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Abstract 

This thesis, for the first time in Ireland, uses a framework that combines a land surface scheme 

(LSS) based on a surface energy budget theory, available environmental observations, land 

surface and atmospheric analyses, to understand essential mechanistic factors that 

determine grass growth response across the Irish landscape. A soil moisture model parameter 

(𝑐𝑠𝑜𝑖𝑙) is identified as the key factor that distinguishes soil types and their ability to retain 

water for plant growth, plant response to exchange processes, and drives the response of LSS 

in drying soils. A Modification of this parameter indicates that the LSS can be transferred to 

other locations. In the context of understanding the links between land surface dynamic 

processes and the persistence of 2018 summer drought regionally, drying soils and high 

atmospheric anomalies result in a reduced evapotranspiration (ET) process. This is the 

situation over grasslands in the east and south east of the country where a wet ‘evaporative’ 

regime quickly shifts into a ‘transitional’ regime in which vegetation functioning and ET are 

controlled by soil water availability. Particularly, a threshold value of soil moisture content 

that suggests the onset of 2018 agricultural drought has been found across the regions. The 

importance of water use efficiency for monitoring grass growth at field level and for 

distinguishing zones of optimum productivity is further discussed in the thesis. Overall, the 

findings demonstrate the potential consequences of climate change on Irish grasslands and 

the need for policies that are tailored to reinforcing observation networks to complement 

theories and model outputs akin to on-farm adaptation and optimization of water availability 

and productivity. 
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1. Introduction 

1.1 Overview 

The agricultural sector is one of the most important economic sectors in the world due to its 

critical role in ensuring adequate food supply and its contribution to income and employment, 

accounting for 4 % of global gross domestic profit (GDP) in 2018 (World Bank, 2021). In 

developing countries, agriculture can account for up to 25 % of a nations GDP. In Ireland, the 

agricultural or agri-food sector plays a key role in the economy, accounting for more than 7 

% of national gross value-added profit, 8 % of national employment and 10 % of overall 

merchandise exports from Ireland in 2017 (Conefrey, 2018; Teagasc, 2021).  

Data from the Irish Central Statistics Office (CSO) demonstrate that, much of the increase in 

agricultural outputs and incomes in the last three decades has been driven by pasture-based 

commodities, particularly dairy and meat products, as shown in Figure 1.1 (Conefrey, 2018). 

These achievements are partly assisted by the development and implementation of policies 

and programmes (e.g. Food Harvest 2020, Grass10, Food wise 2025, etc.) devised by the 

relevant agri stakeholders, which are geared towards increasing the growth rate of the agri-

food industry through optimal utilization of the natural grass resource base and delivery of 

high quality organic agricultural produce.  
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Figure 1.1. Trends in the value of gross output by sector (Conefrey, 2018) 

The Irish agricultural landscape is primarily grass-dominated with approximately 90 % of the 

agricultural land area devoted to grass, representing about 52 % of the total land area (Jaksic 

et al., 2006). This abundant natural resource is largely linked to the temperate maritime 

climate (mild, wet winters and warm, moist summers) and fertile soils that are suited to grass 

growth. This has enabled the development of an efficient pasture-based production system 

and provides an important comparative advantage over its other international counterparts.  

The regional distribution of pasture-based farming indicates that dairy farming dominates in 

the South and South-West in areas that are typically associated with limestone rich, well 

drained soils and long grass growth season (median of 330 days) (Keane and Collins, 2004; 

Green, 2019). The midlands and South East are dominated with mixed grazing on fertile 

well/moderately drained soils, beef production dominates around the border with Northern 

Ireland and in the North West, and sheep on the coastal uplands, in areas associated with 

poorly drained soils and a short grass growth season (Creamer et al., 2014; Green, 2019). 

The most important factor that influences regional/local management of biological processes 

and the growth and performance of plants is the weather. The weather conditions required 
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for optimum grass growth are rarely met throughout a growing season. It has been reported 

that non-limiting soil water and soil temperatures above 5 oC are required for grass growth to 

occur (Hopkins, 2000). The soil water conditions, which are determined by soil type, 

precipitation and evapotranspiration, affects nutrient uptake, grass growth response and 

length of grazing season (Schulte et al., 2005).  

Reflecting the regional variations in productivity, associated with soils and weather, efforts 

have been made to map and monitor agro-environmental conditions for optimal productivity 

(e.g. Hurtado-Uria et al., 2013a, 2013b). In many cases, meteorological data (e.g. solar 

radiation, precipitation and air temperature) from proximate weather stations are directly 

related to productivity. One limitation of this approach is that it does not take into account 

the variability in environmental factors (e.g. soil conditions) which also impact the plant 

growth in a region. For example, soil types vary in their water and heat holding capacity. 

Heavier soils (e.g. high clay content) can retain water longer relative to other soil types, 

reducing the impacts of high water deficits on plants grown over them. However, this soil type 

can become water logged and problematic for plant growth during prolonged periods of 

precipitation; these soils can also become untrafficable. Heavier soils warm up slowly, but 

retain heat longer into autumn, extending the grass growth and yields to later in the year 

(Fitzgerald et al., 2005, 2009).  

Grass is grown over different soil characteristics across Ireland (e.g. Creamer et al., 2014), but 

a framework that integrates meteorology and environmental factors to provide explicit 

information about grass physiological response and growth at detailed spatial scales does not 

currently exist. A prognostic approach, incorporating the surface energy balance (SEB) 

framework, could potentially enhance an understanding of the processes, from point to 
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regional scales (e.g. Su, 2002), and consequently assist farmers to better understand, monitor 

and potentially predict growth response leading to more informed decision making.  

The SEB is described by the net radiation (𝑄𝑁) at the surface, the surface sensible heat flux 

(𝑄𝐻) to the atmosphere by convection/advection, latent heat flux (𝑄𝐸) to the atmosphere by 

evaporation/transpiration, and soil heat flux (𝑄𝐺) to the subsurface by conduction (Arya, 

2001). The partitioning of available energy (𝑄𝑁 --  𝑄𝐺) at the surface (e.g. vegetation) into 

𝑄𝐻 and 𝑄𝐸  is very much dependent on the transpiration capacity of plants which is controlled 

by land surface state (e.g. soil conditions, vegetation structure, etc.) and prevailing 

atmospheric conditions. The SEB processes governing the local weather that determine grass 

growth can also be influenced by seasonal alterations in the mean climate, due to the 

alterations of plant’s physiological response and processes, and with consequences for on 

farm productivity and income. An example of such impact is the 2018 fodder crisis (a growing 

season characterised by poor grass growth and lack of feed such as silage) (Dillon et al., 2018), 

which demonstrates the vulnerability of the Irish agricultural sector, particularly pastoral 

farming, to seasonal variations in weather. The use of diagnostic based approaches or simple 

correlations between meteorological variables and grass yields are lacking in that they 

provide an insufficient knowledge about the underlying mechanisms influencing the 

microclimate that govern grass growth.  

In addition, as the climate changes, meteorological data alone can not be used to robustly 

investigate impacts on grass growth. The 2018 event provides an opportunity to explore how 

these gaps can be filled, by providing information relating to relevant parameters and how 

changes in these parameters influence grass water use and productivity at detailed spatial 

scales, which is the primary goal of this thesis. These can best be addressed by understanding 
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the physiological responses of plants, in terms of stomatal resistance, that scale up to 

influence ecosystem surface biophysical processes (CO2, heat and water) in a changing 

climate. 

1.2 Plant physiological response to environment  

Plants growth depends on environmental factors, including light, atmospheric moisture, air 

temperature and soil water (e.g. Jarvis, 1976). In leaves, water is conducted from the root and 

transported upward through the xylem, or vascular tissue, to the stomatal pore where it is 

released in vapor form to the atmosphere through the stomata. At the same time, the opened 

stomata allow the uptake of CO2 required for photosynthesis. Therefore, the rates of 

photosynthetic carbon uptake and water loss through transpiration from the canopy surface 

depend on the aperture size and density of stomatal pores (Figure 1.2), which are in turn 

regulated by environmental parameters and leaf morphology (Boisvenue and Running, 2013). 

The ability of a stomatal pore to allow transfer of water vapour from the canopy to the 

atmosphere is called the surface ‘stomatal’ conductance (𝑔𝑠) and the inverse is referred to as 

surface ‘stomatal’ resistance (𝑟𝑠, expressed in s m-1). 

 

Figure 1.2. Plant stomatal size and density: Leaves with smaller, denser stomatal pores [left] have higher 
maximum stomatal conductance (𝑔𝑚𝑎𝑥) and are more sensitive to closure during drought (i.e. larger loss of 
stomatal conductance during dehydration of leaves, indicated by thicker red arrow lines) than the leaves with 
larger, less dense stomata [right] (Henry et al., 2019). 
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Figure 1.3 shows a schematic illustration of surface biophysical interactions. At the canopy 

scale, plants regulate their stomatal aperture in response to environmental conditions, thus 

limiting or increasing the transport of water transpired via latent heat flux (𝑄𝐸) exchange. In 

wet conditions, stomata can either be in an opened or a closed state depending on the 

prevailing environmental conditions. During the day, stomata repond to increasing 

photosyntetically active radiation (PAR), soil water availability and atmospheric evaporative 

demand that is linked to rising air temperature, leading to low resistance and more 

transpiration and CO2 uptake (Driesen et al., 2020). When the stomata openings are reduced, 

usually under conditions of water stress, the resistance is increased. As a consequence, little 

CO2 is taken up due to reduced photosynthesis, and transpiration is lowered.  During these 

periods, the available net radiation at the surface is largely transferred to the atmosphere in 

the form of sensible heat fluxes (𝑄𝐻) (Figure 1.3). Therefore, a plant’s stomatal response is 

primarily driven by atmospheric conditions under wet regimes and by soil water availability 

during dry conditions (Seneviratne et al., 2010).  

At night, stomata are mostly closed, leading to large resistance and almost null transpiration. 

Increasing temperature, which has been shown to have a positive effect on productivity (e.g. 

Toledo et al. 2011), also increases the vapour pressure deficit, thereby increasing 

transpiration rates through stomata opening, assuming no plant water stress and where PAR 

is not limited. 

A plant’s response is also determined by water use efficiency (WUE), which is a measure of 

tradeoffs between the plant’s photosynthetic carbon assimilation and water loss through 

transpiration, and foliage light-use efficiency, of which both are recognized to vary across 

ecosystem types and leaf morphology in response to environmental conditions (Boisvenue 

and Running, 2013). 
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Figure 1.3. Illustration of ‘grass’ surface biophysical interactions. 𝑟𝑎  is the aerodynamic resistance to momentum 
transfer, 𝑟𝑠𝑤  and 𝑟𝑠𝐶  are surface ‘stomatal’ resistance to water vapour and CO2 transfer, respectively. 

 

The proportion of visible light intercepted and used by a plant canopy for photosynthesis, 

depends on leaf morphology, which is primarily characterized by leaf area index (LAI), or the 

amount of leaf coverage per unit land area (Tardieu, 2013).  Light use increases with LAI. At 

higher LAI (> 5 m2 m2, no canopy gap), nearly all the available visible light at the surface is 

intercepted (Tardieu, 2013), ultimately leading to more productivity.  

In contrast to light, a plant’s response to WUE may be nonlinear, and serves to allow 

proportional effects in favorable conditions through stomatal opening (Lu and Zhuang, 2010; 

Zhao et al., 2020). For a given photosynthesis, WUE decreases as the transpiration rises due 

to the increase in atmospheric evaporative demand and soil water availability (Tardieu, 2013).  

Moreover, these responses are different between plant types/species and under different 

intensities of drying (Lu and Zhuang, 2010; Zhao et al., 2020).   
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Generally, the positive effects of enhanced physiological responses (e.g. WUE), associated 

with increased CO2 and warmer temperature, on productivity appear to largely dominate in 

some parts of Europe, including Ireland. However, occasional declines in productivity can also 

occur during periods of water stress in summer (e.g. Dillon et al., 2018), implying that the 

negative effects of water stress on these plant physiological traits can potentially outweigh 

the positive effects of CO2 enhancement and warmer temperatures. Therefore, the key is the 

identification of the driving mechanisms that are responsive to environmental changes at site 

scale, for drought vulnerability and adaptation assessments. 

1.3 Climate change context 

Climate change, as the term is widely taken to connote anthropogenically induced changes in 

the climate system (IPCC, 2014), affects agricultural production due to the large dependence 

of farming activities on weather and ultimately climatic conditions. Conversely, agricultural 

activities also serve as a major source of GHG thereby contributing to climate change. Such 

changes in climate may influence agriculture in a positive way (e.g. CO2 fertilization, warmer 

temperatures lengthening of growing seasons, more rainfall) or in a negative way (more 

drought, faster growth resulting in shorter life cycles, salinization, temperature above optimal 

or lethal levels) (e.g. Porter et al., 2014). In the context of negative effects, such as increased 

frequency or severity of drought episodes, plants respond by closing their stomata to 

conserve available water and/or avoid water loss through transpiration to prevent 

dessication. Increasing surface stomatal resistance to moisture loss will ultimately lead to 

land-air feedback processes and further exacerbate the surface drying (Seneviratne et al., 

2010). An illustration of such feedback processes between the surface and atmosphere during 

extreme weather event is shown in Figure 1.4. 
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Figure 1.4. The coupling and feedback loop between the surface and the atmosphere during severely hot 
drought. The signs +, - and 0 indicate positive, negative and no feedback, respectively (Teuling, 2018). 

Reflecting the ecosystem scale, It should be noted that plants growth and yield do not only 

respond to changes in surface climate but also to elevated CO2 concentration, management 

practices, pests and diseases (Gentine et al., 2019), and this response differs across regions 

and plant types (e.g. Hatfield et al., 2011). For instance, a gradual increase in temperature 

and elevated CO2 may lead to positive impact on production, through provision of favourable 

conditions for plant developmental rate, extension of length of growing season and rise in 

yields, in the higher latitudes (Deccache et al., 2011). However, under seasonally ‘summer’ 

dry regimes, soil moisture deficits are likely to increase due to the integrated effects of higher 

transpiration and atmospheric evaporative demand (linked to higher temperature) that 

facilitates soil drying and rising surface temperature, thereby reducing yield in rain-fed 

agriculture (Hatfield et al., 2011).  
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Climate change that negatively impact agriculture is not only driven by elevated CO2 but also 

substantially by elevated methane (CH4) production (Shindell, 2016). Methane from animal 

agriculture, particularly pasture-base production (e.g. cattle), is primarily formed during 

manure management and enteric fermentation (Liu et al., 2021). The latter produces the 

majority of CH4 from ruminants by exhaling and belching, and this occurs during a chemical 

reaction between hydrogen (H2) and CO2 produced by bacteria, protozoa and anaerobic fungi 

in methanogenic microorganisms, in the rumen (Liu et al., 2021). Methane production leads 

to minimal crop fertilization but enhances surface ozone (formed through oxidization and in 

the presence of NOx) which damages the vegetation by reducing photosynthesis and other 

physiological factors (Porter et al., 2014).  During the last two decades, global emssions of CH4 

have been increased due to global rise in dairy and beef animals (e.g. Canadell et al., 2021). 

Such a rise in CH4 emissions has augmented warming-induced climate extreme events and 

agricultural losses at a global scale (e.g. Shindell, 2016).    

The impacts of extreme events such as heatwaves (periods of extreme high temperature) and 

droughts (periods of extreme water shortage) on agriculture are likely to become frequent in 

the future (Samaniego et al., 2018). Projected changes in climate suggest that, while some 

regions are likely to suffer from droughts events, other regions may become prone to 

rainstorms and increased flooding (IPCC, 2014). Evidence of these extreme changes is already 

manifesting across different regions. For instance, record breaking high temperatures were 

recorded across Europe during the 2018 summer (e.g., Magnusson et al., 2018). These 

warmer temperatures and rainfall deficits were found to be associated with negative yield 

anomalies, particularly in the Northern and Eastern Europe during the growing season 

(Beillouin et al., 2020). In Ireland, the event was evident on grass yield in summer (Figure 1.5a-
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b), particularly the south eastern agricultural area (Figure 1.5a), with grass yields reduced by 

5-10 % (1 ton ha-1) of normal in 2018 (Falzoi et al., 2019).  

 

(a) 

 

(b) 

Figure 1.5. (a) True color Sentinel-2 images of South East region of Ireland during 2018 mid-summer; (b) 
Temporal evolution of national grass growth 2016 – 2018 from Teagasc PastureBase Ireland (Dillon et al., 2018). 
The rectangle box highlights the period of severe weather impacts on grass yields. 

 

1.4 Knowledge gaps 

Traditional approaches to monitoring regional agro-environmental conditions in Ireland 

typically employ meteorological data from a proximate weather station as input to estimate 

crop growth and productivity. The studies using these approaches are few, site-specific and 
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lack the ability to explain the plant’s physiological traits (e.g. stomatal resistance) that 

influence the mechanisms (moisture, heat and CO2) driving the local meteorological 

conditions that govern plant growth. An alternative method, proposed here, employs the 

surface energy balance (SEB) concept as a framework for integrating relevant data, including 

airborne/satellite observations, meteorological observations, and geo-databases on land-

cover, soil type and topography, to generate surface biophysical indices relevant to 

agriculture at a detailed spatial scale. One important advantage of this approach is its 

prognostic ability; which may lead to an improved understanding of the linakges between the 

land surface and atmosphere and potentially enable improved seasonal forecasting of grass 

growth. Again, no previous attempt to integrate traditional meteorological data with remote 

sensing approaches exists for Ireland using this overarching framework.  

In addition, there are relatively few sites where all the required surface energy budget 

components, including net radiation (𝑄𝑁) , sensible heat (𝑄𝐻), latent heat (𝑄𝐸) and soil heat 

(𝑄𝐺) fluxes, necessary for evaluating the response of agriculture to changes in climate in both 

the short and long term are available; where they exist, data are often incomplete and/or of 

limited duration. At the same time, there is often an extensive observation network available 

that has gathered key meteorological data (sunshine, wind, rainfall, etc.) over decades. Past 

and recent studies have also developed physically-based schemes that follow SEB concept to 

simulate the land-atmosphere exchanges based on routine meteorological observations (e.g. 

de Rooy and Holtslag, 1999). However, no study has applied these schemes to Ireland.  

Regional climate projections for Ireland indicate that mean annual temperature will rise by 1 

– 1.6 °C, with the largest increases in the east of the country (e.g. Nolan, 2015; Fealy et al., 

2018). Mean annual, spring and summer rainfall are likely to significantly decrease, with heavy 
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rainfall in winter and autumn by mid-century, though the large spread between model 

ensemble members reflect uncertainty, particulaly in mean rainfall for winter and autumn in 

Ireland (Nolan, 2015; Fealy et al., 2018). These projected changes in climate imply that the 

occurrence, frequency and intensity of drought events could increase during the growing 

season, which are already manifesting based on the record-breaking maximum temperature 

and rainfall deficits recorded in 2018 summer (Falzoi et al., 2019), followed by the 2020 spring 

dry spells, reported across the region (Met Eireann, 2020). Though, the reported drought 

episodes in Ireland in recent decades are less frequent and unrepresentative of prolong 

drought climatology, relative to the periods prior to 1980s, based on historical evidence 

during the years 1850-2015 (Noone et al., 2017).  

Meteorological droughts are well understood and sufficiently documented in Ireland (e.g., 

Noone et al., 2017). These studies are very recent but few have examined the physical 

processes that may trigger meteorological drought to persist into agricultural drought and 

associated land-atmosphere feedbacks. During periods of restricted water availability, the 

evolution of agricultural drought depends on site-specific changes in land surface processes, 

which can be described within the framework of a land surface scheme (e.g. Lansu et al., 

2020). To date, studies have focused on meteorological drought, whereas the discussion on 

agricultural drought and the role of land-atmosphere interactions is missing in Ireland. 

Critically, the proposed methodology should enable a better understanding of such extreme 

events and the land-atmosphere interaction, in contrast to more traditional methods that 

employ standard meteorological variables. This is imperative since agricultural production 

across Ireland may switch from one that is rain-fed to one that requires irrigation and altered 
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management practices, to offset the associated impacts of extreme drought events on 

productivity. 

1.5 Research questions  

Grass growth is an important agricultural product, providing a low cost feed source for 

livestock farmers where profit margins are low, and contributes a relatively large percentage 

to the economy of Ireland. To optimize grass growth and yields, the existing knowledge and 

data gaps identified in Section 1.4 point towards several concerns relating to Ireland’s future 

agri-environmental conditions, and the need to develop policy options which are spatially 

tailored to the constraints imposed by climate and the environment. To partly address these 

concerns, the following three research questions are to be answered in this research: 

For the first step, this research builds on utilising a physically-based land surface scheme (LSS) 

(de Rooy and Holtslag, 1999) for Ireland in the context of understanding the surface-air 

exchanges of heat and moisture.  

 Can a LSS be developed to simulate the terms of the surface energy budget in response 

to soil, vegetation and atmospheric variations across Ireland?  

 Can a validated LSS be used to explore (and predict) the emergence and development 

of agricultural drought and its regional characteristics? 

 Can the LSS be used to examine carbon uptake and water exchanges during dry and 

wet regimes, and be used to evaluate water use efficiency and grass yield at a farm 

scale? 

This research seek to address these questions by integrating multi-source, near-real time 

information that will enhance our understanding of land surface physical processes that drive 
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the agro-environmental conditions of Ireland. This will consequently aid the development of 

a prototype information system that could provide benchmark information for farmers on 

their environmental and agronomic attributes in relation to the quantity of farm production 

and performance. This will enable them to engage more fully with their own localised agro-

environmental conditions and help to optimize management decisions, technology and 

practice adoption in a changing climate.  

1.6 Thesis structure 

Each of the three research questions are addressed consecutively in Chapters 3-5. Figure 1.6 

shows an overview of the chapters as they relate to research questions and associated 

publications.  

Chapter 2 of this thesis provides a review of the theoretical basis of land-atmosphere energy 

budget framework, observations and modelling of surface flux densities, and applications for 

drought montoring and yield predictions at different scales.  

Chapter 3 provides an overview of the setup of the land surface scheme (de Rooy and 

Holtslag, 1999) used and its evaluation for selected grassland sites. The aim is to evaluate the 

performance of the scheme in replicating measured surface energy fluxes over grassland 

sites, and the sensitivity of the scheme to different soil conditions. Chapter 3 was published 

as follows: 

Ishola, K. A., Mills, G., Fealy, R. M., Ní Choncubhair, Ó. and Fealy, R. (2020) Improving a land 
surface scheme for estimating sensible and latent heat fluxes above grasslands with 
contrasting soil moisture zones. Agricultural and Forest Meteorology, 294, 108151, 
https://doi.org/10.1016/j.agrformet.2020.108151  
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In Chapter 4, the utility of the scheme, in combination with satellite-derived products, ERA5-

Land global reanalyses climate data and in-situ observations, to explain regional 

meteorological-agricultural drought propagation through changes in land surface processes 

is explored.  The aim is to provide a framework to investigate the role of land-atmosphere 

interactions in exacerbating agricultural drought and understand the degree of vulnerability 

of Irish grasslands to climate change.   

Ishola, K.A., Mills, G., Fealy, R.M. and  Fealy, R. A model framework to investigate the role of 
anomalous land surface processes in the amplification of summer drought across Ireland 
during 2018, International Journal of Climatology (revision submitted; see supplementary 
information) 

 

Chapter 5 assesses the relationships between ET, ecosystem WUE (a water-carbon coupling 

metric) and grass yields. The primary objectives are to map farm-scale water use metrics at 

high resolution using Sentinel-2 (10 m pixel size) data, and; relate the derived indices with 

yields.  

Ishola, K.A., Mills, G. , Fealy, R.M., Green, S. and  Fealy, R. Mapping high-resolution water use 
efficiency of pasture lands using Sentinel-2 data: Application for grass yield prediction, in 
preparation for submission to International Journal of Applied Earth Observation and 
Geoinformation (in draft) 

 

The key findings of this thesis, policy implications and suggestions for future research are 

summarized in Chapter 6. 
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Figure 1.6. Overview of the thesis structure. 
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2. Literature review 

2.1 Introduction  

Understanding the response of agriculture to contemporary changes in climate is crucial to 

understanding likely future changes in vegetation growth and yield at global and regional 

scales. This response depends on the knowledge of complex dynamic processes that link the 

soil, vegetation and atmosphere, which can be described by combining theory, observations 

and models.  Measurements of surface fluxes of heat and moisture can provide this 

understanding but are limited due to paucity of data. Often, meteorological data have been 

employed instead in ‘conventional’ approaches, such as statistical analysis/predictive models, 

in which different meteorological variables have been directly related to variation in yield 

among years (Brereton 1992; Holden and Brereton, 2002, 2003a, 2003b, 2004; Holden et al., 

2003; Black et al., 2006; Hurtado-Uria et al., 2013a, 2013b).  

For example, Phelan et al. (2015) used a stepwise multiple regression analysis to examine the 

association between grazing season length and biocimatic variables for pasture farms across 

Europe. The study found significant positive association between mean grazing season length 

and mean temperature of coldest quarter and negative association with precipitation of the 

wettest month. Using a similar approach, Hurtado-Uria et al. (2013a) evaluated the 

relationship between grass growth and meteorological data over the period 1982 to 2010 for 

the south of Ireland. The study found that temperature had a large influence on grass growth 

in all seasons; evapotranspiration (ET) also played an important role for their period of 

analysis. However, in contrast to strong foliage response to spring temperature (Hurtado-Uria 

et al., 2013a), net ecosystem productivity was not significantly correlated with spring 
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temperature (Peichl et al., 2011), suggesting differences in response of grass growth and 

biophysical processes to temperature (Wingler and Hennessy, 2016).  

In the context of both the seasonal and regional distribution, pasture-based production 

systems in relation to regional climate variations in Ireland indicate that the farming systems 

in the South East usually experience lower primary productivity (grass yield) in summer 

periods as a result of insufficient precipitation, higher evapotranspiration, and consequently 

soil moisture deficits, associated with the free drainiang soils (Fitzgerald et al., 2005). A later 

turn out date, when animals are put out to pasture, is experienced in the north of the country 

during spring, as the lower temperature during the spring delays the start of grass growth. 

The usually mild year round temperatures and ample summer precipitation experienced in 

the south west characterize this region as the most productive for grass growth (Fitzgerald et 

al., 2005). However, climate change is likely to alter this distribution of regional productivity. 

For example, the North East is expected to become more productive, particularly on well-

drained soils, due to the projected earlier turn out associated with higher temperature in 

Spring (Fitzgerald et al., 2009). Locations in the midlands to the northern regions on poorly-

drained soils in Ireland were also projected to increase in primary productivity by 2080, 

however, Fitzgerald et al. (2009) noted that farms on poorly-drained soils pose more 

challenge to farmers than those on well-drained soils in the future. 

The inability to explain the role of biophysical processes in vegetation response to climate 

imposes a major limitation on more traditional approaches. Simulating the surface energy 

balance terms and relevant diagnostic parameters using available meteorological, soil and 

vegetation data serve as an alternative approach to improve our understanding of how 

agricultural systems respond to climate and how this response varies spatially. The 



20 

 

subsequent sections here provide a review in this context and outlines the theoretical 

framework that is widely utilized in land surface modeling of these terms.  

2.2 Theoretical framework of surface-air energy exchanges 

Land-atmosphere interactions are understood through the exchanges of heat, mass and 

moisture between the surface and the overlying atmosphere.  For an ideal flat and 

homogenous surface, energy exchange is described by the net radiation (𝑄𝑁) at the surface, 

the surface sensible (𝑄𝐻) and latent (𝑄𝐸) heat fluxes to the atmosphere, and soil heat flux to 

the subsurface (𝑄𝐺) (Figure 2.1) (Arya, 2001). 𝑄𝑁 is usually dominated by solar radiation 

towards the surface during day light hours, and in the absence of solar radiation at night, 𝑄𝑁 

is weaker and directed away from the surface. Consequently, the surface warms up during 

the day and cools at night, especially under stable and clear sky conditions (Arya, 2001).  

𝑄𝐻 is described as a direct energy flux at and above the surface due to vertical temperature 

gradients (Arya, 2001). In the immediate vicinity of the surface, 𝑄𝐻 exchange is primarily 

caused by conduction while at distances beyond few millimetres away from the interface, the 

heat transfer is governed by convection or advection of air. The surface is warmer than the 

overlying air during the day hours thus directing the heat flux away from the surface and vice 

versa for night hours (Figure 2.1).  
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Figure 2.1. Variation of surface energy balance (SEB) terms for (a) daytime over land and; (b) nighttime over land 
(Stull, 1988). Signs are positive upward and negative downward, and arrow size indicates relative magnitude. 

The 𝑄𝐸 flux is the flux of energy released as a result of evaporation/transpiration or 

condensation at the surface. In the situation where the air above the surface (e.g. water, 

moist soil, or vegetation) is drier (e.g. lower specific humidity usually in the daytime), the 

available energy is preferentially channelled into evaporation from the surface. At night, 

condensation can occur over relatively colder surfaces. The heat transfer through the ground 

medium (e.g. soil) occurs by conduction.  

The balance of surface energy fluxes, assuming no heat is stored or released within the canopy 

surface, is: 

𝑄𝑁 =  𝑄𝐻 +  𝑄𝐸 +  𝑄𝐺     (Wm-2)       (2.1) 

The net radiation (𝑄𝑁) is defined based on the balance of surface radiative fluxes, including 

surface shortwave radiation downward (𝑄𝑆↓) and upward (𝑄𝑆↑), and surface longwave 

radiation downward (𝑄𝐿↓) and upward (𝑄𝐿↑). 
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𝑄𝑁 =  𝑄𝑆↓ − 𝑄𝑆↑ +  𝑄𝐿↓ −  𝑄𝐿↑   (Wm-2)      (2.2) 

The magnitude of 𝑄𝑆↓ depends on the Sun’s altitude, clarity of the atmosphere and the 

latitude. This parameter is available by means of observations or model estimation (Holtslag 

and van Ulden, 1983; Allen et al., 1998). The 𝑄𝑠↑ is a fraction of 𝑄𝑆↓ reflected back to the 

atmosphere and is a function of the surface albedo ( 𝛼 =  
𝑄𝑠↑

𝑄𝑆↓
). A parameterization of surface 

albedo based on solar elevation has been investigated (Beljaars and Bosveld, 1997; de Rooy 

and Holtslag, 1999), but for the purpose of simplicity, the recommended value for short grass 

(𝛼 = 0.23;   Oke, 1978) is often adopted (e.g. van de Boer et al., 2014a). 

The longwave terms in (Equation 2.2) depend on the air (𝑇𝑎) and surface (𝑇𝑠) temperature 

and their respective emissivities. A simple approximation of the incoming longwave radiation 

in relation to 𝑇𝑎at a reference height (1 – 2 m) has been reported (Swinbank, 1963). However, 

this simple empirical relation does not account for the influence of cloud cover (N), thus, 

Holtslag and van Ulden (1983) proposed an optimized model:  

𝑄𝐿↓  =  𝜀𝑎𝜎𝑇𝑎
4 +  𝑐1(

𝑁

8
) ,        (2.2a) 

𝜀𝑎 = 1.2 (
𝑒𝑎

𝑇𝑎
)

0.143

 ,                     (2.2b) 

where 𝑐1 is an empirical constant (60 W m-2). A number of approximations have been 

proposed for atmospheric emissivity (𝜀𝑎), relating it to 𝑇𝑎 and N (Idso, 1981; Holtslag and de 

Bruin, 1988), and actual vapour pressure (𝑒𝑎, mbar) and 𝑇𝑎 (Brutsaert, 1982). The latter 

(Equation 2.2b) is often preferred for estimation of 𝜀𝑎 (de Rooy and Hotlsag, 1999; van de 

Boer et al., 2014a). 
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The estimation of 𝑄𝐿↑  depends primarily on the surface emissivity (𝜀) and 𝑇𝑠,  

 𝑄𝐿↑  =  𝜀𝜎𝑇𝑠
4 + (1 −  𝜀) 𝑄𝐿↓        (2.2c) 

The literature indicates that, 𝜀 ranges from 0.9 – 0.95 for long to short grass (Oke, 1978) and 

0.94 is used in this research (de Rooy and Hotslag, 1999). 𝑇𝑠 is critical for estimating 𝑄𝐿↑ and 

all of the non-radiative terms, and is discussed in more detail in Section 2.2.3. 

A number of approaches for estimating soil heat flux (𝑄𝐺) have been developed and evaluated 

with measured values in the past (Nickerson and Smiley, 1975; Deardorff, 1978; Schayes, 

1982; de Rooy and Holtslag, 1999; van de Boer, 2014a). van Ulden and Holtslag (1985) 

proposed a simple approximation of 𝑄𝐺 (Equation 2.3) for short grass using the 24-hour 

moving average of 𝑇𝑎. This is on the basis that the average 𝑇𝑎 resembles the root zone soil 

temperature.  

𝑄𝐺 =  − 𝐴𝐺(𝑇24 − 𝑇𝑠),        (2.3) 

where 𝑇24 is the 24-h mean of 2-m temperature (K), 𝑇𝑠 is the estimated surface temperature 

(K), 𝐴𝐺  is an empirical constant for soil heat transfer (W m-2 K-1), which is site-specific (de Rooy 

and Holtslag, 1999). This approximation has been recognized to be consistent for short grass 

under different weather conditions (e.g. de Rooy and Holtslag, 1999; van de Boer et al., 

2014a). 

The surface radiation and energy flows, particularly the surface turbulent fluxes,  𝑄𝐻 and 𝑄𝐸, 

at the interface between the earth’s surface and atmosphere, play a key role in energy and 

water cycle. Hence, knowledge of these exchanges are critical for climate and hydrological 

modelling, improving weather forecasting models, and for many agricultural applications, 
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such as monitoring plant water-uptake, crop growth and performance, irrigation 

management practices, etc. (Jacob et al., 2002; Kustas et al., 2004; Dodds et al., 2005; Consoli 

et al., 2006). An expanded discussion of these components and application to Ireland is 

provided in Keane and Collins (2004). 

𝑄𝐸, which is often used as a measure of evapotranspiration (ET) (evaporation from soils + 

transpiration from vegetation), provides a link between water, carbon and energy exchanges 

(Xu et al., 2014), thereby influencing the formation and growth of clouds, rainfall patterns, 

and variability in extreme weather phenomena, such as the heatwaves and droughts, with 

associated impacts on terrestrial ecosystems and climate (Bateni and Entekhabi, 2012; Wang 

and Dickinson, 2012). ET represents the largest surface moisture flux exchange with the 

atmosphere, accounting for more than half of total precipitation regionally and nearly equal 

to precipitation in semi-arid regions (Engman and Gurney, 1991). Therefore, a consistent and 

reliable estimation of 𝑄𝐸 flux is central to an in-depth understanding of land-atmosphere 

interactions, agro-meteorology, water resources management and climate studies (Rigden 

and Salvucci, 2015). However, obtaining reliable measurements of surface fluxes and ET is 

non-trivial. Due to spatial heterogeneity in ecosystems, soils and weather conditions, the 

interactions between scales of physical processes result in the need for complex techniques 

of surface flux measurements and estimations (Bastiaanssen et al., 1998a). 

2.2.1 Penman-Monteith (PM) Equation 

The Penman-Monteith (PM) equation is a linearized version of the SEB (Equation 2.1) that is 

commonly used to estimate the 𝑄𝐸 flux or ET (e.g. Allen et al., 1998). The original equation to 

estimate evaporation from an open water surface, combining energy balance with mass 

transfer, was derived by Penman (1948). This was further developed by Monteith (1965) who 
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introduced surface resistance factors for ecosystem surfaces, linking the equation to the leaf 

or canopy, depending on the values of resistance employed. The combined equation 

discriminates between surface resistance (𝑟𝑠) to water vapour through stomata opening, and 

aerodynamic resistance (𝑟𝑎) to heat upward from the canopy surface, which can be derived 

from Monin-Obukhov Similarity Theory (MOST) universal function (Monin and Obukhov, 

1954) (see Section 2.2.3). The resistances are discussed further in Section 2.2.2. The PM 

equation provides essential physical expressions of the 𝑄𝐸  flux as follows: 

𝑄𝐸 =  
𝑟𝑎𝑠(𝑄𝑁−𝑄𝐺) + 𝜌𝑐𝑝(𝑒𝑠− 𝑒𝑎)

(𝑠+ 𝛾)𝑟𝑎 + 𝛾𝑟𝑠
, (2.4) 

where 𝑠 and 𝛾 are the slope of saturation vapour curve and psychrometric constant and 

𝑒𝑎 and 𝑒𝑠 are the actual and saturated vapour pressures, respectively. The difference 

between 𝑒𝑎 and 𝑒𝑠 is referred to as the vapour pressure deficit (VPD). 

Under well-watered conditions, Equation (2.4) is controlled by the available energy (𝑄𝑁 −

𝑄𝐺), so that the equation can be simplified as follows (Priestly and Taylor, 1972):  

𝑄𝐸 = 𝛼𝑃𝑇  
𝑠

𝑠+ 𝛾
 (𝑄𝑁 − 𝑄𝐺),         (2.5) 

where 𝛼𝑃𝑇 is the Priestly-Taylor (PT) coefficient, which ranges between 1.2 and 1.3 (Agam et 

al., 2010). 

However, Equation 2.5 is dependent only on available energy, which will not be valid for 

water-limiting conditions when the influence of 𝑟𝑠 and VPD more strongly influence 𝑄𝐸 (e.g. 

Equation 2.4) (e.g. Akumaga and Alderman, 2019). The PM equation is widely accepted as a 

standard equation (adopted by the United Nations Food and Agriculture Organisation, UN 

FAO) for estimating 𝑄𝐸 or ET. The method is now commonly referred to as FAO-56 PM (Allen 
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et al., 1998) and has been found to work well in several locations, provided the required input 

data are available (e.g. Xing et al., 2008).   

The PM approach to estimating ET requires input data of solar radiation, air temperature, 

relative humidity, and wind speed. One major limitation is that these required data may not 

be readily available, particularly in data-scarce regions, resulting in the use of simpler 

approaches (e.g. Priestley-Taylor, Thornthwaite, Makkink, etc.) that require more limited data 

inputs (e.g. Lang et al., 2017). Akumaga and Alderman (2019) confirmed that crop ET 

estimates based on PT could be significantly different from FAO-56 PM ET estimates in the 

arid/semi-arid and rainfed conditions during winter over Oklahoma. The FAO-56 PM 

demonstrates superiority over other methods of 𝑄𝐸 flux under semi-arid climatic conditions 

(e.g. Lόpez-Urrea et al., 2006). However, Sentelhas et al. (2010) noted that FAO-56 PM may 

be less accurate over Southern Ontario, relative to other methods (e.g. Thornthwaite) if either 

the net radiation (𝑄𝑁) or air temperature component is missing. 

To overcome problems of missing or unmeasured input variables, Allen et al. (1998) suggested 

procedures for calculating missing input climatic variables (e.g. net radiation, wind speed and 

vapour pressure deficit). Such procedures require evaluation over different locations and 

climates as shown in Sentelhas et al. (2010) for Canada, Popova et al. (2006) for Bulgaria et 

al. (2008) for Tunisia and in Stӧckle et al. (2004) for five different locations in the USA, Syria, 

the Philippines, Spain and the Netherlands. 

Whether the 𝑄𝐸 flux is derived diagnostically as a residual of SEB terms (Equation 2.1) or 

based on the prognostic Penman-Monteith (PM) model (Equation 2.4) (Penman, 1948; 

Monteith, 1981; Allen et al., 1998), the analytic context of both methods is usually based on 
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the Monin-Obukhov Similarity Theory (MOST) (Monin and Obukhov, 1954). The MOST theory 

is discussed in Section 2.2.3. 

2.2.2 Surface and aerodynamic resistances 

The surface ‘stomatal’ resistance (𝑟𝑠) (inverse of stomatal conductance) plays a key role in the 

parameterization of vegetation evapotranspiration or latent heat flux (𝑄𝐸), thus regulating 

surface energy budget over land (e.g. Buckley and Mott, 2013; Buckley et al., 2017). It 

respresents the resistance to water transport through the stomata to the canopy surface (e.g. 

Figure 1.4), and is a function of environmental factors. The behaviour of the system is 

therefore crucial for water and carbon cycles, agricultural response, performance and 

productivity in a changing climate (Buckley and Mott, 2013; Buckley et al., 2017). 

Quantifying 𝑟𝑠 requires inputs which are non-trivial to measure or estimate, but not many are 

intractable. In most cases, 𝑟𝑠 estimates are obtained by inverting the PM equation of 𝑄𝐸 

(Equation 2.4) for model parameterization or evaluation (e.g. van de Boer et al., 2014a). 

Because of the importance of 𝑟𝑠 to biological systems, models that predict 𝑟𝑠 for a given 

environmental condition vary depending on the goal or problem to be addressed (e.g. Jarvis, 

1976; Ball et al., 1987; Collatz et al., 1991). These models range from empirical to mechanistic, 

but the former is widely used in many applications, due to its simplicity and modular structure 

that allows coupling with Earth system models (Buckley and Mott, 2013; Li et al., 2013; Lansu 

et al., 2020; Ma et al., 2021). One of the first and most commonly used empirical  𝑟𝑠 models 

is the Jarivs-type (Jarvis, 1976) approach, which is parameterized principally as a function of 

external environmental forces, including air temperature (𝑇𝑎), air moisture deficit ( 𝛥𝑞), solar 

radiation (𝑄𝑆↓) and soil moisture content (𝜃).  

𝑟𝑠 =  𝑟𝑠,𝑚𝑖𝑛𝐿𝐴𝐼−1𝐹(𝑇𝑎, 𝛥𝑞, 𝑄𝑆↓, 𝜃),       (2.6) 
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where 𝑟𝑠,𝑚𝑖𝑛 is the minimum stomatal resistance for optimum condition, defined as the 

extent to which potential evaporation (at 𝑟𝑠 = 0 s m-1) can be reached and is vegetation 

dependent (van de Boer et al., 2014a). 𝐿𝐴𝐼 is the leaf area index. 𝐹 is the dimensionless 

response function (scaling factor ranging from 0 – 1) for the respective environmental factor. 

The Jarvis 𝑟𝑠 scheme may be sensitive to changes in 𝛥𝑞, depending on the degree of dryness 

and temperature (e.g. Lansu et al., 2020). When 𝑟𝑠 is high due to high 𝛥𝑞 and low soil moisture 

content, it may limit the transpiration and carbon fixation abilities of plants. Again, this also 

varies among plant species, and acts in tune with other environmental drivers (e.g. Lansu et 

al., 2020).  

𝛥𝑞 is largely driven by  𝑇𝑎 under warm temperature and thus, indicate a strong linear 

relationship between both variables. Such links between 𝛥𝑞 and 𝑇𝑎 have justified 

tuning/modifying the Jarvis-type parameterization (e.g. Beljaars and Bosveld, 1997, van de 

Boer et al., 2014a), though modifying the Jarvis-type approach does not necessarily produce 

a unique set of response functions (van Heerwaarden and Teuling, 2014). To this end, 

different expressions of the dependence of 𝑟𝑠 on 𝛥𝑞 response function (𝐹𝛥𝑞) exist, including 

those used in the Interactions between Soil, Biosphere and Atmosphere (ISBA-Ags) scheme 

(Calvet et al., 1998), the National Centers for Environmental Prediction (NCEP) Noah scheme 

(Chen et al., 1996), the European Center for Medium-Range Weather Forecasts (ECMWF) 

HTESSEL scheme (Balsamo et al., 2009), optimized Jarvis formulation by de Rooy and Holtslag 

(1999) (dRH99) and Beljaars and Bosveld (1997) (BB97), etc. In many of these expressions, the 

dependence of 𝑟𝑠 on other environmental factors (e.g. soil moisture) are either excluded or 

assumed negligible. van de Boer et al. (2014a) compared different approaches for calculating 

the 𝐹𝛥𝑞 term over grassland at Cabauw, the Netherlands (Figure 2.2). The study found 
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significant and large differences between dRH99 and the selected schemes, when the 

atmosphere is saturated (𝛥𝑞 = 0) or dry (𝛥𝑞 > 10 g kg-1). 

 

Figure 2.2. Response of surface resistance (𝑟𝑠) to water vapour deficit (𝛥𝑞) according to different schemes over 
Cabauw grassland, the Netherlands (van de Boer et al., 2014a). 

 

Although, the HTESSEL, Ags, and Noah schemes appear consistent, van de Boer et al. (2014a) 

found large differences between the measured and estimated 𝑟𝑠 using only 𝛥𝑞 in all the 

schemes. In other studies (e.g. Allen et al., 1998), 𝑟𝑠 values were estimated, assuming a 

hypothetical grass reference surface and non-limiting water. In this case, the dependence on 

response functions is excluded. However, water availability acts to regulate 𝑟𝑠 under limiting 

soil moisture (Russell, 1980; Sherratt and Wheater, 1984) and consequently plays a prominent 

role in modulating surface heat and moisture fluxes (Sherratt and Wheater, 1984; Betts and 

Ball, 1995; 1998; Senevirante et al., 2010). Therefore, only a ‘complete’ expression that 

includes all the response functions can potentially explain stomatal behaviour, consistent 

with observations, under increasing water stress (e.g. Lansu et al., 2020). van de Boer et al. 

(2014a) suggested BB97 as a logical approach to integrate all the response functions with a 

considerably small offset between measured and estimated  𝑟𝑠.  



30 

 

Moreover, the main disadvantages of the Jarvis-type empirical approach are that it requires 

multiple environmental variables, many of which might not be routinely available (e.g. soil 

moisture), and provides little insight about the physiological mechanisms (e.g. 

photosynthesis) of stomatal control (e.g. Buckley and Mott, 2013; Buckley, 2017). Hence, the 

introduction of a ‘Ball-Berry’ scheme (Equation 2.7) (Ball et al., 1987), which expresses 𝑟𝑠 as a 

function of net photosynthesis (𝐴), CO2 concentration at canopy surface (𝐶𝑠), relative 

humidity at canopy surface (ℎ𝑠) and residual of 𝑟𝑠 when 𝐴 is zero (𝑟𝑠,𝑚𝑖𝑛). 

𝑟𝑠 =  (𝑟𝑠,𝑚𝑖𝑛
−1 + 𝑚 

𝐴ℎ𝑠

𝐶𝑠
)

−1

 ,        (2.7) 

The parameter 𝑚 is an empirical constant that varies among foliage. 

In contrast to the Jarvis scheme in which 𝑟𝑠 response is derived from the nexus between the 

biotic system (e.g. 𝑟𝑠,𝑚𝑖𝑛 and 𝐿𝐴𝐼) and meteorological parameters, the Ball-Berry scheme 

postulates that the coupling is between meteorological variables, biotic system and plant’s 

dynamic response, through changes in photosynthesis, intercellular CO2 concentrations and 

respiration (Niyogi et al., 1998). In a comparison of a number of physiological-based schemes, 

Kim and Verma (1991), Jacobs (1994) and Niyogi and Raman (1997) indicated that the Jarvis 

scheme showed some differences between measured and estimated 𝑟𝑠, and an unstable 

response to atmospheric changes, relative to the selected physiological-based schemes. 

Other studies have also affirmed that physiological ‘photosynthesis’-based schemes can 

replicate measured stomatal behaviour more closely (Collatz et al., 1991; Jacobs, 1994). The 

physiological photosynthesis-based scheme, though perceived to be simple, may require a 

cumbersome parameterization process due to the requirement of a separate biochemical 

model for photosynthesis (𝐴) (Buckley and Mott, 2013; Ma et al., 2021). In spite of the 

acknowledged shortcomings, empirical based approaches (e.g. Jarvis, Ball-Berry) are widely 
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recognized to be suitable for prediction of stomatal behaviour in situations where the 

required parameters can be confidently estimated (Buckley, 2017). To date, the empirical 

schemes continue to inform predictions of energy, water and carbon exchanges across 

modelling community (e.g. Lansu et al., 2020; Ma et al., 2021). 

Apart from 𝑟𝑠, the aerodynamic resistance (𝑟𝑎) also partly determines the partitioning of 

available energy (𝑄𝑁 - 𝑄𝐺) into turbulent fluxes. It represents the resistance to sensible heat 

and water vapour transfer from the canopy or ground surface to the overlying atmosphere 

(e.g. Figure 1.3), and can be approximated using MOST (see Section 2.2.3) (e.g. van de Boer 

et al., 2014a): 

𝑟𝑎 =   
1

𝑘𝑢∗
[𝑙𝑛 (

𝑧𝑎

𝑧𝑜𝐻
) −  𝜓𝐻 (

𝑧𝑎

𝐿
) + 𝜓𝐻 (

𝑧𝑜𝐻

𝐿
)] ,     (2.8) 

where 𝑘 is the von Kármán constant. 𝑢∗ is the friction velocity. 𝑧𝑎, and 𝑧𝑜𝐻 are the reference 

height and roughness length for heat, respectively, 𝐿 is the Obhukov length and 𝜓𝐻 is the 

MOST universal function for heat. All parameters are explained in detail in the next section. 

2.2.3 The Monin-Obukhov Similarity Theory (MOST) 

The Monin-Obukhov Similarity Theory (MOST) was developed by Monin and Obukhov (Monin 

and Obukhov, 1954) for the surface layer of the atmospheric boundary layer (ABL), otherwise 

known as the constant-flux layer (Figure 2.3).  This layer extends upto 100 m (~10 % of ABL) 

from the surface during daytime when most of the surface exchange processes occur. During 

daytime, the incident radiation heats the surface quickly, leading to rising eddies and 

development of an unstable surface layer associated with higher wind speeds, surface mixing 

and increased turbulent fluxes (Liang et al., 2012) (Figure 2.3).  
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Figure 2.3. Temporal evolution of different layers of the atmospheric boundary layer (ABL) over land (Stull, 
1988). 

 

The MOST theory relates the turbulent fluxes of heat and momentum to non-dimensional 

vertical gradients of temperature and winds, respectively through its universal stability 

functions in the surface layer (e.g. Paulson, 1970; Businger et al., 1971; Dyer, 1974). When 

MOST is applied to estimate heat and momentum, it is often called flux-profile method: 

𝑄𝐻 = −ρ 𝐶𝑝 𝑢∗ 𝜃∗ ,           (2.9) 

where ρ is the air density, 𝐶𝑝 specific heat capacity at constant pressure, 𝑢∗  and 𝜃∗ are the 

scaling quantities, friction velocity and potential temperature, respectively. For a stationary 

and horizontally uniform surface, the scaling parameters are given as: 

𝛥𝜃 =  𝜃𝑎 −  𝜃𝑠 =   
𝜃∗

𝑘
[𝑙𝑛 (

𝑧𝑎

𝑧𝑜𝐻
) −  𝜓𝐻(𝜁𝑎) + 𝜓𝐻(𝜁𝑜)] ,    (2.10) 

𝜓𝐻 = 2𝑙𝑛 [
1+ 𝑥2

2
]     for 𝜁 < 0,   (2.10a) 

𝑢 =  
𝑢∗

𝑘
[𝑙𝑛 (

𝑧𝑎

𝑧𝑜𝑚
) −  𝜓𝑚(𝜁𝑎) +  𝜓𝑚(𝜁𝑜)]      (2.11) 
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𝜓𝑚 = 2𝑙𝑛 [
1+𝑥 

2
] + 𝑙𝑛 [

1+ 𝑥2

2
] − 2𝑡𝑎𝑛−1(𝑥) +

𝜋

2
  for 𝜁 < 0,   (2.11a) 

𝜓𝑚 =  𝜓𝐻 =  −5𝜁     for 𝜁 > 0,   (2.11b) 

𝜓𝑚 =  𝜓𝐻 = 0     for 𝜁 = 0,   (2.11c) 

𝑥 =  (1 − 16𝜁)0.25,         (2.11d) 

where 𝑘 is the von Kármán constant. 𝑧𝑎, 𝑧𝑜𝐻, 𝑧𝑜𝑚 are the reference height, roughness lengths 

for heat and momentum, respectively. Both 𝑧𝑜𝐻 and 𝑧𝑜𝑚 lengths are taken such that the 

downward-extrapolated profiles of Equation 2.10 produce effective temperature at the 

radiation level and the profiles of Equation 2.11 result in zero value for wind speed. de Rooy 

and Holtslag (1999) noted that for homogenous surfaces the local 𝑧𝑜𝐻 and 𝑧𝑜𝑚 depend only 

on the local surface cover thus, 𝑧𝑜𝐻 can be defined as 10% of 𝑧𝑜𝑚. The potential temperature 

𝜃𝑎 is derived, by adjusting the air temperature adiabatically for the height above the ground, 

as;  𝜃𝑎 =  𝑇𝑎 +  
𝑔𝑧𝑎

𝑐𝑝
 (de Rooy and Holtslag, 1999). 𝜓𝐻  and 𝜓𝑚 are the MOST universal functions 

for heat and momentum, respectively, which are derived from the stability parameter 𝜁 = 
𝑧

𝐿
  

using Businger-Dyer representations of similarity functions (Businger 1966, Dyer, 1967; 

Paulson, 1970). The subscripts ‘a’ and ‘o’ denote the vertical reference and canopy heights, 

respectively. 

The scaling parameters in (2.12) and (2.13) are related with 𝑄𝐻 and 𝐿 by; 

𝜃∗ =  − 
𝑄𝐻

𝑢∗𝜌𝑐𝑝
           (2.12) 

𝐿 =  
𝑢∗

2𝑇𝑎

𝑘𝜃∗𝑔
          (2.13) 
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𝐿 is the Obukhov length, which was originally derived for dry air (Monin and Obukhov, 1954). 

It is a dimensional height above the surface where the turbulence generated by buoyancy 

(heat production) equals the mechanically (shear) generated turbulence, describing a layer 

where stratification influence is negligible (Foken, 2006). Below this layer, shear production 

dominates over buoyancy. It is a parameter that helps to characterize the dynamic and 

thermodynamic processes within the atmospheric boundary layer and, in turn, the conditions 

of stability and instability of the surface layer. 𝐿 is zero for neutral stratification and positive 

(negative) for stable (unstable) stratifications. Foken (2006) noted that the 𝐿 must be defined 

based on virtual potential temperature for the parameter to be independent of height and be 

physically appropriate for moist condition. 

Estimation of the scaling parameters requires the determination of the vertical gradients of 

wind and temperature from measurement at different levels, which are not available at 

typical meteorological stations where instruments are typically obtained at a single level (2 m 

above the earth’s surface). Hence, MOST is often coupled with the radiative energy terms 

(described in Section 2.2) to solve these problems iteratively (Mohan and Siddiqui, 1998; de 

Rooy and Holtslag, 1999; Niu et al., 2011). After convergence, the resulting 𝑄𝐻 is then used 

to estimate surface temperature 𝑇𝑠: 

𝑇𝑠 −  𝑇𝑎 =  
𝑄𝐻𝑟𝑎

𝜌𝑐𝑝
+ 𝑧𝑎Г𝑑        (2.14) 

where 𝑟𝑎 is the aerodynamic resistance (Section 2.2.2) and Г𝑑 is the dry adiabatic lapse rate. 

Despite the reported accuracy (approximately 10 – 20 %) of MOST for an ideal state (Foken, 

2006), the assumptions of steady and horizontally uniform flow limit its application over 

heterogeneous surfaces, such as forests, grassland, crops, etc. The choice of the 𝑘 value for 
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MOST application has also been debated (Foken, 2006). For instance, the derived 𝑘 = 0.35 

from experiments with the eddy covariance (EC) method undertaken in Kansas in 1968, and 

applied in the Businger universal functions (Businger et al., 1971), has been criticized 

(Wieringa, 1980). Wieringa (1980) argued that this value may be unrealistic due to flux tower 

problems associated with flow distortion and irregular performance of the phase-shift sonic 

anemometers. In response, Hӧgstrӧm (1988) modified Businger’s universal functions and 

derived a value for 𝑘 = 0.40. For more than five decades, this value has been widely accepted 

as the standard value (Foken, 2006). 

Another issue associated with MOST is in the roughness sublayer, found approximately 2 – 3 

times the canopy height above the vegetated surfaces (Raupach et al., 1980; Garratt, 1980). 

In an urban setting or tall vegetation (canopy height > 10 cm), the constant-flux layer is often 

shallow, while the roughness sublayer may extend up to tens of meters in thickness. As a 

result, application of MOST may not be appropriate under this condition. Depending on the 

thickness of the roughness sublayer, the flux-profile method, using MOST universal functions, 

must be modified before it is applied (Foken, 2006). Since its development, MOST provides 

the theoretical basis for various micro-meteorological measurements (e.g. Scintillometry), 

experimental and estimation techniques. 

An important caveat with the use of MOST is the uncertainty associated with the use of 

general or universal functions. All universal functions are derived for dry conditions, their 

applications for moist conditions and complex terrain can result in discrepancies (Foken, 

2006). Nonetheless, the method is widely used and accepted in land surface parameterization 

schemes (e.g. Niu et al., 2011) due to its simplicity and reliability. 

 



36 

 

2.3 Micrometeorological measurements 

Turbulent flux measurements (e.g. 𝑄𝐸) can be directly obtained from in-situ measurements, 

using methods such as eddy covariance (EC), Bowen ratio (BR), scintillometry, lysimetry, water 

balance, surface renewal and sap flow. The most commonly used techniques for on-site 

surface flux measurements are the EC and BR methods. In particular, EC is widely recognized 

to be the most reliable to directly measure turbulent fluxes and widely accepted and applied 

in many studies evaluating model outputs, and/or ABL experiments (e.g. Campioli et al., 2016; 

Ní Choncubhair et al., 2017; Kiely et al., 2018; Gerling et al., 2019; Martens et al., 2020). A 

number of field experiments have been conducted across the continents, such as the 

EUROFLUX, AMERIFLUX, etc. and contribute to the global networks in FLUXNET (Baldocchi et 

al., 2001).  

The EC system derives surface turbulent fluxes of heat, moisture, CO2 and momentum 

through statistical covariance (correlation) and fast response sensors at typically high 

frequencies of 5-20 Hz (Garratt and Hicks, 1990; Hӧgstrӧm and Bergstrom, 1996); 10 Hz is 

commonly used. In principle, the technique samples the upward and downward turbulent air 

parcels transporting scalars between the canopy surface and ABL (Figure 2.4). These scalars 

are measured using a 3D sonic anemometer for vertical wind velocity, and an open, enclosed 

or closed -path infrared gas analyzer for measuring H2O density and CO2 concentration (Burba 

and Anderson, 2010). Measurements of 𝑄𝐸 made with an open path must however be 

corrected for possible effects of temperature and humidity on air density (Webb et al., 1980; 

Leuning et al., 2007). 
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Figure 2.4. Schematic illustration of measurement principle of an eddy covariance system. The air flow looks 
turbulent but vertical movement can be measured from the flux tower (Hu et al., 2014). 

One major setback of the EC system is that turbulent fluxes, particularly 𝑄𝐸 are often 

underestimated, leading to the non-closure of the energy balance equation. The surface 

energy imbalance has been reported within the range of 10-30 % across different biomes and 

weather conditions (e.g. Twine et al., 2000; Wilson et al., 2002), even after correction (de 

Bruin et al., 2005). Reasons for non-closure problems and other limitations of EC system have 

been well documented (Foken, 2008; Allen et al., 2011). Therefore, caution should be applied 

when interpreting flux measurements from EC or when these measurements are used to 

evaluate model outputs.  

While the EC measurement offers certain advantages, the cost of instrumentation, 

maintenance and measurement are quite expensive, the instruments are susceptible to 

weather conditions, leading to sparse data, e.g. FLUXNET (Baldocchi et al., 2001), and the 

measurements cannot be used for spatially explicit information about surface flux densities 

due to surface heterogeneity and uneven distribution of sites.  
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Satellite remote sensing products provide useful information required to develop and apply 

alternative techniques for quantifying surface fluxes at regional/continental scale (e.g. 

Anderson et al., 2011). However, direct measurement of fluxes using remote sensors is not 

possible because the vertical profile of turbulent fluxes do not have a spectral signature that 

can be detected in and retrieved from either nadir or limb remote sounding techniques. As a 

result, models that incorporate earth observation data have been developed for flux 

estimations at regional scales (e.g. Bastiaanssen et al., 1998a; Su, 2002).  

To summarise, there exist a variety of methods for estimating fluxes which can be categorized 

into: 1) empirical triangle method, 2) diagnostic SEB approaches, 3) prognostic land surface 

models, 4) machine learning and 5) data assimilation approaches (Bastiaanssen et al., 1998a, 

1998b; Su, 2002; Allen et al., 2007; Oleson et al., 2010; Tang et al., 2010; Anderson et al., 

2011; Niu et al., 2011; Chirouze et al., 2014; Zheng et al., 2015; Minacapilli et al., 2016; Zhu et 

al., 2017; Holmes et al., 2018). Of these approaches, the second and third are more physically 

based. In contrast, the last two approaches are partly driven by observations, and so the 

upscaled fluxes, based on machine learning approaches in particular, are often used to 

evaluate other approaches (Bonan et al., 2011; Draper et al., 2018; Zhang et al., 2020). It 

should be noted that, observation-driven global and regional surface flux estimates remain a 

subject of active debate, regarding which machine learning algorithm and/or predictor 

variables is/are the most appropriate, and the uncertainties associated with global 

atmospheric forcing data and surface energy balance closure problem with EC systems (Wang 

et al., 2017; Jung et al., 2019). Generally, all the methods can be applied to a wide range of 

surface and atmospheric conditions, but in some cases may require a large number of inputs 
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to derive the fluxes. For the purpose of this research, only the studies that have used a 

prognostic land surface modeling approach are reviewed in the next section. 

2.4 Evolution of Land Surface Model based approaches 

The development and implementation of the theory described in Section 2.2, as physically-

based parameterization schemes to simulate the surface-air exchanges, spans nearly five 

decades, from the 1970s to present, with the emergence of different land surface model 

(LSM) components and increasing complexity through time (Figure 2.5) (Fisher and Koven, 

2020).  Initial studies on the role of soil moisture led to the evolution of first generation LSM 

which is based on a simple water balance model commonly referred to as ‘bucket model’ for 

evaporation and runoff estimations (Manabe, 1969). This model is recognized as the simplest 

to apply due to the various assumptions and omissions, including the assumption of spatially 

uniform soil properties, non-inclusion of plant water-uptake in the root zone, surface 

resistance, omission of transpiration component, etc. (Pitman, 2003; Zhao and Li, 2015). 

Although, this approach is still being applied today (e.g. Gentine et al., 2012; Williams et al., 

2020), the simplification of the bucket model is a significant limitation associated with the 

first generation of LSMs, and has been shown to be inadequate for representing surface 

hydrology from diurnal to interannual scales, based on the Project for Intercomparison of 

Land surface Parameterization Schemes (PILPS) (Henderson-Sellers et al., 1995; Pitman, 

2003). 
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Figure 2.5. A schematic illustration of temporal evolution of land surface model processes, showing time of 
emergence of different model components and increasing complexity through time (Fisher and Koven, 2020).  

 

Motivated by these limitations, Deardorff (1978) shifted the attention from the role of soil 

moisture to the contribution of vegetation to 𝑄𝐸 flux. In the model structure, soil is 

represented in two layers to facilitate estimation of soil heat conduction, a force-restore 

model (Bhumralkar, 1975) is coupled to simulate surface temperature and vegetation is 

explicitly represented as a layer above the surface. This contribution led to the development 

of the second generation of LSMs, and form the basis upon which several successors of this 

model, including the Simple Biosphere (SiB) model (Sellers et al., 1986) and the associated 

simplified version (SSiB) (Xue et al., 1991), the land surface model Interactions between Soil, 

Biosphere, and Atmosphere (ISBA) (Noilhan and Planton, 1989), Biosphere-Atmosphere 

Transfer Scheme (BATS) (Dickinson et al., 1993) and Noah LSM (Ek et al., 2003) were 

developed. For instance, in the SiB model, soil is represented by three layers and vegetation 

by two layers, corresponding to the ground cover and canopy layer. In addition, Noah LSM 

separates the vertical structure of soil into four depths, corresponding to 10 cm, 40 cm, 
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100 cm, and 200 cm in the subsurface, and with a single layer, separately above the surface 

for vegetation and snow. In contrast to the first generation LSMs, the representation of 

stomatal conductance, as a product of different environmental stress functions (e.g. Equation 

2.6) (Jarvis, 1976) to control transpiration process, is central to the efficacy of the second 

generation models (Viterbo, 2002). The second generation LSMs are more physically based, 

improve the representation of land-atmosphere interactions at daily time scale (Beljaars et 

al., 1996; Viterbo et al., 1999), and outperform the first generation models based on PILPS 

assessments (Henderson-Sellers et al., 1995; Pitman, 2003).  

However, emerging developments in the land surface modelling communities suggest that 

carbon flux exchange, which is not explicitly represented in the second generation LSMs, plays 

a critical role in land-atmosphere interactions, especially in a changing climate (e.g. Cox et al., 

2000). This motivated the improvement of plant physiology by introducing semi-empirical 

vegetation conductance models (Collatz et al., 1991). This is a biochemical model that 

combines leaf photosynthesis and transpiration processes through stomatal conductance. As 

such, it is based on the principle that the biophysical control on transpiration acts to optimize 

carbon fluxes through photosynthesis, and conserving plant water by stomata closure. This 

explicit representation of biological control, as a proxy for the role of carbon, on land-

atmosphere interactions gave rise to the third generation LSMs (Collatz et al., 1991; Sellers et 

al., 1992, 1997). An illustration of emergence times of the various components of LSMs and 

increasing complexity through time is provided in Figure 2.5.  

The structure of a typical state-of-the-art LSM has three submodel components which can be 

categorized as hydrology (energy and water budgets), carbon cycle and dynamic vegetation 

modules (Figure 2.6) (e.g. Krinner et al., 2005). A submodel can be run independently or in a 
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combined configuration, depending on the problem to be addressed.  For an application in 

hydrology (Figure 2.6), the LSM component of the energy or water budget is often termed a 

land surface scheme (LSS), as it describes only the components related to surface-atmosphere 

exchanges of heat, moisture, momentum at sub-daily time scales, and in many cases 

parameterization of photosynthesis is often excluded in the scheme (e.g. Ek et al., 2003; 

Balsamo et al., 2009).    

 

Figure 2.6. Concept of a typical Land Surface Model (LSM) structure, showing the components of surface 
radiation, energy and water budgets (Adapted from Kumar et al., 2006) 

While many LSS have been introduced in the recent past in a bid to improve global and 

regional climate simulations, a key component is still germane to the sensitivity and 

performance of a LSS in simulating surface fluxes, consequently Earth system models (Knist 

et al., 2017). This component is the representation of soil and vegetation properties (e.g. soil 

temperature, soil moisture, soil hydraulic conductivity, soil type, Leaf Area Index (LAI), surface 

albedo, rooting depth, canopy height, etc.), which is critical for model initialization and 
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operation (e.g. Knist et al., 2017). Use of models comes with caveats if the required 

atmospheric forcing are not sufficiently available or not appropriately used (Bauer et al., 

2015; Knist et al., 2017). Therefore, the choice of a scheme often depends on the availability 

of the required meteorological parameters.  

To this end, a number of studies have related surface fluxes of heat, moisture and momentum 

with available weather parameters that are either routinely measured or available from 

model outputs in order to develop a land surface scheme for estimating surface fluxes (e.g. 

Chen et al., 1996; de Rooy and Holtslag, 1999; Lu et al., 2014). In many cases, either the 

sensible heat flux or latent heat flux or the complete SEB terms were evaluated. For example, 

de Bruin and Holtslag (1982) evaluated the difference between using a LSS that is based on 

the PM equation, which requires a high number of input parameters, and a modified Priestly-

Taylor-based (PT) scheme, which requires only net radiation, air temperature and a 

specification of moisture conditions at the surface, to determine surface turbulent fluxes 

during unstable conditions over Cabauw, the Netherlands. Their study demonstrated that 

both schemes produced similar results during unstable (0 ≥ 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 ≥  −0.3) 

environmental conditions. They suggest that, while the simplified scheme may be applicable 

practically, the method requires evaluation for different environmental conditions. These 

findings are also supported by Holtslag and van Ulden (1983) who used a simple empirical LSS 

scheme based on flux-profile relations (see Section 2.2.3), limited weather data on wind 

speed, air temperature and total cloud cover, and a simple modified PT approach for deriving 

estimates of daytime (neutral and unstable weather conditions) surface fluxes and boundary 

layer parameters. The usefulness of these methods for nighttime (𝑄𝑁 < 0) applications was 

demonstrated by van Ulden and Holtslag (1983, 1985) and Holtslag and de Bruin (1988). Smith 
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(1990) proposed a simple, alternative, approach to parameterise surface flux densities during 

nighttime (stable weather conditions). Mohan and Siddiqui (1997) compared and tested 

different estimation schemes of turbulent parameters during both stable and unstable 

regimes. Berkowicz and Prahm (1982a) also applied a flux-profile method to simulate surface 

fluxes of momentum and heat across different experimental sites. 

Berkowicz and Prahm (1982b) estimated sensible heat fluxes using the resistance method and 

PM equation. The resistance method is based on the analogy of Ohm’s law in which the 

potential difference of a quantity (e.g. temperature) is dependent on the properties of the 

medium of the flux considered, and can only be applied where the flux is regarded as constant 

throughout the medium. Berkowicz and Prahm (1982b) found satisfactory agreement 

between model results of surface resistance and sensible heat flux when compared with 

experimental data from two wet, dense canopy grassland sites and one less-dense canopy 

grassland site, across Europe. The study also demonstrated that surface resistance correlates 

well with vapour pressure deficit, suggesting the importance of this approach for estimating 

the 𝑄𝐸 flux. Jacovides et al. (1991) compared profile and resistance methods for estimating 

ET and sensible heat fluxes above a grassland site in the UK. Under near-neutral or slightly 

unstable environmental conditions, the profile method appeared to reproduce measured 

sensible heat fluxes and the friction velocity. The study also demonstrated the accuracy of PM 

for estimating ET and its insensitivity to changes in atmospheric stability. In a similar study, 

Galinski and Thomson (1995) evaluated three schemes, derived by Holtslag and van Ulden 

(1983), Berkowicz and Prahm (1982b) and Smith (1990), respectively, using measured 

sensible heat flux above agricultural fields in the UK. They demonstrated that the Berkowicz 

and Prahm scheme had the smallest errors and highest correlation, while both the Smith 
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(1990) and Holtslag and van Ulden (1983) schemes displayed the largest RMSE and mean bias, 

respectively during daytime. All the schemes tended to underestimate the daytime sensible 

heat flux. 

Chen et al. (1996) evaluated four land surface schemes, distinguished by the number of input 

parameters and the representation of soil/vegetation canopy, using First International 

satellite land surface climatology project Field Experiment (FIFE) observations. They showed 

that the soil water bucket model by Manabe (1969) resulted in an overestimation of 

evaporation during wet periods, leading to an unrealistically large underestimation of the 

sensible heat flux. Similarly, the two-layer simple water balance model by Schaake et al. 

(1996) resulted in evaporation estimates that matched well with the observations during wet 

conditions but underestimated evaporation during dry periods. Both the Oregon State 

University (OSU) and SSiB models, with more explicit representation of soil and vegetation 

(Pan and Mahrt, 1987; Xue et al., 1991), performed similarly and were able to reproduce the 

observed evaporation, sensible heat flux, soil moisture and surface skin temperature at 

seasonal and diurnal scales. Chen et al. (1996) further suggested that the treatment of surface 

resistance scheme is crucial to reducing relatively wet and dry biases in evaporation.  

Beljaars and Bosveld (1997) evaluated daytime (𝑄𝑆↓ > 5 W m-2) 𝑄𝐸 flux estimates derived using 

the PM model, and modified PT (de Bruin and Holtslag, 1982), based on their sensitivity to 

model coefficients of Jarvis type surface resistance (𝑟𝑠) (Jarvis, 1976; Stewart, 1988) at 

Cabauw. In their analysis, they derived optimal model coefficients based on the best fit of 𝑟𝑠 

to observations. Using the optimal coefficients, the study found the more complex PM to have 

the lowest error, relative to other approaches used, and consequently recommended a new 

version of the Jarvis-Stewart (Jarvis, 1976; Stewart, 1988) surface resistance approach, based 
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on the derived optimal coefficients for applications under similar conditions. De Rooy and 

Holtslag (1999) proposed and evaluated a new LSS, based on profile relationships and 

observations from the grassland site, at Cabauw. They also analysed the sensitivity of their 

scheme to different approximations of 𝑟𝑠, including the optimized Jarvis approach (Beljaars 

and Bosveld, 1997). In a more recent study, van de Boer et al. (2014a) applied the modified 

versions of Jarvis 𝑟𝑠, and de Rooy and Holtslag scheme in a manner that separates the 

dependency of flux densities on air from surface temperatures, at two sites with different 

land cover types. Lu et al. (2014) proposed and evaluated a parameterization scheme for 

estimating surface flux densities using continuous surface and air temperatures and net 

radiation measurements, and without calculating surface and aerodynamic resistances. 

These studies employed routine weather observations, in combination with EC 

measurements, to parameterize and develop a LSS to estimate SEB terms; the schemes are 

largely distinguished by the type and number of input parameters. At the same time, the 

estimation of surface turbulent fluxes is largely based on the PM model, coupled with MOST 

and empirical 𝑟𝑠 scheme (e.g. Jarvis and Ball-Berry) (Collatz et al., 1991; Shrestha et al., 2018). 

Many of the working LSS in Earth system models, including the Noah land surface model with 

multiparameterization options (NOAH-MP) (Niu et al., 2011), Simplified Simple Biosphere 

model (SSiB) (Xue et al., 1991), etc. build on these approaches, but fundamentally vary in 

complexity, and input surface and atmospheric parameters, and these differences are still 

recognized to be quite large (Chen et al., 1997; Li et al., 2016). Overall, there appears to be an 

agreement among the previous and recent studies that the improvement of LSS should focus 

more on those model parameters relating to 𝑟𝑠, vegetation and soil, that stand to influence 
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the sensitivity and performance of the schemes above different plant functional types (PFTs)  

(Prentice et al., 2014; Li et al., 2016; Qiu et al., 2018) 

The LSS and observational-driven examination of surface exchange processes have also 

improved the understanding of surface-air coupling processes and impacts across spatial and 

temporal scale (Seneviratne et al., 2010; Dirmeyer, 2011; Knist et al., 2017). The coupling 

strength measures the degree to which atmosphere responds to anomalies in the land surface 

state (e.g. soil moisture) in a consistent manner, and therefore influences ABL evolution, 

convection and cloud development, consequently affecting the precipitation patterns, and 

the frequency and intensity of climate extreme events (e.g. heatwaves and droughts) (e.g. 

Seneviratne et al., 2010; Teuling, 2018). While quantifying the coupling strength depends on 

the variables involved and feedback processes to be addressed, the link between soil moisture 

and 𝑄𝐸/ET or evaporative fraction (EF) is often conceptually used to understand soil moisture-

climate signals (e.g. Seneviratne et al., 2010; Miralles et al., 2012). 

Evidence from model simulations have identified geographical ‘hot-spots’ of strong land-

atmosphere coupling on the global scale for boreal summer, based on the multimodel 

experiments of the Global Land-Atmosphere Coupling Experiment (GLACE) (Koster et al., 

2006). At continental scale, Knist et al. (2017) compared summertime (June-August) land-

atmosphere coupling strength using an ensemble of regional climate models (RCMs) from the 

subset of ERA-Interim-driven European domain Coordinated Regional Climate Downscaling 

Experiment (EURO-CORDEX) across Europe. The study found strong (weak) coupling in 

southern (northern) Europe, and a transition zone ranging from strong to weak coupling, 

covering a large part of central Europe, though they noted that the coupling strength in the 

transition zone is overestimated in many of the RCMs employed. In the context of climate 
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change, a transition zone or even a weak coupling zone is likely to shift in response to 

perturbations in land surface processes associated with projected changes in large-scale 

precipitation pattern (e.g. Dirmeyer et al., 2021).  Such regional shifts of land-atmosphere 

coupling regimes can induce and intensify climate extremes such as compound ‘hot drought’ 

events, which can be potentially explored using LSS owing to their explicit representation of 

both land surface and atmospheric processes in an integrated manner. 

2.5 Role of land surface processes in extreme drought events 

Drought monitoring and prediction is a fundamental issue for water resource and agricultural 

management, particularly in regions where agricultural activities are dominantly rain-fed. At 

a continental scale, drought conditions typically result from extended periods of atmospheric 

warming, associated with anticyclonic blocking of rain-inducing mechanisms, leading to a high 

atmospheric demand for ET, and consequently soil moisture deficits and suppression of low 

cloud formation, all of which can act to further exacerbate the initial drought conditions 

(Seneviratne et al., 2010; Samaniego et al., 2018; Teuling, 2018). Hence, drought evolution 

and propagation through hydrological regimes are typically a consequence of complex 

interactions among land, atmosphere and management practices, which may require LSS to 

explain and understand thier complexity and dynamics (van Loon et al., 2016; Quintana-Seguí 

et al., 2020). 

Different types of drought are recognized based on their development, frequency, intensity 

and impacts (e.g. van Loon et al., 2015). They are namely: 1) meteorological drought (1-3 

months), defined on the basis of rainfall anomalies, 2) hydrological drought (6-24 months), 

defined on the basis of extremely low levels of groundwater, lakes, reservoirs and unusually 

low streamflow in rivers, 3) agricultural drought (1-6 months), defined on the basis of high 
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soil moisture deficits, affecting plant growth and productivity, and 4) socioeconomic drought, 

when the demand for water exceeds the supply (van Loon et al., 2015; Falzoi et al., 2019; 

Moore, 2020). Of these drought types, the first is well studied and documented across Europe, 

including Ireland (e.g. Noone et al., 2017; Falzoi et al., 2019; Murphy et al., 2020; Moore et 

al., 2020; Vicente-Serrano et al., 2020). Typically, these studies have employed standard 

drought indices, such as the widely used Palmer Drought Severity Index (PDSI) and the 

standardized version (SPDI) (Palmer, 1965; Ma et al., 2014), the standardized precipitation 

index (SPI) (McKee et al., 1993), the standardized precipitation evapotranspiration index 

(SPEI) (Vicente-Serrano et al., 2010; Begueria et al., 2014), etc. for characterizing drought 

severity. For example, Todd et al. (2013) analyzed drought characteristics using reconstructed 

precipitation and temperature series, and the self-calibrated PDSI for three sites in Southeast 

England from 1697 to 2011. The study identified multiple drought-rich periods which were 

caused by prolonged rainfall deficits and intensified by high temperatures. Other studies have 

also identified multiple drought-rich years using SPEI (Potop et al., 2014) and multiple drought 

indices (Brázdil et al., 2015) for the Czech Republic, SPI for Serbia (Gocic and Trajkovic, 2014), 

and both SPI and SPEI for Spain (Domínguez-Castro et al., 2019). Many of these studies have 

linked the identified years of prolonged drought to sequences of dry spring and summer 

seasons. Brázdil et al. (2015) noted that much of the drought episodes before 1880 can be 

attributed to precipitation deficits, whereas the droughts of recent decades (beginning from 

the 21st century) are more strongly related to high temperatures aggregated by the effect of 

climate-driven anthropogenic forcing (rise in atmospheric CO2 concentration). This is further 

supported by a more recent study by Vicente-Serrano et al. (2020) who, using reconstructed 

rainfall series and SPI, concluded that the long-term trend of meteorological droughts can not 

be confirmed using precipitation records alone in Western Europe. 
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In Ireland, Wilby et al. (2015a, 2015b) investigated persistent meteorological droughts using 

the Island of Ireland precipitation (IIP) network 1850–2010. Noone et al. (2017) also used the 

IIP data and SPI to study, detect and document historical drought episodes and related socio-

economic impacts. Murphy et al. (2020) evaluated historical meteorological droughts using 

reconstructed precipitation records 1748-2000 and SPI at 12-month time scale applied to the 

UK and Ireland. More recently, Meresa et al. (2021) examined changes in 

hydrometeorological drought using multiple drought indicators, which were derived from a 

conceptual hydrological model outputs and climate model outputs from CMIP6. They 

demonstrated for selected catchments that the meteorological and hydrological drought 

propagation lags by 3-5 months in the baseline period and such lag times are likely to increase 

with climate change. The phenomenon of flash drought events occurring within a few days or 

weeks has also been studied (Hunt et al., 2014; Otkin et al., 2018). The findings from these 

studies highlight the vulnerability of various parts of Europe to an increasing number of 

drought episodes, and the importance of understanding the associated drivers and 

propagation in a changing climate (Samaniego et al., 2018).  

Moreover, the occurrence of a prolonged meteorological drought coupled with high 

atmospheric water demand can result in high soil moisture deficits, with severe implications 

for ecosystem functioning and agricultural productivity (e.g. Fink et al., 2004; Conti et al., 

2005; García-Herrera et al., 2010; Dole et al., 2011; Alexander, 2011; Zscheischler et al., 2018; 

Miralles et al., 2019; Schuldt et al., 2020). The integrated effects of decreasing soil moisture 

and increasing evaporative demand and vegetation stress are often explained based on 

changes in land-air exchange processes (Figure 2.7) (Seneviratne et al., 2010). Under limiting 

soil water conditions and increasing atmospheric demand, plants are likely to respond by 

closing their stomata to conserve the available water and prevent desscication, leading to an 
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increase in 𝑟𝑠 and decrease in ET. As a consequence, the available energy is largely channelled 

into 𝑄𝐻 which in turn results in a  positive feedback on air temperature (Seneviratne et al., 

2010; Miralles et al., 2019). The land surface state, in particular soil moisture, plays a critical 

role when ET is constrained by water stress.  

 

 
Figure 2.7. An illustration of soil moisture-evapotranspiration coupling framework that defines the three 
evaporative regimes (Adapted from Seneviratne et al., 2010).  

 

In a wet, energy-limited regime, soil moisture content is sufficiently available, thus 𝑄𝐸 is 

primarily limited by the available energy and the state of the ABL. In a transitional and dry, 

water-limited regime, the moisture supply from land to entirely compensate for atmospheric 

demand for ET is largely restricted, leading to a land-atmosphere coupling where 𝑄𝐸 is 

constrained by soil moisture content (Seneviratne et al., 2010). 

Previous studies using EC measurements and/or LSM outputs have demonstrated the role of 

these land surface processes in the amplification of drought and heatwaves. For example, 

Black et al. (2004) investigated the factors contributing to the summer 2003 European 

heatwave using modelled data and observations of the surface energy budget from a 

University of Reading (grass) field site. They demonstrated that the anomalously clear skies 
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and increased net radiative fluxes experienced during June 2003 led to an excess water loss 

from the European land area in the following month of July. Black et al. (2004) found that 

when radiative forcing was weaker in July in central Europe, 𝑄𝐸 fluxes were anomalously 

negative due to a lack of soil moisture, leading to higher surface temperatures and 𝑄𝐻 fluxes. 

Zaitchik et al. (2006) subsequently highlighted the role that early vegetation growth, resulting 

from higher air temperature experienced during the spring, coupled with rainfall deficits, led 

to an early season soil moisture deficit during 2003 and likely exacerbated the temperature 

extremes recorded during 2003 European heatwave. Fischer et al. (2007a, 2007b) also 

explored the role of land surface processes during 2003 using a regional climate model. In 

particular, they investigated the contribution of soil moisture anomalies and interactions with 

the overlying air through turbulent exchanges. Black et al. (2004), Zaitchik et al. (2006) and 

Fischer et al. (2007a, 2007b) all concluded that soil moisture deficits largely controlled the 

partitioning of 𝑄𝑁 between 𝑄𝐸 and 𝑄𝐻  fluxes during 2003 mid-summer across Europe. Other 

studies have also shown a close connection between soil moisture, decreasing ET and summer 

temperature extremes (e.g. Hirschi et al., 2011; Quesada et al., 2012; Miralles et al., 2014; 

Philip et al., 2018).  

While enhanced surface sensible heat fluxes are typically most evident in regions that exhibit 

a strong coupling between soil moisture and ET (e.g. Southern Europe) (Knist et al., 2017), 

regions can switch between energy-limited and moisture-limited regimes over the course of 

a year or depending on land cover (Seneviratne et al., 2010). Such shifts in evaporative regime 

have been examined by determining a critical soil moisture threshold (𝜃𝑐𝑟𝑖𝑡), derived from the 

relationship between soil moisture and evaporative fraction (Figure 2.7) (Seneviratne et al., 

2010; Denissen et al., 2021). Other studies have also derived this critical threshold based on 

observations and model outputs using different theoretical frameworks (Akbar et al., 2018; 
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Haghighi et al., 2018; Feldman et al., 2019; Denissen et al., 2020). In the context of climate 

change projections, humid regions may experience seasonal shift from wet to transitional 

regimes under critical mean soil drying, a feature that has manifested during the 2018 record-

breaking high temperatures and extreme drought condition experienced across many parts 

of Europe (Buras et al., 2019; Dirmeyer et al., 2021). For example, Buitink et al. (2020) found 

that the estimated critical soil moisture content increased linearly with soil depth, reflecting 

decreasing available plant water access from the root zone as the 2018 drought progressed 

over two experimental sites in the Netherlands. Using field data and ERA5-Land reanalyses 

data, Dirmeyer et al. (2021) also found consistent and strong evidence of a seasonal shift in 

evaporative regime across most parts of Europe, but noted that ERA5-Land data 

underestimated the impact of very dry soils on the atmosphere, particularly over Britain. The 

findings from Dirmeyer et al. (2021) suggest that degree of changes in land surface processes 

may vary locally depending on the soil characteristics. This was previously concluded by Jaksic 

et al. (2006) who showed that the impact of soil moisture variability on net ecosystem 

functioning is small and similar between dry and wet years, whereas the soil moisture regimes 

were different for both years, over a grass field site in the south of Ireland.  

Vegetation also plays a critical role in regulating the link between soil moisture and the 

atmosphere (Lansu et al., 2020). The role of vegetation is related through its response to 

incident radiation, changes in surface albedo, and changes in surface roughness that 

determines surface friction and turbulence, which may vary spatially and seasonally 

depending on the background climate and land cover (Duveiller et al., 2018). For example, 

grassland typically has a higher surface albedo than the forest, suggesting a decrease in ET 

and ultimately leading to cooling or warming depending on which of these processes 

dominates (Li et al., 2015, 2021).  However, due to local effects, the changes in land surface 
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processes may vary for different biomes during summer climate extremes. Teuling et al. 

(2010) using FLUXNET observations found a systematic difference in the partitioning of net 

radiative flux anomalies into sensible and latent heat fluxes between grass and forests during 

the 2003 European climate extremes. The ET fluxes were lower over forest than grassland, 

leading to a positive climate forcing, whereas the reverse is expected based on the deeper 

root structure assocaited with forest biomes. Using a conceptual ABL model, Stap et al. 

(2014), van Heerwaarden and Teuling (2014) and Lansu et al. (2020) demonstrated that the 

findings of Teuling et al. (2010) could be replicated by showing that the surface resistance of 

forests increased in response to stomata closure and high vapour pressure deficits (VPD), 

during conditions of anomalously high incident radiation, relative to grasslands. It should be 

noted that vegetation-atmosphere signals have been recognized to be species dependent (Gu 

et al., 2006; Aires et al., 2008a, 2008b; McGloin et al., 2019). Recently, Li et al. (2021) showed 

that vegetation green-up of temperate and boreal evergreen forests may amplify warming 

and droughts through a significant increase in 𝑄𝐻 anomalies. In contrast, cooling feedbacks 

dominated for grasslands, temperate needleleaf and deciduous forests in response to high ET 

flux anomalies during years of high vegetation canopy coverage in North America (Li et al., 

2021). 

As soil drying may span several days to weeks, whereas VPD changes can occur rapidly over 

short time scales (sub-daily), drought-like water stress driven by VPD may occur even under 

conditions of sufficient soil water (Gu et al., 2006). Sulman et al. (2016) disentangled the 

contributions of VPD and soil water to exchange processes during drought and non-drought 

years using multiyear records of EC measurements over forest land cover. They found that 

the magnitudes of observed photosynthesis and transpiration to both VPD and soil water 

anomalies are similar. Lansu et al. (2020) also found from their model simulations that the 
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effect of VPD feedback can be more than 50% of apparent soil moisture depletion, and 

therefore argued that previous studies may have erroneously attributed the effects of aridity 

on air temperature to dry soils. Although, Ireland has been shown to be vulnerable to summer 

climate extremes and associated impacts (Dillon et al., 2018; Falzoi et al., 2019; Murphy et al. 

2020), related studies which have sought to understand the role of land surface processes are 

lacking. Such gaps need to be explored to understand how they can be better managed and 

due to the fact that the occurrence of such extremes are projected to increase in both 

frequency and intensity as a consequence of anthropogenic induced changes in the climate 

system (Samaniego et al., 2018).    

 

2.6  Estimating crop-water use at farm-scale. 

In addition to acting as the primary mechanism for transferring water from the soil to the 

atmosphere, plant water use is also a critical ecosystem indicator that can assist farmers to 

understand crop water dynamics and performance within their local environment. Actual ET 

dynamics are influenced by many factors, including vegetation type, soils, atmosphere, and 

management activities, indicating complex processes that may be quite expensive to monitor 

explicitly at ground level (e.g. Singh et al., 2020). Remotely sensed observations provide an 

opportunity to develop alternative and potentially more cost-effective approaches for 

estimating actual ET at both local and global scales (e.g. Mu et al., 2007; Anderson et al., 2011; 

Singh et al., 2020). Many of these approaches are based on either diagnostic SEB methods or 

the PM equation (see Section 2.2.1). The former relies on land surface temperature (𝑇𝑠) 

derived from radiometric thermal infrared (TIR) spectral signatures provided at regional and 

global scales (e.g. Landsat) to estimate ET, derived as a residual of the SEB terms (Bastiaanssen 
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et al., 1998a, 1998b; Su, 2002). Although the PM equation is more physically based, the 

method is reliant on a large number of input parameters. In contrast, Allen et al. (1998) 

simplified the PM approach to allow for a more limited number of input parameters which 

has been widely applied as the standard (FAO-56 PM) for many agricultural applications (e.g. 

Vanino et al., 2018).  

Previous studies using these approaches are either based on cross-comparisons of models, 

quantifying water use of different biomes, assessing the scale effects of using fine (e.g. 

Landsat) and coarse resolution (e.g. MODIS) satellite observations or combining the satellite 

observations to derive ET at a high spatial and temporal resolutions (Gebremichael et al., 

2010; Anderson et al., 2012; Senay et al., 2017; Yang et al., 2018; Singh et al., 2020). Moran 

et al. (1996) estimated evaporation rates by combining the PM equation with measurements 

of surface temperature and reflectance of semiarid grasslands. Zhang et al. (2010) assessed 

global terrestrial ET using satellite-derived normalized difference vegetation index (NDVI) in 

combination with the PM and PT approaches. Vanino et al. (2018) explored the potential of 

Sentinel-2A and FAO-56 PM to estimate potential ET and irrigation water requirement of a 

tomato field in central Italy. He et al. (2019) used a blended Landsat-MODIS vegetation index 

in a modified MOD16 algorithm framework (Mu et al., 2007) to evaluate field-scale ET over 

C3/C4 crops in the continental USA. Singh et al. (2020) also explored the potential of 

integrating Landsat and Sentinel-2 data to map field-scale ET using SEB model over an 

irrigation district, California. More recently, García-Gutiérrez et al. (2021) evaluated actual ET 

in drip irrigated vineyards based on different modelling approaches and Sentinel-2 data in 

central Chile. Ma et al. (2021) coupled water vapour and carbon uptake to propose an ET 

modelling framework, based on the PM equation and Sentinel-2 data. They verified this 
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framework over three experimental sites covered with maize and/or wheat crops, and further 

discussed the scale effects on model performance at field scale. In central Ireland, 

Spiliotopoulos et al. (2017) estimated ET and evaporative fraction (EF) from a mixed land 

cover site using the Mapping Evapotranspiration at High Resolution with Internalized 

Calibration (METRIC) model (Allen et al., 2007) and Landsat data. 

The consistency of model applications across different biomes (e.g. Norman et al., 2003; Su 

et al., 2005, 2007; McCabe and Wood, 2006) has also motivated several studies relating ET to 

crop productivity (Bastiaanssen and Ali, 2003; Mishra et al., 2013; Tadesse et al., 

2015; Anderson et al., 2016a, 2016b; Mladenova et al., 2017; Yang et al., 2018). Crop yield 

can be predicted from actual ET which is a measure of the amount of water used by the crop. 

This relationship is represented in a mathematical model called the crop water production 

function, reflecting the conversion rule between the crop yield and water factor (Abtew and 

Melesse, 2012). It can be used to determine crop water demand and increase the efficiency 

of crop water use for optimum yield production. Applying both the surface energy balance 

algorithm for land (SEBAL) and a two-source surface energy balance system (TSEB), Abtew 

and Melese (2012) found positive (negative) correlations between 𝑄𝐸 (BR) and crop yields 

over wheat and soybean fields. Gobbo et al. (2019) used the SEBAL model to derive ET and 

maize yield maps with a relative error less than 0.3 % across different irrigation management 

zones in Italy. Correlations between Evaporative Stress Index (ESI), a remote sensing drought 

indicator based on the Atmosphere-Land EXchange Inverse (ALEXI) model, the associated flux 

Disaggregation approach (DisALEXI) (Anderson et al., 2007), and crop yields have also been 

investigated across different regions including the USA (e.g., Otkin et al., 2016; Mladenova et 

al., 2017; Yang et al., 2018), Brazil (Anderson et al., 2016a), and the Czech Republic (Anderson 
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et al., 2016b). In many cases, the ESI has demonstrated the capability to provide better 

relationship with crop yields than the traditional correlations between vegetation indices and 

precipitation index (e.g., SPI). The results from previous studies, using remote sensing-based 

ESI, suggest that the index can be used for early warning predictions of drought onset and 

flash drought events (Otkin et al., 2018), and most importantly demonstrating the capacity to 

explain the regional variability in crop yields both in water- and energy- limited crop growing 

regions (Yang et al., 2018).  

However, achieving optimal crop yield depends on the water use efficiency (WUE), defined as 

the photosynthetic carbon assimilation per unit of water used by the crop (e.g. Hatfield and 

Dold, 2019; Gentine et al., 2019). The indicator is often estimated as the ratio of vegetation 

gross primary productivity (GPP) and ET at ecosystem level. GPP represents the rate of carbon 

assimilation by terrestrial plants through photosynthesis, and the photosynthetic carbon 

fixation capacities of different crops vary in response to changes in environmental factors (e.g. 

Monteith, 1972; Wang et al., 2020). Thus, GPP plays a major role in many ecosystem 

functions. The key parameter for estimating GPP, and consequently WUE, is the light-use 

efficiency (LUE), which characterises the ability of plants to convert the absorbed visible 

light/radiation into organic dry matter through photosynthesis (e.g. Wang et al., 2020). The 

efficiency of light use in the PAR domain differs between plant species For example, C4 plants, 

which are adapted to warm/hot seasonal conditions under wet or dry environments, are 

thought to be higher in light use due to more efficient photosynthesis rate of leaves compared 

to C3 plants, which are more adapted to cool/cold seasons under wet or dry environments 

(Tardieu, 2013). To date, several existing models that are process-based and/or based on LUE 

theory are used to derive GPP; however, they vary greatly in terms of the estimated values 



59 

 

(Dechant et al., 2020; Jiang et al., 2020; Wang et al., 2020; Ma et al., 2021). Of these models, 

the LUE theory is recognized to provide deeper understanding of the key processes of 

vegetation carbon sequestration (e.g. Wang et al., 2020), and by extension the WUE of crops. 

WUE is recognized as a key parameter for predicting yields in many crop prediction models. 

To date, such models can either be regression-based or mechanistic models (e.g. CropSyst, 

AquaCrop) (Stockle et al., 1994; Steduto et al., 2009). For example, in the AquaCrop model, 

yield is linearly related with normalized WUE, scaled by harvest index and the basal crop 

coefficients, water stress and temperature stress (Steduto et al., 2009). González-Dugo and 

Mateos (2008) used spectral vegetation indices to benchmark the WUE of irrigated cotton 

and sugarbeet crops and found both linear and non-linear relationships between ET and yield. 

Campos et al. (2018) proposed a remote sensing approach using the AquaCrop framework to 

examine the relationship between WUE and yield of maize and soyabean in Nebraska. They 

demonstrated the ability of a constant normalized WUE to replicate measured yield across 

crop phenological stages, but noted that the assumption of a constant, though conservative 

for maize and soyabean, needs further testing for all C3/C4 plants. Khan et al. (2019) combined 

ET derived from METRIC and CropSyst model to estimate biomass production and yield at 

high resolution in four dryland agricultural sites.  

In the context of climate extremes, Kørup et al. (2017) evaluated the WUE tolerance of C3 and 

C4 perennial grass species under drought stress and drought-treated conditions. They found 

a positive relationship between dry matter (DM) and WUE under well-watered conditions, 

but DM decreased for all species and cultivars under drought stress. However, grass growth 

increased in drought-treated plots for a period after drought stress, concomitant with higher 

WUE. These findings are not consistent with models, in which the WUE increases 
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monotonously when the process is assumed to be regulated by surface resistance, with a 

slight reduction in photosynthesis during periods of water stress (Flexas and Medrano, 2002; 

Liu et al., 2016). Lu and Zhuang (2010) and Zhao et al. (2020) investigated WUE responses to 

dryness progression of different ecosystems, including grassland using a modelling approach. 

They demonstrated that the WUE of plants show a biphasic trend with drought intensity: WUE 

first increased progressively as drought moves from developmental to moderate drought 

stage, and then decreased as the drought intensity increased beyond a moderate level. 

Reichstein et al. (2002) and Yu et al. (2008) suggested that the decline in WUE during extreme 

drought events is likely associated with reduction in carbon assimilation capacities due to 

impairment of electron transport and carboxylation capacity. The responses of C3 and C4 

plant’s WUE are also different due to a completely different patterns of stomatal response to 

environmental conditions and photosynthesis, and the competition between carbon and 

oxygen in C4 versus C3 (e.g. Hatfield and Dold, 2019). 

Hence, the assumption that under elevated CO2, crop yields increase with increasing WUE, 

depends on the type and species of plant, and the ambient meteorological conditions 

(Gentine et al., 2019; Hatfield and Dold, 2019). Therefore, WUE serves as a potentially useful 

tool for better understanding changes in water availability and a plant’s physiological 

response to both weather and climate.  

2.7 Implications of research on surface-air exchanges for Ireland 

To date, research in Ireland akin to modeling surface energy exchanges to understand how 

agriculture would respond to changes in climate is lacking. Previous related studies are few 

and are largely based on experimental measurements of terrestrial ecosystem exchanges (e.g. 

CO2) using EC system, of which the observations are either incomplete or limited duration 
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over grasslands (e.g. Peichl et al., 2012; Ní Choncubhair et al., 2017) and peatlands 

(Sottocornola and Kiely, 2010a, 2010b; McVeigh et al., 2014; Kiely et al., 2018). Of these 

studies, the enhancement and reduction of net ecosystem exchange (NEE) and its 

components were reported to depend on the seasons, plant species, environmental and 

management controls. According to Jaksic et al. (2006), measured NEE over a managed 

grassland site in the south west of Ireland was similar for the same months in different wet 

and dry years. This was attributed to the fact that the soil moisture content was well above 

wilting point at the site, though the measured soil moisture values were different between 

the two years. Jaksic et al. (2006) concluded that the NEE for humid grassland was not 

sensitivite to variability of climate (e.g. precipitation) for their period of analysis.  

This conclusion was further supported by Peichl et al. (2012) who demonstrated, over 

managed grassland in the southeast of Ireland, that the observed reduction of net CO2 uptake 

(NEE) and increased BR, associated with increased (decreased) 𝑄𝐻 (𝑄𝐸) fluxes, were more 

pronounced 2-3 weeks following harvest compared to grazing practices with continued net 

carbon uptake. Thus, the exchanges of carbon, water and energy were primarily controlled 

by the choice of grassland management practices, with no observed effect of environmental 

factors in the region. While Kiely et al. (2018) supported the control of management practices 

(e.g. silage cutting) on carbon exchanges above humid managed grassland, the study also 

highlighted that climate, particularly temperature, was a strong control of CO2 fluxes in 

winter.  Ní Choncubhair et al. (2017) also demonstrated that the observed increase in net CO2 

uptake of a C4 grass species, Micanthus, was significantly driven by above-ground growth and 

leaf expansion, and may potentially further enhance carbon sink as it reaches maturity, 

relative to a C3 grass species, Reed Canary, in the south east of Ireland. 
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Although the findings from these studies are important, as they partly reveal the role of soil 

conditions in exchange processes, the analyses were primarily limited to the south of Ireland, 

and focused more on CO2 fluxes based on observations that are few in terms of spatial and 

temporal coverage. At the same time, Irish grasslands are primarily rainfed, suggesting that 

water availability plays a critical role in grassland both in terms of the turn-out timing and 

duration of grazing season, and timing of harvesting herbage (e.g. silage, hay) (Jaksic et al., 

2006). Hence, water availability can potentially drive grass physiological response, scaling up 

to influence the surface exchanges of carbon, heat and moisture, and consequently on grass 

performance and yield, and length of grazing season. Apart from these, Irish grasslands have 

been shown to be vulnerable to climate change in recent past (e.g. Dillon et al., 2018), due to 

the rising frequency and severity of climate extreme events (e.g. droughts) which is partly 

driven by perturbations in surface exchange processes regionally (Seneviratne et al., 2010; 

Teuling, 2018; Dirmeyer et al., 2021). Therefore, the proposed framework here would enable 

a multi source data integration approach that is capable of providing explicit information akin 

to carbon, heat and moisture fluxes, to better understand the grassland response to climate 

change over both the short and long -term across the country. This knowledge is important 

for pasture-based farmers to make the best informed decisions in relation to their 

management activities. 

2.8 Key issues 

Several issues in relation to surface flux measurements, land surface modelling and exchange 

processes are identified, some of which are detailed as follows. The land surface 

characteristics (e.g. land cover, soils and topography) are spatially non-uniform. These surface 

heterogeneities exert a significant influence on meteorological forcing data, including 
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downward shortwave radiation, near-surface temperature, wind speed, cloud amount, 

precipitation and atmospheric moisture. For instance, the amount of downward shortwave 

radiation depends on the topographic characteristics (e.g. elevation, slope and aspect) of the 

site. Soil and vegetation characteristics control the distribution of soil moisture and land 

surface energy budget, particularly evaporation (Viterbo, 2002). Evaporation is regulated by 

soil water; a systematic bias in soil water would therefore propagate into evaporation 

estimates, implying a hot, dry or wet bias, depending on the season. The conflicting roles of 

evaporation suggest the contributing role of the land surface state in earth system model 

approaches (Viterbo, 2002).  

Generally, the spatially non-uniform patterns of land surface and dynamic nature of 

meteorological forcing are quite complex to represent in a land surface modelling framework 

(Duan et al., 2006; Fisher and Koven, 2020). As such, the approach of model formulation, 

quality of meteorological forcing data and selection of appropriate empirical constants or 

model parameter remain key issues confronting the ability of a land surface model to 

accurately quantify the land surface processes at different scales (Zhao and Li, 2015; Fisher 

and Koven, 2020).  

Eddy covariance measurements of surface energy fluxes are widely used to calibrate and 

evaluate model simulations (Beljaars and Bosveld, 1997; van de Boer et al., 2014a). However, 

the EC approach often underestimates surface turbulent fluxes by 10-30 %, relative to the 

measured available energy, resulting to issues associated with energy balance closure (Wilson 

et al., 2002; Foken, 2008; Franssen et al., 2010; Stoy et al., 2013). Even under ideal flat, 

homogenous and short vegetation conditions, this closure problem is also present (e.g. Twine 

et al., 2000). The closure problem may arise from the failure to measure heat storage terms 
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as part of measurement programmes (e.g. Heusinkveld et al., 2004); large-scale turbulent 

circulations over heterogeneous landscapes that are not captured by EC methods (Mauder et 

al., 2007; Stoy et al., 2013); the assumption of no advection, and; inaccurate 𝑄𝑁 

measurements (e.g. Foken, 2008). While several studies (e.g., Aubinet et al., 2000; Twine et 

al., 2000) have made concerted efforts to address this problem, the surface energy imbalance 

remains a key issue of how flux measurements should be interpreted, and how model-derived 

surface energy fluxes should be evaluated with measured when the EC approach is used 

(Twine et al., 2000). 
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3. Land surface modelling of surface radiation and energy fluxes 
using routine weather data: Parameterization and Sensitivity to soil 
moisture regimes 

 

Preface  

Published as:  

Ishola, K.A., Mills, G., Fealy, R.M., Ní Choncubhair, Ó. and Fealy, R., 2020. Improving a land surface 
scheme for estimating sensible and latent heat fluxes above grasslands with contrasting soil moisture 
zones. Agricultural and Forest Meteorology, 294, 108151, 1-18. 
https://doi.org/10.1016/j.agrformet.2020.108151 

 

This chapter is an extended version of the above paper (see supplementary for full article), 

and serves as a prelude to the subsequent chapters, designed to lay the foundation upon 

which the subsequent papers were built. Here, the prognostic ‘land surface modeling’ 

framework described in Chapter 2 was employed to link radiation models with surface 

‘stomatal’ resistance (𝑟𝑠) schemes, MOST theory and Penman-Monteith equation- hereafter 

referred to as a land surface scheme (LSS). The initial and broad objective is to evaluate the 

potential of a LSS, adapted for use in a different climate from which it was developed, for 

estimating surface flux densities and diagnostic parameters under wet and dry regimes. 

This paper recognized the paucity of data and therefore anticipated that a research interest 

in surface climate or surface flux simulation using this LSS may require the following two 

components (see also Figure 2.6): (1) routine weather observations with soil moisture, ideally 

from WMO standard ground stations but may also incorporate satellite/reanalysis data; (2) 

some metadata of soils and vegetation. However, no such applicable scheme has been 

evaluated over Ireland, thus, the question remained as to how a LSS might perform across 

Irish landscapes with different soil characteristics, using limited available observations. To this 

end, a model performance evaluation at two test sites is provided in this Chapter. 
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Abstract 

Knowledge of soil-vegetation-atmosphere energy exchange processes is essential for 

examining the response of agriculture to changes in climate in both the short and long term. 

However, there are relatively few sites where all the flux measurements necessary for 

evaluating these responses are available; where they exist, data are often incomplete and/or 

of limited duration. At the same time, there is often an extensive observation network 

available that has gathered key meteorological data (sunshine, wind, rainfall, etc.) over 

decades. Simulating the terms of the surface energy balance (SEB) using available 

meteorological, soil and vegetation data can improve our understanding of how agricultural 

systems respond to climate and how this response will vary spatially. Here, we employ a 

physically-based ‘LSS’ scheme to simulate the SEB fluxes over a mid-latitude, maritime 

temperate environment using routine weather observations. The latent heat flux is a critical 

SEB term as it incorporates the response of the plant to environmental conditions including 

available energy and soil water. This response is represented in modelling schemes through 

surface resistance (𝑟𝑠), which is usually expressed as a function of near-surface water vapour 

alone.  In this study, we simulate the SEB over two grassland sites, where eddy flux 

observations are available, representing imperfectly- and poorly- drained soils. We employ 

three different formulations of 𝑟𝑠, representing varying degrees of sophistication, to estimate 

the surface fluxes. Due to differences in soil moisture characteristics between the sites, we 

ultimately focused our attention on an 𝑟𝑠 formulation that accounted for soil water retention 

capacity, based on the Jarvis conductance model; the results at both hourly and daily intervals 

are in good agreement, with RMSE values of ≈ 40 W m-2 for sensible and latent heat fluxes at 

both sites. The findings show the potential value of using routine weather observations to 

generate the SEB where flux observations are not available and the importance of soil 
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properties in estimating surface fluxes. These findings could contribute to the assessment of 

past and future climate change on grassland ecosystems.  

 

3.1 Introduction 

Information on the exchange of heat and moisture at the Earth’s surface is needed to evaluate 

the performance of climate models in simulating land-atmosphere interactions (e.g. Knist et 

al., 2017) and for applications in a number of areas, such as agricultural productivity, soil 

moisture and hydrology, boundary-layer development, etc. (de Bruin et al., 1993; van den 

Hurk et al., 2000; Chen and Dudhia, 2001; Jung et al., 2010; Lathuilliere et al., 2012; van de 

Boer et al., 2013; van de Boer et al., 2014b). Typically, these exchanges are expressed in terms 

of the surface energy balance (SEB) (Section 2.2) which stipulates that net radiation (𝑄𝑁)  is 

expended as sensible heat flux by conduction with the soil (𝑄𝐺) and as sensible (𝑄𝐻) and 

latent (𝑄𝐸) heat fluxes by turbulence with the overlying atmosphere. However, 

measurements of these flux densities are not routine practice, partly due to the complexity 

of turbulence measurement and the relative cost of instrumentation (Haymann et al., 2019). 

To overcome this challenge, past and recent studies have developed physically-based 

schemes to simulate these exchanges based on routine meteorological observations (de Bruin 

and Holtslag, 1982; Holtslag and van Ulden, 1983; Holtslag and de Bruin, 1988; Viterbo and 

Beljaars, 1995; Chen et al., 1996; Beljaars and Bosveld, 1997; Mohan and Siddiqui, 1998; de 

Rooy and Holtslag, 1999; van de Boer et al., 2014a; Lu et al., 2014). Although the choice of 

scheme is dependent on the availability of input meteorological parameters, the analytic 

context is usually based on the Monin-Obukhov Similarity Theory (MOST) (Section 2.2.1), 

which uses vertical profiles of air temperature, humidity and wind to simulate the fluxes of 
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heat, vapour and momentum, respectively, within the atmospheric surface layer. However, 

issues remain with these schemes. For example, Chen et al. (1997) found large discrepancies 

between schemes that have been partly attributed to the dependence on empirical constants 

derived from site specific data. 

de Rooy and Holtslag (1999) proposed and evaluated a scheme for estimating SEB fluxes using 

a minimal number of input parameters derived from single-level routine weather 

observations. The methodology was developed based on observations made over short grass 

in Cabauw, the Netherlands, and has not been evaluated elsewhere. More recently, van de 

Boer et al. (2014a) proposed a modified version of this scheme which was evaluated at two 

locations over different land cover types. This modified scheme accounts for the dependency 

of each flux on air, rather than surface, temperature as in de Rooy and Holtslag (1999). In 

addition, it employs a modified formulation for surface resistance (𝑟𝑠) a key parameter in the 

estimation of 𝑄𝐸 as it accounts for soil moisture content and the transfer of soil water to the 

atmosphere by evapotranspiration.  

There are different methods of parameterizing 𝑟𝑠 (Kim and Verma, 1991; Jacobs, 1994) but 

one of the most widely used is that of Jarvis (Jarvis, 1976), which incorporates environmental 

controls, including atmospheric (radiation, temperature, vapour pressure deficit, CO2 

concentration), vegetation (Leaf Area Index) and soil (soil water) factors (e.g. Stewart, 1988; 

Beljaars and Bosveld, 1997; Niyogi and Raman, 1997; de Rooy and Holtslag, 1999; van de Boer 

et al., 2014a). Where it is assumed that there is no moisture stress, the dependence of 𝑟𝑠 on 

soil water content has either been excluded (van de Boer et al., 2014a) or assumed to be 

negligible (de Rooy and Holtslag, 1999). However, under conditions of increasing soil moisture 

stress, water availability acts to regulate 𝑟𝑠 (Russell, 1980; Sherratt and Wheater, 1984) and 
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consequently plays a prominent role in modulating heat and moisture fluxes (Sherratt and 

Wheater, 1984; Betts and Ball, 1995; 1998; Senevirante et al., 2010). Increased 𝑟𝑠 due to 

limited water availability affects evapotranspiration and is a major factor controlling the 

productivity of terrestrial ecosystems (Ciais et al., 2005; De Boeck et al., 2011; Reichstein et 

al., 2007; Teuling et al., 2006; Zhang et al., 2012). The parameterisation of 𝑟𝑠 has also been 

identified as playing a significant role in contributing to model uncertainties in estimating 𝑄𝐸 

and gross primary production (GPP) in land surface models (Li et al., 2016). 

In this chapter, the influence of available soil moisture on the simulation of energy fluxes 

using the de Rooy and Holtslag (1999) scheme is examined. Two grassland sites in Ireland that 

have the same precipitation regime but are distinguished by their soil characteristics and are 

defined as imperfectly- and poorly- drained soils are identified. The primary objectives are to; 

(1) examine whether the de Rooy and Holtslag (1999) scheme is transferrable to Irish sites; 

(2) evaluate if meteorological data from one location can be employed to estimate the 

measured surface fluxes at a nearby location, and; (3) evaluate the response of surface fluxes 

to three different parameterizations of surface resistance (𝑟𝑠).  

The study seeks to extend the value of flux estimates to places where such observations are 

not available and contribute to the improvement and applicability of land surface schemes 

over grassland ecosystems.   

3.2. Study area  

3.2.1 Background Climate 

The climate of Ireland is dominated by westerly airflow off the North Atlantic and 

consequently exhibits a maritime temperate climate (Peel et al., 2007). Based on the long 
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term averages over the period from 1981 to 2010, Ireland typically experiences cool summers 

with daily maximum ranging from 18 to 20 °C and mild winters (8 °C); minimum temperatures 

fall below 0 °C on approximately 40 (10) days per year at inland (coastal) areas. Annual 

average rainfall is just over 1200 mm, which is distributed nearly evenly throughout the year. 

The highest rainfall is typically recorded in upland regions on the west coast. Rainfall amounts 

decline moving eastwards, associated with airflow interactions with topography.  However, 

topographic variations across the island are relatively small – the average elevation is 118 m 

a.s.l. and the highest peak is just over 1000 m a.s.l. A summary description of the climatology 

of the region is reported in Walsh (2012).  

The climate in Ireland provides conditions suitable for the year-round grass growth, 

particularly along coastal margins in the south of the country which records a median grass 

growing season length of 330 days (Keane and Collins, 2004). Consequently, grassland land-

cover is the most important crop and accounts for more than 90% of the land under 

agricultural production (McEniry et al., 2013) and 56% of the total land area (EUROSTAT, 

2015). Due to the year-round precipitation, excessive soil moisture is generally more 

problematic for grass production than water deficits (McDonnell et al., 2018), particularly on 

poorly drained soils. However, soil moisture deficits are periodically experienced during the 

summer months, typically in the east and south east of the country (Dwyer and Walsh, 2012), 

associated with the location of well drained soils (Figure 3.1). In terms of soil characteristics, 

the General Soil Map of Ireland classifies the south-east as mostly free-draining sandy soils, 

with limestone-rich soils in the south and midlands, and acid and peat soils on mountains, 

hills and the western seaboard (Gardiner and Radford, 1980). More detailed soil properties 
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combining previous and existing soil survey information for Ireland is available from Creamer 

et al. (2014). 

 

Figure 3.1. Map of Soil drainage classes for Ireland (Irish Soil Information System by Teagasc for EPA, Creamer 
et al., 2014), showing the locations of test sites. 

 

3.2.2 Site descriptions 

Two sites are employed in this study representing imperfectly drained (Johnstown Castle, Co. 

Wexford) and poorly drained (Dripsey, Co. Cork) soil characteristics; Table 3.1 provides 
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summary information on each site and Figure 3.1 shows the site locations. Both sites have 

available eddy covariance (EC) flux tower measurements.  

Station Lat/Long (°) Elevation 
(m) 

Soil description Moisture  
properties 
(𝜃𝐹𝐶 , 𝜃𝑆𝑇, 

𝜃𝑊𝑃) 

Drainage 

class 

Time 

period 

       

Johnstown 
Castle 

 

52.29°N, 6.49°W 58 A combination of 
gley, brown earths 
and free draining 
fine siliceous loam 
soils. 

 

32% 

59% 

17% 

Imperfect 2013 

Dripsey 

 

51.98°N, 8.75°W 186 Gley water-logged 
soils. 

32% 

45% 

12% 

 

Poor 2010 

Table 3.1. Descriptions of grassland eddy covariance flux and synoptic stations used in this study. Meteorological 
data from Cork Airport (51.84°N, 8.48°W) at an elevation of 155 m were used for Dripsey. Johnstown Castle has 
a co-located weather station. The soil moisture properties are field capacity (𝜃𝐹𝐶), saturation level (𝜃𝑆𝑇) and 
wilting point (𝜃𝑊𝑃), in order. 

 

Details on the vegetation and soil characteristics associated with the flux tower footprints are 

as follows: 

i) Johnstown Castle: Two main types of soil (Gleys and Brown Earths), have been reported 

within the flux site footprint (Peichl et al., 2012). The soil within the flux footprint (< 

150 m) is moderately to imperfectly drained Gley (FAO classification: Gleyic Cambisol). 

The soils transition to moderately or well drained Brown Earths (Cambisol) at the outer 
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edge of the flux footprint. The soil class in this area therefore varies from moderately 

to imperfectly drained, and the land cover is grass.  

ii) Dripsey: The EC footprint is over grass cover on a soil type that impedes water 

movement and can become waterlogged (Kiely et al., 2018) and is classed as a poorly 

drained Gley soil.  

More detailed descriptions on the soil properties, climatology and EC footprints at Dripsey 

and Johnstown Castle are reported in Kiely et al. (2018) and Peichl et al. (2012), respectively.  

Detailed information on vegetation height and leaf area index (LAI) are not available for the 

periods corresponding with flux measurements made at Dripsey, but Kiely et al. (2018) 

reported LAI values ranging from ≈ 2 m2 m-2 in winter to ≈ 6 m2 m-2 in summer. At Johnstown 

Castle, LAI is estimated from measurements of grass dry matter yield concurrent with the EC 

observations and an allometric relationship established with leaf area index meter readings. 

Modelled LAI values range between 0.1 (winter) and 6.8 m2 m-2 (summer) for this site, with 

an average LAI of 2.2 m2 m-2. 

3.3 Data 

The study employs available routine weather observations to parameterize surface fluxes of 

heat and moisture over the two grassland sites described above. In the following sections, the 

observed flux data available for each site is discussed followed by a description of the 

available meteorological and soil water data. A summary of the EC flux and meteorological 

parameters used as input to, and evaluation of, the scheme employed is presented in Table 

3.2. 
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3.3.1 Flux measurements 

Sensible and Latent Heat fluxes 

Half-hourly EC flux measurements of 𝑄𝐻 and 𝑄𝐸  are available from the European Fluxes 

Database Cluster (http://www.europe-fluxdata.eu/) (Papale et al., 2006) for Dripsey (Kiely et 

al., 2018) for the year 2010. In order to avoid any potential bias, we only employed non gap-

filled data (Level 2 data). Half-hourly EC flux measurements of 𝑄𝐻 and 𝑄𝐸 were also obtained 

for Johnstown Castle for the year 2013 (Unpublished results). The instrumentation at both 

sites consists of an open–path infra-red gas analyser (IRGA) for measuring H2O density and 

CO2 concentration, in combination with a 3D sonic anemometer. The EC data were logged at 

10 Hz and averaged over 30-minutes intervals (see Table 3.2 for a list of instruments at each 

site).  

Data processing procedures at both sites were similar and are documented elsewhere: 

Sottocornola and Kiely (2010a, 2010b) for Dripsey; and Ní Choncubhair et al. (2017) for 

Johnstown Castle. These procedures include spike removal (Vickers and Mahrt, 1997), the 

Webb-Pearman-Leuning correction (Webb et al., 1980; Moncrieff et al., 1997a), sonic 

anemometer tilt correction using the double rotation method (Kaimal and Finnigan, 1994) 

and spectral attenuation corrections after Moncrieff et al. (1997b). Some data filtering 

procedures, which differ from the above approaches, were applied to Dripsey and are 

described in Kiely et al. (2018). Here, poor quality data based on quality control flags (QC = 2) 

were removed and flux observations recorded when precipitation exceeded 1 mm over an 

hour window were removed as these are likely to generate errors in 𝑄𝐸 measurements using 

open-path sensors (e.g. Ma et al., 2015). 



75 

 

Variables                       
Usage 

 Instrumentation 

 Forcing Validation  

𝑄𝑁  

 

 

𝑄𝑆↓ 

𝑇𝑎  

u 

P 

RH 

Precipitation 

Sunshine hours 

𝑄𝐻 ,  𝑄𝐸  

 

 

 

 

 

 

𝜃 

 

 

 

x 

x 

x 

x 

x 

 

 

 

 

 

 

 

 

 

x 

x 

 

 

 

 

 

 

 

 

 

x 

 

NR-Lite (Johnstown Castle) and CNR1 
(Dripsey) (Kipp & Zonen,Delft, The 
Netherlands) 

 

 

 

 

 

 

 
 
IRGA gas analyzers, 
LI-7500 (LI-COR, Lincoln, NE) at 6 m 
for Dripsey and; 2.28 m (1st Jan. – 
26th Feb.), 2.72 m (26th Feb. – 23rd 
Oct.), 2.85 m (23rd Oct. – 31st Dec.) 
for Johnstown Castle. 

 

 

CS616 (Johnstown Castle) and CS615 
(Dripsey)  (Campbell Scientific, 
Shepherd, UK) 

Table 3.2. Descriptions of meteorology and eddy-covariance parameters used as forcings and for validation 
respectively. 

 

A statistical examination of the processed data for all sites showed typical ranges of -100 – 

400 W m-2 for 𝑄𝐻 and 𝑄𝐸; individual observations outside of these ranges were excluded from 

further analysis (following Ma et al., 2015).   

Following these pre-processing steps, a significant percent (original plus filtered) of flux data 

at each site was classed as missing: 24 % and 32 % of 𝑄𝐻 and 𝑄𝐸, respectively at Johnstown 

Castle and 28 % and 31 % of 𝑄𝐻 and 𝑄𝐸 at Dripsey. While the proportion of data gaps from 

Johnstown Castle mainly arose from the quality control procedures, the higher proportion of 

missing data from Dripsey was due to a combination of both the number of missing values in 
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the original data and the quality control processes, outlined above. After the filtering 

processes, the proportion of nighttime data slightly exceeded the daytime data at both sites. 

At Johnstown Castle, approximately 51 % (2,941 hours) and 49 % (2,939 hours) of 𝑄𝐸  data 

remained for nighttime and daytime (08:00 – 18:00) hours, respectively. Similarly, 53 % (3,188 

hours) and 47 % (2,851 hours) of data for Dripsey were available for analysis. 

Net Radiation 

Half-hourly measurements of 𝑄𝑁 from Dripsey for 2010 are available from the European 

Fluxes Database Cluster (Papale et al., 2006). For Johnstown Castle, 𝑄𝑁 measurements for 

2013 are available from previously unpublished research. Hourly values of 𝑄𝑁 in the range -

100 and 700 W m-2 were selected for the subsequent analysis (following Shi and Liang, 2014).  

The energy budget closure is an efficient approach to evaluate the consistency of scalar flux 

densities measured by EC systems (Twine et al., 2000). The approach relates available energy 

(𝑄𝑁 - 𝑄𝐺) to turbulent fluxes (𝑄𝐻 + 𝑄𝐸) in order to determine the magnitude of non-closure 

of measured fluxes by EC systems. EC measurements are known to underestimate the 

turbulent fluxes (𝑄𝐻 and 𝑄𝐸) and overestimate 𝑄𝑁 resulting in non-closure of the energy 

balance (Wilson et al., 2002; Foken, 2008; Franssen et al., 2010; Stoy et al., 2013). Other 

potential reasons for non-closure are discussed extensively in the literature and include; the 

failure to measure heat storage terms as part of measurement programmes (e.g. Heusinkveld 

et al., 2004); large-scale turbulent circulations over heterogeneous landscapes that are not 

captured by EC methods (Mauder et al., 2007; Stoy et al., 2013); the assumption of no 

advection and; inaccurate 𝑄𝑁 measurements (e.g. Foken, 2008).  Over the sites available for 

the present study, the hourly energy budget closure (ignoring the 𝑄𝐺 and 𝑄𝛥𝑆 terms) is 

approximately 69 % at Johnstown Castle and 60 % at Dripsey (Figure 3.2). These closure values 
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are comparable with previously reported values, which lie within 53 – 99 % (e.g. Wilson et al., 

2002).  

3.3.2 Meteorological data 

On-site hourly meteorological observations for the same periods of EC measurements are 

available for Johnstown Castle but at Dripsey these data are only available at Cork Airport 

(155 m a.s.l), which is approximately 25 km from the site.  

 

Figure 3.2. The hourly Surface energy balance closure at Johnstown Castle and Dripsey sites. 

 

Both meteorological stations conform to World Meteorological Organisation (WMO) 

guidelines and report on global solar radiation (𝑄𝑠↓, W m-2) or sun duration (hours), air 

temperature (°C), relative humidity (%), pressure (kPa), wind speed (m s-1) and precipitation 

(mm). As cloud amount (oktas) was only available from Cork Airport, it was excluded from the 

subsequent analysis; this value was set ≈ 0 in the calculation of 𝑄𝐿↓. Global solar radiation was 

not available from Cork Airport, therefore hourly 𝑄𝑠↓ data was estimated for this site based 

on observations of sunshine duration following Allen et al. (1998).The hourly meteorological 

observations correspond with the periods for which the flux data are available at the two 
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sites. The meteorological conditions during the study periods at the selected sites are 

presented in Figures (3.3 – 3.4). 

 

Figure 3.3. Temporal evolution of in situ meteorological forcing data for Johnstown Castle. [top-bottom] air 
temperature, vapour pressure deficit, wind speed, soil temperature, volumetric water content and rainfall. 
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Figure 3.4. Temporal evolution of in situ meteorological forcing data for Dripsey flux sites. Meteorological data 
except soil water (VWC) are available from Cork-Airport. [top-bottom] air temperature, vapour pressure deficit, 
wind speed, soil temperature, volumetric water content for 2005, and rainfall. 

 

3.3.3. Soil water data 

Soil water content, measured as the volumetric water content (𝜃, m3 m-3) in the upper 20 cm 

of the soil, was measured at both sites at half-hourly intervals using CS615/CS616 time 

domain reflectometers (Table 3.2).  
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At Johnstown Castle, these measurements are contemporaneous with the available EC flux 

measurements. At Dripsey, measurements are only available for 2004 and 2005, which 

coincides with periods when flux measurements are either not available or gap-filled 

(European Fluxes Database Cluster Level 3 and 4 data). While the general meteorological 

conditions at Dripsey during 2004 and 2005 were wetter than those experienced in 2010 

(1174 mm; 1183 mm and 974 mm, respectively), the cumulative precipitation during 2005 

was very similar in profile to 2010, up to October, after which the soils would have been close 

to or at field capacity (Figure 3.4 e-f). 

3.4 Methods 

3.4.1 Model set up 

The scheme to estimate the fluxes of heat, moisture and momentum from limited routine 

weather data was adapted from de Rooy and Holtslag (1999). The scheme was originally 

developed over a grassland ecosystem using extensive and well-documented datasets from 

Cabauw, the Netherlands, and covering a variety of weather conditions. The scheme 

computes the turbulent fluxes (𝑄𝐻 and 𝑄𝐸) through a set of sequential calculations (Figure 

3.5). The required inputs are: air temperature 𝑇𝑎 (K) at observation height 𝑧𝑎 (2 m), relative 

humidity  RH (%), wind speed 𝑢 (m s-1) at 10 m, mean sea level pressure P (kPa), global solar 

radiation 𝑄𝑠↓ (W m-2) and cloud amount N (oktas).  
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Figure 3.5. Schematic diagram of surface energy balance estimates. The dotted line denotes the iteration 
process using MOST, while the dashed lines show the input and output variables and parameterization workflow. 

In the initial step, the variables that can be obtained directly from the inputs, such as the 24-

h mean of 2-m temperature, 𝑇24 (K), vapour pressure, e (kPa), specific humidity deficit, 𝛥𝑞𝑎(g 

kg-1), psychrometric constant, γ (kPa K-1), and the slope of the saturated vapour pressure 

curve, s (kPa K-1), are estimated. An iterative procedure then estimates the following 

parameters: friction velocity, 𝑢∗  (m s-1), aerodynamic resistance, 𝑟𝑎 (s-1 m),  𝑄𝐻 (W m-2), and 

subsequently temperature scale 𝜃∗ (K) and Obukhov length L (m), using flux profile relations 

(Paulson, 1970). The profile method adopts the MOST to describe the profile relationships of 

important scaling quantities, 𝑢∗, 𝜃∗ and L; 𝑟𝑎 is also expressed in terms of a flux-profile 

VWC 
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relationship. In this study, the empirical stability correction functions used in the profile 

method are based on those derived for unstable surface layer by Paulson (1970) and Dyer 

(1974), which relate the fluxes of heat and momentum to their non-dimensional vertical 

gradients.   

The friction velocity, 𝑢∗, aerodynamic resistance 𝑟𝑎 and sensible heat, 𝑄𝐻 are calculated as 

follows: 

𝑢∗ =  
𝑢𝑘

[𝑙𝑛(
𝑧𝑎

𝑧𝑜𝑚
)− 𝜓𝑚(

𝑧𝑎
𝐿

)+ 𝜓𝑚(
𝑧𝑜𝑚

𝐿
)]

 , (3.1) 

𝑟𝑎 =   
1

𝑘𝑢∗
[𝑙𝑛 (

𝑧𝑎

𝑧𝑜𝐻
) −  𝜓𝐻 (

𝑧𝑎

𝐿
) + 𝜓𝐻 (

𝑧𝑜𝐻

𝐿
)] , (3.2) 

and 

𝑄𝐻 =  
(𝑋−𝑌)(𝐴−𝐵)+𝐶

𝑋+𝑍(𝑋−𝑌)
 , (3.3) 

where  

𝑋 = (𝑠 +  𝛾 ) [𝑠 +  𝛾 (1 +  
𝑟𝑠

𝑟𝑎
)], (3.3a) 

𝑌 = 𝑠(𝑠 +  𝛾 ) ,  (3.3b) 

𝐴 =  (1 −  𝛼)𝑄𝑠↓ + 𝑄𝐿↓ +  3𝜀𝜎𝑇𝑎
4 + 𝐴𝑔𝑇24 , (3.3c) 

𝐵 =  (4𝜀𝜎𝑇𝑎
3 + 𝐴𝑔)(𝑇𝑎 +  𝑧𝑎Г𝑑), (3.3d) 

𝐶 = −(𝑠 +  𝛾 ),  (3.3e) 

𝑍 =  (4𝜀𝜎𝑇𝑎
3 +  𝐴𝑔)(𝑟𝑎 / 𝜌𝑐𝑝), (3.3f) 
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where, 𝜓𝐻  and 𝜓𝑚 are the dimensionless stability correction terms for heat and momentum 

respectively (Beljaars and Holtslag, 1991). The specified dimensionless constants include the 

surface albedo, 𝛼 = 0.23, and surface emissivity, 𝜀 = 0.94. We employed the following 

empirical values: 𝐴𝑔 = 9.0 W m-2 K-1, Stefan Boltzmann’s constant (𝜎) = 5.67 x 10-8 W m-2 K-1, 

observation height 𝑧𝑎 = 2 m, dry adiabatic lapse rate Г𝑑  = 0.01 K m-1, air density 𝜌 = 1.225 kg 

m-3, specific heat capacity of air 𝑐𝑝 =  1005 J kg-1 K-1 , von Kármán constant 𝑘 = 0.41, surface 

roughness length for heat 𝑧𝑜𝐻 = 0.001 m and momentum 𝑧𝑜𝑚 = 0.01 m (Table 3.3). The 

incoming longwave radiation 𝑄𝐿↓ (W m-2) is estimated using the formulations described in 

Section 2.2. 

Surface parameter Value 

Emissivity, 𝜀   0.94 

Albedo,α 0.23 

Soil heat transfer coefficient, 𝐴𝑔 9 W m-2 K-1 

Roughness length for heat, 𝑧𝑜𝐻 0.001 m 

Roughness length for momentum, 𝑧𝑜𝑚  0.01 m 

Surface resistance, 𝑟𝑠  different formulations 

Table 3.3. Surface input parameters and corresponding values used at the selected stations 

 

Initially, the iterative procedure makes a first guess of 𝑢∗, 𝑟𝑎 and subsequently 𝑄𝐻, assuming 

neutral stability conditions (1/L = 0). Using this initial estimate of 𝑄𝐻, the parameters 𝜃∗ and 

𝐿 are calculated (see Section 2.2.3). This procedure is repeated until the 𝑄𝐻 values from one 

iteration to the next change by ≤ 10-5 W m-2, achieved through the stability correction terms 

and based on the level of agreement between the estimated and measured values. The 

estimated 𝑄𝐻 (W m-2) is then used to sequentially derive surface temperature 𝑇𝑠 (K),  which 

in turn is used to estimate 𝑄𝐺  (W m-2) and  𝑄𝑁 (W m-2), as follows: 
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𝑇𝑠 =  𝑇𝑎 +  
𝑄𝐻𝑟𝑎

𝜌𝑐𝑝
+ 𝑧𝑎Г𝑑, (3.4)  

𝑄𝐺 =  𝐴𝑔 (𝑇𝑠 −  𝑇24), (3.5) 

𝑄𝑁 =  [(1 −  𝛼)𝑄𝑠↓  +  (𝜀𝑎 −  1)(𝜀𝑎𝜎𝑇𝑎
4)] −  [4𝜀𝜎𝑇𝑎

3(𝑇𝑠 −  𝑇𝑎)], (3.6) 

where 𝜀𝑎 is the apparent atmospheric emissivity (see Section 2.2).  

Finally, 𝑄𝐸 (W m-2) is computed using the Penman-Monteith formulation (Monteith, 1981), as 

follows, 

𝑄𝐸 =  
𝑟𝑎𝑠(𝑄𝑁−𝑄𝐺) + 𝜌𝑐𝑝(𝑒𝑠− 𝑒𝑎)

(𝑠+ 𝛾)𝑟𝑎 + 𝛾𝑟𝑠
 (3.7) 

The turbulent fluxes (𝑄𝐻 and 𝑄𝐸) both rely on surface resistance (𝑟𝑠) which represents the 

role of  environmental factors, such as plant growth and soil moisture availability in regulating 

the surface-air exchange of water vapour. 

3.4.2 Surface resistance 

There are several formulations in the literature for estimating appropriate values for 𝑟𝑠 for 

different land-cover and environmental conditions. The simplest of these is the FAO value 

which is constant and based on a grass reference crop height of 0.12 m (Allen et al., 1998), 

that is 

𝑟𝑠 = 70 s m-1           (3.8) 

A more physically-based formulation was proposed by de Rooy and Holtslag (1999) based on 

a statistical relationship between 𝑟𝑠 and the vapour density deficit (𝛥𝑞𝑎) in the overlying air, 

𝑟𝑠 = 𝑎 + 𝑏
𝑒𝑠− 𝑒𝑎

𝑝

𝑅𝑑

𝑅𝑣
= 10 𝛥𝑞𝑎,                                                                                            (3.9) 
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where, 𝑎 (0 s m-1) and 𝑏  (10 s kg m-1 g-1) are empirical constants and 𝑝 is pressure such that   

𝑒𝑠− 𝑒𝑎

𝑝
 is dimensionless. The remaining terms are constants, 𝑅𝑑is specific gas constant for dry 

air (287 J kg-1 K-1) and 𝑅𝑣 is specific gas constant for water vapour (462 J kg-1 k-1). 

Jarvis (1976) proposed a formulation for stomatal conductance, the inverse of surface 

resistance, that accounts for plant growth through the inclusion of environmental factors and 

a minimum surface resistance (𝑟𝑠,𝑚𝑖𝑛), specific to plant type and leaf area index (LAI),  

𝑟𝑠 =  
𝑟𝑠,𝑚𝑖𝑛

𝐿𝐴𝐼
 𝐹𝑆𝐹𝛥𝑞𝐹𝑇𝐹𝑀,     (3.10) 

Where 𝑟𝑠,𝑚𝑖𝑛 represents the optimum conditions for evapotranspiration as a function of solar 

radiation (𝐹𝑆), water vapour (𝐹𝛥𝑞), air temperature (𝐹𝑇) and soil moisture (𝐹𝑀) (Jarvis, 1976; 

Stewart, 1988). For short grass, the value of 𝑟𝑠,𝑚𝑖𝑛 is 110 s m-1. Although the LAI of short grass 

changes seasonally (van den Hurk et al., 2000), a fixed value of 2 m2 m-2 is commonly used 

(e.g. Beljaars and Bosveld, 1997; de Rooy and Holtslag, 1999; van den Hurk et al., 2000; 2003; 

van de Boer et al., 2014a).  

Beljaars and Bosveld (1997) modified the Jarvis-Stewart approximation by removing the air 

temperature term (𝐹𝑇), due to its correlation with radiation, and included a scaling factor (𝑓𝑟), 

to adjust 𝑟𝑠 to a particular surface (van de Boer et al., 2014a), as follows, 

𝑟𝑠  = 𝑓𝑟
𝑟𝑠,𝑚𝑖𝑛

𝐿𝐴𝐼
𝐹𝑠

−1𝐹∆𝑞
−1𝐹𝑀

−1     (Beljaars and Bosveld, 1997)   (3.11) 

Based on observations over the Cabauw grassland site which has poorly drained soils, Beljaars 

and Bosveld (1997) derived an optimised value for 𝑓𝑟 of 0.47. Values for 𝑟𝑠,𝑚𝑖𝑛 and LAI are as 

stated above. 
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The response function 𝐹𝑆 to 𝑄𝑠↓ is described (following Beljaars and Bosveld, 1997; van de 

Boer et al., 2014a) as: 

𝐹𝑆 =  
𝑄𝑠↓(𝑆𝑟𝑚− 𝑆𝑟)

𝑆𝑟𝑚𝑄𝑠↓+𝑆𝑟(𝑆𝑟𝑚−2𝑄𝑠↓)
,     (3.11a) 

where the empirical coefficients 𝑆𝑟𝑚 and 𝑆𝑟 are given as 1000 W m-2 and 230 W m-2, 

respectively. 

The response function 𝐹𝛥𝑞 to atmospheric moisture deficit is calculated as, 

𝐹𝛥𝑞 = 
1

(1+ ℎ𝑠𝛥𝑞)
,       (3.11b) 

where 𝛥𝑞 is the difference between the water vapour deficit at the reference height (2 m) 

and surface (Chen and Dudhia, 2001). Following Beljaars and Bosveld (1997) and van de Boer 

et al. (2014a) we adopt a fixed value of 3 g kg-1 for the vapour deficit at the surface. Different 

values of ℎ𝑠 have been adopted in the literature (e.g. Stewart and Gay; 1989; Chen et al., 

1996; van den Hurk et al., 2000; Chen and Dudhia, 2001, Ronda et al., 2001), however,  0.16 

kg g-1 is employed here as it has previously been used over grassland land cover (Beljaars and 

Bosveld, 1997; van de Boer et al., 2014a).  

𝐹𝑀 is a soil moisture response function and is given as, 

𝐹𝑀 = 1 for 𝜃 >  𝜃𝐹𝐶 ,      (3.11c) 

𝐹𝑀 = 1 + 𝑐𝑠𝑜𝑖𝑙(𝜃 −  𝜃𝐹𝐶)         for 𝜃 <  𝜃𝐹𝐶 ,      (3.11d) 

where 𝜃 (m3 m-3) is the volumetric soil moisture in the root zone and 𝜃𝐹𝐶  (m3 m-3) is the 

volumetric water content at field capacity specific to soil type (Table 1). We initially employ a 

value of 6.3 m3 m-3 for 𝑐𝑠𝑜𝑖𝑙 (following Beljaars and Bosveld, 1997); this parameter alters the 
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relationship (i.e. slope) between conductance and soil moisture and consequently the 

sensitivity of 𝐹𝑀 to changes in soil moisture.  

3.4.3 Simulating fluxes at the test sites. 

To address our three primary objectives, here we evaluate the de Rooy and Holtslag (1999) 

scheme against the measured fluxes at the Johnstown Castle and Dripsey grassland sites. In 

particular, we focus on the different formulations for surface resistance (𝑟𝑠) and their ability 

to estimate surface fluxes at i) a site that exhibits similar soil moisture properties to the 

Cabauw site, over which the scheme was originally developed, and ii) a site with differing soil 

moisture properties.  

In the following section we use abbreviations to represent the different formulations used to 

obtain 𝑟𝑠: 

1. FAO to identify 𝑟𝑠obtained using Eq. 3.8 

2. dRH99 to identify 𝑟𝑠 obtained using Eq. 3.9 and, 

3. BB97 to identify 𝑟𝑠 obtained using Eq. 3.11 

The analysis is carried out for daytime only (𝑄𝑠↓ > 10 W m-2) when the majority of 

evapotranspiration takes place. At Johnstown Castle, we employ data from the nearby 

meteorological station and 𝜃 from the EC flux site as input to the scheme.  At Dripsey, we 

employ data from Cork Airport, which is 25 km distant and is the closest suitable 

meteorological station. Due to the absence of soil moisture measurements for the period of 

study, we employ soil moisture data from 2005 as a surrogate to test the BB97 formulation in 

estimating 𝑟𝑠 and 𝑄𝐸 at this site. We justify this on the basis that the cumulative precipitation 

during 2005, when the volumetric water content measurements are available, and 2010, 
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when the flux measurements were obtained, display a similar profile during the period when 

soil moisture is likely to be most influential (Figure 3.4). Section 3.5 presents the results of the 

analysis. 

Beljaars and Bosveld (1997) derived values for the 𝑓𝑟, 𝑆𝑟, ℎ𝑠 and 𝑐𝑠𝑜𝑖𝑙 coefficients employed 

in BB97 based on their model fit to the measured data at Cabauw. To assess the influence of 

these specified values on 𝑟𝑠 and consequently 𝑄𝐸 at both sites, we undertook a local 

sensitivity analysis, employing a one-at-a-time technique. For each coefficient value altered, 

the remaining values are held at their original, specified values. We initially perturbed the 

values of 𝑓𝑟, 𝑆𝑟, ℎ𝑠 and 𝑐𝑠𝑜𝑖𝑙 at Johnstown Castle, where all the required measured input 

variables are available.  For consistency and robustness of model evaluation, we conducted a 

similar sensitivity analysis for the Dripsey site, employing soil moisture data from 2005. 

Finally, we employ the optimised values derived from the sensitivity analysis to derive 

estimated 𝑄𝐻 and 𝑄𝐸 at Johnstown Castle, where the default values for BB97 failed to 

replicate the measured fluxes; results from the sensitivity analysis are presented in Section 

3.5.2 

The de Rooy and Holtslag (1999) scheme is used, with different approximations of 𝑟𝑠, to 

simulate hourly radiation and turbulent fluxes at each observation site. The estimated hourly 

𝑄𝑁, 𝑄𝐻 and 𝑄𝐸 and daily averaged 𝑄𝐻 and 𝑄𝐸 fluxes were compared with the observed fluxes 

at each site using a number of statistical measures including root mean square error (RMSE), 

bias, standard deviation (sd) and correlation coefficient (𝑟), and results are presented below.  
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3.5 Results  

3.5.1 Evaluation of radiation and estimated surface fluxes 

3.5.1.1 Net radiation  

Figure 3.6 shows the relationship between estimated and measured (daytime) hourly 𝑄𝑁 

values for both sites. The estimated (measured) 𝑄𝑁 values are: between -90 and 600 W m-2 (-

100 and 635 W m-2) at Johnstown Castle and; between -66 and 553 W m-2 (-100 and 600 W 

m-2) at Dripsey. At Johnstown Castle, the model tended to overestimate negative values of 

𝑄𝑁 and underestimate large positive values. At Dripsey, the underestimation of 𝑄𝑁 is likely 

attributable to its reliance on 𝑄𝑆↓ which was derived based on hourly sun duration obtained 

from a distant meteorological site.  Overall model performance at the two sites indicates: a 

RMSE = 69.7 W m-2 (sd = 158 and 153 W m-2 for the estimated and measured values, 

respectively) at Johnstown Castle and; a RMSE = 91.6 W m-2 (sd  = 144 and 149 W m-2 for the 

estimated and measured values) at Dripsey.  

 

Figure 3.6. Relationship between daytime hourly measured (𝑄𝑁𝑚) and estimated (𝑄𝑁𝑒) net radiation flux over 
both sites. 
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These results are broadly comparable with other similar studies. For example, Holtslag and 

van Ulden (1983) derived a linear relationship between 𝑄𝑆↓, solar elevation and total cloud 

cover, in combination with other components of the surface radiation budget, to estimate 𝑄𝑁 

under both clear and cloudy sky conditions at Cabauw and obtained a RMSE  of 63 W m-2  for 

𝑄𝑁 under all conditions. 

 3.5.1.2 Sensible heat fluxes  

Table 3.4 shows the performance metrics for the estimated hourly 𝑄𝐻 for both sites using the 

three formulations for 𝑟𝑠  outlined above. Of these, dRH99 was found to perform the best 

across all metrics and both sites, but particularly at Johnstown Castle, displaying the lowest 

RMSE and bias and highest 𝑟 values. BB97 performs the poorest at Johnstown Castle, 

displaying the highest RMSE and bias compared to the other two methods. In contrast, at 

Dripsey, BB97 produces metrics that are very similar to dRH99.   

 

 

 

 

 

 

Table 3.4. Performance assessment of daytime (𝑄
𝑆↓

 > 10 W m-2)  𝑄
𝐻

  based on different 𝑟𝑠, over both stations. 

The italicized values show the 𝑟𝑠 method that give the best agreement between estimated and measured 𝑄
𝐻

, 
RMSE and Bias (W m-2) 

 

Figures 3.7 and 3.8 display the scatterplots of measured and estimated hourly 𝑄𝐻, using the 

three formulations of 𝑟𝑠, at Johnstown Castle and Dripsey, respectively; they also show the 

 Dripsey 

 

Johnstown Castle 

 

𝑟𝑠  method RMSE Bias r RMSE Bias r 

dRH99 38.2 9.4 0.78  36.1 8.3 0.83 

BB97 39.8 11.9 0.77 51.8 23.4 0.83 

FAO 44.7 16.7 0.77 43.8 15.9 0.82 
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daily cycle of 𝑄𝐻, during daylight hours, averaged for the month of July for the respective year 

of observation. At Johnstown Castle, BB97 significantly overestimates 𝑄𝐻 (which is evident in 

the July graph) while both dRH99 and FAO match the measured values more closely (Figure 

3.7). In general, large positive hourly values of 𝑄𝐻 are underestimated at Dripsey but daytime 

values during July are very close (Figure 3.8). Of the three 𝑟𝑠 methods, dRH99, at both sites, 

and BB97, at Dripsey, produced results that are most comparable with Holtslag and van Ulden 

(1983) who employed a modified Priestly-Taylor approach to estimate 𝑄𝐻 and 𝑄𝐸 above a 

short-grass covered surface at Cabauw; they reported a RMSE of 34 W m-2 between measured 

and estimated 𝑄𝐻. 

 

Figure 3.7. Relationship between daytime hourly measured (𝑄𝐻𝑚) and estimated (𝑄𝐻𝑒) sensible heat flux 
applying the Scheme with different 𝑟𝑠  models over Johnstown Castle. The line plot is the diurnal cycle of 𝑄𝐻 , 
averaged for July, 2013. 
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Figure 3.8. Relationship between daytime hourly measured (𝑄𝐻𝑚) and estimated (𝑄𝐻𝑒) sensible heat flux 
applying the Scheme with different 𝑟𝑠  models over Dripsey. The line plot is the diurnal cycle of 𝑄𝐻 , averaged for 
July, 2010. 

3.5.1.3 Latent heat fluxes 

Table 3.5 shows the statistics for the estimated and measured 𝑄𝐸 values for both sites. 

Although the FAO method employs a constant 𝑟𝑠 value, it produced the best fit at Johnstown 

Castle (RMSE = 34.9 W m-2, bias = -6.7 W m-2 and 𝑟  = 0.85) (Table 3.5), followed by dRH99 

(RMSE = 43.1 W m-2, bias = 11.7 W m-2 and 𝑟  = 0.84). Employing the default Beljaars and 

Bosveld (1997) values, BB97 performed very poorly at this site (RMSE = 56.1 W m-2, bias = -

29.9 W m-2 and 𝑟  = 0.62). At Dripsey, FAO produced the best fit in terms of RMSE and 𝑟  value 

(RMSE = 38.9 W m-2 and 𝑟  = 0.84), but displayed the highest bias (bias = -11.8 W m-2) of the 

three methods. dRH99 performed the poorest at this site, with the highest RMSE and lowest 

𝑟  value (RMSE = 48.7 W m-2 and 𝑟  = 0.78) relative to the other two methods. BB97 resulted 
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in the lowest bias value of all methods (bias = -2.1 W m-2), and an RMSE and 𝑟 value 

comparable to FAO (RMSE = 41.2 W m-2 and 𝑟  = 0.83).  

 

 Dripsey Johnstown Castle 

 

𝑟𝑠  𝑚𝑒𝑡ℎ𝑜𝑑 RMSE Bias r RMSE Bias r 

dRH99 48.7  5.6 0.78 43.1 11.7 0.84 

BB97 41.2  -2.1 0.83 56.1 -29.9 0.62 

FAO 38.9  -11.8 0.84 34.9 -6.7 0.85 

       

Table 3.5. Performance assessment of daytime (𝑄𝑆↓ > 10 W m-2)  𝑄𝐸  based on different 𝑟𝑠 , over both stations. 
The italicized values show the 𝑟𝑠  method that give the best agreement between estimated and measured 𝑄𝐸 . 
RMSE and Bias (Wm-2) 

 

Figures 3.9 and 3.10 show scatterplots of hourly measured and estimated 𝑄𝐸, based on the 

different 𝑟𝑠 formulations, for Johnstown Castle and Dripsey, respectively; they also show the 

daily cycle of 𝑄𝐸 for daylight hours, averaged for the month of July. While FAO produced the 

lowest RMSE and bias values at Johnstown Castle (Table 3.5), both FAO and dRH99 are shown 

to overestimate 𝑄𝐸, evident during the mid-day hours in July, when radiation is most intense; 

BB97 significantly underestimates 𝑄𝐸, evident during July (Figure 3.9). At Dripsey, all 𝑟𝑠 

methods underestimate 𝑄𝐸, with the largest underestimates associated with FAO. Holtslag 

and van Ulden (1983), in their study over Cabauw, report a RMSE of 56 W m-2 between 

measured and estimated 𝑄𝐸; results for all 𝑟𝑠 methods used here are consistent with this 

finding. 
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Figure 3.9. Relationship between daytime hourly measured (𝑄𝐸𝑚) and estimated (𝑄𝐸𝑒) latent heat flux applying 
the Scheme with different 𝑟𝑠  models over Johnstown Castle. The line plot is the diurnal cycle of 𝑄𝐸 , averaged for 
July, 2013. 

 

Figure 3.10. Relationship between daytime hourly measured (𝑄𝐸𝑚) and estimated (𝑄𝐸𝑒) latent heat flux applying 
the Scheme with different 𝑟𝑠  models over Dripsey. The line plot is the diurnal cycle of 𝑄𝐸 , averaged for July, 2010. 
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3.5.2 Analysis of model sensitivity 

To explore the difference in performance between the 𝑟𝑠 formulations, we examined the 

calculated 𝑟𝑠 ranges during daytime hours for both dRH99 and BB97. From Table 3.6, the range 

in 𝑟𝑠 values are larger for BB97 than for dRH99, at both sites. The large difference in estimated 

𝑟𝑠 values between dRH99 and BB97 result in a marked contrast in the estimated 𝑄𝐸 values at 

Johnstown Castle (Figure 3.9). In contrast, the difference in the range of 𝑟𝑠 values at Dripsey 

between methods is smaller; smaller differences are also apparent in the estimated 𝑄𝐸 

between these methods at this site. To further examine this, we focus our attention on BB97 

to understand the role of the environmental response factors in regulating 𝑟𝑠 and 

consequently 𝑄𝐸  at both sites. 

𝑟𝑠  method Johnstown Castle Dripsey 

 𝑄𝑆↓ > 10 W m-2 𝑄𝑆↓ > 100 W m-2 𝑄𝑆↓ > 10 W m-2 𝑄𝑆↓ > 100 W m-2 

dRH99 0 – 100 0 – 100 0 – 90 0 – 90 

BB97  25 – 15800 25 - 2613 25 – 1300 25 – 175 

BB97 (optimised) 25 - 2450 20 - 400 - - 

Table 3.6. Range of estimated 𝑟𝑠  (s m-1) during mid-day time (𝑄𝑆↓ > 10 W m-2 and  𝑄𝑆↓ > 100 W m-2) over the 
selected stations. BB97 is based on the scheme using the default parameter values (i.e. Beljaars and Bosveld, 
1997) for BB97; BB97 (optimised) is based on the updated optimised values for Johnstown Castle, employed in 
this study. 

 

3.5.2.1 Sensitivity of 𝑄𝐸 to soil and environmental factors  

A sensitivity analysis on BB97 was conducted by altering the values of 𝑓𝑟, 𝑆𝑟, ℎ𝑠and 𝑐𝑠𝑜𝑖𝑙, 

individually, and leaving the remaining coefficients unchanged.  

At Johnstown Castle, the estimated 𝑄𝐸 was found to be largely insensitive, within the range 

of values tested, to alterations in either ℎ𝑠, associated with the atmospheric moisture deficit 

function (𝐹𝛥𝑞), or 𝑆𝑟, associated with the radiation function (𝐹𝑆) (Figure 3.11, top) during 
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January or July. In contrast, during July, 𝑟𝑠 and consequently 𝑄𝐸was found to be very sensitive 

to changes in 𝑐𝑠𝑜𝑖𝑙, associated with the soil moisture function (𝐹𝑀) (Figure 3.11, bottom left). 

   

Figure 3.11. Sensitivity of daytime 𝑟𝑠  and 𝑄𝐸  to environmetal factors, averaged for January and July over 
Johnstown Castle. ℎ𝑠 (g kg-1), 𝑆𝑟  (W m-2), 𝑐𝑠𝑜𝑖𝑙  (m3 m-3) and 𝑓𝑟 is dimensionless. The calculated biases for January 
(≈ -14 W m-2) are similar for all factors. The dashed and solid lines are  𝑟𝑠  and 𝑄𝐸 , respectively. 

 

 When the default value (6.3 m3 m-3) for 𝑐𝑠𝑜𝑖𝑙  was employed, the average daytime value of 𝑟𝑠 

increased significantly (≈ 600 s m-1), suppressing the estimated 𝑄𝐸 values (Figure 3.9). 

When 𝑐𝑠𝑜𝑖𝑙 = 0 m3 m-3, equivalent to setting 𝐹𝑀 = 1, the estimated 𝑄𝐸  increases to near its 

potential, in response to low daytime 𝑟𝑠 (< 50 s m-1) values. Setting 𝑐𝑠𝑜𝑖𝑙 values within the 

range of 2.3 – 4.3 m3 m-3 resulted in 𝑄𝐸 estimates with the lowest bias, relative to measured 

values. A similar response was found for 𝑓𝑟; estimated 𝑄𝐸 decreased from its potential (𝑓𝑟 =
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0) with increasing 𝑓𝑟 . A  𝑐𝑠𝑜𝑖𝑙 = 4.3 m3 m-3 was ultimately selected, based on the bias value (0.9 

W m-2) for the month of July. 

At Dripsey, changes to ℎ𝑠, 𝑆𝑟 and 𝑐𝑠𝑜𝑖𝑙 had little or no impact on 𝑟𝑠 and consequently 𝑄𝐸  

(Figure 3.12, top and bottom left), during either January or July. Similar to the findings at 

Johnstown Castle, 𝑟𝑠 was found to increase with increasing 𝑓𝑟 so that the corresponding 𝑄𝐸 

decreases, evident during the mid-day hours in both January and July.  

 

Figure 3.12. Sensitivity of daytime 𝑟𝑠  and 𝑄𝐸  to environmetal factors, averaged for January and July over Dripsey. 
ℎ𝑠 (g kg-1), 𝑆𝑟  (W m-2), 𝑐𝑠𝑜𝑖𝑙  (m3 m-3) and 𝑓𝑟 is dimensionless. The calculated biases for January (≈ -9 W m-2) are 
similar for all factors. The dashed and solid lines are  𝑟𝑠  and 𝑄𝐸 , respectively. 
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3.5.2.2 Estimation of surface fluxes using adjusted coEFficients 

Figure 3.13 (top) shows the hourly measured and estimated fluxes of 𝑄𝐸 and 𝑄𝐻 and averaged 

hourly day time values for July (Figure 3.13, bottom). The use of adjusted values (Table 3.7) 

at Johnstown Castle improves the RMSE and bias for 𝑄𝐸 (RMSE = 37.8 W m-2, bias = -9.7 W m-

2) and 𝑄𝐻 (RMSE = 41.7 W m-2, bias = 15.3 W m-2) and the 𝑟  value for 𝑄𝐸 (𝑟 = 0.82). The diurnal 

cycle (Figure 3.13, bottom) shows clearly that 𝑄𝐸  is significantly improved, matching more 

closely with the measured values during July. Overall, the magnitudes of daytime hourly 

estimated (measured) 𝑄𝐻 were within the range -60 and 320 W m-2 (-100 and 220 W m-2), 

while that of 𝑄𝐸were within -100 and 350 W m-2 (-20 and 310 W m-2). At Dripsey, using the 

original BB97 values which proved to be optimum for this site, the surface fluxes were 

estimated within the range -68 and 235 W m-2 for 𝑄𝐻 and within -11 and 330 W m-2 for 𝑄𝐸. 

 

Figure 3.13. Relationship between daytime hourly measured and estimated 𝑄𝐻  [left] and 𝑄𝐸  [right] fluxes for 
2013  , applying the Scheme with optimized (𝑐𝑠𝑜𝑖𝑙  = 4.3 m3 m-3)  𝑟𝑠  over Johnstown Castle.  
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Soil Drainage Model       Range Optimised Units 

Characteristics Parameter  value  

     

Imperfectly   drained 𝑓𝑟 0 – 0.6 0.47 - 

(Johnstown Castle) ℎ𝑠 0 – 0.2          0.16 g kg-1 

 𝑐𝑠𝑜𝑖𝑙   0 – 6.3 4.3 m3 m-3 

 𝑆𝑟  200 - 245          230 W m-2 

     

Poorly drained 𝑓𝑟 0 – 0.6 0.47 - 

(Dripsey) ℎ𝑠 

𝑐𝑠𝑜𝑖𝑙  

𝑆𝑟  

0 – 0.2 

0 – 6.3 

200 - 245  

         0.16 

6.3 

         230 

g kg-1 

m3 m-3 

W m-2 

Table 3.7. Adapted empirical coefficients of optimized 𝑟𝑠  for 𝑄𝐸  estimation under different surface conditions 

 

Averaged daily 𝑄𝐻 were estimated between -50 W m-2 and 170 W m-2 at both sites; daily 𝑄𝐸 

values ranged between -15 W m-2 and 190 W m-2 at both sites (Figure 3.14, top). While both 

sites showed similar exchanges of 𝑄𝐻, at both hourly and daily time scales 𝑄𝐸  was higher than 

𝑄𝐻. This indicates that the surface conditions at these sites were wet, in general, resulting in 

lower 𝛥𝑞𝑎 and 𝑟𝑠  and consequently, higher 𝑄𝐸. The broader pattern shows the seasonal 

variation in the fluxes, which are low in winter and peak in summer (Figure 3.14, bottom).  

3.6. Discussion 

3.6.1 Physical control of surface resistance and surface fluxes 

In this study, we evaluated the land surface parameterization scheme of de Rooy and Holtslag 

(1999) as a means of deriving surface energy fluxes using routine meteorological data. 

Although the scheme was developed using observations made over short grass grown on 

poorly drained soil, they suggested it could be adjusted for use elsewhere if the surface 

parameters, particularly surface resistance (𝑟𝑠), are modified to local conditions by using 
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appropriate parameterization schemes. Beljaars and Bosveld (1997) indicate that 𝑟𝑠 can vary 

owing to a range of environmental factors, including soil moisture, photosynthetically active 

radiation (PAR) and near-surface moisture deficit. Here, we focus on three different methods 

(namely FAO, dRH99 and BB97) of representing 𝑟𝑠, representing varying levels of 

sophistication, within the scheme. 

 

Figure 3.14. Relationship between parameterized and measured averaged daily  𝑄𝐻  and 𝑄𝐸  over the selected 
sites. The daily variations of  𝑄𝐸  and 𝑄𝐻  in the course of a year are shown in the middle (c-d) and bottom (e-f) 
panels, respectively. The shaded portions are the 5th and 95th percentiles of uncertainty bound as calculated by 
LOESS regression. 

The FAO method requires no information on atmospheric and site conditions and assigns a 

fixed value for 𝑟𝑠. Estimates using this method performed relatively well in estimating  𝑄𝐸 but 
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poorly in estimating 𝑄𝐻 at both sites. The dRH99 method incorporates the near-surface 

moisture deficit but did not perform as well as FAO for 𝑄𝐸, but did better than FAO for 𝑄𝐻 at 

both sites. The most sophisticated method (BB97), using the standard values for the 

environmental response factors (i.e.  𝑓𝑟, 𝑆𝑟, ℎ𝑠 and 𝑐𝑠𝑜𝑖𝑙), provided a good fit to both 𝑄𝐻 and 

𝑄𝐸 at Dripsey but performed poorest of all methods at Johnstown Castle.  

These results may seem counterintuitive, as the FAO method with the least information 

performs well, relative to the other methods with regard to 𝑄𝐸. In part this can be explained 

by the constrained nature of the energy budget, which allocates the energy available (that is,  

𝑄𝑁 −  𝑄𝐺) into 𝑄𝐻 and 𝑄𝐸. As FAO underestimates 𝑄𝐻, more energy is channelled into 𝑄𝐸. 

Similarly the improved performance of dRH99 for 𝑄𝐻 results in a weaker result for 𝑄𝐸. 

However, the intriguing result is for the most sophisticated method (BB97), which includes 

many of the physical controls on 𝑟𝑠, performs well at Dripsey using standard values but poorly 

at Johnstown Castle for both 𝑄𝐻 and 𝑄𝐸. As both Johnstown Castle and Dripsey experience 

similar meteorological conditions (Figures 3.2-3.4), we hypothesised that this is due to the 

soil moisture characteristics (Table 1), which are not considered by dRH99.  

Figure 3.15 shows the average daily values of soil moisture (𝜃) of Dripsey and Johnstown 

Castle for the years available. Seneviratne et al. (2010) classified evapotranspiration regimes 

into types. A wet regime is defined as energy-limited, and occurs when 𝜃 lies above a critical 

soil moisture level (𝜃𝐶𝑇). When 𝜃 falls below 𝜃𝐶𝑇 (typically between 0.5-0.8 of 𝜃𝐹𝐶) 

(Seneviratne et al. 2010; after Shuttleworth, 1993) the regime is classed as moisture-limited 

and ‘transitional’. At Dripsey, daily 𝜃 varies between 0.25 to 0.4 m3 m-3 over the two year 

period and only drops below 𝜃𝐹𝐶 for short periods; from the 6th June to the 8th August during 

2004 (≈ 64 days) and from the 28th June to the 23rd July during 2005 (≈ 26 days).  



102 

 

Figure 3.15. Averaged diurnal variations of the measured 𝜃 of the top layer of the soil from 2004 to 2005 at 

Dripsey and for the year 2013 at Johnstown Castle. The gaps indicate periods with missing values. The horizonal 

dashed line is the threshold of 𝜃 at field capacity [blue] and wilting point [red], and the grey box is the (upper 
and lower critical 𝜃 at 0.25 m3 m-3 and 0.15 m3 m-3, respectively)  bound of transitional soil moisture regime for 
both sites (after Shuttleworth, 1993).  

At Johnstown Castle, 𝜃 varies between 0.12 to 0.47 m3 m-3 over the measurement period; 

however, 𝜃 falls below 𝜃𝐶𝑇 for an extended period from the 23rd May to the 30th September 

during 2013 (≈ 131 days). Consistent with the soil drainage characteristics, the heavier soils 

at Dripsey maintain sufficient moisture throughout the year; this meets the definition of a 

wet regime where 𝑄𝐸 is constrained by the available energy. At Johnstown Castle, in the 

absence of precipitation, the soil moves from a wet to a transitional regime and 𝑄𝐸 becomes 

moisture-limited.  This suggests that the impact of the different methods for obtaining 𝑟𝑠 

values will be most evident during transitional soil moisture regimes. BB97 is the only method 

that can incorporate these effects into the calculation of surface resistance (𝑟𝑠). 
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The sensitivity analysis identified the 𝑐𝑠𝑜𝑖𝑙 coefficient, which acts to modify the plants ability 

to access soil moisture below field capacity (𝜃𝐹𝐶) as a critical variable. A value of 𝑐𝑠𝑜𝑖𝑙 ≈ 6.3 m3 

m-3 was estimated by Beljaars and Bosveld (1997) based on observations at a poorly-drained 

site (Cabauw), similar to the Dripsey site, which fits the characteristics of an energy-limited 

evapotranspiration regime. However, we found that a value of 𝑐𝑠𝑜𝑖𝑙 ≈ 4.3 m3 m-3 was better 

suited to the imperfectly-drained soils at Johnstown Castle, which often experiences a 

transitional regime. The adjusted 𝑐𝑠𝑜𝑖𝑙 value reduced the range of 𝑟𝑠 values (Table 3.7) and 

improved results for both hourly and daily 𝑄𝐻 and 𝑄𝐸 estimates (Figure 3.13; Figure 3.14). 

These results indicate that 𝑟𝑠 depends very strongly on soil moisture regimes, particularly 

during a transitional period where 𝜃 falls below 𝜃𝐶𝑇, so that the use of a constant value or a 

linear relation where air moisture response is the only driver of 𝑟𝑠 may prove inferior. This 

supports the conclusion of Beljaars and Bosveld (1997), who established that all the 

environmental response parameters are important for stomatal control during dry periods, 

in order to obtain a good flux simulation.  

The estimates of surface energy fluxes generated by the de Rooy and Holtslag (1999) scheme 

using the BB97 method that adjusts to soil moisture conditions, generates both hourly (RMSE 

≈ 40 W m-2) and daily (RMSE ≈ 24 W m-2) statistics that are comparable with other similar 

studies. For instance, Holtslag and van Ulden (1983), using calculated 𝑄𝑆↓  as an input into 

their scheme, obtained half-hourly measures of RMSE ≈ 34 W m-2 for 𝑄𝐻 during daytime over 

grassland at Cabauw, the Netherlands. The errors of estimated 𝑄𝐸 using different spatial 

evapotranspiration (ET) models including mapping ET at high resolution with internalized 

calibration (METRIC) (Allen et al., 2007), surface energy balance systems (SEBS) model (Su, 

2002), two-source energy balance (TSEB) model (Norman et al., 1995), triangle model, and 
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surface energy balance algorithm for land (SEBAL) (Bastiaanssen et al., 1998a) are within the 

range ≈ 30 – 80 W m-2 (Long and Singh, 2013), which also correspond to results in this study. 

Estimated daily ET fluxes using an upscaled evaporative fraction (EF) scheme have also been 

found to range between 5 and 40 W m-2 (Colaizzi et al., 2006; Sobrino et al., 2007; Tang et al., 

2013).   

3.6.2 Uncertainties in surface heat flux simulations 

It is important to recognise several potential sources of error in this work and their likely effect 

on the findings.  

Energy budget closure: The energy flux estimates generated here using the de Rooy and 

Holtslag scheme are evaluated by comparison with EC measurements made at two sites. It is 

important to acknowledge that there are likely to be errors in the measured fluxes that can 

be assessed as part of energy budget closure (see section 3.3.1). Here, the closure is measured 

as 𝑄𝑁  - (𝑄𝐻 + 𝑄𝐸) and the results for both sites (Figure 3.2) are consistent with those reported 

in the previous studies (e.g Wilson et al., 2002). The major reason for the non-closure here is 

the absence of substrate heat flux (𝑄𝐺) observations but there are also likely to be errors 

associated with the measured terms (Heusinkveld et al., 2004). EC measurements are known 

to underestimate the turbulent sensible (𝑄𝐻) and latent (𝑄𝐸) heat fluxes mainly because they 

do not capture the effects of large-scale eddies that are linked to landscape heterogeneity 

(Foken, 2008). We do not attempt to evaluate the magnitude of the underestimates in this 

work but Foken (2008) indicates that these may be between 10-20 %. This should be borne in 

mind when evaluating the estimated turbulent fluxes using BB97, which employ adjusted 

parameters to improve the fit to observations.  
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Additionally, EC measurements have gaps which could be associated with system 

maintenance, power or equipment failures,  micrometeorological conditions under which the 

assumptions of EC measurements are not met, etc. (Wutzler et al., 2018). Depending on the 

proportion of missing data,  the quality of data for analysis can potentially impact the results 

of model evaluation, particularly if the gaps are large and skewed to a particular season or 

meteorological conditions. Several attempts to gap-fill missing data have been consolidated 

in recent decades, with a view of improving robustness and accurateness of the resulting data 

and model analysis, and obtaining temporally continuous data of surface fluxes (e.g. Falge et 

al., 2001; Wutzler et al., 2018). These methods are available as open-source tools (e.g. 

Wutzler et al., 2018). However, gap-filled data could as well bias model validation since they 

are rather based on data synthesis, and no general consensus as to which technique or tool 

is superior (Boudhina et al., 2018).  Though the proportions of missing flux measurements 

used in this study are considerably high, the values are within the standard range between 25 

and 35 % (Falge et al., 2001; Boudhina et al., 2018), and the non gap-filled data are fairly 

spread across the year of analysis. 

Meteorological observations: The de Rooy and Holtslag (1999) scheme requires inputs on 

solar radiation, air temperature, humidity, etc. to estimate fluxes. Ideally, these 

meteorological observations are complete and available at the site of study. This was not the 

case for Dripsey, where the scheme used data obtained for a site 25 km distant (Cork Airport) 

where observations of solar radiation (𝑄𝑆↓) and cloud cover were not available. The study 

estimated  𝑄𝑆↓ from sunshine hours using a modified Angstrom-model but could not account 

for the impact of clouds on 𝑄𝐿↓; as a result, estimated 𝑄𝑁 is likely to be lowered, especially at 

night. This error will affect all surface energy fluxes but, given the focus on daytime 
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evaporation, the impact is likely to be small. While the estimated 𝑄𝐺 values were not 

evaluated in this study, de Rooy and Holtslag (1999) also highlighted that, an overestimation 

of 𝑄𝐺 may result in negative bias in 𝑄𝑁 −  𝑄𝐺 that is used to estimate 𝑄𝐸 .  

Finally, the need to estimate radiation components (rather than using observations) will result 

in errors that will impact on the turbulent flux estimates produced by the different methods. 

Model parameters: Apart from the uncertainties associated with meteorological forcings and 

EC measurements, a land surface scheme could also suffer from uncertainties in model 

parameter values. Model parameters are used to represent the physical property of the 

system, and can act or interact to influence the behaviour of the system (Arsenault et al., 

2018). In essence, employing prescribed values for some selected parameters without 

calibration or optimization may potentially alter the solution of the remaining parameters, 

especially because the general application of prescribed values may be uncertain (Li et al., 

2020a). In this study, we have focused on optimising a few selected parameters relating to 

Jarvis-type surface resistance model, while keeping the standard values of the remaining 

parameters (e.g. minimum stomatal resistance, surface emissivity, surface roughness, etc) in 

the scheme. Though the specified model parameter values have been established as 

appropriate for short grass, we should acknowledge that employing improper parameter 

values may pose a fundamental shortcoming to the model internal dynamics and its 

simulations. 
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3.7 Conclusion 

This chapter evaluated an existing physically-based scheme for estimating surface energy 

fluxes over two independent sites with contrasting soil moisture characteristics. The radiative 

and non-radiative components were parameterized from limited routine weather 

observations for daytime conditions over grass-covered surfaces at Johnstown Castle and 

Cork Airport in Ireland. The parameterized fluxes were further evaluated against observed EC 

flux measurements at Johnstown Castle and Dripsey (25km from Cork Airport). Our main 

objectives are to test whether the original de Rooy and Holtslag (1999) scheme, which was 

derived at a grassland site in the Netherlands (Cabauw) can be transferred to other grassland 

sites and take into account different soil characteristics. The study focused in particular on 

the role of surface resistance (𝑟𝑠) in regulating the daytime turbulent heat fluxes of 𝑄𝐻 and 

𝑄𝐸. Three methods of varying sophistication (FAO, dRH99 and BB97) were applied to the 

estimation scheme at the two test sites, which represent poorly (Dripsey) and imperfectly 

(Johnstown Castle) drained soils. While BB97 and dRH99 produced a good fit to observed 𝑄𝐸 

values at Dripsey (a site that is similar to Cabauw), the fit at Johnstown Castle was poor. The 

differences in results were attributed to soil moisture characteristics and only BB97 accounts 

for this property. A critical variable in this method of deriving 𝑟𝑠is the soil moisture coefficient 

(𝑐𝑠𝑜𝑖𝑙), which accounts for the water available to plants for evapotranspiration; the value of 

𝑐𝑠𝑜𝑖𝑙 used in BB97 (6.3 m3 m-3) was suited to the wet soil conditions at Dripsey but not at 

Johnstown Castle. This study finds that 𝑐𝑠𝑜𝑖𝑙 ≈ 4.3 m3 m-3 resulted in 𝑄𝐻 and 𝑄𝐸 values that 

agree well with the measured values over imperfectly drained soil.   

An additional finding from this work was that the use of off-site meteorology, similar to the 

site of interest, can be reliably employed to estimate the measured surface fluxes at a 
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location; we demonstrated this at Dripsey, where the nearest suitable meteorological station 

was located ≈25 km’s away. Notwithstanding the uncertainties associated the estimation of 

𝑄𝑠↓ from sun hours and the use of soil water from a similar precipitation year (i.e. 2005), the 

estimated fluxes agree well with the measured values at this site. In the absence of direct soil 

moisture measurements and based on the soil drainage characteristics at Dripsey, the use of 

𝐹𝑀 = 1 in combination with standard optimal coefficients of BB97 is likely to produce similar 

results to dRH99.  

The surface energy imbalance is always characterized to be partly a consequence of an 

underestimation of turbulent heat fluxes by EC techniques. Given the measures of observed 

surface energy balance closure at the test sites which, while they do not account for 𝑄𝐺, are 

consistent with previous studies, we can conclude that the uncertainty of the 

parameterization scheme associated with the systematic bias of EC measurements of 

turbulent heat fluxes is relatively smaller. Notwithstanding the problems of surface energy 

balance closure of EC measurements, the estimated fluxes improved significantly through the 

adjustment of a 𝑐𝑠𝑜𝑖𝑙 adjusted to account for the soil moisture conditions. Generally, the de 

Rooy and Holtslag (1999) scheme demonstrated good performance in replicating the 

measured fluxes over grass-covered surfaces exhibiting different soil moisture characteristics 

and using routine weather observations for daytime weather conditions at both sites. On the 

basis of the analysis conducted here, we therefore conclude that the land surface scheme is 

sensitive to soil types that exhibit different drainage characterises; whether the optimised 

coefficient for 𝑐𝑠𝑜𝑖𝑙 in this study is more generally applicable, remains to be tested.  
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4. A Model Framework to Investigate the Role of Anomalous Land 

Surface Processes in the Amplification of Summer Drought across 

Ireland during 2018. 

Preface 

In revision as: 

Ishola, K. A., Mills, G., Fealy, R. M., Fealy R., 2021. A model framework to investigate the role of 
anomalous land surface processes in the amplification of summer drought across Ireland during 2018, 
1-27pp – revision submitted to International Journal of Climatology  

Here the LSS is applied to a number of grass field sites, covering the entire Ireland domain, 

having (i) identified a key physical property (𝑐𝑠𝑜𝑖𝑙) that allows us to distinguish between soil 

types, their ability to retain water accessible to plants and plant response to exchanges; and 

(ii) developed and evaluated the model outputs against the available observations at two test 

sites, in the previous paper. The current manuscript to be submitted is provided under 

supplementary information (paper 2).   The primary aim was to explore the ability of the 

scheme, in combination with global reanalyses and satellite-derived products, to improving 

our understanding of a specific extreme weather event such as the 2018 summer drought at 

regional scale. The broad pursuant question here is: Can a validated LSS be used to explore 

(and predict) the emergence and development of agricultural drought and its regional 

characteristics?. This study will allow us to examine the potential consequences of climate 

change which predicts more intense dry periods in summer in the future. 

The chapter/paper is an extended version partly based on the comments received on the 

preliminary results presented at International Symposium on Climate-Resilient Agri-

Environmental Systems (ISCRAES), Dublin, Ireland.  
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Abstract 

Here, we explore the utility of a physically-based land surface scheme with in-situ 

observational data, along with global gridded reanalyses and satellite-derived products to 

analyse the spatial and temporal evolution of the 2018 summer drought event in Ireland, over 

fourteen grassland sites. Applying segmented regression models, the study quantifies a 

critical soil moisture threshold, 𝜃𝑐, a key determinant of the transition from wet to dry 

evaporative regimes. For our analysis period (2010-2019), we find that the impacts of the 

event on surface-air energy exchanges were dominated first by atmospheric anomalies and 

subsequently by soil moisture constraints as the accumulated rainfall deficit increased 

throughout the summer months. This was particularly evident in the East and South-East of 

the country. Due to its latitude and ample year round rainfall, Ireland is typically energy 

limited in the context of evaporation, however, during 2018 regions within the country 

displayed a strong linear coupling between soil moisture and both evapotranspiration and 

vegetation response, suggesting a shift into a transitional or water limited regime, beginning 

from the 22 June. The 𝜃𝑐  findings are important to understanding the soil moisture context 

under which land-atmosphere couplings are strongest in water-limited regimes across the 

country. Therefore, these findings should help improve the treatment of soil parameters in 

weather prediction models, required for sub-seasonal and seasonal forecasts, consequently 

enhancing early warning systems of summer climate extremes in the future. 
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4.1 Introduction 

Droughts and heatwaves are extreme weather conditions which are commonly defined by 

periods of soil water shortage and high near-surface air temperature anomalies, respectively. 

These weather conditions may be mutually reinforcing as high temperatures increase the 

atmospheric demand for water vapour, which can only be met if there is sufficient available 

water in the soil profile. As soil water becomes limited, more of the energy available at the 

surface is expended as sensible, rather than latent heat, and the near surface air temperature 

increases (Seneviratne et al., 2010). When these ‘compound’ events evolve simultaneously, 

they can result in a wide range of impacts, including water scarcity, tree mortality and 

agricultural loss, wildfire occurrence and air pollution thus impacting ecosystems, decreases 

in agricultural productivity and impact human health and well-being (Fink et al., 2004; Conti 

et al., 2005; García-Herrera et al., 2010; Dole et al., 2011; Alexander, 2011; Zscheischler et al., 

2018; Miralles et al., 2019; Schuldt et al., 2020).   

At a continental scale, the weather conditions of the 2018 European summer (April to August) 

were exceptional with a higher near-surface temperature and lower rainfall receipts relative 

to the long-term (1981-2010) mean (Magnusson et al., 2018). These conditions were 

associated with the presence of a large anticyclonic system located over central and northern 

Europe, which blocked the normal passage of moisture bearing Atlantic storms over Western 

Europe (Buras et al., 2019; Kornhuber et al., 2019; Rösner et al., 2019; Dirmeyer et al., 2021). 

The resulting heatwave and drought were extreme, surpassing previous records (e.g. 2003 

European heatwave), with several stations across Europe reporting record breaking daily 

maximum temperatures (Buras et al., 2019; Rösner et al., 2019; Dirmeyer et al., 2021). The 

impact of this event was especially evident in northern Europe; as an example, Sweden 
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experienced exceptionally severe wildfires (Albergel et al., 2019; Buras et al., 2019; Rösner et 

al., 2019; Dirmeyer et al., 2021).   

Ireland, which is situated on the western maritime fringe of Europe, also experienced 

unusually warm and dry conditions during the Summer of 2018, though to a lesser extent than 

those experienced in the more continental regions of Europe. Here, the cumulative rainfall 

deficit increased from April onwards, although the arrival of Storm Hector in mid-June 

replenished water supplies in the north and west of the country (Met Éireann Report, 2018a). 

Thereafter, the influence of the European blocking anticyclone reasserted itself and between 

25 June and 15 July most weather stations reported both heatwave and absolute drought 

conditions (Met Eireann Report, 2018b; Moore, 2020). The 2018 event impacted water 

resources with consequent impacts on grass growth productivity resulting in the increased 

cost of agricultural produce and consequently impacted farmers’ incomes here (Dillon et al., 

2018). These impacts were preconditioned by the cold ground temperature arising from the 

exceptional snow fall that was associated with cold airmass advecting around high pressure 

from Siberia towards the country dubbed the ‘Beast from the East’, from the end of February 

and lasted for about a week, causing a very late onset of grass growth season by about a 

month relative to an average year (Dillon et al., 2018).  

The occurrence of both droughts and heatwaves, and their associated impacts, have become 

more frequent over the last three decades across Europe, but in Ireland the reported prolong 

droughts are less frequent in recent decades than prior to 1980s (e.g. Noone et al., 2017).   

Such events are projected to be more widespread and intense due to climate change 

(Beniston, 2004; Pal et al., 2004; Meehl and Tebaldi, 2004; Samaniego et al., 2018). Previous 

studies on meteorological drought, in Ireland and across western Europe, are well-
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documented (e.g. Noone et al., 2017; Falzoi et al., 2019; Murphy et al., 2020; Vicente-Serrano 

et al., 2020). However, the increasing number of episodes of surface dryness warrants 

investigation of agricultural drought, particularly the complexities associated with quantifying 

the integrated effects of decreasing soil moisture, increased evaporative demand and 

increased vegetation stress during extreme hot and dry conditions (e.g. Ciais et al., 2005).  

Under conditions of increasing soil moisture deficit and atmospheric evaporative demand, 

vegetation responds by closing its stomata to minimise water loss to the atmosphere (e.g. 

transpiration) to prevent desiccation; absorbed radiation is subsequently dissipated in the 

form of sensible heat, the overall effect of which results in a positive feedback on air 

temperature (Seneviratne et al., 2010; Miralles et al., 2019). Such feedbacks are driven by the 

land surface and specifically soil moisture when evapotranspiration becomes constrained by 

the reduction in available water (e.g. transitional regime - Seneviratne et al., 2010). In 

contrast, when soil moisture (𝜃) is above some critical threshold, evapotranspiration (ET) 

becomes energy limited. While enhanced surface sensible heat fluxes are typically most 

evident in regions that exhibit a strong coupling between soil moisture and evaporation (e.g. 

Southern Europe) (Knist et al., 2017), regions can switch between energy limited and moisture 

limited regimes over the course of a year or depending on land cover (Seneviratne et al., 

2010). For example, Ireland has a maritime temperate climate with ample year-round rainfall, 

yet frequently experiences seasonal soil moisture deficits; typically associated with those 

locations defined as having well-drained soil characteristics. During periods of prolonged 

rainfall deficits and increased summer temperature-assuming advection is insignificant, such 

regions are likely to experience agricultural drought with consequent impacts on plant 

productivity.  
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Typically, an energy limited and a moisture limited regimes are distinguished based on soil 

moisture-evaporative fraction framework. Evaporative fraction (EF) (defined as the ratio of 

latent heat flux and available energy at the land surface) is an important metric, reflecting the 

partitioning of available energy into surface turbulent fluxes, and providing the fundamental 

knowledge on the coupling and feedback processes at the interface between the land and 

atmosphere (Seneviratne et al., 2010). Within a 𝜃-EF space, EF is often conceptualized as 

bilinearly segmented as a function of 𝜃, separating the regimes at a critical soil moisture 

content (𝜃𝑐) (e.g. Figure 2.7) (Seneviratne et al., 2010; Buitink et al., 2020; Denissen et al., 

2021). In essence, the 𝜃𝑐  is derived from the point at which 𝜃 and EF become linearly coupled 

under which ET becomes limited by drying soils. Buitink et al. (2020) used a similar framework 

but replaced EF with satellite-derived ecosystem indicators, near infrared reflectance of 

vegetation (NIRv) and vegetation optical depth (VOD), to allow for a more precise analysis of 

how vegetation productivity is related to soil moisture during 2018 drought event at two sites 

in the Netherlands. Other studies have also derived this critical threshold based on 

observations and model outputs using different theoretical frameworks (Akbar et al., 2018; 

Haghighi et al., 2018; Feldman et al., 2019; Denissen et al., 2020). Overall, determining 𝜃𝑐 is 

key to predicting timescale of plant response, ET decay and consequently the emergence and 

progression of agricultural drought. 

Exploring the response of surface energy fluxes to soil moisture and atmospheric anomalies 

using eddy covariance measurements or land surface models can potentially provide a better 

understanding of a plant’s physiological response to climate change (Graf et al., 2020; Lansu 

et al., 2020). Additionally, quantifying anomalous surface-atmosphere heat and moisture 

exchanges could be used as an indicator for the early warning or prediction of summer climate 
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extremes.  However, flux observations are generally difficult to obtain and may not exist for 

specific regions of interest; similarly, the use of a numerical land surface model with its 

computational and data requirements maybe beyond the reach of many individual 

researchers.  Consequently, this research evaluates the use of a simple land surface scheme, 

which employs readily available meteorological and surface data, to investigate the role of 

land-atmosphere exchange processes across Ireland during the 2018 summer drought. Using 

the land surface scheme, the study seeks to analyse (i) the evolution of the 2018 drought at 

sub seasonal-to-seasonal and regional scales; (ii) the anomalies in simulated land-atmosphere 

energy exchanges; and, (iii) the role of soil moisture in modulating land-atmosphere exchange 

processes.  

We combine a physically-based land surface scheme with in-situ observational data, along 

with readily accessible global gridded reanalyses and satellite-derived data products to 

address these objectives. The physically-based scheme used here has previously been 

established as having the capability to reproduce measured surface fluxes with some degrees 

of reliability (de Rooy and Holtslag, 1999; Ishola et al., 2020, Chapter 3). The method outlined 

offers the potential for improving management strategies, particularly during anomalous 

warm and dry events, and for delineating areas with differential drought responses. 

4.2 Materials and Methods 

4.2.1 In-situ meteorological data 

Hourly meteorological observations were obtained from fourteen automatic weather stations 

(AWS) across Ireland (Table 4.1 and Figure 4.1) from the Irish Meteorological Service, Met 

Éireann.  These stations are sited over short grass cover, consistent with WMO guidelines and 
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report on global solar radiation (𝑄𝑠↓, W m-2) or sun duration (hours), air temperature (°C), 

relative humidity (%), pressure (kPa), wind speed (m s-1) and precipitation (mm).  As cloud 

amount is only available at relatively few stations, we subsequently exclude the cloud input 

in the land surface scheme to ensure consistency in approach across all stations. For stations 

where sunshine hours are available, including Knock Airport, Casement (Aerodrome), 

Shannon Airport and Cork Airport (Figure 4.1), hourly 𝑄𝑠↓ data were estimated for these 

stations based on observations of sunshine duration following Allen et al. (1998). The hourly 

meteorological observations were obtained for the summer months of May to August. Due 

to the differences in the start of operations of a number of the AWS, we focus the main 

analysis on the most recent decade (2010-2019) to ensure consistent temporal coverage of 

meteorological data across all stations.  

Table 4.1. Characteristics of the selected grassland synoptic stations. The soil types and drainage categories are 
based on the data from Irish Soil Information System (Creamer et al., 2014). The grouped zones, A, B and C, 
comprise of stations with similar precipitation regimes. 

Station Lat/Long  

(°N, °W) 

Elevation  

(m) 

Soil type Drainage 

class 

Region Zone 

Belmullet 

Claremorris 

Finner 

Knock Airport 

Malin Head 

Casement 

Dublin Airport 

Dunsany 

Johnstown 
Castle 

Oak Park 

Cork Airport 

Moorepark 

Shannon Airport 

Valentia 

54.228, 10.007 

53.711, 8.991 

54.494, 8.243 

53.906, 8.817 

55.372, 7.339 

53.306, 6.439 

53.428, 6.241 

53.499, 6.699 

52.292, 6.489 

52.861, 6.915 

51.847, 8.486 

52.164, 8.264 

52.689, 8.918 

51.929, 10.239 

9 

69 

33 

201 

20 

91 

71 

83 

52 

62 

155 

46 

15 

24 

Peat 

Coarse loam 

Coarse loam 

Fine loam 

Peat 

Fine loam 

Fine loam 

Fine loam 

Fine loam 

Fine loam 

Fine loam 

Coarse loam 

Loam 

Coarse loam 

Poor 

Well 

Poor 

Imperfect 

Poor 

Moderate 

Moderate 

Moderate 

Imperfect 

Moderate 

Well 

Well 

Well 

Well 

Northwest 

Nortwest 

North 

Northwest 

North 

East 

East 

East 

Southeast 

Southeast 

South 

South 

Southwest
Southwest 

 

 

A 

 

 

 

 

B 

 

 

 

C 
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Figure 4.1. Map of the study area showing the locations of selected weather stations and the dominant land 
cover types from 2018 CORINE Land cover product. The boxes A, B and C comprise of the stations grouped on 
the basis of similar precipitation regimes. 

4.2.2 Gridded data 

Gridded daily total precipitation data for Ireland were also obtained from the Irish 

Meteorological Service, Met Éireann, for the period from 1999 to 2019. This period is 

consistent with the satellite derived Leaf Area Index (LAI) product outlined below. This data 

available at 1 km2 grid resolution was generated by Met Éireann using interpolation 

techniques applied to in-situ rainfall data from over 500 rainfall stations across the Republic 

of Ireland (Walsh, 2012).  
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The land surface scheme employed requires soil moisture measurements, however, the 

measurement of this parameter is not routine practice in Ireland, as in many other countries, 

therefore we employed gridded reanalysis soil moisture data from the European Centre for 

Medium Range Weather Forecasting (ECMWF) ERA5-Land data, obtained from the C3S 

Copernicus Climate Data Store. ERA5-Land is the latest global reanalysis product from 

ECMWF, which employs improved historical observations and is run at a finer spatial 

resolution (atmosphere 0.25o; land 0.1o) relative to its predecessor, ERA-Interim (Hersbach 

and Dee, 2016). We obtained ERA5-Land hourly volumetric water content (𝜃) (m3 m-3) in the 

top soil layer (0-7 cm) for the land area of Ireland, for the period 1999 to 2019. The product 

has also been evaluated at the global scale (e.g. Li et al., 2020b). An independent evaluation 

of the 𝜃 product shows that ERA5-Land reasonably estimates available measured soil 

moisture obtained at three Irish grassland sites, representative of different soil texture 

characteristics (Figure 4.2). 

 

Figure 4.2. Comparisons between hourly measured and ERA5-Land volumetric water content (𝜃) across three 
independent grassland sites. The measured 𝜃 values are obtained from eddy covariance flux sites from 
previous studies (see Chapter three) 
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The offsets between measured and ERA5-Land 𝜃 values are largely represented in 𝜃 values 

below 0.25 m3 m-3, and may be explained by the leaf area index monthly climatology used as 

input in ERA5-Land (Boussetta et al., 2013). It should also be noted that the ERA5-Land 𝜃 at 

the surface soil layer was evaluated with measured 𝜃 at the deeper soil layer (20 cm) across 

the sites. The surface 𝜃 derived from models or satellites are thought to decouple from 𝜃 in 

the deeper soil profile where plants may take up water depending on root density, and 

consequently may not explain the dynamics of processes in the root zone (Buitink et al., 

2020). However, the choice of ERA5-Land surface 𝜃 to diagnose drought processes, as in many 

studies in recent past (e.g. Dirmeyer et al., 2021), is on the basis that soil moisture anomalies 

develop progressively down deeper soil layers in the course of a drought event, as plants 

increase water uptake from near the surface to the subsurface (Buitink et al., 2020). Thus, 

ERA5-Land subsurface 𝜃 values may further lead to larger offsets under 0.25 m3 m-3, since the 

soil moisture contents at the deeper layers are always higher than at the upper soil layers.  

4.2.3 Satellite-derived products 

We obtained satellite-derived Leaf Area Index (LAI) from the Copernicus Global Land Service 

(CGLS) project, which are derived from SPOT-VGT and PROBA-V, prior to and from 2014, 

respectively. The LAI quantifies the greenness of plants and can be observed per unit 

horizontal surface area from space (Albergel et al., 2019). The CGLS LAI product, beginning in 

1999, employed SPOT-VGT; the method by Baret et al. (2013) has been used to retrieve LAI 

from PROBA-V. Here, we use the CGLS LAI GEOV2 product which is at 1 km2 spatial and 10-

day temporal resolution (Albergel et al., 2019). The product development is outlined by 

Verger et al. (2014).   
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The land surface temperature (𝑇𝑠) is a critical parameter that governs the land-atmosphere 

coupling, and can be used to evaluate model derived estimates of surface energy fluxes. We 

obtained 𝑇𝑠 from the Moderate Resolution Imaging Spectroradiometer (MODIS) (MOD11A1, 

version 6) from the Land Processes Distributed Active Archive Center (LP DAAC) (Wan et al., 

2015).  

In addition, the near-infrared radiation reflected by vegetation (NIRv) is an important index 

for monitoring ecosystem functioning, and has previously been employed to link soil moisture 

induced vegetation stress with gross primary productivity (GPP) at various scales during 

drought events (Badgley et al., 2017; 2019; Baldocchi et al., 2020; Buitink et al., 2020). The 

NIRv index is derived from the product of the normalized difference vegetation index (NDVI) 

and near infra-red (NIR) reflectance (NIRv = NDVI × NIR) (e.g. Badgley et al., 2017). We 

obtained daily MODIS (MCD43A4, version 6) red (620-670 nm) and NIR (841-876 nm) nadir-

adjusted reflectance images from the same source (Schaaf and Wang, 2015).  

The MODIS 𝑇𝑠 and reflectance images are available at 1 km and 500 m resolutions, 

respectively and were obtained for the period of 2010 to 2019, corresponding with the period 

of AWS measurements outlined in Section 4.2.1. The 𝑇𝑠 data obtained was derived from the 

Terra satellite which acquires data every 1 to 2 days, and passes from north to south over the 

equator in the morning, while reflectance data are derived from 16-day composites of MODIS 

Terra and Aqua satellite products. A summary description of data used is provided in Table 

4.2.  
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Table 4.2. A summary description of in-situ, gridded and satellite-derived data products used in this study. 

 

4.2.4 Model description 

The land surface scheme (LSS) used in this study, fully described in Ishola et al. (2020) and 

Chapter 3, employs the widely utilised Monin-Obhukov Similarity Theory (MOST) (Section 

2.2.3). MOST uses profile relationships of near-surface temperature, wind and humidity, to 

describe the vertical exchange of heat, moisture, and momentum, respectively with the 

atmosphere (Paulson, 1970). In addition, the scheme incorporates simplified 

parameterizations of radiation components and heat transport to the subsurface (following 

van Ulden and Holtslag, 1985) and the land surface energy budget is quantified using the 

Penman-Monteith model (Monteith, 1981). Here, we employ the land surface scheme with 

available in-situ meteorological data (Section 4.2.1) to simulate hourly surface energy fluxes 

Product Variable Resolution 
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for mid-day hours (10-15 hr) from May to August, for the period 2010 to 2019. We focus on 

this portion of the day as the bulk of the land surface exchanges typically occur during this 

time interval.  

During soil water limiting conditions, latent heat flux (𝑄𝐸) becomes constrained by the surface 

resistance (𝑟𝑆 ). 𝑟𝑆 , which is incorporated into the land surface scheme following the approach 

implemented by Beljaars and Bosveld (1997), van de Boer et al. (2014a) and see also Section 

3.4.2, is based on the Jarvis approach (Jarvis 1976). 

The 𝑟𝑆  coefficients employed in the land surface scheme here were previously evaluated at a 

small number of sites in Ireland where in-situ soil moisture measurements were available 

(Chapter 3). However, as the present study employs gridded soil moisture derived from ERA5-

Land reanalysis data, the land surface scheme may underestimate 𝑟𝑆  and consequently, 

overestimate 𝑄𝐸 due to potential overestimation of soil water in extremely dry surface 

(Dirmeyer et al., 2021) (Figure 4.2). Due to the lack of measurements or information on field 

capacity nationally, we employ a default value for 𝜃𝐹𝐶   of 0.3 m3 m-3 whch was a necessary 

assumption; in spite of this simplifying assumption, the focus of this study is on soil drying, 

and the general tendency of soil drying and its impact on evapotranspiration should be 

captured. 

Furthermore, we calculated two biophysical metrics, land surface temperature (𝑇𝑠) and 

evaporative fraction (EF), employing fluxes derived from the land surface scheme as follows, 

𝑇𝑠 =  𝑇𝑎 +  
𝑄𝐻𝑟𝑎

𝜌𝑐𝑝
+ 𝑧𝑎Г𝑑, (4.1)  

𝐸𝐹 =  
𝑄𝐸

𝑄𝑁− 𝑄𝐺
,  (4.2) 
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where 𝑇𝑎 is the near-surface temperature, 𝑟𝑎 is the aerodynamic resistance, 𝑧𝑎 is the 

reference height, Г𝑑 is the dry adiabatic lapse rate, 𝜌 is the air density  and 𝑐𝑝 is the specific 

heat capacity of air. These biophysical metrics are important for understanding the role of 

land-atmosphere feedbacks on extreme weather events such as heatwaves and drought. 

4.2.5 Data analysis 

We initially calculated anomalies (Z-score) of monthly precipitation, volumetric water content 

(𝜃) and LAI for the individual months of May to August, relative to the 1999 to 2019 period, 

to provide an initial overview of the evolution of the 2018 summer drought event.  On the 

basis of definition of agricultural regions (see Chapter 1) and initial evaluation of precipitation, 

we subsequently grouped the individual AWS stations into broadly representative geographic 

regions (Figure 4.1). For example, the north west (Zone A) tends to be wetter and cooler, due 

to its proximity to Atlantic storm tracks, and has a large proportion of peat soils; the east coast 

(Zone B) is typically drier, receives more global solar radiation and has a high proportion of 

moderately and well drained soils. Similar to the north west region, the south west (Zone C) 

is also wet but experiences higher average temperatures; soils in this zone are mainly 

classified as imperfectly or poorly drained. Due to its favourable climate, this zone is 

dominated by grassland. The ‘Golden Vale’, a region known for its high quality dairy 

production systems, is located within this group. These zones provide the basis for presenting 

the results of the land surface scheme.   

To analyse synoptic timescale variability during the 2018 event, cumulative precipitation and 

deviations of daily 𝜃, vapour pressure deficit (VPD) and LAI are also calculated for each zone 

for the period May to August, relative to 2010 to 2019.  We also applied segmented regression 
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to determine the relationship between daily soil moisture, sensible heat and latent heat 

fluxes, employing the evaporative fraction (EF) metric for the summer period in each zone. 

The goal is to identify if critical soil moisture thresholds occur and the period during which 

the soil moisture control of exchange processes become effective across the zones. We 

applied a similar approach to the NIRv data, as a way of comparing with the EF based 

approach, and which provides a means of linking soil moisture to vegetation productivity and 

ecosystem functioning.  

For the segmented regression, we employed the approach of Muggeo (2003) to determine 

linear model-fits between soil moisture and anomalous surface fluxes, EF and NIRv to detect 

both the significant shift slope (sensitivity) and breakpoint between segments. The breakpoint 

value indicates the presence of a critical threshold of soil moisture at which the land-

atmosphere shifts to ‘hypersensitive’ regimes, resulting in higher temperature and drier soils 

while the slope characterises the severity of dry/wet segments (Benson and Dirmeyer, 2020; 

Buitink et al., 2020). We used the CRAN R ‘segmented’ package to estimate these metrics 

(Muggeo, 2021). 

4.3 Results 

4.3.1 Evolution of 2018 summer drought across Ireland 

Figure 4.3 shows the spatial characteristics of the 2018 summer standardized monthly total 

precipitation anomaly (Z-score), relative to 1999-2019 climatology across the region. Applying 

the McKee et al. (1993) drought categories, the 2018 meteorological drought progressively 

moved from mild/moderate drought conditions (0 - -1.49) in May to more widespread 

extreme drought conditions (< -2.0) in June, evident across the eastern, southern and south-
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western part of the country, while the north-west continued with mild/moderate conditions 

(0 - -1.49) during these months.  The rainfall deficits gradually improve in the subsequent 

months, with the July rainfall anomaly characterized as moderate drought conditions, with 

the exception of the midlands; August was characterized by mild drought conditions in the 

eastern and southern half of the country, with wet conditions (> 0) in the north and north-

west. The mild drought conditions experienced in the north-west during June, relative to the 

rest of the country, were likely associated with the arrival of Storm Hector in mid-June, 

bringing rainfall across this region (Met Éireann, 2018a). The observed magnitude, extent and 

timing of the 2018 meteorological drought are in agreement with those reported by Falzoi et 

al. (2019).  

 

Figure 4.3. Spatial characteristics of monthly precipitation anomaly (z-score) for the Republic of ireland during 
summer 2018, relative to 21-year climatology (1999-2019). Thin lines represent county outlines. 
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To assess the land surface response, the degree of surface dryness is initially characterized 

based on anomalies of soil moisture and LAI. Figure 4.4a shows the magnitude and spatial 

extent of ERA5-Land 𝜃  and GEOV2-LAI anomalies for the individual months of May to August, 

2018. In contrast to the mild/moderate meteorological drought evident in May (Figure 4.3), 

the soil moisture conditions display normal conditions across the country – likely reflecting 

the fact that above average rainfall occurred at most stations in the preceding month of April 

(Met Eireann Report, 2018b). However, following the rainfall deficits which continued into 

June (Figure 4.3), soil moisture conditions deteriorate, particularly evident along the east 

coast (Figure 4.4a). By July, the surface conditions continue to deteriorate leading to high 

negative soil moisture anomalies (index < -2.0) being experienced across the country, with 

extreme negative anomalies (< -3.0) being experienced along the usually wet west coast.  

While the negative soil moisture conditions began to improve or recover in the north and 

west during August, the east, south and southwest of the country continued to experience 

negative soil moisture anomalies. The impact on vegetation response, represented by 

anomalies in GEOV2 LAI, closely track the evolving soil moisture conditions (Figure 4.4b).  

These findings are consistent with those of Albergel et al. (2019), who found similar 

perturbations (index > -1.0 and -2.0) in surface soil moisture, derived from the Advanced 

Scatterometer (ASCAT), and GEOV2-LAI during the month of July in 2018 in the UK region.  In 

addition, there is a strong spatial coherence between the gridded precipitation, ERA5-Land 𝜃 

and satellite derived GEOV2-LAI in terms of the evolution of the meteorological and 

agricultural drought characteristics over the study period.  
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Figure 4.4. Monthly anomalies of ERA5-Land surface soil water content (𝜃) and satellite-derived GEOV2 leaf area 
index (LAI); for 2018 summer, relative to 21-year climatology (1999-2019). (a-b) the spatial characteristics of 
both parameters; (c) inter-annual variations of monthly anomalies of 𝜃, LAI and gridded precipitation, averaged 
over the entire region (blue, red and green horizontal dotted lines show the lowest negative scores for 
precipitation, 𝜃 and LAI, respectively).  

To place the conditions experienced during 2018 in context of previous summer drought 

events, Figure 4.4c displays the individual monthly (May, June, July and August) anomalies of 

rainfall, soil moisture (ERA5-Land 𝜃) and LAI (GEOV2) for the period 1999 to 2019, averaged 

over the entire country. It is clear that larger rainfall deficits occurred during the 2003 
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European summer drought in Ireland, reported as one of the driest summers on record (e.g. 

Casty et al., 2005; Jaksic et al., 2006), yet no clear impact on vegetation productivity is 

observed during the 2003 drought event based on GEOV2-LAI. This suggests that the 2003 

meteorological drought did not fully propagate into agricultural drought across the island, 

which may be related to the timing of the precipitation deficits, which occurred in August of 

that year. In contrast, summer 2018 shows both water and vegetation stress conditions, as 

revealed by the high negative anomalies in precipitation, 𝜃 and LAI (Figure 4.4c). In addition, 

the largest negative soil moisture and vegetation anomalies in the last 21 years occurred in 

July 2018, with a negative peak anomaly (≈ -2.8) for 𝜃, concurrent with the peak negative 

anomaly (≈ -1.3) for LAI.  

In the next section, we present the results of the land surface scheme, to explore if 

perturbations occurred in the surface energy budget which could have potentially contributed 

to aggravating the observed surface dryness across Ireland during the summer of 2018. 

4.3.2 Perturbations of land-atmosphere energy exchanges 

To evaluate the robustness of model-derived surface energy fluxes, we initially compared the 

mid-day temporal evolution of observed MODIS Terra (for pixels representing the individual 

weather stations (Figure 4.1) and the LSS derived surface temperature anomaly (𝛥𝑇𝑠) (Figure 

4.5). Results show high positive 𝛥𝑇𝑠 for both the Terra and model estimates (peaking at +5-

10 K and +8-15 K, respectively) between late June and early July across the selected stations. 

These results are consistent with previous findings (e.g. Zaitchik et al., 2006) and suggest the 

strong role of daytime anomalous surface feedbacks on atmospheric temperature during this 

period. While the temporal profiles of LSS-derived 𝛥𝑇𝑠  are largely consistent with the 

observed Terra 𝛥𝑇𝑠 across stations, the LSS estimates display a warm bias, which is likely 
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attributed to an offset in timing between the LSS estimated values and time of overpass of 

the satellite; the LSS-derived 𝛥𝑇𝑠 values are based on the average of mid-day values (from 10 

to 15 hour), while Terra- derived 𝛥𝑇𝑠 values are based on satellite observations at the 

overpass (10.30 GMT). Consequently, the Terra-based 𝛥𝑇𝑠 are unlikely to capture the large 

magnitude in surface temperature which typically occurs in the afternoon, when insolation is 

at its peak. 

 

Figure 4.5. Temporal evolution of model-derived mid-day land surface temperature anomaly (𝛥𝑇𝑠), compared 
with MODIS Terra 𝛥𝑇𝑠 during 2018 summer, relative to 2010-2019 average across the stations. The lines are 
derived from smoothed fits of locally weighted polynomial regression (LOESS). The shaded portions are the 5th 
and 95th percentiles of uncertainty bound as calculated by LOESS. Panels A, B and C are for stations in zones A, 
B and C, respectively, as highlighted in Figure 4.1 and Table 4.1. 
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Figure 4.6 shows the temporal evolution of in-situ accumulated rainfall (Figure 4.6 a-c), ERA5-

Land volumetric water content (Figure 4.6 d-f), in-situ vapour pressure deficit (Figure 4.6 g-i) 

and satellite-derived leaf area index (Figure 4.6 j-l) for the period May to August 2018, 

compared with the climatology (1999-2019), aggregated for the three zones (A, B, C) 

previously outlined (Figure 4.1).  

 

Figure 4.6. Temporal evolution of in situ accumulated precipitation (first row), ERA5-Land volumetric water 
content (second row), in situ vapour pressure deficit (third row) and satellite-derived leaf area index (fourth 
row); during 2018 summer compared with climatology (1999-2019). Panels A, B and C are for stations in the 
respective zones highlighted in Figure 4.1. The peach shades represent the observed periods of abnormal surface 
and atmospheric conditions 

In each zone, the cumulative rainfall clearly shows a departure from climatology beginning 

from just prior to, or around, June 1 (Figure 4.6 a-c). In the northwest (zone A), the 2018 

cumulative rainfall, while lower, remains closer to climatology, indicating smaller rainfall 
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deficits during June-August, relative to zones B (east coast) and C (southwest). This is 

consistent with the gridded precipitation data in Figure 4.3. The rainfall deficits also begin 

later in zone C.  

In the northwest (zone A), decreasing volumetric soil moisture (𝜃) (Figure 4.6d) becomes 

evident from mid-June (approx. 2-3 weeks after the onset of meteorological drought), likely 

buffered by the normal or above normal rainfall receipts in April and the arrival of Storm 

Hector in the northwest in mid-June, and reach their lowest negative anomaly (relative to the 

climatology) of approximately -0.13 m3 m-3 (40 %) around 4 July. Concurrently, vapour 

pressure deficits (VPD) increased above normal effective from 21 June and peak on the 27-28 

June with anomalous values (> 200 % relative change) of +1.0 kPa (Figure 4.6g), while LAI 

shows negligible change during this period (Figure 4.6j). 

For the east of the country (zone B), the negative  𝜃 anomaly (relative change), which began 

earlier than in zone A (northwest), decreased by -0.15 m3 m-3 (50 %), corresponding with the 

highest positive VPD anomaly of +1.4 kPa (> 200 %) and lowest negative anomaly of LAI of -

1.5 m2 m-2, from 28 June (Figure 4.6 e, h, k). The timing of changes in 𝜃, VPD and LAI in the 

southwest (zone C) (Figure 4.6 f, i, l) largely follow those observed in the east (zone B), but 

slightly reduced in magnitude.  

The highlighted periods of strong surface (e.g. soil moisture, LAI) and atmospheric (e.g. 

rainfall, VPD) anomalies largely correspond to the LSS simulated periods of higher positive 

anomalies (relative change) in both the net radiative and energy fluxes. 𝛥𝑄𝑁 anomalies ≈ 

+200-250 W m-2 (80-90 % relative increase) across the three zones (Figure 4.7a-c) indicate the 

strong and persistent influence of the anticyclonic system, supressing low cloud formation 

over the land surface, between 22 June and 3 July across all the country. In spite of the 
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similarity in radiative forcing conditions, anomalies in the mid-day sensible (𝛥𝑄𝐻) and latent 

(𝛥𝑄𝐸) heat fluxes differ across each of the zones, reflecting differences in the partitioning of 

available energy. For instance, in the northwest (zone A), the net radiation surplus gives rise 

to an anomaly in 𝛥𝑄𝐸, of  +100-120 W m-2 (≈ 90 % relative increase), largely at the cost of 

𝛥𝑄𝐻. This is consistent with higher 𝛥𝑄𝑁 and VPD, with plants still able to access available, but 

declining, soil water, between the 22 – 30 June (Figure 4.7d). While the general responses are 

similar for zones B and C, with the land surface scheme simulating an enhanced positive 𝛥𝑄𝐸 

anomaly, of +60-90 W m-2 (40-90 % relative increase) and +50-100 W m-2 (30-70 % relative 

increase), respectively (Figure 4.7e-f). However, by the end of June, 𝛥𝑄𝐻 exceeds 𝛥𝑄𝐸 in zone 

B (east) and 𝛥𝑄𝐻 is equivalent to 𝛥𝑄𝐸 in zone C (southwest), providing mechanistic evidence 

of the land-atmosphere feedback resulting in enhanced VPD (Figure 4.6 h, i) relative to zone 

A (Figure 4.6g), starting from 27 June in zone B (Figure 4.7e) and 1 July in zone C (Figure 4.7f).   

Generally, these results indicate positive 𝛥𝑄𝐸 anomalies, in excess of normal, enhanced by 

high positive anomalies of 𝛥𝑄𝑁 prior to 27th June. The observed changes between late June 

and early July in the east (zone B) and southwest (zone C) highlight the potential 

differentiating role of soil moisture availability, and support the divergent landscape 

physiological responses (Figure 4.4b) to atmospheric anomalies relative to the northwest 

(zone A). 
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Figure 4.7. Temporal evolution of model-derived mid-day anomalous net radiative flux (𝛥𝑄𝑁) (first row), sensible 
heat (𝛥𝑄𝐻) and latent heat (𝛥𝑄𝐸) fluxes (second row) and soil heat flux (𝛥𝑄𝐺) (third row), during 2018 summer, 
relative to analysis period (2010-2019). Panels A, B and C are for stations in the respective zones highlighted in 
Figure 4.1. Values represent the day time (10:00-15:00) average. 

 

4.3.3 Relationship between soil moisture and surface flux densities 

To try to understand the role of soil moisture availability on the anomalous land-atmosphere 

heat and moisture exchanges during summer 2018, we explored the relationships between 

daily ERA5-Land soil moisture and anomalies of EF and NIRv (Figure 4.8), and separately for 

sensible and latent heat flux anomalies (Figure 4.9), based on the metrics (slope and 

breakpoints) derived from segmented regression models for each zone. The segmented 

regression results for individual stations and the countour map of the onset of agricultural 

drought based on estimated 𝜃𝑐  are provided in Table 4.3 and Figure 4.10, respectively. It 

should be noted that the results here are exploratory and based on a LSS specified 𝜃𝐹𝐶  value 

(0.3 m3 m-3), as stated previously. 
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Figure 4.8. Relationships between soil moisture (𝜃), evaporative fraction (EF) [first row] and MODIS NIRv 
[second row], based on segmented regression analysis during 2018 summer across the zones. The thick red 
lines are measures of sensitivity (slope) on the dry segment while dashed blue lines are for wet segment.  The 
dashed orange lines show the 𝜃-EF and 𝜃-NIRv breakpoints and the horizontal green lines at the bottom show 
the confidence interval of 𝜃 breakpoints. a significant at p-value < 0.05. Panels A, B and C are for stations in the 
respective zones highlighted in Figure 4.1. 

 

While the models detect a breakpoint (critical 𝜃 threshold, 𝜃𝑐  ≈ 0.36 m3 m-3) separating wet 

and transitional regime in the northwest zone (zone A) (Figure 4.8a), the 
𝛿𝐸𝐹

𝛿𝜃
 sensitivity in the 

transitional segment (adjusted 𝑅2 = 0.05) is insignificant and relatively low (close to 0). In 

contrast, the 
𝛿𝑁𝐼𝑅𝑣

𝛿𝜃
 approach identified a critical 𝜃 threshold (𝜃𝑐) ≈ 0.30 m3 m-3 with a higher 

sensitivity indicated in the transitional segment (adjusted 𝑅2 = 0.60) (Figure 4.8d). This 

indicates that the landscapes in zone A (northwest) largely sustain the conditions in which 

changes in EF is independent of soil moisture during the hydrological season. The direction of 

the slope in the wet segment is not considered realistic, which may be informed by the 
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optimization routines used to detect the critical points that separate the segmented fits. 

However, the 𝜃-EF relationship is clearly captured in the east (zone B) (Figure 4.8 b, e) where 

the approach identified a critical threshold 𝜃𝑐  of ≈ 0.18 m3 m-3, a value that is likely to lie close 

to the wilting point 

The sensitivity (
𝛿𝐸𝐹

𝛿𝜃
 ≈ 0) is negligible in the wet segment, but a significant and steep slope is 

observed in the transitional segment (adjusted 𝑅2 = 0.29), indicating that EF is constrained 

and linearly coupled with the surface during the period when soil moisture content is below 

the critical point. Findings are consistent for the 𝜃-NIRv approach (𝜃𝑐  = 0.23 m3 m-3 and 

adjusted 𝑅2 = 0.77). The estimated 𝜃𝑐  values are identical to those derived using measured 𝜃 

at deeper soil layer, from two sites in the Netherlands (Buitink et al., 2020). Hence, these 

findings suggest that drying soils increase the sensitivity of land-atmosphere coupling, in turn 

aggravating the surface drying, based on ERA5-Land 𝜃 (note that ERA5-Land underestimates 

very dry soils for a number of Irish sites).  The results of this exploratory analysis in the 

southwest (zone C) identify a critical 𝜃 threshold (𝜃𝑐)  ≈ 0.35 m3 m-3, similar to zone A, but 

with a significantly higher 
𝛿𝐸𝐹

𝛿𝜃
 sensitivity in the transitional segment (adjusted 𝑅2 = 0.23) 

(Figure 4.8c). Comparing with the 𝜃-NIRv approach, the sensitivity is similar (adjusted 𝑅2 = 

0.32) but with a higher estimate (0.35 m3 m-3) of 𝜃𝑐  (Figure 4.8f).  

Both the EF and NIRv approaches agree on the coupling for zones B (east) and C (southwest), 

however, the differences in estimated 𝜃𝑐  suggest causality in 𝜃-EF framework that may not 

be inferred using statistical regression analysis. Independent assessments based on the 

relations of ERA5-Land 𝜃 with model-derived sensible heat (𝑄𝐻) and latent heat (𝑄𝐸) fluxes 

(Figure 4.9) show that 𝑄𝐻 is the major mechanistic factor driving the 𝜃-EF signals, and likely 
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responsible for the increased atmospheric sensitivity that contributed to occurrence of the 

abnormally warm and dry days during summer 2018, as revealed in zones B and C. 

 

Figure 4.9. Relationships between soil moisture (𝜃), latent heat flux (𝛥𝑄𝐸) [first row] and sensible heat flux (𝛥𝑄𝐻) 
[second row], based on segmented regression analysis during 2018 summer across the zones. The thick red lines 
are measures of sensitivity (slope) on the dry segment while dashed blue lines are for wet segment.  The dashed 
orange lines show the 𝜃-𝛥𝑄𝐸  and 𝜃-𝛥𝑄𝐻  breakpoints and the horizontal green lines at the bottom show the 
confidence interval of 𝜃 breakpoints. a significant at p-value < 0.05. Panels A, B and C are for stations in zones A, 
B and C, respectively, as highlighted in Figure 4.1 and Table 4.1. 
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Table 4.3. Site-specific ERA5-based critical soil moisture content (𝜃𝑐  , m3 m-3) (0-7cm layer) and date of onset of 
2018 agricultural drought, derived using segmented regression relationships between 𝜃, evaporative fraction 
(EF), and MODIS NIRv. Stations with relatively stronger 𝜃-EF and 𝜃-NIRv couplings are highlighted in bold. 𝑅2

𝑎𝑑𝑗  

is the adjusted 𝑅2. 

 

Figure 4.10. Contour maps of the approximate start day of 2018 agricultural drought, based on the estimated 
critical soil moisture threshold (𝜃𝑐) in Table 4.3 for (a) evaporative fraction and (EF), (b)  near-infrared reflectance 
of vegetation (NIRv). DOY is the day of the year. 

 

Station 

                

𝜽𝒄 

EF 

𝑹𝟐
𝒂𝒅𝒋 

 

Start date  

   

𝜽𝒄 

NIRv 

𝑹𝟐
𝒂𝒅𝒋 

 

Start date 

Belmullet 

Claremorris 

Finner 

Knock Airport 

Malin-Head 

Casement 

Dublin Airport 

Dunsany 

Johnstown Castle 

Oak Park 

Cork Airport 

Moorepark 

Shannon Airport 

Valentia 

0.282 

0.388 

0.244 

0.375 

0.177 

0.203 

0.109 

0.315 

0.146 

0.296 

0.336 

0.358 

0.431 

0.178 

0.04 

0.09 

0.08 

0.14 

0.28 

0.09 

0.48 

0.04 

0.44 

0.10 

0.05 

0.06 

0.10 

0.42 

12 June 

22 May 

09 July 

20 June 

26 June 

26 June 

26 June 

06 June 

26 June 

19 June 

28 May 

27 May 

25 May 

24 June 

0.295 

0.373 

0.328 

0.249 

0.138 

0.389 

0.154 

0.327 

0.138 

0.269 

0.177 

0.218 

0.218 

0.226 

0.37 

0.18 

0.21 

0.04 

0.46 

0.72 

0.31 

0.26 

0.59 

0.56 

0.56 

0.40 

0.04 

-0.002 

08 June 

23 May 

26 June 

29 June 

29 June 

22 May 

22 June 

05 June 

27 June 

22 June 

29 June 

25 June 

29 June 

15 June 
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4.4. Discussion 

In this study, we evaluated the use of a land surface scheme that employed readily available 

meteorological data to assess the impact of the 2018 summer drought on regional land-

atmosphere heat and moisture exchanges. Although, previous studies (e.g. Teuling et al., 

2010; van Heerwaarden and Teuling, 2014; Stap et al., 2014; Lansu et al., 2020) found 

contrasting landscape response (Forest and grassland) to land-atmosphere exchange 

processes during heatwaves and droughts, knowledge of the mechanisms driving the 

environmental and vegetation response to land surface processes remains limited (e.g. 

Streck, 2003; Teuling, 2018). Here, we largely focus on grass land cover. Our aim is to evaluate 

the utility of a physically-based scheme, and multi-source data, to explore the regional 

characteristics of anomalous land surface processes during the unusually warm and dry 

conditions experienced in summer 2018. 

4.4.1 Changes in land surface processes during severe drought 

During extreme weather events such as drought, perturbations in the surface energy budget 

will drive changes in near-surface temperature and reductions in available soil water. In soils 

with limited available water (high soil moisture deficit), plant water uptake to meet the 

increasing atmospheric evaporative demand will be restricted (Teuling, 2018), as a result, 

available 𝑄𝑁  will be converted to 𝑄𝐻 flux. This describes a positive feedback on 𝑄𝐻, which 

can act to amplify drought characteristics.  The perturbations of surface exchanges of heat 

and moisture which impact the patterns of atmospheric temperature are mediated through 

changes in soil moisture (e.g. Seneviratne et al., 2010; Miralles et al., 2014). Findings from this 

analysis indicate that an excess in net radiative fluxes (𝛥𝑄𝑁) was evident from May to July 

across the country. Changes in leaf area index were relatively small during this period, likely 
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resulting in very small changes in surface shortwave reflection concomitant with low surface 

albedo changes, and consequently with negligible impact on 𝑄𝑁  (Teuling and Seneviratne, 

2008; Teuling et al., 2010). Rather, the anomalously high 𝑄𝑁 values are associated with higher 

downward shortwave radiation fluxes resulting from the suppression of cloud formation due 

to the presence of a high pressure system in the mid-troposphere (e.g Black et al., 2004; Stap 

et al., 2014).  

During the identified peak period of net radiation receipt (middle of June; to start of July), 

decreasing soil moisture and increasing VPD is evident in the ERA5-Land soil moisture and in 

situ derived vapour deficit values, respectively (Figure 4.6 d-i). LAI response to the changing 

land surface characteristics is evident in the east and south east (zone B) and southwest (zone 

C) regions (Figure 4.6 k-l). While the north west (zone A) displays an increase in VPD and 

declining soil moisture over this period, the vegetation response is less marked in the LAI 

response (Figure 4.6b; Figure 4.6j), relative to the climatology, for this region. 

On the basis of the land surface scheme, the available 𝑄𝑁 was largely converted to 𝑄𝐸 rather 

than 𝑄𝐻 during this period in the northwest, which is typical of grasslands even under 

extremely warm temperatures (Teuling et al., 2010; van Heerwaarden and Teuling, 2014; Stap 

et al., 2014; Lansu et al., 2020). The preferential channelling of available energy into 𝑄𝐸 is 

similar for the east (zone B) and the southwest (zone C), but with lower magnitude 𝑄𝐸 

anomalies. This enhancement of land-atmosphere 𝑄𝐸 transfer even under water limited 

conditions was likely facilitated by the integrated effects of higher downward shortwave 

radiation and increased VPD (associated with higher temperature due to a weak atmospheric 

moisture advection from the Atlantic Ocean) that characterized the period between mid-June 

to early July. The lower magnitude 𝑄𝐸 values in the east (zone B) are compensated for by 
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increasing 𝑄𝐻 – resulting in higher surface temperature - the shift from latent to sensible heat 

is also apparent in the negative anomalies of LAI in the east and southeast during the month 

of June (Figure 4.4b). The shift from latent to sensible heat and reduction in LAI during June 

and July indicate increasing soil moisture deficits, and hence vegetation stress in the region 

(Figure 4.6e). These results are in broad agreement with Lu et al. (2011) who attributed the 

2009-2010 severe surface drying in China to a high rainfall deficits and warmer temperatures, 

through enhancement in 𝑄𝐸.  

However, the landscapes in the east of the country responded faster to the atmospheric 

anomaly, evident in the decrease in LAI (Figure 4.4b) and increasing VPD (Figure 4.6h), 

between June and July. A number of contributing factors are likely to explain this; the 

southeast is characterised by relatively well drained soils and can experience seasonal soil 

moisture deficits during ‘normal’ years. The month of April 2018 experienced average, or 

above average, rainfall across most stations; where soils have storage capacity, such as the 

imperfectly or poorly drained soils more typical of the southwest and northwest, they provide 

a temporary storage buffer during periods when rainfall receipts are below average. The 

arrival of Storm Hector in the middle of June resulted in soil moisture returning to normal 

levels in the northwest (zone A) (Figure 4.6d) and southwest (zone C) (Figure 4.6f). 

Soil drying was more advanced in the east (Figure 4.6e) and increased due to high 𝑄𝐸 during 

June (Figure 4.7b) with a marked response in vegetation, evident in the negative anomalies 

of LAI, in the zone during June. By July, with soil moisture depleted evident in the simulated 

below normal/negative anomalies of 𝑄𝐸 (Figure 4.7b), the positive 𝑄𝑁 anomaly is 

subsequently partitioned into 𝑄𝐻 and 𝑄𝐺. The net effect of the altered partitioning of 

available energy produced a land-atmosphere feedback that further exacerbated the soil 
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moisture and vegetation stress in this zone. A similar reasoning applies to zone C based on 

the LSS simulated fluxes (Figure 4.7c) and is supported by the increasing negative anomalies 

in LAI in the southwest during this month. The periods when the negative impact of high soil 

moisture deficit outweigh the potential enhancement effects of higher downward shortwave 

radiation and VPD therefore depend on the antecedent conditions, geographical area and soil 

characteristics, findings that are consistent with  Xiao et al. (2009) and Zhang et al. (2012). 

Across the zones, the lower but positive LSS-derived 𝛥𝑄𝐻, relative to other energy 

components, indicates a weak horizontal advection of warm air in May and June, typical of 

humid climate. In addition, positive anomalous surface heat and moisture transfers are largely 

correlated with an increase in net radiative flux during early summer. This suggests that the 

exchange processes are largely constrained by atmospheric anomalies during the hydrological 

season. In the east (zone B), the simulated negative 𝛥𝑄𝐸 flux in July is explained by reduced 

evapotranspiration due to water-stress conditions which has propagated into the root zone. 

In addition, the landscapes that characterize this zone are largely dominated by free-draining 

soils (Creamer et al., 2014), suggesting low water holding capacity and quicker response of 

the landscapes to atmospheric anomalies, relative to the rest of the country. Although, the 

landscapes in southwest zone closely replicate these processes, our analysis shows relatively 

small positive 𝛥𝑄𝐸 in contrast to the former zone in July, suggesting a continued 

evapotranspiration process even under water shortage.  

4.4.2 Role of soil moisture in land-atmosphere exchanges during 2018 summer 

Soil moisture can significantly influence terrestrial water, energy and carbon cycle through its 

control on 𝑄𝐸 at the land-atmosphere interface. This connection can be explored using a soil 

moisture-evaporative fraction (𝜃-EF) framework that distinguishes three different stages of 
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transition from wet to dry evaporative regime (Seneviratne et al., 2010; Teuling et al., 2010): 

(1) wet regime in which EF is independent of soil moisture (2) transitional regime where soil 

moisture and EF are linearly coupled and (3) dry regime where EF becomes negligible. Initial 

exploration of these relationships enable an estimate of the critical soil moisture value (widely 

referred to as critical soil moisture thresholds) that separate these regimes, and potentially 

diagnose the mechanisms responsible for the shift from a normal into a water-stress regime, 

where the land surface state controls the sensitivity of the atmosphere (Seneviratne et al., 

2010). 

We applied segmented regression analysis on the ERA5-Land 𝜃 and estimated EF anomaly to 

identify the threshold in soil moisture that marks the transition from wet to transitional 

regime; a similar approach was applied to the NIRv data. In the east, this shift was identified 

as occurring in late June (≈ 22nd June), indicating the onset of agricultural drought. The 

transitional regime was sustained for several days (20) during which 𝜃-EF are linearly coupled 

(higher 
𝛿𝐸𝐹

𝛿𝜃
 sensitivity), providing the mechanism that contributes to ‘hypersensitive’ 

atmospheric anomalies during these periods, and further exacerbated agricultural drought in 

the affected areas. In a previous study over grassland above saturated soils in the south of 

Ireland, Jaksic et al. (2006) reported that measured soil moisture status in both dry and wet 

years are different, but well above wilting point, so that the impact of soil moisture status on 

net ecosystem functioning is small and identical for both years. This is consistent with our 

findings over zones A where the landscape either shows no 
𝛿𝐸𝐹

𝛿𝜃
 sensitivity or the 𝜃-EF coupling 

is too weak to support the theoretical 𝜃-EF framework (Seneviratne et al., 2010). Results from 

the 
𝛿𝐸𝐹

𝛿𝜃
 analysis in the southwest also indicated a weak coupling, however, the land surface 

response to reduce soil moisture is evident in the vegetation response (Figure 4.4b) – further 
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work is necessary to explore this.  ERA5-Land uses monthly climatology of LAI to generate the 

global reanalyses data (Boussetta et al., 2013), which may contribute to weak 𝜃-EF signals in 

these zones.  

There is the possibility that ERA5-Land may have underestimate very dry soils as 

demonstrated in Figure 4.2, consequently resulting in the LSS to underestimate the impact of 

soil moisture anomalies on land-atmosphere feedback mechanisms. This is consistent with 

Dirmeyer et al. (2021) who noted that ERA5-Land underestimates the impact of very dry soils 

on extreme temperatures, over Britain in 2018 summer.  A further assessment indicates that 

the signal in EF is largely driven by 𝑄𝐻 during the transitional regimes, as revealed in the east 

(Figure 4.9). Therefore, 𝑄𝐻 appears to be the mechanistic factor responsible for the unusual 

shift in land-atmosphere coupling and consequently amplified agricultural drought during 

summer 2018. Finally, the assumed volumetric water content at field capacity (𝜃𝐹𝐶)  of 0.3 

m3 m-3, necessary to apply the LSS in the absence of measured soil moisture, may also have 

contributed. 

4.5 Conclusion  

In this study, we evaluated the use of a physically-based land surface scheme, in combination 

with readily available ERA5-Land global reanalyses surface soil moisture data, satellite-

derived CGLS leaf area index (LAI) and ground-based meteorology, to estimate the surface 

flux densities and evaporative fraction (EF) to understand the land surface response to the 

atmospheric forcing during the Summer of 2018. The approach allows us to explore changes 

in land surface processes and the effect of a soil moisture regime shift on land-atmosphere 

sensitivities. We demonstrate the application of this framework, utilising data from fourteen 
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weather stations, across Ireland during the 2018 summer record-breaking heat and drought 

events.      

The study revealed synoptic variability in anomalous land-atmosphere heat and moisture 

transfers, across the stations and between dates. Drought-induced perturbations in land 

surface processes are largely not effective until the period between late June/early July and 

extend to mid-July in some cases. Prior to this period, the processes were constrained by 

atmospheric anomalies. That is, in the absence of rainfall, the rising evaporative demand due 

to warmer temperature enhanced latent heat flux (𝑄𝐸) via increase in evapotranspiration (ET) 

rates, leading to the higher soil moisture deficits in July across the country. This is particularly 

apparent in the east and southeast regions, where the drying soils quickly shifted into a 

‘transitional’ regime in which EF is self-limiting, consequently providing positive land-

atmosphere feedback mechanism (increase in land surface temperature and 𝑄𝐻), beginning 

from 27th June and further exacerbated agricultural drought in July.  

Segmented regression analysis of 𝜃-EF interplay has found significant critical soil moisture 

threshold (𝜃𝑐  ≈ 0.18 m3 m-3, and 𝜃𝑐 ≈ 0.23 m3 m-3 for 𝜃-NIRv analysis) at which land-

atmosphere signals potentially become hypersensitive in the east and southeast zone, based 

on ERA5-Land. These values also represent the point of onset of drought impact on 

landscapes and ecosystem functioning in this region. Although, the segmented models also 

identified soil moisture shift across the rest of the country, the linear 𝜃-EF coupling was too 

weak to conclude that EF was constrained by land surface state in these areas. While spatial 

variations in precipitation and local effects of soil and vegetation structures may play a critical 

role in the differing land responses, it should be noted that ERA5-Land underestimates 

seasonally dry soil moisture regimes for Irish landscapes, which may have lessened the impact 
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of soil moisture anomalies on the exchange processes across the region. Nonetheless, the 

findings of this study are invaluable to speculate the zones and critical soil moisture values 

under which land-atmosphere exchanges are constrained by the land surface state and 

further exacerbate surface warming and dryness. This contribution is important, certainly for 

Ireland, not only because it may help improve the representation of soil moisture factors in 

Numerical Weather Prediction (NWP) models, but can also help to enhance subseasonal-to-

seasonal predictability of drought propagation and early warning systems of summer climate 

extremes in the future episodes.   
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5. Mapping High-Resolution Farm-Scale Water Use of Pasture Lands 

using Sentinel-2 Data: Application for Grass Yield Prediction 

Preface 

In draft as: 

K. A. Ishola, R. M., Fealy, G. Mills, S., Green, R. Fealy. Mapping high-resolution water use efficiency of 
pasture lands using Sentinel-2 data: Application for grass yield prediction, 1-30pp – In preparation for 
submission to International Journal of Applied Earth Observation and Geoinformation.  

In this chapter, the response of plant productivity to climate conditions is assessed at a farm 

scale using Sentinel-2 products. We focus on mapping evapotranspiration (ET) and gross 

primary productivity (GPP) that are linked through water use efficiency (WUE) at ecosystem 

level and are more relevant to agriculture and agricultural applications.  ET which is a measure 

of latent heat flux, a surface energy budget term, is regulated by surface resistance (Chapter 

3) when surface-air exchanges are limited by water availability that is distinguished based on 

the so called critical soil moisture content (Chapter 4).  The ET is derived from the validated 

LSS (Chapters 3-4) at Sentinel-2 scale and GPP is based on Sentinel-2 derived data (fraction of 

absorbed photosynthetically active radiation FAPAR and near infrared reflectance of radiation 

NIRv) using physiological models.  The chapter/paper (see supplementary information paper 

3 for full manuscript to be submitted) broadly addressed the pursuant questions: Can the 

validated LSS (Chapters 3-4) be used to examine carbon uptake and water exchanges during 

dry and wet regimes, and be used to evaluate water use efficiency and grass yield at a farm 

scale? 

As discussed in Section 1.1, pastoral farming accounts for over 80% exports of agri-food, 

resulting to growing interests by farmers and other related stakeholders to optimize and 

sustain growth in farm production in the country. Here, the development of pasture WUE 
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maps will support the farmers to make informed on-farm decisions akin to water 

management and productivity. 

Abstract 

In this study, we used remotely sensed data from MultiSpectral Instrument (MSI) on board 

Sentinel-2 satellite, in combination with a land surface scheme to generate high-resolution 

(10 m pixel size) maps of daily actual evapotranspiration (ET), gross primary productivity 

(GPP), and water-use efficiency (WUE) at ecosystem level. The aim was to investigate the 

potential of ecosystem WUE as a yield prediction tool for pasture farms. The study was 

conducted using cloud-free image dates over 2017-2018, covering three selected pasture 

research farms that broadly represent the farming population across Ireland. Findings (WUE 

≈ 1.0-1.5 g C kg-1 H2O-1) indicate that the rates of water loss through transpiration are nearly 

equal to the rates of photosynthetic carbon uptake during the period when the vegetation is 

most productive across the farms. During severe surface drying and vegetation stress in July 

of 2018, the study revealed a substantial reduction in ET over grass, possibly due to shallow 

roots that engendered water restrictions and stomatal closure. As a consequence, ecosystem 

WUE increased exponentially over grass, much more at Johnstown Castle farm than the other 

(Athenry and Moorepark) research farms. The observed stronger ET-GPP couplings (R2 ≈ 0.9) 

and lower WUE at the latter farms suggest that these areas are more productive than the 

former pasture farm, over the analysis period. Additionally, the WUE improved the 

correlations between ecosystem indicators and grass yields, relative to ET at farm-scale. 

Therefore, the study demonstrates the utility of remotely sensed Sentinel-2 observations to 

provide spatially explicit information about the potential of WUE as a tool for distinguishing 

optimal zones of productivity, and for prediction of grass growth response to climate change. 
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5.1 Introduction 

Terrestrial evapotranspiration (ET) and water-use efficiency (WUE) of plants are important 

indicators that can assist farmers in understanding the crop water and carbon dynamics for 

optimization of water use, nutrient management and plant productivity within their  farms. 

These ecosystem indicators are also key for linking terrestrial energy, water, carbon to 

weather and climate (e.g. Ma et al., 2021). Quantifying these indices at detailed spatial scales 

can provide an important tool for use in precision agriculture, more sustainable land and 

water use and both hydrological and climatological applications in a changing climate.  

ET dynamics are influenced by a range of factors including surface heterogeneity, vegetation 

cover/crop type, soil type, soil water availability and atmospheric conditions; management 

practices can also influence ET (e.g. irrigation or drainage; altered herbivory through pasture 

management etc).While there are a number of techniques to measure or estimate ET, 

providing field scale information remains challenging. Satellite remote sensing (RS) 

techniques serve as a viable and cost effective alternative which have been widely used for 

estimation of actual ET at different scales (e.g. Anderson et al., 2011; Singh et al., 2020). A 

number of widely used RS-based ET models rely on the surface energy balance concept in 

which the ET flux is obtained as a residual of the surface energy balance components (Norman 

et al., 1995; Bastiaanssen et al., 1998a; Su, 2002; Allen et al., 2007; Anderson et al., 2007; 

Senay et al., 2013). These models are dependant on land surface temperature (𝑇𝑠) derived 

from the radiometric thermal infrared (TIR) spectral signature that are obtained at regional 

scales and with global coverage, such as from NASA’ Landsat Program or the European Space 

Agency’s (ESA) Sentinel-3 mission etc. The Landsat and Moderate Resolution Imaging 

Spectroradiometer (MODIS) TIR are among the most commonly used products to derive 𝑇𝑠 
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for use in deriving ET. In spite of their wide spread use, these products are limited in both 

temporal (16 day repeat measures for Landsat) and spatial (1 km for MODIS) resolution, with 

obvious implications for field scale agricultural applications. To overcome this, several studies 

have applied an integrated, multi-sensor approach that fuses both Landsat and MODIS TIR 

products (Cammalleri et al., 2014; Yang et al., 2017, 2018, 2021).   

The ESA’s Sentinel-2 products with finer spatial (10, 20 m) and temporal (5 day or less repeat 

measurements cycle) resolutions has also opened a new prospect towards an explicit 

characterization of the land surface. Though Sentinel-2 mission does not provide TIR images 

required for ET modeling using a residual SEB method, the data provided could be fused with 

TIR data from other RS sources to estimate ET at field scale (Bisquert et al., 2016; Guzinski et 

al., 2020; Singh et al., 2020). Guzinski and Nieto (2019) evaluated disaggregating coarser (1 

km) Sentinel-3  land surface temperature to finer (10 m) Sentinel-2 images using a two-source 

surface energy balance model (TSEB). They found relative error on surface energy fluxes less 

than 20% in an agricultural setting. Another study (Vanino et al., 2018) integrated Sentinel-2 

derived leaf area index and surface albedo, with FAO-56 Penman-Monteith (PM) equation to 

estimate potential ET and irrigation water requirements for tomato fields in central Italy. The 

study indicated the suitability of Sentinel-2 to predict tomato water demand at field level.  

As an alternative  to calculating ET using the residual method, the PM approach is considered 

more robust, due to its explicit representation of surface resistance (𝑟𝑠) (e.g. Mu et al., 

2011).The 𝑟𝑠 controls the tradoff between plant water loss through transpiration and carbon 

assimilation in the process of photosynthesis (Collatz et al., 1991; Ma et al., 2021). This 

tradeoff can be quantified by the water use efficiency (WUE), defined as the ratio between 

gross primary productivity (GPP) and actual ET, at canopy and ecosystem level (Medrano et 
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al., 2009; Lu and Zhuang, 2010; Wagle and Kakani, 2012; Hatfield and Dold, 2019). WUE also 

provides a means to study plant health and productivity, species distribution, and ecosystem 

water and carbon cycling (e.g. Lu and Zhuang, 2010; Wagle and Kakani, 2012). Under water 

stress, 𝑟𝑠 increases, leading to a high WUE. While this hypothesis of stomatal control is largely 

used in ecosystem models (e.g. Ma et al. 2021), the response may be different under extreme 

drought conditions (e.g. Reichstein et al., 2002, 2003). This fact is supported by Lu and Zhuang 

(2010) and Zhao et al. (2020) who showed that ecosystem WUE increased under moderate 

drought but tended to decrease during severe drought, thus, the response of WUE is not 

monotonous to changes in water availability. The response of WUE during mild/moderate 

drought reflects patchy stomata closure and the acclimation of plants’ physiology to rising 

water deficits. In the event of extreme drought, the response is linked to absorbed visible 

light by plants in excess of what is required for photosynthesis, reducing plants’ 

photosynthetic capacity due to impairment of electron transport and carboxylation capacity 

(Reichstein et al., 2002; Yu et al., 2008; Lu and Zhuang, 2010).  Therefore, it is imperative to 

understand the variability of ecosystem WUE under both wet and dry conditions (e.g. 

Rammbal et al., 2003; Reichstein et al., 2002, 2003, 2007; Medrano et al., 2009; Lu and 

Zhuang, 2010; Zhao et al., 2020).  

Numerous authors have identified a  linear relationship between productivity and water-use 

(e.g. González-Dugo and Mateos, 2008; Kiziloglu et al., 2009; Anderson et al., 2016a, 2016b; 

Yang et al., 2018; Campos et al., 2018). However, many of these studies are based on ET 

indices and do not account for the contribution of photosynthesis to plant growth. The use of 

WUE, which incorporates GPP, to relate with productivity could potentially provide a more 

robust analysis of grass growth response to water-carbon couplings in a changing climate. 
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Thus, the two primary objectives of this study are to: (1) estimate high resolution farm-scale 

daily actual ET and WUE, and; (2) evaluate the relationships between the derived indicators 

and grass yields, for selected pasture farms across Ireland for both dry and wet years.  To 

achieve these objectives, RS-based Sentinel-2 products are integrated with a validated land 

surface scheme (LSS), based on PM approach (Chapter 3-4) and light-use efficiency (LUE) 

scheme (Running and Zhao, 2015; Jiang et al., 2020; Ma et al., 2021) to characterize plant 

water-use at detailed spatial scale for yield prediction.  

5.2 Materials and Methods 

5.2.1 Sample research farms 

Three sample farms (Figure 5.1), broadly representative of farming across the country were 

chosen for this study, largely due to the availabaility of on farm grass growth data from these 

farms. The selected farms are Johnstown Castle, Co. Wexford (52.2875 oN, 6.4961 oW, 51-65 

m a.s.l.), Athenry, Co. Galway (53.2822 oN 8.7775 oW, 28-40 m a.s.l.) and Moorepark, Co. Cork 

(52.1633 oN 8.2472 oW, 25-40 m a.s.l.) (Figure 5.1).  These farms are research pasture farms 

which are managed by Teagasc, the Irish Agriculture and Food Development Authority. The 

three farms vary in size, soil conditions, topography and climate. At Johnstown Castle, the soil 

characteristics are fine loam and are classified as imperfectly-drained.; Athenry has fine loam 

soils and are classified as well-drained, at Moorepark, the soils are coarse loams and are 

classified as well-drained (Creamer et al., 2014). Based on the long term averages, over 1971-

2000, mean daily maximum (minimum) temperature ranges from 16 to 18 °C (8 to 12 °C) in 

summer and from 7 to 9 °C (1 to 4 °C) in winter across the farms; annual total precipitation is 

approximately 900 mm at Johnstown Castle,  > 1200 mm at Athenry and approximately 1200 

mm at Moorepark.
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Figure 5.1. The map of Ireland shows the herd population by County in 2019 (Source: Irish Cattle Breeding Federation) (top). Location of the sample research pasture farms and collocated weather stations. (A) Johnstown Castle (B) Athenry 
and (C) Moorepark. The highlighted plots are the sample grass areas used for analysis of each farm (bottom).

Weather station 

A. B. C. 



153 

 

For this study, the mapping size of the sample area for each farm is approximately 13 acres (5 

Ha), 9.5 acres (3.8 Ha) and 15.5 acres (6.3 Ha) for Johnstown Castle, Athenry and Moorepark, 

respectively. Figure 5.1 provides a general overview of herd population/size per county and 

farm locations. These pasture farms were selected for this study on the basis that: (1) the 

required on farm grass growth data are available from the farms and; (2) the farms are 

relatively large and generally serve research purposes on farming across the country. In 

addition, we used Met Éireann weather stations which are collocated within the research 

farms (Figure 5.1) and provide long-term meteorological records.  

5.2.2 Meteorological forcing data 

Meteorological observations are available from automatic weather stations (AWS) adjacent 

to the selected farms and were obtained from the Irish national meteorological agency, Met 

Éireann. These stations report on global solar radiation (𝑄𝑠↓, W m-2) or sun duration (hours), 

air temperature (°C), relative humidity (%), pressure (kPa), wind speed (m s-1) and 

precipitation (mm).  At Athenry, where 𝑄𝑠↓ observations are not available, observations from 

the nearest (≈ 50 km) weather station (Claremorris, 53.711 oN 8.991 oW) are used, on the 

basis that the offsite meteorology has negligible impact on model simulations (Ishola et al., 

2020; Chapter 3). All observations were obtained for the closest (11.00) hour of satellite 

overpass for periods corresponding to the cloud-free Sentinel-2 scenes in 2017 and 2018 (see 

Table 5.2 for available image dates for each farm). These years are selected as the reference 

wet and dry years, respectively, on the basis that the measured summer total precipitation 

are higher and lower than the long-term (2010-2019) mean, respectively across the country, 

as demonstrated in Chapter 4.  
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We also obtained ERA5-Land (0.1o resolution) hourly volumetric water content at level 1 (0-7 

cm) for the same period of study (Hersbach et al., 2020). A previous evaluation of this product 

shows satisfactory results for different land surface conditions across Ireland (Section 4.2.2). 

5.2.3 Grass yield data 

To evaluate the relationship between water use and grass yield, pasture growth rate in 

kilograms Dry Matter per hectare per day (kg DM/ha/day) for the selected farms were 

obtained from Teagasc’s PastureBased Ireland (PBI) database, a web-based tool tailored for 

Irish grassland management (Hanrahan et al., 2017). The PBI system uses farmers’ inputs to 

derive pasture growth products such as the daily growth rate for paddock/farm, farm cover, 

etc. The farm level data is used by PastureBase Ireland to generate regional grass growth 

indices which are published, however, the raw data is not open access. The grass growth data 

are calculated as the difference between present pasture cover estimate and previous cover 

estimate per window period, provided that the present is greater than or equal to the 

previous cover estimate for all grassland paddocks (Hanrahan et al., 2017). The data for 2017 

and 2018 were made available for this study.
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5.2.4 Satellite derived data 

We obtained earth observation data from the European Space Agency’s (ESA) Copernicus 

Sentinel-2 satellite. The Sentinel-2 mission is based on a constellation of Sentinel-2A and 2B 

satellites, both orbiting the Earth in polar sun-synchronous at an altitude of 786 km 

(http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2). The 

Sentinel-2A was launched on the 23rd June, 2015, and Sentinel-2B on the 7th March, 2017. 

Both satellites are kept 180o apart to optimize coverage, and they capture the Earth, covering 

the land and coastal areas between 84oN and 84oS, around 10.30 hours every five days over 

the equator, with higher revisit times over higher latitudes. Both satellites carry a Multi-

Spectral Imager (MSI) obtaining data in 13 spectral bands and with varying spatial resolutions, 

from 10 m in the visible/near infrared bands to 60 m in the atmospheric correction bands. 

The properties of the MSI spectral bands, in terms of the spectral wavelengths, spatial 

resolutions and general applications are presented in Table 5.1. 

ESA Sentinel-2 Level-1C Top of Atmosphere (ToA) reflectance products are available through 

the Copernicus open access hub (http://scihub.copernicus.eu). The satellite images were 

obtained for the available cloud-free periods for both a wet (2017) and a dry (2018) year.   

More details of the satellite specification, tiles and temporal coverage, corresponding to the 

cloud-free scenes for the selected farms are given in Table 5.2.  
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Band 

 

Center  

Wavelength 
(nm) 

Spectral width 
wavelength 

(nm) 

Spatial  

resolution 
(m) 

 𝒘𝑩 

 

(-) 

Application 

B1 
 
B2 
 
 
B3 
 
B4 
 
B5 
 
 
B6 
 
 
B7 
 
B8 
 
B8a 
 
 
B9 
 
 
B10 
 
B11 
 
 
B12 

443 
 

490 
 
 

560 
 

665 
 

705 
 
 

740 
 
 

783 
 

842 
 

865 
 
 

945 
 
 

1375 
 

1610 
 
 

2190 

20 
 

65 
 
 

35 
 

30 
 

15 
 
 

15 
 
 

20 
 

115 
 

20 
 
 

20 
 
 

30 
 

90 
 
 

180 

60 
 

10 
 
 

10 
 

10 
 

20 
 
 

20 
 
 

20 
 

10 
 

20 
 
 

60 
 
 

60 
 

20 
 
 

20 

- 
 

0.356 
 
 
- 
 

0.130 
 
- 
 
 
- 
 
 
- 
 

0.373 
 
- 
 
 
- 
 
 
- 
 

0.085 
 
 

0.072 
 

-0.0018 

Atmospheric corrections. 
 
Atmospheric corrections; vegetation senescence, 
carotenoid, browning and soil background. 
 
Vegetation chlorophyll, maximum greening. 
 
Peak chlorophyll absorption. 
 
Fluorescence baseline/Atmospheric corrections; 
Red edge.  
 
Red edge; Aerosols retrieval; Atmospheric 
corrections. 
 
Near infrared edge; Leaf Area Index. 
 
Leaf Area Index. 
 
Chlorophyll absorption, water vapour absorption, 
LAI, biomass, aerosols retrieval. 
 
Water vapour absorption; Atmospheric 
corrections. 
 
High cloud (e.g cirrus); Atmospheric corrections. 
 
Snow/ice/cloud differences; lignin, above ground 
biomass, forest. 
 
Soil texture and type, soil erosion, biomass.  

Table 5.1. A summary characteristics of Sentinel-2 Multispectral Imager spectral bands.  
 𝑤𝐵  is the weighting coefficient for estimating shortwave broadband albedo (Liang, 2001)   
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Johnstown   Castle 

Date        Julian day                  

 

MSI   

  Athenry 

Date 

 

Julian 

day 

 

MSI 

 Moorepark 

Date 

 

Julian 

day 

 

MSI  

2017 

08/05*        128 

17/06*        168 

20/06          171 

02/07*        183 

17/07          198 

20/07          201 

15/09          258 

 

2018 

28/04          118 

06/05*        126 

16/05          136 

23/05          143 

07/06          158 

22/06*        173 

27/06          178 

30/06          181 

05/07*        186 

10/07          191 

09/08          221 

03/09          246 

13/09          256 

 

S2A 

S2A 

S2A 

S2B 

S2A 

S2A 

S2A 

 

 

S2B 

S2A 

S2A 

S2A 

S2B 

S2A 

S2B 

S2B 

S2A 

S2B 

S2B 

S2A 

S2A 

  

25/03 

11/05* 

20/06* 

12/11 

 

 

 

 

 

20/03 

06/05 

16/05* 

28/06* 

03/07 

10/07* 

30/07 

29/08 

28/10 

25/11 

 

84 

131 

171 

316 

 

 

 

 

 

79 

126 

136 

179 

184 

191 

211 

241 

301 

329 

 

S2A 

S2A 

S2A 

S2B 

 

 

 

 

 

S2A 

S2A 

S2A 

S2A 

S2B 

S2B 

S2B 

S2B 

S2B 

S2A 

  

12/03 

01/05 

11/05* 

18/09* 

 

 

 

 

 

21/04 

16/05* 

05/07 

10/07* 

03/09* 

28/09 

18/10 

28/10 

 

 

71 

121 

131 

261 

 

 

 

 

 

111 

136 

186 

191 

246 

271 

291 

301 

 

 

S2A 

S2A 

S2A 

S2A 

 

 

 

 

 

S2B 

S2A 

S2A 

S2B 

S2A 

S2B 

S2B 

S2B 

 

Table 5.2. Temporal coverage and corresponding instrument type of Sentinel-2 (S2) cloud-free images used 
over the sample farms, Johnstown Castle (tiles T29UPT and T29UPU); Athenry (tiles T29UNV); Moorepark (tiles 
T29UNT). *periods used in the plotted maps. 

During pre-processing of the products, the occurrence of clouds and cloud shadows that 

partially cover the downloaded satellite images of the area of interest were removed, leading 

to a total of 46 images available for further analysis across the three farms. The Level-1C ToA 

reflectance images were then processed and corrected to Level-2A and Level-2B Bottom of 

Atmosphere (BoA) reflectance products using ESA Sen2Cor v2.5.5 atmospheric correction 

processor algorithm (ESA, 2018). The spectral bands of the corrected Level-2A and Level-2B 
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were resampled from their native pixel size to 10 m pixel size, using Nearest Neighbor 

resampling methods with band B2 as the reference image. This pixel size is sufficient to 

effectively discriminate between different land cover types and avoid 

misrepresentation/misinterpretation of pixels. The data for biophysical parameters, including 

the Leaf Area Index (LAI), Normalized Difference Vegetation Index (NDVI), Fraction of 

Absorbed Photosynthesis Active Radiation (FAPAR),  near infrared NIR reflectance of 

vegetation (NIRv) and surface albedo (α), were subsequently derived using the Sentinel 

Application Platform (SNAP), a tool developed by ESA and tailored to processing Sentinel-2 

observations (http://step.esa.int/main/toolboxes/sentinel-2-toolbox/sentinel-2-toolbox-

features/).  

The NIRv, defined as the product of NIR and NDVI (Badgley et al., 2017), has been introduced 

in Chapter 4. Here, the data were derived by combining the Sentinel spectral Bands 4 (red) 

and 8 (NIR) using the vegetation radiometric indices processor in the ESA SNAP Toolbox.  The 

integrated SNAP-biophysical processor was also used to map the farm-scale LAI and FAPAR at 

10 m resolution.  The algorithm used to derive LAI is tailored for Sentinel-2 observations, and 

it includes an Artificial Neural Network (ANN) model which is trained using simulations from 

PROSAIL (PROSPECT + SAIL) radiative transfer models (Verhoef, 1984; Jacquemoud and Baret, 

1990). The algorithm incorporates B3-B7, B8, B11-B12 bands to derive the biophysical 

parameter.  This approach has proven reliable for LAI estimations for different experimental 

fields and environments (e.g. Vuolo et al., 2016; Djamai and Fernandes, 2018; Vanino et al., 

2018). For a more detailed description of the approach, the reader is referred to Weiss and 

Baret (2016). A linear model, relating the derived NIRv values to LAI and FAPAR, was 
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developed for each of the selected farms (Figure 5.2). Both regression model fits show strong 

linear relationships (R2 ≈ 0.9) at the selected farm-scale. 

 

Figure 5.2. Relationships between near infrared reflectance of vegetation (NIRv) and leaf area index, LAI [top]; 
fraction of absorbed photosynthesis active radiation, FAPAR [bottom] for 2017 [green] and 2018 [red] image 
dates across the farms. Values are derived from the highlighted sample grass plots in Figure 1. 

 

In addition, broadband surface albedo (α) was derived using the Level-2A/2B reflectance 

bands obtained from ESA Sen2Cor algorithm. We applied the commonly used linear 

regression model (Equation 5.1) from Liang (2001) for this purpose. The approach 

incorporates five different reflectance bands and empirical weighting coefficients (Table 5.1).  

While the weighting coefficients were derived based on Landsat reflectance data, the 

corresponding Sentinel-2 bands can be assigned to estimate shortwave broadband albedo, 
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bearing in mind that some of the spectral wavelengths for the corresponding bands of Landsat 

and Sentinel-2 may differ considerably (Naegeli et al., 2017).  The linear model is given by;  

𝛼 =  ∑  𝑤𝐵𝑖 .  𝜌𝐵𝑖𝐵𝑖 ,          (5.1) 

where  𝑤𝐵𝑖 is the weighting coefficients for band number 𝐵𝑖 (Table 1) and  𝜌𝐵𝑖  is the Level 

2A/2B surface reflectance for band number 𝐵𝑖. Other linear models for Sentinel2-based 

albedo have also been proposed (e.g. Li et al., 2018). A brief comparsion with the model used 

here shows good agreement in terms of the magnitude and spatial pattern (see Appendix A). 

The derived surface albedo, LAI and NDVI were used as inputs to represent the dynamics of 

surface parameters in the LSS while FAPAR and NIRv were used in GPP models (see Section 

5.2.6) that are based on LUE theory. 

5.2.5 Mapping high resolution daily evapotranspiration 

The land surface scheme (LSS) employed here has been described elsewhere (Ishola et al., 

2020; Chapters 3-4). In contrast to the previous application of the LSS, where surface 

conditions are prescribed using specified values, the modification here is that the scheme 

integrates Sentinel-2 data that is then used to calculate and represent the dynamics of surface 

parameters, and simulate farm-scale surface energy fluxes at 10 m pixel-size. ET which is a 

measure of latent heat flux, is part of a surface energy budget understanding of surface-air 

exchanges. 

Daily actual evapotranspiration (ET24) values are more relevant than the instantaneous ET for 

management applications of water-consumption. Thus, the high resolution farm-scale 24-hr 

total actual evapotranspiration (ET24, mm day-1) values were estimated by integrating the 

hourly instantaneous latent heat flux (𝑄𝐸) retrieved from the land surface scheme and 𝑄𝑠↓. 
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Although, an evaporative fraction (EF), defined as the ratio of 𝑄𝐸 and available energy (𝑄𝑁  −

 𝑄𝐺) at the land surface (see also Chapter 4) is commonly used to upscale ET from 

instantaneous to 24-hr total ET, the use of 𝑄𝑠↓ has also demonstrated consistent results (e.g. 

Yang et al., 2018). The latter is preferred here in order to avoid errors inherent in EF 

assumptions such as the assumption that estimated EF at a specific daytime remains constant 

assuming clear-sky throughout the daylight hours.   This may not apply because only a specific 

time of the day is required to be cloud-free, while the rest of the day can be clear or cloudy. 

In addition, the 𝑄𝑠↓ upscaling approach is used to avoid biases arising from 𝑄𝑁 and 𝑄𝐺 

estimations (van Niel et al., 2012; Cammalleri et al., 2014, Yang et al., 2018). The temporal 

upscaling of daily ET is given as: 

𝐸𝑇24 =  
8.64 𝑥 107 𝑥 𝑄𝐸 𝑥 𝑄𝑆↓24

𝑄𝑆↓ 𝑥 𝜆𝜌𝑤
 ,        (5.2) 

where 𝜆 is the latent heat of vaporization (2.45 𝑥 106 J kg-1), and 𝜌𝑤  density of water (1000 kg 

m-3).  𝑄𝑆↓ and 𝑄𝑆↓24 are the instantaneous and daily global radiation, respectively. 𝑄𝐸  is the 

instantaneous latent heat flux, calculated by the LSS at the closest time (11.00 hour) the 

respective satellite image for a location was acquired. 

5.2.6 Relationship between ecosystem water use and yield 

Daily Sentinel2-scale ecosystem WUE (g C kg-1 H2O) is calculated as (e.g. Hatfield and Dold, 

2019; Zhou et al., 2020): 

𝑊𝑈𝐸 =  
𝐺𝑃𝑃

𝐸𝑇24
 ,          (5.3) 
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where 𝐸𝑇24 is the daily actual evapotranspiration (mm day-1) derived from land surface 

scheme (see section 5.2.5). GPP is the daily Sentinel-2 scale gross primary productivity (g C 

day-1). 

For robust analysis, two approaches were applied to estimate GPP, resulting in two different 

estimates of WUE. The first approach is based on the MODIS light use efficiency (LUE) scheme 

(Running and Zhao, 2015; Ma et al., 2021) (hereafter termed ‘WUEMODIS’). It is given as: 

𝐺𝑃𝑃 =  𝑃𝐴𝑅 𝑥 𝐹𝐴𝑃𝐴𝑅 𝑥 𝐿𝑈𝐸,       (5.3a) 

where FAPAR is the Sentinel-2 derived fraction of absorbed photosynthetically active 

radiation derived using the integrated SNAP-biophysical processor. PAR (MJ m-2) is the 

photosynthetically active radiation per unit time, taken as 45% of measured incoming 

shortwave radiation (𝑄𝑠↓) (Running and Zhao, 2015; Ma et al., 2021). The employed fractional 

value is universal and works well in Ireland, based on the evaluation over Johnstown Castle 

(not shown). 

𝑃𝐴𝑅 = 0.45 𝑥 𝑄𝑠↓ ,         (5.3b) 

LUE is calculated as the product of maximum vegetation LUE (𝐿𝑈𝐸𝑚𝑎𝑥, g C MJ-1) and 

environmental stressors (𝑇𝑚𝑖𝑛𝑠𝑐𝑎𝑙𝑎𝑟 and 𝑉𝑃𝐷𝑠𝑐𝑎𝑙𝑎𝑟) of daily minimum temperature (𝑇𝑚𝑖𝑛, 

oC) and daily vapour pressure deficit (𝑉𝑃𝐷, Pa), respectively.  

𝐿𝑈𝐸 =  𝐿𝑈𝐸𝑚𝑎𝑥 𝑥 𝑇𝑚𝑖𝑛𝑠𝑐𝑎𝑙𝑎𝑟 𝑥 𝑉𝑃𝐷𝑠𝑐𝑎𝑙𝑎𝑟      (5.3c) 

The 𝐿𝑈𝐸𝑚𝑎𝑥  (0.86 g C MJ-1 for grass) is given in a Biome Parameter Look-up Table (BPLUT) for 

different ecosystem types (Running and Zhao, 2015). The 𝑇𝑚𝑖𝑛𝑠𝑐𝑎𝑙𝑎𝑟 and 𝑉𝑃𝐷𝑠𝑐𝑎𝑙𝑎𝑟 are given 

as: 
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𝑇𝑚𝑖𝑛𝑠𝑐𝑎𝑙𝑎𝑟 =  {
1

0

(𝑇𝑚𝑖𝑛 − 𝑇𝑚𝑖𝑛𝑚𝑖𝑛) (𝑇𝑚𝑖𝑛𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛𝑚𝑖𝑛)⁄  

𝑇𝑚𝑖𝑛 >  𝑇𝑚𝑖𝑛𝑚𝑎𝑥

 𝑇𝑚𝑖𝑛𝑚𝑖𝑛  ≤  𝑇𝑚𝑖𝑛 ≤  𝑇𝑚𝑖𝑛𝑚𝑎𝑥

𝑇𝑚𝑖𝑛 <  𝑇𝑚𝑖𝑛𝑚𝑖𝑛

 ,  (5.3d) 

𝑉𝑃𝐷𝑠𝑐𝑎𝑙𝑎𝑟 =  {
0

1

(𝑉𝑃𝐷𝑚𝑎𝑥 − 𝑉𝑃𝐷) (𝑉𝑃𝐷𝑚𝑎𝑥 − 𝑉𝑃𝐷𝑚𝑖𝑛)⁄  

𝑉𝑃𝐷 >  𝑉𝑃𝐷𝑚𝑎𝑥

 𝑉𝑃𝐷𝑚𝑖𝑛  ≤  𝑉𝑃𝐷 ≤  𝑉𝑃𝐷𝑚𝑎𝑥

𝑉𝑃𝐷 <  𝑉𝑃𝐷𝑚𝑖𝑛

 ,  (5.3e) 

where 𝑇𝑚𝑖𝑛𝑚𝑖𝑛 (-8 oC) and 𝑉𝑃𝐷𝑚𝑖𝑛 (650 Pa) are the daily minimum temperature and VPD at 

which 𝐿𝑈𝐸 = 0, while 𝑇𝑚𝑖𝑛𝑚𝑎𝑥 (12.02 oC) and 𝑉𝑃𝐷𝑚𝑎𝑥 (5300 Pa) are daily minimum 

temperature and VPD at which 𝐿𝑈𝐸 = 𝐿𝑈𝐸𝑚𝑎𝑥. The values were also obtained from BPLUT 

(Running and Zhao, 2015). 

The second approach to estimate LUE is based on NIRv (Jiang et al., 2020) (hereafter termed 

‘WUENIRv’). It has been recognized that LUE and FAPAR are strongly related to vegetation 

indices including NIRv and both exhibit similar biophysical characteristics (e.g. Badgley et al., 

2017; Biudes et al., 2021), GPP has also been recognized to show a moderate correlation with 

LUE (Dechant et al., 2020) and a strong correlation with NIRv (Badgley et al., 2017) (see also 

Figure 5.2). Thus, Jiang et al. (2020) introduced a simplified version of equation (5.3a) by 

replacing the last two terms on the right side with a model that is based on a linear relation 

with NIRv. 

𝐺𝑃𝑃 ≈  𝑃𝐴𝑅 𝑥 (𝑎 𝑥 𝑁𝐼𝑅𝑣 + 𝑏),       (5.3f) 

where a and b are model coefficients derived from pixel-wise regression fit between Sentinel-

2 FAPAR and NIRv. This approach is similar to vegetation index-based models (e.g. Biudes et 

al., 2021), first introduced by Wu et al. (2010). There are no available GPP measurements for 

the selected locations, this would have facilitated a cross-comparison and evaluation of the 

two approaches used in this study. On the basis of both GPP methods outlined, spatial 

estimates (10 m resolution) of WUE were derived for each of the selected farms. 
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To understand the relationship between the derived WUE estimates from the procedure 

described above, and measured grass growth at farm scale, grass Yield-WUE correlations 

were quantified based on the derived maps for the active growth period (May-August) using 

the Pearson correlation coefficient. The WUE values were extracted per pixel for sample grass 

areas within the farms and spatially averaged for each date. The farm level, spatially averaged 

WUE estimates are then used with the grass yield data (within ±7 days of image date) to derive 

a predictive model for each farm. A similar analysis was undertaken for ET24-Yield correlations. 

While the output maps showing wider coverage of the farms are presented in the results, 

further analysis are conducted only for the sample grasslands with highlighted bounding 

shapes across the farms (see Figure 5.1). 

5.3. Results 

5.3.1 Analysis of NIRv from Sentinel-2 

NIRv maps of the Johnstown Castle farm and corresponding histograms for three selected 

image dates are shown in Figure 5.3. The Sentinel-2 derived NIRv show large spatial variations, 

from a low to high reflectance signal, indicating unhealthy to healthy vegetation across the 

farm. It should be noted that this farm is peculiar for its surface heteorogeneity, the field 

boundaries (highlighted black bounding shape), comprising of 10 paddocks, are used as 

sample experiemtal treatments (Figure 5.3a). For the highlighted fields, a substantial 

proportion of the grasslands show high NIRv values above 0.3 for all the image dates except 

July when the values are largely below 0.25. Based on the histogram analysis (Figure 5.3b), 

the NIRv values indicate that a large portion of the vegetation within the farm are healthy, 

with median NIRv value of approximately 0.3 for both 2017 and 2018 image dates. However, 
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a large portion of the vegetation are stressed during July 2018 with median NIRv value of 

approximately 0.2, relative to other image dates. 

 

 

Figure 5.3. (a) Sentinel-2derived near infrared reflectance of vegetation (NIRv) maps and; (b) histogram of NIRv 
values of selected image dates during 2017 and 2018 for the Johnstown Castle farm. The vertical dashed red 
lines indicate the median NIRv values. 
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For the Athenry farm, the NIRv values are relatively high in 2017 maps (Figure 5.4). However 

in 2018, the values dropped in June and reach their minimum value in July, as clearly revealed 

in the highlighted (black bounding) grasslands (Figure 5.4a). From the histogram analysis 

(Figure 5.4b), the median NIRv value is approximately 0.4, suggesting that a substantial 

portion of the farm is highly productive across May and June of both years. However, a large 

portion of the land also experienced vegetation stress with median NIRv dropping to 

approximately 0.23 in July of 2018. While there are some missing satellite image dates from 

Moorepark farm (Figure 5.5), the results are very similar to the Athenry farm based on both 

magnitudes and temporal variations. 

Comparatively, the results demonstrate that the vegetated landscape at Athenry and 

Moorepark are healthier and more productive than those of Johnstown Castle for the 

selected image dates. Additionally, the footprint of water stress on the vegetation signal, as 

represented by the NIRv analysis is evident during July 2018 across the three farms. 
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Figure 5.4. (a) Sentinel-2derived near infrared reflectance of vegetation (NIRv) maps, and; (b) histogram of 
NIRv values of selected image dates during 2017 and 2018 for Athenry farm. No analysis for July 2017 due to 
lack of clear-sky Sentinel-2 images. The vertical dashed red lines indicate the median NIRv values 
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Figure 5.5. (a) Sentinel-2 derived near infrared reflectance of vegetation (NIRv) maps and; (b) histogram of 
NIRv values of selected image dates during 2017 and 2018 for Moorepark farm. No analysis for June of both 
years and July 2017 due to lack of clear-sky Sentinel-2 images. The vertical dashed red lines indicate the 
median NIRv values 
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5.3.2 Analysis of ET changes 

Knowledge of ET dynamics within a farm is essential for agricultural water management and 

planning. Here, the results of the high resolution ET estimates are presented, along with the 

relative change for the individual sample farms. The estimates of the relative change in ET in 

2018 (expressed in percentage) were derived from the ratio of the difference between 2018 

(dry) and 2017 (wet) ET maps, and 2017 map, for a representative selection of dates during 

analysis period. There are differences in the dates of downloaded Sentinel-2 images for the 

same month between the years due to cloud cover. Hence, the closest dates (within 7 days 

difference) between reference wet and dry periods are selected to derive the relative change 

in ET. The dates used to generate the maps are highlighted in Table 5.2. 

 

5.3.2.1 Johnstown Castle  

Figure 5.6 displays a sequence of estimates and boxplots of daily actual ET for the selected 

dates during May-July in 2017 and 2018 for the Johnstown Castle farm, along with relative 

change (%) between these years. The maps demonstrate variability in spatial ET changes 

within the farm. For example, within the highlighted black bounding farm plot (in Figure 5.6a), 

ET changes are lower (less than 50 % drop in ET) at the centre of the plot relative to rest of 

the landscape during the growth season. While the ecosystems within the farm largely show 

maximum ET rates in June, consistent for both years, maximum plant water use (ET > 5 mm 

day-1) is higher in 2017 than in 2018 (4.5 – 5 mm day-1). This is particularly evident in the 

southwest portion of the farm which is dominated by thick canopy coverage (see Figure 5.1).  
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Figure 5.6. The daily evapotranspiration (ET) changes at Senitnel-2 scale for three selected image dates during 
2017 and 2018 for the Johnstown Castle farm. (a) ET maps, and; (b) the distribution and trend of ET for near 
infrared reflectance of vegetation (NIRv) pixel values less than 0.25 and for NIRv pixel values greater than or 
equal to 0.25.  
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The distribution and trend of ET across the highlighted (black bounding) farm plot are shown 

in Figure 5.6b. The responses of ET across the plot are distinguished by isolating the 

vegetation signal using a specified threshold (0.25) of NIRv (see Figures 5.3-5.5). For grasses 

with NIRv < 0.25, the daily ET increased, reaching maximum rate (median = 4.2 mm day-1) in 

July of 2017, while 2018 magnitude dropped from maximum rate (median = 3.3 mm day-1) in 

June to the lowest (median = 1.3 mm day-1) in July. For grasses with high reflectance signal 

(NIRv ≥ 0.25), the changes in ET between the months are small (median is approximately 5 

mm day-1) during 2017 but, the highest and lowest (median) ET rates are 4.3 mm day-1 in June 

and 2.1 mm day-1 in July of 2018, respectively. 

While the patterns of ET are similar in 2018 for both NIRv categories, the 2017 patterns 

appear to diverge in relation to the NIRv (< 0.25) category in July.  The observed divergence 

of ET response between wet and dry years in July suggests the presence of landscapes with 

high plant water-stress and an increased stomatal resistance that facilitates more energy 

being partitioned into heat fluxes during July of 2018. Generally, ET is lower for grasses with 

low reflectance signal (NIRv < 0.25), relative to grasses with high reflectance signal (NIRv ≥ 

0.25) for both wet and dry years. 

5.3.2.2 Athenry  

The ET maps and patterns over Athenry farm are presented in Figure 5.7. It should be noted 

that the July map for 2017 is not available due to high cloud amount. As a consequence, the 

2018 July image date was contrasted with the map of maximum ET rate in June of 2017, to 

determine the possible amount of water required to offset the plant water shortage in July, 

in terms of relative change.  
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Figure 5.7. The daily evapotranspiration (ET) changes at Senitnel2-scale for three selected image dates during 
2017 and 2018 for Athenry farm. (a) ET maps and; (b) the distribution and trend of ET for near infrared 
reflectance of vegetation (NIRv) pixel values less than 0.25 and for NIRv pixel values greater than or equal to 
0.25. No available cloud-free image in July of 2017. 
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This is done on the basis that ET rate is maximum under non-limiting water availability (wet 

condition) and high incident radiation for plant use, which is the case for the 2017 June image 

date (Figure 5.7a).  

The ET rates are largely uniform over grass within the farm, maximum at 5-6.5 mm day-1, as 

shown in the highlighted black bounding shapes. In contrast to Johnstown Castle site, the 

2018 ET rates are generally higher (by about 50 %, relative to the 2017 reference wet period) 

over grass in May and June at Athenry farm, suggesting the importance of higher incident 

radiation and atmospheric evaporative demand that enhanced the ET processes. Conversely, 

the ET rates dropped by about 100 % in July of 2018, relative to June reference map, 

particularly for these grass dominated landscapes within the farm. 

For the highlighted sample grasslands in Figure 5.7a, the corresponding trend of ET rate per 

10-m pixel are presented in Figure 5.7b. For grasses with low reflectance signal (NIRv < 0.25), 

ET rates show little difference during May and June image dates (median is approximately 3.5 

mm day-1) in 2017. However in 2018, ET rates increased to maximum (median = 5.3 mm day-

1) in June and then dropped sharply to the lowest (median = 2.5 mm day-1) in July. These 

patterns are also similar for grasses with high reflectance signal (NIRv ≥ 0.25) but with higher 

ET rates. 

5.3.2.3 Moorepark  

Moorepark site also suffers similar limitation as Athenry farm in terms of missing cloud-free 

images in June and July of 2017 (Figure 5.8). As a result, the available dates of ET maps are 

compared in a manner that was described in Section 5.3.2.2.  The ET rates (2 – 3.5 mm day-1) 

are largely uniform over vegetated surfaces in 2017 but enhanced in 2018 across the farm. 
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The middle black bounding sample grassland shows the maximum ET rates (7 mm day-1) in 

the West end, relative to the rest of the farm during May of 2018 (Figure 5.8a). The relative 

increase in ET over grass ranges between 100-200 % in May, and dropped (by more than 50 

%) in July.  

For the highlighted bounding grasslands (Figure 5.8a), the analysed trends in ET are provided 

in Figure 5.8b. ET rates show a shallow decreasing slope between May and September of 2017 

(note that there are missing June and July images for the year), while also decreased sharply 

between May and July of 2018, it increased by September of the same year, for grasslands 

with a low reflectance signal (NIRv < 0.25). For grassland with high reflectance signal (NIRv ≥ 

0.25), similar patterns of trend are identified but with higher magnitude of ET for both wet 

and dry years, relative to the results for NIRv < 0.25. 
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Figure 5.8. The daily evapotranspiration (ET) changes at Senitnel-2 scale for three selected image dates during 
2017 and 2018 for Moorepark farm. (a) ET maps and; (b) the distribution and trend of ET for near infrared 
reflectance of vegetation (NIRv) pixel values less than 0.25 and for NIRv pixel values greater than or equal to 
0.25. No available cloud-free image in June and July of 2017 and June of 2018. 
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5.3.3 Characteristics of ecosystem water use EFficiency across the farms 

Water-carbon coupling results at ecosystem level and daily scale are shown in Figure 5.9. The 

variability in GPP and ET is weakly, but significantly, linked (R2 = 0.25 for MODIS-based GPP 

and R2 = 0.46 for NIRv-based GPP) over grasslands at Johnstown Castle farm; while much 

stronger relationships are observed over grasslands at Athenry (R2 = 0.78 for MODIS-based 

GPP and R2 = 0.91 for NIRv-based GPP) and Moorepark (R2 = 0.63 for MODIS-based GPP and 

R2 = 0.87 for NIRv-based GPP) farms.  

 

Figure 5.9. Relationships between daily evapotranspiration (ET) and gross primary productivity (GPP) derived 
from MODIS light use efficiency scheme, GPPMODIS [top]; GPP derived from near infrared reflectance of 
vegetation, GPPNIRv [bottom] for 2017 [green] and 2018 [red] image dates across the farms. Values are derived 
from the highlighted sample grass plots in Figure 5.1. 

 



177 

 

Figure 5.10 shows the ecosystem-level WUE (g C kg-1 H2O) estimates for the Johnstown Castle 

site for the selected image dates in 2017 and 2018. The WUEMODIS and WUENIRv were derived 

from the approaches described in Section 5.2.6. The results from both approaches are 

consistent in terms of spatial and temporal changes. The estimated pixel WUE values are 

generally below 2.0 for grassland during the 2017 growth season and the maximum growth 

period in 2018 across the farm. This implies that soil water is abundant, leading to an increase 

in plant transpiration rate that is nearly close to the rate of photosynthetic carbon 

assimilation.  

 

Figure 5.10. The daily water-use efficiency (WUE) maps at Senitnel2-scale for three selected image dates during 
2017 and 2018 for Johnstown Castle farm. WUEMODIS maps are derived from GPP-based MODIS light use 
efficiency scheme, while WUENIRv maps are derived from NIRv-based approach. The WUE maps from both 
approaches are included to distinguish the model responses between wet and dry conditions, potentially 
explained by ligh use efficiency module. 
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However, the large values (between 4.0 and 5.0) across the grasslands in July suggest an 

exponential decrease in the rate of water loss through transpiration, possibly due to stomata 

closure, with small change in photosynthetic carbon fixation, since the GPP slightly decreased 

during this period (see Figure 5.9) 

For Athenry (Figure 5.11), there are observed differences between the magnitudes of 

WUEMODIS and WUENIRv. For instance, WUEMODIS values are uniform across farms but 

progressively increased (0.8-1.8 during 2017 and 0.4-1.6 during 2018) over the course of the 

season. However, the values of WUENIRv in 2017 dropped from 2.0 (1.8 for 2018) in May to 1.6 

(1.4 for 2018) in June, then increased (maximum rate at 2.6 over grasslands) in July of 2018.  

Similar differences between WUEMODIS and WUENIRv, and pattern of changes in WUE are also 

identified at Moorepark (Figure 5.12). The maximum estimated WUE for Moorepark is 

between 2.0 and 2.6 for both approaches in July of 2018. The magnitudes of estimated 

WUENIRv are largely higher, relative to WUEMODIS for Athenry and Moorepark farms. The 

different outcomes between both approaches suggest the role of LUE model that stand to 

constrain the MODIS-based GPP and WUE. The overarching question about which approach 

has the best capability to reproduce measured GPP and ecosystem WUE at such a high 

resolution needs further investigation, as this is not evaluated in this study. The WUE 

variations between dates also reflect the characteristics associated with biological processes 

and external environmental stressors.  
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Figure 5.11. The daily water-use efficiency (WUE) maps at Senitnel2-scale for three selected image dates during 
2017 and 2018 for Athenry farm. WUEMODIS maps are derived from GPP-based MODIS light use efficiency scheme, 
while WUENIRv maps are derived from NIRv-based approach. The WUE maps from both approaches are included 
to distinguish the model responses between wet and dry conditions, potentially explained by ligh use efficiency 
module. No available cloud-free image in July of 2017. 
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Figure 5.12. The daily water-use efficiency (WUE) maps at Senitnel2-scale for three selected image dates during 
2017 and 2018 for Moorepark farm. WUEMODIS maps are derived from GPP-based MODIS light use efficiency 
scheme, while WUENIRv maps are derived from NIRv-based approach. No available cloud-free image in June and 
July of 2017 and June of 2018. 

5.3.4 Analysis of WUE-Yield correlations 

Relationships between grass growth rate and estimated daily actual ET and ecosystem WUE 

from the integrated land surface scheme were further investigated for the active growth 

period (May-August) (Figure 5.13). The first row in Figure 5.13 shows the weekly time series 

of measured grass growth for 2017 and 2018. The yearly cycle and the peaks of grass growth 

between May and June are consistent for both years for all the farms. However, there is a 

clear delay in the start of 2018 growing season, arising from the longer winter and exceptional 

snow fall that stayed on the ground between late February and middle of March, relative to 

2017 for the farms. In addition, Johnstown Castle appears to show lower amplitude of grass 
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growth, relative to Athenry and Moorepark, consistent with Sentinel-2 derived NIRv (Figures 

5.3-5.5).   

 

 

Figure 5.13. Temporal evolution of measured weekly grass yields of 2017 and 2018 across the farms [first row]. 
Relationships between water-use indicators (daily actual evapotranspiration, ET and water-use efficiency, WUE) 
at 10-m pixel and grass yields [rows 2-4]. WUEMODIS maps are derived from GPP-based MODIS light use efficiency 
scheme, while WUENIRv maps are derived from NIRv-based approach. Scatterplots contain image dates within 
the period in respective grey box in first row. Values are for highlighted sample grass plots in Figure 5.1. 
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 Comparatively, the grass growth rate dropped substantially during the 2018 mid-growing 

season, relative to the 2017 reference wet conditions. This is similar for all the farms (Figure 

5.13 a-c), and indicates vegetation stress that is likely attributable to the combined negative 

effect of soil water and environmental stress. The recovery appears to occur at a faster rate 

or less impact at Athenry compared to the other farms, possibly due to Storm Hector that 

brought rainfall to the west in mid-summer thereby improving water availability in the area. 

The analysis of ET-Yield and ecosystem WUE-Yield relations are provided in Figures 5.13d-f 

and 5.13g-l, respectively. The ET and WUE pixel values within the selected fields (highlighted 

black bounding boxes) were extracted and spatially averaged for each date of active growth 

period indicated in Figure 5.13a-c. The Sentinel-2 scale ET shows relatively weak correlations 

with grass growth (R2 ≈ 0.3) for Johnstown Castle and Athenry (Figure 5.13d-e) but a strong 

correlation (R2 ≈ 0.7) was obtained for Moorepark (Figure 5.13f). The grass growth shows an 

exponential relationship with ecosystem-level WUE across the farms. For Johnstown Castle, 

grass growth reveals much stronger correlation (R2 ≈ 0.6) with both WUEMODIS and WUENIRv 

(Figure 5.13 g, j), while WUE-yield correlation remains relatively weak for Athenry (Figure 5.13 

h, k).  The WUE-yield correlation is also strong for Moorepark (Figure 5.13 i, l).  

Generally, these results demonstrate that ET is much more related to WUE than GPP and thus, 

influences the plant WUE across the selected farms. The WUE is relatively low with some 

saturation under high rate of grass growth, but as the WUE increases above a certain point 

(observed value around 1.5 g C kg-1 H2O), grass growth rate dropped substantially to the 

lowest and becomes insensitive at higher WUE (> 2.0 g C kg-1 H2O). Since the 10-m pixel allows 

discrimination between different land cover types, the results of this study are a good 
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representation of the landscape of interest (grassland) and provide a potentially useful tool 

for the assessment of water productivity and grass growth within pasture farms.  

5.4. Discussion 

Understanding the effects of changes in water availability on ecosystem functioning is 

essential to quantifying water and carbon budgets of landscapes at detailed spatial scales, 

particularly under water-limiting conditions. Water and carbon uptakes of ecosystem are 

generally understood to increase under non-limiting water conditions and decrease under 

water-limited conditions (e.g. Reichstein et al., 2002; Wagle and Kakani, 2012). However, 

ecosystem water-carbon couplings (WUE) can exhibit contrasting responses under different 

intensities of surface dryness or drought, as evidenced from observations and model-based 

analyses (Reichstein et al., 2002; Medrano et al., 2009; Lu and Zhuang, 2010; Wagle ad Kakani, 

2012; Zhou et al., 2020; Ma et al., 2021). This evidence needs to be tested at farm-scale for 

different environments and landscapes, as this will improve the understanding of regional 

climate change effects on ecosystem functioning (Reichstein et al., 2002). In this light, this 

study provides explanations to changes in water and photosynthetic carbon uptakes of 

grassland, quantified by ET and WUE during wet and dry years, and their effects on the 

measured grass growth rate within a farm in the context of Irish landscapes. The indicators 

were derived from an integrated land surface scheme at 10-m Sentinel2-scale for three 

selected pasture farmlands across Ireland. 

Findings from this analysis indicate that plant water-uptake based on estimated actual ET are 

relatively higher during 2017 than 2018 growth periods at Johnstown Castle. Conversely, ET 

rates are enhanced during 2018 than 2017 growth periods at Athenry and Moorepark (note 

that the Sentinel-2 image dates of both years do not coincide). These variations of ET rates 
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between dry and wet years, and between farms can be explained by the integrated effects of 

changes in land surface and meteorological conditions. Warmer temperatures,  facilitating 

higher atmospheric demand for ET, have been recognized to enhance ET processes over 

grasslands (Teuling et al., 2010; Stap et al., 2014; Lansu et al., 2020), which is in agreement 

with the findings from Athenry and Moorepark during May and June of 2018. However, the 

lower ET rates at Johnstown Castle during these periods demonstrate the role of grassland 

that shows lower growth rate across the farm, relative to Athenry and Moorepark. Generally, 

all the farms show substantial shortfalls in ET rates in July of 2018, relative to 2017 reference 

wet period, as a consequence of restricted plant water availability and higher stomatal 

resistance. Some types of grass (e.g. perennial C4) are recognized to be drought-tolerant (e.g. 

Vignolio et al., 2005) due to their ability to tap water from the soil horizon to maintain high 

ET under water restrictions. The findings here demonstrate that the grass species within the 

sample pasture farms are shallow-rooted, and therefore indicate the plant’s inability to 

extract water from the subsurface, leading to a low resilience to soil water shortage (De Boeck 

et al., 2011; Teuling et al., 2010). These findings also reveal the vulnerability of Irish grasslands 

to climate change and the need to devise a management option such as irrigation practice 

that will offset the worst impact of water stress on productivity. 

Based on the derived Sentinel-2 scale ET and GPP (from both MODIS LUE- and NIRv-based 

approaches) for selected sample pasture lands, much stronger water-carbon couplings were 

identified over Athenry and Moorepark, relative to Johnstown Castle. This is because, the 

transpiration rates -a component of ET which is strongly connected to GPP (Kuglitsch et al., 

2008) - is relatively higher over Athenry and Moorepark, and therefore confirms that these 

farms are more productive than Johnstown Castle, consistent with grass growth 
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measurements. Across all the farms, the derived WUE at ecosystem level are low (1.5 g C kg-

1 H2O) and show some saturation under full canopy coverage. This demonstrates that when 

vegetation is highly productive, the rates of water loss through transpiration are nearly equal 

to carbon uptake through photosynthesis over grass fields, possibly due to an increased plant 

access to soil water. This is consistent with Lu and Zhuang (2010) who reported low ecosystem 

WUE (1.6 g C kg-1 H2O) for grassland in summer over conterminous USA. Several studies using 

modelling approaches (e.g. Reichstein et al., 2002; Lu and Zhuang, 2010; Zhao et al., 2020) 

have demonstrated that ecosystem WUE rises during drought conditions. Our analysis further 

reveals that the WUE rises above a certain point as the rates of grass growth drop 

exponentially, which agree with the findings from the previous studies. Although, these 

studies also noted contrasting pattern of ecosystem WUE using observations during drought 

(e.g. Wagle and Kakani, 2012), and when the intensity of drought becomes severe based on 

model results (e.g. Lu and Zhuang, 2010; Zhao et al., 2020). 

The land surface scheme used here has been previously calibrated and evaluated over Irish 

landscapes (see Chapter 3) but, there are some caveats that need to be recognized. The two 

approaches used for GPP and resulting WUE estimates are based on the concept of LUE 

scheme (Running and Zhao, 2015; Jiang et al., 2020). The models incorporate different 

parameter coefficients which differ for land cover types (Prentice et al., 2015) and thus, 

require robust evaluation for different ecosystem types before applications in precision 

agriculture. Nevertheless, the use of WUE as a tool for grass growth prediction in this study 

provides an added advantage to ingest GPP that accounts for the contribution of plant 

photosynthesis process. The findings in that WUE-grass growth signal over grasslands occur 

during water-limiting condition, suggest essential information that underpin the 
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understanding of vegetation stress in relation to biogeochemical processes down to farm 

scales. 

5.5 Conclusion 

In this study, we applied a land surface scheme that has been previously evaluated for Irish 

landscapes to examine grass growth response to changes in ET and water-carbon coupling 

over pasture farms during wet and dry reference years. The modelling framework integrates 

high resolution Sentinel-2 products and GPP models that are based on LUE theory to quantify 

ET, GPP and WUE at farm-scale using three selected pasture farms across Ireland. 

The study revealed variations in water-use response between image dates and between 

pasture farms. During the periods when vegetation is most productive, the rates of water-

uptake closely match the rates of carbon-uptake for grasslands. However, ecosystem WUE 

increased (much more over Johnstown Castle farm, relative to the other research farms) 

under severe surface drying, due to a substantial reduction in plant water availability and 

increase in stomatal resistance. The observed stronger water-carbon couplings and lower 

WUE over Athenry and Moorepark grasslands confirm that these farms are more productive 

than Johnstown Castle. Additionally, WUE improved the correlations between ecosystem 

indicators and grass yields, relative to ET at farm-scale. Therefore, the findings demonstrate 

the potential of WUE as a tool for discriminating between optimal zones of productivity, and 

for grass growth predictions.  

A major limitation of remote sensing-derived information for applications in precision 

agriculture is the paucity of data due to high low cloud coverage, particularly in Ireland. 

Nevertheless, the derived maps convey important spatially explicit information that will guide 
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on-farm decisions in relation to water and nutrient applications and management to 

maximize productivity, particularly during drought episodes in the future. 
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6. Conclusions 

6.1 Summary 

Terrestrial exchanges of heat, gases and momentum are outcomes of a complex set of 

interconnected processes that link soils, vegetative cover and the atmosphere. To capture 

these dynamic processes and simulate the associated exchanges that govern microclimate 

variations and affect vegetation growth and productivity, a physically-based Land Surface 

Scheme (LSS) is needed. Here, the LSS is based on the surface energy budget (SEB) framework 

and is used to estimate surface-air energy exchanges (including the latent (𝑄𝐸) and sensible 

heat fluxes (𝑄𝐻 and 𝑄𝐺)) and evapotranspiration (ET) to monitor regional agrometeorological 

conditions and crop productivity. This approach is distinguished from traditional monitoring 

and simulation approaches that rely on correlations between observed atmospheric and 

vegetation productivity variables. By contrast, a LSS provides a deeper understanding of the 

links between the conditions of the soil, the vegetative cover and the atmosphere and allows 

the integration of a variety of environmental data from multiple sources to generate 

simulations at high spatial and temporal resolution across Ireland.  

Three principal research questions formed the basis of this PhD research:  

1. Can a LSS be developed to simulate the terms of the surface energy budget in response 

to soil, vegetation and atmospheric variations across Ireland?  

2. Can a validated LSS be used to explore (and predict) the emergence and development 

of agricultural drought and its regional characteristics? 
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3. Can the LSS be used to examine carbon uptake and water exchanges during dry and 

wet regimes, and be used to evaluate water use efficiency and grass yield at a farm scale? 

Any specific extreme weather event could arise from a complex mix of natural and 

anthropogenic factors, thus an event may not necessarily be caused by human-induced 

climate change (Seneviratne et al., 2021). However, new knowledge on event attribution has 

provided strong evidence of strong increases in probability and magnitude of many heat 

waves (periods of extreme high temperature) and hot droughts (periods of extreme water 

shortage) in many regions around the world, attributable to human influence (Arias et al., 

2021; Seneviratne et al., 2021). In 2018, the continental-scale hot droughts, reaching the 

island of Ireland was evident on grass yield in summer, particularly the south eastern 

agricultural area (e.g. Figure 1.5), and such impacts are projected to intensify and become 

more frequent in the future as the global average temperature continues to rise (e.g. 

Samaniego et al., 2018). The 2018 event partly sets the aims of this PhD research in focus, 

particularly as Irish grasslands which are primarily rainfed, have been shown to be vulnerable 

to climate change. 

Each of the research questions were addressed in Chapters 3-5 and a synthesis of key findings 

from each chapter, contributions to scientific knowledge, and implications for policy in 

relation to the research questions is provided in the following sections. 

6.1.1 Understanding LSS sensitivity and performance over Irish landscapes 

Chapter 3 evaluated the applicability of a LSS that incorporates routine weather observations 

to simulate daytime surface radiation and energy balance components, using two test sites 

(Johnstown Castle and Dripsey) with different soil drainage characteristics. The sensitivity of 
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the model to different parameterizations of surface resistance (𝑟𝑠), and to environmental 

stressors was evaluated with the primary goal of improving model estimates of fluxes. The 

effects of using estimated global radiation (𝑄𝑠↓) and of using 𝑄𝑠↓ from an off-site weather 

station on model performance were also examined.   

The LSS generated 𝑄𝐸 values that produced a good fit to the observed 𝑄𝐸 values at Dripsey 

(a site dominated by poorly drained soils and similar to the ‘Cabauw’ site where the scheme 

was originally developed). However, the fit between the measured and modeled 𝑄𝐸 values 

was poor for Johnstown Castle (a site dominated by seasonally dry, imperfectly drained soils). 

The study highlighted a plausible physical property, the soil moisture coefficient (𝑐𝑠𝑜𝑖𝑙), 

responsible for the identified differences in the results, as the soil moisture content drops 

below the upper limit of critical value (0.25 m3 m-3) separating the wet from drying soils 

(Shuttleworth, 1993).  The 𝑐𝑠𝑜𝑖𝑙 term, which determines the water stored and available to 

plants for evapotranspiration, represents the important memory of the system and is 

accounted for only by using a modified Jarvis formulation of 𝑟𝑠 (Beljaars and Bosveld, 1997). 

Calibrating this model property from the original (6.3 m3 m-3 suits wet soils at Dripsey) to a 

different optimum soil condition of 4.3 m3 m-3 resulted in 𝑄𝐻 and 𝑄𝐸 values that fit well with 

the measured values at Johnstown Castle. Therefore, the derived optimum 𝑐𝑠𝑜𝑖𝑙 coefficient is 

suited to both wet and seasonally dry soils and is applied for subsequent model runs in 

Chapters 4-5.  

Additionally, the study demonstrated at Dripsey that the use of off-site meteorology from the 

nearest weather station, approximately 25 km removed from the sites, and estimated 𝑄𝑠↓ and 

soil water from a similar wet but different precipitation year, produced flux estimates that 

agree well with the measured values, notwithstanding the inherent uncertainties. Generally, 
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the de Rooy and Holtslag (1999) scheme used here demonstrated good performance in 

replicating the measured fluxes through the adjustment of 𝑐𝑠𝑜𝑖𝑙, but the scheme is sensitive 

to different soil characteristics. Hence, the study suggests that a careful consideration should 

be given to the treatment of 𝑐𝑠𝑜𝑖𝑙 when applying de Rooy and Holtslag (1999) scheme with 

modified Jarvis 𝑟𝑠 parameterization (Beljaars and Bosveld, 1997) over different surface 

conditions. 

6.1.2 Evaluating regional SEB and exchange processes during drought 

Chapter 4 evaluates the regional characteristics of surface energy fluxes, simulated by the LSS 

(Chapter 3) using meteorological data from fourteen automatic weather stations across 

Ireland in combination with ERA5-Land volumetric water content in the topsoil layer (0-7 cm). 

The objective here was to explore the role of land surface processes in the amplification of 

summer climate extremes, using the continental-scale severe drought event of 2018 as a case 

study. A descriptive analysis of drought during summer of 2018 was initially carried out, 

combining ground meteorology, global reanalyses soil moisture and satellite-derived leaf area 

index (LAI). Changes in land-atmosphere exchange processes, and the effects of seasonal shift 

in soil moisture regime on land-atmosphere sensitivities at regional scale were also 

investigated. It should be noted that the calibrated 𝑐𝑠𝑜𝑖𝑙 value in Section 6.1.1 was based on 

two grassland sites where in-situ soil moisture measurements were available. However, as 

ERA5-Land may overestimate soil water in extremely dry surface (Dirmeyer et al., 2021; see 

also Figure 4.2), the 𝑐𝑠𝑜𝑖𝑙 which is sensitive only as soil water drops below critical value, may 

facilitate underestimation of surface resistance and consequently, underestimate the effects 

of seasonal shift in soil moisture regime on land-atmosphere sensitivities using the LSS. The 

regime shift is explored using a soil moisture-evaporative fraction (𝜃-EF) framework that 
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distinguishes three different stages of transition from wet to dry evaporative regime 

(Seneviratne et al., 2010; Teuling et al., 2010): (1) wet regime in which EF is independent of 

soil moisture (2) transitional regime where soil moisture and EF are linearly coupled and (3) 

dry regime where EF becomes negligible. A Similar approach was applied to the near-infrared 

reflectance of vegetation (NIRv) data, as a way of comparing with the EF based approach, and 

which provides a means of linking soil moisture to vegetation productivity and ecosystem 

functioning.  

The study demonstrates that the impacts of 2018 drought event on land-atmosphere energy 

exchanges were dominated first by atmospheric anomalies. That is, as the rainfall deficit 

increased throughout summer months, the observed higher evaporative demand associated 

with warmer temperature enhanced 𝑄𝐸 exchange with the overlying air, leading to higher soil 

moisture deficits and subsequent soil moisture constraints in July across the country. This was 

particularly evident in the East and South-East of the country (defined by mixed grazing 

agricultural region, less precipitation, warmer temperature and high proportion of fertile 

well/moderately soils), where the drying soils quickly shifted into a prolonged ‘transitional’ 

evaporative regime in which the evaporative fraction (EF) was constrained by the land surface 

state, consequently providing the mechanisms (increase in land surface temperature and 𝑄𝐻) 

that positively feedback into the air, beginning from 27 June and further amplified agricultural 

drought in July. The Irish climate is principally influenced by the Atlantic Ocean through 

advection of moist air, as such, the country does not suffer temperature extremes 

experienced by many other countries. However, the unusually high temperature beginning 

from 27 June suggests that the advection was very weak, affirming that the land surface is the 

dominant influence on the atmospheric conditions during these periods.  While previous 
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studies (e.g. Falzoi et al., 2018; Moore et al., 2020) had analysed the 2018 drought, the 

analysis carried out here was the first attempt in Ireland to link the drought or any previous 

drought event to landscape processes. 

Based on segmented analysis of the role of ERA5-Land soil moisture extremes in surface-air 

signals, the study identified significant critical soil moisture ( 𝜃𝑐) threshold (0.18 m3 m-3 from 

𝜃-EF interplay and 0.23 m3 m-3 from 𝜃-NIRv analysis) of regime shift into land-atmosphere 

couplings in the East and Southeast zone. Although, the 𝜃 regime shifts were also identified 

across the rest of the country, the 𝜃-EF signals were too weak to conclude that the surface-

air exchanges were constrained by land surface state in these areas.  

The parameter 𝜃𝑐  is a key determinant of the landscape transition from wet to dry 

evaporative regime. Hence, the contributions of this study are essential to speculate the 

zones and  𝜃𝑐  points under which surface-air couplings are strongest in water-limited regimes 

across the country. This information is important to facilitate subseasonal-to-seasonal 

predictability of drought propagation and early warning systems of summer climate extremes 

in the future episodes 

6.1.3 Relating high resolution farm-scale water use to grass yields. 

Chapter 5 sought to quantify farm-scale evapotranspiration (ET) and ecosystem water use 

efficiency (WUE) (here defined as the ratio of photosynthetic gross primary productivity and 

water loss through ET) at a high spatial resolution, integrating the scheme with a light use 

efficiency model (Running and Zhao, 2015; Jiang et al., 2020) and Sentinel-2 data. The aim 

was to evaluate the potential of ET and WUE as viable ecosystem indicators for predicting 

grass yields within a pasture farm. Changes in farm-scale water use between wet and dry 
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years were mapped and evaluated for Sentinel-2 cloud-free image dates. The links between 

measured farm-scale grass yield (pasture growth rate in kilograms Dry Matter per hectare per 

day, kg DM/ha/day), ET (grass Yield-ET correlation) and WUE (grass Yield-WUE correlation) 

were also analysed. 

The study demonstrated that the rates of water loss through ET is nearly equal to the rates of 

photosynthetic carbon assimilation of grass, and identified that saturation in ecosystem WUE 

(≈ 1.0-1.5 g C kg-1 H2O)  value occurs during the period when vegetation is most productive 

across the selected pasture research farms (Johnstown Castle, Athenry and Moorepark). 

During severe surface drying and vegetation stress, experienced during July of 2018, the study 

found a substantial increase in ecosystem WUE due to the reduction in ET over grass, much 

more at Johnstown Castle compared to the other research farms.  The observed stronger ET-

GPP couplings (R2 ≈ 0.6-0.9) and lower ecosystem WUE at Athenry and Moorepark confirm 

that these farms are more productive than Johnstown Castle, consistent with the measured 

grass yield data.  

The study further demonstrates that the use of WUE rather than ET, improved the 

correlations between ecosystem indicators and grass yields at farm-scale. Therefore, 

remotely sensed Sentinel-2 observations can be used in the current LSS to provide spatially 

explicit information that underpin the understanding of biogeochemical processes down to 

farm scales, and the use of ecosystem WUE is a better indicator of grass growth response to 

climate change. 

 

 



195 

 

6.2 Research Limitations  

This thesis used a LSS, based on the surface energy budget concept (SEB), to provide an 

improved understanding of regional characteristics of land-atmosphere interactions, changes 

in water availability at detailed spatial scales, and to improve the estimates of surface energy 

fluxes. The work also points towards the poor understanding of the role of land surface 

processes in grass growth response to climate change in Ireland. Chapter 3 adapted a land 

surface scheme applicable to Irish landscapes and provided a validated model for the 

remaining chapters. Chapters 4-5 presented a promising path to use high resolution polar-

orbiting satellite information in a modelling framework to provide scientific-based evidence 

relating to biogeochemical processes to support on-farm planning and management 

activities. The concept used in this work leveraged an existing land surface scheme and readily 

available in situ, gridded and satellite observations. Based on the findings from Chapters 3-5, 

the following conclusions are drawn: The LSS provides an alternative to more traditional 

diagnostic based approaches, and reduces the requirement of a high number of input 

parameters that often limit the application of land surface models for regional and local scale 

applications. By evaluation, the LSS performed well across different surface and atmospheric 

conditions, and led to an improved understanding of specific climate extreme events and how 

grasslands respond to extreme drought event, which are likely to increase in frequency and 

intensity as a consequence of climate change. Hence, it provides mechanistic evidence for 

applications in other regions and in the future. However, this work has some major caveats 

that should be taken into consideration when interpreting or using the results for decision 

making. These include, 

 Non-closure of surface energy budget from an eddy covariance system 
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 Inherent errors from global reanalyses soil moisture data 

 Uncertainty in estimated gross primary productivity and ecosystem water use 

efficiency 

 Insufficient remotely-sensed cloud-free observations  

 

(i) Surface energy budget closure problem 

The surface flux estimates derived from the land surface scheme were evaluated by 

comparison with eddy covariance (EC) measurements made at two sites in Chapter 3. EC 

measurements are known to underestimate the turbulent fluxes (𝑄𝐻 and 𝑄𝐸) relative to the 

measured available energy (𝑄𝑁 − 𝑄𝐺), leading to energy budget closure problem (e.g. 

Franssen et al., 2010; Stoy et al., 2013). This is mainly because EC systems do not capture the 

effects of large-scale eddies that are linked to landscape heterogeneity (Foken, 2008). This 

work did not attempt to evaluate the magnitude of underestimations but since the energy 

budget closure at the two test sites were consistent with those reported in the previous 

studies (e.g. Wilson et al., 2002), the impact of non-closure energy balance on the model 

outputs is assumed to be small and less significant. However, the non-closure (error) term 

which may be between 10-20 %, should be borne in mind when EC measurements are used 

to evaluate surface flux estimates from the LSS. 

(ii) Errors inherent in global reanalyses soil moisture data 

Soil moisture measurements are not routine practice in Ireland, similar to several other 

countries across the globe; Chapters 4 and 5 relied on ERA5-Land volumetric water content 

for model runs and other analysis. ERA5 product is limited in that it uses monthly climatology 
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of LAI to generate the global reanalyses data (Boussetta et al., 2013), which may not 

adequately capture the synoptic time-scale variability in surface-air signals during severely 

dry conditions (Dirmeyer et al., 2021). As demonstrated in Chapter 4, ERA5-Land may have 

underestimated very dry soils, consequently resulting in the land surface scheme to 

underestimate the impact of soil moisture anomalies on land-atmosphere feedback 

mechanisms.  

(iii) Uncertainty in estimated gross primary productivity and water use efficiency at 

ecosystem level 

Though the outputs from the land surface scheme are evaluated in Chapters 3-4, the 

estimated gross primary productivity (GPP) and ecosystem WUE values at Sentinel2-scale in 

Chapter 5 are based on the concept of light use efficiency (LUE) theory (Running and Zhao, 

2015; Jiang et al., 2020). The GPP models incorporates different parameter coefficients which 

differ for land cover types (Prentice et al., 2015) and thus, require robust evaluation for 

different ecosystem types before applications in precision agriculture. Due to lack of 

measured GPP in this work, there may likely be uncertainties in the estimated ecosystem WUE 

due to the possibility of systematic errors inherent in GPP models.  

(iv) Insufficient remotely sensed cloud-free observations 

A major limitation of remote sensing-derived information for applications in precision 

agriculture is the paucity of data due to impact of cloud coverage on data availability, 

particularly in Ireland.  Although, more satellite images for cloud-free dates were available, 

particularly during 2018 drought event, and used in Chapter 5, the sparse or missing images 

between dates point towards the limitation of this work to provide detailed temporal 
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information for agricultural applications. The development of integrated multi-sensor fusion 

technique (e.g. Guzinski et al., 2020; Singh et al., 2020) in recent past refers to a promising 

path that enables provision of high spatial and temporal resolution information. The potential 

benefits of radar data (Sentinel 1) require further exploration in countries, such as Ireland, 

however, it has associated challenges. 

 

6.3 Implications for Policy 

This thesis attempted to test the ability of a LSS to improve our understanding of how 

agricultural lands, particularly pastoral lands would respond to changes in surface climate; by 

moving away from traditional approaches in which weather variables are directly related to 

grass yields, to a prognostic approach that allows robust assessments of plants physiological 

interactions in response to external environmental factors.  Considering the research findings 

and limitations highlighted above, the following are recommended for policy intervention:  

i. Create soil moisture monitoring network to complement meteorological 

observations 

Soil moisture variability is recognized to be the major environmental factor influencing the 

model sensitivity, leading to erroneous simulations of surface heat and water fluxes that 

govern plant performance and growth, particularly on Irish (well-drained, moderately-

drained and imperfectly-drained) soils that often experience seasonally dry regime. Applying 

this framework would therefore require reliable, consistent and fairly represented national 

soil moisture network across Irish grasslands above the aforementioned soil drainage 

characteristics. Such a long-term monitoring network has been initiated and currently 
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underway within the Irish Agmet group, a working group on Agrometeorology (Hochstrasser 

et al., 2021) and other large scale projects, including Terrain-AI (terrainai.com). Moreover, 

this thesis affirmed that the initiative needs policy intervention to further aid wide spread 

support from related stakeholders towards actualising the primary goal of the projects and; 

the importance of providing measured soil moisture data to improving model applications in 

Irish agricultural landscapes cannot be overemphasized.  

Soil water availability controls the biophysical interactions of plants. When the soil moisture 

content is very low (below the wilting point), plants respond by closing their stomata and 

consequently struggle to survive. Similarly, too much water can be equally detrimental. 

Therefore, the more insights we gain about soil moisture regimes, the better the decisions to 

recognise the impacts soil moisture can have on local weather conditions, and the particular 

conditions that are suited to a plant. In essence, soil moisture information are needed 

generally not only to evaluate/calibrate a LSS but also to capture the information on the land-

atmosphere system, including monitoring impacts of changes in ET, rainfall and temperature 

patterns that are associated with surface-air coupling and feedback processes in a changing 

climate. However, soil moisture measurements are lacking at spatial scale and can be 

unrepresentative of the structure due to soil heterogeneity, limiting the capacity to efficiently 

capture the dynamic processes. The soil moisture monitoring network will complement the 

extensive meteorological observation network to capture these information and how they 

vary spatially and temporally is fundamental to gain an insight into likely future conditions, as 

the climate projections for Ireland (e.g. Fealy et al., 2018) are likely to threaten Irish 

agriculture through an increase in the occurrence, frequency and severity of surface drying in 

the remaining period of 21st century. 
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ii. Create a network of stations to measure surface-air fluxes, including terrestrial 

carbon fluxes.  

It is critical that model simulations of surface heat, water and carbon fluxes using the 

modeling framework must be evaluated against ground-based measurements before 

applying to inform on-farm decisions. However, as demonstrated in this thesis, in-situ 

measurements of surface fluxes have significant systematic bias that must be recognized 

when interpreting model simulations. Notwithstanding, measurements which may be 

obtained using different techniques, are required before the modeling framework can be 

used to estimate surface heat, water and carbon fluxes. Though the model outputs were 

evaluated in Chapters 3-4 of this thesis, more test sites may be sampled, to particularly cover 

measurement of terrestrial carbon fluxes for sustainable period over different soil types. The 

importance of adding carbon fluxes stems from the findings in Chapter 5 which revealed that 

integrating water use and photosynthetic carbon fixation of plants can improve the ability of 

ecosystem indicators to predict grass yields at farm level.  

Apart from using flux measurements to improve model outputs, the land-atmosphere system 

comprises of a highly complex processes that link surface-air exchanges with biological and 

physiological responses and in fact, requires both the observations (network) and theory 

(model) to understand its various elements and interactions. Our capacity to offer scientific 

understanding on landscape processes operating on a wide range of spatial and temporal 

scales, and to monitor ecosystem response, is predicated on our capability to measure, 

describe, understand and predict the land-atmosphere fluxes of heat, water and carbon. Eddy 

covariance (EC) is an effective technique for measuring these fluxes with greater precision, as 

reliable measurements are required to evaluate model outputs or to effectively integrate with 
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models to provide evidence for sustainable landscape management. To this end, policy 

intervention would require significant infrastructure to deploy and maintain EC systems 

alongside the soil moisture instrument for consistent and reliable observing network across 

Irish agricultural lands.    

iii. Development of short-term spatially refined landscape management actions to 

support agriculture.  

Notwithstanding the limitations associated with the available gridded soil moisture products 

as highlighted above, the LSS has further demonstrated the ability to explain and improve our 

understanding of specific extreme climate events such as agricultural drought, as shown in 

Chapter 4. Findings indicate that Irish grasslands which are primarily rainfed and largely 

characterized as wet ‘evaporative’ regime, can switch into a regime in which 

evapotranspiration is constrained by land surface conditions, particularly water availability. 

This shift may eventually exacerbate surface drying by increasing warming locally through 

positive land-atmosphere feedbacks under water restrictions, and these responses can be 

quicker in the South and South East which are dominated by free draining soils.  As the 

occurrence and severity of these physical processes are expected to be frequent and increase 

in the future, this thesis demonstrated the vulnerability of Irish grasslands to climate change 

and the need to devise a short-term adaptation measures that will offset worst impact of such 

extreme events, as the efforts to mitigate or limit warming would perhaps take a longer 

period to achieve. Considering the evidence from this thesis, it has become imperative for 

policy makers to develop efficient spatially refined strategies that will guide/inform on-farm 

water administration and management since agricultural production across Ireland is likely to 

switch from rain-fed into more of management practices such as irrigation system, in a 
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changing climate. Since this modeling framework can provide information relating to the 

onset of agricultural drought and amounts of water that may be required to offset the impact 

on Irish grasslands, infrastructure can be deployed to ensure the establishment of irrigation 

scheduling by the farmers based on the well-informed knowledge of their local 

agrometeorological conditions. A sprinkler irrigation system is an example of a non-rainfed 

system that can be employed to provide efficient water administration over agricultural lands. 

Identification of plant species (e.g. C4 plants) that are resilient to heat and drought, and/or 

deep-rooted to access water in the deeper soil profile during water restriction, is also an 

important adaptation measure that may assist in reducing the impacts of climate extremes 

on Irish grasslands. 

Additionally, there exists an enormous volume of Earth observations (EO) from multiple 

sources (e.g. Satellite, airborne, etc.) that has not been usefully harnessed to support 

local/regional and national landscape management. EO data are holistic, continuous and in 

many cases provide near-real time information over a wider land coverage. As demonstrated 

in Chapter 5, Satellite data (e.g. Sentinel-2 products) can be integrated to map the farm level 

biophysical responses and water use at a detailed spatial scale, which are needed by grassland 

farmers to make informed decisions every day. However, cloud coverage can provide a 

setback to fully integrate EO for day to day farm management actions across Ireland. The use 

of airborne (e.g. drones) platforms to capture the landscape is an emerging EO technology 

that may not be affected by cloud and has seen huge growth within a short period in providing 

services for Irish farmers. Currently, a new national multidisciplinary project (terrainai.com) 

is underway with the primary objective of integrating EO data from multiple sources, including 

airborne, and in-situ data with modeling approaches to improve the knowledge of land use 
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activity. This type of large-scale contribution with emphasis on integration of EO data can be 

reinforced to improve day to day on-farm management practices. 

6.4 Future work 

As previously highlighted, applying the modelling framework in the future may require that 

the outputs from the models be thoroughly evaluated against the measured surface fluxes to 

ensure some level of consistency and accuracy. Overall, the current work emphasizes the 

importance of soil moisture in the current framework. Hence, future work could implement 

this framework with more reliable soil moisture data to improve estimates of surface fluxes 

during extremely dry regime. Gross primary productivity (GPP), a carbon budget component, 

measurements from a number of test sites across Irish landscapes would enable cross-

comparison and evaluation of GPP models, and robust analysis of WUE at ecosystem level in 

the future. The information about grass response to water-carbon coupling in Chapter 5 could 

perhaps stimulate more diagnostic analyses and motivate the integration of the current 

framework with carbon components of earth system models. This model integration could 

lead to a better understanding of the role of landscapes in water, energy and carbon 

dynamics.  

As highlighted in Section 6.3, the integration of EO data is a potential approach to holistically 

monitor the ecosystem response to environmental changes down to farm levels. Satellite (e.g. 

Landsat, Sentinel) products may be limited in space and/or time due to clouds over Ireland, 

however, the gaps can be filled, depending on the number of available images, using 

algorithms developed (e.g. in the Moderate Resolution Imaging Spectroradiometer, MODIS 

program) to optimize cloud free products and must be tailored to the particular landscape 

management in Ireland (Green, 2019).  There are multisource satellite fusion approaches (e.g. 
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Yang et al., 2018; Singh et al., 2020) that can also be employed to provide spatially and 

temporally consistent landscape information. The essence of multispectral fusion approaches 

is to integrate low (e.g. MODIS, Sentinel-3) and high (e.g. Sentinel-2, Landsat) spatial 

resolution satellite products to capture information at finer resolutions (e.g. 20 m and daily) 

for precision agricultural applications at field/farm scales. Thus, the integration of EO is an 

area of research that is certainly open for an improvement in the provision of useful land 

management information at detailed temporal and spatial scales in the future. 

There is a wide understanding that certain crops perform better in a particular region, and 

such growth performance could be attributed to the combined climate factors (e.g., amount 

of rainfall, length of growing season, frequency of frost damage, etc.) and environmental 

factors (e.g., soil type, topography, etc.) (van Wart et al., 2013). It is with this knowledge that 

the concept and definition of agro-environmental zonation emanated with the primary 

purpose of identifying and delineating areas with similar groups of potentials for planning, 

management and development (FAO, 1996). The United Nations Food and Agriculture 

Organization (FAO) defines agro-ecological zones (AEZ) based on the combined characteristics 

of climate, soil and landform (FAO, 1996). In Ireland, rainfall and temperature characteristics 

were often used to delimit the growth environment of plants (e.g. Holden and Brereton, 

2004), without accounting for the variability in soil conditions which can also define the 

responses of plants in different regions (Fitzgerald et al., 2005, 2009). Therefore, further 

research may seek to apply the framework used in this thesis as a way of translating the 

integrated effects of soil, energy, environment and vegetation conditions into relevant 

homogenous zones of agri-environment to inform planning and decision making, and 

consequently harness optimal zones of productivity. 
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Overall, future work will leverage the knowledge from this thesis to develop modeling 

capacities and tools for monitoring short and long-term evolution of terrestrial carbon, heat 

and water exchanges, in response to soil moisture variations and land use. The sixth 

assessment report of IPCC has established human-induced climate change impact on 

terrestrial ecosystems (Arias et al., 2022), hence, incorporating land use will provide a path 

way to understanding the extent of human footprints on Irish microclimate.  The model 

development will build on existing state-of-the-art global dynamic land surface models (e.g. 

NOAH-MP, JULES, ORCHIDEE, etc.) that couple different physical processes, including 

hydrology, surface energy budget and carbon to better represent the behaviour of the 

system. Additionally, the ongoing large-scale ground-based and airborne monitoring 

networks (e.g. Terrain-AI and AgMET projects), emerging satellite technology (e.g. the ESA 

Sentinel, Proba-V and MetOp missions, the OCO mission and the GOME series) and state-of-

the-art global reanalyses (e.g. ECMWF ERA5 products) will form an important integration to 

constrain the models, with emphasis on uncertainties arising from model parameters and 

structure.  

It is therefore hoped that this work should provide valuable insights that will assist interested 

researchers/experts to further improve our understanding in relation to climate science, 

hydrology, and agriculture in the future. 
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Appendix A: Comparison of shortwave broadband albedo models 

The linear regression model used to estimate shortwave broadband albedo (𝛼) in Chapter 5 

is given as: 

𝛼 =  ∑  𝑤𝐵𝑖 .  𝜌𝐵𝑖𝐵𝑖 ,          (A1) 

where  𝑤𝐵𝑖 is the weighting coefficients for band number 𝐵𝑖 (Table A1) and  𝜌𝐵𝑖  is the Level 

2A/2B surface reflectance for band number 𝐵𝑖. 

 The Liang (2001) weighting coefficients used in Chapter 5 were derived based on Landsat 

reflectance data, but the corresponding Sentinel-2 bands were assigned (Table A1). The 

estimated 𝛼 values are compared (see Figure A1) with those derived using recent Sentinel-2 

based weighting coefficients (Table A1) (Li et al., 2018).  

Band 

 

 𝒘𝑩 [-] 

 

Liang  (2001)               Li et al. (2018) 

B1 

B2 

B3 

B4 

B5 

B6 

B7 

B8 

B8a 

B9 

B10 

B11 

B12 

-        
0.356                                  0.2688           
   -                                      0.0362 

0.130                                 0.1501 

- 

- 

- 

               0.373                                         - 

                  -                                       0.3045 

- 

- 

               0.085                                 0.1644 

               0.072                                 0.0356 

 

            -0.0018                               -0.0049 

Table A1. Weighting coefficient ( 𝑤𝐵) by spectral band for estimating shortwave broadband albedo, based on 
Liang (2001) and Li et al. (2018). 
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Figure A1. Comparison between Liang (2001) based shortwave broadband albedo (αLiang), and Li et al. (2018) 
based shortwave broadband albedo (αLi) using the weighting coefficients ( 𝑤𝐵) in Table A1 for (a) Johnstown 
Castle, (b) Athenry and (c) Moorepark, farms over the analysis period. 
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Appendix B: Python script used for simulating surface fluxes 

Python script used in Chapters 3-4 for estimating surface radiation and energy fluxes. The 

script is also available on github, https://github.com/kazeemIshola/SURFLEX. 

########   Define the required libraries ################ 

import math 

from math import e 

import matplotlib.pyplot as plt 

import scipy.interpolate as sci 

from scipy.stats import * 

from matplotlib.pyplot import * 

import numpy as np 

from sklearn.metrics import mean_squared_error 

from math import sqrt 

import pandas as pd 

import datetime 

import matplotlib.dates as dates 

#################################################### 

#########   Function to convert air temperature from celsius to kelvin  ################ 

def Tk(tc): 

    x = tc + 273.15 

    return(x) 

########################################################################### 

####### Function to compute water vapour fractional conductance ################# 
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def Fdq(dq): 

    y = 1/(1 + 0.16*((dq) - 3)) 

    y = [1 if i > 1 else i for i in y] 

    return(y) 

########################################################################### 

 

##########   Function to compute radiation fraction  ########################### 

def Fs(S): 

    z = (770*S)/ (1000*S + 230*(1000 - 2*S)) 

    return(z) 

########################################################################### 

#######################  Function to compute soil moisture response    ############# 

def Fm(sm): 

    u = [0.1 if i < 0.1 else i for i in sm] 

    u = np.array([1 + 4.3*(i - 0.3) if  i < 0.3 else 1 for i in u]) 

    return(u) 

########################################################################## 

#omit error values ############ 

np.seterr(divide='ignore', invalid='ignore') 

################################## 

#######  Function for the first loop i.e for neutral condition. ############ 

def it_1(ws,t24h,tc,P,S,rh): 

 psyc = (1005*P*462)/(287*2450000) #(0.001005*P)/(0.622*2.45) 

 eslope = 4098*((0.6108*np.exp((17.27*tc)/(tc+237.3)))/(tc+237.3)**2) 

 ustar=(ws*k)/(math.log(10/zom,math.e)) 
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 ra=(math.log(z/zoh,math.e)/(k*ustar)) 

 #rc=(10**4)*((es-ea)/P)*rd_rv          ###dRH99 

 #rc=70                                  ###FAO 

 rc=25.9/(Fdq(dq)*Fs(S)*Fm(sm))         ###BB97 

 K=(1-a)*S 

 er=1.2*((ea*10)/Tk(tc))**0.143 

 Lin = (er*stef*Tk(tc)**4 ) #+ 60*N 

 R= (eslope+(psyc*(1+(rc/ra)))) 

 A = ((eslope+psyc)*R)-(eslope*(eslope+psyc)) 

 B = -1*(eslope+psyc) 

 C = (eslope+psyc)*R 

 D=K+Lin+(3*0.94*stef*Tk(tc)**4)+(Ag*t24h)-((4*0.94*stef*Tk(tc)**3)+Ag)*(Tk(tc)+adiab*2) 

 E = ((4*0.94*stef*Tk(tc)**3)+Ag)*(ra/den_cp) 

 H = (A*D+B)/(C+A*E) 

 tvs=(-1*H)/(den_cp*ustar) 

 L=(Tk(tc)*ustar**2)/(k*9.8*tvs) 

 return(ra,H,L) 

########################################################################### 

####   Function for the second loop i.e for stablity correction.   ############## 

def it_2(ws,t24h,tc,P,S,rh,H,L): 

 psyc = (1005*P*462)/(287*2450000) 

 eslope = 4098*((0.6108*np.exp((17.27*tc)/(tc+237.3)))/(tc+237.3)**2) 

 stab_u=[(2*np.log((1+((1-(16*(z/i)))**0.25))/2))+(np.log((1+((1-(16*(z/i)))**0.25)**2)/2))-

(2*np.arctan((1-(16*(z/i)))**0.25))+(np.pi/2) if i < 0 else -5*(z/i) for i in L] 

 stab_t=[2*np.log((1+((1-(16*(zoh/i)))**0.25)**2)/2) if i < 0 else -5*(zoh/i) for i in L] 
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 ustar_new=(ws*k)/(math.log(10/zom,math.e)-(stab_u*(10/L))+(stab_u*(zom/L))) 

 ra=(1/(ustar_new*k))*(math.log(z/zoh,math.e)-(stab_t*(z/L))+(stab_t*(zoh/L))) 

 ra = np.array([1000 if i > 1000 else i for i in ra]) 

 #rc=(10**4)*((es-ea)/P)*rd_rv                    ##dRH99 

 #rc=70                                            ###FAO 

 rc=25.9/(Fdq(dq)*Fs(S)*Fm(sm))                   ###BB97 

 K=(1-a)*S 

 er=1.2*((ea*10)/Tk(tc))**0.143 

 Lin = (er*stef*Tk(tc)**4) #+ 60*N 

 R= (eslope+(psyc*(1+(rc/ra)))) 

 A = ((eslope+psyc)*R)-(eslope*(eslope+psyc)) 

 B = -1*(eslope+psyc) 

 C = (eslope+psyc)*R 

 D=K+Lin+(3*0.94*stef*Tk(tc)**4)+(Ag*t24h)-((4*0.94*stef*Tk(tc)**3)+Ag)*(Tk(tc)+adiab*2) 

 E = ((4*0.94*stef*Tk(tc)**3)+Ag)*(ra/den_cp) 

 H = (A*D+B)/(C+A*E) 

 tvs=(-1*H)/(den_cp*ustar_new) 

 L=(Tk(tc)*ustar_new**2)/(k*9.8*tvs) 

 return(ra,H,L,ustar_new,Lin) 

########################################################################### 

####### import input data in csv format  (.csv) from the local directory ################## 

data=pd.read_csv("C:/Users/…………………/test.csv") 

data = data.convert_objects(convert_numeric=True) 

######################################### 

##### define the input and validation variables in the data ####################### 
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date=data.iloc[:, 0]            #date 

S=data.iloc[:, 1]                  #global solar radiation (W m-2) 

tc=data.iloc[:, 2]                #near-surface temperature at observation height (2 m) (oC) 

P=data.iloc[:, 3]                 # msl pressure (kPa) 

rh=data.iloc[:, 4]               # Relative humdity (%) 

ws=data.iloc[:, 5]              # Wind speed (m s-1) 

t24h=data.iloc[:, 6]           # mean air temperature in the last 24hr (24hr moving average) (oK) 

sm=data.iloc[:, 7]              # Measured soil moisture content at top 20 cm (m3 m-3) 

Rn_obs=data.iloc[:, 8]      # Measured total radiative flux (W m-2) 

H_obs=data.iloc[:, 9]        # Measured Sensible heat flux (W m-2) 

Le_obs=data.iloc[:, 10]    # Measure Latent heat flux (W m-2) 

########################################################################### 

####### define initial coefficients  ########### 

a=0.23                    ##surface albedo for grass 

z=2                         ##observation height (m) 

zom=0.01                 ## surface roughness length for momentum (m) 

zoh=0.1*zom              ## surface roughness length for heat (m) 

k=0.41                   ## von Karma constant 

Ag=9                    ## soil heat flux coefficient (W m-2 K-1) 

adiab=0.01              ##dry adiabatic lapse rate (K m-1) 

den=1.225                ## density of dry air (kg m-3) 

cp=1005                  ##specific heat capacity of dry air (J kg-1 K-1) 

den_cp=den*cp 

Lv=2450000               ## latent heat of vaporization (J kg-1) 

rd=287                   ## specific gas constant for dry air (J kg-1 K-1) 
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rv=462                   ## specific gas constant for vapour (J kg-1 K-1) 

rd_rv=rd/rv 

stef=5.67*10**-8        ## stefan boltzmann's constant (W m-2 K-1) 

############################### 

###Compute moisture deficit #################### 

es = 0.6108*(np.exp((17.27*tc)/(tc+237.3)))   ###saturated vapour pressure (kPa) 

ea = rh/100 * es                 ####actual vapour pressure (kPa) 

dq = (621.9907*es/(P-es)) - (621.9907*ea/(P-ea))   ###moisture deficit (kPa) 

#VPD = es-ea 

######################################################################### 

#### iteration 1 loop setup #################### 

loop_setup=it_1(ws,t24h,tc,P,S,rh) 

####################################################### 

#### iteration2: loop action   ############################# 

loop_action=it_2(ws,t24h,tc,P,S,rh,loop_setup[2],loop_setup[1]) 

loop_action_2=it_2(ws,t24h,tc,P,S,rh,loop_action[2],loop_action[1]) 

loop_action_3=it_2(ws,t24h,tc,P,S,rh,loop_action_2[2],loop_action_2[1]) 

loop_action_4=it_2(ws,t24h,tc,P,S,rh,loop_action_3[2],loop_action_3[1]) 

loop_action_5=it_2(ws,t24h,tc,P,S,rh,loop_action_4[2],loop_action_4[1]) 

loop_action_6=it_2(ws,t24h,tc,P,S,rh,loop_action_5[2],loop_action_5[1]) 

######################################################################### 

####  define output objects  ############################ 

L=loop_action_6[2]              # Obukhov length (m) 

H=loop_action_6[1]              # estimated Sensible heat flux (W m-2) 

ra=loop_action_6[0]             # estimated aerodynamic resistance (s m-1) 
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ustar=loop_action_6[3]           # estimated friction velocity (m s-1) 

Lin=loop_action_6[4]             # estimated longwave radiation downward (W m-2) 

############################################## 

####### Compute fluxes  ######## 

eslope = 4098*((0.6108*np.exp((17.27*tc)/(tc+237.3)))/(tc+237.3)**2) 

er=1.2*((ea*10)/Tk(tc))**0.143            # apparent atmospheric emissivity 

psyc =(1005*P*462)/(287*2450000)          # pychrometic constant (kPa K-1) 

K=(1-a)*S                                   # net shortwave radiation (W m-2) 

ts=(Tk(tc)+((H*ra)/den_cp)+(z*0.01))      # Land surface temperature (oK) 

Lou=(0.94*stef*ts**4) + (1-0.94)*Lin      # longwave radiation upward (W m-2) 

Go = Ag*(ts-t24h)                          # Soil heat flux (W m-2) 

Rn = (K + (er-1)*(er*stef*Tk(tc)**4)) - (0.94*stef*4*Tk(tc)**3*(ts-Tk(tc))) # estimated net 

radiative flux (W m-2) 

########################################################################## 

############### Compute latent heat flux with different parameterizations of rc ####### 

#rc= (10**4)*((es-ea)/P)*rd_rv          ### dRH99 (de Rooy and Holtslag, 1999) 

#rc=70                                   ### FAO    (Allen et al., 1998) 

rc=25.9/(Fdq(dq)*Fs(S)*Fm(sm))         ### BB97    (Beljaars and Bosveld, 1997) 

Le = (eslope*(Rn - Go) + ((den_cp*(es-ea))/ra)) / (eslope + psyc*(1 + rc/ra))  ## PM approach 

#Le = Rn - Go - H             #### Balance method 

############################################################## 

##### export data in csv format to local directory ####################### 

my_data=np.vstack((date,Rn, H, Le, Go, rc,ts)) 

my_data=my_data.T 

df= pd.DataFrame(my_data) 
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colnames=['date','Rn','H','Le','G','rc','ts'] 

df.to_csv('C:/Users/……………./flux_test.csv', 

         index=False, header=colnames)    # write output to csv 

####################################################################### 

####################################################### 

#####     Sample RMSE and bias calculation for Le   ######################## 

mask = ~np.isnan(Le_obs) & ~np.isnan(Le) 

rms = sqrt(mean_squared_error(Le_obs[mask], Le[mask])) 

bias = sum(Le[mask] - Le_obs[mask])/8760 

########################################################### 

############# Sample scatterplots between measured and estimated Le ######## 

slope, intercept, r_value, p_value, std_err = stats.linregress(Le_obs[mask], Le[mask]) 

print(r_value,slope,intercept,p_value) 

fig = plt.figure() 

ax = fig.add_subplot(111) 

plt.plot(Le_obs,Le, '.',c="black",label="BB97") 

plt.plot(Le_obs, slope*Le_obs + intercept, '-',c="r",label="r = 0.82") 

#label axes 

xlabel("Measured QE (W m^-2)") 

ylabel("Estimated QE (W m^-2)") 

ax.text(0.1, 0.9,'', horizontalalignment='center', 

     verticalalignment='center', 

     transform=ax.transAxes) 

plt.legend() 

plt.show() 
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fig.savefig('C:/Users/…………/Le.png',dpi=600,transparent=True) 

######################################################################## 
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Appendix C: R script used for estimating terrestrial 

evapotranspirtion, gross primary productivity and water use 

efficiency at Sentinel-2 scale 

 

R script used in Chapter 5 for estimating evapotranspiration, gross primary productivity and 

water use efficiency based on integrated land surface scheme, light use efficiency scheme, 

and Sentinel-2 data 

 

####### Define the required libraries  ################ 

library(raster) 

library(rgdal) 

######################################## 

######### import input meteorological data, and surface parameters : Sentinel-2 derived surface 
######### albedo, LAI and NDVI   

albedo <- brick("C:/Users/17252302/Downloads/Sentinel2/Moorepark/Albedo_all.tif") 

LAI <- brick("C:/Users/17252302/Downloads/Sentinel2/Moorepark/LAI_all.tif") 

NDVI <- brick("C:/Users/17252302/Downloads/Sentinel2/Moorepark/NDVI_all.tif") 

df <- read.table(file.choose(), header=T, sep=',',fill = T) 

##################################################################### 

##### Retain only pixels with vegetation cover for surface parameters ############ 

cld_mask = brick("C:/Users/17252302/Downloads/Sentinel2/Moorepark/Cloud_mask.tif") 

cld_mask[cld_mask!=4] <- NA #### mask only for vegetation 

albedo = mask(albedo, cld_mask) 

LAI = mask(LAI, cld_mask) 

NDVI= mask(NDVI, cld_mask) 

######################################################### 

######### Function for conditional statement for raster layers ################ 

rastercon=function(condition, trueValue,falseValue){ 
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  return (condition*trueValue+(!condition)*falseValue) 

} 

##################################################################### 

#########  Surflex function for estimating surface fluxes  ######################## 

Surflex <- function(S, Ta, pp, RH, u, sT, sm, albedo, LAI, NDVI, DEM, iter.max = 20, t1=1, Rg_24, ETref, 
model= "SURFLEX")  

{ 

    if(!class(albedo) == "RasterLayer") stop( "albedo is not a raster object") 

  if(!class(LAI) == "RasterLayer") stop( "LAI is not a raster object") 

  if(!class(NDVI) == "RasterLayer") stop( "NDVI is not a raster object") 

  ############################################################# 

##### Define the required coefficients ###################### 

  z=2                                               ### observation height 

  k=0.4    ### von Karma constant 

  Ag=9    ### soil heat flux coefficient 

  adiab=0.01 

 den = (1000*pp)/(1.0*((Ta)*287))  #######Ta in degree kelvin 

 cp=1005 

 den_cp=den*cp 

  Lv= 1000000*((2.495-(0.00236*(Ta-273.15)))) 

  rd=287 

  rv=462 

  rd_rv=rd/rv 

  stef=5.67E-08 

  Tac=Ta-273.15 

  es=0.6108*exp(((17.27*(Ta-273.15))/((Ta-273.15)+237.3))) 

  ea=RH/100*es 

  dq=(621.9907*es/(pp-es)) - (621.9907*ea/(pp-ea)) 
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  psyc=(cp*pp*rv)/(rd*Lv) 

  eslope=(4098*(0.6108*exp((17.27*Tac)/(Tac+237.3))))/(Tac+237.3)^2 

################################################################# 

  ##### surface roughness parameters ############################### 

  print(paste("Computing surface momentum and thermal roughness lengths")) 

  zom = 0.123 * (LAI/24) 

  zoh = 0.1 * zom 

################################################################ 

##### surface and atmospheric emissivity ############################## 

print(paste("Computing surface and atmospheric emissivities")) 

er=1.2*((ea*10)/Ta)^0.143 

e0=rastercon(NDVI<0 & albedo<0.47, 0.985, rastercon(LAI>=3, 0.98, 0.95+(LAI*0.01))) 

################################################################### 

##### soil moisture stress function parameters ########################## 

print(paste("Computing environmental stress functions")) 

Fdq = rastercon((1/(1+0.16*(dq-3)))>1,1,1/(1+0.16*(dq-3))) 

Fs=(770*S)/(1000*S+230*(1000-2*S)) 

Fm = rastercon(sm<0.3,1+4.3*(sm-0.3), rastercon(1+4.3*(sm-0.3)<0,0,1)) 

############################################################### 

###### Compute the first guess for friction velocity and Obukhov length ############### 

  print(paste("Computing u_star, ra, H and L for neutral condition ")) 

  u200=u*(log(200/2)/log(10/2)) 

  ustar=(u200*k)/(log(200/zom)) 

  ra=(log(z/zoh)/(k*ustar)) 

  ra= rastercon(ra >1000,1000,ra) 

  rc=(0.47 * 110/LAI)/(Fdq*Fs*Fm) 

  K=(1-albedo)*S 
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  Lin = (er*stef*Ta^4) #+ 60*N 

  R= (eslope+(psyc*(1+(rc/ra)))) 

  A = ((eslope+psyc)*R)-(eslope*(eslope+psyc)) 

  B = -1*(eslope+psyc) 

  C = (eslope+psyc)*R 

  D = K+Lin+(3*e0*stef*Ta^4)+(Ag*sT)-((4*e0*stef*Ta^3)+Ag)*(Ta+adiab*2) 

  E = ((4*e0*stef*Ta^3)+Ag)*(ra/den_cp) 

  H = (A*D+B)/(C+A*E) 

  tvs=(-1*H)/(den_cp*ustar) 

  L=(Ta*ustar^2)/(k*9.8*tvs) 

  ############################################################ 

######## Correct for atmospheric stability  in an iterative process ################### 

  print(paste("Computing u_star, ra, H and L with stability correction")) 

  i=1 

  while (i<=iter.max)  

  { 

    print(paste("Monin-Obukhov length iteration",i,"of",iter.max)) 

    x_bus200=(1-(16*(200/L)))^0.25 

    x_bus01=(1-(16*(zoh/L)))^0.25 

    x_bus=(1-(16*(2/L)))^0.25 

  stab_u200=rastercon(L<0,(2*log((1+x_bus200)/2))+(log((1+x_bus200^2)/2))-
(2*atan(x_bus200))+(pi/2),rastercon(L>0,-5*(200/L),0))     

 stab_t01=rastercon(L<0,2*log((1+x_bus01^2)/2),rastercon(L>0,-5*(zoh/L),0)) 

 stab_t=rastercon(L<0,2*log((1+x_bus^2)/2),rastercon(L>0,-5*(2/L),0)) 

    ustar_new = (u200*k)/(log(200/zom)-stab_u200) 

    ra=(1/(ustar_new*k))*(log(z/zoh) - stab_t + stab_t01) 

    ra= rastercon(ra >1000,1000,ra) 

    rc=(0.47 * 110/LAI)/(Fdq*Fs*Fm) 
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    K=(1-albedo)*S 

    er=1.2*((ea*10)/Ta)^0.143 

    Lin = (er*stef*Ta^4) #+ 60*N 

    R= (eslope+(psyc*(1+(rc/ra)))) 

    A = ((eslope+psyc)*R)-(eslope*(eslope+psyc)) 

    B = -1*(eslope+psyc) 

    C = (eslope+psyc)*R 

    D = K+Lin+(3*e0*stef*Ta^4)+(Ag*sT)-((4*e0*stef*Ta^3)+Ag)*(Ta+adiab*2) 

    E = ((4*e0*stef*Ta^3)+Ag)*(ra/den_cp) 

    H = (A*D+B)/(C+A*E) 

    tvs=(-1*H)/(den_cp*ustar_new) 

    L=(Ta*ustar_new^2)/(k*9.8*tvs)   

    i=i+1 

  } 

#################################################### 

##### compute outputs #########################   

  print(paste("Computing the final outputs")) 

  Ts=(Ta+((H*ra)/den_cp)+(DEM*0.01))  

  Lou=(e0*stef*Ts^4) + (1-e0)*Lin 

  Go = Ag*(Ts-sT) 

  Rn = (K + (er-1)*(er*stef*Ta^4)) - (e0*stef*4*Ta^3*(Ts-Ta)) 

  #G= Rn*((Ts-273.15)*(0.0038+0.0074*albedo)*(1-0.98*NDVI^4)) 

  #Go = rastercon(LAI < 0.5, (Rn*(1.8*(Ts-273.15)/Rn) + 0.084), Rn*(0.05 +(0.18*exp(-0.521*LAI)))) 

  Le = (eslope*(Rn - Go) + ((den_cp*(es-ea))/ra)) / (eslope + psyc*(1 + rc/ra)) 

  #Le = Rn-H-Go 

 

  ETint = (t1*3600*Le)/Lv   ###### instantaneous ET 
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  EF= Le/(Rn-Go) 

  Rn_24 <- ((1-albedo)*(Rg_24) - (110*(0.75+0.00002*DEM))) 

  #ET_24 <- (86400000*1*EF*Rn_24)/(1000*Lv) 

  ET_24 <- (86400000*1*Le*Rg_24)/(S*1000*Lv) ####### 24-hr ET 

ESI = ET_24/ETref 

  Factor = list(EF=EF, ET_24=ET_24, ra = ra, rc = rc, Rn=Rn, H=H, Go=Go, Le=Le, ETins = ETint, 

              Ts = Ts, Lou = Lou, Lin = Lin) 

  factor$call<-match.call() 

  class(factor)<-model 

  factor 

} 

########################################### 

###### Run the Surflex model and write the outputs in specified folders ################ 

for (i in 1:12){ 

  m <- Surflex(S=df[i,2], Ta=df[i,4], pp=df[i,5], RH=df[i,6], u=df[i,7], sT=df[i,8], sm=df[i,9], 

              ETref = df[i,10], Rg_24 = df[i,13],DEM=df[1,14],albedo[[i]],LAI[[i]],NDVI[[i]],  

              iter.max=20, t1=1, model="SURFLEX") 

  writeRaster(m$Rn,filename = paste0("C:/Users/17252302/Downloads/Sentinel2/OP-
JC/JC/output/Rn/", "Rn_",stringr::str_pad(string = i,width = 4,side = "left",pad=0)), format ="GTiff", 
overwrite=T) 

  writeRaster(m$H,filename = paste0("C:/Users/17252302/Downloads/Sentinel2/OP-
JC/JC/output/H/", "H_",stringr::str_pad(string = i,width = 4,side = "left",pad=0)), format ="GTiff", 
overwrite=T) 

  writeRaster(m$Le,filename = paste0("C:/Users/17252302/Downloads/Sentinel2/OP-
JC/JC/output/Le/",  "LE_",stringr::str_pad(string = i,width = 4,side = "left",pad=0)), format ="GTiff", 
overwrite=T) 

  writeRaster(m$Go,filename = paste0("C:/Users/17252302/Downloads/Sentinel2/OP-
JC/JC/output/G/", "G_",stringr::str_pad(string = i,width = 4,side = "left",pad=0)), format ="GTiff", 
overwrite=T) 

  writeRaster(m$ETins,filename = paste0("C:/Users/17252302/Downloads/Sentinel2/OP-
JC/JC/output/ETins/", "ETins_",stringr::str_pad(string = i,width = 4,side = "left",pad=0)), format 
="GTiff", overwrite=T) 
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  writeRaster(m$ET_24,filename = paste0("C:/Users/17252302/Downloads/Sentinel2/OP-
JC/JC/output/ET_24/", "ET24_",stringr::str_pad(string = i,width = 4,side = "left",pad=0)), format 
="GTiff", overwrite=T) 

  writeRaster(m$Ts,filename = paste0("C:/Users/17252302/Downloads/Sentinel2/OP-
JC/JC/output/Ts/", "Ts_",stringr::str_pad(string = i,width = 4,side = "left",pad=0)), format ="GTiff", 
overwrite=T) 

  writeRaster(m$ESI,filename = paste0("C:/Users/17252302/Downloads/Sentinel2/OP-
JC/JC/output/ESI/", "ESI_",stringr::str_pad(string = i,width = 4,side = "left",pad=0)), format ="GTiff", 
overwrite=T) 

  writeRaster(m$EF,filename = paste0("C:/Users/17252302/Downloads/Sentinel2/OP-
JC/JC/output/EF/", "EF_",stringr::str_pad(string = i,width = 4,side = "left",pad=0)),  format ="GTiff", 
overwrite=T) 

} 

################################### 

### Estimate GPP and Water use efficiency ################# 

VPD_sc=list(); T_sc=list(); GPP=list(); es=list(); ea=list(); VPD=list() 

K=list(); par=list(); GPP=list(); lue=list() 

ET = list.files(("C:/Users/17252302/Downloads/Sentinel2/OP-JC/JC/output/ET_24/",pattern="tif", 
full.names=T)  #### load in ET raster layers 

fpar = list.files(("C:/Users/17252302/Downloads/Sentinel2/………………….",pattern="tif", 
full.names=T)  #### load in FAPAR raster layers 

nirv = list.files(("C:/Users/17252302/Downloads/Sentinel2/………………….",pattern="tif", full.names=T)  
#### load in NIRv raster layers 

ET= stack(ET) 

fpar= stack(fpar) 

nirv= stack(nirv) 

s = stack(fpar, nirv) 

for (i in 1:20) { 

  #Using a simplified NIRv-based approach for GPP estimation Jian et al.(2020) 

  fun=function(x) { if (is.na(x[1])){ NA } else { lm(x[1:20] ~ x[21:40])$coefficients[2] }} 

  a <- calc(s, fun) # a is slope and s is the raster stack of both variables 

  fun=function(x) { if (is.na(x[1])){ NA } else { lm(x[1:20] ~ x[21:40])$coefficients[1] }} 

  b <- calc(s, fun) # b is the intercept 
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  K[[i]] = df[i,12]   #incoming shortwave radiation 

  par[[i]] = 0.45 * K[[i]] 

  GPP[[i]] = par[[i]] * (a*nirv[[i]]+b) 

  ######################################## 

  # Using LUE scheme Running and Zhao (2015) 

  # es[i] =(0.6108*exp((17.27*df[i,5])/(df[i,5]+237.3)))*1000 

  # ea[i] =df[i,6]/100*es[[i]] 

  # VPD[i] = es[[i]]-ea[[i]] 

  # VPDmx = 5300; VPDmn=650; Tmx=12.02; Tmn=-8.0; luemx=0.000860*1000 ### Running and 
##Zhao (2015) BLUPT for grass 

  #VPD_sc[i] = min((VPDmx - VPD[[i]])/(VPDmx - VPDmn),1) 

  #T_sc[i] = min((df[i,3] - Tmn)/(Tmx - Tmn),1) 

  #lue[i] = luemx * VPD_sc[[i]] * T_sc[[i]]   

  #K[[i]] = df[i,12]    

  #par[[i]] = 0.45 * K[[i]] 

  #GPP[[i]] = lue[[i]] * par[[i]] * fpar[[i]]  

} 

GPP=stack(GPP) 

WUE = GPP/ET 

writeRaster(GPP, "C:/Users/17252302/…………../GPP", "GTiff", overwrite=T) 

writeRaster(WUE, "C:/Users/17252302/…………../WUE", "GTiff", overwrite=T) 

##################################################################### 
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A B S T R A C T

Knowledge of soil–vegetation–atmosphere energy exchange processes is essential for examining the response of
agriculture to changes in climate in both the short and long term. However, there are relatively few sites where
all the flux measurements necessary for evaluating these responses are available; where they exist, data are often
incomplete and/or of limited duration. At the same time, there is often an extensive observation network
available that has gathered key meteorological data (sunshine, wind, rainfall, etc.) over decades. Simulating the
terms of the surface energy balance (SEB) using available meteorological, soil and vegetation data can improve
our understanding of how agricultural systems respond to climate and how this response will vary spatially.
Here, we employ a physically-based scheme to simulate the SEB fluxes over a mid-latitude, maritime temperate
environment using routine weather observations. The latent heat flux is a critical SEB term as it incorporates the
response of the plant to environmental conditions including available energy and soil water. This response is
represented in modeling schemes through surface resistance (rs), which is usually expressed as a function of near-
surface water vapor alone. In this study, we simulate the SEB over two grassland sites, where eddy flux ob-
servations are available, representing imperfectly- and poorly- drained soils. We employ three different for-
mulations of rs, representing varying degrees of sophistication, to estimate the surface fluxes. Due to differences
in soil moisture characteristics between the sites, we ultimately focused our attention on an rs formulation that
accounted for soil water retention capacity, based on the Jarvis conductance model; the results at both hourly
and daily intervals are in good agreement, with RMSE values of ≈ 40 W m−2 for sensible and latent heat fluxes
at both sites. The findings show the potential value of using routine weather observations to generate the SEB
where flux observations are not available and the importance of soil properties in estimating surface fluxes.
These findings could contribute to the assessment of past and future climate change on grassland ecosystems.

1. Introduction

Information on the exchange of heat and moisture at the Earth's
surface is needed to evaluate the performance of climate models in si-
mulating land-atmosphere interactions (e.g. Knist et al., 2017) and for
applications in a number of areas, such as agricultural productivity, soil
moisture and hydrology, boundary-layer development, etc. (de Bruin
et al., 1993; van den Hurk et al., 2000; Chen and Dudhia, 2001;
Jung et al., 2010; Lathuilliere et al., 2012; van de Boer et al., 2013,
2014b). Typically, these exchanges are expressed in terms of the surface
energy balance (SEB, see Appendix 1) which stipulates that net

radiation (QN) is expended as sensible heat flux by conduction with the
soil (QG) and as sensible (QH) and latent (QE) heat fluxes by turbulence
with the overlying atmosphere. However, measurements of these flux
densities are not routine practice, partly due to the complexity of tur-
bulence measurement and the relative cost of instrumentation
(Haymann et al., 2019). To overcome this challenge, past and recent
studies have developed physically-based schemes to simulate these
exchanges based on routine meteorological observations (de Bruin and
Holtslag, 1982; Holtslag and van Ulden, 1983; Holtslag and de
Bruin, 1988; Viterbo and Beljaars, 1995; Chen et al., 1996; Beljaars and
Bosveld, 1997; Mohan and Siddiqui, 1998; de Rooy and Holtslag, 1999;
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van de Boer et al., 2014a; Lu et al., 2014). Although the choice of
scheme is dependent on the availability of input meteorological para-
meters, the analytic context is usually based on the Monin–Obukhov
Similarity Theory (MOST), which uses vertical profiles of air tempera-
ture, humidity and wind to simulate the fluxes of heat, vapor and
momentum, respectively, within the atmospheric surface layer (Ap-
pendix 1). However, issues remain with these schemes. For example,
Chen et al. (1997) found large discrepancies between schemes that have
been partly attributed to the dependence on empirical constants de-
rived from site specific data.

de Rooy and Holtslag (1999) proposed and evaluated a scheme for
estimating SEB fluxes using a minimal number of input parameters
derived from single-level routine weather observations. The metho-
dology was developed based on observations made over short grass in
Cabauw, the Netherlands, and has not been evaluated elsewhere. More
recently, van de Boer et al. (2014a) proposed a modified version of this
scheme which was evaluated at two locations over different land cover
types. This modified scheme accounts for the dependency of each flux
on air, rather than surface, temperature as in de Rooy and
Holtslag (1999). In addition, it employs a modified formulation for
surface resistance (rs) a key parameter in the estimation of QE as it ac-
counts for soil moisture content and the transfer of soil water to the
atmosphere by evapotranspiration. There are different methods of
parameterizing rs (Kim and Verma, 1991; Jacobs, 1994) but one of the
most widely used is that of Jarvis (1976), which incorporates en-
vironmental controls, including atmospheric (radiation, temperature,
vapor pressure deficit, CO2 concentration), vegetation (Leaf Area Index)
and soil (soil water) factors (e.g. Stewart, 1988; Beljaars and
Bosveld, 1997; Niyogi and Raman, 1997; de Rooy and Holtslag, 1999;
van de Boer et al., 2014a). Where it is assumed that there is no moisture
stress, the dependence of rs on soil water content has either been ex-
cluded (van de Boer et al., 2014a) or assumed to be negligible (de Rooy
and Holtslag, 1999). However, under conditions of increasing soil

moisture stress, water availability acts to regulate rs (Russell, 1980;
Sherratt and Wheater, 1984) and consequently plays a prominent role
in modulating heat and moisture fluxes (Sherratt and Wheater, 1984;
Betts and Ball, 1995; 1998; Senevirante et al., 2010). Increased rs due to
limited water availability affects evapotranspiration and is a major
factor controlling the productivity of terrestrial ecosystems (Ciais et al.,
2005; De Boeck et al., 2011; Reichstein et al., 2007; Teuling et al.,
2006; Zhang et al., 2012). The parameterization of rs has also been
identified as playing a significant role in contributing to model un-
certainties in estimating QE and gross primary production (GPP) in land
surface models (Li et al., 2016).

In this study we examine the influence of available soil moisture on
the simulation of energy fluxes using the de Rooy and Holtslag (1999)
scheme. We identify two grassland sites in Ireland that have the same
precipitation regime but are distinguished by their soil characteristics
and are defined as imperfectly- and poorly- drained soils. Our primary
objectives are to; (1) examine whether the de Rooy and Holtslag (1999)
scheme is transferrable to Irish sites; (2) evaluate if meteorological data
from one location can be employed to estimate the measured surface
fluxes at a nearby location and; (3) evaluate the response of surface
fluxes to three different parameterizations of surface resistance (rs).

The study seeks to extend the value of flux estimates to places where
such observations are not available and contribute to the improvement
and applicability of land surface schemes over grassland ecosystems.

2. Data and methods

2.1. Background climate

The climate of Ireland is dominated by westerly airflow off the
North Atlantic and consequently exhibits a maritime temperate climate
(Peel et al., 2007). Based on the long term averages over the period
from 1981 to 2010, Ireland typically experiences cool summers with

Nomenclature

Ag soil heat transfer coefficient (W m−2 K−1)
cp specific heat capacity of air (J kg−1 K−1)
csoil soil moisture coefficient (m3 m−3).
e vapor pressure (kPa)
FM soil moisture stress function
FS solar radiation stress function
FΔq air moisture deficit function
FT near-surface temperature function
fr an empirical site-specific constant
g acceleration due to gravity (m s−2)
hs moisture deficit coefficient (kg kg−1)
k von Kàrmàn constant
L Obukhov length (m)
LAI leaf area index (m2 m−2)
N cloud amount (oktas)
P mean sea level pressure (kPa)
QE latent heat flux (W m−2)
QG soil heat flux (W m−2)
QH sensible heat flux (W m−2)
QN net radiation (W m−2)
QL↓ incoming longwave radiation (W m−2)
QL↑ outgoing longwave radiation (W m−2)
QS↓ global solar radiation (W m−2)
QS↑ outgoing shortwave radiation (W m−2)
QΔS soil heat storage (W m−2)
RH relative humidity (%)
Rd specific gas constant for dry air (J kg−1 K−1)
Rv specific gas constant for water vapor (J kg−1 K−1)

ra aerodynamic resistance (s m−1)
rs the surface resistance (s m−1)
rs, min minimum stomatal resistance (s m−1)
s slope of saturated vapor pressure curves (kPa K−1)
Sr global radiation coefficient (W m−2)
Ta air temperature at za (K)
Ts surface temperature (K)
T24 24-h moving average of Ta (K)
u wind speed at 10 m (m s−1)
u* friction velocity (m s−1)
za observation height, 2 m.
zoH surface roughness length for heat (m)
zom surface roughness length for momentum (m)
α surface albedo
γ psychrometric constant (kPa K−1)
Γd dry adiabatic lapse rate (K m−1)
Δqa specific humidity deficit at za (kg kg−1).
Δqs specific humidity deficit at the surface (kg kg−1)
ɛ surface emissivity
ɛa atmospheric emissivity
θ volumetric soil moisture in the root zone (m3 m−3)
θCT critical soil moisture (m3 m−3)
θFC field capacity (m3 m−3)
θST saturation point (m3 m−3)
θWP wilting point (m3 m−3)
θ* temperature scale (K)
ρ density of dry air (kg m−3)
σ stefan Boltzmann's constant (W m−2 K−1)
ψH dimensionless stability term for heat
ψM dimensionless stability term for momentum
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daily maximum ranging from 18 to 20 °C and mild winters (8 °C);
minimum temperatures fall below 0 °C on approximately 40 (10) days
per year at inland (coastal) areas. Annual average rainfall is just over
1200 mm, which is distributed nearly evenly throughout the year. The
highest rainfall is typically recorded in upland regions on the west
coast. Rainfall amounts decline moving eastwards, associated with
airflow interactions with topography. However, topographic variations
across the island are relatively small – the average elevation is 118 m
a.s.l. and the highest peak is just over 1000 m a.s.l. A summary de-
scription of the climatology of the region is reported in Walsh (2012).

The climate in Ireland provides conditions suitable for the year-
round grass growth, particularly along coastal margins in the south of
the country which records a median grass growing season length of 330
days (Keane and Collins, 2004). Consequently, grassland land-cover is
the most important crop and accounts for more than 90% of the land
under agricultural production (McEniry et al., 2013) and 56% of the
total land area (EUROSTAT, 2015). Due to the year-round precipitation,
excessive soil moisture is generally more problematic for grass pro-
duction than water deficits (McDonnell et al., 2018), particularly on
poorly drained soils. However, soil moisture deficits are periodically
experienced during the summer months, typically in the east and south
east of the country (Dwyer and Walsh, 2012), associated with the

location of well drained soils (Fig. 1). In terms of soil characteristics, the
General Soil Map of Ireland classifies the south-east as mostly free-
draining sandy soils, with limestone-rich soils in the south and mid-
lands, and acid and peat soils on mountains, hills and the western
seaboard (Gardiner and Radford, 1980). More detailed soil properties
combining previous and existing soil survey information for Ireland is
available from Creamer et al. (2014).

2.2. Site descriptions

Two sites are employed in this study representing imperfectly
drained (Johnstown Castle, Co. Wexford) and poorly drained (Dripsey,
Co. Cork) soil characteristics; Table 1 provides summary information on
each site and Fig. 1 shows the site locations. Both sites have available
eddy covariance (EC) flux tower measurements.

Details on the vegetation and soil characteristics associated with the
flux tower footprints are as follows:

i) Johnstown Castle: Two main types of soil (Gleys and Brown Earths),
have been reported within the flux site footprint (Peichl et al.,
2012). The soil within the flux footprint (< 150 m) is moderately to
imperfectly drained Gley (FAO classification: Gleyic Cambisol). The

Fig 1. Map of soil drainage classes of Ireland (Irish Soil Information System by Teagasc for EPA, Creamer et al., 2014), showing the locations of test sites.
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soils transition to moderately or well drained Brown Earths (Cam-
bisol) at the outer edge of the flux footprint. The soil class in this
area therefore varies from moderately to imperfectly drained, and
the land cover is grass.

ii) Dripsey: The EC footprint is over grass cover on a soil type that
impedes water movement and can become waterlogged (Kiely et al.,
2018) and is classed as a poorly drained Gley soil.

More detailed descriptions on the soil properties, climatology and
EC footprints at Dripsey and Johnstown Castle are reported in
Kiely et al. (2018) and Peichl et al. (2012), respectively.

Detailed information on vegetation height and leaf area index (LAI)
are not available for the periods corresponding with flux measurements
made at Dripsey, but Kiely et al. (2018) reported LAI values ranging
from ≈ 2 m2 m−2 in winter to ≈ 6 m2 m−2 in summer. At Johnstown
Castle, LAI is estimated from measurements of grass dry matter yield
concurrent with the EC observations and an allometric relationship
established with leaf area index meter readings. Modeled LAI values
range between 0.1 (winter) and 6.8 m2 m−2 (summer) for this site, with
an average LAI of 2.2 m2 m−2.

2.3. Data

We employ available routine weather observations to parameterize
surface fluxes of heat and moisture over the two grassland sites de-
scribed above. In the following sections, the observed flux data avail-
able for each site is discussed followed by a description of the available
meteorological and soil water data. A summary of the Eddy-covariance
and meteorological parameters used as input to, and evaluation of, the
scheme employed is presented in Table 2.

2.3.1. Eddy-covariance measurements
Sensible and latent heat fluxes: Half-hourly EC flux measurements

ofQH and QE are available from the European Fluxes Database Cluster
(http://www.europe-fluxdata.eu/) (Papale et al., 2006) for Dripsey
(Kiely et al., 2018) for the period 2010. In order to avoid any potential

bias, we only employed non gap-filled data (Level 2 data). Half-hourly
EC flux measurements of QH and QE were also obtained for Johnstown
Castle for 2013 (Unpublished results). The instrumentation at both sites
consists of an open–path infra-red gas analyser (IRGA) for measuring
H2O density and CO2 concentration, in combination with a 3D sonic
anemometer. The EC data were logged at 10 Hz and averaged over 30-
minutes intervals (see Table 2 for a list of instruments at each site).

Data processing procedures at both sites were similar and are
documented elsewhere: Sottocornola and Kiely (2010a, 2010b) for
Dripsey; and Ní Choncubhair et al. (2017) for Johnstown Castle. These
procedures include spike removal (Vickers and Mahrt, 1997), the
Webb–Pearman–Leuning correction (Webb et al., 1980; Moncrieff et al.,
1997a), sonic anemometer tilt correction using the double rotation
method (Kaimal and Finnigan, 1994) and spectral attenuation correc-
tions after Moncrieff et al. (1997b). Some data filtering procedures,
which differ from the above approaches, were applied to Dripsey and
are described in Kiely et al. (2018). Here, poor quality data based on
quality control flags (QC = 2) were removed and flux observations
recorded when precipitation exceeded 1 mm were removed as these are
likely to generate errors in QE measurements using open-path sensors
(e.g. Ma et al., 2015). A statistical examination of the processed data for
all sites showed typical ranges of −100–400 W m−2 for QH and QE;
individual observations outside of these ranges were excluded from
further analysis (following Ma et al., 2015).

Following these pre-processing steps, a significant percent (original
plus filtered) of flux data at each site was classed as missing: 24% and
32% of QH and QE, respectively at Johnstown Castle and 28% and 31%
of QH and QE at Dripsey. While the proportion of data gaps from
Johnstown Castle mainly arose from the quality control procedures, the
higher proportion of missing data from Dripsey was due to a combi-
nation of both the number of missing values in the original data and the
quality control processes, outlined above. After the filtering processes,
the proportion of nighttime data slightly exceeded the daytime data at
both sites. At Johnstown Castle, approximately 51% (2941 h) and 49%
(2939 h) ofQE data remained for nighttime and daytime (08:00–18:00)
hours, respectively. Similarly, 53% (3188 h) and 47% (2851 h) of data

Table 1
Descriptions of grassland eddy covariance flux and synoptic stations used in this study. Meteorological data from Cork Airport (51.84°N, 8.48°W) at an elevation of
155 m were used for Dripsey. Johnstown Castle has a co-located weather station. The soil moisture properties are field capacity (θFC), saturation level (θST) and
wilting point (θWP), in order.

Station Lat/Long (°) Elevation (m) Soil description Moisture properties (θFC, θST,
θWP)

Drainage class Time period

Johnstown Castle 52.29°N, 6.49°W 58 A combination of gley, brown earths and free draining fine
siliceous loam soils.

32%
59%
17%

Imperfect 2013

Dripsey 51.98°N, 8.75°W 186 Gley water-logged soils. 32%
45%
12%

Poor 2010

Table 2
Descriptions of meteorology and eddy-covariance parameters used as forcings and for validation. respectively.

Variables Usage Instrumentation
Forcing Validation

QN x NR-Lite (Johnstown) and CNR1 (Dripsey) (Kipp & Zonen,Delft, The Netherlands)
QS↓ x
Ta x
u x
P x
RH x
Precipitation

Sunshine hours
QH, QE x IRGA gas analyzers,

LI-7500 (LI-COR, Lincoln, NE) at 6 m for Dripsey and; 2.28 m (1st Jan. – 26th Feb.), 2.72 m (26th Feb. – 23rd Oct.), 2.85 m (23rd Oct. –
31st Dec.) for Johnstown.

θ x CS616 (Johnstown) and CS615 (Dripsey) (Campbell Scientific, Shepherd, UK)
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for Dripsey were available for analysis.
Net radiation: Half-hourly measurements of QN from Dripsey for

2010 are available from the European Fluxes Database Cluster
(Papale et al., 2006). For Johnstown Castle, QNmeasurements for 2013
are available from previously unpublished research (see Section 2.3.1).
Hourly values of QN in the range −100 and 700 W m−2 were selected
for the subsequent analysis (following Shi and Liang, 2014).

The energy budget closure is an efficient approach to evaluate the
consistency of scalar flux densities measured by EC systems
(Twine et al., 2000). The approach relates available energy (QN - QG) to
turbulent fluxes (QH + QE) in order to determine the magnitude of non-
closure of measured fluxes by EC systems. EC measurements are known
to underestimate the turbulent fluxes (QH and QE) and overestimate QN

resulting in non-closure of the energy balance (EBC) (Wilson et al.,
2002; Foken, 2008; Franssen et al., 2010; Stoy et al., 2013). Other
potential reasons for non-closure are discussed extensively in the lit-
erature and include; the failure to measure heat storage terms as part of
measurement programmes (e.g. Heusinkveld et al., 2004); large-scale
turbulent circulations over heterogeneous landscapes that are not
captured by EC methods (Mauder et al., 2007; Stoy et al., 2013); the
assumption of no advection and; inaccurate QN measurements (e.g.
Foken, 2008). Over the sites available for the present study, the hourly
energy budget closure (ignoring the QG and QΔS terms) is approximately
69 % at Johnstown Castle and 60% at Dripsey (Fig. 2). These closure
values are comparable with previously reported values, which lie
within 53 – 99 % (e.g. Wilson et al., 2002).

2.3.2. Meteorological data
On-site hourly meteorological observations for the same period of

EC measurements are available for Johnstown Castle but at Dripsey
these data are only available at Cork Airport (155 m a.s.l), which is
approximately 25 km from the site. Both meteorological stations con-
form to World Meteorological Organization (WMO) guidelines and re-
port on global solar radiation (Qs↓, W m−2) or sun duration (hours), air
temperature (°C), relative humidity (%), pressure (kPa), wind speed (m
s−1) and precipitation (mm). As cloud amount (oktas) was only avail-
able from Cork Airport, it was excluded from the subsequent analysis;
this value was set ≈ 0 in the calculation of QL↓. Global solar radiation
was not available from Cork Airport, therefore hourly Qs↓data was es-
timated for this site based on observations of sunshine duration fol-
lowing Allen et al. (1998) and Ishola et al. (2018). The hourly me-
teorological observations correspond with the periods for which the
flux data are available at the two sites.

2.3.3. Soil water data
Soil water content, measured as the volumetric water content (θ,

m3 m−3) in the upper 20 cm of the soil, was measured at both sites at
half-hourly intervals using CS615/CS616 time domain reflectometers
(Table 2). At Johnstown Castle, these measurements are con-
temporaneous with the available EC flux measurements. At Dripsey,

measurements are only available for 2004 and 2005, which coincides
with periods when flux measurements are either not available or gap-
filled (European Fluxes Database Cluster Level 3 and 4 data). While the
general meteorological conditions at Dripsey during 2004 and 2005
were wetter than those experienced in 2010 (1174 mm; 1183 mm and
974 mm, respectively), the cumulative precipitation during 2005 was
very similar in profile to 2010, up to October, after which the soils
would have been close to or at field capacity.

2.4. Methods

2.4.1. Surface flux estimation
The scheme to estimate the fluxes of heat, moisture and momentum

from limited routine weather data was adapted from de Rooy and
Holtslag (1999). The scheme was originally developed over a grassland
ecosystem using extensive and well-documented datasets from Cabauw,
the Netherlands, and covering a variety of weather conditions. The
scheme computes the turbulent fluxes (QH and QE) through a set of
sequential calculations (Fig. 3). The required inputs are: air tempera-
ture Ta (K) at observation height za (2 m), relative humidity RH (%),
wind speed u (m s−1) at 10 m, mean sea level pressure P (kPa), global
solar radiation Qs↓ (W m−2) and cloud amount N (oktas).

In the initial step, the variables that can be obtained directly from
the inputs, such as the 24-h mean of 2-m temperature, T24 (K), vapor
pressure, e (kPa), specific humidity deficit, Δqa(g kg−1), psychrometric
constant, γ (kPa K−1), and the slope of the saturated vapor pressure
curve, s (kPa K−1), are estimated. An iterative procedure then estimates
the following parameters: friction velocity, u* (m s−1), aerodynamic
resistance, ra (s−1 m), QH (W m−2), and subsequently temperature scale
θ* (K) and Obukhov length L (m), using flux profile relations
(Paulson, 1970). The profile method adopts the MOST to describe the
profile relationships of important scaling quantities, u*, θ* and L; ra is
also expressed in terms of a flux-profile relationship. In this study, the
empirical stability correction functions used in the profile method are
based on those derived for unstable surface layer by Paulson (1970) and
Dyer (1974), which relate the fluxes of heat and momentum to their
non-dimensional vertical gradients.

The friction velocity, u*, aerodynamic resistance ra and sensible
heat, QH are calculated as follows:
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Fig 2. The hourly Surface energy balance closure at both sites.
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where, ψH and ψm are the dimensionless stability correction terms for
heat and momentum, respectively (Beljaars and Holtslag, 1991). The
specified dimensionless constants include the surface albedo, α = 0.23,
and surface emissivity, ɛ = 0.94. We employed the following empirical
values: Ag= 9.0 W m−2 K−1, Stefan Boltzmann's constant
(σ) = 5.67 × 10-8 W m−2 K−1, observation height za= 2 m, dry
adiabatic lapse rate Γd= 0.01 K m−1, air density ρ= 1.225 kg m−3,
specific heat capacity of air cp = 1005 J kg− K−1, von Kármán con-
stant k = 0.41, surface roughness length for heat zoH= 0.001 m and
momentum zom = 0.01 m (Table 3). The incoming longwave radiation
QL↓ (W m-2) is estimated using the formulations described in the Ap-
pendix.

Initially, the iterative procedure makes a first guess of u*, ra and
subsequently QH, assuming neutral stability conditions (1/L = 0). Using
this initial estimate of QH, the parameters θ* and L are calculated (see
Appendix 3). This procedure is repeated until the QH values from one
iteration to the next change by ≤ 10−5 W m−2, achieved through the
stability correction terms and based on the level of agreement between
the estimated and measured values. The estimated QH (W m−2) is then
used to sequentially derive surface temperature Ts (K), which in turn is
used to estimate QG (W m−2) and QN (W m−2), as follows:

= + +T T Q r
ρc

z Γ ,s a
H a

p
a d

(4)

= −Q A T T( ),G g s 24 (5)
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4 3 (6)

where ɛa is the apparent atmospheric emissivity (see Appendix).
Finally, QE (W m−2) is computed using the Penman Monteith for-

mulation (Monteith, 1981), as follows,

=
− + −
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Q
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a N G p s a
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The turbulent fluxes (QH and QE) both rely on surface resistance (rs)
which represents the role of environmental factors, such as plant
growth and soil moisture availability in regulating the surface-air ex-
change of water vapor.

2.4.2. . Surface resistance (rs)
There are several formulations in the literature for estimating ap-

propriate values for rs for different land-cover and environmental
conditions. The simplest of these is the FAO value which is constant and
based on a grass reference crop height of 0.12 m (Allen et al., 1998),
that is

Fig 3. Schematic diagram of surface energy balance estimates. The dotted line denotes the iteration process using MOST, while the dashed lines show the input and
output variables and parameterization workflow.

Table 3
Surface input parameters and corresponding values used at the selected sta-
tions.

Surface parameter Value

Emissivity, ɛ 0.94
Albedo,α 0.23
Soil heat transfer coefficient, Ag 9 W m−2 K−1

Roughness length for heat, zoH 0.001 m
Roughness length for momentum, zom 0.01 m
Surface resistance, rs with approximations
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= −r 70 s ms
1 (8)

A more physically-based formulation was proposed by de Rooy and
Holtslag (1999) based on a statistical relationship between rs and the
vapor density deficit (Δq) in the overlying air,

= + − =r a b e e
p

R
R

q10 Δ ,s
s a d

v (9)

where, a (0 s m−1) and b (10 s kg m−1 g−1) are empirical constants and
p is pressure such that −e e

p
s a is dimensionless. The remaining terms are

constants, Rd is specific gas constant for dry air (287 J kg−1 K−1) and Rv

is specific gas constant for water vapor (462 J kg−1 k−1).
Jarvis (1976) proposed a formulation for stomatal conductance, the

inverse of surface resistance, that accounts for plant growth through the
inclusion of environmental factors and a minimum surface resistance
(rs, min), specific to plant type and leaf area index (LAI),

=r
r
LAI

F F F F ,s
s min

S q T M
,

Δ (10)

where rs, min represents the optimum conditions for evapotranspiration
as a function of solar radiation (FS), water vapor (FΔq), air temperature
(FT) and soil moisture (FM) (Jarvis, 1976; Stewart, 1988). For short
grass, the value of rs, min is 110 s m−1. Although the LAI of short grass
changes seasonally (van den Hurk et al., 2000), a fixed value of
2 m2 m−2 is commonly used (e.g. Beljaars and Bosveld, 1997; de Rooy
and Holtslag, 1999; van den Hurk et al., 2000; 2003; van de Boer et al.,
2014a).

Beljaars and Bosveld (1997) modified the Jarvis–Stewart approx-
imation by removing the air temperature term (FT), due to its correla-
tion with radiation, and included a scaling factor (fr), to adjust rs to a
particular surface (van de Boer et al., 2014a), as follows, (Beljaars and
Bosveld, 1997).

= − − −r f
r
LAI

F F Fs r
s min

s q M
, 1

Δ
1 1

(11)

Based on observations over the Cabauw grassland site which has
poorly drained soils, Beljaars and Bosveld (1997) derived an optimized
value for fr of 0.47. Values for rs, min and LAI are as stated above.

The response function FS to Qs↓ is described (following Beljaars and
Bosveld, 1997; van de Boer et al., 2014a) as:

=
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+ −
↓

↓ ↓
F

Q S S
S Q S S Q

( )
( 2 )

,S
s rm r

rm s r rm s (11a)

where the empirical coefficients Srm and Sr are given as 1000 W m−2

and 230 W m−2, respectively.
The response function FΔq to atmospheric moisture deficit is calcu-

lated as,
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+

F
h q
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Δ
(11b)

where Δq is the difference between the water vapor deficit at the

reference height (2 m) and surface (Chen and Dudhia, 2001). Following
Beljaars and Bosveld (1997) and van de Boer et al. (2014a) we adopt a
fixed value of 3 g kg−1 for the vapor deficit at the surface. Different
values of hs have been adopted in the literature (e.g. Stewart and Gay;
1989; Chen et al., 1996; van den Hurk et al., 2000; Chen and
Dudhia, 2001, Ronda et al., 2001), however, 0.16 kg g−1 is employed
here as it has previously been used over grassland land cover
(Beljaars and Bosveld, 1997; van de Boer et al., 2014a).

FM is a soil moisture response function and is given as,

= >F θ θ1 for ,M FC (11c)

= + − <F c θ θ θ θ1 ( ) for ,M soil FC FC (11d)

where θ (m3 m−3) is the volumetric soil moisture in the root zone and
θFC (m3 m−3) is the volumetric water content at field capacity specific
to soil type (Table 1). We initially employ a value of 6.3 m3 m−3 for csoil
(following Beljaars and Bosveld, 1997); this parameter alters the re-
lationship (i.e. slope) between conductance and soil moisture and
consequently the sensitivity of FM to changes in soil moisture.

2.4.3. Simulating fluxes at the test sites
To address our three primary objectives, here we evaluate the

de Rooy and Holtslag (1999) scheme against the measured fluxes at the
Johnstown Castle and Dripsey grassland sites. In particular, we focus on
the different formulations for surface resistance (rs) and their ability to
estimate surface fluxes at i) a site that exhibits similar soil moisture
properties to the Cabauw site, over which the scheme was originally
developed, and ii) a site with differing soil moisture properties.

In the following section we use abbreviations to represent the dif-
ferent formulations used to obtain rs:

1 FAO to identify rsobtained using Eq. (8)
2 dRH99 to identify rs obtained using Eq. (9) and,
3 BB97 to identify rs obtained using Eq. (11)

The analysis is carried out for daytime only (Qs↓ > 10Wm−2) when
the majority of evapotranspiration takes place. At Johnstown Castle, we
employ data from the nearby meteorological station and θ from the
Eddy-covariance flux site as input to the scheme. At Dripsey, we employ
data from Cork Airport, which is 25 km distant and is the closest sui-
table meteorological station. Due to the absence of soil moisture mea-
surements for the period of study, we employ soil moisture data from
2005 as a surrogate to test the BB97 formulation in estimating rs and QE

at this site. We justify this on the basis that the cumulative precipitation
during 2005, when the volumetric water content measurements are
available, and 2010, when the flux measurements were obtained, dis-
play a similar profile during the period when soil moisture is likely to be
most influential. Section 3.1 presents the results of the analysis.

Beljaars and Bosveld (1997) derived values for the fr, Sr, hs and csoil
coefficients employed in BB97 based on their model fit to the measured

Fig 4. Relationship between daytime hourly measured (QNm) and estimated (QNe) net radiation flux over both sites.
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data at Cabauw. To assess the influence of these specified values on rs
and consequently QE at both sites, we undertook a local sensitivity
analysis, employing a one-at-a-time technique. For each coefficient
value altered, the remaining values are held at their original, specified
values. We initially perturbed the values of fr, Sr, hs and csoil at Johns-
town Castle, where all the required measured input variables are
available. For consistency and robustness of model evaluation, we
conducted a similar sensitivity analysis for the Dripsey site, employing
soil moisture data from 2005. Finally, we employ the optimized values
derived from the sensitivity analysis to derive estimated QH and QE at
Johnstown Castle, where the default values for BB97 failed to replicate
the measured fluxes; results from the sensitivity analysis are presented
in Section 3.2

3. Results

The de Rooy and Holtslag (1999) scheme is used, with different
approximations of rs, to simulate hourly radiation and turbulent fluxes
at each observation site. The estimated hourly QN, QH and QE and daily
averaged QH and QE fluxes were compared with the observed fluxes at
each site using a number of statistical measures including root mean
square error (RMSE), bias, standard deviation (sd) and correlation
coefficient (r), and results are presented below.

3.1. Evaluation of radiation and estimated surface fluxes

3.1.1. Net radiation
Fig. 4 shows the relationship between estimated and measured

(daytime) hourly QN values for both sites. The estimated (measured) QN

values are: between −90 and 600 W m−2 (−100 and 635 W m−2) at
Johnstown Castle and; between −66 and 553 W m−2 (−100 and
600 W m−2) at Dripsey. At Johnstown Castle, the model tended to
overestimate negative values of QN and underestimate large positive
values. At Dripsey, the underestimation of QN is likely attributable to its
reliance on QS↓ which was derived based on hourly sun duration ob-
tained from a distant meteorological site. Overall model performance at
the two sites indicates: a RMSE = 69.7 W m−2 (sd = 158 and
153 W m−2 for the estimated and measured values, respectively) at
Johnstown Castle and; a RMSE = 91.6 W m−2 (sd = 144 and
149 W m−2 for the estimated and measured values) at Dripsey. These
results are broadly comparable with other similar studies. For example,
Holtslag and van Ulden (1983) derived a linear relationship between
QS↓, solar elevation and total cloud cover, in combination with other
components of the surface radiation budget, to estimate QN under both
clear and cloudy sky conditions at Cabauw and obtained a RMSE of
63 W m−2 for QN under all conditions.

3.1.2. Sensible heat fluxes
Table 4 shows the performance metrics for the estimated hourly QH

for both sites using the three formulations for rs outlined above. Of
these, dRH99 was found to perform the best across all metrics and both
sites, but particularly at Johnstown Castle, displaying the lowest RMSE
and bias and highest r values. BB97 performs the poorest at Johnstown
Castle, displaying the highest RMSE and bias compared to the other two
methods. In contrast, at Dripsey, BB97 produces metrics that are very
similar to dRH99.

Figs. 5 and 6 display the scatterplots of measured and estimated
hourly QH, using the three formulations of rs, at Johnstown Castle and
Dripsey, respectively; they also show the daily cycle of QH, during
daylight hours, averaged for the month of July for the respective year of
observation. At Johnstown Castle, BB97 significantly overestimates QH

(which is evident in the July graph) while both dRH99 and FAO match
the measured values more closely (Fig. 5). In general, large positive
hourly values of QH are underestimated at Dripsey but daytime values
during July are very close (Fig. 6). Of the three rs methods, dRH99, at
both sites, and BB97, at Dripsey, produced results that are most

comparable with Holtslag and van Ulden (1983) who employed a
modified Priestly-Taylor approach to estimate QH and QE above a short-
grass covered surface at Cabauw; they reported a RMSE of 34 W m−2

between measured and estimated QH.

3.1.3. Latent heat fluxes
Table 5 shows the statistics for the estimated and measured QE va-

lues for both sites. Although the FAO method employs a constant rs
value, it produced the best fit at Johnstown Castle
(RMSE = 34.9 W m−2, bias = -6.7 W m−2 and r= 0.85) (Table 5),
followed by dRH99 (RMSE = 43.1 W m−2, bias = 11.7 W m−2 and
r = 0.84). Employing the default Beljaars and Bosveld (1997) values,
BB97 performed very poorly at this site (RMSE = 56.1 W m−2, bias = -
29.9 W m−2 and r = 0.62). At Dripsey, FAO produced the best fit in
terms of RMSE and r value (RMSE = 38.9 W m−2 and r = 0.84), but
displayed the highest bias (bias = -11.8 W m−2) of the three methods.
dRH99 performed the poorest at this site, with the highest RMSE and
lowest r value (RMSE= 48.7 W m−2 and r = 0.78) relative to the other
two methods. BB97 resulted in the lowest bias value of all methods
(bias = -2.1 W m−2), and an RMSE and r value comparable to FAO
(RMSE = 41.2 W m−2 and r = 0.83).

Figs. 7 and 8 show scatterplots of hourly measured and estimated
QE, based on the different rs formulations, for Johnstown Castle and
Dripsey, respectively; they also shows the daily cycle of QE for daylight
hours, averaged for the month of July. While FAO produced the lowest
RMSE and bias values at Johnstown Castle (Table 5), both FAO and
dRH99 are shown to overestimate QE, evident during the mid-day hours
in July, when radiation is most intense; BB97 significantly under-
estimates QE, evident during July (Fig. 7). At Dripsey, all rs methods
underestimate QE, with the largest underestimates associated with FAO.
Holtslag and van Ulden (1983), in their study over Cabauw, report a
RMSE of 56 W m−2 between measured and estimated QE; results for all
rs methods used here are consistent with this finding.

3.2. Surface resistance

To explore the difference in performance between the rs formula-
tions, we examined the calculated rs ranges during daytime hours for
both dRH99 and BB97. From Table 6, the range in rs values are larger
for BB97 than for dRH99, at both sites. The large difference in esti-
mated rs values between dRH99 and BB97 result in a marked contrast in
the estimated QE values at Johnstown (Fig. 7). In contrast, the differ-
ence in the range of rs values at Dripsey between methods is smaller;
smaller differences are also apparent in the estimated QE between these
methods at this site. To further examine this, we focus our attention on
BB97 to understand the role of the environmental response factors in
regulating rs and consequently QE at both sites.

3.2.1. Sensitivity of QE to soil and environmental factors
A sensitivity analysis on BB97 was conducted by altering the values

of fr, Sr, hsand csoil, individually, and leaving the remaining coefficients
unchanged.

At Johnstown, the estimated QE was found to be largely insensitive,
within the range of values tested, to alterations in either hs, associated

Table 4
Performance assessment of daytime (QS↓ > 10 W m−2) QH based on different
rs, over both stations. The italicized values show the rsmethod that give the
best agreement between estimated and measured QH. RMSE and Bias (W m−2).

Dripsey Johnstown Castle

rs method RMSE Bias r RMSE Bias r

dRH99 38.2 9.4 0.78 36.1 8.3 0.83
BB97 39.8 11.9 0.77 51.8 23.4 0.83
FAO 44.7 16.7 0.77 43.8 15.9 0.82
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with the atmospheric moisture deficit function (FΔq), or Sr, associated
with the radiation function (FS) (Fig. 9, top) during January or July. In
contrast, during July, rs and consequently QEwas found to be very
sensitive to changes in csoil, associated with the soil moisture function
(FM) (Fig. 9, bottom left). When the default value (6.3 m3 m−3) for csoil
was employed, the average daytime value of rs increased significantly
(≈ 600 s m−1), suppressing the estimated QE values (Fig. 7). When

csoil= 0 m3 m−3, equivalent to setting =F 1,M the estimated
QE increases to near its potential, in response to low daytime rs (<
50 s m−1) values. Setting csoil values within the range of
2.3–4.3 m3 m−3 resulted in QE estimates with the lowest bias, relative
to measured values. A similar response was found for fr; estimated QE

decreased from its potential ( =f 0r ) with increasing fr. A csoil=
4.3 m3 m−3 was ultimately selected, based on the bias value

Fig 5. Relationship between daytime hourly measured (QHm) and estimated (QHe) sensible heat flux applying the Scheme with different rs models over Johnstown
Castle. The line plot is the diurnal cycle of QH, averaged for July, 2013.

Fig 6. Relationship between daytime hourly measured (QHm) and estimated (QHe) sensible heat flux applying the Scheme with different rs models over Dripsey. The
line plot is the diurnal cycle of QH, averaged for July, 2010.
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(0.9 W m−2) for the month of July.
At Dripsey, changes to hs, Sr and csoil had little or no impact on rs and

consequently QE (Fig. 10, top and bottom left), during either January or
July. Similar to the findings at Johnstown, rs was found to increase with
increasing fr so that the corresponding QE decreases, evident during the
mid-day hours in both January and July.

3.2.2. Estimation of surface fluxes using adjusted coefficients
Fig. 11 (top) shows the hourly measured and estimated fluxes of QE

and QH and averaged hourly day time values for July (Fig. 11, bottom).
The use of adjusted values (Table 7) at Johnstown improves the RMSE
and bias for QE (RMSE = 37.8 W m−2, bias = -9.7 W m−2) and QH

(RMSE = 41.7 W m−2, bias = 15.3 W m−2) and the r value for QE

(r = 0.82). The diurnal cycle (Fig. 11, bottom) shows clearly that QE is
significantly improved, matching more closely with the measured va-
lues during July. Overall, the magnitudes of daytime hourly estimated
(measured) QH were within the range −60 and 320 W m−2 (−100 and
220 W m−2), while that of QEwere within −100 and 350 W m−2 (−20
and 310 W m−2). At Dripsey, using the original BB97 values which
proved to be optimum for this site, the surface fluxes were estimated
within the range -68 and 235 W m−2 for QH and within −11 and
330 W m−2 for QE.

Averaged daily QH were estimated between −50 W m−2 and
170 W m−2 at both sites; daily QE values ranged between −15 W m−2

and 190 W m−2 at both sites (Fig. 12, top). While both sites showed
similar exchanges of QH, at both hourly and daily time scales QE was
higher than QH. This indicates that the surface conditions at these sites
were wet, in general, resulting in lower Δqa and rs and consequently,
higher QE. The broader pattern shows the seasonal variation in the
fluxes, which are low in winter and peak in summer (Fig.12, bottom).

4. Discussion

4.1. Physical control of parameterized surface resistance and surface fluxes

In this study, we evaluated the land surface parameterization
scheme of de Rooy and Holtslag (1999) as a means of deriving surface
energy fluxes using routine meteorological data. Although the scheme
was developed using observations made over short grass grown on
poorly drained soil, they suggested it could be adjusted for use else-
where if the surface parameters, particularly surface resistance (rs), are
modified to local conditions by using appropriate parameterization
schemes. Beljaars and Bosveld (1997) indicate that rs can vary owing to
a range of environmental factors, including soil moisture, photo-
synthetically active radiation (PAR) and near-surface moisture deficit.
Here, we focus on three different methods (namely FAO, dRH99 and
BB97) of representing rs, representing varying levels of sophistication,
within the scheme.

The FAO method requires no information on atmospheric and site
conditions and assigns a fixed value for rs. Estimates using this method
performed relatively well in estimating QE but poorly in estimating QH

at both sites. The dRH99 method incorporates the near-surface moisture
deficit but did not perform as well as FAO for QE, but did better than
FAO for QH at both sites. The most sophisticated method (BB97), using
the standard values for the environmental response factors (i.e. fr, Sr, hs
and csoil), provided a good fit to both QH and QE at Dripsey but per-
formed poorest of all methods at Johnstown.

These results may seem counterintuitive, as the FAO method with
the least information performs well, relative to the other methods with
regard to QE. In part this can be explained by the constrained nature of

Table 5
Performance assessment of daytime (QS↓ > 10 Wm−2) QE based on different rs,
over both stations. The italicized values show the rs method that give the best
agreement between estimated and measured QE. RMSE and Bias (Wm−2).

Dripsey Johnstown Castle

rs method RMSE Bias r RMSE Bias r

dRH99 48.7 5.6 0.78 43.1 11.7 0.84
BB97 41.2 -2.1 0.83 56.1 -29.9 0.62
FAO 38.9 -11.8 0.84 34.9 -6.7 0.85

Fig 7. Relationship between daytime hourly measured (QEm) and estimated (QEe) latent heat flux applying the Scheme with different rs models over Johnstown
Castle. The line plot is the diurnal cycle of QE, averaged for July, 2013.
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the energy budget, which allocates the energy available (that is,
−Q QN G) into QH and QE. As FAO underestimates QH, more energy is

channeled into QE. Similarly the improved performance of dRH99 for
QH results in a weaker result for QE. However, the intriguing result is for
the most sophisticated method (BB97), which includes many of the
physical controls on rs, performs well at Dripsey using standard values
but poorly at Johnstown for both QH and QE. As both Johnstown Castle
and Dripsey experience similar meteorological conditions (e.g. Fig. 4),
we hypothesized that this is due to the soil moisture characteristics
(Table 1), which are not considered by dRH99.

Fig. 13 shows the average daily values of soil moisture (θ) of
Dripsey and Johnstown for the years available.
Seneviratne et al. (2010) classified evapotranspiration regimes into
types. A wet regime is defined as energy-limited, and occurs when θ lies
above a critical soil moisture level (θCT). When θ falls below θCT (ty-
pically between 0.5 and 0.8 of θFC) (Seneviratne et al. 2010; after
Shuttleworth, 1993) the regime is classed as moisture-limited and
'transitional'. At Dripsey, daily θ varies between 0.25 to 0.4 m3 m−3

over the two year period and only drops below θFC for short periods;
from the 6th June to the 8th August during 2004 (≈64 days) and from
the 28th June to the 23rd July during 2005 (≈ 26 days). At Johnstown,
θ varies between 0.12 to 0.47 m3 m−3 over the measurement period;

however, θ falls below θCT for an extended period from the 23rd May to
the 30th September during 2013 (≈ 131 days). Consistent with the soil
drainage characteristics, the heavier soils at Dripsey maintain sufficient
moisture throughout the year; this meets the definition of a wet regime
where QE is constrained by the available energy. At Johnstown, in the
absence of precipitation, the soil moves from a wet to a transitional
regime and QE becomes moisture-limited. This suggests that the impact
of the different methods for obtaining rs values will be most evident
during transitional soil moisture regimes. BB97 is the only method that
can incorporate these effects into the calculation of surface resistance
(rs).

The sensitivity analysis identified the csoil coefficient, which acts to
modify the plants ability to access soil moisture below field capacity
(θFC) as a critical variable. A value of csoil ≈ 6.3 m3 m−3 was estimated
by Beljaars and Bosveld (1997) based on observations at a poorly-
drained site (Cabauw), similar to the Dripsey site, which fits the char-
acteristics of an energy-limited evapotranspiration regime. However,
we found that a value of csoil ≈ 4.3 m3 m−3 was better suited to the
imperfectly-drained soils at Johnstown, which often experiences a
transitional regime. The adjusted csoil value reduced the range of rs
values (Table 6) and improved results for both hourly and daily QH and
QE estimates (Figs. 11 and 12). These results indicate that rs depends
very strongly on soil moisture regimes, particularly during a transi-
tional period where θ falls below θCT, so that the use of a constant value
or a linear relation where air moisture response is the only driver of rs
may prove inferior. This supports the conclusion of Beljaars and
Bosveld (1997), who established that all the environmental response
parameters are important for stomatal control during dry periods, in
order to obtain a good flux simulation.

The estimates of surface energy fluxes generated by the de Rooy and
Holtslag (1999) scheme using the BB97 method that adjusts to soil
moisture conditions, generates both hourly (RMSE ≈ 40 W m−2) and
daily (RMSE ≈ 24 W m−2) statistics that are comparable with other
similar studies. For instance, Holtslag and van Ulden (1983), using
calculated QS↓ as an input into their scheme, obtained half-hourly
measures of RMSE ≈ 34 W m−2 for QH during daytime over grassland

Fig 8. Relationship between daytime hourly measured (QEm) and estimated (QEe) latent heat flux applying the Scheme with different rs models over Dripsey. The line
plot is the diurnal cycle of QE, averaged for July, 2010.

Table 6
Range of estimated rs (s m−1) during mid-day time (QS↓ > 10 W m−2 and QS↓

> 100 W m−2) over the selected stations. BB97 is based on the scheme using
the default parameter values (i.e. Beljaars and Bosveld, 1997) for BB97; BB97
(optimized) is based on the updated optimized values for Johnstown Castle,
employed in this study.

rs method Johnstown Castle Dripsey

QS↓ >
10 W m−2

QS↓ >
100 W m−2

QS↓ >
10 W m−2

QS↓ >
100 W m−2

dRH99 0–100 0–100 0–90 0–90
BB97 25–15800 25–2613 25–1300 25–175
BB97 (optimized) 25–2450 20–400 – –
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at Cabauw, the Netherlands. The errors of estimated QE using different
spatial evapotranspiration (ET) models including mapping ET at high
resolution with internalized calibration (METRIC) (Allen et al., 2007),
surface energy balance systems (SEBS) model (Su, 2002), two-source
energy balance (TSEB) model (Norman et al., 1995), triangle model,
and surface energy balance algorithm for land (SEBAL)
(Bastiaanssen et al., 1998) are within the range ≈ 30–80 W m−2

(Long and Singh, 2013), which also correspond to results in this study.

Estimated daily ET fluxes using an upscaled evaporative fraction (EF)
scheme have also been found to range between 5 and 40 W m−2

(Colaizzi et al., 2006; Sobrino et al., 2007; Tang et al., 2013).

4.2. Uncertainties in surface heat flux simulations

It is important to recognize several potential sources of error in this
work and their likely effect on the findings.

Fig 9. Sensitivity of daytime rs and QE to environmetal factors, averaged for January and July over Johnstown Castle. hs (g kg−1), Sr (W m−2), csoil (m3 m−3) and fr is
dimensionless. The calculated biases for January (≈ −14 W m−2) are similar for all factors. The dashed and solid lines are rs and QE, respectively.

Fig 10. Sensitivity of daytime rs and QE to environmetal factors, averaged for January and July over Dripsey. hs (g kg−1), Sr (W m−2), csoil (m3 m−3) and fr is
dimensionless. The calculated biases for January (≈ -9 W m−2) are similar for all factors. The dashed and solid lines are rs and QE, respectively.
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Energy budget closure: The energy flux estimates generated here
using the de Rooy and Holtslag scheme are evaluated by comparison
with EC measurements made at two sites. It is important to acknowl-
edge that there are likely to be errors in the measured fluxes that can be
assessed as part of energy budget closure (see Section 2.3.1). Here, the
closure is measured as QN - (QH + QE) and the results for both sites
(Fig. 2) are consistent with those reported in the previous studies (e.g.
Wilson et al., 2002). The major reason for the non-closure here is the
absence of substrate heat flux (QG) observations but there are also likely
to be errors associated with the measured terms (Heusinkveld et al.,
2004). EC measurements are known to underestimate the turbulent
sensible (QH) and latent (QE) heat fluxes mainly because they do not
capture the effects of large-scale eddies that are linked to landscape
heterogeneity (Foken, 2008). We do not attempt to evaluate the mag-
nitude of the underestimates in this work but Foken (2008) indicates
that these may be between 10% and 20%. This should be borne in mind
when evaluating the estimated turbulent fluxes using BB97, which
employ adjusted parameters to improve the fit to observations.

Meteorological observations: The de Rooy and Holtslag (1999)
scheme requires inputs on solar radiation, air temperature, humidity,

etc. to estimate fluxes. Ideally, these meteorological observations are
complete and available at the site of study. This was not the case for
Dripsey, where the scheme used data obtained for a site 25 km distant
(Cork Airport) where observations of solar radiation (QS↓) and cloud
cover were not available. The study estimated QS↓ from sunshine hours
using a modified Angstrom-model but could not account for the impact
of clouds on QL↓; as a result, estimated QN is likely to be lowered,
especially at night. This error will affect all surface energy fluxes but,
given the focus on daytime evaporation, the impact is likely to be small.
While the estimated QG values were not evaluated in this study, de Rooy
and Holtslag (1999) also highlighted that, an overestimation of QG may
result in negative bias in −Q QN G that is used to estimate QE.

Finally, we should acknowledge that the need to estimate radiation
components (rather than using observations) will result in errors that
will impact on the turbulent flux estimates produced by the different
methods.

5. Summary and conclusion

This paper applied an existing physically-based scheme for esti-
mating surface energy fluxes over two independent sites with con-
trasting soil moisture characteristics. The radiative and non-radiative
components were parameterized from limited routine weather ob-
servations for daytime conditions over grass-covered surfaces at
Johnstown Castle and Cork Airport in Ireland. The parameterized fluxes
were further evaluated against observed EC flux measurements at
Johnstown Castle and Dripsey (25 km from Cork Airport). Our main
objectives are to test whether the original de Rooy and Holtslag (1999)
scheme, which was derived at a grassland site in the Netherlands (Ca-
bauw) can be transferred to other grassland sites and take into account
different soil characteristics. The study focused in particular on the role
of surface resistance (rs) in regulating the daytime turbulent heat fluxes
of QH and QE. Three methods of varying sophistication (FAO, dRH99
and BB97) were applied to the estimation scheme at the two test sites,
which represent poorly (Dripsey) and imperfectly (Johnstown) drained
soils. While BB97 and dRH99 produced a good fit to observed QE values
at Dripsey (a site that is similar to Cabauw), the fit at Johnstown was

Fig 11. Relationship between daytime hourly measured and estimated QH [left] and QE [right] fluxes for 2013, applying the Scheme with optimized
(csoil = 4.3 m3 m−3) rs over Johnstown Castle.

Table 7
Adapted empirical coefficients of optimized rs for QE estimation under different
surface conditions.

Soil Drainage Variable Optimized Units
Characteristics value

Imperfectly drained fr 0.47 –
(Johnstown Castle) rsmin 110 s m−1

LAI 2 m2 m−2

hs 0.16 g kg−1

csoil 4.3 m3 m−3

Sr 230 W m−2

Poorly drained fr 0.47 –
(Dripsey) rsmin 110 s m−1

LAI 2 m2 m−2

hs 0.16 g kg−1

csoil 6.3 m3 m−3

Sr 230 W m−2
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poor. The differences in results were attributed to soil moisture char-
acteristics and only BB97 accounts for this property. A critical variable
in this method of deriving rsis the soil moisture coefficient (csoil), which
accounts for the water available to plants for evapotranspiration; the

value of csoil used in BB97 (6.6 m3 m−3) was suited to the wet soil
conditions at Dripsey but not at Johnstown. This study finds that csoil ≈
4.3 m3 m−3 resulted in QH and QE values that agree well with the
measured values over imperfectly drained soil.

Fig 12. Relationship between parameterized and measured averaged daily QH and QE over the selected sites. The daily variations of QE and QH in the course of a year
are shown in the middle (c,d) and bottom (e,f) panels, respectively. The shaded portions are the 5th and 95th percentiles of uncertainty bound as calculated by LOESS
regression

Fig 13. Averaged diurnal variations of the measured θ of the
top layer of the soil from 2004 to 2005 at Dripsey and for the
year 2013 at Johnstown Castle. The gaps indicate periods with
missing values. The horizonal dashed line is the threshold of θ
at field capacity [blue] and wilting point [red], and the grey
box is the (upper and lower critical θ at 0.25 m3 m−3 and
0.15 m3 m−3, respectively) bound of transitional soil moisture
regime for both sites (after Shuttleworth, 1993). (For inter-
pretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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An additional finding from this work was that the use of off-site
meteorology, similar to the site of interest, can be reliably employed to
estimate the measured surface fluxes at a location; we demonstrated
this at Dripsey, where the nearest suitable meteorological station was
located ≈25 km away. Notwithstanding the uncertainties associated
the estimation of Qs↓ from sun hours and the use of soil water from a
similar precipitation year (i.e. 2005), the estimated fluxes agree well
with the measured values at this site. In the absence of direct soil
moisture measurements and based on the soil drainage characteristics
at Dripsey, the use of FM = 1 in combination with standard optimal
coefficients of BB97 is likely to produce similar results to dRH99.

The surface energy imbalance is always characterized to be partly a
consequence of an underestimation of turbulent heat fluxes by EC
techniques. Given the measures of observed surface energy balance
closure at the test sites which, while they do not account for QG, are
consistent with previous studies, we can conclude that the uncertainty
of the parameterization scheme associated with the systematic bias of
EC measurements of turbulent heat fluxes is relatively smaller.
Notwithstanding the problems of surface energy balance closure of EC
measurements, the estimated fluxes improved significantly through the
adjustment of a csoil adjusted to account for the soil moisture conditions.
Generally, the de Rooy and Holtslag (1999) scheme demonstrated good
performance in replicating the measured fluxes over grass-covered
surfaces exhibiting different soil moisture characteristics and using
routine weather observations for daytime weather conditions at both

sites. On the basis of the analysis conducted here, we therefore conclude
that the land surface scheme is sensitive to soil types that exhibit dif-
ferent drainage characterizes; whether the optimized coefficient for csoil
in this study is more generally applicable, remains to be tested. The
python code for this application is obtainable from the first author.
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Appendix

A.1. Surface energy budget

The SEB is the energy conservation at the earth's surface. It describes the ability to partition the net radiation (QN) into surface sensible (QH) and
latent (QE) heat exchange with the overlying atmosphere, and soil heat with the subsurface (QG) assuming no heat is stored or released within the
canopy. The SEB equation can be written as;

= + +Q Q Q QN H E G (A1)

On a typical day, QN is positive during the day and increases toward mid-day when the sun is highest, at night it becomes negative. Consequently,
the surface is the source of energy to the atmosphere leading to rising air temperature and humidity, and to the subsurface (raising soil temperature),
during the daytime. However, during night-time, the surface serves as a sink as the energy flows in reverse order.

The non-radiative terms in (A1) are related to vertical gradients of air temperature (QH), humidity (QE) and soil temperature (QG) and the
respective transfer properties. In the atmosphere, transfer is regulated by the near-surface airflow and stability while conductivity controls heat
exchange in the soil. An expanded discussion of these components and application to the study region has been presented in Keane and
Collins (2004).

A.2. Radiation terms

QN is parameterized based on the components of surface radiation as represented in equation A2.

= − − + − −↓ ↑ ↓ ↑Q Q Q Q QN S s L L (A2)

The magnitude of QS↓ depends on the Sun's altitude, clarity of the atmosphere and the latitude. This parameter is basically available by means of
observations or model estimation (Holtslag and van Ulden, 1983; Ishola et al., 2018; for application to the study area). The Qs↑ is a fraction of QS↓

reflected back to the atmosphere and is a function of the surface albedo ( = ↑

↓
α Q

Q
s

S
). A parameterization of surface albedo based on solar elevation has

been investigated (Beljaars and Bosveld, 1997; de Rooy and Holtslag, 1999), but for the purpose of simplicity, the recommended normal surface
albedo value for short grass ( =α 0.23; Oke, 1978) is adopted in this study. The longwave terms in (A2) depend on the air (Ta) and surface (Ts)
temperature and their respective emissivity.

A simple approximation of the incoming longwave radiation in relation to Taat a reference height (1–2 m) has been reported (Swinbank, 1963).
However, this simple empirical relation does not account for the influence of cloud cover thus, the adopted model in this study was that optimized by
Holtslag and van Ulden (1983);

= + ⎛
⎝

⎞
⎠

↓Q ε σT c N
8L a a

4
1 (A3a)

⎜ ⎟= ⎛
⎝

⎞
⎠

ε e
T

1.2a
a

0.143

(A3b)

c1 is an empirical constants (60 W m−2). A number of approximations have been proposed forɛa, relating it to Taand N (Idso, 1981; Holtslag and de
Bruin, 1988), and water vapor pressure (mbar) and Ta (Brutsaert, 1982). Here, we adopted the latter as shown in (A3a) for estimation of ɛa (de Rooy
and Hotlsag, 1999).
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The estimation of QL↑ depends primarily on the surface emissivity (ɛ) and Ts,

= + −↑ ↓Q εσT ε Q(1 )L s L
4 (A3c)

The literature indicates that, ɛ ranges from 0.9 – 0.95 for long to short grass (Oke, 1978) and 0.94 is used here (de Rooy and Hotslag, 1999). The
Ts is critical for estimating QL↑and all of the non-radiative terms in the SEB and is discussed in the next section.

A.3. Surface temperature

Monin–Obukhov Similarity Theory (MOST) describes the profile relationships of scaling quantities, u*, θ* and L (Schayes, 1982; Berkowicz and
Prahm, 1982; Holtslag and van Ulden, 1983; Manju and Sharma, 1987; Mohan and Siddiqui, 1998; de Rooy and Holtslag, 1999; van de Boer et al.,
2014a). The temperature and wind speed profiles are given as,
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In this study, the potential temperature θa is given, by adjusting the air temperature adiabatically for the height above the ground, as;
= +θ Ta a

gz
c

a
p
(de Rooy and Holtslag, 1999). Both zoH and zom (m) lengths are taken such that the downward-extrapolated profiles of (A4) produce

effective temperature at the radiation level and the profiles of (A5) result in zero value for wind speed. de Rooy and Holtslag (1999) noted that for
homogenous surfaces the local zoH and zom depend only on the local surface cover thus, the corresponding lengths used in this study are 0.01 m and
0.001 m for zom and zoH, respectively. ψH and ψm are the stability correction terms for heat and momentum (Beljaars and Holtslag, 1991). Using
Businger-Dyer representations of similarity functions (Businger 1966, Dyer, 1967), Paulson (1970) has derived stability functions. The functions
relate the fluxes of momentum and heat to their non-dimensional vertical gradients. The reader is referred to this paper for information on the
derived stability functions in an unstable surface layer.

The scaling parameters in (A6) and (A7) are related with sensible heat flux QH and Obukhov length L (m) by;

= −θ Q
u ρc*

*

H

p (A6)

=L
u T
kθ g

*
*

a
2

(A7)

The L is a dimensional height above the surface where the turbulence generated by buoyancy (heat production) equals the mechanically (shear)
generated turbulence, describing a layer where stratification influence is negligible (Foken, 2006). Below this layer, shear production dominates over
buoyancy. It is a parameter that helps to characterize the dynamic and thermodynamic processes within the atmospheric boundary layer and, in turn,
the conditions of stability and instability of the surface layer. L is zero for neutral stratification and positive (negative) for stable (unstable) stra-
tifications.

Estimation of scaling parameters requires the determination of the vertical gradients of wind and temperature from measurement at different
levels, which are not available at typical meteorological stations where instruments are at one level (2 m above the earth's surface). Here, MOST is
coupled with the radiative energy terms (described in Section 1) to solve a series of Eqs. ((A5)–(A7) and (A10)) by iteration; details are provided in
de Rooy and Holtslag (1999).

The first step in the iterative procedure assumes neutral stability such that the last two terms on the right side of (A5) become zero and the initial
values of u*, QH and L are estimated. The procedure is repeated but with the inclusion of stability correction terms until the value of QH changes little
(≤ 10−5 W m−2) with each subsequent iteration, which typically occurs after 5–6 steps (Mohan and Siddiqui, 1998). The resulting QH is then used to
estimate surface temperature Ts using the relation in (A8).

− = +T T Q r
ρc

z Γ ,s a
H a

p
a d

(A8)

where ra is the aerodynamic resistance (Section 4) and Γdis the dry adiabatic lapse rate (0.01 K m−1)

A.4. The soil heat flux

A number of relations describing the soil heat flux (QG) have been investigated against measured values in the literature (Nickerson and
Smiley, 1975; Deardorff, 1978; Schayes, 1982; de Rooy and Holtslag, 1999; van de Boer, 2014a). de Rooy and Holtslag (1999) verified the simple
approximation of QG proposed in van Ulden and Holtslag (1985) for short grass (A9) using the daily mean Ta,

= − −Q A T T( )G g s24 (A9)

where T24 is the 24-h mean of 2-m temperature (K), Ts is the estimated surface temperature (K), Ag is an empirical constant for soil heat transfer
(9 W m−2 K−1). This is the approximation used here.

A.5. The sensible and latent heat fluxes

The basic formulation of QH and QEfluxes has been simplified by the Penman–Monteith equation where the parameterized available energy (QN –
QG) was partitioned (Monteith, 1981).
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The Penman–Monteith concept has been widely recommended for estimating QE at different locations (Allen et al., 1998).
The aerodynamic (ra) and surface (rs) resistances capture the atmospheric and canopy controls on the transfer of heat and moisture, respectively.

The canopy can regulate the availability of soil water at the surface via stomates and distinguishes the evaporative term in the SEB. Aerodynamic
resistance can be approximated using M-O similarity theory,
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and is included in the iteration loop described in Section 2.
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Abstract 8 

Due to its latitude and ample year-round rainfall, Ireland is typically an energy limited regime in the 9 

context of soil moisture availability and evapotranspiration. However, during the summer of 2018, 10 

regions within the country displayed significant soil moisture deficits, associated with anomalous 11 

atmospheric forcing conditions, with consequent impacts on the surface energy balance. Here, we 12 

explore the utility of a physically based land surface scheme coupled with observational, global 13 

gridded reanalysis and satellite-derived data products to analyse the spatial and temporal evolution 14 

of the 2018 summer drought event in Ireland over grassland, which represent the dominant 15 

agricultural land-cover. While the surface-air energy exchanges were initially dominated by 16 

atmospheric anomalies, soil moisture constraints became increasingly important in regulating these 17 

exchanges, as the accumulated rainfall deficit increased throughout the summer months. This was 18 

particularly evident over the freer draining soils in the east and southeast of the country. From late 19 

June 2018, we identify a strong linear coupling between soil moisture and both evapotranspiration 20 

and vegetation response, suggesting a shift from an energy limited evapotranspiration regime into a 21 

dry or soil water limited regime. Applying segmented regression models, the study quantifies a critical 22 

soil moisture threshold as a key determinant of the transition from wet to dry evaporative regimes. 23 

These findings are important to understand the soil moisture context under which land-atmosphere 24 

couplings are strongest in water-limited regimes across the country and should help improve the 25 

treatment of soil parameters in weather prediction models, required for sub-seasonal and seasonal 26 

forecasts, consequently enhancing early warning systems of summer climate extremes in the future. 27 

Keywords. Drought; Land-atmosphere interactions; Evaporative fraction; Soil moisture; Climate 28 

extremes; Surface energy budget  29 

1. Introduction 30 

During the past two decades, regions across Europe have experienced hot summers and drought 31 

events, which varied in terms of the development, frequency, intensity and impacts (e.g., Buras et al., 32 

2019). Droughts are typically categorised as either meteorological (high rainfall deficits), hydrological 33 

(extremely low groundwater, lakes, streamflow, etc.), agricultural (high soil moisture deficits, affecting 34 

vegetation) or socioeconomic, when the demand for water exceeds the supply (van Loon et al., 2015; 35 

Falzoi et al., 2019). A meteorological drought precedes agricultural drought through reduction in soil 36 

water storage and the water available for uptake by roots (Buitink et al., 2020); but to fully understand 37 

the development of these events, other factors such as changes to soil and biophysical properties, 38 

must be taken into account. While there have been many studies on agricultural droughts across 39 
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Europe (e.g. Noone et al., 2017; Falzoi et al., 2019; Buitink et al., 2020; van Hateren et al., 2021), there 40 

have been few investigations in Ireland, where such events are rare. 41 

The 2018 European summer (April to August) was associated with a higher near-surface temperature 42 

and lower rainfall receipts relative to the long-term (1981-2010) mean (Magnusson et al., 2018). These 43 

conditions were created by a large and persistent anticyclonic system located over central and 44 

northern Europe, which blocked the normal passage of Atlantic storms (Buras et al., 2019; Kornhuber 45 

et al., 2019; Rösner et al., 2019; Dirmeyer et al., 2021). The resulting heatwave and drought were 46 

extreme, surpassing previous records with several stations across Europe reporting record breaking 47 

daily maximum temperatures (Buras et al., 2019; Rösner et al., 2019; Dirmeyer et al., 2021). Ireland, 48 

situated on the western maritime fringe of Europe, experienced unusually warm and dry conditions 49 

(Moore, 2020) that impacted on grass growth productivity and farm income (Dillon et al., 2018). These 50 

impacts were preconditioned by the cold ground temperature arising from the exceptional snow fall 51 

that was associated with cold airmass advecting around high pressure from Siberia towards the 52 

country dubbed the ‘Beast from the East’, from the end of February and lasted for about a week, 53 

causing a very late onset of grass growth season by about a month relative to an average year (Dillon 54 

et al., 2018). 55 

When drought and heatwave events evolve simultaneously they can reinforce each other. The 56 

occurrence of these ‘compound’ events and the associated land-air exchanges have been observed 57 

across Europe over the last few decades (e.g., 2003, 2010, 2015, 2018).  For instance, Black et al. (2004) 58 

demonstrated that the events of August 2003 across Europe were exacerbated by the persistence of 59 

the anticyclonic blockage that enhanced net radiative flux and reduced water availability, such that 60 

the surface-air sensible heat flux was increased leading to elevated air temperatures (that is, a positive 61 

feedback) and increased atmospheric water demand. Compound events can result in a wide range of 62 

impacts including water scarcity, tree mortality, agricultural loss, wildfires and air pollution with 63 

deleterious effects on  ecosystems, human health and well-being and agricultural productivity (Fink et 64 

al., 2004; Conti et al., 2005; García-Herrera et al., 2010; Dole et al., 2011; Alexander, 2011; Zscheischler 65 

et al., 2018; Miralles et al., 2019; Schuldt et al., 2020).   66 

The transition from meteorological to agricultural drought is closely linked to the plant available soil 67 

moisture (𝜃) during the growing season. Broadly speaking, evapotranspiration (ET) can be categorised 68 

into energy- and water-limited regimes. In the latter, increasing soil moisture deficits and atmospheric 69 

evaporative demands causes vegetation to close stomata to limit water loss to the atmosphere; the 70 

associated decrease in the latent heat flux with surplus energy being channelled into sensible heat 71 

initiates the positive feedback with near surface air temperature described above (Seneviratne et al., 72 

2010; Miralles et al., 2019). The transition from energy- to water-limited regimes occurs at a critical 73 

soil moisture (𝜃c) value and landscapes can switch between regimes over the course of a year 74 

depending on precipitation, available surface energy, atmospheric demand and the status of 75 

vegetative cover (Knist et al., 2017).  76 

The evaporative fraction (EF), defined as the ratio of latent heat flux and available energy at the land 77 

surface and can be expressed as a function of 𝜃  (Seneviratne et al., 2010; Buitink et al., 2020; 78 

Denissen et al., 2021), has previously been used to evaluate vegetative productivity. Buitink et al. 79 

(2020) used a similar framework but replaced the EF with satellite-derived ecosystem indicators, near 80 

infrared reflectance of vegetation (NIRv) and vegetation optical depth (VOD), to allow for a more 81 

precise analysis of how productivity was related to 𝜃 during the 2018 drought event at two sites in the 82 
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Netherlands. Other studies have also derived values for 𝜃c based on observations and model outputs 83 

using alternative theoretical frameworks (Akbar et al., 2018; Haghighi et al., 2018; Feldman et al., 84 

2019; Denissen et al., 2020). Determining 𝜃𝑐 is also critical for predicting the timescales of plant 85 

responses, ET decay and consequently the emergence and progression of agricultural drought. 86 

This research uses a simple land surface scheme, which employs readily available meteorological and 87 

surface data, to investigate the role of land-atmosphere exchange processes across Ireland during the 88 

2018 summer drought. The study seeks to analyse (i) the evolution of the 2018 drought at sub seasonal 89 

and regional scales; (ii) the anomalies in simulated land-atmosphere energy exchanges; and, (iii) the 90 

role of soil moisture in modulating land-atmosphere exchange processes. We combine a physically-91 

based land surface scheme with observational data, along with readily accessible global gridded 92 

reanalysis and satellite-derived data products to address these objectives. The scheme used here has 93 

previously been established as having the capability to reproduce measured surface fluxes (de Rooy 94 

and Holtslag, 1999; Ishola et al., 2020). The method outlined offers the potential for improving 95 

management strategies, particularly during anomalous warm and dry events, and for delineating areas 96 

with differential drought responses. 97 

 98 

2. Materials and Methods 99 

2.1 Study area 100 

The Island of Ireland (Figure 1) has a maritime temperate climate (Peel et al., 2007) with a long-term 101 

(1981-2010) mean daily maximum temperature of between 18 and 20 °C in summer. In winter, daily 102 

minimum temperatures occasionally drop below 0 °C, but average winter temperatures are generally 103 

around 8 °C. Ireland receives an annual average rainfall of over 1200 mm, distributed throughout the 104 

year. The spatial distribution of rainfall follows a west to east gradient; higher rainfall receipts (~1000 105 

– 1400 mm) typically occur on the west coast and particularly in the upland regions where receipts 106 

can exceed 2000 mm largely associated with topographic interactions with the prevailing maritime 107 

air. Lower rainfall amounts are experienced in the east of the country (~750-1000 mm) (Met Éireann). 108 

A summary description of the climatology of the region is reported in Walsh (2012).  109 

The most important biome in Ireland is that of grassland, which accounts for 56% of the total land 110 

area (McEniry et al., 2013) and more than 90% of agricultural land cover (Figure 1). Due to the 111 

favourable growing conditions, grass growth can occur throughout the year, particularly along the 112 

coastal margins in the south of the country. The low cost of grass production here offers a significant 113 

competitive advantage to farmers and positively impacts on the low economic margins associated 114 

with agricultural production. However, grass growth is more problematic in the wet soils in the west 115 

and north of the country due to the heavier (clayey) soils (Keane and Collins, 2004), compared to the 116 

more freely draining soils that characterize the east and southeast region (McDonnell et al., 2018; 117 

Creamer et al., 2014). Detailed soil properties and information for Ireland is available from Creamer 118 

et al. (2014). 119 
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 120 

Figure 1. Map of the study area showing the locations of selected weather stations and the dominant land cover 121 

types from 2018 CORINE Land cover product. The boxes A, B and C comprise of the stations grouped on the basis 122 

of similar precipitation regimes and agricultural regions. 123 

2.2 Observational data 124 

Hourly meteorological observations were obtained from fourteen automatic weather stations (AWS) 125 

across Ireland (Table 1 and Figure 1) from the Irish national meteorological service, Met Éireann.  126 

These stations are sited over short grass cover, consistent with World Meteorological Organisation 127 

(WMO) guidelines and report on global solar radiation (𝑄𝑠↓, W m-2) or sun duration (hours), air 128 

temperature (°C), relative humidity (%), pressure (kPa), wind speed (m s-1) and precipitation (mm). 129 

Cloud amount is required as an input but, as the observations are only available at relatively few 130 

stations, we subsequently exclude the cloud input in the land surface scheme to ensure consistency 131 

in approach across all stations. For stations where only sunshine hours are available, including Knock 132 

Airport, Casement (Aerodrome), Shannon Airport and Cork Airport, hourly 𝑄𝑠↓ data were estimated 133 

for these stations based on observations of sunshine duration following Allen et al. (1998) and Ishola 134 

et al. (2018). The hourly meteorological observations were obtained for the summer months of May 135 

to August – the period over which the 2018 drought began and subsequently intensified. Due to the 136 

differences in the start of operations of a number of the AWS, we focus the main analysis on the most 137 

recent decade (2010-2019) to ensure consistent temporal coverage of meteorological data across all 138 

stations.  139 

2.3 Gridded meteorological data 140 

Gridded daily total precipitation data for Ireland was also obtained from Met Éireann for the period 141 

from 1999 to 2019. This data, available at 1 km2 grid resolution, was generated using interpolation 142 

techniques applied to in-situ rainfall data from over 500 rainfall stations distributed across the 143 

Republic of Ireland (Walsh, 2012).  144 

The land surface scheme employed here requires soil moisture measurements but these are not part 145 

of routine observational practice in Ireland, as in many other countries, and therefore we employed 146 

gridded reanalysis soil moisture data from the European Centre for Medium Range Weather 147 
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Forecasting (ECMWF) ERA5-Land data, obtained from the C3S Copernicus Climate Data Store. ERA5-148 

Land is the latest global reanalysis product from ECMWF, which employs improved historical 149 

observations and is run at a finer spatial resolution (atmosphere 0.25o; land 0.1o) relative to its 150 

predecessor, ERA-Interim (Hersbach and Dee, 2016). This product has also been evaluated at the 151 

global scale (e.g., Li et al., 2020). We used ERA5-Land hourly volumetric water content (𝜃) (m3 m-3) in 152 

the top soil layer (0-7 cm), for the period 1999 to 2019.  153 

 154 

Table 1. Characteristics of the selected grassland synoptic stations. The soil types and drainage categories are 155 
based on the data from Irish Soil Information System (Creamer et al., 2014). The grouped zones, A, B and C, 156 
comprise of stations with similar precipitation regimes. 157 
 158 

2.4 Satellite-derived data products 159 

The leaf area index (LAI) quantifies the greenness of plants and can be observed per unit horizontal 160 

surface area from space. LAI was obtained from the Copernicus Global Land Service (CGLS), which is 161 

derived from SPOT-VGT and PROBA-V, prior to and from 2014, respectively.. The CGLS LAI product, 162 

beginning in 1999, employed SPOT-VGT; the method by Baret et al. (2013) has been used to retrieve 163 

LAI from PROBA-V. Here, we use the CGLS LAI GEOV2 product which is at 1 km2 spatial and 10-day 164 

temporal resolution (Albergel et al., 2019). The product development is outlined by Verger et al. 165 

(2014).   166 

The land surface temperature (𝑇𝑠) is a critical parameter that governs the land-atmosphere coupling 167 

and can be used to evaluate model derived estimates of surface energy fluxes. We acquired 𝑇𝑠 from 168 

the Moderate Resolution Imaging Spectroradiometer (MODIS) (MOD11A1, version 6) from the Land 169 

Processes Distributed Active Archive Center (LP DAAC) (Wan et al., 2015). In addition, the near-170 

infrared radiation reflected by vegetation (NIRv) is an important index for monitoring ecosystem 171 

functioning and has previously been employed to link soil moisture induced vegetation stress with 172 

gross primary productivity (GPP) at various scales during drought events (Badgley et al., 2017; 2019; 173 

Baldocchi et al., 2020; Buitink et al., 2020). The NIRv index is derived from the product of the 174 

Station Lat/Long  

(°N, °W) 

Elevation  

(m) 

Soil type Drainage 

class 

Region Zone 

Belmullet 

Claremorris 

Finner 

Knock Airport 

Malin Head 

Casement 

Dublin Airport 

Dunsany 

Johnstown Castle 

Oak Park 

Cork Airport 

Moorepark 

Shannon Airport 

Valentia 

54.228, 10.007 

53.711, 8.991 

54.494, 8.243 

53.906, 8.817 

55.372, 7.339 

53.306, 6.439 

53.428, 6.241 

53.499, 6.699 

52.292, 6.489 

52.861, 6.915 

51.847, 8.486 

52.164, 8.264 

52.689, 8.918 

51.929, 10.239 

9 

69 

33 

201 

20 

91 

71 

83 

52 

62 

155 

46 

15 

24 

Peat 

Coarse loam 

Coarse loam 

Fine loam 

Peat 

Fine loam 

Fine loam 

Fine loam 

Fine loam 

Fine loam 

Fine loam 

Coarse loam 

Loam 

Coarse loam 

Poor 

Well 

Poor 

Imperfect 

Poor 

Moderate 

Moderate 

Moderate 

Imperfect 

Moderate 

Well 

Well 

Well 

Well 

Northwest 

Northwest 

North 

Northwest 

North 

East 

East 

East 

Southeast 

Southeast 

South 

South 

Southwest

Southwest 

 

 

A 

 

 
 

 

B 

 

 
 

C 
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normalized difference vegetation index (NDVI) and near infra-red (NIR) reflectance (NIRv = NDVI × NIR) 175 

(e.g., Badgley et al., 2017). We obtained daily MODIS (MCD43A4, version 6) red (620-670 nm) and NIR 176 

(841-876 nm) nadir-adjusted reflectance images from the same source (Schaaf and Wang, 2015). The 177 

MODIS 𝑇𝑠 and reflectance images are available at 1 km and 500 m resolutions, respectively and were 178 

obtained for the period of 2010 to 2019 to correspond with the period of AWS measurements outlined 179 

in Section 2.2. The 𝑇𝑠 data obtained was derived from the Terra satellite which acquires data every 1 180 

to 2 days and passes from north to south over the Equator in the morning, while reflectance data are 181 

derived from 16-day composites of MODIS Terra and Aqua satellite products. A summary description 182 

of data used is provided in Table 2.  183 

 184 

Table 2. A summary description of in-situ, gridded and satellite-derived data products used in this study. 185 

 186 

2.5 Framework of Land-atmosphere heat and moisture exchanges 187 

Land-atmosphere interactions are best understood within a surface energy budget (SEB) framework 188 

that captures the diagnostic processes responsible for the variation in weather conditions. The SEB 189 

expresses the partitioning of net radiation (𝑄𝑁 , W m-2) into sensible (𝑄𝐻, W m-2) and latent (𝑄𝐸, W m-190 
2) heat exchanges with the overlying air and heat exchange with the soil (𝑄𝐺, W m-2), 191 

𝑄𝑁 – 𝑄𝐺= 𝑄𝐻 + 𝑄𝐸, (1) 192 

Product Variable Resolution 
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(2016) 
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𝑄𝑁 accounts for the radiative factors including shortwave radiation received at (𝑄𝑆↓ , W m-2), and 193 

reflected from (𝑄𝑠↑ , W m-2) the surface, and longwave radiation received (𝑄𝐿↓ , W m-2) and emitted 194 

(𝑄𝐿↑ , W m-2), as follows,  195 

𝑄𝑁  = 𝑄𝑆↓  -  𝑄𝑠↑  + 𝑄𝐿↓  - 𝑄𝐿↑  (2) 196 

The land surface scheme (LSS) used here simulates the terms of the SEB using routine weather 197 

observations and the widely used Monin-Obhukov Similarity Theory (MOST); see de Rooy and Holtslag 198 

(1999), Jung et al., (2010), van Heerwaarden et al. (2010) and Lu et al. (2014). MOST uses profile 199 

relationships of wind, near-surface air temperature, and humidity, to describe the vertical exchanges 200 

of momentum, sensible heat (𝑄𝐻), and moisture (𝑄𝐸), respectively (Paulson, 1970). In addition, the 201 

scheme incorporates simplified parameterizations of radiation components (𝑄𝑁 ) and soil heat flux 202 

(𝑄𝐺), following van Ulden and Holtslag (1985); evapotranspiration is obtained using the Penman-203 

Monteith model (Monteith, 1981). We employ the LSS to simulate hourly surface energy fluxes for 204 

mid-day hours (10-15 hr) from May to August, for the period 2010 to 2019, representing the period 205 

when the hourly forcing meteorological data is available. We focus on the mid-day portion of the day 206 

when the bulk of the surface-air exchanges associated with vegetated surfaces take place. The 207 

application of the LSS approach is fully described in Ishola et al. (2020) and the software 208 

implementation is available from Ishola et al. (2021). 209 

During soil water limiting conditions, 𝑄𝐸 becomes constrained by the surface resistance (𝑟𝑆 ), which 210 

follows the approach developed by the Jarvis (1976) as implemented by Beljaars and Bosveld (1997), 211 

van de Boer et al. (2014) and Ishola et al. (2020),  212 

𝑟𝑠 =  𝑓𝑟
𝑟𝑠,𝑚𝑖𝑛

𝐿𝐴𝐼
𝐹𝑄𝑠↓

−1𝐹∆𝑞
−1𝐹𝜃

−1 , (3) 213 

where 𝑓𝑟 is an empirical constant (0.47), 𝑟𝑠,𝑚𝑖𝑛 is the minimum stomatal resistance (110 s m-1), 𝐿𝐴𝐼 is 214 

the leaf area index, taken as 2 m2 m-2  and 𝐹 represents dimensionless stress functions (ranging from 215 

0-1) which account for the contributions of incoming shortwave radiation (𝑄𝑠↓), atmospheric moisture 216 

deficit (∆𝑞), and soil moisture content (𝜃). 𝐹𝑄𝑠↓
is taken as 217 

𝐹𝑄𝑠↓
=  

𝑄𝑠↓(𝑆𝑟𝑚− 𝑆𝑟)

𝑆𝑟𝑚𝑄𝑠↓+𝑆𝑟(𝑆𝑟𝑚−2𝑄𝑠↓)
, (3a) 218 

where the empirical coefficients 𝑆𝑟𝑚 and 𝑆𝑟 are 1000 W m-2 and 230 W m-2. The moisture deficit 219 

function is, 220 

𝐹𝛥𝑞 = 
1

(1+ ℎ𝑠𝛥𝑞)
,  (3b) 221 

where the empirical coefficient ℎ𝑠 is 0.16 kg kg-1 . The soil moisture function is  222 

𝐹𝜃 = 1 for 𝜃 >  𝜃𝐹𝐶, (3c) 223 

𝐹𝜃 = 1 + 𝑐𝑠𝑜𝑖𝑙(𝜃 −  𝜃𝐹𝐶)  for 𝜃 <  𝜃𝐹𝐶,  (3d) 224 

where 𝜃𝐹𝐶  (0.3 m3 m-3) is the assumed volumetric water content at field capacity. The soil moisture 225 

coefficient 𝑐𝑠𝑜𝑖𝑙, is taken as 4.3 m3 m-3 at all sites (Ishola et al., 2020).  226 
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The 𝑟𝑆 coefficients used here were previously derived from observations at a number of sites in Ireland 227 

where 𝜃 measurements were available. However, as the present study employs gridded 𝜃 derived 228 

from ERA5-Land reanalysis data, the LSS may underestimate 𝑟𝑆  and consequently, overestimate 229 

𝑄𝐸 due to potential overestimation of soil water  (Dirmeyer et al., 2021) (Figure S1). We employ a 230 

default value for 𝜃𝐹𝐶   of 0.3 m3 m-3 as there is little information on field capacity across Ireland and 231 

this value is similar to that employed in the ERA5-Land model (Balsamo et al., 2009). Despite this 232 

simplifying assumption, the general tendency of soil drying and its impact on evapotranspiration 233 

should be captured. This is on the basis that soil moisture-evapotranspiration signals are generally 234 

recognized to occur below the assumed 𝜃𝐹𝐶 value, typically between 50 and 80 % of 𝜃𝐹𝐶 (e.g., 235 

Seneviratne et al., 2010). The parameter 𝑐𝑠𝑜𝑖𝑙  has been identified as the key physical property 236 

influencing the sensitivity and performance of the LSS (Ishola et al., 2020). We employ the calibrated 237 

value (4.3 m3 m-3), applied to both wet and seasonally dry soils, and allows us to distinguish soil type 238 

response. 239 

Furthermore, we calculated two biophysical metrics, land surface temperature (𝑇𝑠) (van de Boer et al., 240 

2014) and evaporative fraction (EF), employing fluxes derived from the LSS as follows 241 

𝑇𝑠 =  𝑇𝑎 + 
𝑄𝐻𝑟𝑎

𝜌𝑐𝑝
+ 𝑧𝑎Г𝑑,  (4)  242 

𝐸𝐹 =  
𝑄𝐸

𝑄𝑁− 𝑄𝐺
, (5) 243 

where 𝑇𝑎 is the near-surface temperature, 𝑟𝑎 is the aerodynamic resistance, 𝑧𝑎 is the reference height, 244 

Г𝑑 is the dry adiabatic lapse rate, 𝜌 is the air density  and 𝑐𝑝 is the specific heat capacity of air. These 245 

biophysical metrics are important for understanding the role of land-atmosphere feedbacks on 246 

extreme weather events such as heatwaves and drought. 247 

 248 

2.6 Data analysis 249 

We initially calculated anomalies (Z-score) of monthly precipitation, volumetric water content (𝜃) and 250 

LAI for the individual months of May to August, relative to the 1999 to 2019 period, to place the 2018 251 

summer drought event in the context of previous such events.  For the purposes of presenting the 252 

results from the LSS, we subsequently grouped the individual 14 AWS stations into broadly 253 

representative geographic zones (Figure 1) on the basis of a general definition of agricultural regions 254 

(e.g. Green, 2019) and initial evaluation of precipitation. For example, the northwest (Zone A) tends 255 

to be wetter, due to its proximity to Atlantic storm tracks, experiences cooler temperature in summer 256 

relative to other regions, and has a large proportion of peat soils; the east coast (Zone B) is typically 257 

drier, receives more 𝑄𝑆↓  and has a high proportion of moderately and well drained soils. Similar to 258 

the northwest region, the southwest (Zone C) is also wet but experiences higher average 259 

temperatures; soils in this zone are mainly classified as imperfectly or poorly drained. Due to its 260 

favourable climate, this zone is dominated by grassland. The ‘Golden Vale’, a region known for its high-261 

quality dairy production systems, is located within this zone.  262 

Cumulative precipitation and mean deviations of daily 𝜃, vapour pressure deficit (VPD) and LAI were 263 

calculated for each zone for the period May to August, relative to 2010 to 2019.  We also applied 264 
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segmented regression to determine the relationship between daily soil moisture, sensible and latent 265 

heat fluxes, employing the evaporative fraction (EF) metric in each zone. The goal here was to identify 266 

if critical soil moisture (𝜃c) thresholds occurred, and the period during which the 𝜃 control of exchange 267 

processes became effective. We applied a similar approach using the NIRv data to evaluate and 268 

complement the EF based approach; this provides a means of linking 𝜃 to vegetation productivity and 269 

ecosystem functioning (Buitink et al., 2020).  270 

Segmented regression is used to establish the point at which the linear relationship between an 271 

independent (X) and independent variable (Y) changes. This is detected as a breakpoint where there 272 

is a significant shift in the slope (sensitivity) representing this relationship. Here, soil moisture (𝜃)  is 273 

the independent variable and the surface-atmosphere variables (e.g. EF, NIRv) are the dependent 274 

variables,  275 

Y =  𝛼X +  𝜔(X −  𝜓), (6) 276 

where, 𝜓 is the breakpoint, which represents the critical soil moisture threshold (𝜃c), where the 277 

response shifts from a wet to dry regime (segments); the dry/left line (X ≤ 𝜓) and wet/right line (X >278 

𝜓) segments have slopes of 𝛼 and 𝛽 =  𝜔 +  𝛼, respectively and 𝜔  is the difference-in-slopes. The 279 

search for 𝜓 is iterative as the model seeks to find the optimum location for the breakpoint that divides 280 

the relationship into two linear segments; the initial value assigned to 𝜓 is 0.25 (based on Seneviratne 281 

et al., 2010).  Iteration ceases when the model has converged on a solution (Muggeo, 2003). This 282 

solution is taken here to be  𝜃c and distinguishes between the energy-limited and water-limited states 283 

of the surface-air exchanges (Seneviratne et al., 2010). The slope magnitude indicates the severity of 284 

dry (hereafter 𝛼𝐸𝐹and 𝛼𝑁𝐼𝑅𝑣)/wet (hereafter 𝛽𝐸𝐹and 𝛽𝑁𝐼𝑅𝑣) segments (Benson and Dirmeyer, 2020; 285 

Buitink et al., 2020) and the transition from one state to another occurs at 𝜃c. We used the CRAN R 286 

‘segmented’ package to estimate these metrics (Muggeo, 2021). 287 

 288 

3. Results 289 

3.1 Evolution of 2018 summer drought across Ireland 290 

Figure 2 shows the spatial characteristics of the monthly total precipitation anomalies (Z-score) for 291 

the individual summer months of May to August 2018. Applying the drought categories following 292 

McKee et al. (1993), the 2018 meteorological drought progressively moved from mild/moderate 293 

drought conditions (Z-score of 0 to -1.49) in May to more widespread extreme drought conditions (Z 294 

< -2.0) in June, evident across the eastern, southern and southwestern part of the country, while 295 

conditions in the northwest remained mild/moderate during these months.  Rainfall deficits are 296 

shown to gradually improve in subsequent months, with the rainfall anomaly in July characterized as 297 

moderate drought conditions, with the exception of the midlands; August was characterized by mild 298 

drought conditions in the eastern and southern half of the country, with wet conditions (Z > 0) in the 299 

north and northwest.  300 

To assess the land surface response, the degree of dryness is initially characterized based on anomalies 301 

of soil moisture and LAI. The former is based on ERA5-Land which shows reasonable estimates of the 302 

available measured soil moisture obtained at three Irish grassland sites, representative of different  303 
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 304 

Figure 2. Spatial characteristics of monthly precipitation anomaly (z-score) for the Republic of Ireland during 305 
summer 2018, relative to 21-year climatology (1999-2019). Thin lines represent county outlines. The anomalies 306 
were calculated from the 1 km gridded precipitation data (Source: Met Éireann) 307 

 308 

soil textural characteristics (Figure S1). Figure 3a and b show the magnitude and spatial extent of 309 

ERA5-Land 𝜃  and GEOV2-LAI anomalies for the individual months of May to August, 2018. In contrast 310 

to the mild/moderate meteorological drought evident in May (Figure 2), soil moisture conditions only 311 

begin to deteriorate in June and become exacerbated into July leading to high negative soil moisture 312 

anomalies (Z < -2.0) being experienced across the entire country, with extreme negative anomalies (Z 313 

< -3.0) along the usually wet west coast. While the negative 𝜃 anomalies were reduced in the north 314 

and west during August, the remainder of the country continued to experience  significant negative 𝜃 315 

anomalies, particularly evident in the south and east of the country (Figure 3a). A strong spatial 316 

coherence is also evident between the observed precipitation (Figure 2), ERA5-Land 𝜃 and satellite 317 

derived GEOV2-LAI (Figure 3a and b) as the meteorological and surface drought characteristics evolve 318 

over the study period.  319 

To place these conditions in the context of previous summer drought events, Figure 3c displays the 320 

individual monthly (May, June, July and August) anomalies of rainfall, soil moisture (ERA5-Land 𝜃) and 321 

LAI (GEOV2) for the period 1999 to 2019. Although larger rainfall deficits occurred during the 2003 322 

European summer drought, which was one of the driest summers on record (e.g., Casty et al., 2005; 323 

Jaksic et al., 2006), there was no clear impact on vegetation productivity. Thus, the 2003 324 

meteorological drought, while severe, did not develop into agricultural drought across the island, likely 325 

related to the timing of the precipitation deficits which occurred in August of that year. In contrast, 326 

during the summer 2018 event, both water and vegetation stress conditions are evident, as revealed 327 

by the high negative anomalies in precipitation, 𝜃 and LAI (Figure 3c). In addition, the largest negative 328 

𝜃 and vegetation anomalies in the 21-year record occurred in July 2018, with a negative peak anomaly 329 

(Z ≈ -2.8) for 𝜃, concurrent with the peak negative anomaly for LAI (Z ≈ -1.3).  330 
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In the next section, we present the results of the land surface scheme, to explore the perturbations in 331 

the surface energy budget associated with the observed surface drying during the summer of 2018. 332 

 333 

 334 

Figure 3. Monthly anomalies of ERA5-Land surface soil water content (𝜃) and satellite-derived GEOV2 leaf area 335 
index (LAI) for the individual summer months of 2018, relative to 21-year climatology (1999-2019). (a-b) the 336 
spatial characteristics of both parameters; (c) inter-annual variations of monthly anomalies of 𝜃, LAI and gridded 337 
precipitation, averaged over the entire region (blue, red and green horizontal dotted lines show the lowest 338 
negative scores for precipitation, 𝜃 and LAI, respectively).  339 

 340 

3.2 Perturbations of land-atmosphere energy exchanges 341 

To evaluate the robustness of the LSS-derived surface energy fluxes, we initially compared the mid-342 

day observed surface temperature anomaly (relative to 2010-2019), derived from MODIS Terra (for 343 

pixels representing the individual weather stations, Figure 1) and the LSS derived surface temperature 344 

anomaly (𝛥𝑇𝑠) for the respective stations (Figure 4). Results show high positive 𝛥𝑇𝑠 for both the Terra 345 

and model estimates (peaking at +5 to +10 K and +8 to +15 K, respectively) between late June and 346 

early July across the selected stations. While the temporal profiles of LSS-derived 𝛥𝑇𝑠 are largely 347 

consistent with the observed Terra 𝛥𝑇𝑠, the LSS estimates display a warm bias that can be attributed 348 

to an offset in timing between the LSS model estimated values and time of overpass of the satellite; 349 

the LSS-derived 𝛥𝑇𝑠 values are based on the average of the values (from 1000 to 1100h), while Terra- 350 

derived 𝛥𝑇𝑠 values are based on instantaneous satellite observations at 1030h (GMT).  351 

 352 
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 353 

Figure 4. Temporal evolution of LSS model-derived (Model) mid-day land surface temperature anomaly (𝛥𝑇𝑠), 354 
compared with MODIS Terra (Terra) 𝛥𝑇𝑠 during 2018 summer, relative to 2010-2019 average across the stations. 355 
The lines are derived from smoothed fits of locally weighted polynomial regression (LOESS). The shaded portions 356 
represent the 5th and 95th percentiles of uncertainty bounds as calculated by LOESS. The columns under A, B and 357 
C indicate stations in each of the previously described zones, as highlighted in Figure 1 and Table 1. 358 

 359 

Figure 5 shows the temporal evolution of the in-situ accumulated rainfall (Figure 5 a-c), ERA5-Land 𝜃 360 

(Figure 5 d-f), in-situ vapour pressure deficit (VPD) (Figure 5 g-i) and satellite-derived LAI (Figure 5 j-l) 361 

for the period May to August 2018, compared with climatology (1999-2019), for the three zones (A, 362 

B, C) previously outlined (Figure 1). The aggregated values are based on the average of the grids 363 

corresponding with the station locations, for the gridded data, and station averages for the observed 364 

data.  In each zone, the cumulative rainfall clearly shows a departure from climatology beginning from 365 

just prior to, or around, June 1 (Figure 5 a-c). In the northwest (zone A), the 2018 cumulative rainfall 366 

remains closer to climatology, indicating smaller rainfall deficits experienced during June-August, 367 

relative to east coast (zone B) and southwest (zone C). This is consistent with the gridded precipitation 368 

data in Figure 2. The rainfall deficits also begin later in southwest.  369 

In the northwest, 𝜃 losses (Figure 5d) due to evapotranspiration during the start of the season are 370 

offset by the normal or above normal rainfall receipts in April and the arrival of Storm Hector in the 371 

zone in mid-June. Decreasing 𝜃 becomes evident from mid-June (approx. 2-3 weeks after the onset of 372 

meteorological drought) and reach their lowest negative anomaly (relative to the climatology) of 373 

approximately -0.13 m3 m-3 (40 % relative change) around the 4th July. Concurrently, VPD increased 374 

from the 21st June and peaks on the 27-28th June with anomalous values (> 200 % relative change) of 375 

+1.0 kPa (Figure 5g), while LAI shows negligible change during this period (Figure 5j). 376 

 377 
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 378 

Figure 5. Temporal evolution of AWS observed accumulated precipitation (first row), ERA5-Land volumetric 379 
water content (second row), in situ vapour pressure deficit (third row) and satellite-derived leaf area index 380 
(fourth row); during 2018 summer compared with climatology (1999-2019). Panels A, B and C represent stations 381 
in the respective zones highlighted in Figure 1. Values are based on average of stations (and corresponding grids) 382 
in each zone. The peach shades represent the observed periods of abnormal surface and atmospheric conditions 383 

For the east of the country, the 𝜃 anomaly (relative change), which began earlier than in northwest, 384 

is approximately -0.15 m3 m-3 (50 %); this coincides with the highest positive VPD anomaly of +1.4 kPa 385 

(> 200 %) and lowest negative anomaly of LAI of -1.5 m2 m-2, from 28 June (Figure 5 e, h, k). The timing 386 

of changes in 𝜃, VPD and LAI in the southwest (Figure 5 f, i, l) largely follow those observed in the east, 387 

but slightly lower in magnitude.  388 

The highlighted periods of negative surface (e.g., 𝜃, LAI) and atmospheric (e.g., rainfall, VPD) 389 

anomalies (Figure 5) correspond to the LSS-derived periods of higher positive anomalies (relative 390 

change) in both the net radiative and energy fluxes. 𝛥𝑄𝑁 anomalies of approximately +200 to 250 W 391 

m-2 (180-190%) across the three zones (Figure 6a-c) indicate the strong and persistent influence of the 392 

anticyclonic system, which  supressed cloud formation between 22 June and 3 July across all the zones. 393 

Despite the similarity in radiative forcing conditions, anomalies in the mid-day sensible (𝛥𝑄𝐻) and 394 

latent (𝛥𝑄𝐸) heat fluxes differ across each of the zones, reflecting differences in the partitioning of 395 

available energy. For instance, in the northwest, the net radiation surplus gives rise to a latent heat 396 

anomaly (𝛥𝑄𝐸) of +100 to 120 W m-2 (≈ 190%), largely at the cost of 𝛥𝑄𝐻. This indicates that plants in 397 

this zone were still able to access available soil water, despite the higher 𝛥𝑄𝑁 and VPD, between the 398 

22–30 June (Figure 6a; Figure 5g). While the general responses are similar for east and southwest, 399 

with the land surface scheme simulating an enhanced positive 𝛥𝑄𝐸 anomaly, of +60 to 90 W m-2 (140-400 

190%) and +50 to 100 W m-2 (130-170%), respectively (Figure 6e-f). However, by the end of June, 𝛥𝑄𝐻 401 

exceeds 𝛥𝑄𝐸 in the east and 𝛥𝑄𝐻 is equivalent to 𝛥𝑄𝐸 in southwest, providing evidence of a land-402 

atmosphere feedback, evident in the enhanced VPD (Figure 5 h, i), relative to northwest (Figure 5g), 403 

starting from 27 June in the east (Figure 6e) and 1 July in southwest (Figure 6f).   404 
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Overall, these results show enhanced 𝑄𝐸, well above normal, caused by high positive anomalies of 405 

𝛥𝑄𝑁 prior to 27th June. The observed changes between late June and early July in the east and 406 

southwest highlight the differentiating role of plant available soil moisture and support the divergent 407 

landscape physiological responses (e.g., LAI - Figure 3b) to atmospheric anomalies relative to the 408 

northwest. 409 

  410 

Figure 6. Temporal evolution of model-derived mid-day anomalous net radiative flux (𝛥𝑄
𝑁

) (first row), sensible 411 

heat (𝛥𝑄
𝐻

) and latent heat (𝛥𝑄
𝐸

) fluxes (second row) and soil heat flux (𝛥𝑄
𝐺

) (third row), during 2018 summer, 412 
relative to analysis period (2010-2019). Panels A, B and C are for stations in the respective zones highlighted in 413 
Figure 1. Values represent the day time (10:00-15:00) average. 414 

 415 

3.3 Relationship between soil moisture and surface flux densities 416 

To further explore the role of soil moisture availability in drought evolution, we used segmented 417 

regression to examine the relationships between daily ERA5-Land 𝜃 and anomalies of EF and NIRv 418 

(Figure 7), and separately for 𝛥𝑄𝐸 and 𝛥𝑄𝐻 (Figure S2) for each zone. The results for individual stations 419 

are provided in Table S1. It should be noted that the results here are exploratory and based on a LSS 420 

specified 𝜃𝐹𝐶 value (0.3 m3 m-3) (as outlined in Section 2.5). 421 

While the models detect a breakpoint (critical 𝜃 threshold, 𝜃𝑐 ≈ 0.36 m3 m-3) separating wet and dry 422 

regime in the northwest zone (Figure 7a), the 𝛼𝐸𝐹 sensitivity in the dry segment is insignificant and 423 

close to 0. In contrast, the 𝜃 − NIRv approach identified a critical 𝜃 threshold (𝜃𝑐) ≈ 0.30 m3 m-3 with 424 

a higher 𝛼𝑁𝐼𝑅𝑣 sensitivity indicated in the dry segment (adjusted 𝑅2 = 0.60 p-value = 2.27 x 10-12) 425 

(Figure 7d). This indicates that the landscapes in the northwest largely sustain the conditions in which 426 

changes in EF is independent of 𝜃, whereas the NIRv signal is influenced by 𝜃 during the summer 427 

season.  428 

However, the 𝜃-EF relationship is clearly captured in the east (Figure 7 b, e) where the approach 429 

identified a critical threshold 𝜃𝑐 of ≈ 0.18 m3 m-3, a value that is likely close to the wilting point. The 430 

sensitivity (𝛽𝐸𝐹 ≈ 0) is negligible in the wet segment, but a significant and steep 𝛼𝐸𝐹 slope is observed 431 

in the dry segment (adjusted 𝑅2 = 0.29 p-value = 0.039), indicating that EF is constrained and linearly 432 
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coupled with the surface during the period when 𝜃 is below the critical point. Findings are consistent 433 

for the 𝜃-NIRv approach (𝜃𝑐 = 0.23 m3 m-3 and adjusted 𝑅2 = 0.77 p-value = 2.44 x 10-12).  434 

 435 

Figure 7. Relationships between soil moisture (𝜃), evaporative fraction (EF) [first row] and MODIS NIRv [second 436 
row], based on segmented regression analysis during 2018 summer across the zones. The thick red lines are 437 
measures of sensitivity (slope) on the dry segment while dashed blue lines are for wet segment.  The dashed 438 
orange lines show the 𝜃-EF and 𝜃-NIRv breakpoints and the horizontal green lines at the bottom show the 439 
confidence interval of 𝜃 breakpoints. a significant at p-value < 0.05. Panels A, B and C are for stations in the 440 
respective zones highlighted in Figure 1. 441 
 442 

The results of this exploratory analysis in the southwest identify a critical 𝜃 threshold (𝜃𝑐)  ≈ 0.35 m3 443 

m-3, similar to northwest, but with a significantly (p-value = 2.59 x 10-7) higher 𝛼𝐸𝐹 sensitivity in the 444 

dry segment (adjusted 𝑅2 = 0.23) (Figure 7c). Comparing with the 𝜃-NIRv approach, the 𝛼𝑁𝐼𝑅𝑣 445 

sensitivity is similar (adjusted 𝑅2 = 0.32) but with a higher estimate (0.35 m3 m-3 p-value = 0.000125) 446 

of 𝜃𝑐 (Figure 7f).  447 

Both the EF and NIRv approaches agree on the coupling for the east and southwest, however, the 448 

differences in estimated 𝜃𝑐 suggest causality in 𝜃-EF framework (e.g., soil type) that may not be 449 

inferred using statistical regression analysis. Independent assessments based on the relations of ERA5-450 

Land 𝜃 with model-derived 𝑄𝐻 and 𝑄𝐸 fluxes (Figure S2) show that 𝑄𝐻 is the major mechanistic factor 451 

driving the 𝜃-EF signals, and likely responsible for the increased atmospheric sensitivity that 452 

contributed to occurrence of the abnormally warm and dry days during summer 2018, as revealed in 453 

the east and southwest.  454 

4. Discussion 455 

In this study, we evaluated the use of a land surface scheme that employed readily available 456 

meteorological data to assess the impact of the 2018 summer drought on regional land-atmosphere 457 

heat and moisture exchanges. The performance of the scheme was evaluated in comparison with 458 

MODIS-derived surface temperature anomalies (𝛥𝑇𝑠) with results that are consistent with the findings 459 

of Zaitchik et al. (2006) who showed similar timing and distribution of spikes in 𝛥𝑇𝑠 between MODIS-460 

derived and model estimates from NCEP/NCAR reanalyses for the summer 2003 drought in France. 461 
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This supports the argument that Ireland experienced a compound drought event where land-462 

atmosphere feedbacks enhanced its severity. Understanding of the response of the vegetation to 463 

these events is limited (e.g., Streck, 2003; Teuling, 2018) however but is important in assessing 464 

agricultural productivity, especially.    465 

4.1 Changes in land surface processes during severe drought 466 

During extreme weather events such as drought, perturbations in the surface energy budget will drive 467 

changes in near-surface temperature and reductions in available soil water. In soils with limited 468 

available soil water, plant water uptake to meet the increasing atmospheric evaporative demand will 469 

be restricted (Teuling, 2018), as a result, available 𝑄𝑁  will be converted to 𝑄𝐻 flux. This positive 470 

feedback on 𝑄𝐻 can act to amplify drought characteristics.  The perturbations of surface exchanges of 471 

heat and moisture which impact the patterns of atmospheric temperature are mediated through 472 

changes in 𝜃 (Seneviratne et al., 2010; Miralles et al., 2014).  473 

The analysis of the 2018 event indicates that an increase in net radiative fluxes (𝛥𝑄𝑁) was evident 474 

from May to July and this was associated with decreasing 𝜃 and increasing VPD (Figure 5 d-i). LAI 475 

response to the changing land surface conditions was evident in the east, southeast and  southwest 476 

zones (Figure 5 k-l). While the northwest displayed an increase in VPD and decline in 𝜃 over this period; 477 

the vegetation response was less marked in the LAI response (Figure 3b; Figure 5j), relative to the 478 

climatology, for this region. The mild drought conditions experienced in the northwest during June, 479 

relative to the rest of the country, were associated with the passage of a rainstorm in mid-June (Met 480 

Éireann Report, 2018). In general, the observed magnitude, extent and timing of the 2018 481 

meteorological drought are in agreement with those reported by Falzoi et al. (2019). The LSS analysis 482 

shows that 𝑄𝑁 was largely partitioned into 𝑄𝐸 rather than 𝑄𝐻 during this period in the northwest, 483 

which is typical of grasslands even under extremely warm temperatures (Teuling et al., 2010; Lansu et 484 

al., 2020) where soil water remains available to plants. The partitioning of available energy into 𝑄𝐸 is 485 

similar for the east and the southwest, but with lower magnitude 𝑄𝐸 anomalies. This enhancement of 486 

𝑄𝐸 even under water limited conditions was likely facilitated by the integrated effects of higher 487 

downward shortwave radiation and increased VPD. However, the ratio between 𝑄𝐸 and 𝑄𝐻 in the east 488 

and southwest indicates that a greater proportion of 𝑄𝑁 was channelled into 𝑄𝐻 and this is apparent 489 

in the negative anomalies of LAI in these zones during the month of June (Figure 3b). The shift from 490 

latent to sensible heat and reduction in LAI during June and July indicate decreasing 𝜃, and hence 491 

vegetation stress in the region (Figure 5e). 492 

The impact on vegetation response, represented by anomalies in GEOV2 LAI, closely tracked the 493 

evolving 𝜃 conditions (Figure 3b).  These findings are consistent with those of Albergel et al. (2019) 494 

who found similar perturbations (index > -1.0 and -2.0) in surface 𝜃 during the month of July in the 495 

UK. Based on our analysis, grassland in the east responded faster to meteorological drought conditions 496 

than elsewhere. Several contributing factors are likely to explain this; the southeast is characterised 497 

by relatively well drained soils and can experience seasonal 𝜃 deficits during ‘normal’ years. April 2018 498 

experienced average, or above average, rainfall at most stations; where soils have storage capacity, 499 

such as the imperfectly or poorly drained soils more typical of the southwest and northwest, the 500 

additional water offset evaporative losses. Rain in June resulted in 𝜃 returning to normal levels in the 501 

northwest (Figure 5d) and southwest (Figure 5f). Soil drying was more advanced in the east (Figure 502 

5e) and increased due to high 𝑄𝐸 during June (Figure 6b) with a marked response in vegetation, 503 
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evident in the negative anomalies of LAI, during June. By July, with increased plant stress due to the 504 

reduction in 𝜃, the positive 𝑄𝑁 anomaly is expended as 𝑄𝐻 and 𝑄𝐺, warming the atmosphere, 505 

increasing water demand and exacerbating soil moisture and vegetation. A similar reasoning applies 506 

to the southwest based on the LSS simulated fluxes (Figure 6c) and is supported by the increasing 507 

negative anomalies in LAI in the zone during this month. The response of grasslands then to the 508 

drought events depends on the antecedent conditions, geographical area and soil characteristics, 509 

findings consistent with Xiao et al. (2009) and Zhang et al. (2012). 510 

The positive anomalous 𝛥𝑄𝐻 and 𝛥𝑄𝐸 are largely correlated with an increase in net radiative flux 511 

during early summer but in the east, the negative 𝛥𝑄𝐸  values in July can be explained by increasing 512 

water-stress conditions in the root zone of grasses. This zone is distinguished by its free-draining soils 513 

(Creamer et al., 2014) that makes it especially vulnerable to meteorological drought conditions, if they 514 

occur during the growing season (e.g., 2003 versus 2018 – Figure 3c).  515 

4.2 Role of soil moisture in land-atmosphere exchanges during 2018 summer 516 

Soil moisture (𝜃) can significantly influence terrestrial water, energy, and carbon cycling through its 517 

control on 𝑄𝐸 at the land-atmosphere interface. This connection can be explored using a soil moisture-518 

evaporative fraction (𝜃-EF) framework that distinguishes the transition from wet to dry evaporative 519 

regime: (1) a wet regime in which EF is independent of 𝜃; and,  (2) a dry regime where 𝜃 and EF are 520 

linearly coupled. The critical soil moisture content (widely referred to as critical soil moisture 521 

thresholds) that separate these regimes is important as it can help identify the mechanisms 522 

responsible for the shift from a normal into a water-stress regime, where the land surface state 523 

controls the sensitivity of the atmosphere (Seneviratne et al., 2010).  524 

We applied segmented regression analysis on the ERA5-Land 𝜃 and estimated EF anomaly to identify 525 

the threshold in soil moisture (𝜃𝑐) that marks the transition from wet to dry regime; a similar approach 526 

was applied to the NIRv data. The estimated 𝜃𝑐 values are identical to those derived using measured 527 

𝜃 deeper in the soil layer, from two sites in the Netherlands (Buitink et al., 2020). Hence, these findings 528 

suggest that drying soils increase the sensitivity of land-atmosphere coupling, in turn aggravating the 529 

surface drying, based on ERA5-Land 𝜃 (note that ERA5-Land underestimates very dry soils for a 530 

number of Irish sites). In the east, this shift was identified as occurring in late June (≈ 22nd June), 531 

indicating the onset of agricultural drought. The dry regime was sustained for several days (20) during 532 

which 𝜃-EF are linearly coupled demonstrating the ‘hypersensitive’ response of this region to 533 

meteorological droughts. In a previous study over grassland above saturated soils in the south of 534 

Ireland, Jaksic et al. (2006) reported that measured 𝜃 status in both dry and wet years are different, 535 

but well above wilting point, so that the impact of  𝜃 status on net ecosystem functioning is small and 536 

identical for both years. This is consistent with our findings over the northwest where the landscape 537 

either shows no 𝛼𝐸𝐹 sensitivity or the 𝜃-EF coupling is too weak to support the theoretical 𝜃-EF 538 

framework (Seneviratne et al., 2010). Results of 𝛼𝐸𝐹 in the southwest also indicated a weak 𝜃-EF 539 

coupling, however, the land surface response to reduced 𝜃 is evident in the vegetation response 540 

(Figure 3b) – further work is necessary to explore this.  The differing land responses, as reflected in 541 

different estimated 𝜃𝑐 values, also suggest the local effects of predominant soil types across the zones. 542 

The zones are characterized by different soil properties (Creamer et al., 2014), in essence, the 543 

reinforcement of soil moisture-evaporation signal, which is distinguished by 𝜃𝑐, partly depends on the 544 

nature of the soil and its water holding ability. 545 
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A further assessment indicates that the signal in EF is largely driven by 𝑄𝐻 during the dry regimes, as 546 

revealed in the east (Figure S2). Therefore, 𝑄𝐻 appears to be the mechanistic factor responsible for 547 

the unusual shift in land-atmosphere coupling and consequently amplified agricultural drought during 548 

summer 2018.  549 

ERA5-Land uses monthly climatology of LAI to generate the global reanalyses data (Boussetta et al., 550 

2013), which may contribute to weak 𝜃-EF signals in these zones. There is the possibility that ERA5-551 

Land may have underestimate very dry soils as demonstrated in Figure S1, consequently resulting in 552 

the LSS to underestimate the impact of soil moisture anomalies on land-atmosphere feedback 553 

mechanisms. The offsets between measured and ERA5-Land 𝜃 values are largely represented in values 554 

below 0.25 m3 m-3. It should also be noted that the ERA5-Land 𝜃 at the surface soil layer was evaluated 555 

with measured 𝜃 at the deeper soil layer (20 cm) across the sites. The surface 𝜃 derived from models 556 

or satellites are thought to decouple from 𝜃 in the deeper soil profile where plants may take up water 557 

depending on root density, and consequently may not explain the dynamics of processes in the root 558 

zone (Buitink et al., 2020). However, the choice of ERA5-Land surface 𝜃 to diagnose drought processes, 559 

as in recent studies (Benson and Dirmeyer, 2020; Dirmeyer et al., 2021), is on the basis that 𝜃 560 

anomalies develop progressively down deeper soil layers during a drought event, as plants increase 561 

water uptake from near the surface to the subsurface. Thus, 𝜃 values may further lead to larger offsets 562 

under 0.25 m3 m-3, since the 𝜃 at the deeper layers are always higher than at the upper soil layers. 563 

This is consistent with Dirmeyer et al. (2021) who noted that ERA5-Land underestimates the impact 564 

of very dry soils on extreme temperatures, over Britain in 2018 summer. Finally, the assumed 565 

volumetric water content at field capacity (𝜃𝐹𝐶)  of 0.3 m3 m-3, necessary to apply the LSS in the 566 

absence of measured 𝜃𝐹𝐶 , may also have contributed. 567 

 568 

5. Conclusion  569 

Here, we evaluated the use of a physically based land surface scheme, in combination with readily 570 

available ERA5-land global reanalyses surface soil moisture data, satellite-derived CGLS leaf area index 571 

(LAI) and ground-based meteorology, to estimate the surface flux densities and evaporative fraction 572 

(EF) to understand the land surface response to the atmospheric forcing during the Summer of 2018. 573 

The approach allows us to explore changes in land surface processes and the effect of a soil moisture 574 

regime shift on land-atmosphere sensitivities. We demonstrate the application of this framework, 575 

utilising data from fourteen weather stations distributed across Ireland, during the 2018 summer 576 

record-breaking heat and drought events.      577 

The study revealed synoptic timescale variability in anomalous land-atmosphere heat and moisture 578 

transfers, across the stations and between dates. Drought-induced perturbations in land surface 579 

processes are largely not effective until the period between late June/early July and extend to mid-580 

July in some cases. Prior to this period, the processes were constrained by atmospheric anomalies. 581 

That is, in the absence of rainfall, the higher evaporative demand due to warmer temperature 582 

enhanced latent heat flux (𝑄𝐸) via increase in evapotranspiration rates, leading to the higher soil 583 

moisture deficits in July across the country. This is particularly apparent in the east and southeast 584 

regions, where drying soils quickly shifted the landscape into a ‘dry’ regime in which EF is self-limiting, 585 
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consequently providing a positive land-atmosphere feedback mechanism (increase in land surface 586 

temperature and 𝑄𝐻), beginning from 27th June and further exacerbated agricultural drought in July.  587 

Segmented regression analysis of 𝜃-EF interplay has found significant critical soil moisture threshold 588 

(𝜃𝑐  ≈ 0.18 m3 m-3, and 𝜃𝑐  ≈ 0.23 m3 m-3 for 𝜃-NIRv analysis) at which land-atmosphere signals 589 

potentially become hypersensitive in the east and southeast zone, based on ERA5-Land. These values 590 

also represent the point of onset of drought impact on landscapes and ecosystem functioning in this 591 

region. Although, the segmented models also identified soil moisture shift across the rest of the 592 

country, the linear 𝜃-EF coupling was too weak to conclude that EF was constrained by land surface 593 

state in these areas. While spatial variations in precipitation and local effects of soil and vegetation 594 

structures may play a critical role in the differing land responses, it should be noted that ERA5-Land 595 

underestimates seasonally dry soil moisture regimes for Irish landscapes, which may have broadly 596 

informed less and inconsistent impact of soil moisture anomalies on the exchange processes across 597 

the region. 598 

Nonetheless, the findings of this study are invaluable to speculate the zones and critical soil moisture 599 

values under which land-atmosphere exchanges are constrained by the land surface state and further 600 

exacerbate surface warming and dryness. This contribution is important, certainly for Ireland, not only 601 

because it may help improve the representation of soil moisture factors in Numerical Weather 602 

Prediction (NWP) models, but can also help to enhance sub seasonal predictability of drought 603 

propagation and early warning systems of summer climate extremes in the future episodes.   604 
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 619 

Figure S1. Comparisons between hourly measured and ERA5-Land volumetric water content (𝜽) across three 620 
independent grassland sites. The measured 𝜃 values are obtained from eddy covariance flux sites from 621 
previous studies (Ní Choncubhair et al., 2017; Kiely et al., 2018) 622 

 623 

Figure S2. Relationships between soil moisture (𝜃), latent heat flux (𝛥𝑄𝐸) [first row] and sensible heat flux 624 
(𝛥𝑄𝐻) [second row], based on segmented regression analysis during 2018 summer across the zones. The thick 625 
red lines are measures of sensitivity (slope) on the dry segment while dashed blue lines are for wet segment.  626 
The dashed orange lines show the 𝜃-𝛥𝑄

𝐸
 and 𝜃-𝛥𝑄

𝐻
 breakpoints and the horizontal green lines at the bottom 627 

show the confidence interval of 𝜃 breakpoints. a significant at p-value < 0.05. Panels A, B and C are for 628 
stations in zones A, B and C, respectively, as highlighted in Figure 1 and Table 1. 629 

 630 

 

Station 

                

𝜽𝒄 

EF 

𝑹𝟐
𝒂𝒅𝒋 

 

Start date  

   

𝜽𝒄 

NIRv 
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Knock Airport 
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0.14 

0.28 

0.09 

0.48 

12 June 

22 May 

09 July 

20 June 

26 June 

26 June 

26 June 

0.295 

0.373 

0.328 

0.249 

0.138 

0.389 

0.154 

0.37 

0.18 

0.21 

0.04 

0.46 

0.72 

0.31 

08 June 

23 May 

26 June 

29 June 

29 June 

22 May 

22 June 
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Table S1. Site-specific ERA5-based critical soil moisture content (𝜃𝑐 , m3 m-3) (0-7cm layer) and date of onset of 631 
2018 agricultural drought, derived using segmented regression relationships between 𝜃, evaporative fraction 632 
(EF), and MODIS NIRv. Stations with relatively stronger 𝜃-EF and 𝜃-NIRv couplings are highlighted in bold.  633 
𝑅2

𝑎𝑑𝑗 is the adjusted 𝑅2. 634 
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