
Identifying Suitable Representation Techniques
for the Prioritization of Requirements

and Their Interdependencies for Multiple
Software Product Lines

Stephanie Lewellen(✉) and Markus Helfert

Dublin City University, Glasnevin, Dublin 9, Ireland
stephanie.lewellen2@mail.dcu.ie, markus.helfert@dcu.ie

Abstract. Software requirements typically do not exist independently of each
other, rather most requirements have some type of dependency on another
requirement [4]. For companies developing software products, which depend on
each other, in so-called multiple software product lines (SPLs), systematic
requirements management, including consideration for prioritization and inter‐
dependencies, is a time-consuming and convoluted task. Representation techni‐
ques for complex requirements can convey critical requirements interdependency
information to make prioritization of requirements quicker and more accurate [1].
Based on reviewing the foremost literature, this paper identifies the representation
techniques for requirements management which are most suitable for multiple
software product lines (SPLs).

Keywords: Requirements · Prioritization · Multiple software product lines
Interdependencies

1 Introduction

Software release planning is a critical decision-making process which aims to find an
optimal subset of software requirements, in which the stakeholders are satisfied while
the resource and timeline constraints are met [2, 3]. Software release planning is one of
the most important and complex tasks within the practices of requirements engineering,
because requirements usually have many dependencies and it is not possible to select
requirements based on individual priority alone [4].

One of the catalysts to increased complexity in requirements dependencies is modern
software product line engineering, which capitalizes on the recycling of software
between software products [5]. In the simplest form, the software product line (SPL)
has one common code base, but with two or more higher level code additions resulting
in their own software products [5, 6]. In recent years, with even more variation, the
concept of SPLs has been extended to offer more software product variation in the form
of multiple SPLs [5, 6].

For multiple SPLs, requirements interdependencies which influence the cost of
development and the value to the stakeholder could be of particular interest, because if

© Springer International Publishing AG, part of Springer Nature 2018
W. Abramowicz and A. Paschke (Eds.): BIS 2018, LNBIP 320, pp. 412–423, 2018.
https://doi.org/10.1007/978-3-319-93931-5_30



they are not met, the original benefit of diversifying the software product portfolio has
not been completely realized.

This paper considers the representation techniques in the prioritization of require‐
ments which have interdependencies between SPLs. Focus is given to the interdepen‐
dencies of requirements which are most critical to market-driven software [1] – require‐
ments related to value and cost. It starts with an overview of the current research in the
areas of multiple SPLs and requirements management, including prioritization of
requirements and requirements interdependencies. Following the overview is a
summary of five representation techniques for the prioritization of requirements and
their interdependencies. Finally, the paper concludes with the authors’ assessment of
the five representation techniques based on requirement prioritization, requirement
interdependencies, and the consideration of cost/value interdependencies between SPLs.

2 Overview

This overview delves deeper into the subject areas and foremost research of multiple
SPLs and managing software requirements, including the prioritization of requirements
and assessment of requirement interdependencies.

2.1 Multiple Software Product Lines (SPLs)

Much consideration has been given to requirements management for single software
products, but far less consideration has been given to requirements between software
product lines [7] or to particular domains [8].

A software product line (SPL) is a set of software products sharing a set of common
features but containing variation points [9]. One of the advantages to SPLs is the reduced
cost of development and testing, with an increased opportunity to address different
stakeholder groups [7]. An example for a single SPL, given by Rosenmüller et al. [10],
is mail client software which relies on a common mail framework. Variations of the mail
client software, to support different protocols, for example, would all rely on the same
common mail framework [10].

Multiple SPLs, in comparison, are composed of many interconnected subsystem
versions and variants [6]. Multiple SPLs commonly refers to vertically tiered software
stacks, with application SPLs and infrastructure SPLs [5], but can also refer to distributed
SPLs, as in the case of sensor software [10]. An example of vertically tiered multiple
SPLs would be individual application software product lines that all rely on the same
database platform, which is itself a software product line [5, 6] (Fig. 1).

The analysis that follows in this paper focuses on requirements representation techni‐
ques and their application to requirements prioritization and requirements interdependen‐
cies between multiple SPLs, specifically vertically tiered SPLs where the upper tier (appli‐
cation) software requires software functionality from the lower (infrastructure) tiers.

Furthermore, the focus in this paper is on mature products on the market, with
development approach that is incremental and market-driven, as in the industrial survey
conducted by Carlshamre et al. [1]. The focus has been restricted to market-driven

Identifying Suitable Representation Techniques 413



software, because most requirements interdependencies for this type of software are of
the “cost/value” type [1].

2.2 Managing Software Requirements: Prioritization and Interdependencies

It is not possible to address all functional and non-functional requirements in the next
software release, due to constraints from budget, resources or time [7]. Therefore, a
prioritization of requirements should be applied [8].

Prioritization Consideration. There are a number of requirements prioritization tech‐
niques [11, 12] and the research to the application of these processes to the software
release planning process is extensive. However, even the most suitable processes for
complex requirement prioritization, like the analytic hierarchy process (AHP), do not
consider the interdependency of requirements [8, 12].

Interdependency Consideration. According to Dahlstedt et al., “despite the need for
and potential benefits of systematically taking requirements interdependencies into
account, there is little research invested in this topic and more is needed” [13]. The
existing processes [12] provide potentially inaccurate weighting of requirements due to
these shortcomings [14].

Carlshamre et al. [1] noted in the result of their 2001 industrial survey that approx‐
imately 20% of the requirements assessed in their survey had 75% of the total require‐
ment dependencies. In order to reduce an otherwise time-intensive process of assessing
all requirements for interdependencies, it would make sense to identify the requirements
with obvious interdependencies first, and represent them visually so that interdepend‐
ency information could be inferred quickly [1].

Requirement Interdependency Types and Their Suitability to Multiple SPLs.
Before we can discuss the most suitable representation for requirements between
multiple SPLs, it is important to (1) describe the types of requirements interdependencies

Fig. 1. Dependency model between an application SPL and an infrastructure SPL [5]

414 S. Lewellen and M. Helfert



which have been identified in the foremost literature, (2) identify the requirements inter‐
dependency types which are most critical to the scenario that one SPL has a requirement
dependency to another SPL.

Tables 1 and 2 provide the most referenced sources for requirement interdependency
categories [1, 13], and are in general alignment with each other on interdependency
types.

Table 1. Interdependency categorization by Dahlstedt et al. [13]

Interdependency categorization Interdependency type
Structural Require

Explain
Similar to
Conflict with
Influences

Cost/Value Increase/Decrease cost
Increase/Decrease value

Table 2. Interdependency types by Carlshamre et al. [1]

Priority, lowest
number takes
precedence

Interdependency
type, where R =
requirement

Meaning, where R = requirement

1 R1 AND R2 R1 requires R2 to function, and R2 requires R1 to
function.

2 R1 REQUIRES R2 R1 requires R2 to function, but not vice versa.
3 R1 TEMPORAL R2 Either R1 has to be implemented before R2 or vice versa.
4 R1 CVALUE R2 R1 affects the value of R2 for a customer. Value can be

either positive or negative.
4 R1 ICOST R2 R1 affects the cost of implementing R2. Value can be

either positive or negative.
5 R1 OR R2 Only one of {R1, R2} needs to be implemented.

These requirement interdependency types provide the basis for a more complex
analysis of how interdependencies, sometimes also called requirements relations, are
considered in representation techniques for multiple SPLs. In Fig. 2, the difference
between a requirement interdependency within one SPL and an interdependency
between multiple SPLs is depicted. While most of the foremost literature and represen‐
tation techniques consider the simple case of a requirement requiring another require‐
ment within the same SPL, the case we want to consider is how the foremost represen‐
tation techniques are suitable to the more complex case that there is a requirement inter‐
dependency between product lines.

Identifying Suitable Representation Techniques 415



Fig. 2. Requirement interdependency within one SPL as opposed to between multiple SPLs

Because each SPL is, in its software productization, independent of the other one,
the separate product lines have the potential to have different release timelines, market
segments, share of company operational revenue, etc. [5]. Therefore, we can identify
some existing requirement interdependency types to be more critical for requirements
between SPLs.

We identify the “requires” type to be critical due to the definition of vertically tiered
multiple SPLs. If a requirement between SPLs exist, it will always be a requirement
from the top-most-level SPL of the SPL tier beneath it. Additionally, any requirement
between SPLs most likely also has a “cost/value” interdependency type due to the nature
of SPLs, which are designed to increase the value of software options at reduced overall
development cost [1].

With this research, we aim to answer: which of the foremost techniques for repre‐
senting the prioritization and interdependencies of requirements within one SPL is the
most suitable for representing the more complex requirements interdependencies
between multiple SPLs?

3 Representation Techniques for Requirements Prioritization
and Requirements Interdependencies

We have identified the following representation techniques as part of a systematic liter‐
ature review to be the most commonly referenced.

416 S. Lewellen and M. Helfert



3.1 Directed Graph (Digraph) Representation

A directed graph (digraph) represents requirements as shapes connected by arrows. By
differentiating requirements prioritization and interdependencies by color, line type, and
size of the shapes and arrows, the digraph is able to represent complex relations between
the requirements.

A practical example of a digraph requirements representation was made by Carl‐
shamre et al. [1] when they took an industrial survey where requirements managers from
five software organizations were asked to perform pairwise assessment on requirements,
only considering priority. A pairwise assessment was performed using a spreadsheet
designed by Carlshamre et al. and ensured that all requirements were compared with
each of the other requirements.

The requirements managers were then asked to identify interdependencies between
the requirements. They were also asked to give each interdependency a simple certainty
rating (possibly-probably-positively). The interdependency types available in the iden‐
tification are shown in Table 2 and include the type REQUIRES (dependency),
CVALUE (customer value), and ICOST (increases cost).

In addition to identifying interdependencies with certainty ratings, Carlshamre et al.
also define a hierarchy between interdependency types for the case that more than one
relationship is identified between two requirements. The priority (or hierarchy) of the
relationships is also shown in Table 2 with the REQUIRES interdependency type
assigned priority 2, and both CVALUE and ICOST assigned priority 4. In the case that
CVALUE and ICOST have a conflict, they have to be traded off against each other [1].

Using this data, Carlshamre et al. created digraphs of the requirements priorities and
the requirements interdependencies for each software organization. By representing the
requirements, their priorities, and their interdependencies by objects and arrows, it is
possible to draw important conclusions just from a glance at the digraph. However, the
authors of this paper observe that the graphical representation itself does not convey
some of the more sophisticated data collected, like the certainty rating for the interde‐
pendencies.

3.2 Metamodel Ontology Representation

A metamodel ontology is an appropriate method for describing and visualizing require‐
ments, their prioritization and their interdependencies because the model supports
distilling the relationships between requirements to their base elements [7, 9, 15, 16].

Due to the flexibility of the metadata in a metamodel ontology, it is possible to rate
the priority on a scale. The common structural interdependencies can be modeled, which
include a “requires” interdependency type, however in the foremost literature, there is
no example of modelling “cost/value” interdependencies in a metamodel ontology.

3.3 Software Requirements Catalog (SRC) Method

The software requirements catalog (SRC) is a method for collecting and considering
software requirements for reuse instead of considering individual software features or

Identifying Suitable Representation Techniques 417



components for reuse. The creation of the SRC includes a classification phase, where
the functionality of the requirement to fulfill the goal – the reason for the existence of
the project – is described. The description includes a prioritization rating which reflects
the suitability of the requirement to the project goal [17–19].

There is a qualitative high-medium-low rating scale for evaluating the priority of the
requirement to fulfill the project goal. However, the definition of a “priority” in the SRC
context is a variation on the definition of priority we have discussed previously. In the
context of SRC, priority is a rating of the requirement in only the parameter of its suit‐
ability to fulfill the overall project purpose, and not of its overall criticality [17].

The requirement constraints and dependencies with other software projects are
defined and refined in order to continuously update the requirements catalog [17]. The
tracking of requirements interdependencies, also called traceability, seems to consider
simple relationships, such as the “requires” structural interdependency between projects
with common requirements. However, there is no mention of more complex require‐
ments interdependencies between projects like “cost/value” interdependencies.

3.4 Fuzzy Graph Representation

Requirements interdependencies are considered fuzzy relations because the strengths of
the dependencies can vary greatly [20]. Mougouei et al. model the influence of value-
related requirements interdependencies using fuzzy graphs, which consider the uncer‐
tainty of the dependency relations.

Although there are also fuzzy representation techniques available for the prioritiza‐
tion of requirements, including the fuzzy AHP technique [11], none of those techniques
take the interdependency of requirements into consideration [12, 13].

3.5 Cost-Value Diagram Representation

The cost-value approach to requirements management involves a pair-wise comparison
on requirements in two dimensions: the requirement value and requirement cost [21].
Based on the results, the requirements are depicted on a graph with an axis for value and
axis for cost and two delineations to fence off the high-value/low-cost requirements,
mid-value/mid-cost requirements, and low-value/high-cost requirements. Karlsson et al.
[21] developed a support tool to plot the scored requirements and were also able to take
simple structural interdependencies into account, including the “requires” interdepend‐
ency type [21].

4 Criteria and Comparison of Requirement Prioritization
and Interdependency Representation Techniques Suitable
for Multiple SPLs

In the following section, we present the criteria we used to assess the requirement
prioritization and interdependency representation techniques suitable for multiple SPLs.
We then compare the overall rating for the representation types discussed in Sect. 3.

418 S. Lewellen and M. Helfert



4.1 Criteria for Rating

A simple (SMART) scoring technique has been applied to each of the dimensions for
analysis [22].

Priority Consideration. Each representation type in Sect. 3. was evaluated against the
sophistication of requirement priority consideration on a decimal scale from zero to one
using the criteria in Table 3. A rating of zero corresponds to an absence of consideration.
A rating of 0.5 corresponds to a simple scale priority rating, where requirements are
given a standalone rating. A rating of 1.0 corresponds to a comparative prioritization
where the requirements are compared to one another and then receive a relative priority
rating.

Table 3. Criteria for priority consideration rating [22]

Rating Criteria
0 Absence of priority consideration
0.5 Simple scale priority rating (ex. low, medium, high)
1.0 Relative prioritization using requirement comparison

Interdependency Consideration. Each representation type in Sect. 3 was evaluated
against the sophistication of requirement interdependency consideration on a decimal
scale from zero to one using the criteria in Table 4. A rating of zero corresponds to an
absence of consideration. A rating of 0.5 corresponds to a simple interdependency
tracking, where it is represented that requirements are linked. A rating of 0.75 corre‐
sponds to an interdependency consideration with a certainty rating. A rating of 1.0
corresponds to a complex interdependency consideration, where, for example, multiple
types of interdependencies are represented.

Table 4. Criteria for interdependency consideration rating [22]

Rating Criteria
0 Absence of interdependency consideration
0.5 Simple interdependency tracking (traceability)
0.75 Interdependency consideration with certainty rating
1.0 Complex interdependency consideration

Suitability for Multiple SPLs. Each representation type in Sect. 3 was evaluated
against the suitability of the type for multiple SPLs on a decimal scale from zero to one
using the criteria in Table 5. Specifically, the suitability criteria refer to the interde‐
pendency types “requires” and “cost/value”, which play a critical role in the assessment
of requirements interdependencies between SPLs. A rating of zero corresponds to an
absence of consideration for even the most basic structural interdependency type,
“requires”. A rating of 0.5 corresponds to a simple consideration for either “requires”
or “cost/value” interdependency types. A rating of 0.75 corresponds to either consider‐
ation for both “requires” and “cost/value” interdependency types or an in-depth consid‐
eration of either one. A rating of 1.0 corresponds to a representation type that allows for

Identifying Suitable Representation Techniques 419



requirement consideration for requirements from external SPLs, which bring potentially
their own “cost/value” and “requires” requirements.

Table 5. Criteria for multiple SPL suitability rating [22]

Rating Criteria
0 Absence of consideration for interdependency type “requires” and “cost/value”
0.5 Simple consideration for interdependency type “requires” or “cost/value”
0.75 Consideration for “requires” and “cost/value”, or in-depth handling for one or the other
1.0 Additional parameters for “cost/value” to consider one or more dependent SPLs

outside of the assessed SPL itself

4.2 Comparison of Representation Techniques

The following is a comparison of the previously discussed requirements prioritization
and requirements interdependencies techniques using the criteria specified in the
previous subsection.

The summary of the findings is that even though some of the techniques take into
account all three criteria areas, prioritization, interdependencies, and multiple SPL
requirements, none of them offer a complete solution to requirements prioritization with
interdependencies between multiple SPLs.

The cumulative total ratings from Table 6 are visualized as a multi-dimensional
graph in Fig. 3 to add a qualitative perspective to the quantitative ratings.

Table 6. Rated comparison of representation techniques

Technique Priority
consideration

Interdependency
consideration

Suitability for
multiple SPLs

Cumulative total
rating

Digraph 1.0 0.75 0.75 2.5
Metamodel
ontology

0.5 0.5 0.5 1.5

SRC 0.5 0.5 0.5 1.5
Fuzzy graph 0 1.0 0.75 1.75
Cost-value
diagram

1.0 0.75 0.75 2.5

It was determined based on the given criteria that the SRC method and metamodel
ontology both had a simple prioritization method and a simple interdependency tracking
method. They both also had no mention of the “cost/value” requirements interdepend‐
ency type, which is critical to a thorough representation of requirements between SPLs.
The metamodel ontology representation rates slightly higher on the graph for multiple
SPL suitability because it has greater potential for further extensibility through metadata.
The SRC method limits flexibility to requirements interdependency handling between
SPLs because the requirement scoring is from the perspective of the requirement to
fulfill a specific project, and is therefore better suited to smaller software projects with
fewer diverse stakeholders.

420 S. Lewellen and M. Helfert



Slightly more suited for requirements between SPLs is the fuzzy graph representa‐
tion, which gives very detailed information about requirements interdependencies and
their uncertainties, but does not take prioritization into consideration at all.

Most suitable to requirements between SPLs are the directed graph (digraph) model
and the cost-value diagram. Both are capable of distilling the required requirements
interdependency types in a compact and straightforward way. Both could potentially be
extended to represent relationships between SPLs. However, the cost-value diagram
adds an additional perspective of potential investment areas (ex. high-value/low-cost
requirements), which could valuable if extended to multiple SPL requirements support.

5 Conclusion

The assessment of the representation techniques in Sect. 4.2 Comparison of Represen‐
tation Techniques shows that the cost-value diagram and the digraph representations are
the closest to being suitable for multiple SPLs. More research is necessary into these
representation techniques, specifically in how they could be extended to more accurately
represent requirement interdependencies and the priorities thereof for multiple SPLs.

Fig. 3. Multi-dimensional graph of rated representation techniques

Identifying Suitable Representation Techniques 421



References

1. Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., och Dag, J.: An industrial survey of
requirements interdependencies in software product release planning. In: Proceedings of the
Fifth IEEE International Symposium, Requirements Engineering (2001)

2. Mougouei, D., Powers, D.M., Moeini, A.: Dependency-aware software release planning. In:
IEEE/ACM 39th International Conference Software Engineering Companion (ICSE-C), 2017
(2017)

3. Bagnall, A.J., Rayward-Smith, V.J., Whittley, I.M.: The next release problem. Inf. Softw.
Technol. 43(14), 883–890 (2001)

4. Carlshamre, P., Regnell, B.: Requirements lifecycle management and release planning in
market-driven requirements engineering processes. In: 11th International Workshop
Database and Expert Systems Applications, Proceedings (2000)

5. Schirmeier, H., Spinczyk, O.: Challenges in software product line composition. In: 42nd
Hawaii International Conference, System Sciences, HICSS 2009 (2009)

6. Damiani, F., Schaefer, I., Winkelmann, T.: Delta-oriented multi software product lines. In:
Proceedings of the 18th International Software Product Line Conference, vol. 1 (2014)

7. Soomro, S., Hafeez, A., Shaikh, A., Musavi, S.H.A.: Ontology based requirement
interdependency representation and visualization. In: Shaikh, F.K., Chowdhry, B.S.,
Zeadally, S., Hussain, D.M.A., Memon, A.A., Uqaili, M.A. (eds.) IMTIC 2013. CCIS, vol.
414, pp. 259–270. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10987-9_24

8. Berander, P., Andrews, A.: Requirements prioritization. In: Aurum, A., Wohlin, C. (eds.)
Engineering and Managing Software Requirements, pp. 69–91. Springer, Heidelberg (2005).
https://doi.org/10.1007/3-540-28244-0_4

9. Sellier, D., Mannion, M., Mansell, J.X.: Managing requirements inter-dependency for
software product line derivation. Requirements Eng. 13(4), 299–313 (2008)

10. Rosenmüller, M., Siegmund, N., Kästner, C., ur Rahman, S.: Modeling dependent software
product lines. In: Proceedings of the GPCE Workshop on Modularization, Composition and
Generative Techniques for Product Line Engineering (McGPLE) (2008)

11. Achimugu, P., Selamat, A., Ibrahim, R., Mahrin, M.N.: A systematic literature review of
software requirements prioritization. Inf. Softw. Technol. 56(6), 568–585 (2014)

12. Kahn, J., Rehman, I.: Comparison of requirement prioritization technique to find the best
priorization technique. Modern Educ. Comput. Sci. 7(11), 53–59 (2015)

13. Dahlstedt, A., Persson, A.: Requirements Interdependencies: State of the Art and Future
Challenges. In: Aurum, A., Wohlin, C. (eds.) Engineering and Managing Software Requirements,
pp. 95–116. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-28244-0_5

14. Zhang, H., Li, J., Zhu, L., Jeffery, R., Liu, Y., Wang, Q., Li, M.: Investigating dependencies
in software requirements for change propagation analysis. Inf. Softw. Technol. 56(1), 40–53
(2014)

15. Goknil, A., Kurtev, I., van den Berg, K., Veldhuis, J.: Semantics of trace relations in
requirements models for consistency checking and inferencing. Softw. Syst. Model. 10(1),
31–54 (2011)

16. Saeki, M., Kaiya, H.: On Relationships among models, meta models, and ontologies. In:
Proceedings of the Proceedings of the 6th OOPSLA Workshop on Domain-Specific Modeling
(DSM 2006) (2006)

17. Pacheco, C., Garcia, I., Calvo-Manzano, J., Arcilla, M.: Reusing fuctional software
requirements in small-sized software enterprises: a model oriented to the catalog of
requirements. Requirements Eng. 22(2), 275–287 (2017)

422 S. Lewellen and M. Helfert



18. Robertson, S., Robertson, J.: Mastering the Requirements Process, 6th edn. Addison-Wesley,
Munich (2013)

19. Wiegers, K.: First things first: prioritizing requirements. Software Dev. 7(9), 48–53 (1999)
20. Mougouei, D., Powers, D.: Modeling and selection of interdependent software requirements

using fuzzy graphs. Int. J. Fuzzy Syst. 19(6), 1812–1828 (2017)
21. Karlsson, J., Olsson, S., Ryan, K.: Improved practical support for large-scale requirements

prioritising. Requirements Eng. 2(1), 51–60 (1997)
22. Valiris, G., Chytas, P., Glykas, M.: Making decisions using the balanced scorecard and the

simple multi-attribute rating technique. Perform. Meas. Metrics 6(3), 159–171 (2005)

Identifying Suitable Representation Techniques 423


