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DISTINGUISHING PROPERTIES
OF WEAK SLICE CONDITIONS

STEPHEN M. BUCKLEY AND ALEXANDER STANOYEVITCH

Abstract. The slice condition and the more general weak slice conditions are
geometric conditions on Euclidean space domains which have evolved over the
last several years as a tool in various areas of analysis. This paper explores
some of the finer distinctive properties of the various weak slice conditions.

0. Introduction

The slice condition is a metric-geometric condition for domains in Euclidean
spaces Rn that was introduced by the first author and Koskela [BK2] to obtain
a set of geometric classifications of a large class of domains in Euclidean spaces
which support any of the Sobolev imbeddings, for integrability index p ≥ n. In
later works ([BO], [BS1], [BS2]), variations of the slice condition were used to refine
these results and also to obtain unrelated results in other areas of analysis. There
were many variants of these conditions such as (inner) α-wslice and (inner) α-
wslice+ conditions, all of which were defined for a variety of purposes; see Section 2
for definitions. We refer to them generically as weak slice conditions, since α-wslice
conditions are strictly weaker than the slice condition. The index α indicates which
metric is employed; the applications to Sobolev imbeddings require different metrics
for each value of p ≥ n.

All slice-type conditions, whether the slice condition or any weak slice condition,
are very weak. For instance, they are all satisfied by every simply connected planar
domain. This follows by the Riemann mapping theorem from the more general fact
that the quasiconformal images of inner uniform domains in Rn satisfy the slice
condition and all weak slice conditions (once a certain auxiliary parameter C is
sufficiently large); see Theorem 3.1 of [BS2]. Inner uniform domains, introduced by
Väisälä [V5], generalize the well-known class of uniform domains.

In [BS2], the authors used weak slice conditions to obtain results regarding quasi-
conformal equivalence of product domains. One pleasing aspect of the main results
of this work was that the weak slice conditions did not appear at all in the state-
ment of the results, but rather as a tool in the proof. In [BO, Theorem 3.4], the
slice condition is used to establish one-half of an equivalence in certain situations
between a two-weighted variant of Trudinger’s inequality and a certain global bal-
ance condition. Finally, in [BB], it is shown that under certain rather minimal
assumptions, the metric spaces on which the associated quasihyperbolic metric is
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Gromov hyperbolic (kG-hyperbolic spaces for short) coincide with the metric spaces
that satisfy a variant of the slice condition, and that kG-hyperbolic spaces satisfy
all types of (weak) slice conditions that were previously defined. This equivalence,
as a by-product, proves a conjecture of Bonk, Heinonen, and Koskela [BHK] by
showing that a Euclidean domain is a kG-hyperbolic space if and only if it satisfies
two simpler conditions (separation and Gehring-Hayman).

With such a range of applications, it should be useful to have a solid understand-
ing of (weak) slice conditions both in Euclidean and general metric space context.
Many properties and examples of these conditions in the Euclidean context were
obtained in [BS1] and [BS2], but some fundamental questions remain open even in
this context. Several of these were presented in Section 6 of [BS2]. In this work
we construct examples that fully answer one and partially answer another of these
open problems, and we also answer another question that was not posed there, but
is related to the results in [BS2]. In the process, we also develop some of the basic
theory of wslice conditions in its most general metric space context.

After some basics in Section 1, we define and develop the basic theory of weak
slice conditions in Section 2; we also partially solve one of the aforementioned open
problems there. In Section 3, we present two types of examples that fully answer
another of these open problems by showing that the class of domains satisfying a
weak slice condition is strictly smaller if we use the inner Euclidean, rather than
the Euclidean metric. The first example, a little simpler, will involve an imbedded
2-manifold in R3. After this example, we shall give a planar domain example and
sketch the additional details.

Inner uniform domains turn out to be a limiting class of domains called inner
α-mCigar domains, 0 ≤ α < 1 (case α = 0). These classes, whose definitions will
be recalled in Section 4, increase strictly with α. In Section 5, we shall show that
the hypotheses of the aforementioned Theorem 3.1 of [BS2] are about as weak as
possible, in the sense that quasiconformal images of α-mCigar conditions need not
satisfy weak slice conditions when α > 0.

1. Notation and terminology

Throughout this paper we will consistently employ the following notation:
(Ω, d) is an incomplete rectifiably connected metric space possibly subject to

additional restrictions (it is often just a domain in Euclidean space), Ω is its metric
completion (viewed as a superset of Ω), and ∂Ω = Ω \Ω. For points x, y ∈ Ω, a set
E ⊂ Ω, positive numbers r, s, we let:
r ∨ s denote the maximum of r and s,
r ∧ s denote the minimum of r and s,
dre be the ceiling of r, i.e., the smallest integer m ≥ r,
brc be the floor of r, i.e., the largest integer m ≤ r,
lend(E) denote the Hausdorff 1-dimensional measure of E (so if E is an arc,

lend(E) is just its arclength),
diad(E) denote the d-diameter of E,
δΩ(x) denote the distance from x to ∂Ω,
Bd(x, r) denote the open ball {y ∈ Ω : d(x, y) < r},
Bx = Bd(x, δΩ(x)), and
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ΓΩ(x, y) denote the class of all rectifiable paths λ : [0, t]→ Ω for which λ(0) = x
and λ(t) = y. Whenever λ is a path, λ∗ denotes its image set. Whenever E is an
open or closed ball, tE denotes its concentric dilate by a factor t > 0.

For α ∈ [0, 1] we will also make extensive use of the following subhyperbolic
lengths and the corresponding metrics. For any rectifiable path γ in Ω, we define
these quantities by

lenα,Ω(γ) =
∫
γ

δα−1
Ω (z) ds(z),

dα,Ω(x, y) = inf
γ∈ΓΩ(x,y)

lenα,Ω(γ),

where ds denotes the arclength measure. These concepts can then also be defined
as one-dimensional Hausdorff measures on sets, so that lenα,Ω(γ) = lenα,Ω(γ∗) if γ
is injective. We note that if Ω is a domain in Euclidean space, or in an imbedded
k-manifold in Rn, then len0,Ω and d0,Ω are the well-known quasihyperbolic length
and quasihyperbolic distance, and d1,Ω is the inner metric with respect to Ω. For
brevity, we shall denote the inner metric on Ω as dΩ and the corresponding inner
diameter of a subset E of Ω as diaΩ(E) in such cases. We shall also write kΩ(x, y)
in place of d0,Ω(x, y).

Let us call γ ∈ ΓΩ(x, y) (α,C1, C2)-efficient, or simply α-efficient, if lenα,Ω(γ) ≤
(1 + C1)dα,Ω(x, y) + C2. We say that γ ∈ ΓΩ(x, y) is an (α,C1, C2)-quasigeodesic
for x, y if γ and all its subpaths are (α,C1, C2)-efficient, while we say that γ is an
α-geodesic if it is (α, 0, 0)-efficient (or equivalently an (α, 0, 0)-quasigeodesic). We
say that γ is a rough (α,C2)-geodesic if it is (α, 0, C2)-efficient (or equivalently an
(α, 0, C2)-quasigeodesic). Obviously, efficient paths and rough geodesics exist, with
C1, C2 as close to zero as we wish (we can even take one of the two parameters
to be zero), but α-geodesics might not exist. For instance in the Euclidean case,
α-geodesics exist if α = 0, but might not if α > 0; see [GO] and [BS1, Example 1.2].

Let C ≥ 1, x, y ∈ Ω, and let γ ∈ ΓΩ(x, y) be a path of length l which is
parametrized by arclength. We say that γ is a C-uniform path for x, y ∈ Ω if
it satisfies the bounded turning condition l ≤ Cd(x, y) and the cigar condition
t ∧ (l − t) ≤ CδΩ(γ(t)). In this case, we get the estimates

(1.1) dα,Ω(x, y) ≤

4C2 log
(

1 +
d(x, y)

δΩ(x) ∧ δΩ(y)

)
, α = 0,

C′[δΩ(x) ∨ δΩ(y) ∨ d(x, y)]α, α > 0,

where C′ = C′(C,α). The α > 0 case follows by an easy integration, estimating
distance to the boundary by the triangle inequality for the initial and final parts of
the path that are close to x and y, respectively, and by uniformity for the rest of
the path. The case α = 0 is Lemma 2.13 of [BHK].

We say that Ω is a C-uniform space if there is a C-uniform path for every pair
x, y ∈ Ω. We shall say more about such spaces in the Euclidean case in Section 4.
For more on uniform domains in a general context, we refer the reader to [BHK].

2. The weak slice conditions

In this section we define and discuss weak slice conditions for an incomplete
rectifiably connected metric space (Ω, d). In the Euclidean context, some of the
material presented below is to be found in [BS1] and [BS2], although this section is
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essentially self-contained. One notable new result is Theorem 2.14 which partially
answers an open question in [BS2].

For some results, we need (Ω, d) to satisfy two additional properties, local quasi-
convexity and local external connectivity. Suppose C ≥ 1. We say that Ω is locally
C-quasiconvex if for every pair of points x, y ∈ Ω, y ∈ C−1Bx, there exists a path
γ ∈ ΓΩ(x, y) such that lend(γ) ≤ Cd(x, y). We say that Ω is locally C-externally
connected if, for every z ∈ Ω, 0 < r < δΩ(z)/C, and x, y ∈ Ω \ Bd(z, r), the
path family ΓΩ\Bd(z,r/C)(x, y) is non-empty. We say Ω is locally (C,C′)-nicely con-
nected if it is both locally C-quasiconvex and locally C′-externally connected. The
local external connectivity property is a local (i.e. restricted radius) version of a
condition that is nowadays usually referred to as LLC-2 in the literature, since it
was originally the second part of the so-called linear local connectivity condition of
Gehring and Martio [GM2, 2.9].

There are many locally nicely connected spaces. For instance, proper subdo-
mains of Rn are locally (1, 1)-nicely connected with respect to the Euclidean or
inner Euclidean metric, or any metric intermediate between them (this is the class
of metrics considered in [BS1] and [BS2]). More generally, it follows from Theo-
rem 3.13 of [HK] that if Ω is an open connected set in a complete, Ahlfors upper
regular, Loewner space (X, dX , µ) of Hausdorff dimension Q > 1, then Ω is locally
nicely connected. Examples of Loewner spaces include Euclidean space, n-regular
Riemannian manifolds of non-negative Ricci curvature, and Carnot-Carathéodory
spaces such as the Heisenberg group; see [HK, Section 6]. The metric on Ω in
these Loewner examples is the restriction of dX but note that the local (C,C′)-nice
connectivity condition for this metric implies a local (C2, C′)-nice connectivity con-
dition with respect to the “inner” metric d where d(x, y), x, y ∈ Ω, is defined to be
the infimum of lendX (γ), as γ ranges over all paths in ΓΩ(x, y) (thus generalizing
the inner Euclidean case).

We are now ready to define our weak slice conditions, which depend on param-
eters 0 ≤ α < 1 ≤ C. First, a collection F = {Si}mi=1, m ≥ 0, of pairwise disjoint
open subsets of Ω is a set of (α,C)-wslices for x, y ∈ Ω and the associated collec-
tion of positive numbers {di}mi=1 is a set of (α,C)-wnumbers if, for all 1 ≤ i ≤ m,
di ≥ diad(Si) and

∀ λ ∈ΓΩ(x, y) : lend(λ∗ ∩ Si) ≥ di/C,(WS-1)

Si ∩ [C−1Bx ∪C−1By] = ∅.(WS-2)

We refer to {(Si, di)}mi=1 collectively as an (α,C)-admissible set for the pair x, y ∈ Ω.
Note that m = 0 is allowed in this definition: the empty set is trivially an (α,C)-
admissible set for every x, y ∈ Ω. Next, we define WSα(x, y; Ω;C) by

WSα(x, y; Ω;C) = sup{ δαΩ(x) + δαΩ(y) +
m∑
i=1

dαi :

{di}mi=1 is a set of (α,C)-wnumbers for x, y ∈ Ω }.

Since the empty set is (α,C)-admissible, it follows that WSα(x, y; Ω;C) is at least
equal to δαΩ(x) + δαΩ(y). A priori, WSα(x, y; Ω;C) could possibly be infinite, but,
at least in the case of locally externally connected spaces, we shall prove that it
satisfies a condition of the form

(2.1) WSα(x, y; Ω;C) ≤ C′[δαΩ(x) + δαΩ(y) + dα,Ω(x, y)].
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We define an α-wslice space essentially by reversing this last inequality for large
subhyperbolic distance. More precisely, we say that the pair x, y satisfy an (α,C)-
wslice condition, C ≥ 1, if

(WS-3) dα,Ω(x, y) ≤ C WSα(x, y; Ω;C),

and we say that Ω is a (two-sided) (α,C)-wslice space if all pairs of points in Ω
satisfy an (α,C)-wslice condition1. Note that when α = 0, (WS-3) simply says
that len0,Ω(γ) ≤ C(2 + m0), where m0 is the cardinality of the largest (0, C)-
admissible set for the pair x, y. Note that in light of (WS-1), each of the slices
Si must separate x from y in Ω. If Ω ( Rn is a domain, we call Ω an (α,C)-
wslice, or inner (α,C)-wslice, domain if it is an (α,C)-wslice space with respect to
the Euclidean or inner Euclidean metric, respectively. Similarly, we talk of wslice
and inner wslice manifolds when Ω is an imbedded k-manifold in Rn. Notice that
the difference between Euclidean and inner Euclidean α-wslice domains is rather
minor since distance to the boundary and the associated subhyperbolic metrics are
unchanged, so that each of (WS-1) through (WS-3) has an identical form. The
only change is in the requisite lower bound in the size of the di’s (from dia(Si)
to diaΩ(Si)). Nevertheless, we shall see in the next section that there are indeed
wslice domains that are not inner wslice domains.

It is also convenient to say that an (α,C)-admissible set {(Si, di)}mi=1 for x, y ∈ Ω
is an (α,C)-wslice dataset for x, y if we additionally have the following condition:

dα,Ω(x, y) ≤ C
(
δαΩ(x) + δαΩ(y) +

m∑
i=1

dαi

)
.

If the wnumbers are not specified, it is assumed that di = diad(Si).
The definition of an (inner) wslice domain in Rn is unchanged (except for a

controlled increase in C) if we insist that di = diad(Si); this is obvious if α = 0,
and follows from [BS1, Lemma 2.5] when α > 0. However, allowing inequality is
often convenient. Oftentimes the value of the constant C is unimportant and so
we will, on such occasions, refer simply to “α-wslice conditions and/or domains”.
Modulo a possible augmentation of C, condition (WS-2) can actually be dropped
in the Euclidean setting if α > 0, but it is essential in case α = 0, lest every domain
be a (0, C)-wslice domain; see [BS2, Theorem 5.1].

We next wish to examine some additional hypotheses which have turned out to
be useful in [BS1] and [BS2]. It is assumed below that we already have an (α,C)-
wslice dataset {Si, di}mi=1 for a pair of points x, y ∈ Ω, and these conditions are
assumed to hold for all i, 1 ≤ i ≤ m:

∃ γ ∈ ΓΩ(x, y) : lenα,Ω(γ∗ ∩ Si) ≤ Cdαi ,(WS-4)

∃ zi ∈ Si : Bi ≡ Bd(zi, di/C) ⊂ Si,(WS-5)

∀ λ ∈ ΓΩ(x, y) : diad(λi) ≥ di/C,(WS-1+)

where λi denotes a component of λ∗ ∩ Si of maximal diameter. We will also con-
sider the following condition which is one of the assumptions in the original slice
condition in [BK2], but is not a part of the 0-wslice condition, and is mainly useful

1 In [BS1] and [BS2], the labels (WS-2) and (WS-3) were reversed, but that does not suit our
more general discussion here.
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in conjunction with (WS-4), with the same path γ:

(WS-4a) ∃ γ ∈ ΓΩ(x, y) ∀ z ∈ σi ≡ γ∗ ∩ Si : di/C ≤ δΩ(z) ≤ Cdi.

As in the earlier papers, we refer to (α,C)-wslice spaces (or domains) which can be
made to satisfy (WS-5) and (WS-1+) as (α,C)-wslice+ spaces (or domains).

In typical natural examples of slice domains, the slices satisfy these extra condi-
tions also but in general, this need not be so. We shall say more about this below,
but first let us pause to give some simple and preliminary estimates, examples, and
counterexamples related to slice domains.

2.2. Estimates, examples, and counterexamples. In the general metric space
setting, with x, y ∈ Ω, we have the estimates

(2.3) WSα(x, y; Ω;C) ≥

2 ∨ log2

(
d(x, y)

δΩ(x) ∧ δΩ(y)

)
, α = 0,

[δΩ(x) ∨ δΩ(y) ∨ d(x, y)]α, α > 0,

whenever C ≥ 4. Together with (1.1), it follows that uniform spaces are α-wslice
spaces for all α.

By swapping x and y if necessary, it suffices to prove (2.3) under the assumption
that δΩ(x) ≤ δΩ(y). In the case α = 0 (illustrated in Figure 2.4), we then pick
as a set of wslices the concentric annuli with geometrically increasing radii Ai =
B(x, 2iδΩ(x)) \B(x, 2i−1δΩ(x)) for 1 ≤ i ≤ m0, where

m0 =
⌊

log2

[
d(x, y)

δΩ(x) ∧ δΩ(y)

]⌋
− 1.

In the case α > 0, the same set of slices works, but there is a much simpler dataset
that also works: we pick zero slices if d(x, y) < δΩ(x) + δΩ(y), or else we pick the
single slice B(x, d(x, y)) \ (B(x, δΩ(x)/2) ∪B(y, δΩ(y)/2)).

One typical type of slice S for the points x, y ∈ Ω, and any of the weak slice
conditions, is an open subset of Ω whose “thickness” is comparable with its diam-
eter, and such that the intersection of some quasihyperbolic geodesic γ with S is
of bounded quasihyperbolic diameter. Let γ̃ be the part of γ that lies outside the
balls C−1Bx and C−1By for some fixed C > 1. If we can cover at least a fixed
fraction (measured by quasihyperbolic length) of γ̃ by such (disjoint) slices S, with
uniform control over the constants involved, an α-wslice condition will follow for
all α. When proving the α = 0 case of (2.3), we covered about half (or more) of
the quasihyperbolic length of γ̃ by slices of this type. The same type of slices allow
one to see intuitively that all simply connected planar domains should be α-wslice
domains for all α; see Figure 2.5. For a formal proof of a more general result, see
[BS2, Theorem 3.6]. To make Figure 2.5 unambiguous, we note that all slices are
the connected components bounded by dotted curves; labels for the six small ones
around the bottleneck are omitted.

So far we have given examples of domains that are α-wslice domains for all α.
Rather complicated examples are given in [BS2, Section 4] to prove that the classes
of α-wslice domains are different for each α. To help the reader get a better intuitive
sense of wslice conditions, we give three much simpler examples here: one that is
an α-wslice domain only when α > 0, and two that are not α-wslice domains for
any α.
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Figure 2.4. Concentric annular slices used to prove (2.3)

Figure 2.5. Slices in a simply connected planar domain

Consider the type of domain Ω illustrated in Figure 2.6, where a countable set E
is removed from a triangle G in the xy-plane with vertex at the origin and baseline
at x = 1. Specifically, for each k ∈ N, nk equally spaced points are removed
from the interval given by the intersection of G with the line π(x) = 2−k, where
π denotes projection onto the first coordinate in the plane. We assume that the
sequence (nk)∞k=1 is unbounded. According to Proposition 4.5 of [BS1], every such
domain is α-wslice for all α > 0, but is not a 0-wslice domain; we give a different
justification of this fact after Corollary 2.9 below.

If we take out many more points, we can construct a domain that is not an
α-wslice domain for any α. For instance, suppose we start off with the same planar
triangle G but now let Ω′ = G \ E′, where E′ is a countable set chosen so that
δΩ′(z) ≤ 2−k!, whenever z ∈ Ω, π(z) < 2−k. We also assume that the origin is the
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Figure 2.6. α-wslice for α > 0, but not 0-wslice

Figure 2.7. A cusped non-α-wslice domain

only point of accumulation of E′. We shall see soon that any such domain Ω′ fails
to be an α-wslice domain for each α.

Another type of domain that does not satisfy any α-wslice condition is any
cusped domain in Rn+1, n ≥ 2, like the one in Figure 2.7. In fact, we can take any
domain of the form D × (0, 1), where D is any Steiner symmetric cusp domain

{(x1, x
′) ∈ R× Rn−1 : 0 < x1 < 1, |x′| < φ(x1)},

φ being a strictly increasing continuous function with lim inft→0+ φ(t)/t = 0. Ac-
cording to the proof of [BS1, Proposition 4.6], such domains D are never “α-mcigar
domains” (a subclass of α-wslice domains that we consider later in this paper), and
it then follows from Theorem 4.1 of [BS2] that D× (0, 1) can never be an α-wslice
domain.
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We now prove a simple but useful estimate which is easily seen to fail in our most
general metric space setting, but is valid for locally externally connected spaces.

Lemma 2.8. Let c ∈ (0, 1] and C ≥ 2 be constants. Suppose that Ω is a locally
C-externally connected space, and that the set S ⊂ Ω \ (cBx ∪ cBy) satisfies the
separation condition

∀ λ ∈ ΓΩ(x, y) : λ∗ ∩ S 6= ∅.
Then δΩ(z) ≤ (C2 ∨ (2C/c)) diad(S) for every z ∈ S.

Proof. Let z ∈ S. We claim that d(x, z) ≥ r ≡ [(c/2)∧C−1]δΩ(z). We may assume
that d(x, z) ≤ C−1δΩ(z). Since C ≥ 2, this implies that δΩ(z) ≤ 2δΩ(x). Since
d(x, z) > cδΩ(x), the claim now follows. By symmetry, we can replace x with y in
the above argument to obtain d(y, z) ≥ r.

Contrasting the local external connectivity condition (using the above choices of
x, y, z, r) with the separation property, we deduce that S must have diameter larger
than r/C. �

Corollary 2.9. Let c ∈ (0, 1], α ∈ [0, 1), and C ≥ 2 be constants, let x, y be
points in a locally C-externally connected space Ω, and let E ⊂ Ω. Suppose that
{Si}mi=1 is a set of bounded pairwise disjoint subsets of Ω \ (cBx ∪ cBy) such that
lend(E ∩ Si) ≥ cdi for some numbers di ≥ diad(Si). Furthermore, we assume that
each Si satisfies the separation condition: λ∗ ∩ Si 6= ∅ for all λ ∈ ΓΩ(x, y). Then
there exists C′ = C′(c, α, C) such that dαi ≤ C′ lenα,Ω(E ∩ Si) for each 1 ≤ i ≤ m.
Consequently,

∑m
i=1 d

α
i ≤ C′ lenα,Ω(E).

This corollary follows easily from the lemma. The last statement in the corollary
immediately implies (2.1), by taking E = γ∗ for some (α, 1, 0)-efficient γ ∈ ΓΩ(x, y).
It is important to state this lemma without unnecessary restrictions such as {Si}mi=1

being a set of wslices or E being a curve, as these would limit its usefulness. For
instance, the second restriction would invalidate the use of the summation estimate
in the proof of Theorem 2.14 below, and either restriction would invalidate the use
of a Euclidean version of it in [B, Proposition 3.3].

Corollary 2.9 also provides a rather simple method of producing domains that
do not satisfy α-wslice conditions. Suppose Γ ⊂ Rn is a domain and that Ω = G\E
is a subdomain of G such that E ∩K is a finite set for all compact subsets K of
G. Suppose now that {Si}mi=1 is an (α,C)-wslice dataset for the points x, y ∈ Ω
with respect to the domain Ω, and that δΩ(z) ≈ δG(z) for z = x and z = y. It is
a routine exercise to show that each Si also satisfies (WS-1) for the same pair of
points with respect to the domain G (hint: make little bypasses around each point
of E that a path λ passes through). Consequently, Corollary 2.9 tells us that

WSα(x, y; Ω;C) . [δαG(x) + δαG(y) + dα,G(x, y)].

We can therefore produce a domain that fails to satisfy an α-wslice condition and,
by removing a countable family E of points which force paths between the points
x, y, go through enough bottlenecks to make dα,Ω(x, y) much larger than δαG(x) +
δαG(y) + dα,G(x, y). For instance, the domain in Figure 2.6 is not a 0-wslice domain
for precisely this reason: if we take the points x, y to have Euclidean coordinates
(3 · 2−k, 0) and (3 · 2−k−1, 0), respectively, and let k tend to infinity, then d0,G(x, y)
remains bounded, but d0,Ω(x, y) tends to infinity. The case α > 0 is different since
dα,G(x, y) and dα,Ω(x, y) are then both comparable to 2−kα.
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Using a slight twist on the same idea, we see that the domain Ω′ mentioned above
fails to be an α-wslice domain for each α. Let us consider only the case α > 0 and
leave α = 0 as an exercise to the reader. Take the same pair of points x, y as for
the last example (or move them a little if either is not in Ω′), with k being very
large but fixed. Define the domain G′ to be the triangle G less two points, namely
the closest points in E′ to x and y; if these are not unique, any choice will do. It
is readily checked that dα,G′(x, y) . 2−kα, whereas dα,Ω′(x, y) ≥ 2k!(1−α) · 2−kα.
Using the previous estimates for the domains G′ and Ω′, we get a contradiction to
any given (α,C)-wslice condition by picking a large enough value of k.

We finish this subsection by making a few more general comments on sets of
wslices. Let us write γF = γ∗ ∩ (

⋃
S∈F S), whenever F is a set of wslices. To prove

an α-wslice condition for the pair x, y ∈ Ω, it suffices to find a set of wslices F
(and associated wnumbers) and an α-efficient path γ for x, y such that lenα,Ω(γ) ≤
C3 lenα,Ω(γF), and (WS-4) holds for all Si ∈ F . Of course the associated constants
Ci, i = 1, . . . ,m, should be uniform over all pairs of points x, y ∈ Ω. When (2.3)
fails to prove a wslice condition, it is because (WS-4) fails for one or more of the
associated slices which in turn is usually because (WS-4a) fails to hold. Roughly
speaking, this indicates that these annuli are too “fat” and need to be replaced
by a larger set of “thinner” slices, each of which covers less of the efficient path.
Conversely, (WS-1) acts as a lower bound on how thin slices are allowed to be, and
this lower bound is stricter in the inner wslice condition than in the Euclidean case.
In the various examples of non-wslice domains above, (WS-1) forces most would-be
slices to be so fat that (WS-4) and (WS-4a) both fail. It is worthwhile to look at
the examples in Figures 2.6 and 2.7 with this idea in mind.

2.10. The extra hypotheses. It is convenient in what follows to use (WS-N :C)
to refer to condition (WS-N) with a specified value of C. General wslice datasets
do not have to be as simple and nice as the examples given previously, in which
all the extra conditions (WS-4), (WS-4a), (WS-5) and (WS-1+) clearly hold in
each case. However, we see in this section that if there is any wslice dataset, there
is also a “nice” wslice dataset that satisfies most of these extra conditions. Let
us consider one simple way of making a “nice” dataset “nasty”, as illustrated in
Figure 2.11. Take two adjacent slices Si and Si+1, cut them into a large number
of subslices which are like the slices but much thinner (we ignore the boundaries
between subslices, i.e. the dotted lines in the diagram), and now replace the two old
slices Si and Si+1 by two new slices U and V defined, respectively, as the unions of
the odd and of the even subslices when listed in their natural order, as indicated in
the diagram. Since U, V both consist of many thin layers, we can destroy conditions
(WS-5:C′) and (WS-1+:C′) for any fixed C′, while preserving the α-wslice condition
(perhaps with a somewhat larger C, but with a value independent of C′) if we cut
the original slices into a sufficiently large number of subslices. Of course these new
slices are rather unnatural, and the original slices in the diagram do satisfy (WS-5)
and (WS-1+).

Similarly the extra conditions (WS-4), (WS-4a) fail for general wslice datasets.
Consider the (nice) dataset used for the α = 0 proof of (2.3) and add to it an extra
slice of the form B(x, d(x, y)/2) \ B(y, δΩ(y)/2) where d(x, y) is much larger than
d(y) (and d(y) ≥ d(x)). If α = 0, we can destroy (WS-4a:C′) and (WS-4:C′) for
arbitrary C′, while preserving the (α,C)-wslice property of the dataset by making
such a modification. The same example obviously works for (WS-4a) when α > 0,
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Figure 2.11. Slices and subslices

and (WS-4) for α > 0 is left to the reader. Note that if we simply remove the extra
slice, we get “nice” α-wslice datasets that satisfy all the extra conditions (WS-4),
(WS-4a), (WS-5), and (WS-1+).

Below we consider whether or not we can in general “fix up” a general α-wslice
dataset to get a nicer α-wslice dataset that satisfies these extra conditions. One
condition has already been examined: it is shown in [BS1, Lemma 2.3] that every
(inner) (α,C)-wslice domain has α-wslice datasets that satisfy (WS-4). In fact any
given wslice dataset for an arbitrary pair of points x, y can be modified to obtain
an (α, 4C)-wslice dataset for x, y which satisfies (WS-4:C′) for some C′ = C′(C,α).

Below, we give a short proof of (WS-4) in our most general setting, and we
prove (WS-4a) and (WS-5) for many metric spaces including all (inner) Euclidean
domains; the path γ in (WS-4) and (WS-4a) can be any sufficiently efficient path,
but the dataset must be tailored to whatever path is chosen.

The proof of (WS-5) solves part of an open problem in [BS2, Section 6], where
it was conjectured that (WS-5) and (WS-1+) could be made to hold in an α-wslice
domain. We emphasize that [BS2] was concerned only with Euclidean domains,
while our investigations deal with more general metric spaces.

Lemma 2.12. If Ω is an (α,C)-wslice space, then for every x, y ∈ Ω there is an
(α, 4C)-wslice dataset for x, y which satisfies (WS-4: 4C). Moreover, the dataset
can be chosen to accommodate any (α, 1/4, 0)-efficient path γ ∈ ΓΩ(x, y).

Lemma 2.13. If Ω is an (α,C)-wslice space which is locally C′-externally con-
nected, then for every x, y ∈ Ω there is an (α, 8C)-wslice dataset for x, y which
satisfies (WS-4: 4C) and (WS-4a: C′′) for some C′′ = C′′(α,C,C′). Moreover,
the dataset can be chosen to accommodate any (α, 1/4, 0)-efficient path γ ∈ ΓΩ(x, y).

Theorem 2.14. If Ω is an (α,C)-wslice space which is locally (C0, C
′
0)-nicely con-

nected, then for every x, y ∈ Ω there is an (α,C′)-wslice dataset for x, y which
satisfies (WS-5: C′) for some C′ = C′(α,C,C0, C

′
0).

Some restriction such as local nice connectivity is needed in order to prove (WS-
5). It is best, though, to put off a counterexample until the next section; see
Example 3.5.
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There is one significant gap in what we can prove: we do not know if (WS-1+)
can be made to hold even in the Euclidean setting, although we would make the
following conjecture.

Conjecture. If (Ω, d) is an (α,C)-wslice space which is locally (C0, C
′
0)-nicely

connected, then it is also an (α,C1)-wslice+ space, for some C′ = C′(α,C,C0, C
′
0).

Proof of Lemma 2.12. For x, y ∈ Ω, we choose an arbitrary (α, 4C/3)-wslice dataset
{(Si, di)}mi=1. We may assume that dα,Ω(x, y) ≤ 2C

∑m
i=1 d

α
i , since otherwise taking

the empty set as our (σ, 2C) admissible set already gives an (α, 2C)-wslice condition
for x, y, and so (WS-4) is trivially true.

Choose any (α, 1/4, 0)-efficient path γ ∈ ΓΩ(x, y) and discard those slices Si that
fail to satisfy (WS-4: 4C) with this choice of path γ. Define I and J to be the sets
of non-discarded and discarded indices, respectively. Then

4C
∑
j∈J

dαj ≤ lenα,Ω(γ) ≤ 5
4
· 2C

m∑
i=1

dαi .

Thus
∑

i∈I d
α
i ≥ (3/8)

∑m
i=1 d

α
i , and the slimmed-down collection {Si, di}i∈I serves

as an (α,C′)-wslice dataset for x, y, where C′ = (8/3) · (4C/3) < 4C. �
Proof of Lemma 2.13. Fix any (α, 1/4, 0)-efficient path γ ∈ ΓΩ(x, y), and apply
Lemma 2.12 to obtain an (α, 4C)-wslice dataset which satisfies (WS-4: 4C) for γ,
and let σi ≡ γ∗ ∩ Si. The local external connectivity condition is required only for
the upper bound on δΩ(z) in (WS-4a), which follows from Lemma 2.8 (since for
C′1 ≤ C′2, local C′1-external connectivity implies local C′2-external connectivity, we
may replace C′ by C′ ∨ 2 to make Lemma 2.8 applicable).

It remains to establish the lower bound for δΩ(z), for z ∈ σi(= γ∗ ∩ Si) in (WS-
4a). We set Ei = {z ∈ σi : δΩ(z) ≤ cdi}, where c ≡ (32C2)−1/(1−α). If Ei = ∅, the
lower bound will hold (with C′′ = c−1) so we assume that Ei 6= ∅. Using (WS-4:
4C), we obtain lenα,Ω(Ei) ≤ lenα,Ω(σi) ≤ 4Cdαi which leads us to conclude that
lend(Ei) ≤ 4Cdαi

(cdi)α−1 = di
8C . Thus we can remove Ei from Si (1 ≤ i ≤ m) to get a

new dataset which enjoys all of the asserted properties. �
Proof of Theorem 2.14. We first augment C, if necessary, to assure that Cα > 4.
Let γ ∈ ΓΩ(x, y) be a path which is (α, 1/4, 0) efficient for the points x, y ∈ Ω.
Invoking Lemma 2.13, we choose an (α, 8C)-wslice dataset {(Si, di)}mi=1 for x, y
which satisfies (WS-4: 4C) and (WS-4a: C′′) for the given path γ. As in the
proof of the previous lemma, we may also assume that C′0 ≥ 16C, and similarly
we can arrange things so that C′′ ≥ C′0. We also arrange the indexing so that the
wnumbers di are in decreasing order.

Letting Mi = supz∈Si δΩ(z), it follows from (WS-1: 8C) that lenα,Ω(γ∗ ∩ Si) ≥
Mα−1
i di/8C. Combining this with (WS-4: 4C), we deduce that

(2.15) Mi ≥ (4
√

2C)−2/(1−α)di, 1 ≤ i ≤ m.
For each i, pick zi ∈ Si with δΩ(zi) ≥ Mi/2, and let Bi = Bd(zi, ri), where
ri = δΩ(zi)/2. It is useful to note that ri ≈ di (1 ≤ i ≤ m). In fact, by using (2.15)
for one direction, and Lemma 2.8 and our assumption C′0 ≥ 16C for the other, we
get

(2.16)
di

4(4
√

2C)2/(1−α)
≤ ri ≤

(C′0)2di
2

.
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Let Ij be the set of all indices i such that Si intersects Bj and ri/rj ∈ (1/2, 1].
We shall show that Nj, the cardinality of Ij , is bounded by a number M =
M(α,C,C0, C

′
0). Suppose Nj > 0 and let Ej =

⋃
i∈Ij γ

∗∩Si. By (2.16), we deduce
that the slices Si, i ∈ Ij , all fit inside the ball Bd(zj , C1rj) for some C1 . 1. We
consider balls {B′(u) ≡ B(u, rj/4C0(C′0)2C′′)}, where u ∈ Ej , and take a maximal
collection of them: B′1 = B′(u1), B′2 = B′(u2), · · · , B′p = B′(up), with the property
that { 1

3B
′
i} is a disjoint family. We arrange the indexing so that u1, u2, · · · , up

proceed in the natural order induced by γ. Since all of the pairwise disjoint smaller
balls have the same radius rj/12CC0C

′
0(C′′)2 and are contained in the single ball

Bd(zj , (C1 + 1)rj), we conclude that p . 1.

Claim. B′i ⊂ Bdα,Ω(ui, (C′′)αdαj ).

Proof of Claim. Let y ∈ B′i, so that d(ui, y) < rj/4C0(C′0)2C′′. Now, since ui ∈
Si′ for some i′ ∈ Ij , (WS-4a: C′′) and (2.16) give us that δΩ(ui) ≥ di′/C

′′ ≥
ri′/(C′0)2C′′ ≥ rj/2(C′0)2C′′. In particular, d(ui, y) < δΩ(ui)/2C0. Since y ∈
C−1

0 Bui , local quasiconvexity implies that y and ui can be connected by a path τ
of length at most C0d(ui, y) < δΩ(ui)/2. Thus for all w ∈ τ∗, δΩ(w) ≥ δΩ(ui)/2,
and hence lenα,Ω(τ) < [δΩ(ui)/2]1+(α−1). Now δΩ(ui) ≤ C′′di′ ≤ 2C′′dj , and the
claim follows. �

In light of the claim, we can modify γ by replacing (in order) the portions of
it which intersect the balls B′1, B

′
2, · · · , B′p by (α, 1, 0)-efficient paths from the first

entry point to the last exit point with the proviso that if one of these balls is not
disjoint from a preceding one, then the starting point for this (closed) ball will be
the last intersection point for the immediately preceding (closed) ball. We thus get
a new path (parametrized by arclength, say) λ ∈ ΓΩ(x, y). Applying the mutual
comparability of ri, i ∈ Ii, followed in order by Corollary 2.9 with E =

⋃
i∈Ij λ

∗∩Si,
our claim, and the boundedness of p, we see that

Njd
α
j ≈

∑
i∈Ij

dαi . lenα,Ω(Ej) . pdαj . dαj .

Thus Nj is bounded as desired.
More generally, there are at most some bounded number, M ′ = M ′(α,C,C0, C

′
0),

of slices Si that intersect Bj and for which di < dj . To see this we can use the above
argument to get a bound on the number of such slices that satisfy a restriction of
the form ri/rj ∈ (2l−1, 2l] for each integer l. This bound will depend on l, but
this is not a problem since there can be no such slices unless |l| . 1. The upper
bound on l follows from the fact that di < dj and ri ≈ di. By (2.16), it suffices
to prove the lower bound when di < rj/2. In this case, Si ⊂ B(zj , 3rj/2), and so
δΩ(z) ≥ δΩ(zj)/4 for all z ∈ Si. Fixing z ∈ γ∗ ∩ Si, and using (WS-4) and (2.16)
again, we see that C′′di ≥ δΩ(z) ≥ rj/2 & dj , which gives the required lower bound.

Defining S′i ≡ Si ∪ Bi, we next partition the integers from 1 to m into sets
I and R (included and rejected indices); the desired dataset will be {S′i, di}i∈I .
We allocate 1 to I. Inductively, we allocate i to R if Si intersects Bj for some
j < i, j ∈ I, and otherwise we allocate it to I. Recalling that the d′is are non-
increasing, it follows that

∑m
i=1 d

α
i ≤ M ′

∑
i∈I d

α
i , and hence the new collection

serves as an (α, 8CM ′)-wslice dataset for x, y. Since the slice S′i contains a ball of
radius ri = δΩ(zi)/2 ≥ Mi/4, (2.15) now shows the validity of (WS-5: C′) with
C ′ = (8

√
2C)2/(1−α). �
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One way to prove that any α-wslice condition fails is to get an upper bound on
the number of slices. A good way of doing this is to have two paths between the
same endpoints that are mostly rather far apart, using (WS-1) to bound the number
of slices that cover various parts of the first path that lie at various distances from
the second. The next lemma involves a rather abstract form of this argument; it is
rather similar to Corollary 2.9, but the set A is measured using a different length
measure.

Lemma 2.17. Suppose (Ω, d) is a rectifiably connected metric space, A ⊂ Ω is a
rectifiable set and, for some c > 0, F is a collection of disjoint non-empty bounded
subsets of Ω with lend(S ∩ A) ≥ cdS for all S ∈ F . Suppose also that there is a
constant C and a function g : A→ (0,∞) such that dS ≥ g(x) whenever x ∈ S∩A,
and lend(g−1(0, t)) ≤ Ct for all t > 0. Then, for each 0 < α < 1, we have∑

S∈F
dαS ≤

21+αC[len(A)]α

c1+α(1− 2−α)
.

If, additionally, g(x) > ε > 0 for all x ∈ A, then the cardinality of F is at most
2Cc−1 log2(4 len(A)/cε).

Proof. We partition F into subsets Fk, k ∈ Z, by the rule S ∈ Fk if dS ∈ (2k−1, 2k].
Note that if S ∈ Fk, then lend(S ∩ A) > c2k−1, S ∩ A ⊂ g−1((0, 2k]), and
len(g−1((0, 2k])) ≤ C2k∧len(A). It follows that the cardinality of each Fk is at most
2C/c and that Fk is empty whenever 2k > 2 len(A)/c. Thus

∑
S∈Fk d

α
S is at most

2Cc−12kα and, summing over allowable values of k, the desired estimate follows.
The last statement is similar but easier, since we are just summing subset cardinal-
ities bounded by 2Cc−1 for each value of k satisfying ε < 2k ≤ 2 len(A)/c. �

3. Weak slice but not inner weak slice

In this section we construct examples of α-wslice domains which are not inner
α-wslice domains thereby resolving Open Problem D in [BS2]. The pathology of
such examples is most easily understood in the setting of manifolds imbedded in
Euclidean space and we will precede the domain example with a corresponding
manifold example. Note that, since the ambient Euclidean metric is dominated by
the inner metric on a manifold, and the length of a path on the manifold is the same
for both metrics, it is clear that inner α-wslice manifolds are α-wslice manifolds.

We begin with an example of a 2-manifold in R3. Since the example is inde-
pendent of the parameter α, it will show that the inner wslice conditions can be
much more restrictive than wslice conditions. The requisite pathological property
becomes more apparent in this flexible manifold setting. Subsequently, when we
construct a (flat) domain in R2 with similar properties, the construction will require
some modifications to work around the flatness. In any case, after the groundwork
is laid for the manifold example it will be a lot less work to indicate the changes
needed to verify the domain example, and the careful reader should be able to glean
the common phenomenon which occurs in both examples.

Example 3.1. We construct a 2-manifold M ⊂ R3 which is an α-wslice manifold
for every α ∈ [0, 1), but satisfies none of the corresponding inner α-wslice conditions.

The 2-manifold M , whose construction depends on a decreasing sequence of
positive parameters {δj} (which we shall specify later) is illustrated in Figure 3.2.
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Figure 3.2. An illustration of the 2-manifold M with a typical
slice shown

It is helpful to first define another manifold M ′ by (smoothly) folding a rectangular
sheet along a central axis of length L ≡

∑∞
j=1 1/(j + 1)2 in such a way that along

the first 1/22 = 1/4 length of the fold, a distance of approximately δ1 is maintained
between the two folds (except near the bottom where the folding is done). On the
next 1/32 = 1/9 length of the fold, a distance of approximately δ2 is maintained,
and so on. It is useful to coordinatize M ′ using the natural map φ to the original
rectangular sheet. Thus, φ = (φ1, φ2) maps M ′ to (−1, 1) × (0, L), and it maps
the folding axis isometrically to {0}× (0, L). The point with coordinates (x, y) lies
approximately a distance |x| above the folding axis point with coordinates (0, y),
and a distance 1−|x| from the rim of M ′, with positive values of x corresponding to
the front fold and negative values to the back fold. For this example only, whenever
we give coordinates of the form (a, b), these are meant to be φ-coordinates of a point
in M ′, not Euclidean coordinates.

We now define a submanifold M of M ′ by taking the complement of an infinite
collection of closed slits. Let us describe how these slits are made. At the center of
the jth portion of the horizontal folding axis (corresponding to a length of 1/(j+1)2)
a slit along the folding axis of length 2δj is made, between points (0, aj) and (0, bj),
bj = aj + 2δj ; we also define b0 = 0 for convenience. We write Ij ≡ [aj , bj ]. We
assume that 0 < δj < 1/4(j+1)2 and that the numbers δj are monotonic decreasing.
At the ends of each such slit, front and back vertical cuts are made producing slits
from points (±(1 − δj), aj) to (0, aj), and from (±(1 − δj), bj) to (0, bj). Finally,
midway between these two vertical slits, two more vertical slits are made, one on
each fold. These slits start at (±1, (aj + bj)/2) and end at (±δj , (aj + bj)/2).
Although these slits are illustrated in Figure 3.2 by heavy thick black curves, this
is merely to emphasize their presence. They are smooth curves with no width.

Step 1: We show that M is a 0-wslice domain. Let us designate the jth portion of
M to be the part of M (of horizontal projection length 1/(j + 1)2) corresponding
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to the parameter δj . We also designate the jth network of slits to be those slits of
M which lie in its jth portion. The jth slit zone Zj is the set of all points z ∈ M
with φ2(z) ∈ Ij .

Let z = (z1, z2) and w = (w1, w2) be the points in M for which we wish to
establish a 0-wslice condition, and let γ be a 0-geodesic for z, w. Without loss of
generality, we assume that φ2(z) ≤ φ2(w). If neither z nor w lie in a slit zone,
and the interval [z2, w2] intersects no interval Ij , then z and w can be joined by a
uniform path. Putting together (1.1) and (2.3), the wslice condition follows. We
may assume therefore that [z2, w2] intersects at least one interval Ij .

Let us examine the case where [z2, w2] contains the intervals Ij that it intersects,
namely j1 ≤ j ≤ j2. The other case, in which either z or w lies in a slice zone
will be handled in a similar fashion, so we leave it to the reader. Suppose γ has
an initial segment (beginning at z) on which distance to the boundary is at most
δj1/4, or a final segment (ending at w) on which distance to the boundary is at
most δj2/4. We discard both these segments if they exist and call the truncated
path ν. We may assume that the quasihyperbolic length of ν is at least half that
of γ, since otherwise it is easily verified that the wslice condition follows from (1.1)
and (2.3) (since the discarded segments move more or less “directly away from the
boundary”).

Let Ej be the part of ν∗ that lies in φ−1
2 ([bj−1, aj ]), and let Fj be the part

of ν∗ that lies in φ−1
2 ([aj , bj ]). It is easy to check that δM (x) & δj , x ∈ Ej ,

and that len0,M (Ej) . log(1/δj). When j is large, this length is much less than
len0,M (Fj) ≈ 1/δj. Note that the lower bound implicit in this last estimate is
rather easy to establish, while for the upper bound we use the fact that δM (x) & δj ,
x ∈ Ej ∩ Fj (and hence for all x ∈ Fj). It suffices therefore to find a sufficiently
numerous set of 0-wslices which cover most of the quasihyperbolic length of Fj∩ν∗,
j1 ≤ j ≤ j2.

Within the slice networks, we use as slices approximately square boxes (actually
two of them for each slice, opposite one another on the two folds as depicted in
Figure 3.2); we do this from a distance δj above the fold until we reach a distance
δj or less from the top of the outer slits, and take their diameters as the associated
0-wnumbers. With respect to the ambient Euclidean metric of R3, these slices have
diameter approximately δj and certainly satisfy (WS-1). Indeed, for this condition a
moderate value of C suffices (e.g., C =

√
3 would work if the front-to-back distance

is exactly dj and the δj ’s are taken sufficiently small in the construction of M).
Condition (WS-2) is also clear. Assuming as we may that the height of each fold is
about one, the number of such slices within the jth slit network is 0∨d2δ−1

j −6e, thus
giving (WS-3) with a moderate value of C which is independent of the particular
values of the δj ’s.

Step 2: We show that the manifold M cannot satisfy an inner 0-wslice condition.
We consider pairs of points: xj , yj which are situated with respect to the same
(front) fold of the jth slice network as are the points x1, y1 with respect to the first
slice network, as illustrated in Figure 3.2. Thus xj = (1 − δj , (3aj + bj)/4) and
yj = (1− δj , (3bj + aj)/4). We shall show that, no matter what the value of C, the
(0, C)-wslice condition fails for the pair xj , yj when j is sufficiently large.

We define two paths λj , νj ∈ ΓM (xj , yj), both parametrized by arclength. Both
are made up of only horizontal and vertical linear segments (with respect to our co-
ordinate system). First λj corresponds in our coordinate system to a concatenation
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of three line segments from xj to (δj/2, (3aj + bj)/4), then to (δj/2, (3bj + aj)/4),
and finally to yj ; this is clearly a 0-efficient path. The second path νj is more
complicated: it goes down the front fold to the left of the jth slit zone, then up
the back fold, down and up the back slit network, and finally down the back fold
to the right of the jth slit zone and up the front to yj. Specifically, we define νj to
correspond in our coordinate system to a concatenation of nine line segments that
join the following points in sequence:

xj = (1− δj/2, (3aj + bj)/4), (1− δj/2, aj − δj/2), (−1 + δj/2, aj − δj/2),
(−1 + δj/2, (3aj + bj)/4), (−δj/2, (3aj + bj)/4), (−δj/2, (3bj + aj)/4),
(−1 + δj/2, (3bj + aj)/4), (−1 + δj/2, bj + δj/2), (1− δj/2, bj + δj/2),
yj = (1 − δj/2, (3bj + aj)/4).

It is easy to see that the portion of A ≡ λ∗j \ [C−1Bxj ∪ C−1Byj ] that is within
an inner distance t of νj has length at most comparable with t, and is empty unless
t & δj . In view of (WS-1), we can therefore apply Lemma 2.17 (Case α = 0)
to deduce that the number of 0-wslices is at most a bounded multiple of log 1/δj.
When j is large, this is much smaller than kM (xj , yj) ≈ 1/δj, so every (0, C)-wslice
condition must fail.

Final step: We show that the manifold M satisfies the α-wslice condition but not
the inner α-wslice condition whenever α ∈ (0, 1). The changes required to adjust
the case α = 0 proofs to handle the case α > 0 are all quite routine. In particular,
for the positive result, the slice data constructions presented in Step 1 will work
in this case as well, although the technical details will be somewhat different. The
negative result is also quite similar. Note that the final appeal to Lemma 2.17 yields
WSα(xj , yj ;M ;C) . 1, whereas dα,M (xj , yj) ≈ δα−1

j is much larger for large j.

Note that the Euclidean metric on the manifold M above is locally externally
connected, but is not locally quasiconvex. Thus all of the theory in Section 2 is
applicable to it with the exception of Theorem 2.14. However, it is easy to see that
(WS-5) can be made to hold always in spite of this. The inner metric on M is
locally nicely connected, as is readily verified. In some ways, the Euclidean metric
is somewhat unnatural on M and so it certainly seems appropriate to give also a
planar example Ω of the same phenomenon, as we now do.

In our subsequent domain construction we will work with some similarity trans-
formations; so, for future reference we observe here some basic change of variable
estimates. If σ : Ω → Ω′ is a similarity transform, i.e., σ(x) = µx + x0, where
µ > 0 is the similarity factor, we then have: δΩ′(σ(x)) = µδΩ(x), lenα,Ω′(σ ◦ γ) =
µα lenα,Ω(γ), and thus dα,Ω′(σ(x), σ(y)) = µαdα,Ω(x, y). From these relations, it
now follows that all of the α-wslice conditions are invariant under similarities.

Example 3.3. We construct a domain Ω ⊂ R2 which, for every α ∈ [0, 1), is an
α-wslice domain, but not an inner α-wslice domain.

The domain Ω consists of the unit square S in R2 with a sequence of rectangular
slit domains Dj (j ≥ 2) separately attached along the top edge of S. The rectangu-
lar edges of Dj have heights of 2−j and widths of 4−j. To describe the slits removed
from the corresponding rectangle Rj , it is simpler to describe them for the similar
rectangle R′j having vertices at (−2, 0), (2, 0), (−2, 2j+2), and (2, 2j+2). Note that
there is a similarity mapping σj from Rj onto R′j preserving top sides and with
similarity factor µj = 4j+1. The first slit in R′j is along the midline from (0, 2j+2)
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Figure 3.4. The domain Ω (left) and a magnified D1 (right)

down to (0, 2). The other three slits form a U-shape from (−1, 2j+2 − 1) down
to (−1, 1), then right to (1, 1), and finally up to (1, 2j+2 − 1). To show that the
resulting domain Ω has the desired properties, many of the details of the manifold
example can be applied here, so we outline only the main changes.

Consider the case x = xj , y = yj, where xj , yj ∈ Dj are defined by the equations
x′j = σj(xj) = (−1, 2j+2 − .5) and y′j = σj(yj) = (1, 2j+2 − .5). As slices Si, we
use pullbacks under σj of the horizontal strips S′i from y = i + 1 to y = i + 2 in
D′j = σ(Dj) (1 ≤ i < 2j+2 − 2), and we write di = dia(Si); the case j = 1 is
illustrated in Figure 3.4 (right), with slices bounded by dotted lines. Conditions
(WS-1) and (WS-2) are easily verified. Since kΩ(xj , yj) is approximately 2j , a
0-wslice condition follows.

For other pairs of points x, y lying in Dj, we might have to discard some slices,
as (WS-1) will hold for less of them if they are quasihyperbolically closer together
than our original pair, and (WS-2) might not hold for at most four of them (namely,
any Si containing, or within a distance 4−j−1 of, x or y). But as the reader can
verify, there are enough of them that satisfy (WS-1) and (WS-2) in order to deduce
a 0-wslice condition with a moderate constant (uniform in j) unless the distance
from either x or y to ∂Ω is smaller than 4−j−2. In this case, we supplement the set
of wslices with some annular slices around the point that is closest to the boundary.
The case of pairs of points situated in different Dj’s, or anywhere else in Ω is left
to the reader, as is the verification of an α-wslice condition for α > 0.

The proof that Ω is not an inner α-wslice domain for any α > 0 is very similar
to that used in the manifold example. Suffice it to say that we consider the same
points xj , yj as in the second to last paragraph and take paths λj , νj that connect
them inside Dj , where λj consists of a few line segments that mainly travel down
and up the “inner passage”, while νj is similar but mainly travels down and up the
“outer passage”. We leave the details to the reader.
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Example 3.5. We construct a 2-manifold M ⊂ R3 which, for every α ∈ [0, 1), is
an α-wslice manifold for which the condition (WS-5) cannot be added.

We begin with a planar domain

G = (0, 1)2 ∪

 ∞⋃
j=2

Aj

 ,

where Aj = (aj − εj , aj + εj) × (−bj, 0], aj = 2−j, bj = 2−2j, and εj = 2−2j2 .
This domain is simply connected, so certainly it satisfies an (inner) slice condition,
and hence an (inner) α-wslice condition for each α ∈ [0, 1). We now map G to
a 2-manifold M ⊂ R3 via a bijective “folding map” f . Let us coordinatize M
using the natural R3 coordinates. We choose f so that f(x, y) = (x, y, 0) for all
(x, y) ∈ (0, 1)2, and such that f(Aj) ⊂ (aj − εj, aj + εj) × (−εj , 0] × (−εj , 0] by
tightly folding the appendages Aj . Moreover we choose this folding map so that f
is a local quasi-isometry with respect to the Euclidean metrics on G and M (with,
let’s say, distortion factor at most 2), and an isometry with respect to the inner
metrics. Since f is an inner isometry, M is an inner α-wslice manifold, and hence
an α-wslice manifold.

However, no matter how large a value of C we choose, if we take j = j(α,C) ∈
N large enough, then every (α,C)-wslice dataset {Si, di}mi=1 for the points z0 =
(1/2, 1/2, 0) and zj = f(aj ,−bj + εj) fails to satisfy (WS-5). We sketch the proof
of this when α = 0, leaving the α > 0 case to the reader. Let us define Ej to be the
εj-neighbourhood of f(Aj) with respect to the Euclidean metric. By going from z0

to zj via two paths that stay far apart until they get near f(Aj), one can prove as
before (using Lemma 2.17) that the number of slices that are not contained in Ej is
at most comparable to log εj ≈ j2. On the other hand, kM (z0, zj) ≈ bj/εj is much
larger than this when j is large, so there must be many more slices contained in
Ej . All these other slices must have diameter comparable to εj , and now (WS-5)
is untenable since only a bounded number of disjoint balls of radius comparable to
εj can be fit into the set Ej whose diameter is comparable with εj.

4. The mean cigar conditions

For a constant C ≥ 1, we say that a domain Ω ( Rn is a C-uniform domain
or inner C-uniform domain, if it is a C-uniform space when equipped with the
Euclidean metric or inner Euclidean metric, respectively. Uniform domains include
all bounded Lipschitz domains, as well as some domains with fractal boundary, such
as the interior of a von Koch snowflake. All uniform domains are inner uniform, and
a slit disk is a standard example of an inner uniform domain that is not uniform.
For more on uniform and inner uniform domains, see [V3] and [V5].

Next, if 0 ≤ α ≤ 1 ≤ C, we say that a rectifiably connected metric space (Ω, d)
is an (α,C)-mcigar space if for every pair x, y ∈ Ω, there is an (α,C)-mcigar path,
i.e., a path γ ∈ ΓΩ(x, y) such that:

lenα,Ω(γ) ≤

Cd(x, y)α, 0 < α ≤ 1,

C log
(

1 +
d(x, y)

δΩ(x) ∧ δΩ(y)

)
, α = 0.

We say that a domain Ω ( Rn is an (α,C)-mcigar domain or inner (α,C)-mcigar
domain, if it is an (α,C)-mcigar space when equipped with the Euclidean metric
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or inner Euclidean metric, respectively. We note that in the Euclidean or inner
Euclidean contexts, α-mcigar conditions for 0 < α < 1 imply the existence of a
path λ that satisfies a type of cigar condition on average; see [BK2, Lemma 2.2]
and Lemma 4.6 in [BS2].

Uniform domains are α-mcigar domains for all α. Gehring and Osgood [GO]
showed that the classes of 0-mcigar domains and uniform domains coincide, and
Väisälä [V5, 2.33] showed that the classes of inner 0-mcigar and inner uniform do-
mains coincide. The class of (inner) α′-mcigar domains includes the class of (inner)
α-mcigar domains if and only if α ≤ α′. The Euclidean version is dealt with in [L]
and [BK2]; inclusion follows similarly in the inner case and the counterexamples
in [L] also handle the inner version. Thus mcigar domains include domains with
rough (even fractal) boundary. Note that the class of inner uniform and inner mci-
gar domains contain their Euclidean analogues (strictly, since a planar slit disk is
in all of the inner classes, but none of the Euclidean classes).

We refer the reader to [BK2], [GM1], and [L] for more information about α-
mcigar domains; these domains are called “weak cigar domains” in [BK2] and “Lipα
extension domains” in [GM1] and [L] when α > 0. The last name derives from the
fact that for α > 0, G is α-mcigar if and only if all functions which are locally
Lipschitz of order α on G are Lipschitz of order α on G; see [GM1].

We are now in a position to state the result mentioned in the introduction which
provides an extremely large class of domains which satisfy all of the weak slice
conditions of Section 2; this result is merely a restatement of Theorem 3.1 of [BS2].
As the result indicates, the large class of domains given even satisfy the stronger
(inner) slice condition. Since we shall not use the slice condition, we choose to forgo
its more complicated definition and refer the interested reader to [BK2] (see also
[BS1] or [BS2]).

Theorem 4.1. Let α ∈ [0, 1) and let f be a K-quasiconformal mapping from an
inner C-uniform domain G ⊂ Rn onto Ω. Then Ω is an inner C′-slice domain and
an inner (α,C′)-wslice+ domain for some C′ = C′(C, n,K, α).

5. An example indicating a big difference in α-mcigar domains:

α = 0 vs. α > 0 in relation to weak slice conditions

As Theorem 4.1 indicates, every quasiconformal image of an inner 0-mcigar do-
main is an inner slice domain and an inner α-wslice+ domain for all α ∈ [0, 1). The
related Theorem 3.6 of [BS2] says that if a broad domain is either an inner slice
domain or an inner 0-wslice+ domain, then its quasiconformal image is also an inner
slice domain or an inner 0-wslice+ domain, respectively. In this section, we give a
counterexample to show that no such result is possible for quasiconformal images
of (inner) α-mcigar domains if α > 0. This counterexample G is a broad inner
α-mcigar domain (and hence an inner α-wslice+ domain by [BS2, Lemma 3.4]), but
it has a quasiconformal image which is not an α-wslice domain. The construction
of G is rather intricate, but we suspect that this level of difficulty is inevitable.
First, let us recall the definitions of conformal modulus and broadness.

The conformal modulus, mod(E,F ;G), of the pair of disjoint compact subsets
E,F of a domain G ⊂ Rn is the infimum of

∫
G
ρn, as ρ : G → [0,∞] ranges over

the class of Borel functions for which every line integral over a path γ : [0, 1]→ G
joining E and F is at least 1. We refer the reader to [V2] for the fundamentals of
conformal modulus and quasiconformal mappings.
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A domain G ⊂ Rn is φ-broad if

φ(t) ≡ inf{mod(E,F ;G) : ∆G(E,F ) ≤ t} > 0, t > 0,

where E,F designate non-degenerate disjoint continua in G and

∆G(E,F ) ≡ dG(E,F )
diaG(E) ∧ diaG(F )

denotes the relative inner distance between E and F . This term was introduced
by Väisälä [V4, 2.15]. Our definition looks a little weaker than Väisälä’s, but is
equivalent to it by [HK, Theorem 3.6]. It is a special case of what is termed a
Loewner space, but we prefer the term “broad” as it implicitly indicates that we
are using the inner Euclidean metric.

A good way of starting this process of creating a counterexample is to fix α0 ∈
(0, α), and to recall Lappalainen’s example [L, 6.7] of a planar set D which is in the
class s-mcigar for all s > α0 > 0 but not for any s ≤ α0. These examples D have
two major defects that must be rectified before they can provide a counterexample:
they are slice domains (since they are simply connected), and they are not broad.
By Theorem 4.1 in [BK2], one way of killing the slice and s-wslice+ properties for
s ≤ α0 while preserving it for s = α is to replace D by D × (0, 1). This process
does not suit us here because D × (0, 1) is not broad. Instead, we “stack” copies
of D on top of each other. The word “stack” is meant to be more suggestive than
accurate: since we want a broad domain, our new domain must have a vertical
cross-section whose length is much less variable than that of D. To achieve this, we
vary the numbers of stacked copies of D as we move from left to right—a “copy” of
D bifurcates into two copies roughly where the cross-sectional height halves. Also,
to ensure that the domain is broad, we need very gappy barriers between stacked
layers; in fact we shall choose a sequence of isolated points as “barriers”.

Our approach is therefore as follows. Fixing 0 < α0 < α < 1, we first construct
a variant D of Lappalainen’s example of a planar set which lies in the class s-
mcigar for all s > α0 but not for any s ≤ α0. Next we define a “quantized”, more
easily stackable, version of D whose cross-sectional heights are similar to those of
D, but are always powers of 2. Finally we define our stacked set G and find a
quasiconformal mapping that maps G to another domain Ω that does not possess
an α-wslice+ property.

Before beginning, let us introduce some notation and terminology that we shall
need. Let c ≡ 1 − 21−1/α0 . We use “≈” (and “.”) to mean bounded above and
below (or just above, respectively) by constants dependent only on α and α0. For
any function f : (0, 1) → [0,∞), we denote by Df the planar set {(x, y) ∈ R2 :
0 < x < 1, |y| < f(x)}. Every such f that we use will be a symmetric function,
meaning that it will satisfy the symmetry relation f(x) = f(1−x), 0 < x < 1, so it
suffices to define f(x) (or Df ) for 0 < x ≤ 1/2. Let d1 denote the metric associated
with the l1-norm ‖(x, y)‖1 = |x| + |y|. Given a line segment J = [z − R, z + R]
on the x-axis, z = (x, 0), R = (r, 0), we denote by B1(J) the metric ball Bd1(z, r);
note that B1(J) is a “diamond” whose intersection with the x-axis is J .

By the regular c-Cantor set, Ac, we mean the set that remains when one starts
with the single zeroth stage interval (0, 1), and iteratively removes a subinterval of
length c|I| from the center of each subinterval that remains at the nth stage, n ≥ 0.
We denote by In,j , 1 ≤ j ≤ 2n, the 2n open intervals removed at the nth stage,
viewed as intervals on the x-axis of the plane. Let zn,j = (xn,j , 0) be the center,
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and rn = c2−1−n/α the half-length, of In,j ; we assume the labeling is done so that
(xn,j)2n

j=1 is an increasing sequence. We are particularly interested in z−n = (x−n , 0)
and z+

n = (x+
n , 0), the left and right-hand endpoints of In,1.

We now construct D, which decomposes as the union of two open subsets D̂ and
D∗, where

D̂ =
∞⋃
n=0

2n⋃
j=1

B1(In,j)

is an affine copy of Lappalainen’s original D′, but D∗ (defined below) is rather
different from his D∗. Note that D̂ = Df̂ for some function f̂ , and that f̂−1(0) ≡ Ac
has H1 measure zero; the set D̂ is illustrated in Figure 5.1 (to a resolution of n = 3).
As in [L, 6.7], a straightforward calculation shows that∫

In,j

δβ−1

D̂
(z) dz = K ′rβn, β > 0

where K ′ = K ′(β, α0) < ∞. In particular, d
α,D̂

(z−n , z
+
n ) = 2Krαn , where K =

K ′(α, α0)/2.
We next define D∗. Our D∗ is different than that of Lappalainen, but both

sets have a similar role: they connect the components of D̂ to make D a domain,
while being so highly cusped that certain desirable metric properties of D̂ are
inherited by D. Note that D is a domain as long as D∗ = Df∗ , for some function
f∗ : (0, 1)→ (0,∞) whose only discontinuities are jump discontinuities at points x
where both one-sided limits of f∗ are less than f̂(x). We construct such a symmetric
function f∗, defined on (0, 1/2] as follows. First we choose f∗(x) = c1 for all
x ∈ (x1,1, 1/2], where c1 is a constant. Note that dα,D(z−2 , z

+
2 ) is independent of

f∗|(0,x1,1) and increases ever closer to 2Krα2 , as c1 → 0+. Thus we can choose
c1 ∈ (0, f̂(x1,1)) so small that dα,D(z−2 , z

+
2 ) ≥ Krα2 . Inductively, for each n ≥ 2, we

choose f∗(x) = cn for all x ∈ (xn,1, xn−1,1], where cn ∈ (0, f̂(xn,1)) is so small that
dα,D(z−n+1, z

+
n+1) ≥ Krαn+1, and hence

Krαn ≤
∫
In,j

δα−1
D (z) dz ≤ 2Krαn , 1 ≤ j ≤ 2n.

As in [L, 6.7], it easily follows that D is an α-mcigar domain.
Note that D = Df , where f = f̂ ∨ f∗. By construction f(x) ≤ C [x ∧ (1 − x)],

with C = 2f(1/2) ≤ 1; equality in the first inequality occurs at all points of the
form zn,j , j = 1 or 2n. Moreover, |f(y)− f(x)| ≤ |y−x|, with equality for x, y near
1/2, but less than 1/2; more briefly, we write ‖f‖Lip1((0,1)) = 1.

We now “quantize” D to get a new domain Dg, g being a function whose values
lie in the set S = {2−n−1 : n ∈ Z}. For an appropriate strictly decreasing sequence
of positive numbers {xj}∞j=0, g will be a lower semicontinuous symmetric function
which takes on a constant value tj ∈ S on each interval (xj+1, xj); lower semiconti-
nuity is to ensure that Dg is open. First x0 = 1/2 and t0 is the smallest element of
S which exceeds f(1/2)/4. For k > 0, tk will always be f(xk), so we shall define xk
only. First, x1 is the point x closest to x0 where f(x) = t0/2. Inductively, assume
that we have defined xj for all j ≤ k. As we travel from xk to 0 we reach points x
where f(x) ∈ S. Then xk+1 will be the first such point that satisfies the following
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Figure 5.1. The set D̂ (top) and domain D∗ (both for α0 = 1/2)

stopping time condition:

(1) either f(x) = tk/2, or
(2) f(x) = 2tk and f(y) ≥ f(x) for all y ∈ [x− f(x)/2, x].

Since we already proved that f(x) ≤ x, it follows that xk+1 will always be defined.
As we let x move from xk towards 0, we may reach a point x′ such that f(x′) = 2tk,
but the other part of (2) fails to hold. In this case, the Lipschitz continuity of f
implies that f(y) < 5tk/2 for all y ∈ [x′ − f(x′)/2, x′]. Thus on the interval
[xk+1, xk], tk/2 ≤ f ≤ 4tk (the upper bound can only be approached near x0),
and on the corresponding open interval, g ≡ tk. Combining these facts with the
continuity of f and lower semicontinuity of g, we obtain the uniform estimate:
1/2 ≤ f/g ≤ 4, and so

(5.2) dα,Dg (z−n , z
+
n ) ≈ rαn , n ≥ 2.

The Lipschitz bound on f also implies that xj−1 − xj ≥ f(xj−1)/2. It follows that
for j ∈ N, xj−1 − xj ≈ tj since if xj−1 − xj were much larger than f(xj−1), then
Df would have a long thin corridor, a feature that α-mcigar domains such as Df

cannot have.
Before defining our counterexample, we need to define some auxiliary sets U, V,W

(illustrated in Figures 5.3 and 5.4), all symmetric about the line x = 1/2. First,
U = Du, where u(x) = x log2(1/x), when x ≤ 1/2. The left-half of V is given by

V ∩ ((0, 1/2]× R) = U \
⋃

m∈Z\{0}

∞⋃
j=0

[(xj+1,mtj), (xj ,mtj)].

W is the disconnected open subset of V obtained by additionally removing the
vertical lines {xj}×R, {1−xj}×R, j ≥ 0. We define W -cells to be the components
of W . Note that the width, xj − xj+1, and height, tj or 2tj , of any rectangular
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Figure 5.3. The domain U

Figure 5.4. Close-ups of V,W,G near ∂U

W -cell are approximately equal, and so rectangular W -cells are C-uniform domains
for some C = C(α, α0).

We now define G to be the set obtained by removing from U those corners of
W -cells that are corners only of rectangular W -cells (i.e. they are not too close to
the boundary of U ; see Figure 5.4), and we define a (G-)cell to be the G-closure of
any W -cell. We say that a point z in a cell A of G is horizontally (or vertically)
central if it lies on the vertical (or horizontal) line that bisects A. It is not hard
to see that the domain U is (inner) uniform, and hence broad by a special case of
Example 6.5(b) in [BHK]. Since U \ G is countable, it is a null set for extremal
distance [V1] and so mod(E,F ;G) = mod(E,F, U) for all disjoint compact subsets
of G. Thus G is also broad.

To show that G is an α-wslice+ domain, it suffices by [BS2, Lemma 3.4] to show
that G is an α-mcigar domain. We first define an equivalence relation ∼ on V by
z ∼ w if there is a path γ from z to w whose first coordinate is a monotone function;
roughly speaking z ∼ w if z, w lie in the same stacked copy of Dg. It is easy to
find an α-mcigar path for a pair of points in the same cell, or in a pair of cells that
share a boundary point, so we assume the points are further apart than this. One
can efficiently move from any point in a cell to the center of that cell, so it suffices
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to find an α-mcigar path for a pair z = (x, y) and w = (u, v) of cell centers (which
automatically lie in V ). We shall find α-mcigar paths separately for “horizontal”
pairs (meaning that z ∼ w) and “vertical” pairs z, w (meaning that x = u). By the
triangle inequality, it then follows that α-mcigar paths exist for any pairs of cell
centers.

If z ∼ w, it is not hard to see that we can connect z and w in V by a piecewise
straight path γ whose slope never exceeds 1 and for which the distance between
γ(t) and the nearest boundary points of V directly above and below γ(t) are within
a factor 3 of each other; we omit the details. By reference to the α-mcigar domain
Dg, we see that γ is an α-mcigar path for z, w in V , and consequently also in G.

Suppose, on the contrary, that z, w is a vertical pair. Let z′ = (x′, y′) be a
vertically central point such that z′ ∼ z, x′ ∈ [x, 1/2], and |x−x′| = |z−w|∧|x−1/2|.
Similarly, let w′ be a vertically central point with first coordinate x′ for which
w′ ∼ w. Let γz be an α-mcigar path from z to z′, and γw be an α-mcigar path
from w to w′, with the parametrizations chosen so that the first coordinate of γz(t)
and γw(t) are always equal.

Simple estimation shows that the α-mcigar condition rules out any corridor
whose cross-sectional width is much smaller than its length over a piece whose
length is some reasonable fraction of the total length of the corridor; for a more
precise statement of this phenomenon, take β = α in [BK2, Lemma 2.2]. It follows
from that result that there exist points z′′ ≡ γz(t), w′′ ≡ γw(t) for some t, such
that z′′ is horizontally central, such that δV (z′′) (and hence the height of the cell in
which z′′ lies) exceeds |z−w|/C for some C = C(α, α0) > 0, and such that w′′ has
analogous properties. We now define a path γ from z to w by gluing together three
subpaths: first γz|[0,t], then the vertical line segment from z′′ to w′′, and finally
the path γw|[0,t] run backwards. We leave it to the reader to verify that γ is an
α-mcigar path relative to G.

It remains to specify a quasiconformal mapping F : U → R2 such that Ω ≡
F (G) does not satisfy an α-wslice property. Letting H denote the left-half of G,
H = { (x, y) ∈ G | x ≤ 1/2 }, we claim that the continuous function F = (F1, F2) :
U → R2 satisfying the symmetry property

F (1− x, y) = (2− F1(x, y), F2(x, y)), (x, y) ∈ U,

and defined on H by the equation

F (x, y) =
(

1
log2(1/x)

,
y

x log2
2(1/x)

)
, (x, y) ∈ H

is such a function. To justify our claim, we define Gn={(x, y)∈G | 2−n−1<x≤2−n},
n ∈ N, so that H =

⋃∞
n=1Gn. Except for a finite number of removed points,

F (Gn) is a quadrilateral with corners (1/(n+ 1),±1/(n+ 1)) and (1/n,±1/n), and
F |Gn = bn ◦ dn where dn is a dilation by a factor 2n/n2, and bn is a bilipschitz
map which distorts distances by at most a factor 8. Since F is smooth, this local
factorization implies that it is K-quasiconformal for some universal K. It also
follows that

(5.5) lenα,Ω(F ◦ γ) ≈ 2nαn−2α · lenα,G(γ),
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whenever γ is a path that lies in Gn. By routine estimation and (5.2), we see that

dα,G(z−n , z
+
n ) ≈ dα,Dg (z−n , z

+
n ) ≈ rαn , n ≥ 2.

Since x−n ≈ x+
n ≈ rn ≈ 2−n/α, (5.5) implies that

dα,Ω(F (z−n ), F (z−n )) ≈ 2n

(n/α)2α
· 2−n ≈ n−2α.

Let wk ≡ (2−k, 0). If k ∈ N is large, then any path λ in Ω from wk to wk+1 has
to pass through approximately 2k strips (F1(z−n ), F1(z+

n ))×R, all with n ≈ 2k, and
so the dα,Ω-length of the part of λ in any one of these strips must be comparable
to, or exceed, n−2α. Thus dα,Ω(wk, wk+1) ≥ 2k(1−2α). As k tends to infinity, this
distance becomes much larger than 2−kα, thus proving that Ω is not an α-mcigar
domain.

Now F (U) is a triangle, so it certainly supports a p-Hölder imbedding for p =
(n−α)/(1−α). Since the countable set of points deleted from F (U) to form Ω is a
removable set for L1,p (this follows from the ACL-characterization of Sobolev spaces
[Mz, Section 1.1.3]), we conclude that Ω also supports a p-Hölder imbedding. This
imbedding plus an α-wslice condition would imply that Ω is an α-mcigar domain
according to [BS1, Theorem 0.1]. Since it is not an α-mcigar domain, it is therefore
not an α-wslice domain.
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[V3] J. Väisälä, Uniform domains, Tohoku Math. J. 40 (1988), 101–118. MR 89d:30027

http://www.ams.org/mathscinet-getitem?mr=2003b:30024
http://www.ams.org/mathscinet-getitem?mr=96i:46035
http://www.ams.org/mathscinet-getitem?mr=98g:46041
http://www.ams.org/mathscinet-getitem?mr=2001a:46031
http://www.ams.org/mathscinet-getitem?mr=2002h:46051
http://www.ams.org/mathscinet-getitem?mr=2003b:30025
http://www.ams.org/mathscinet-getitem?mr=87b:30029
http://www.ams.org/mathscinet-getitem?mr=87j:30043
http://www.ams.org/mathscinet-getitem?mr=81k:30023
http://www.ams.org/mathscinet-getitem?mr=99j:30025
http://www.ams.org/mathscinet-getitem?mr=87h:26021
http://www.ams.org/mathscinet-getitem?mr=87g:46056
http://www.ams.org/mathscinet-getitem?mr=26:5148
http://www.ams.org/mathscinet-getitem?mr=56:12260
http://www.ams.org/mathscinet-getitem?mr=89d:30027


DISTINGUISHING PROPERTIES OF WEAK SLICE CONDITIONS 75
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