNA) to baroreceptor activation. In any event, the CNS
block in our model contains a lead/lag component, articulating
both high-pass and low-pass characteristics.

2.1.2. CNS
As discussed in Section 2.1.1, the CNS contains a lead/lag
component GCNS(s) [18], shown in Eq. (1), along with a variable
gain Kc. Kcmay vary, depending on physiological condition (e.g.
stress, haemorrhage, etc.), leading to the onset, or disappear-
ance of LF oscillations in MAP.

GCNSðsÞ ¼ 1:33s þ 1
s þ 1

(1)

The CNS also contains the activation characteristics, fpc, fsc,
and fsr which articulate the nonlinear steady-state response of
parasympathetic cardiac (pc), sympathetic cardiac (sc) and
sympathetic peripheral resistance (sr) nerve signals, respec-
tively, to deviations in MAP away from the set point, BPset. fpc,
fsc, and fsr are all sigmoidal in form (see Fig. 2), each
parameterised with a tan�1( ) function [27,28]:

f ðxÞ ¼ h tan�1ðbðx � x�ÞÞ þ y�; (2)
with parameters as shown in Table 2. Note that, in Table 2, no
x* value is given. Given that we utilise a set point, the base
(homeostatic) condition will be that the BP error will be zero
(i.e. x * =0), with the y* values therefore setting the baseline
tone of sympathetic and parasympathetic activity.

2.1.3. Heart
The inputs to the heart block are the sympathetic and
parasympathetic cardiac signals from the CNS, with the
output being blood flow rate. Separate dynamics operate on
the sympathetic (Gsc) and parasympathetic (Gpc) channels [18],
via:



Table 2 – Parameters for nonlinear static baroreflex
characteristics arctan parameters [18].

Baroreflex Branch b h y*

Parasympathetic cardiac (pc) �0.1342 42.5 65.5
Sympathetic cardiac (sc) 0.035 30 42.5
Sympathetic resistance (sr) 0.04 29 185

Fig. 3 – 2-element Windkessel model.
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GpcðsÞ ¼ kpc
1

1:22s þ 1
; (3)

GscðsÞ ¼ ksc
1

1:29s2 þ 1:29s þ 1
; (4)

where kpc = 0.148 and ksc = 0.181, while there are also nerve
conduction delays of tsc and tpc in the sympathetic and para-
sympathetic channels, respectively (see Table 1). The heart
rate has been determined as a nonlinear function of both
sympathetic and parasympathetic signals [29,30] from data
recorded by Kawada et al. [31] and has been linearised [18] to
the following affine function:

gðUp; UsÞ ¼ f h ¼ kpUp þ ksUs þ f o (5)

where ks = 0.88, kp = �1.2 [18], and fo = 220 [32] denotes the base
heart rate, with value fh = 215 beats/min for a rabbit. Finally,
blood flow, qb, is determined from

qb ¼ f hVh (6)

where Vh is the heart stroke volume, given as 0.51 cc per kg of
body weight, mr [33], where mr = 2.9 kg [34].

2.1.4. Peripheral resistance
The modelled peripheral resistance subsystem focuses exclu-
sively on the neural control of PR, above a base resistance of r*
(taken as r * =0.16 mmHg/(ml/min) [35]). Hormonal, metabolic,
myogenic and paracrinal effects are ignored, given the short
timescale of PR effectors considered in this study, and a single
branch is used to represent the aggregated effects of
innervated resistance in the kidney, muscles, gut, and skin.
A sympathetic nerve conduction delay of tsr (see Table 1) is
included in the PR branch, as well as a dynamic block, Gsr(s) [34]
relating the response in PR to SNA:

GsrðsÞ ¼ kr
11s2 þ 6:64s þ 1

4:27s4 þ 21s3 þ 36s2 þ 22s þ 1
(7)

where kr = 0.0005.

2.1.5. Arterial compliance
Arterial compliance is modelled using a first-order Windkessel
model [24] containing resistive (Rp denoting total PR) and
capacitive effects, as shown in Fig. 3, and effectively
dampening the pulsatile effects of blood flow, due to its
low-pass frequency characteristics. A value of C = 0.000171
g�1 cm4 s2 [24] was employed.

Considering that Rp is a variable, but appears as a parameter
of the Windkessel model, it is potentially problematic from an
analytical viewpoint, so an approximation will be employed in
Section 2.2.1.

2.2. Model simplification

One of the main aims of this study is to develop a set of
analytical conditions for LF oscillations in the baroreflex. To
this end, it is important to have a compact and system-
oriented description of the system, and one which, ideally,
places the system firmly within the framework of linear time-
invariant (LTI) analysis. This, inter alia, requires that the
external pulsatile signal be absorbed into a system-type
description, and that an effective linearised, but amplitude
dependent (describing function), approximation be employed
for representation of the nonlinear characteristics fpc, fsc, and
fsr. Furthermore, the parametric variation in the Windkessel
model is also simplified, to aid analysis.

2.2.1. Arterial compliance
A significant difficulty with the arterial compliance model,
from an analysis perspective, is that the subsystem currently
belongs to the class of linear parameter-varying (LPV) systems.
In particular, the relationship between qb and BP is:

BPðsÞ
qbðsÞ

¼ GcðsÞ ¼ RpðtÞ
1 þ RpðtÞCs (8)

where Rp(t) is a time varying parameter of the system. It is
possible to retain the essence of the effect of a varying Rp by
using the true value of Rp in the numerator of (8), while using a
constant (mean) value, Rp in the denominator of (8):

BP0ðsÞ
pbðsÞ

¼ G0
cðsÞ ¼ 1

1 þ RpðtÞCs
; (9)

where pb is the MAP signal derived from the classic Ohm's law
relationship, excluding compliance, as:

pb ¼ qbRp; (10)

as demonstrated in Fig. 4. This is justified by the fact that the
main effect is a gain change, due to the numerator instance of
Rp (note that the dc gain of (8) is Rp(t)), while a variation in the
dynamic response around the mean value of Rp in the denom-
inator (Rp) will be minimal. Though the system on the right-
hand side of Fig. 4 is still parameter varying, it is significantly
easier to analyse. A steady-state analysis yields:



Fig. 4 – Compliance approximation for the analytical solution.

Fig. 5 – Equivalent nonlinearity concept.
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Rp ¼ r� þ Gsrð0Þy�sr (11)

2.2.2. Pulsatility effects
The pulsatile component, P, of the BP signal is absorbed into
the static nonlinear characteristics, fpc, fsc, and fsr to produce
equivalent nonlinearities f epc, f esc, and f esr. This provides a
significant simplification by observing the frequency separa-
tion between the variations in MAP (which include LF
oscillations) and pulsatility. In the 'equivalent nonlinearity'
Fig. 6 – Piecewise linear appro
(EQNL) procedure, a system with an input x(t), containing a
relatively LF input r(t) and a high frequency 'dither' signal d(t),
can be represented as a modified nonlinear system [36], as
shown in Fig. 5. Here, the procedure for the determination of
an EQNL is outlined, developing a new nonlinearity (Nonlinear
system B ( fe(x))), subject only to a LF signal r(t), from an original
nonlinear system A ( f(x)) which is subject to LF (r(t)) and HF (d
(t)) signals. For further details, see [36] and [19]. Since the EQNL
is specific to the nature of the dither signal d(t) employed, a
typical pulsatile BP signal from a rabbit is employed [37], as
shown in Fig. 6.

With an original nonlinear system y = f(x), where
x = r(t) + d(t), gives:

y ¼ f ðrðtÞ þ dðtÞÞ (12)

The output of the EQNL corresponding to the nonlinear system
is:

y ¼
Z 1

�1
f ðrðtÞ þ qÞ pðqÞ dq (13)

where p(q)dq is the probability that, for any time t, the dither
signal d(t) lies in the range q to q + dq, and d(q) is the probability
density function for the dither signal. The probability density
function for the dither signal is:

pðqÞ ¼ � dFð pÞ
dp

¼ 1
2A

(14)

The parameters for the dither signal were obtained from a
piecewise linear approximation of the clinical measurement of
BP in the abdominal aorta of a rabbit [37]. One cycle of the data
ximation of one BP cycle.
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was divided into 4 segments, three triangles and one flat line,
with the fit, as shown in Fig. 6, determined manually. The
specific parameters for each segment can be found in Table 3.
It is found that the EQNL is not especially sensitive to the finer
details of the dither signal, with the amplitude extremes and
proportion of positive/negative transition the dominant
influences.

Segments 1, 2 and 4 are represented by triangles with
varying heights, A, and their respective EQNL outputs can be
obtained by inserting the appropriate A into Eq. (15):

yi¼1;2;4 ¼
Z bþAi

b�Ai

1
2Ai

½htan�1ðbðr þ qÞÞ þ y��dq (15)

yi¼1;2;4 ¼ h
2Ai

ððr þ qÞtan�1ðbðr þ qÞÞÞ

� h
4Aib

lnjb2ðr þ qÞ2 þ 1j þ y�ðr þ qÞÞjbþAi
b�Ai

(16)

Segment 3 is approximated by a flat line, resulting in a
constant probability function and giving an EQNL output of:

y3 ¼ h tan�1ðbðr þ qÞÞ þ y� (17)

The total EQNL output is the sum of all four segment
components, weighted by factors ai, corresponding to the
relative portions of the total period tp � to, from Fig. 6:

y ¼ a1y1 þ a2y2 þ a3y3 þ a4y4 (18)

where a1 = 0.252, a2 = 0.385, a3 = 0.167, a4 = 0.196. Note that
Sai = 1. In order to get the f ! fe for each of fpc, fsc, and fsr, Eq. (18)
is used in conjunction with (16) and (17), with the appropriate b

and y* values for y1, y2, y3, and y4 taken from Table 2, as
appropriate.

Note that, since the EQNL depends only on the relative
areas of the piecewise approximations to the pulsatile signal
segments, and the proportions of the period occupied by those
segments, but not on the period of the dither signal itself (so
long as d(t) is significantly HF, relative to r(t), for example by an
order of magnitude, which would be a typical ratio between
heart-rate and LF oscillation, across different species), a fixed
frequency for d(t) (effectively the heart rate) can be used in
subsequent analysis and simulation.

2.2.3. Describing function approximation
The static nonlinear characteristics, fpc, fsc, and fsr, are
represented by their describing functions, simplifying the
analytical manipulation of the functions fpc, fsc, and fsr. The
describing function (DF) approximation essentially assumes a
sinusoidal input to a nonlinearity (useful for the analysis of LF
oscillations) and calculates the effective 'gain' of the system
(which is dependent on amplitude of the input) with respect to
Table 3 – Segmentation of clinical data.

Parameter to � t1 t1 � t2 t2 � t3 t3 � tp

A (height) 29.18 26.02 0 3.37
t (length) 0.068 0.104 0.0452 0.053
the fundamental component of the output [38]. For the tan�1( )
function of Eq. (2) and Fig. 2, the DF has been calculated [27] as:

DFðXÞ ¼ 2h

bX2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ b2X2

q
� 1

� �
(19)

where the input to the nonlinearity is x(t) = X sin(vt). The
expression in (19) may be further simplified [27] for asymptotic
values of X to:

DFðXÞ ! 2 h
X

; X ! 1 (20)

for large X and,

DFðXÞ ¼ hbð1 � b2X2Þ; X ! 0: (21)

for small X. The use of the DF in this application is justified,
since the major assumption that the DF relies on, i.e. that
output harmonics are significantly attenuated, is satisfied
through Gpc, Gsc and Gsr all having low-pass frequency response
characteristics. Furthermore, we are primarily interested in the
propagation of LF (fundamental) oscillations, rather than the
existence of harmonic components. In any case, the dominance
of the fundamental will be demonstrated in Section 3.1.2.

2.3. LF oscillations

Using the model of Section 2.1, LF oscillations can be analysed
in two ways. The first, and most direct, approach is to simulate
the model of Fig. 1 and examine for conditions under which
oscillations in BP occur. While such simulation studies are
useful, they provide little indication of the bigger picture,
outside the set of specific tests performed. It would therefore
be beneficial if an alternative analytical route could be
pursued, employing the simplifications of Section 2.2.

In [2], it was possible to employ a DF approximation in
combination with classical (linear) Nyquist stability analysis to
determine conditions under which LF oscillations would
occur. In that analysis, the gain of the CNS was seen to be
instrumental in the modulation of LF oscillations, as will be
shown in the current case. However, for the model of Fig. 1,
such an approach is not possible, given the multiple branches
and diverse dynamics in each path. Rather, an approach,
inspired by [18], is employed, where a notional LF (sinusoidal)
oscillatory signal is injected at x(t), and propagated around the
baroreflex, to determine a set of conditions under which the
original signal might arrive back at x0(t) i.e. the conditions for
sustained oscillations, as shown in Fig. 7.

If sustained oscillations occur, assuming the fundamental
component of x0(t) to be x00ðtÞ ¼ A00sinðv00t þ f00Þ þ X00, then the
following must hold:

v00 ¼ v0; (22)

A00 ¼ A0; (23)

f00 ¼ 0; (24)

X00 ¼ 0; (25)



Fig. 7 – Break in loop to determine conditions for sustained oscillation.
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corresponding to conditions on frequency, amplitude, phase
and offset, respectively. We assume that x(t) has no dc com-
ponent, since the system of Fig. 1 is assumed to be in homeo-
stasis (see more on this in Section 3).

Using the configuration in Fig. 7, the signal x(t) first passes
through the three nonlinearities, fpc, fsc and fsr, resulting in the
DF outputs:

zpc ¼ DFpcA0sinðv0tÞ þ y�pc (26)

with

DFpc ¼ 2hpc

bpcA
02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ bpc

2A02
q

� 1
� �

; (27)

zsc ¼ DFscA0sinðv0tÞ þ y�sc (28)

with

DFsc ¼ 2hsc

bscA
02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ bsc

2A02
q

� 1
� �

; (29)

and

zsr ¼ DFsrA0sinðv0tÞ þ y�sr (30)

with

DFsr ¼ 2hsr

bsrA
02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ bsr

2A02
q

� 1
� �

; (31)

The heart output flowrate, f 0h, is now:

f 0h ¼ Npcsinðv0t þ fpcÞ þ Nscsinðv0t þ fscÞ þ fh (32)

where,

Npc ¼ kpkpcjGpcðv0ÞjDFpcA0; (33)

fpc ¼ ffGpcðv0Þ � v0tpc; (34)

Nsc ¼ kskscjGscðv0ÞjDFscA0; (35)

fsc ¼ ffGscðv0Þ � v0tsc; (36)

fh ¼ kpkpcy�pc þ kskscy�sc þ f o: (37)

or

Ncsinðv0t þ fcÞ þ f h (38)
where

fc ¼ tan�1 NpcsinðfpcÞ þ NscsinðfscÞ
NpccosðfpcÞ þ NsccosðfscÞ

; (39)

Nc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i2 þ j2

q
; (40)

with

i ¼ NpccosðfpcÞ þ NsccosðfscÞ; (41)

j ¼ NpcsinðfpcÞ þ NscsinðfscÞ: (42)

From (6),

q0b ¼ VhNcsinðv0t þ fcÞ þ q0b (43)

where

q0b ¼ Vh fh; (44)

Now propagating zsr(t) through the peripheral resistance
branch, get

R0
p ¼ Nsrsinðwt þ fsrÞ þ r (45)

where,

Nsr ¼ krjGsrðv0ÞjDFsrA0 (46)

fsr ¼ ffGsrðv0Þ � v0tsr (47)

r ¼ kry�sr þ r� (48)

The cardiac (43) and resistance (45) branches are combined
via the simplified arterial compliance model as shown in Fig. 4:

BP0 ¼ jGcðv0ÞjNpsinðv0t þ fpÞ þ kðv0Þ
þffGcðv0Þ þ r q0b

(49)

where

fc ¼ tan�1 N�
csinðfcÞ þ N�

srsinðfsrÞ
N�

ccosðfcÞ þ N�
srcosðfsrÞ

(50)

N�
c ¼ rVhNc (51)

N�
sr ¼ q0bNsr (52)

kðvÞ ¼ VhNcNsr

2
cosðfc � fsrÞ (53)
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Np ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
(54)

with

m ¼ N�
ccosðfcÞ þ N�

srcosðfsrÞ (55)

n ¼ N�
csinðfcÞ þ N�

srsinðfsrÞ (56)

Note that, in (53), the amplitude of the harmonics of v0 are
assumed to be negligible compared with the fundamental, so
just the fundamental component is retained. This is justified,
as in Section 2.2.3, by the fact that the dynamics of Gpc, Gsc, and
Gsr are low-pass and therefore attenuate relatively high fre-
quency harmonics, with further validation in Section 3.1.2.

The BP0 signal is now fed back through the baroreceptor
delay to the CNS dynamics:

x00ðtÞ ¼ KcjGCNSðv0ÞjfPBset � r q0b�kðv0Þ � Npsinðv0t þ f p
�v0ðtaÞ þ ffGCNSðv0Þ þ pÞg

(57)

Since we have assumed, in (53), that the harmonics of BP0

are negligible, x00 in (57) clearly contains only the fundamental
component of v0 and the condition of (22) becomes redundant.
The amplitude condition of (23), in residual form, from (57),
becomes:

KcjGCNSðv0ÞjjGcðv0Þjðv0ÞKP � A0 ¼ 0 (58)

while the phase and offset conditions of (24) and (25) become,
respectively:

fp � v0ðtaÞ þ ffGCNSðv0Þ þ ffGcðv0Þ þ p ¼ 0 (59)

and

KcjGCNSðv0ÞjfPBset � r q0b � kðv0Þg ¼ 0: (60)

Eqs. (58)–(60) describe the set of conditions of sustained oscil-
lations with a fundamental frequency v0.

2.3.1. Solution to equations
From Eqs. (58)–(60), we can identify the cost function to
minimise as:

J ¼
X3
i¼1

g ir
2
i (61)

where

r1 ¼ KcjGCNSðv0ÞjjGcðv0Þjðv0ÞKP � A0;
r2 ¼ f p � v0ðtaÞ þ ffGCNSðv0Þ þ ffGcðv0Þ þ p;

r3 ¼ KcjGCNSðv0ÞjfPBset � r q0b � kðv0Þg:

where the weighting factors gi reflect the relative magnitude
units of the ri.

The Levenberg-Marquardt algorithm [39] is used to solve the
non-linear least squares problem represented by minimising
(61). In order to investigate the sensitivity of the solution to the
optimisation algorithm used, trust-region [40] and simplex [41]
algorithms were also tested, giving consistent results.

2.4. Preliminary calculations

2.4.1. Homeostatic analysis
In order to prove that the system, from a static balance point of
view (homeostasis), is consistent, a steady-state analysis is
performed. Under such conditions, the BP error DBP should be
zero and all dynamic blocks reduce to their dc gain, as shown
in Fig. 8. Also, the arterial compliance subsystem reverts to the
'Ohm's law' relationship of (10). Since DBP = 0, the outputs of fpc,
fsc, and fsr are ypc*, ysc*, and ysr*, respectively, as given in Table 2.
Under these conditions, BP is 80 mmHg, which is consistent
with the condition DBP = BPset � BP specified in Fig. 1, confirm-
ing homeostasis. While the specific value of Bpset = 80 mmHg is
not crucial in confirming homeostasis, it has been chosen as
typical of a normotensive rabbit (see, for example, the
experimental data in Fig. 6).

2.4.2. EQNL calculations
Following the procedure in Section 2.2.2, the equivalent
nonlinearities f epc, f esc, and f esr are now determined for the
nonlinear characteristics fpc, fsc, and fsr, shown in Fig. 9.

Note that a tan�1( ) fit has been generated to the EQNL in
each case, so that a specific change in the linearised 'gain' at
(x * , y *), due to the presence of pulsatility, may be calculated
for each case. The results are shown in Table 4. It may be
noted, from Fig. 9 that, while the fit of the tan�1( ) function to
the EQNL is generally good in the region of the function
origin, it is less good at the extremities. This is deliberate, in
trading off error in central values for extreme values,
within the limits of approximation of the fitted tan�1( )
functions. Specifically, the EQNL is precisely matched at the
origin, so that a representative b value can be determined
for the EQNL. If desired, a more precise parametric
approximation can be determined using a combination of
parametric functions, including an tan�1( ) and a saturation
characteristic [19].

2.4.3. Determining a value for Kc

The value for Kc is not well defined, since any experimental
evaluation would require that all nerve fibres at the outputs
of fpc, fsc, and fsr are fully recruited, which is impossible to
achieve in experimental practice. However, Kc can be
estimated by recognising that Kc is primarily responsible
for mediating LF oscillations [2], and it therefore seems likely
that the brain modulates Kc in response to different adverse
physiological conditions e.g. hypoxia [42], haemorrhage [43],
etc. In particular, given that LF oscillations are instigated/
accentuated during adverse physiological conditions, one
possibility is to establish a value of Kc in the 'normal'
physiological state (including pulsatility) which is just below
that required to initiate LF oscillations. This value is set at
Knom
c ¼ 7 for the (normal) pulsatile case, where a 10% increase

results in the onset of LF oscillations. Therefore, a reason-
ably substantial effective increase in overall baroreflex gain
(due to a lack of pulsatility or otherwise) is required to
instigate LF oscillations.



Fig. 8 – Homeostatic analysis of the neural baroreflex.

Table 4 – Modification of b values due to pulsatility.

Arctan function bpc bsc bsr

Original Arctan (Case 1 &2) �0.1342 0.035 0.04
EQNL Arctan (Case 3) �0.1342*0.55 0.035*0.875 0.04*0.82
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2.5. Sensitivity calculations

Given that, in the model of Fig. 1, there are multiple paths via
which the neural control of BP is effected, and BP oscillations
may propagate, a reasonable question might arise as to the
predominance of any of these branches. To examine the
relative strength/gain of each of the branches of the model in
Fig. 1, we perform a simple sensitivity study, which examines
the raw (dc) gain from DBP to BP, from the simplified model of
Fig. 8. While a dc analysis does not include the dynamic effects
of Gpc, Gsc and Gsr, their effects will be relatively consistent
between paths, and their low-pass cutoff frequency is
relatively high, compared to the LF oscillation's frequency of
0.33 Hz, as are the arterial compliance dynamics.

From Fig. 8, the following may be easily calculated:

SBPsr ¼ dBP
dDBP

j f pc ¼ y�pc
f sc ¼ y�sc

¼ qb ksrbsr (62)

which articulates the sensitivity of BP to DBP along the peripheral
resistance path, and
Fig. 9 – Changes in the activation parameters, bpc,
SBPc
dBP
dDBP

j f sr¼y�sr
¼ RpVhðkpkpcbpc þ kskscbscÞ (63)

which articulates the sensitivity of BP to DBP along the com-
plete cardiac path (pc & sc), where Rp is given from Eq. (11) and

qb ¼ Vhðkpkpcy�pc þ kskscy�sc þ f oÞ (64)

The individual sensitivities along the parasympathetic and
sympathetic cardiac branches can also be evaluated, respec-
tively, as:

SBPpc ¼ dBP
dDBP

j f sr ¼ y�sr
f sc ¼ y�sc

¼ RpVhkpkpcbpc (65)
 bsc, and bsr, with the inclusion of pulsatility.



Fig. 11 – Investigating the threshold of Kc.

Fig. 12 – Harmonics present in BP signal during LF
oscillations.
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and

SBPsc ¼ dBP
dDBP

j f sr ¼ y�sr
f pc ¼ y�pc

¼ RpVhkskscbsc (66)

3. Results

3.1. LF oscillations

LF oscillations are now initiated by an increase in Kc by 25%
over the nominal value calculated in Section 2.4.3, consistent
with the data in [27] showing a 25% increase in b in the change
from normoxia to hypoxia (10% O2 + 3%CO2). In our simulation,
this will be effected by an increase in Kc from its nominal value
of Kc = 7 to K0

c ¼ 1:25Knom
c ¼ 8:75. This is confirmed by both the

analytical solution from Eqs. (58)–(60), and computer simula-
tion of the model in Fig. 1, using the Matlab/Simulink platform.

3.1.1. Analytical solution
For a value of K0

c, the performance surface for (61) is shown in
Fig. 10, showing a broadly convex surface. The algorithm found
a local minimum at v = 0.3187 Hz and A0 = 16.4504, for an initial
value range of 0.25 Hz <v < 0.45 Hz and 10 < A < 50, which
also defines the maximum domain of attraction within which
this solution can be found. For a uniform residual weighting
(gi = 1, 1 ≤ i ≤ 3), a residual vector of [r1 r2 r3] = [�1.0656 � 0.1244
0.0439] is obtained.

The most useful solution parameters from the minimisa-
tion of (61) are v0 and A0, which give the frequency and
amplitude of the LF oscillations, respectively. The examination
of A0 may be used as binary indication of oscillations, where a
value of A0 = 0 indicates no oscillations. Fig. 11 shows the
change in oscillation amplitude (A0) with variation in Kc. Note
the expected threshold at Kc = 7.7 for the normal (pulsatile)
case.

3.1.2. Simulation results
Fig. 12 shows the relative magnitude of the LF oscillation's
fundamental, and confirms that harmonic amplitudes are
small (<10%) compared to the fundamental amplitude. This
confirms the validity of ignoring the harmonics of the
fundamental frequency v0 in the analysis of Section 2.3.
However, while a fundamental-based analysis for the solution
of LF oscillations may be appropriate, the presence of
Fig. 10 – Performance surface for J ¼ P3
i¼1 gir

2
i , showing

optimal solution for (A0, v0).
harmonics means that the LF oscillations are not perfectly
sinusoidal, though this not obviously apparent from the time
domain plot of Fig. 13.

While simulation results confirm that no LF oscillations
take place for the nominal value of Knom

c ¼ 7, Fig. 13 also
confirms the situation for Kc = 7(1 + 0.25) = 8.75, where a LF BP
oscillation of 1.34 mmHg occurs, consistent with the analytical
solution of Section 3.1.1. The specific comparative results for
analytical/simulation cases are shown in Table 5, showing
good agreement (deviation is 5.6% for the analytical solution
and 2.3% for the simulation) with the experimental LF BP
oscillation frequency of 0.3 Hz reported in [21].

3.2. Removing pulsatility

Under certain medical interventions, blood pulsatility may be
reduced or eliminated, for example by insertion of an artificial
(turbine-type) heart, or the inclusion of a LVAD. The effect of
pulsatility on the neural baroreflex can be examined both via
manipulation of the baroreflex functions fpc, fsc, and fsr, or by
inclusion/exclusion of the pulsatility component P in the
simulation.



Fig. 13 – LF oscillations in BP for the normal (pulsatile) case,
for nominal and increased Kc values. The LF oscillations is
measured at a period of 3.257 s, corresponding to a
frequency of 0.307 Hz.

Fig. 14 – Simulation results for the pulsatile (Cases 1 and 3)
and non-pulsatile cases (Case 2), where pulsatility is
represented both by EQNL values or the inclusion of a
physical pulsatility signal P. Note that Kc ¼ Knom

c . The three
cases illustrated are documented in Table 6.

Table 6 – Test conditions.

Case Baroreflex function
parameters

Pulse signal
P present

1 fxx Yes
2 fxx No
3 f exx No

Table 7 – Sensitivity values for propagation through
various cardiac and resistance branches, using a dc gain
approximation, along with LF oscillations BP amplitudes
(OA, in mmHg) for corresponding branches from simula-
tion.
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Some initial indication can be had from examination of
Fig. 9. In particular, with reference to Table 4, it is clear that the
addition of pulsatility causes a significant reduction in overall
baroreflex gain, demonstrated by the decrease in the bxx from
their 'original' values to their EQNL values, with a gain
reduction of up to 55% (for bpc). The change in baroreflex gain,
resulting from an absence of pulsatility, is confirmed by the
simulation, where Fig. 14 shows the appearance of LF
oscillations, following the removal of pulsatility (Case 2),
consistent with experimental evidence [17]. Pulsatility can
therefore be represented, for simulation purposes, either by
including a pulsatile component P in the BP signal, as shown in
Fig. 1 (Case 1), or by omitting P but using the EQNL values for
the bxx (Case 3). Table 6 shows 3 cases examined, including
both pulsatility, using both an explicit P component or the
EQNL values for the bxx, and a non-pulsatile scenario, where
original bxx values are used and P is omitted. Fig. 11 shows the
variation in oscillation amplitude (A0) with variations in Kc for
the non-pulsatile case (red trace). Note the significant
reduction in the threshold value of Kc. In Fig. 14, the trace
for Case 1 (see Table 6) contains the pulsatile (green line) BP
which is not completely dampened by arterial compliance, but
confirms consistence with the trace for Case 3, i.e. the absence
of LF oscillations.

3.3. Predominance of resistance or cardiac branches

Following the sensitivity functions developed in Section 2.5,
Table 7 shows the enumerated values for the sensitivity
Table 5 – Comparative LF oscillation amplitude for
analytical and simulation results.

Case A0 BP osc. ampl.
(mmHg)

Osc. freq. (Hz)

Analytical soln. 16.4504 � 1.38 0.317
Simulation 15.1 � 1.34 0.307
functions in (62)–(66). The sensitivity values suggest a
predominance of the cardiac branch over the resistance
branch, while the parasympathetic cardiac is favoured over
the sympathetic cardiac.

Simulation studies were undertaken to examine the
relative importance of various branches in mediating LF
oscillations and Table 7 also shows the achieved oscillation
amplitude (OA) in BP and the associated oscillation frequency,
for removal of various branches (for example, in the pc
column, only the pc branch is active). The simulation results
are quite revealing. For a value of Kc ¼ K0

c (with pulsatility
included), no single branch is capable of supporting LF
Branch Kc sr c pc sc

Sensitivity fn. – SBPsr SBPc SBPpc SBPsc
Sensitivity (x10�4) – 53 67 50 17

BP OA K0
c 0 0 0 0

BP OA 2K0
c 0.86 0.79 0.99 0

Frequency 0.256 0.384 0.400 0

BP OA 3K0
c 1.96 1.10 1.32 0.19

Frequency 0.256 0.384 0.400 0.169
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oscillations. As Kc is increased (to 2K0
c, and subsequently to 3K0

c),
individual branches become capable of sustaining LF oscilla-
tions but, crucially, none of the achieved LF oscillations
frequency values correspond with experimental evidence [21].
This is primarily due to the variety of conduction and phase
delays in each individual branch, while the full model contains
a mixture of these dynamical components that appears to
correctly articulate the oscillations observed experimentally.
Overall, there is a strong suggestion that both cardiac and
resistance branches are crucial in the support of LF BP
oscillations. Interestingly, Liu et al. [44] conclude that the
cardiac branch is relatively unimportant in the dynamic
regulation of BP and the mediation of LF oscillations in MAP.
However, their results do show an 8 dB (equivalent to a factor
of 2.5) drop in gain between 0.1 and 0.3 Hz due to vagotomy and
b1-receptor blockade (effectively inhibiting neural control of
cardiac output), which this study has shown to be significant in
mediating LF oscillations, given that a 10% increase in
baroreflex gain could, potentially, instigate LF oscillations.

4. Discussion

The paper presents a model for the neural baroreflex focused
on the components that mediate LF oscillations in BP. A
number of analytical tools are employed to render the model
amenable to an algebraic solution for LF oscillations condi-
tions, which gives some insight into the role that baroreflex
gain plays in mediating LF oscillations. In particular, changes
in the 'gain' of the central nervous system are shown to be a
key factor, which can result from external stimulus or
internal stress (e.g. haemorrhage, hypoxia, etc.). In particu-
lar, the use of the 'equivalent nonlinearity', in representing
pulsatility, reveals a significant increase in overall baroreflex
gain as a result of a loss of pulsatility, which may have
important implications for patients in receipt of artificial
(turbine-based) hearts, or LVADs. Such an increase in
baroreflex gain is shown to precipitate an elevation in LF
oscillations, which is borne out by experimental evidence
[17]. In addition, the increase in experimentally measured LF
oscillations following LVAD insertion documented in [7] in R-
R is consistent with the analytical results developed in this
paper relating to the role of the heart in mediating LF
oscillations and an increase in baroreflex gain following a
drop in pulsatility. However, it should also be noted that the
study of Cooley et al. [7] did not report an increase in LF MAP
oscillations, opening the possibility that the steady flow from
the autonomous LVAD may have dominated the native
cardiac output. While experimental evidence therefore
exists which ties pulsatility decreases (LVAD insertion) to
increases in baroreflex gain, and LVAD insertion to the
increased presence of LF oscillations in R-R interval, the
mechanisms by which these are linked has, to date, remained
unclear. We hope that the unifying framework in this paper
provides a plausible explanation for these experimentally
observed phenomena.

Overall, the model, and the analysis contained in the paper,
provides a toolbox for the analysis of the interplay between
baroreflex gain, LF oscillations and blood pulsatility. One of the
important conclusions is that LF oscillations are mediated by a
combination of cardiac and peripheral resistance branches,
while establishing the key role of baroreflex gain as the
mechanism by which LF oscillations are modulated. In turn,
the baroreflex gain is seen to be substantially influenced by
pulsatility and physiological stress.
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