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a b s t r a c t 

Spatial crowdsourcing has emerged as a new paradigm for solving problems in the physical world with 

the help of human workers. A major challenge in spatial crowdsourcing is to assign reliable workers to 

nearby tasks. The goal of such task assignment process is to maximize the task completion in the face 

of uncertainty. This process is further complicated when tasks arrivals are dynamic and worker reliability 

is unknown. Recent research proposals have tried to address the challenge of dynamic task assignment. 

Yet the majority of the proposals do not consider the dynamism of tasks and workers. They also make 

the unrealistic assumptions of known deterministic or probabilistic workers’ reliabilities. In this paper, we 

propose a novel approach for dynamic task assignment in spatial crowdsourcing. The proposed approach 

combines bi-objective optimization with combinatorial multi-armed bandits. We formulate an online op- 

timization problem to maximize task reliability and minimize travel costs in spatial crowdsourcing. We 

propose the distance-reliability ratio (DRR) algorithm based on a combinatorial fractional programming 

approach. The DRR algorithm reduces travel costs by 80% while maximizing reliability when compared 

to existing algorithms. We extend the DRR algorithm for the scenario when worker reliabilities are un- 

known. We propose a novel algorithm (DRR-UCB) that uses an interval estimation heuristic to approximate 

worker reliabilities. Experimental results demonstrate that the DRR-UCB achieves high reliability in the 

face of uncertainty. The proposed approach is particularly suited for real-life dynamic spatial crowdsourc- 

ing scenarios. This approach is generalizable to the similar problems in other areas in expert systems. 

First, it encompasses online assignment problems when the objective function is a ratio of two linear 

functions. Second, it considers situations when intelligent and repeated assignment decisions are needed 

under uncertainty. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Crowdsourcing systems have emerged as a new form of multi-

agent systems where three types of agents interact with each

other, namely requesters, workers, and platform. The requesters

submit tasks on platform that are performed by workers. The plat-

form serves as a mediator that provides appropriate assignment

of tasks to workers to maximize the utility of crowd work ( Deng,

Shahabi, & Demiryurek, 2013; Hassan & Curry, 2014 ). Crowdsourc-

ing has been applied in variety domains, such as machine learning

( Chen, Lin, & Zhou, 2013b ), natural language processing ( Tarasov,

Delany, & Mac Namee, 2014 ), and mobile-based sensing ( Ganti, Ye,

& Lei, 2011 ). Spatial crowdsourcing is a form of crowdsourcing that
∗ Corresponding author. Tel.: +353 85 729 8904. 
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mploys crowd workers for performing tasks in the physical world

t various locations ( Cheng et al., 2015; Kazemi and Shahabi, 2012;

o, Ghinita, and Shahabi, 2014 ; To, Shahabi, & Kazemi, 2015 ). The

se of spatial crowdsourcing is further illustrated with the help of

he following scenario: 

Consider the situation, where a requester is interested in collect-

ng high quality and representative photos of disaster hit areas in a

ountry. The locations of interest are spread across the country. The

equester designs a task for each location i.e. spatial crowdsourcing

ask. The requester is interested in the coverage of all locations with

igh quality results. Fig. 1 illustrates such a scenario on a map. 

Most of the existing crowdsourcing platforms serve as a mar-

etplace with rudimentary task assignment functionality, such as

mazon Mechanical Turk, TaskRabbit, and ClickWorker ( Horton &

hilton, 2010; Musthag & Ganesan, 2013 ). In fact, these platforms

argely rely on workers to assign tasks to themselves when visit-

ng the platform. Tasks may not be assigned to appropriate work-

rs in this manual approach, also known as worker selected tasks

http://dx.doi.org/10.1016/j.eswa.2016.03.022
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2016.03.022&domain=pdf
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Fig. 1. Example of spatial crowdsourcing on the map of Haiti after the 2010 earth 

quake. A new spatial task (in blue) requests recent photos of a building at the indi- 

cated location. 
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WST), due to search friction issues ( Kittur et al., 2013; Kulkarni

t al., 2012 ). Recent research has focused on developing algorith-

ic approaches to task assignment with the aim of addressing the

imitations of the WST approach. The algorithmic approach, also

nown as the server assigned tasks (SAT) approach, formulates the

ynamic task assignment as a sequential decision making prob-

em. The sequential decision making involves matching dynami-

ally arriving tasks with dynamically arriving workers over time

 Abraham, Alonso, Kandylas, and Slivkins, 2013; Hassan and Curry,

014 ; Ho, Jabbari, & Vaughan, 2013) . 

In this paper, we focus our attention to the SAT-based dy-

amic task assignment problem in spatial crowdsourcing. Specifi-

ally, we introduce and formulate the minimum-cost maximum reli-

bility assignment (MC-MRA) problem in spatial crowdsourcing. The

C-MRA problem aims to maximize reliability and minimize the

ravel costs of spatial tasks. Existing literature on spatial crowd-

ourcing generally assumes deterministic settings for task assign-

ent i.e. each assignment is assumed to result in task completion

ith high quality ( Deng et al., 2013; Kazemi and Shahabi, 2012; To

t al., 2014, 2015 ). By comparison, the MC-MRA problem considers

tochastic settings where the reliability of an assignment is defined

n terms of the probability that spatial task will be completed with

igh quality by the assigned worker ( Cheng et al., 2015 ). Assum-

ng that the reliabilities of different assignment choices are known,

e reduce the MC-MRA problem to minimum-cost maximum weight

ipartite matching problem and adapt two existing approaches to

ddress the reduced problem ( To et al., 2015 ). Our experimental

valuation shows that the adapted approaches do not jointly opti-

ize reliability and travel costs; therefore, resulting higher travel

osts under various conditions. To address the limitations of exist-

ng approaches, we propose a novel approach based on combinato-

ial fractional programming . The proposed approach aims to dynam-

cally assign tasks such that both the reliability of assignments is

aximized and the travel costs are minimized, for all spatial tasks.

Further, we relax the assumption of known reliabilities and con-

ider the MC-MRA problem with online learning. Online learn-

ng necessitates the dynamic estimation of worker reliabilities

ased on the observed outcomes of task assignments. A funda-

ental challenge of dynamic assignment with estimated reliabil-

ties is to address the dilemma of learning versus optimization,

lso known as the exploration-exploitation trade-off ( Barto, 1998 )

n literature. Exploration involves choosing workers for the purpose

f learning their reliability. Exploitation entails using the gained

nowledge to optimize the assignment objective. Existing research

orks have employed primal-dual ( Ho et al., 2013 ) and multi-

rmed bandit ( Abraham et al., 2013; Chen et al., 2013b; Tran-

hanh, Stein, Rogers, & Jennings, 2014 ) techniques to address the
rade-off. These techniques have primarily focused on the non-

patial crowdsourcing scenarios and use simple cost constraints

 Slivkins & Vaughan, 2013 ). Instead, we address the exploration-

xploitation trade-off for the MC-MRA problem that optimizes

oth the reliability and the travel costs in spatial crowdsourcing.

he specific research contributions of this article are summarized

elow: 

• We introduce and formalize the MC-MRA problem based on

the SAT-based spatial crowdsourcing. We reduce the MC-MRA

problem to the minimum-cost maximum weight bipartite match-

ing problem and adapt two existing approaches to address the

reduced problem. 
• We propose a novel distance-reliability ratio (DRR) approach for

the MC-MRA problem, that is based on combinatorial fractional

programming. The DRR approach employs Newton’s method to

transform the fractional assignment problem to an equivalent

parameterized linear assignment problem. 
• We extend the DRR approach, for adaptive assignment, to en-

able the estimation of worker reliabilities from observed out-

comes of previous task assignments. We propose two adap-

tive DRR algorithms based on combinatorial multi-armed ban-

dit model with semi-bandit learning. The DRR-GRD is inspired

by the greedy exploration approach and the and DRR-UCB algo-

rithm follow an interval estimation approach. 
• We extensively evaluate the performance of proposed algo-

rithms against adapted algorithms on synthetic and real-world

datasets. The performance results establish the effectiveness of

the DRR algorithm and its variants in terms of reliability and

travel costs. The results also establish the effectiveness of adap-

tive DRR algorithms in terms of estimating worker reliabilities. 

This paper extends the research on experts systems in two key

ays. First, it considers the online algorithms that aim to opti-

ize a bi-objective objective function. One set of optimization vari-

bles are probabilistic and the second are deterministic. Second, it

ombines semi-bandit learning with the bi-objective optimization.

emi-bandit learning assumes that the probabilistic variables are

nknown and must be approximated by observing the outcomes

f optimization decisions. 

The rest of this article is organized as follows. In Section 2 ,

e summarize the related research on the assignment problem

n spatial crowdsourcing. We highlight the research gaps in ex-

sting literature on spatial crowdsourcing and its related topics.

ection 3 provides the necessary definitions of concepts in SAT-

ased spatial crowdsourcing and Section 3.2 describes the basic

aximum reliability assignment (MRA) problem. In Section 4 , we

ntroduce the minimum-cost maximum reliability assignment (MC-

RA) problem and present our proposed DRR approach for ef-

cient solution to the MC-MRA problem. Section 5 extends the

roposed DRR approach with online learning based algorithms.

e evaluate our proposed algorithms using real-world and syn-

hetic datasets in Section 6 . Section 7 discusses the implica-

ions of the proposed approaches and their performance results.

e conclude the paper in Section 8 and layout plans for future

ork. 

. Related work 

Spatial crowdsourcing is distinguished from other forms of

rowdsourcing by the fact that workers are required to visit loca-

ions in the physical world to perform tasks. One primary chal-

enge of spatial crowdsourcing is matching tasks with appropri-

te workers on the ground ( Kazemi and Shahabi, 2012; To et al.,

014, 2015 ). Kazemi and Shahabi proposed a taxonomy of spa-

ial crowdsourcing that highlights two modes of task assignment:
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worker selected tasks (WST) and server assigned tasks (SAT). The

majority of commercial crowdsourcing platforms employ WST for

task assignment, which has also been used in spatial crowdsourc-

ing ( Chen et al., 2014; Deng et al., 2013; Thebault-Spieker, Terveen,

& Hecht, 2015 ). The WST method emphasizes self determination

of tasks to be performed by a worker, i.e. workers explicitly visits

the crowdsourcing platform and self-assign tasks through an ap-

propriate search and browse interface. The WST method is prone

to search friction issues, when workers have difficultly in finding

the right tasks, or vice versa ( Kittur et al., 2013 ). Search friction

can arise due to the limitations of the interaction mechanism and

the user interface design ( Kulkarni et al., 2012 ). The SAT method

addresses this issue by algorithmically managing the assignment

process ( Hassan & Curry, 2013; 2014; Kazemi & Shahabi, 2012; To

et al., 2014 ). The SAT method relies upon knowledge about tasks

and workers to find suitable matches. Besides task assignment,

the Kazemi and Shahabi taxonomy also describes the dimensions

of incentives and redundancy for spatial crowdsourcing. The fo-

cus of this paper is SAT-based dynamic tasks assignment for self-

incentivized crowdsourcing. 

Kazemi and Shahabi also proposed and formulated the max-

imum task assignment (MTA) problem for spatial crowdsourcing.

They further proposed a network-flow based algorithm for ad-

dressing the MTA problem; however, their proposal is based on the

assumption of deterministic outcomes of assignments. The MTA

problem was extend to the maximum score assignment (MSA) prob-

lem for skills-based spatial crowdsourcing, also under determinis-

tic settings ( To et al., 2015 ). To et al. defined a privacy enabling

framework for dynamic assignment in spatial crowdsourcing ( To

et al., 2014 ). The framework is designed to hide the actual loca-

tions of workers during the assignment process while maximizing

the number of assigned tasks. Deng et al. proposed approxima-

tion algorithms for scheduling tasks for WST-based spatial crowd-

sourcing ( Deng et al., 2013 ). The proposed algorithms aim to max-

imize the number of tasks performed by an individual worker.

All of the above mentioned works consider the deterministic set-

tings for assignment outcomes; by comparison, this paper assume

more challenging stochastic settings. Cheng et al. recently intro-

duced the diversity-based spatial crowdsourcing with probabilis-

tic reliabilities; however, their proposed problem does not opti-

mize travel costs and assumes known worker reliabilities. Hassan

and Curry formalized the dynamic assignment problem for spa-

tial crowdsourcing, under stochastic settings with online learning

( Hassan & Curry, 2014 ). Their formalization is limited to single as-

signment decisions without considering travel costs; on the other

hand, this paper considers a more generalized combinatorial as-

signment problem with multi-objective optimization with online

learning. 

Mobile crowdsensing is another class of crowdsourcing that fo-

cuses on exploiting the sensors on mobile devices for collection of

data in physical environments ( Zhang, Wang, Xiong, & Guo, 2014 ).

Mobile crowdsensing is differentiated from spatial crowdsourcing

due to the focus on the use of mobile sensors, sometimes with-

out the need of explicit user interaction ( Zhang et al., 2014 ). The

optimal task allocation (OTA) problem under time constraints has

been addressed recently ( Feng, Zhu, Zhang, Ni, & Vasilakos, 2014 ).

Xiao, Wu, Huang, Wang, and Liu proposed a multi-task assignment

approach for workers from mobile social networks ( Xiao et al.,

2015 ). Other approaches include assigning tasks based on worker

trajectory, also known as the task orienteering problem ( Chen et al.,

2014; Chen, Cheng, Lau, & Misra, 2015 ). These research works also

do not consider multi-objective optimization and adaptivity for dy-

namic assignment in mobile crowdsensing. Therefore, the tech-

niques discussed in this paper are more complimentary to these

works. A more detail analysis of related literature if provided in

Appendix A . 
. Preliminaries 

We first define a set of preliminaries in the context of dynamic

ask assignment under stochastic settings, for self-incentivized

AT-based spatial crowdsourcing. 

efinition 1 (Spatial task) . A spatial task t at time instance r st re-

uires workers to travel to at location l t and perform a predefined

et of actions or collect information. The task must be performed

y at least one worker; furthermore, each task is set to expire after

ime instance r et . 

Note that each spatial task requires a worker to physically travel

o the task location. For example, a task might ask the worker to

ake photos of an event for the purpose of documenting that event.

fter a task becomes visible in the crowdsourcing system, it must

e finished before expiry. Otherwise the task is considered incom-

lete which results in a lower than desired converge of the asso-

iated event. Task are submitted dynamically to the crowdsourcing

ystem and disappear from it after completion or expiry. 

efinition 2 (Mobile worker) . A worker w is a person who volun-

eers to perform spatial tasks by sending requests for tasks, to the

patial crowdsourcing platform. When a worker is ready to per-

orm a task she sends the task request along with her current lo-

ation l w 

. Since the worker is moving around her location dynam-

cally changes over time. 

A worker indicants her availability through a task request. Pre-

ious research works have considered the case when workers state

heir task capacity and spatial constraints along with the task re-

uests ( Kazemi & Shahabi, 2012 ). In reality, the requirement to

pecify such constraints is burdensome requiring additional deci-

ion making from workers. We relax this requirement by consid-

ring the situation where each worker performs on one task at a

ime and requests the next task after completing the current task.

ote that, a worker might have the spatial preferences in terms

f the maximum distance she is willing to travel. We assume that

uch preferences are private to the worker and the crowdsourcing

latform does not necessarily require such preference with the task

equests. 

Given the spatial tasks and worker requests a SAT-based plat-

orm performs the assignment and gathers results. The interac-

ion between requesters, platform, and workers is a repeating

ynamic process. Understandably, task assignment is also not a

nce-off process as tasks and worker arrive dynamically on the

latform. The assignment process proceeds in rounds where each

ound involves matching tasks with workers. 

efinition 3 (Assignment round) . In round r , let T r = { t 1 , ..., t n }
e the set of incomplete tasks and W r = { w 1 , ..., w m 

} be the set

f available workers. An assignment is defined as a pair x i, j = <

 i , w i > when task t i ∈ T r is assigned to worker w j ∈ W r . Let X r ⊂ X r 

enote the set of assignments in the current round, where X r is the

et of all possible assignments. 

The set X r must satisfy the constraints that each worker is as-

igned at most one task in a round and vice versa. A new worker

s assigned to the task in a round until the task is removed from

he task list T r , due to successful completion or expiry. Note that, a

ist of previous assignments is maintained for each task to prevent

he same worker being assigned to the same task multiple times.

he task assignment set chosen by a particular assignment strat-

gy π is denoted by X πr . The goal of an online assignment algo-

ithm is to find the best strategies for all rounds { X 1 , X 2 , ...} under

ncertainty. The uncertainty arises due to the fact that a worker

ight not complete the assigned task by the end of a round. At the

nd of a round, the outcomes of all assignments are observed. The



U. ul Hassan, E. Curry / Expert Systems With Applications 58 (2016) 36–56 39 

o  

t  

d  

w

D  

p  

c  

p

y

 

l  

c  

i  

b  

m  

a  

b  

a  

o

D  

s  

a  

r

 

t  

c  

r  

t

D  

d  

f

 

i  

w  

r  

a  

b  

h  

r  

s

3

 

c  

f

 

 

 

 

 

 

 

t  

s  

Fig. 2. Example of three rounds of the task assignment protocol. Circles and squares 

represent tasks and workers respectively. An empty circle represents a task com- 

pleted in the previous round. A line represents an assignment in the current round 

and the dotted lines show assignments from previous rounds to a task 
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utcome of an assignment x i, j is represented by variable y i, j . If a

ask is successfully completed then y i, j = 1 and 0 otherwise. We

efine the notion of worker reliability as the likelihood that a

orker will complete an assigned task. 

efinition 4 (Worker reliability) . Each worker w j has a reliability

 i, j for task t i . If worker w j is assigned to task t j , then the worker

ompletes the task before the end of the round with probability

 i, j , i.e.: 

 i, j = 

{
1 with probability p i, j 

0 otherwise 

Without loss of generality we assume that p i, j ∈ (0, 1). The re-

iability of worker w j on task t i depends on task, worker, and their

ontext. Let W be the set of all workers known to the crowdsourc-

ng platform. Each worker w j ∈ W has an associated average relia-

ility q j that is defined as the expectation of reliabilities of assign-

ents to the worker. Essentially the reliabilities { p 1, j , p 2, j , ...} of

ssignments to the worker w j are sampled from a bounded distri-

ution with mean q j . First we assume that the worker reliabilities

re known during a round; however, we relax this assumption later

n in Section 5 . 

efinition 5 (Task reliability) . Let W t be the set of workers as-

igned to a task t before it is completed or expires. Then the prob-

bility that atleast one worker completes the task is defined as the

eliability of t . 

The objective of repeated assignment over multiple rounds is

o assign workers to a task in such a way that the chance of task

ompletion is maximized in each assignment. Therefore, in each

ound the assignment algorithm may choose assignments such that

heir combined reliabilities are maximized. 

efinition 6 (Travel costs) . Each assignment x i, j has an associated

istance d i, j that quantifies the cost in terms of travel required

rom worker w j while assigned to the task t i . 

The distance between task and worker location plays a signif-

cant role in spatial crowdsourcing. It is intuitive to assume that

orkers would find it easier to perform tasks near to them. From a

equester’s perspective the worker in the near vicinity of a task has

 higher chance of completing the task in time. The distance may

e calculated according to different metrics: Euclidean distance,

aversine formula, or time. We assume that one consistent met-

ic is used to quantify distance between two locations; therefore,

maller distances are preferred by both worker and requesters. 

.1. Assignment protocol 

The assignment process in spatial crowdsourcing platform pro-

eeds in discrete rounds r = { 1 , 2 , ..., ∞} , where each round spans

or τ amount of time. A round consists of following steps: 

1. A combined set of newly submitted and previously incomplete

tasks T r is observed, where each task has its associated location.

2. A set of available workers W r is observed, where each worker

has her associate location. 

3. A set of worker reliabilities { p i, j | t i ∈ T r , w j ∈ W r } are observed

for all possible assignments. 

4. The assignment algorithm selects the set of assignments X r ∈ X r 

and assigns tasks to appropriate workers. 

5. At the end of a round (when τ duration has elapsed), the plat-

form observes the tasks completed with high quality and up-

dates the task list T r+1 . 

Note that a task is added to T r as soon as it is submitted by

he requester and removed after completion or expiry. Here we as-

ume that the duration between task submission and task expiry
s in multiple of rounds. Fig. 2 illustrates the assignment protocol

n detail for three example rounds. In first the round, there are

hree tasks (circles) and three workers (squares). Each task is as-

igned to a worker; however, some workers complete tasks (shown

y circles without any color) and some workers do not (shown by

olored circles). In the second round, a new task appears into the

ystem and another worker becomes available. An incomplete task

s assigned to another worker while ensuring that previously as-

igned workers are not assigned to the same task again (as high-

ighted by dotted lines). The process continues to the next round,

s completed tasks disappear from the system. While we assume

hat each task requires one worker, it is straight forward to con-

ider the task that requires multiple workers as multiple instances

f the same task require a worker. 

.2. Maximum reliability assignment 

We now introduce the maximum reliability assignment (MRA)

roblem for spatial crowdsourcing. Then we describe the MRA

roblem and reduce it to the maximum weight bipartite matching

MWMB) problem to solve it efficiently. 

efinition 7 (Maximum reliability assignment) . Given a time in-

erval φ = { r 1 , r 2 , ..., r z } , let R ( X r ) be the reliability of assignment

et X r in round r , i.e.: 

 (X r ) = 

∏ 

(i, j) ∈ X r 
p i, j (1)

he problem of maximum reliability assignment is to assign work-

rs to tasks such that the total reliability is maximized over all

ounds in φ, i.e.: 

el φ = max 
∏ 

r∈ φ
R (X r ) (2)

A global solution to the MRA problem is not feasible unless the

ssignment process is clairvoyant (i.e. all information about rounds

nd reliabilities is known beforehand). The MRA problem requires

esign of an online algorithm to which the sets T r and W r are re-

ealed at the start of each round. An offline version of the MRA

roblem would mean that number of rounds, task arrival time,

ask expiry, and worker reliabilities are known a priori. The of-

ine version of the MRA problem is in indeed an NP-Hard problem

y reduction to the generalized assignment problem (GAP) ( Pentico,

007 ). If the start and end time of all tasks are same and all work-

rs are available through all rounds, the offline MRA problem is

quivalent to the GAP. Therefore, the GAP is a special case of the

ffline MRA problem. Since GAP is an NP-Hard problem, the offline

RA is also an NP-Hard problem. To address the MRA problem,

he platform aims to maximize reliability of assignment set R ( X r )
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locally in each round. Therefore, the objective of a local optimiza-

tion strategy is to exploit information limited to the current round.

3.3. Maximum weighted bipartite matching 

We introduce a location optimization strategy that reduces the

local MRA problem to the maximum weight bipartite matching

(MWBM) problem. In a local optimization strategy for round r , we

have a set of available worker W r and set of incomplete tasks T r 
and the goal is find an assignment set X r that maximizes R ( X r ). We

rewrite the reliability of an assignment set (see eq. 1 ) as the relia-

bility score: 

RS(X r ) = ln (R (X r )) = − ln 

( ∏ 

(i, j) ∈ X r 
p i, j 

)
= 

∑ 

(i, j) ∈ X r 
− ln (p i, j ) (3)

Based on above equation, the goal of maximizing the reliability for

all rounds (see Eq. ( 2 )) is equivalent to maximizing RS ( X r ) for all

rounds. Given the time interval φ, the global objective is to maxi-

mize the sum of assignment scores for all rounds, i.e. �r ∈ φRS ( X r ).

Our goal is to choose an assignment set X r such that the over-

all reliability score is maximized; thereby, solving the local MRA

problem. 

Theorem 1. The maximum reliability assignment problem is re-

ducible to the maximum weighted bipartite matching problem. 

Proof. We prove the theorem for a round r in which the set of

available workers is W r and the set of incomplete tasks is T r . Let

G R = (V, E) be an undirected bipartite graph. The set of vertices

 r = T r ∪ W r is partitioned; such that, each task t i ∈ T r represents

a vertex on the left side and each worker w j ∈ W r represents a

vertex on the right size (as shown in Fig. 2 ). The set of edges e i, j
∈ E r connect vertices in T r with vertices in W r . A match < t i , w j

> is deemed valid only if the vertex for task t i and the vertex for

worker w j appear in at most one edge in E . Meaning that each task

is assigned at most one worker and each worker gets at most one

task. We associate a weight with each edge e i, j according to fol-

lowing reliability score: 

score (e i, j ) = 

{
0 if e i, j ∈ F r 
− ln (p i, j ) otherwise 

(4)

where F r is list of unsuccessful assignments for the tasks not yet

complete. The zero score discourages the assignment of the same

worker to an incomplete task. Subsequently, the local MRA prob-

lem reduces to finding the maximal weight bipartite matching in

graph G r . �

Based on the above reduction, we can use existing algorithms

for the MWBM problem to find a solution for the local MRA prob-

lem. The MWBM problem can be solved in polynomial time us-

ing algorithms developed for network flow problems ( Ahuja, Mag-

nanti, & Orlin, 1993 ) or linear sum assignment problems ( Burkard,

Dell’Amico, & Martello, 2009 ). In this paper, we employ the well-

known Hungarian algorithm for solving the MWBM problem in

each round. Let n = | T r | and m = | W r | , we generate a cost matrix

C r based on edge weights of the MWBM problem . If scoreMAX is

the maximum weight among all edges, then the cost of edge e i, j 
is set to c i, j = scoreMAX − score (e i, j ) The following integer linear

program specifies the assignment problem to be solved using the

Hungarian algorithm: 

min 

n ∑ 

i =1 

m ∑ 

j=1 

c i, j · x i, j 

s . t . 

m ∑ 

j=1 

x i, j = 1 ∀ i 
n ∑ 

i =1 

x i, j = 1 ∀ j 

x i, j ∈ { 0 , 1 } ∀ (i, j) (5)

where the binary variable x i, j indicates assignment of a task to

 worker. We use the Jonker–Volegenant variant of the Hungar-

an algorithm which has time complexity of O ( n 3 ), where n is the

argest dimension of cost matrix ( Jonker & Volgenant, 1987 ). Eq.

5) considers one task per worker constraint in a round. This con-

traint can be relaxed when workers are willing to perform more

han one task. Let B j be the number of tasks that the worker w j 

s willing to perform in a round. In this case, worker w j is repre-

ented with B j nodes in right hand partition of graph G r to utilize

ungarian algorithm. In this case, each worker is assigned B j near-

st tasks. 

The MWBM approach discussed here optimizes reliability lo-

ally for each round; therefore, the global optimization is not guar-

nteed. Furthermore, this approach only considers the reliability

s the optimization criteria while ignoring spatial characteristics of

asks and workers. Such a naive approach may result is unneces-

ary burden on worker in terms of travel to the task location. To

mprove over this approach, we propose the minimum-cost maxi-

um reliability assignment (MC-MRA) problem that also optimizes

he distance between tasks and workers. 

. Minimum-cost maximum reliability assignment 

In Section 3 , we defined the assignment distance between a

ask t i and worker w j . We associate the travel cost with every

air of task and worker by calculating the distance between them.

he basic idea is to incorporate the travel cost in the assignment

rocess. Subsequently, the optimization is not only targeted at the

eliability but spatial characteristics as well. The goal of MC-MRA

roblem is to find task and worker matches such that the reliabil-

ty is maximized and travel costs are minimized. In the following

heorem, we reduce the local MC-MRA problem to a minimum-

ost MWBM problem. 

heorem 2. The local minimum-cost maximum reliability assignment

roblem is reducible to the minimum-cost maximum weight bipartite

atching problem. 

roof. Similar to the Theorem 1 , our proof is based on a round r

here assignments are made over a set of tasks T r and a set of

orkers W r . Let G 

′ 
r = (V, E) be the undirected weighted bipartite

raph constructed in the similar way as in proof of Theorem 1 .

ach e i, j , in the G r , has an associated weight score ( e i, j ). We as-

ociate a cost distance ( e i, j ) with each edge based on the distance

etween the locations of task and worker. Each edge in G 

′ 
r has as-

ociated weight and cost (i.e. reliability score and travel cost, re-

pectively). Subsequently, the solution to local minimum-cost MRA

roblem reduces to finding a bipartite matching with minimum-

ast and maximum weight in G 

′ 
r �

.1. Close distance priority 

A simple approach is to solve each optimization criteria of

he MC-MRA problem sequentially ( Pentico, 2007 ). The first step

s to find assignment sets with the maximize possible value for

he reliability objective. Then the assignment set with minimum

ravel costs is selected among those available maximal choices.

his approach is also known as the close distance priority ap-

roaches ( To et al., 2015 ). For each round, the Hungarian algo-

ithm is used to find the maximal score assignment set X MAX 
r using

q. (5) . Let f max be the total reliability score of the maximal score
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ssignment set, i.e.: 

f max = 

∑ 

(i, j) ∈ X MAX 
r 

score (e i, j ) 

Then the travel cost minimization problem is reformulated as

he following integer program: 

in 

n ∑ 

i =1 

m ∑ 

j=1 

d i, j · x i, j 

s . t . 

n ∑ 

i =1 

m ∑ 

j=1 

s i, j · x i, j ≥ f max 

m ∑ 

j=1 

x i, j = 1 ∀ i 

n ∑ 

i =1 

x i, j = 1 ∀ j 

x i, j ∈ { 0 , 1 } ∀ (i, j) (6) 

where d i, j = distance (e i, j ) and s i, j = score (e i, j ) . We employ a

ranch and cut technique for solving the cost minimization prob-

em in Eq. (6) . The resulting assignment set X r is the minimal cost

ssignment set among all feasible assignment sets with the total

eliability score of at least f max . Similar to the MWBM approach

he CDP approach finds solution for the local instance of the MC-

RA problem in each round. The computational complexity of the

DP approach is dominated by the branch and cut algorithm used

o solve the integer program. 

.2. Distance-reliability ratio 

The CDP approach is applicable to situations when there are

ore than one feasible solution for the MRA problem; there-

ore, priority is given to the solution with smallest total travel

osts. This approach does not always results in cost minimiza-

ion. Specifically in situations when the maximal solutions found

n first round also incur high travel costs. To address this issue,

e propose the distance-reliability ratio (DRR) approach based on

 joint optimization of the reliability score and travel costs. We

e-formulate the minimum-cost MWBM problem as described in

heorem 2 . Our formulation is based on the combinatorial fractional

rogramming ( Bajalinov, 2003 ), as represented by the following in-

eger linear-fractional program: 

in 

∑ n 
i =1 

∑ m 

j=1 d i, j · x i, j ∑ n 
i =1 

∑ m 

j=1 s i, j · x i, j 

s . t . 

m ∑ 

j=1 

x i, j = 1 ∀ i 

n ∑ 

i =1 

x i, j = 1 ∀ j 

x i, j ∈ { 0 , 1 } ∀ (i, j) (7) 

Finding a direct solution to above nonlinear program is a diffi-

ult problem. Dinkelbach proposed a parametric approach by iter-

tively solving an equivalent linearized version of linear-fractional

rograms, also known as Newton’s method ( Dinkelbach, 1967 ). We

mploy this method to transform the Eq. (7) to an equivalent

nteger linear program using Charnes and Cooper transformation

 Charnes & Cooper, 1962 ). The following integer program formu-

ates the transformed integer linear program with parameter λ: 

in 

n ∑ 

i =1 

m ∑ 

j=1 

(d i, j − λs i, j ) · x i, j 
s . t . 

m ∑ 

j=1 

x i, j = 1 ∀ i 

n ∑ 

i =1 

x i, j = 1 ∀ j 

x i, j ∈ { 0 , 1 } ∀ (i, j) (8) 

Similar to the approaches discussed previously, we employ the

ungarian algorithm to solve the transformed assignment prob-

em ( Megiddo, 1979 ). To discourage assignment of previously un-

uccessful workers to an incomplete task, we replace the cost co-

fficient (d i, j − λs i, j ) with a reasonably high value. The parame-

er λ is calculated using the Newton’s method in each iteration.

lgorithm 1 summarizes the parametric algorithm for solving MC-

lgorithm 1 The DRR algorithm 

equire: δ, [ s i, j ] 
n ×m , [ d i, j ] 

n ×m 

1: [ x i, j ] 
n ×m ← [0] n ×m {Arbitrary assignment} 

2: repeat 

3: 

λ ← 

∑ n 
i =1 

∑ m 

j=1 d i, j · x i, j ∑ n 
i =1 

∑ m 

j=1 s i, j · x i, j 

4: [ c i, j ] 
n ×m ← [ d i, j ] 

n ×m − λ · [ s i, j ] 
n ×m 

5: [ x i, j ] 
n ×m ← Hugarian ([ c i, j ] 

n ×m ) 

6: f λ ← 

∑ n 
i =1 

∑ m 

j=1 (d i, j − λs i, j ) · x i, j 

7: until f λ ≥ δ
8: return [ x i, j ] 

n ×m 

RA using the DRR approach. The DRR algorithm requires an op-

imality parameter δ which takes on reasonably small values. Our

roposed approach quickly coverages to a solution; since, the num-

er of iterations for the Newton’s method have strong polynomial

ounds ( Megiddo, 1979; Radzik, 1992 ). 

. Dynamic estimation of worker reliabilities 

So far we have assumed that the worker reliabilities, although

robabilistic, are known to the assignment algorithm. Since the

eal-world is both uncertain and dynamic; hence, we relax the as-

umption of known reliabilities ( Slivkins & Vaughan, 2013; Tarasov

t al., 2014 ). To address this problem, the assignment algorithms

an estimate a worker’s reliability. A worker’s reliability can be

stimated through some test tasks before she joins the available

orker pool; however, such approach cannot account for the dy-

amic changes in worker reliabilities and incurs extra travel costs

 Tarasov et al., 2014 ). Alternatively, the worker reliabilities can be

ynamically estimated over time through observed outcomes of

ssignments ( Slivkins & Vaughan, 2013 ). In this regard, an online

earning approach is required for estimating worker reliabilities as

he assignment process progresses. 

Fig. 3 highlights the online learning problem with help of ex-

mple rounds. Worker reliabilities are estimated based on the out-

omes of assignments in previous rounds. The learning problem

ecomes difficult due to the fact the algorithm can only observe

he outcomes for previously chosen assignment set. The outcome

f assignment is observed at the end of the round through a binary

ariable y i, j = Bernoul l i (p i, j ) , where p i, j is the unknown worker re-

iability. The objective of an assignment algorithm is to adaptively

ptimize the MC-MRA problem while approximating worker reli-

bility. In this adaptive assignment problem, the algorithm main-

ains and updates estimates of worker reliabilities p i, j over mul-

iple rounds of assignment. We refer to this assignment problem,

ased on online learning, as the adaptive MC-MRA problem. 
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Fig. 3. Example of online learning for estimating worker reliabilities with semi- 

bandit feedback. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2 The DRR −GRD algorithm 

Require: z, ε, δ, T , W 

1: M ← |W| 
2: [ μk ] 

M ← [0] M {Initialize estimates} 

3: [ θk ] 
M ← [0] M {Initialize counters} 

4: for r ← 1 to s do 

5: T r ← Active (T ) {Set of incomplete tasks} 

6: W r ← Available (W) {Set of available wokrers} 

7: n ← | T r | 
8: m ← | W r | 
9: [ d i, j ] 

n ×m ← Distance (T r , W r ) {Distance matrix} 

10: if r ≤ ε · z then 

11: [ s i, j ] 
n ×m ← [ U(0 , 1)] n ×m {Random scores} 

12: else 

13: [ s i, j ] 
n ×m ← Greedy (T r , W r , [ μk ] 

M ) {Greedy scores} 

14: end if 

15: [ x i, j ] 
n ×m ← DRR (δ, [ s i, j ] 

n ×m , [ d i, j ] 
n ×m ) 

16: X r ← { (t i , w j ) | x i, j > 0 } {Set of assignments} 

17: Assign (X r ) {Assign tasks} 

18: Wait (τ ) {Wait for end of round} 

19: for all (t i , w j ) ∈ X r do 

20: y i, j ← Complete (t i , w j ) {Completion indicator} 

21: μ j ← (y i, j + θ j · μ j ) / (θ j + 1) {Update estimates} 

22: θ j ← θ j + 1 {Update counters} 

23: end for 

24: end for 
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Definition 8. Let μ = (μ1 , ..., μm 

) be the vector of estimated reli-

abilities for all workers. 

The assignment algorithm aims to minimize the difference be-

tween estimated worker reliabilities μj and actual worker reliabil-

ities q j . To this end, the algorithm must address the exploration-

exploitation trade-off. On one side, the existing estimates of relia-

bilities can be used to make assignment decisions. This approach

may be sub-optimal due to uncertainty of estimates. On the other

side, the algorithm can deliberately choose sub-optimal workers to

improve the accuracy of estimates. 

The multi-armed bandit is a well-known problem that addresses

the exploration-exploitation trade-off in sequential decision mak-

ing ( Barto, 1998; Powell, 2007 ). It formulates the trade-off faced

by a player when repeatedly playing a k -armed slot machine. The

player must maximize her cumulative rewards while pulling a arm

in each round of play. The combinatorial bandit framework ex-

tends the multi-armed bandit problem to the choice of pulling a

combination of arms in each round ( Chen, Wang, & Yuan, 2013a ).

Combinatorial bandit problems are considered used three forms

of feedback. Full feedback assumes that the rewards are observed

for all arms irrespective of the chosen combination. Semi-bandit

feedback means that the rewards are observed only for the cho-

sen combination of arms . Bandit feedback means that only an

aggregated reward value is observed based on the chosen com-

bination of arms. We formulate the online learning problem, for

estimation of worker reliabilities, according to the combinatorial

bandit framework. Our proposed approach is referred to as the

semi-bandit learning due to the fact the outcomes are observed

only the chosen assignment set. Next we propose two algorithms

based on different exploration strategies. 

5.1. Greedy exploration approach 

The greedy exploration approach is implemented in two

phases; a random exploration phase followed by a pure exploita-

tion phase ( Auer, Cesa-Bianchi, & Fischer, 2002a ). The basic idea

is to randomly choose sub-optimal actions at the start to generate

quick estimates of worker reliabilities. Afterwards, actions are cho-

sen greedily based on the existing estimates while also learning

from feedback. The duration of the exploration phase is controlled

through an appropriate parameter. 

Algorithm 2 details the complete assignment process for s num-

ber of rounds based on the DRR optimization and the greedy ex-

ploration. The algorithms maintains two variables for each worker

k : the estimated reliability μk and the number of assignments to

the worker θ k . Each round starts with a listing of incomplete and

active tasks along with available workers (Line 5–8). A distance

matrix is calculated between incomplete tasks and available work-

ers by calling the Distance sub-routine (Line 9). The algorithm re-

quires a parameter ε that dictates how the reliability scores are

calculated during each round. For the first ε percentage of rounds
he score matrix is sampled using a standard Uniform distribu-

ion; therefore, resulting in random assignments for the purpose of

ure exploration (Line 11). During the rest of the rounds, the score

atrix is calculated based on the estimated reliabilities by calling

he Greedy sub-routine (Line 13). The sub-routine approximates the

orker reliability as p i, j ≈ μj and uses Eq. (4) to calculate the ele-

ents of the score matrix. The algorithm uses the DRR algorithm

or solving MC-MRA problem using calculated distance and score

atrices (Line 15). At the end of the round the algorithm observes

he outcomes of the chosen assignments and updates the reliabil-

ty estimates and counters variables accordingly (Line 19–23). 

Note that the computational complexity of the DRR −GRD algo-

ithm is bound by the complexity of the DRR algorithm. The per-

ormance of DRR −GRD algorithm in terms of approximating the

ctual worker reliabilities is dependent on the parameter ε. Under-

tandably, very small values of ε may result in inaccurate estimates

hich may lead to sub-optimal exploitation. Conversely, large val-

es may result in a high ratio of sub-optimal assignments due to

ver exploration. 

.2. Interval estimation approach 

The interval estimation approach does not make any explicit

istinction between exploration and exploitation. Instead actions

re chosen optimistically by giving preference to options which

ave not been explored previously. The most widely known vari-

nt of this approach is based on the upper confidence bound (UCB)

euristic ( Auer et al., 2002a ). The basic idea is to calculate the con-

dence interval for the existing reliability estimates and define an

pper bound for the expected values of estimates based on a con-

dence interval. During each round, actions are chosen by giving

reference to higher upper confidence bounds instead of the actual

stimates. The higher the uncertainty of the estimates the higher

he chance of the worker being selected in a round. Subsequently,

he uncertainty is reduced overtime due to this optimistic explo-

ation. 



U. ul Hassan, E. Curry / Expert Systems With Applications 58 (2016) 36–56 43 

Algorithm 3 The DRR −UCB algorithm 

Require: s, δ, T , W 

1: M ← |W| 
2: [ μk ] 

M ← [0] M {Initialize estimates} 

3: [ θk ] 
M ← [0] M {Initialize counters} 

4: for r ← 1 to s do 

5: T r ← Active (T ) {Set of incomplete tasks} 

6: W r ← Available (W) {Set of available wokrers} 

7: n ← | T r | 
8: m ← | W r | 
9: [ d i, j ] 

n ×m ← Distance (T r , W r ) {Distance matrix} 

10: [ s i, j ] 
n ×m ← UCB (T r , W r , [ μk ] 

M , [ θk ] 
M ) {UCB scores} 

11: [ x i, j ] 
n ×m ← DRR (δ, [ s i, j ] 

n ×m , [ d i, j ] 
n ×m ) 

12: X r ← { (t i , w j ) | x i, j > 0 } {Set of assignments} 

13: Assign (X r ) {Assign tasks} 

14: Wait (τ ) {Wait for end of round} 

15: for all (t i , w j ) ∈ X r do 

16: y i, j ← Complete (t i , w j ) {Completion indicator} 

17: μ j ← (y i, j + θ j · μ j ) / (θ j + 1) {Update estimates} 

18: θ j ← θ j + 1 {Update counters} 

19: end for 

20: end for 
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1 https://foursquare.com/ 
Algorithm 3 summarizes the assignment process based on the

RR optimization and the UCB exploration. Similar to Algorithm 2 ,

t stores both estimates and counter variables for each worker. Dur-

ng each round, the score matrix is generated using the UCB sub-

outine (Line 10). For each assignment between task t j and worker

 j , the reliability score is calculated by using Eq. (4) and approxi-

ating the worker reliability as follows: 

p i, j ≈ μ j + 

√ 

3 ln (r) 

2 θ j 

where the second term quantifies the upper bound on the con-

dence interval for the estimated reliability of worker. The compu-

ational complexity of the DRR −UCB algorithm is also dominated

y the DRR algorithm. 

. Empirical evaluation 

We performed a set of experiments, on both real-world and

ynthetic data to evaluate the performance of the proposed ap-

roaches: MWBM, CDP, DRR, DRR-GRD, and DRR-UCB. First, we

resent our experimental methodology and then we present the

esults under various experimental settings. 

.1. Evaluation methodology 

Data collection from large-scale deployments of prototypes is

rohibitively expensive and time consuming, in SAT-based spatial

rowdsourcing. Existing research works circumvent this issue by

dopting datasets from location-based social networks ( Deng et al.,

013; Kazemi and Shahabi, 2012; To et al., 2014, 2015 ; Yang, Zhang,

heng, & Yu, 2015 ), mobile networks ( Zhang et al., 2014 ), and ur-

an transport systems ( Cheng et al., 2015 ). We adopt a similar ap-

roach to evaluate the performance of our proposed algorithms.

he evaluation of online algorithms with real users is also known

o be notoriously difficult. In fact, evaluation using off-line simu-

ations is common in existing literature on online algorithms ( Li,

hu, Langford, & Wang, 2011 ). Following existing literature, we

ake a principled approach towards the evaluation of our algo-

ithms using an agent-based simulation methodology ( Schall, 2012;

ou, Gil, & Tharayil, 2014 ). 

Agent-based simulation methodology helps to define the behav-

or of a spatial crowdsourcing environment based on individually
efined agents in terms of their decision rules and communication.

e defined three primary agents in the spatial crowdsourcing en-

ironment: requesters, workers, and platform. The simulation pro-

eeds in rounds, where the number of rounds is fixed at the start.

n the following we summarize the activities and interactions of

ach agent during a round: 

• A requester agent dynamically submits new tasks to the plat-

form during a round. In our simulation a requester is defined in

terms of a task list. The list consists of a set of tasks distributed

over a spatial region and a temporal time-line. Each task con-

sists of three values: the start round, the spatial location, the

expiry duration. 
• A worker agent dynamically receives tasks from the platform

at the start of a round and submits responses during a round.

While performing tasks the worker also moves around in a spa-

tial region that defines her spatial mobility. In our simulation a

worker agent is defined in terms of a list of locations and relia-

bility. The locations list is distributed over a spatial region and

temporal time-line. Each location in the list also has an asso-

ciated time when the worker visits the location. The average

reliability of a worker agent is controlled by the parameter q j ∈
(0, 1). 

• A platform agent provides the mediator’s role between re-

questers and workers, while optimizing the reliability and

travel costs. The assignment process is implemented in the

platform agent that maintains a list of incomplete tasks and

available workers. During each round, tasks are matched with

workers using one of the assignment algorithm discussed ear-

lier. The assignment algorithm queries the worker agents for

the assigned tasks in a round and updates it knowledge accord-

ing to the outcomes. 

The goal of the evaluation is to demonstrate the effectiveness of

he proposed algorithms under varying conditions. Next we outline

he properties of the datasets used for the evaluation. 

atasets 

We use a data-driven approach for initializing agents for sim-

lation. For this purpose, we use both synthetic and real-world

ata to populate the variables of each simulated agent. The real-

orld dataset is based on data collected from a popular location-

ased social network: Foursquare. 1 The dataset contains check-ins,

y people, at various locations in New York City from April 2012 to

ebruary 2013 ( Yang et al., 2015 ). The dataset contains 1083 unique

sers, 38,333 unique locations, and 227,428 check-ins. A check-in

epresents the visitor relationship between a user and a location

t a particular time. Fig. 4 shows the distribution of check-ins as a

eat map, where red areas indicate higher concentration of check-

ns. We assume that the users in the dataset are the crowd work-

rs and initialize their mobility based on their individual check-ins.

he locations are considered as the spatial tasks. We used the de-

ault settings from synthetic datasets for all other experiment set-

ings, as described below. 

Following existing methods for generating synthetic data

 Cheng et al., 2015 ; To et al., 2015 ), the task and worker locations

re uniformly distributed in a 2D space such that latitute ∼ Uni-

orm (0, 1) and longitude ∼ Uniform (0, 1). The starting round for

ach task is also uniformly distributed such that r st ∼ Uniform (1,

0). Similarly the reliabilities of workers are sampled from q j ∼
niform ( q min , q max ). The expiry time for tasks is initialized to a

xed value such that r et = r st + exp. Table 1 lists the range of val-

es for the algorithm parameters and other experimental settings,

ith default values in boldface font. We use Euclidean distance to

uantify the travel costs between tasks and workers. 

https://foursquare.com/
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Table 1 

Experiment settings used for experimental evaluation using agent-based simulation. Default values for experiments are 

highlighted in bold. 

Agent Parameter Description Range of values 

Worker [ q min , q max ] Range of the average reliability of a worker [0.2,0.5], [0.2,0.6], [0.2,0.7], [0.2,0.8] 

m Number of workers 50, 100 , 500, 1000 

Requester exp Number of rounds between task arrival and expiry 1, 3 , 5, 7, 9 

r Range of the assignment rounds [1,50], [1,90] 

n Number of tasks 50 0, 10 0 0 , 20 0 0, 50 0 0 

Platform δ Convergence parameter for DDR algorithm 0.01, 0.1 , 0.2, 0.3 

ε Exploration parameter for DDR −GRD 0.05, 0.1, 0.2 

Fig. 4. Distributions of check-ins in the Foursquare dataset. 
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2 http://www.pymatgen.org/ 
3 http://www.pyomo.org/ 
4 http://www.gnu.org/software/glpk/ 
Evaluation metrics 

We use four metrics for the evaluation of the assignment algo-

rithms under different spatial crowdsourcing scenario ( Cheng et al.,

2015; Kazemi & Shahabi, 2012; To et al., 2014 ). The metrics are de-

fined as follows: 

• Average reliability is the mean of the reliability of all tasks at

the end of all rounds. For each task, the reliability if the prob-

ability of completion the last assigned worker before expiry or

completion of a task. 
• Average travel cost is the mean of the distances to be trav-

eled by workers assigned to tasks. For the purpose of reporting

we only consider travel cost of the complete tasks. We mea-

sure travel cost for a task as the Euclidean distance between

task and worker locations. 
• Assignments per task is the number of assignment made

for each task until it expires or completes. Lower reliabilities

should result in less chance of task completion; therefore, re-

sulting is higher number of assignments. Note that, the number

of assignment is bound by the number of rounds between the

start and expiry time for a task. 
• Task completion is the percentage of tasks completed after the

end of all rounds. From a requester’s perspective, the task com-

pletion is the primary success criteria. 

Experiment settings 

The experiments where performed by varying a single parame-

ter, while keeping others fixed. The experiment were run on an In-

tel Core i7-4600 CPU @2.90 GHz with 16 GB RAM. The algorithms

were implemented using the open source libraries in Python. We

used the Jonker and Volgenant variant of the Hungarian algorithm,
s implemented in Python Materials Genomics (Pymatgen 

2 ) library

or implementing MWBM, DRR, and CDP approaches ( Ong et al.,

013 ). The linear programming phase of CDP approach was imple-

ented using the Python Optimization Modeling Objects (Pyomo 3 )

ibrary ( Hart, Laird, Watson, & Woodruff, 2012 ) and the GNU Lin-

ar Programming Kit (GLPK 

4 ). All reported metrics are based on

he average of 10 runs for same dataset in an experiment. 

.2. Experiments using real-world data 

The first set experiments compare the proposed algorithms

gainst the baselines algorithms, on the real-world dataset. The re-

iabilities of workers are initialized based on the ratio of unique

ocations in a worker’s check-ins against total number of locations.

ig. 5 a shows the distribution of worker reliabilities. The majority

f workers have low average reliability which is similar to the be-

avior of workers in a commercial platform Musthag and Ganesan

2013) . The time duration of a round is initialized to a day. The

imulation process proceeds by replaying the mobility of workers

ccording to their respective check-ins in the dataset . In a round,

he current location of a worker is set according to the her last

heck-in during the previous round. We uniformly sampled 50,0 0 0

heck-ins to simulate tasks. The location associated with the check-

n was considered the task location. The start time hence, the dis-

ribution of tasks locations and start time is the same as the distri-

utions of check-ins in actual dataset. In summary, there are 322

ounds; 1083 workers; and 50,0 0 0 tasks for experiments with real-

orld dataset. 

Fig. 5 b shows the comparison of algorithms in terms of the

verage reliability. Understandably, all the algorithms discussed in

his paper perform better than the baseline RND algorithm. The

WBM, CDP, and DRR algorithms perform on similar levels, while

he DRR-GRD and DRR-UCB algorithms achieve a 5–6% lower aver-

ge reliability. The average reliability is low (between 0.27 to 0.33)

or all algorithms. This could be explained due to the low reliability

f worker population. In general, the performance of algorithms is

omewhat similar when worker population is less reliable and less

iverse. 

Note that both CDP and DRR algorithms achieve high reliabil-

ty with very small travel costs, as shown in Fig. 5 c. In fact, the

RR algorithms and its learning based variants achieve even lower

ravel costs as compared to CDP, with relative decrease of almost

0%. Nonetheless, both CDP and DRR approaches can be used to

inimize travel costs as a secondary optimization objective. In

hort, the our proposed DRR approach achieves much lower travel

osts while maximizing reliability in comparison to the MWBM

nd the CDP approaches. 

Fig. 5 d and Fig. 5 e show the performance of algorithms in

erms task completion after each round. The task completion is

he ratio of the cumulative number of task completed against the

http://www.pymatgen.org/
http://www.pyomo.org/
http://www.gnu.org/software/glpk/
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Fig. 5. Comparison of algorithms on Foursquare data for New York. 
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umulative number of tasks appeared until round r . The MWBM

chieves the best completions rate; however, the relative perfor-

ance of other algorithms is slightly lower than MWBM. Note that

he, task completion rate is very low in initial few rounds. This

ow completion rate is due to the skewed distribution of worker

eliabilities. The task completion rate stabilizes after initial rounds,

rimarily due to repeated assignments of incomplete tasks. All al-

orithms achieve 70% less completion rate with expiry parameter

xp set to three rounds for all tasks . 

.3. Experiments using synthetic data 

The second set of experiments compare the algorithms using

ynthetically generate data. The goal of these experiments is to

tudy the performance of algorithm under different conditions. In

his regard, the simulation parameters are varied to study their ef-

ect on algorithm performance. In the following, we discuss the re-
ults of data generated with uniform distributions. The results for

kewed distributions are provided in Appendix B . 

ffects of expiry time 

Fig. 6 shows the effect of varying the task expiration time exp ,

n the performance of the algorithms with known reliabilities. The

ncrease in the expiry does not affect the average reliability of

asks across all algorithms, since it remains with a relatively sta-

le range over all values ( Fig. 6 a). A similar pattern is observed for

he travel costs of algorithms when compared to the increase in

ask expiry times ( Fig. 6 b). In terms of the relative performance of

lgorithms, the MWMB and CDP algorithms perform best in terms

f reliability but they also perform worst in terms of travel costs.

y comparison, the DRR algorithm although performs 10% less in

erm of reliability it achieves 80% less travel costs. This demon-

trates the effectiveness of DRR algorithm against other algorithms

ith known reliabilities. The CDP algorithm fails in prioritizing

mall distances due to the uniqueness of solutions generated dur-

ng the first phase of algorithm; therefore, the second optimiza-

ion phase face limited choices with already high distances. The

RR algorithm performs optimization of the distance-reliability ra-

io; hence, achieving better results of both metrics. 

Fig. 6 a and Fig. 6 b also show the performance of the DRR-

RD algorithm. Note that, the DRR-GRD algorithm does not have

ccess to the reliabilities at the time of assignment; instead, it ap-

roximates the reliabilities based on worker reliabilities estimated

ver time. We set the exploration parameter ε = 0 . 2 that con-

rols the percentage of rounds with randomized assignment for the

urpose of learning. The DRR-GRD algorithm achieves reliability

ithin 10%–15% of the DRR algorithm while performing similarly

n travel costs. This establishes the fact the DRR-GRD algorithm

uickly estimates worker reliabilities that are exploited for assign-

ents in later rounds. Fig. 6 c and Fig. 6 d show the number of as-

ignments per task and the percentage of completed tasks for all

lgorithms. Understandably, the DRR and DRR-GRD algorithm re-

uire more assignments per task to ensure task completion. In the

orst case, the DRR-GRD algorithm requires no more than 1.6 as-

ignments even when expiry times are more that nine rounds for

ach task. Intuitively, the percentage completion of tasks reaches

ear maximum with expiry times of more than three rounds. 

The variation in expiry times does not affect the performance in

erms of reliability and costs; however, higher expiry times lead to

etter completion rates due to repeated assignments. In our sim-

lations, the exp parameter is fixed at the platform level. In real

eployment this parameter can be set by the requesters to indi-

idual tasks. Higher values of expiry times results in more tasks

eing offered to worker, primarily due to the repeated assignment

f incomplete tasks. 

ffects of workers’ reliability 

Fig. 7 shows the effects of the range of worker reliability on

he comparative performance of the algorithms. We fixed the min-

mum value of the range p min = 0 . 2 while varying the maximum

alue q max ∈ {0.5, 0.6, 0.7, 0.8} of the reliability of workers. The re-

iability increase linearly with the increase in the range of worker

eliabilities, for all workers ( Fig. 7 a). Intuitively, the higher q max re-

ults in more workers available with high success rate for tasks

ssigned to them. The distance-reliability ratio based algorithms

onsistently achieve lower travel costs with no effects due to the

hanges in worker reliabilities ( Fig. 7 b). 

As expected, the number of assignment per task decreases with

ncrease in q max , indicating the availability of more reliable worker

uring each round. The relative performance, in terms of the num-

er of assignments decrease constantly for all algorithms ( Fig. 7 c).

imilar to the task reliability the percentage of completed tasks in-

reases with an increase in the worker reliability range ( Fig. 7 d).
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Fig. 6. Effects of task expiry time (Uniform data). 

Fig. 7. Effects of the range of worker reliability, with q min = 0 . 2 (Uniform data). 

Fig. 8. Effects of the number of tasks (Uniform data). 
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Note that, even when the range of worker reliabilities is small [0.2,

0.5] the percentage of completed tasks is above 90% for algorithms

with known reliabilities and above 75% for algorithm with esti-

mated reliabilities. This indicates the effectiveness of the server-

based assignment mode when workers are generally unreliable or

reluctant. 

Effects of number of tasks 

Fig. 8 shows the effects of varying the number of tasks with pa-

rameter n ; therefore, there are more tasks available for assignment

during each round. The task reliability decreases slightly with an

increasing number of tasks ( Fig. 8 a), while the average travel costs

still remains the same even when there are ten times more tasks

during a round ( Fig. 8 b). The decrease is primarily contributed due

to low reliability workers being selected for more tasks in each

round. Alternatively, if the worker reliabilities where skewed to-

wards the higher end of the range [ p min , q max ] then the decrease

might have been less. The performance of algorithms, in terms of

the number of assignments per task, is the opposite of the reliabil-

ity performance ( Fig. 8 c). The percentage completion of tasks also
all when the number of tasks per round increases. The rate of de-

rease is strongest for the DRR-GDR algorithm, possibly due to the

andomized assignment during the exploration phase. 

ffects of number of workers 

Fig. 9 shows the effects of varying the number of workers with

arameter m ; such that, there are more alternatives available for

ssignment during each round. The average reliability of tasks in-

reases due to more workers being assigned with higher q j , as the

umber of workers increase ( Fig. 9 a). The relative rate of increase

n task reliability is smaller for the DRR-GRD algorithm as com-

are to other algorithms. The MWBM and CDP algorithms achieve

ear maximum reliability for more than 500 workers. Note that,

he CDP algorithm manages to reduce the average travel cost as the

umber of workers increases when compared to MWBM. This re-

uction is due to the close distance priority in the second stage of

he algorithm while choosing an assignment from the feasible high

eliability assignments. The number of workers does not have sig-

ificant variation for the percentage completion of tasks ( Fig. 9 d). 
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Fig. 9. Effects of the range of the number of workers (Uniform data). 

Fig. 10. Effects of the δ parameter of the DRR algorithm (Uniform data). UCB rep- 

resents the DRR-UCB algorithm; whereas, GRD10 and GRD20 are variants of the 

DRR-GRD algorithm with ε = 0 . 1 and ε = 0 . 2 , respectively. 
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Table 2 

Comparison of algorithms in terms of exe- 

cution time (Uniform data), where r ∈ [0, 

50], n = 500 , m = 100 , and other parame- 

ters with default values. 

Algorithm Execution time (seconds) 

MWBM 0.66 ± 0.46 

CDP 2.53 ± 0.59 

DRR 0.72 ± 0.45 

DRR-GRD 1.83 ± 1.01 

DRR-UCB 0.95 ± 0.62 

Table 3 

Comparison of algorithms in terms of execution time (seconds) on 

Uniform dataset, where r ∈ [0, 50], n ∈ {500, 1000, 2000}, m ∈ {50, 

10 0, 20 0}, and other parameters with default values. 

n = 500 

Algorithm m = 50 m = 100 m = 200 

CDP 0.409 ± 0.10 1.524 ± 0.62 5.595 ± 2.59 

DRR 0.188 ± 0.12 0.564 ± 0.49 2.411 ± 2.78 

DRR-UCB 0.187 ± 0.10 0.707 ± 0.79 4.087 ± 4.59 

n = 10 0 0 

m = 50 m = 100 m = 200 

CDP 0.726 ± 0.15 3.801 ± 1.01 14.338 ± 5.94 

DRR 0.526 ± 0.15 2.774 ± 1.21 11.925 ± 6.38 

DRR-UCB 0.625 ± 0.16 3.069 ± 1.33 16.384 ± 10.09 

n = 20 0 0 

m = 50 m = 100 m = 200 

CDP 2.184 ± 0.89 9.318 ± 1.31 49.560 ± 14.87 

DRR 2.481 ± 1.41 8.356 ± 1.35 42.699 ± 10.50 

DRR-UCB 5.842 ± 3.95 10.108 ± 1.73 60.629 ± 17.35 
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ffects of algorithm parameters 

Beside analyzing the comparative performances of algorithms,

e analyzed the relationship between algorithm parameters and

erformance of algorithms. We varied the parameter λ for the al-

orithms based on Newton’s method for distance-reliability ratio.

ig. 10 shows the comparison of the DRR, DRR-UCB and the DRR-

RD algorithm (using different values of the exploration parameter

 ∈ {0.10, 0.20}). The average reliability of tasks does not change

ignificantly when the parameter λ takes on reasonably small val-

es ( Fig. 10 a). The DRR-UCB algorithm achieves performance sim-

lar to the GRD-GRD algorithm in terms of the average reliability,

pecifically for λ = 0 . 1 . The DRR-UCB achieves almost half of the

ravel costs achieved other algorithms. This results establishes the

elative superiority of the DRR-UCB algorithm which does not re-

uire any parameter to control exploration. The UCB approach is

lso known to perform best asymptotically i.e. with infinite num-

er of rounds ( Audibert, Bubeck, & Lugosi, 2013 ). 

ime performance comparisons 

We also report the running times of our proposed approaches

hile fixing the number rounds n = 50 , number of tasks n = 500 ,

nd number of rounds r = [0 , 50] . Table 2 list the average ex-

cution time (in seconds) for a round, as well as the standard

eviation. As expected, the MWBM algorithm performs best in

erms of execution. The results also establish the relative perfor-

ance gain of the DRR approach as compared to CDP approach.

lthough both approaches rely on the Hungarian algorithm as the

ase assignment approach, the parametric approach of DRR outper-

orms the two-phased approach of CDP. We used the open source

LPK solver for the second phase of CDP with linear programming,

hich results in higher execution times. Using commercial solvers

uch as CPLEX or GUROBI can improve the relative performance of

DP. The DRR-GRD algorithm takes more time when compared to
he DRR algorithm due to the extra enumeration through feasible

olutions when early estimates of worker reliability are similar. By

omparison, the DRR-UCB algorithm performs similar to the DRR

lgorithm in terms of execution time. The relative higher compu-

ational time of the DRR-GRD algorithm, against the DRR-UCB al-

orithm, can attribute to the dense costs matrices generated by the

nitial random exploration. 

Table 3 studies the scalability of the CDP, DRR, and DRR-UCB al-

orithms against different number of tasks and workers. As high-

ighted in bold, the DRR algorithm performs the best in general.

nterestingly the DDR-UCB algorithm performs the worst when

umber of tasks and workers is high. This could be due to the ex-

ra time taken by the DRR subroutine to converge. 
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7. Discussion 

In this section, we discuss the implications of the comparative

performance results of the algorithms discussed in the paper. We

categorize the discussion in terms of the two primary aspect of the

MC-MRA problem: optimization and learning. 

7.1. Formulation of optimization objectives 

This paper presents three approaches to addressing the MC-

MRA problem. The CDP and DRR approaches optimize the relia-

bility as well as the travel costs. Our proposed DRR approach is

based on the linear-fractional programming formulation of the MC-

MRA problem. The linear-fractional programming approach for op-

timization is a generalized case of the linear assignment problem;

therefore, our approach provides a more generalized solution to

the MC-MRA problem. Other cost-reliability ratio assignment prob-

lems, in crowdsourcing, can also be formulated following a similar

approach. Since the approach transforms the fractional optimiza-

tion objective to an equivalent linear optimization objective, any

existing algorithm for linearized solution can be used to solve the

problem. Subsequently the computational complexity is dominated

by the problem size and the computational complexity of the al-

gorithm used for linearized solution. 

The MC-MRA problem presented in this paper assumes one re-

sponse constraint per task, which means that the each task is as-

signed to at most one worker. Consideration of multiple workers

per tasks either for redundancy or diversity is a possible exten-

sions; however, such constraints increase the complexity of prob-

lem requiring approximate solutions. We limit the scope of this pa-

per to keep the assignment problem tractable, while keeping fur-

ther extensions as future work. As a simple extension, each task

that requires multiple workers can be considered as the multiple

instances of the same task. Similarly, a worker with more than

one task capacity can be modeled as multiple instance of the same

worker. The performance of the approaches proposed here need to

be validated with more complex constraints, such as the task diver-

sity ( Cheng et al., 2015 ) or budget constraints ( Tran-Thanh et al.,

2014 ). Even worker constraints such as capacity or time duration

can further enhance the assignment process. Note that, a linear-

fractional program can be easily transformed to an equivalent lin-

ear program as far as the constraints matrix is unimodular on the

right hand side ( Bajalinov, 2003 ). 

7.2. Online learning heuristics 

Besides the DRR approach, the other main contribution of this

paper is the estimation of worker reliability in the case of uncer-

tainty. The real world is uncertain; therefore, it is essential to in-

corporate appropriate learning capabilities in spatial crowdsourc-

ing process. The real world is dynamic; hence, it is useful to up-

date the learning in spatial crowdsourcing process. Our approach

for the dynamic estimation of workers’ reliabilities is based on

the multi-armed bandit model, which deals with uncertain deci-

sion making over time. Among the two learning approaches pro-

posed here for the adaptive MC-MRA problem, the greedy ap-

proach performs reasonably well in relation with the determinis-

tic algorithms. However, the greedy approach suffers from short

term performance as the learning is scheduled in first few rounds.

To overcome this issue, an alternative greedy approach based on

semi-uniform learning is proposed in literature where randomized

exploration is scheduled during any round based on a probability

parameter ( Auer et al., 2002a ). Both of these greedy approaches

suffer from randomization error. By comparison, the upper con-

fidence bound approach performs better in the long-term which
nderline its utility for long running systems with dynamic worker

opulations. 

Both DRR-GRD and DRR-UCB algorithms estimate the reliabil-

ties of workers to approximate the worker reliabilities in each

ound of assignment. The exploration is based on the estimates

lus an adjustment term that depends on the number of times a

orker has been chosen previously. This means that the more a

orker is explored the more accurate the estimates are. Instead of

stimating distribution parameters, we can also estimate the actual

istribution of the characteristic by using Bayesian methods ( Scott,

010 ). Similarly, probability matching approaches try to match the

umber of times a worker is chosen with the probability of that

orker being the most reliable ( Scott, 2010; Vermorel & Mohri,

005 ). 

Beside the feedback of task completion, other contextual infor-

ation helps to improve the learning process by providing addi-

ional data points. Existing approaches based on the multi-armed

andit problem tend to exploit this information for the purpose

f improving the estimates of future rewards ( Li, Chu, Langford, &

chapire, 2010 ). In our current formulation the locations of tasks

nd workers serves as the contextual information; however, we

xploit this information to optimize travel costs. Contextual algo-

ithms ( Hassan & Curry, 2014 ) exploit side information including

ocations and other information such as task types, worker de-

ographics, location properties, etc. Utility of such approaches in

ombinatorial optimization setting is yet to be investigated for spa-

ial crowdsourcing. 

.3. Reliability in spatial crowdsourcing 

The worker reliability as defined in this paper depends on both

ask and worker. This definition of reliability does not include the

ffects of external factors on the probability of success. It also does

ot consider the task or requester specific criteria for successful

ask completion. Yet, the same problem formulation is applicable

n scenarios when the success criteria is binary. For instance, a re-

uester might define the successful completion of a task in terms

f the resolution of the pictures uploaded by the worker. On the

ther hand, the other requester might define the success in terms

f a presence of specific objects in uploaded pictures. In this sense,

he reliability of a worker might be thought of as the rate of suc-

essful task completion. Therefore, it is intuitive to maximize the

eliability through intelligent assignment decisions. 

The probabilistic definition of reliability is fairly recent in spa-

ial crowdsourcing literature. The reliability is defined as the prob-

bility of task being completed by an assign worker. A recent pro-

osal defined probability as decreasing function of the distance

etween task and worker ( To et al., 2014 ). Additionally, it was as-

umed to be independent of task and worker. Another proposal de-

ned fixed probability as the reliability of a worker ( Cheng et al.,

015 ) . The reliability in terms of the frequent routes visited by

 worker was also considered for WST-based crowdsourcing Chen

t al. . In general, all these definitions of reliability are independent

f tasks. Instead, this paper assumes worker reliability being de-

endent on the assigned task. 

Within the literature on non-spatial crowdsourcing, the relia-

ility of a worker is defined in terms the accuracy of responses

rovided by the worker. On one hand, the reliability of worker can

e the closeness of response provided by a worker to the predicted

alues of a regression task ( Tarasov et al., 2014 ). On the other hand,

t is the ratio of correct responses against all responses provided by

 worker for binary classification tasks ( Ho et al., 2013 ). Domain

pecific definitions of worker reliability are common in literature

n non-spatial crowdsourcing. However, the definition of worker

eliability in this paper is domain agnostic. 
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.4. Limitations and strengths 

One of major strength of the proposed approach is its applica-

ility to more realistic spatial crowdsourcing scenario, as compared

o existing task assignment approaches in spatial crowdsourcing.

he platform being an participating agent in the multi-agent en-

ironment of spatial crowdsourcing, must adapt its behavior ac-

ording the outcomes of task assignments overtime. In this regard,

ur proposed approach enable intelligent assignment decisions for

ptimizing spatial crowdsourcing, in the face of uncertainty. Our

roposed approach is also applicable to other areas of expert and

ntelligent systems. It is specifically suited for application scenarios

hen optimization objective is to maximize cumulative rewards

nd minimize cumulative costs, when rewards are uncertain. 

The adaptive task assignment approach faces limitations due to

hree underlying assumption. First the multi-armed bandit formu-

ation of the reliability approximation necessitates immediate ob-

ervability of assignment outcomes. Second, it is assumed that the

orker reliabilities are stochastic. This assumption ignores strate-

ic behavior of worker in responses of previously assigned tasks.

earning heuristics for adversarial outcomes of decisions have also

een studied in literature on multi-armed bandits. However, a de-

ail investigation of such heuristics, for task assignment in spatial

rowdsourcing, is out of scope of this work. Finally, there could be

ituations when worker might attempt an assigned task after end

f a round. Incorporating such delayed outcomes is another limita-

ion of this research work. 

Assigning a chain of tasks to a worker such that the assigned

asks are clustered within an area is also intuitive Musthag and

anesan (2013) . The DRR algorithms assign nearest tasks to a

orker over many rounds, which can also form a chain of tasks

ver time. However, a worker cannot plan travel path since fu-

ure tasks are not revealed beforehand. Task chains can be con-

idered in case of multiple tasks per worker in a round. But this is

 known hard problem and out of scope of this work. Furthermore,

t adds to the complexity of assignment decisions due to consider-

tions of load balancing and social welfare. Social welfare entails

hat all workers are given opportunities to perform tasks, instead

f favoring workers who adversely specify their load capacity to

et more tasks. The goal of optimizing social welfare is to pro-

ote long term engagement Teodoro, Ozturk, Naaman, Mason, and

indqvist (2014) . 

. Conclusion and future work 

This paper extends the existing research on spatial crowdsourc-

ng in several key ways. Firstly, this work provides a conceptual

ramework to study the minimum-cost maximum reliability assign-

ent problem with online combinatorial optimization and online

earning. It highlights the key aspects of the assignment algorithms

n stochastic and online settings. This framework can be used to

lign further research contributions in crowdsourcing. Secondly,

his work provides new insights into the combinatorial assignment

trategies when the objective is to maximize reliability and mini-

ize costs. It provides evidence of effectiveness of the adaptive as-

ignment algorithms with uncertain reliabilities and deterministic

osts. A distance-reliability ratio based assignment approach is pro-

osed to maximize the reliability of spatial tasks while minimizing

he travel costs. Experimental evaluation provides evidence of the

ffectiveness of the proposed approach against existing approaches.

he proposed approach achieves more than 80% decrease in travel

osts in comparison to previously known approaches, while achiev-

ng similar reliability for spatial tasks. 

We extend the distance-reliability ratio approach with two on-

ine learning algorithms for estimating unknown worker reliabili-

ies. The first greedy exploration approach achieves travel costs sim-
lar to the distance-reliability ratio approach with known reliabil-

ties, while achieving reliability within 15%. The second interval

stimation approach achieves even better travel costs when com-

ared to the greedy exploration approach. In general, the results

uggest the online learning based assignment algorithms perform

easonably well even under varying conditions. As part of the fu-

ure work, we plan to extend our work with complex constraints.

or instance, instead of a fixed cardinality constraint on the assign-

ent of worker to a task, the cardinality can be a dynamic function

epending of the application domain. We also aim to extend this

ork to assignment problems with multiple tasks to workers while

onsidering their mobility trajectories and preferences in terms of

patial divergence from their trajectories. 
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ppendix A. Background 

Crowdsourcing has emerged as a powerful paradigm for solv-

ng complex problems at large scale with the help of a group of

eople ( Hassan & Curry, 2013; 2014; Kittur et al., 2013 ). The rapid

evelopment in web technologies have made it possible for mil-

ions of online users to contribute towards specific problems. Peo-

le can contribute by performing tasks such as collecting photos,

ranscribing audio, classifying images, classifying items, etc ( Kittur

t al., 2013 ). A crowdsourcing system, in general, has three types of

nteracting agents: requesters, workers, and platform. Each of these

gents is described as follows: 

• Requesters submit tasks, to the platform, that need to be per-

formed by the crowd. Apart from humans, the requester can

also be another application that needs human services for per-

forming it functionality. Requesters are generally interested in

maximizing their utility that is generally defined in terms of

the quality of task performance and the associated costs. Note

that, the notion of quality and costs can vary between types of

tasks and the application domain. 
• Workers are the members of the crowd who are willing to per-

form tasks. Workers can vary in terms of their reliability of per-

formed tasks and the incentive they expect against the work.

Worker are generally interested in maximizing their own utility

that is defined in terms of the effort they exert and value they

gain from performing tasks. 
• Platform is a software that serves as the mediator between

requesters and workers; therefore, providing the interaction

mechanism between both agents. It defines the mode of ex-

change for tasks, results, feedback, and incentives. A third-party

platform provider is generally interested in maximizing the

value gained from the use of the software and its functional-

ity. Furthermore, it is in the interest of platform managers to

promote long-terms use of their platform. 

Fig. A1 highlights the sequence of interactions between these

gents. The requester submits tasks to the platform which allows

ltering of workers based on their characteristics or categories. The

asks are assigned to the appropriate workers. The workers per-

orm the tasks and submit the responses to the platform. The plat-

orm assembles the results of crowdsourcing by aggregating and

ltering the responses depending on the application domain. The

esults are sent back to the requesters. Spatial crowdsourcing in-

ludes tasks that are situated in physical world and require work-

rs to travel to their associated locations. An offline assignment

http://dx.doi.org/10.13039/501100004963
http://dx.doi.org/10.13039/501100001602
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Fig. A1. An overview of typical interaction between agents in crowdsourcing. 
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involves matching the all tasks with all available workers, in sin-

gle batch process. Such a batch process is unrealistic in a multi-

agent system like crowdsourcing due to dynamic nature of tasks

and workers. By comparison, an online assignment entails dynam-

ically matching tasks with worker over time. 

Dynamic assignment 

It is natural for the agents to interact repeatedly over time in

spatial crowdsourcing. During such interactions each agent is in-

volved in sequential decision making with the aim of optimizing

its own utility ( Slivkins & Vaughan, 2013 ). The repeated interaction

means that the agents can learn about each other and adjust their

behavior, accordingly. For instance, a worker can decide whether

to perform a task given its value and required effort. The platform

can filter workers or requesters to discourage malicious behavior

and promote long-term use. A requester can choose a worker for

each task such that the her utility is maximized. The utility of

crowd work is dependent of who performs the task, how good the

task is performed, and how the results are combined. Since work-

ers can be heterogeneous in terms of their reliability and costs, an

appropriate assignment process has direct impact of the utility of

crowd work ( Kittur et al., 2013; Slivkins & Vaughan, 2013 ). Differ-

ences of reliability means the workers might have different rate of

task completion with high quality within time. In case of spatial

crowdsourcing, the heterogeneity is further exasperated due to the

spatio-temporal context of tasks and workers. This paper primarily

focuses on intelligent approaches of dynamic assignment for spa-

tial crowdsourcing. Dynamic assignment is a sequential decision

making problem that aims to iteratively match tasks with workers,

under uncertain conditions ( Kittur et al., 2013; Law & Ahn, 2011;

Slivkins & Vaughan, 2013 ). Rest of this section is dedicated to sum-

marizing the existing research on dynamic assignment problems in

spatial crowdsourcing. 

Dynamic assignment, in spatial crowdsourcing, is generally real-

ized under either a real-time or a periodic assignment protocol. The

real-time assignment protocol means that the tasks are matched

with workers either on task arrival or worker arrival. In case of the

assignment protocol for task arrivals, the decision involves choos-

ing a set workers from a the pool of available workers ( Hassan &

Curry, 2014; To et al., 2014; Tran-Thanh et al., 2014 ). The other

real-time assignment protocol assumes that worker dynamically

arrive on the platform and the platform then chooses a task (or

set of tasks) for each worker from a pool of available tasks ( Ho et

al., 2013 ; Ho & Vaughan, 2012; Karger, Oh, & Shah, 2011b ). The pe-

riodic assignment protocol assumes that to match sets of tasks and

available after regular intervals of time ( Cheng et al., 2015; Kazemi

and Shahabi, 2012 ; To et al., 2015 ). 

Methods of dynamic assignment 

Kazemi et al. proposed a taxonomy of spatial crowdsourcing

that highlights two modes of task assignment: worker selected tasks
WST) and server assigned tasks (SAT). The majority of general

rowdsourcing platforms employ WST for task assignment ( Chen

t al., 2013b; Deng et al., 2013; Difallah, Demartini, and Cudré-

auroux, 2013 ; Ho et al., 2013 ; Ho & Vaughan, 2012; Karger et al.,

011b; Law & Ahn, 2011 ). In this method, workers visit the crowd-

ourcing platform and self-assign tasks through an appropriate

earch and browse interface. The WST is characterized by high em-

hasis on self-determination of tasks to perform, by the workers.

he WST method is prone to search friction, possibly due to the

xplicit interaction required from workers ( Kulkarni et al., 2012 ).

earch friction arises when workers have difficulty finding the

ight tasks, or vice versa. Task recommendation techniques such as

ollaborative filtering and context-based filtering have been pro-

osed to address these issue of WST ( Geiger & Schader, 2014 ). 

The SAT method addresses this issue by algorithmically man-

ging the selection process ( Hassan & Curry, 2013; 2014; Ho &

aughan, 2012; Kazemi & Shahabi, 2012; Slivkins & Vaughan, 2013;

o et al., 2014 ). The SAT method relies upon the knowledge about

asks and workers to find out suitable matches. Besides the task

ssignment methods, the taxonomy describes the roles of mone-

ary incentives and task redundancy for improving the utility of

rowd work. This paper has primarily focused on SAT-based task

ssignment for self-incentivized spatial crowdsourcing with single

orker per task. 

daptivity in dynamic assignment 

Dynamic assignment, under deterministic settings, assumes that

he platform has full knowledge of task and worker characteris-

ics at the time of assignment ( Karger, Oh, & Shah, 2011a; Law &

hn, 2011 ). In other words, the expected outcomes of assignment

ecisions are known beforehand for each alternative. Effectively

he assignment process involves finding a matching between tasks

nd workers that is locally optimal in each round. The real-world

on-deterministic, as workers might not complete tasks assigned

o them. Therefore, the assignment decision must be made un-

er non-deterministic settings with partially observable feedback

bout assignment outcomes. 

Uncertainty arises due to the fact that the probability of task

ompletion by a worker is a stochastic process. The optimization

bjective of dynamic assignment is to match tasks with workers

uch that the probability of task completion is maximized. Par-

ial observability means that the assignment outcomes are ob-

erved only for the selected task-worker pairs. In situations where

he probabilities of task completion are unknown, the must adap-

ively must estimate the probabilities by learning from the out-

omes of previous assignments. Such online learning problems have

een studied under two settings in literature ( Barto, 1998; Powell,

007 ): full feedback and bandit feedback . Full feedback means that

he reliability variables are observed for all workers after assign-

ent ( Bubeck & Cesa-Bianchi, 2012 ). Bandit feedback means that

he reliability variables are only observed for chosen workers af-

er assignment ( Bubeck & Cesa-Bianchi, 2012 ). The dynamic assign-

ent while learning is known as the adaptive assignment problem

n the literature ( Slivkins & Vaughan, 2013 ). A fundamental chal-

enge of adaptive assignment with partial feedback is to balance

he exploration-exploitation trade-off ( Barto, 1998; Shalev-Shwartz,

011 ). 

An assignment algorithm could repeatedly choose task-worker

airs which seem to optimize the defined objectives, also known as

xploitation ( Barto, 1998 ). Due to the uncertainty of existing knowl-

dge, the seemingly best set of pairs might be the suboptimal

hoice. Alternatively, the algorithm might choose pairs for the pur-

ose of exploration ( Barto, 1998 ). In such a case, the algorithm de-

iberately makes a suboptimal choice for the sake of learning. The

xploration might adversely affect the optimization objective in the
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Fig. A2. A conceptual overview of primary aspects of the dynamic assignment in 

crowdsourcing environments. 
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hort term, but the additional knowledge can help improve as-

ignment choices in the long-term. Understandably, neither a pure

xploration nor a pure exploitation strategy can produce the best

esults. A good assignment algorithm strikes the right balance be-

ween exploration and exploitation ( Kittur et al., 2013; Law & Ahn,

011 ). The exploration-exploitation trade-off have been formalized

nd studied under multi-armed bandit problem in existing liter-

ture ( Auer et al., 2002a; Auer, Cesa-Bianchi, Freund, & Schapire,

002b; Berry & Fristedt, 1985; Gittins, Glazebrook, & Weber, 2011;

ittins, 1979 ). 

imensions of dynamic assignment 

The specifics of the assignment process are driven by the de-

ign considerations including task design, platform design, and per-

ormance objectives. The design considerations are in turn depen-

ent on the requirements of the application scenario. Nonetheless,

here are some fundamental dimensions of dynamic assignment un-

er non-deterministic settings with partial feedback. Fig. A2 high-

ights these dimensions which are further described below: 

• Optimize: The first primary dimension of dynamic assignment is

the optimization of an objective function. The assignment pro-

cess can be designed to optimize four different types of objec-

tive: coverage, quality, costs, and latency. Coverage defines the

numbers of tasks assigned ( Kazemi & Shahabi, 2012 ) or com-

pleted ( To et al., 2014 ). Quality defines the number of tasks that

meet the utility criteria of the requester. For instance, the aim

of crowd sourced machine learning is to collect labels that have

the highest improvement in the prediction accuracy of classi-

fication model ( Dekel, Gentile, and Sridharan, 2012 ; Ho et al.,

2013 ). 
• Constraints: The second dimension covers the various con-

straints enforced by the requesters and/or workers. In general,

the requesters can put budgetary and/or time constraints ( Tran-

Thanh et al., 2014 ). Workers can impose cost and/or capacity

constraints ( Ho et al., 2013 ). Task specific constraints can also

exist in crowdsourcing; for instance, the spatial constraints on

area covered by workers ( Kazemi & Shahabi, 2012 ). 
• Learn: The third dimension is concerned with the learning pro-

cess for estimating worker characteristics. Crowd workers can

vary in terms of their characteristics such as reluctance, relia-

bility, speed, and preferences. Gathering and exploiting knowl-

edge on these characteristics can help improve the assignment
process. For instance, the reluctance levels of workers can vary

depending on the travel distance for spatial tasks ( Teodoro

et al., 2014; To et al., 2014 ). Similarly, some workers can achieve

a higher speed of work as compared to others. 
• Context: The fourth dimension concerns the contextual informa-

tion of tasks and workers. For instance, the context of a spatial

task is completely different from the classification task. The na-

ture and availability of contextual information can help improve

the assignment process. The contextual information can include

taxonomy of tasks ( Difallah et al., 2013; Hassan & Curry, 2013;

Hassan, O’Riain, & Curry, 2013 ), categories of workers ( Abraham

et al., 2013 ), and spatial attributes of tasks and workers ( Hassan

& Curry, 2014 ). The usefulness of the contextual information

varies depending on the nature of crowdsourcing. 

Considering the methods, adaptivity, and dimensions, a set of

esearch requirements were identified for dynamic assignment in

biquitous crowdsourcing. These requirements help in identifica-

ion of the expected contributions of this paper. 

xisting literature 

We classify the existing literature on dynamic assignment, in

rowdsourcing, into two broad categories of tasks: Non-spatial and

patial. In the following, we summarize each these and their speci-

cities: 

on-spatial tasks. Table A1 compares existing literature, in terms

f the primary dimensions, on dynamic assignment in non-spatial

rowdsourcing. Majority of the research work for non-spatial

rowdsourcing is focused on improve the quality of responses sub-

itted by workers, using dynamic assignment. The quality of re-

ponses is defined as the correctness of responses submitted for

lassification tasks ( Ho & Vaughan, 2012 ), regression tasks ( Tarasov

t al., 2014 ), or survey tasks ( Abraham et al., 2013 ). Therefore,

ome works have proposed adaptive assignment approaches based

n the estimated reliabilities of workers ( Abraham et al., 2013 ; Ho

t al., 2013 ; Tarasov et al., 2014 ). The primary difference between

hese works has been in terms of the problem formulation and the

ypes of constraints. 

Ho and Vaughan formulated the adaptive assignment problem

or single requester with constraints on the number of tasks for

ach task type ( Ho & Vaughan, 2012 ). They consider the dynamic

ssignment with workers arrivals following a stochastic process

nd proposed an assignment algorithm based on estimated worker

eliabilities. Ho et al. extended their previous work with worker

apacity constraints ( Ho et al., 2013 ). Further they considered the

ituation where assignment decision are made in conjunction with

stimation of correct responses. By comparison, an recent approach

onsidered the situatio Tarasov et al. proposed an dynamic assign-

ent framework, based on multi-armed bandit approach, for esti-

ation of worker reliabilities. Their approach is differentiated from

bove due to the fact that it does not require any gold standard

asks for learning. All these works assume predefined set of tasks

ith dynamic arrivals of workers; hence, the assignment decision

nvolves choosing a set of tasks for the current worker to perform.

There have been recent research proposals that formulate dy-

amic arrivals of tasks that are assigned to a pool of work-

rs. Specifically, the bandit survey problem considers assignment

f survey tasks to different crowds Abraham et al. (2013) . The

roposed formulation address both task assignment as well as

ptimal stopping problems for survey tasks. Tran-Thanh et al. pro-

osed the bounded multi-armed bandit problem that considers bud-

et limits for the multi-armed bandit problem with multiple plays

ran-Thanh et al. (2014) . The proposed problem was mapped to the

xpert crowdsourcing scenarios where each tasks involves complex

evelopment activities. 
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Table A1 

Survey of the existing literature on dynamic assignment with server-assignment tasks in crowdsourcing. 

Source Optimize Constraints Learn Context Dynamic arrivals 

Ho and Vaughan (2012) Response quality Task redundancy Worker reliability Task types Workers 

Ho et al.(2013) Response quality Worker capacity Worker reliability Task types Workers 

Tarasov et al. (2014) Response quality Worker reliability Regression tasks Workers 

Dekel et al. (2012) Response quality Task redundancy Worker reliability Classification tasks Workers 

Abraham et al. (2013) Response quality Worker reliability Survey tasks Tasks 

Tran-Thanh et al. (2014) Tasks coverage Incentives budget Worker reliability Complex tasks Tasks 

Table A2 

Survey of the existing literature on dynamic assignment with server-assignment tasks in spatial crowdsourcing. 

Source Optimize Constraints Learn Context Dynamic arrivals 

Kazemi and Shahabi (2012) No. of assignments Worker capacity Spatial tasks Tasks 

Travel distance Spatial region Workers 

To et al. (2014) Tasks reliability Spatial tasks Tasks 

Deng et al. (2013) Tasks coverage Spatial tasks Workers 

Hassan and Curry (2014) Tasks coverage Task redundancy Worker reluctance Spatial tasks Tasks 

Review tasks 

To et al., (2015) Expertise score Worker capacity Spatial tasks Tasks 

Travel distance Task redundancy Workers 

Spatial region 

Cheng et al. (2015) Tasks reliability Worker velocity Spatial tasks Tasks 

Tasks diversity Workers 

Our approach Tasks reliability Worker capacity Worker reliability Spatial tasks Tasks 

Travel distance Task redundancy Workers 
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Apart from being focused on the spatial crowdsourcing sce-

nario, our proposed MC-MRA problem is differentiated from these

works from three key perspectives. First our formulation considers

dynamic arrivals of both tasks and workers; whereas, most of the

existing approaches for non-spatial tasks are limited to dynamic

arrival for either tasks or workers. Second we aim to optimization

both reliability and costs. By comparison, above discussed propos-

als only optimize either reliability or costs. Third, we consider the

situation where the number of rounds in unknown in advance. 

Spatial tasks. Spatial crowdsourcing entails relatively different as-

signment approach due to the spatio-temporal nature of tasks

and longer durations of time required to performing tasks.

Table A2 compares existing literature on the dynamic assignment

in spatial crowdsourcing. Kazemi and Shahabi proposed the max-

imum task assignment problem for spatial crowdsourcing, which

was later extended to maximum score assignment problem ( Kazemi

and Shahabi, 2012 ; To et al., 2015 ). Both proposals are based on de-

terministic settings for the assignment while maximizing the num-

ber of assignment and expertise scores, respectively. To et al. de-

fined at privacy enabling framework for task assignment in spatial

crowdsourcing ( To et al., 2014 ). The framework is designed to hide

the actual locations of workers during assignment process. Deng

et al. ( Deng et al., 2013 ) propose approximation algorithms for

scheduling task for worker selected tasks. The proposed algorithms

aim to maximize the number of task performed by an individual

worker. All of these proposals do not consider the real-world situ-

ation of uncertain outcomes of assignments; whereas, we consider

stochastic assignment settings with semi-bandit feedback. 

Recent proposals have considered the dynamic assignment

problem in probabilistic for spatial crowdsourcing ( Chen et al.,

2014; Cheng et al., 2015; Hassan & Curry, 2014 ). One proposal fo-

cused on maximizing diversity of data collected from spatial tasks

( Cheng et al., 2015 ). Other proposal consider the online learning

problem for estimating worker reluctance for spatial crowdsourc-

ing ( Hassan & Curry, 2014 ). Another proposal consider task recom-

mendation based on the previous trajectories of dynamically arriv-

ing worker ( Chen et al., 2014 ). By comparison, our work is differen-

tiated from these proposal along two key aspects. These proposals
re limited to optimization of reliability; whereas, we formulate

he joint optimization reliability and costs. Apart from ( Hassan &

urry, 2014 ), none of the proposal consider the online learning as-

ect of adaptive assignment problem. Hassan and Curry focus on

ontextual learning models with single assignment per round. In

omparison to ( Hassan & Curry, 2014 ), we consider more general-

zed setting for combinatorial assignment in each round. 

Another class of crowdsourcing focuses on exploiting people

ith mobile phones for collection sensing data at various loca-

ions ( Zhang et al., 2014 ). Optimal task allocation problem under

ime constraints has been addressed recently ( Feng et al., 2014 ).

iao et al. propose a multi-task assignment approach for work-

rs from mobile social networks ( Xiao et al., 2015 ). Other ap-

roaches include assigning tasks based on worker trajectory, also

nown as the orienteering problem ( Chen et al., 2014; Chen et al.,

015 ). None these worker address the adaptive assignment prob-

em; therefore, the techniques discussed in the paper are compli-

entary to these works. 

ppendix B. Results of skewed distributions 

In this section, we discuss the experimental evaluation of

roposed algorithms on skewed distributions. Give the range

f worker reliabilities [ q min , q max ], we sampled worker reliabil-

ties from Normal distribution i.e. q j ∼ Normal((q max − q min ) / 4 +
 min , (q max − q min ) / 4) . In this following, we provide performance

esults of algorithms under various experimental settings. 

ffects of expiry time 

Fig. A3 shows the effect of varying the task expiration time δ,

hich are similar to the results for the uniform distribution of

orker reliabilities. In general the average reliability is lowered due

o the smaller values of worker reliabilities ( Fig. A3 a). The DRR-

RD algorithm improves in terms of average reliability per task

s the expiry times increases. Algorithms based on DRR approach

erform significantly better in terms of the travel costs ( Fig. A3 b).

ig. A3 c shows the number of assignment per task for each algo-

ithm. Understandably, the overall performance of all algorithms is
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Fig. A3. Effects of task expiry time (Skewed data). 

Fig. A4. Effects of the range of worker reliability (Skewed data). 

Fig. A5. Effects of the number of tasks (Skewed data). 

Fig. A6. Effects of the range of the number of workers (Skewed data). 
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degraded relative to the results of the Uniform distributions. Oth-

erwise, the patterns of algorithmic performance remains the same.

Fig. A3 d the percentage of tasks completed for all algorithms. Apart

for DRR-GRD, all algorithms reach new maximum completion rate

with more that three rounds of expiry time. 

Effects of workers’ reliability 

Fig. A4 shows the effects of the range of worker reliability

on the comparative performance of algorithms. The reliability in-

crease linearly with the increase in the range of worker reliabil-

ities, for all workers ( Fig. A4 a). The DRR based algorithms consis-

tently achieve small travel costs with no effects due to the changes

in worker reliabilities ( Fig. A4 b). The relative performance, in terms

of the number of assignments, decrease constantly for all algo-

rithms ( Fig. A4 c). Similar, to the task reliability the percentage of

completed tasks increases with increase in worker reliability range

( Fig. A4 d). 

Effects of number of tasks and workers 

Fig. A5 shows the effects of varying the number tasks with pa-

rameter n ; therefore, there are more tasks available for assignment

during each round. The task reliability decreases with increasing

number tasks ( Fig. A5 a), where MWBM and CDP approach show

highest decrease for n = 50 0 0 . The average travel costs still re-

mains the same even when there are ten times more tasks during

a round ( Fig. A5 b). The performance of algorithms in terms of the

number of assignments per task is the opposite of the reliability

performance ( Fig. A5 c). 

Fig. A6 shows the effects of varying the number of workers

with parameter m ; such that, there are more alternatives available

for assignment during each round. The average reliability of tasks

increases due to more worker being assigned with higher q j , as

the number of workers increase ( Fig. A6 a). The number of work-

ers does not have significant effect of the percentage completion

of tasks ( Fig. A6 d). 
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