

Approximate Dynamic Programming for Stochastic
Resource Allocation Problems

Ali Forootani, Member, IEEE, Raffaele Iervolino, Member, IEEE, Massimo Tipaldi, and Joshua Neilson

 Abstract—A stochastic resource allocation model, based on the
principles of Markov decision processes (MDPs), is proposed in
this paper. In particular, a general-purpose framework is
developed, which takes into account resource requests for both
instant and future needs. The considered framework can handle
two types of reservations (i.e., specified and unspecified time
interval reservation requests), and implement an overbooking
business strategy to further increase business revenues. The
resulting dynamic pricing problems can be regarded as sequential
decision-making problems under uncertainty, which is solved by
means of stochastic dynamic programming (DP) based
algorithms. In this regard, Bellman’s backward principle of
optimality is exploited in order to provide all the implementation
mechanisms for the proposed reservation pricing algorithm. The
curse of dimensionality, as the inevitable issue of the DP both for
instant resource requests and future resource reservations,
occurs. In particular, an approximate dynamic programming
(ADP) technique based on linear function approximations is
applied to solve such scalability issues. Several examples are
provided to show the effectiveness of the proposed approach.
 Index Terms—Approximate dynamic programming (ADP),
dynamic programming (DP), Markov decision processes (MDPs),
resource allocation problem.

I. Introduction

R ESOURCE allocation is defined as the set of problems in
which one has to assign resources to tasks over some

finite time horizon to customer requests. Many important real-
world matters can be cast as resource allocation problems,
including applications in air traffic flow management [1],
energy [2], logistics, transportation, and fulfillment [3]. These
problems are notoriously difficult to solve for two reasons.
First, they typically exhibit stochasticity, i.e., the requests to
be processed may arrive randomly according to some
stochastic process which, itself, depends on where resources
are allocated. Second, they exhibit extremely large state and
action spaces, making solution by traditional methods

infeasible [4], [5]. In the fields of operational research and
artificial intelligence, primarily, the state space as well as
decisions (or actions) are discrete. In this regard, resource
allocation problems with discrete states and decisions are
studied at length under the umbrella of Markov decision
processes (MDPs) [6]. Systems with uncertainty and
nondeterminism can be naturally modelled as MDPs [7], [8].
For instance, emotion recognition in text [9], speaker
detection [10], and fault-tolerant routing [11] are considered
as MDPs.

The optimal policy for MDPs can be computed by applying
exact dynamic programming (DP) techniques thanks to their
strength in solving sequential decision making problems [7].
However, it is well known that such techniques suffer from
the Curse of Dimensionality, which is due to state and action
space explosion of real-world applications [8]. For this reason,
efforts have been devoted to finding the techniques able to
solve this problem in an approximate way [12]. This field has
evolved under a variety of names including approximate
dynamic programming (ADP), neuro-dynamic programming,
and reinforcement learning [13]–[15].

In this paper, resource allocation problems are formulated
and solved via a general-purpose MDP-based framework,
which can be used for different real business contexts. We
address both instant (i.e., customers requires a resource to be
allocated immediately) and advance (i.e., the customer books
a resource for future use) resource requests. It is considered
that the same resource can be sold at different price values at
different times to take the advantage of heterogeneous
preferences of customers over time, e.g., a seat on an airplane
or a room in a hotel. Both the formulation and the
corresponding resolution for resource allocation problems
with instant resource requests were firstly explored by the
authors in [16], where only exact DP approaches were
applied. In [17], the authors further extended the approach to
incorporate the possibility that, besides an immediate
allocation request, a customer can book a resource in advance
for future utilisation. Two types of booking procedures were
considered, that is to say, booking resources with specified
and unspecified time interval options.

The main differences of this paper with [17] are the
following: i) new assumptions and procedures both in
modeling and in the resource reservation approach; ii) the
usage of the unweighted sample based least squares (USLS)-
ADP algorithm instead of a temporal difference ADP based
approach [18] to solve the curse of dimensionality; iii)
comprehensive and analytical algorithms suitable for

Manuscript received March 12, 2020; accepted April 13, 2020.

Recommended by Associate Editor Qinglai Wei. (Corresponding author: Ali
Forootani.)

Citation: A. Forootani, R. Iervolino, M. Tipaldi, and J. Neilson,
“Approximate dynamic programming for stochastic resource allocation
problems,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 975–990, Jul. 2020.

A. Forootani is with the Hamilton Institute, Maynooth University, Co.
Kildare W23 F2K8, Ireland (e-mail: Aliforootani@gmail.com).

R. Iervolino is with the Department of Electrical Engineering and
Information Technology, University of Naples, Napoli 80125, Italy (e-mail:
rafierv@unina.it).

M. Tipaldi and J. Neilson are with the Department of Engineering,
University of Sannio, Benevento 82100, Italy (e-mail: mtipaldi@unisannio.it;
neilson@unisannio.it).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2020.1003231

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 4, JULY 2020 975

Authorized licensed use limited to: Maynooth University Library. Downloaded on June 15,2022 at 09:12:41 UTC from IEEE Xplore. Restrictions apply.

computer based implementation. As for the first aspect, the
proposed solution manages the overbooking situations, which
occur when the number of allocated resources at the current
time slot can not be confirmed since new resources have been
already allocated for the next one (due to the advance resource
reservation mechanism), and the overall needs can not be
satisfied by the system overall capacity. Such overbooking
situations occur since the system handles both instant and
future resource requests. Managing them entails a significant
update in the modelling of resource allocation problems, its
dynamics, and the resulting allocation policy.

The USLS-ADP algorithm was presented for the first time
by the authors in [19], where its convergence properties over
an infinite time horizon are also discussed. The USLS-ADP
algorithm inherits both the contraction mapping and
monotonicity properties of the exact discounted DP
algorithms [20]. Thanks to this, it is suited for both finite and
infinite time horizons. As a consequence, it can be used for
solving resource allocation problems with instant and advance
reservation requests. The latter case actually involves time
intervals over finite (possibly very large) time horizons.

As for the third aspect, we provide the implementation
mechanisms of the reservation pricing algorithms, starting
from the steps defined in [17]. For instance, we show how to
exploit Bellman’s principle of optimality [7] to assess the
allocation of future resources at different prices and their
impact on the current expected total revenue. More
specifically, a stochastic prediction of the system evolution
(up to the time when the new resource is requested) is
performed. Then, the set of possible prices is applied and
assessed based on how they affect the current expected total
revenue. When the most suitable price is chosen, the complete
pricing policy is renewed. This approach shows how to bridge
the gap between model predictive control (MPC) and DP [13].

Various parts of the proposed modeling and optimization
approach, consisting of DP, reservation procedure, and ADP,
are implemented in the MATLAB environment for resource
allocation problems in a general framework. Moreover,
different examples are provided to support and evaluate the
effectiveness of the method.

This paper is organized as follows. Section II shows how to
model resource allocation problems via MDPs. Resource
allocation problem modeling with specified time interval
reservation requests and the related pricing algorithm are
provided in Sections III–V. Resource allocation problems with
unspecified reservation time intervals are outlined in Section
VI. Section VII addresses the usage of the proposed
reservation pricing algorithm for resource allocation problems
with large state space. Simulation results are provided in
Section VIII. Section IX outlines the scientific literature
relevant to this work. Finally, Section X concludes the paper.

II. Preliminaries and Modelling Resource Allocation
Problems as MDPs

This section shows how to formulate resource allocation
problems as a set of constrained parallel discrete-time birth
death processes (BDPs) [21], which are integrated into one
Markov decision process (MDP). The configuration of the

m
resulting MDP based framework can be controlled by the
price manager, who assigns a price among possible choices
by applying a specific pricing policy.

Such approach was firstly introduced by the authors in [16].
Hereafter, the main aspects of such framework are outlined
along with the notation used in this manuscript. We also
provide some preliminaries on how to solve the related
decision making problem via DP based techniques [7], [20].
For more details, the reader can refer to [16].

A. MDP Notation
The following MDP notation is adopted in the paper:
Ξ = {ξ1, . . . , ξΩ} ξv, ξw ∈ Ξ

v,w = 1, . . . ,Ω
j

ξ(j) ∈ Ξ

• is the finite set of states, where
denote two generic elements of this set, with .
The state variable at the generic time slot is denoted with

. Note that, for the sake of generality, a symbolic
notation for the MDP states is used.

U = {u1, . . . ,un}
u

u(ξ, j)
Ξ U

j
u(ξ, j) := u(j)

• is the finite set of actions (also called
decisions or controls), where is a generic element of this set.
We define the control function as the mapping between
the whole state space and the set of actions , at the time
slot . For the sake of simplicity, in the paper we remove the
explicit dependency on the state, i.e., .

pξvξw (u) :=
[
p(ξ(j+1) = ξw|ξ(j) = ξv,u(j) = u)

]
u ∈ U ξv j

ξw j+1

• is the state
transition probability function. It gives the probability that an
action , performed in the state at the time slot , leads
the system to the state at the time slot .

R : Ξ×U → [0,+∞)
ui ξv ∈ Ξ

R(ξv)

• is the reward function, obtained when
taking an action at any generic state . In this paper,
we consider that reward function only depends on the state, so
it can be written as .

B. Modeling Resource Allocation Problems as MDP

N ∈ N
m

ci i = 1 . . .m

This paragraph addresses the problem of dynamically
pricing equivalent resources and allocating them to
customers. A set of hourly prices (or prices per unit of time)
is given, and price managers can select one of them in order to
maximize the expected total revenue. They can also reject
resource requests from customers, if deemed not convenient
from a profit standpoint. Price managers can charge different
prices for the same resource over time depending on the
resource availability and expected profit. As shown in [16], it
is possible to formulate such price management system as a
set of BDPs. In particular, there is a dedicated BDP for each
feasible price (with), which allows modelling the
unpredictable behavior of customers in requesting and
releasing resources. As a result, the system evolves as a set of
parallel BDPs. By assigning a specific price at each time slot,
the price manager defines which BDP is active for one
(possible) birth and one (possible) death, whereas all the
others are active only for one (possible) death. In this regard,
we assume that:

• At maximum, only one customer can request a resource at
each time slot. Moreover, each customer can request it for
either immediate or future reservation (the latter addressed in
the next sections).

ci• The time slot duration is chosen so that, for each price ,
at most one customer associated to each BDP may leave at

 976 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 4, JULY 2020

Authorized licensed use limited to: Maynooth University Library. Downloaded on June 15,2022 at 09:12:41 UTC from IEEE Xplore. Restrictions apply.

any time slot.
This way, we can establish the decision making process by

integrating all the BDPs into one MDP.

ci
Ci = ⟨Ξi,Ui,Ti,Ri⟩

Having said that, we can proceed by providing the
mathematical formulation of resource allocation problems for
a specific price. The MDP associated with each price is
defined by a tuple where,
Ξi Ξi = {ξ0

i , ξ
1
i , . . . , ξ

N
i }

j ξi(j) ∈ Ξi

ξ
vi
i ξ

wi
i

ξi(j) = ξvi
i vi j

ci

• is the state space, . The state variable
at time is denoted with . Moreover, we denote with

 and two generic states of the process. In simpler words,
 means that resources are allocated at time at

price .

N |ξvi
i | = vi ≤ N

• The maximum number of allocable resources is assumed
to be finite and equal to , and we define .

Ui
Ui = {ci, ν} ci ∈ R+

ci ν

Ui(ξi) ξi(j)
ξi

• is the finite set of actions (also called decisions or
controls), defined as , where represents
“allocation” with price and denotes the action of
“rejection”. With a slight abuse of notation, we denote with

 the set of actions admissible for the state variable .
Hence, for each state , we have
  Ui(ξi) = {ci, ν}, if |ξi| < N

Ui(ξi) = {ν}, if |ξi| = N.
(1)

j ui(j) ∈ Ui(ξi(j))
N ∈ N

The decision at time is denoted as . As
previously defined, is the number of resources.
Ti• is the state transition mapping, represented by the state

transition probability matrix with elements

pξvi
i ξ

wi
i

(ui(j)) := p
[
ξi(j+1) = ξwi

i |ξi(j) = ξvi
i ,ui(j)

]
s.t. max{0,vi−1} ≤ wi ≤min{N,vi+1}

(2)

where the constraint implies the fact that the system is
modelled as a BDP. Therefore, all the pairs of states not
fulfilling it have associated transition probabilities equal to
zero.

Ri : Ξi→ [0,+∞)• is the reward function. In our case

Ri(ξi) = ciξi (3)

ξi
vi

where, for the sake of simplicity and with a slight abuse of
notation, the state variable is used instead of the
corresponding allocated number of resources .

Ci

ui = ci Ci
λi

ci µi

ci
1−λi−µi

ui = ν

The MDP shown in Fig. 1 depicts the state transition
probabilities among the various states. By applying the
decision , the resulting Markov chain allows a birth
transition from the current state with probability
(representing the probability that a customer requires the
resource at price), a death transition with probability
(representing the probability a customer releases a resource
previously reserved at price), and a self-transition with
probability (representing the probability that no
customer releases or asks for a resource). On the other hand,
when the decision is taken, no customer can purchase
the resource, and only a death transition or a self-transition
from the current state is allowed.

m Ci

N
C

The “composition” of different corresponding to each
price and a common constraint representing the fact that the
number of available resources is equal to , give rise to the
overall system . In particular, it can be modelled as a

C = ⟨Ξ,U,T ,R⟩
constrained time-homogeneous (or stationary) MDP, defined
by a tuple where

Ξ Ξ =
{
ξh = (ξh1

1 , . . . , ξ
hm
m)′ ∈�m

i=1Ξi : ||ξh||1 ≤ N,h = (h1, . . . ,hm)′, ||ξ||1 =
∑m

i=1 hi
}

Ξ Ω

ξv = (ξv1
1 , ξ

v2
2 , . . . , ξ

vm
m)′ ξw = (ξw1

1 , ξ
w2
2 ,

. . . , ξwm
m)′

ξh(j)
j ξ(j) ξ

hi
i ξi hi

• is the entire state space,
. The car-

dinality of is denoted by . Moreover, we denote two
generic states with and

. To simplify the complexity in the notation and with
a slight abuse of notation, we indicate the state variable
at time as , and we can use indistinctly , , and .

U = {c1, . . . ,cm, ν}
U(ξ) ξ

• is the overall action set. We denote with
 the set of actions admissible at state . We have

  U(ξ) = {c1, . . . ,cm, ν}, if ||ξ||1 < N

U(ξ) = {ν}, if ||ξ||1 = N.
(4)

u(j) jWe denote with the control function at time .
T• is the state transition mapping, represented by the state

transition probability matrix with elements.

pξvξw
(
u(j)
)

:= p
[
ξ(j+1) = ξw|ξ(j) = ξv,u(j)

]
. (5)

u(j) = ciIn case we have

pξvξw (ci) = pξvi
i ξ

wi
i

(ci)×
m∏

l=1
l,i

p
ξ

vl
l ξ

wl
l

(ν)

s.t. max{0,vi−1} ≤ wi ≤min{N,vi+1}
max{0,vl−1} ≤ wl ≤ vl (6)

u(j) = νwhile if

pξvξw (ν) =
m∏

l=1

p
ξ

vl
l ξ

wl
l

(ν)

s.t. max{0,vl−1} ≤ wl ≤min{N,vl}.
(7)

ξv ξw
We can also highlight the following aspects for the

transition from the state into the state :

max∥ξw∥1 =min
(∥ξv∥1+1,N

)
(8)

min∥ξw∥1 =max
(
0,∥ξv∥1−m

)
. (9)

R : Ξ→ [0,+∞)• is the reward function, defined as

R(ξ) =
m∑

i=1

ciξi. (10)

N = 2
m = 2 U = {c1,c2, ν}

Fig. 2 shows a resource allocation problem modelled as an
MDP with number of resources , number of prices

, and the action set . Its generic state can be

ui = ci ξ0
i ξ1

i
...

ui = ν ξ0
i ξ1

i ξ2
i

ξ2
i

...

λi

µi

λi

1 − λi − µi1 − λi

µi

1 − λi − µi

µi

1 1 − µi

µi

1 − µi

Ci ui = ci

ui = ν

Fig. 1. MDP . Transitions allowed with the input are depicted in
the top part of the figure. Transitions allowed with the input are
depicted in the bottom part.

FOROOTANI et al.: APPROXIMATE DYNAMIC PROGRAMMING FOR STOCHASTIC RESOURCE ALLOCATION PROBLEMS 977

Authorized licensed use limited to: Maynooth University Library. Downloaded on June 15,2022 at 09:12:41 UTC from IEEE Xplore. Restrictions apply.

(ξ1, ξ2) ∈ Ξ = {(0,0), (0,1), (1,0), (1,1), (0,2), (2,0)}
ξ1 ξ2

c1 c2

denoted by ,
where and correspond to the number of resources
allocated at price and , respectively.

C. Preliminaries on DP Techniques for Solving Resource
Allocation Problems

Once a resource allocation problem is modelled as an MDP,
we can apply DP techniques in order to solve the related
decision making problem and calculate proper pricing
policies.

π = {u(0), . . . ,u(T −1)}

T Jπ : Ξ→ R

To start with, let be the policy, that is
to say, the sequence of control functions applied over the
finite time horizon . We define its value function
as follows:

Jπ
(
ξ(0)
)
= E
{

JT (ξ(T))+
T−1∑
j=0

R
(
ξ(j+1)|ξ(j),u(j)

)}
(11)

E{·} JT (·)
ξ(T) T

JT
(
ξ(T)
)

R
(
ξ(T)
)

E{·}

T

where is the expectation operator, is the terminal
value function, and is the state at the terminal time .
The terminal value function is assumed to be known and
bounded: in particular, in this paper, is set to

. Note that the expected operator is applied over
the actual visited states, which determine the actual rewards
collected over the finite time horizon . This explains the
operator “|” coming from the conditional probability notation
used in the previous definition.

Jπ(·)

T

π∗

The value function of a specific policy can be regarded
as the expected total revenue computed over the finite time
horizon for resource allocation problems, when applying a
specific pricing policy. DP techniques aim at finding the
optimal policy that maximizes the expected total reward
defined as

J∗
(
ξ(0)
)
=max

π
Jπ
(
ξ(0)
)
. (12)

Under the assumption of having a relative small number of
states, we can apply the exact DP algorithm, which exploits

Bellman’s principle of optimality [7]. In particular, starting
from the terminal value function

JT
(
ξ(T)
)
= R(ξ(T)) =

m∑
i=1

ciξi(T)

the optimal value function can be recursively expressed as

J∗j
(
ξ(j)
)
= max

u(j)∈{c1,c2,...,cm,ν}
E

 m∑
i=1

ciξi(j)+ J∗j+1
(
ξ(j+1)

)
=

m∑
i=1

ciξi(j) + max
u(j)∈{c1,c2,...,cm,ν}

E
{
J∗j+1
(
ξ(j+1)

)}
=

m∑
i=1

ciξi(j)+max
[
E
{
J∗j+1
(
ξ(j+1)

) |u(j) = c1
}
,

E
{
J∗j+1
(
ξ(j+1)

) |u(j) = c2
}
, . . . ,

E
{
J∗j+1(ξ(j+1)) |u(j) = cm

}
,

E
{
J∗j+1
(
ξ(j+1)

) |u(j) = ν
}]
.

max
u(j)∈{c1,c2,...,cm,ν}

E
{
·
}

J∗j (·)
j

j T
j

ξ(j) ξ(j+1)
J∗j+1(·)

J∗
(
ξ(0)
)

ξ(0)

The last expression comes from the expansion of the term
. Thanks to Bellman’s principle of

optimality, the generated value function at each time slot
 is equal to the optimal value function for the tail sub-

problem from time to time . It is worth noting that the
price chosen at the time slot affects the state transitions from

 to , and thus the expected value of the value
function . The value generated at the last step is equal to
the optimal revenue from the initial state .

J∗(ξ) Jπ(ξ)
J̃(ξ,r) = ϕ(ξ)′r ϕ(ξ) = [ϕ1(ξ),ϕ2(ξ), . . . ,ϕq(ξ)]′

ξ
r = [r1,r2, . . . ,rq]′

J̃ ∈ RΩ
Φ ∈ RΩ×q ϕ′(ξ)

ξ ∈ Ξ J̃ = Φr

As for real-world resource allocation problems, the
applicability of exact DP methodologies is limited by severe
scalability issues, due both to memory and computational
requirements [20]. This phenomenon, known as curse of
dimensionality, is caused by the cardinality of the system state
space. In this regard, ADP approaches prove to offer powerful
tools for addressing such scalability issues. The key idea to
cope with the state space explosion is to substitute the original
value function with a function having a more compact
representation achieved by using a restricted set of selected
features. Such a representation is also termed as
approximation architecture [22], [23]. The linear architecture
consists of approximating the value functions and
as , where is a
vector of feature (or basis) functions evaluated over and

 is a vector of parameters to be tuned by a
suitable training process. In a more concise form and with a
slight abuse of notation, for a value function and a
feature matrix having as rows corresponding
to each state , we can set .

III. Modeling Resource Allocation Problems With
Specified Time Interval Reservation Requests

From a practical point of view, in resource allocation
problems, there must be the possibility for customers to
request resources in advance to satisfy their future needs. Due
to the advance reservations, we have to consider that a portion
of the resources can have already been allocated to customers

(0,0)

(1,0)

(2,0)

(0,1)

(1,1)(0,2)

λ
1µ

1

λ
1

1 − λ1 − µ1

1 − λ1

µ
1

1 − µ1

(1
− λ 1)µ

2

λ
1 (1 − µ

2)

(1 − λ1)(1− µ2)

λ1µ2

(1
 −

µ 1)µ
2

µ
1 (1 − µ

2)

µ 1
µ 2

1 − µ2

µ 2

(1 − µ1)(1 − µ2)

N = 2
c1,c2

u = c1

{(2,0), (1,1), (0,2)} u = ν

Fig. 2. An example of a resource allocation problem with resources
and prices . The graph shows the entire state space and the state
transition probabilities under the control . As for the states

, the only admissible control is .

 978 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 4, JULY 2020

Authorized licensed use limited to: Maynooth University Library. Downloaded on June 15,2022 at 09:12:41 UTC from IEEE Xplore. Restrictions apply.

at specific time slots in the future. In this case, the number of
available resources can change over time, thus the underlying
allocation process has to be treated as a time-inhomogenous
MDP (Ti-MDP).

k ≥ 0

[h1,h2] h1 ≥ k

τ = h2−h1

ci

N

More specifically, at the current time slot , a customer
can ask for a resource by specifying a finite time interval

 for its utilisation (with). Such information
determines both the allocation and release times of the
required resources, the latter not subject to the customer
stochastic behaviour. The minimum duration time
is considered as one time slot. A suitable price profile has to
be proposed for maximising the expected total revenue. As
shown later, such price profile can be composed of different
prices, that is to say, the same resources can be allocated at
different prices over the given time interval. Booking in
advance implies a significant upgrade of the MDP framework
described in Section II: the number of the available resources

 can change over time since some resources can be already
assigned or released in advance, decreasing or increasing the
set of resources subject to the system stochastic dynamics.

The formulation and the related resolution for resource
allocation problems with instant and advance resource
requests were firstly addressed by the authors in [17].
Hereafter, the followings requirements are additionally
considered:

j
j+1

N

1) The proposed system manages the overbooking
situations, which occur when the number of allocated
resources at the (generic) time slot can not be confirmed
since new resources are already allocated at the time slot
(due to the advance resource reservation mechanism), and the
overall needs can not be satisfied by the system overall
capacity of resources. This overbooking situation occurs
since the system handles both instant and future resource
requests.

2) Customers can hold the resources to the necessary extent
only if the system capacity allows it: already-reserved
resources for the next time slot can cause an overbooking
situation.

3) In such circumstances, the price manager forces the
customers with the lowest growth rates (as defined later in the
paper) to release their own resources (or some of them) in
order to fulfill the reservations of the next time slot under the
system capacity constraint.

T
C j j

j
T

As shown in the previous section, resource allocation
problems with no advance resource requests can be modelled
by means of a time-homogeneous MDP, featured by a
stationary state transition mapping . In this section, the
system is introduced, with the superscript indicating that
its underlying MDP dynamics become time-variant due to the
already reserved resources (note that we denote with a
generic time slot over the finite time horizon).

j j+1

Ū
ψ Ū = {c1, . . . ,cm, ν,ψ} ψ

As shown in this section, state transitions between two
consecutive time slots and may occur either
stochastically or deterministically, the latter depending on the
set of reservations for such two consecutive time slots. Unlike
[17], the set of actions, denoted by , has the additional
action , i.e., . Such control is applied
whenever the price manager has to force customers to release

their own resources in order to solve an overbooking situation.
Moreover, we provide a formulation for resource allocation
problems and their corresponding resolution algorithms
suitable for computer based implementation.

Prior to addressing the modeling, it is necessary to define
some terms and notation.

k
h > k

Definition 1: A reservation request occurs whenever the
customer at the current time slot asks for allocation of a
resource in advance for the future time slot .

ci
ci

h > k
k

Definition 2: We call the price a reservation price if the
decision maker allocates a resource with the price for the
time slot in response of reservation request at the
current time slot .

(λi−µi)
ci λi µi

Definition 3: We define the term as the growth rate
associated with the price , where and are allocation and
deallocation probability requests, respectively.

Definition 4: We define the set of reservations for different
time slots as

x = {. . . , x j−1, x j, x j+1, . . . } (13)
x j ∈ Nm

0 , j ∈ N i x j x j
i

ci
j x j

where , the -th element of , namely , is the
number of reserved resources at the price at the generic time
slot . The vector is referred to as reservation vector.

C j = ⟨Ξ j, x j, Ū,T j,R⟩
The Ti-MDP for resource allocation problems with advance

reservations can be defined by the tuple ,
where

Ξ j j
Ξ j =

{
ξ̄ι = (ξ̄ι11 , . . . , ξ̄

ιm
m)′ ∈�m

i=1Ξi : ιi ≥ x j
i & ||ξ̄ι||1 ≤ N

}
ξ̄ := ξ̄ι

ξ̄
ιi
i ξ̄i ιi

ξ̄(j) ∈ Ξ j j |Ξ j| = Ω j

Ξ j ⊆ Ξ

• is the state space at the generic time slot ,
. To

simplify the complexity in the notation with a slight abuse of
notation, we denote as a generic state of the process.
We can use indistinctly , , and . Moreover, we denote
with the state variable at time slot , , and

.
x j ∈ Nm

0• is the reservation vector having the constraint

0 ≤ ∥x j∥1 ≤ N. (14)
Ū = {c1, . . . ,cm, ν,ψ}• is the overall input set. Two general

cases can happen:
^ ∥x j∥1 ≤ N ∥x j+1∥1 = N,

Ū(ξ̄) = {ν,ψ} (15)
^ ∥x j∥1 ≤ N ∥x j+1∥1 < N,

Ū(ξ̄) = {c1, . . . ,cm, ν,ψ}. (16)
ū(j) jWe denote with the control function at time .

T j

→
7→

• is the state transition mapping, computed by applying
the following composition (note that means function, while

 mapping)

T j : Ξ j F→ Ξ Ū7→ Ξ G→ Ξ j+1 (17)
F Gwhere the functions and are

F : Ξ j→ Ξ
F (ξ̄(j)

)
=
{
ξ(j) ∈ Ξ : ξi(j) = ξ̄i(j)− x j

i
}

(18)

G : Ξ→ Ξ j+1

G(ξ(j)
)
=
{
ξ̄(j+1) ∈ Ξ j+1 : ξ̄i(j+1) = ξi(j)+ x j+1

i
}
. (19)

FOROOTANI et al.: APPROXIMATE DYNAMIC PROGRAMMING FOR STOCHASTIC RESOURCE ALLOCATION PROBLEMS 979

Authorized licensed use limited to: Maynooth University Library. Downloaded on June 15,2022 at 09:12:41 UTC from IEEE Xplore. Restrictions apply.

j ξ̄(j)
x j

F x j+1

j+1 G

At each time slot , we remove from the state variable
the reservation vector by applying the subtraction function

, and we add the reservation vector of the next time slot
 by applying the addition function .

T j

pξ̄v(j)ξ̄w(j+1)
(
x j, ū(j)

)
ξ̄v(j) ∈ Ξ j ξ̄w(j+1) ∈ Ξ j+1

pξ̄v ξ̄w
(
x j, ū
)

pξ̄v ξ̄w
(
ū
)

The elements of the state transition mapping are denoted
by , with and .
For the sake of simplicity, the dependency on the time slot and
the reservation vector can be removed, thus we have,
respectively: and .

ū(j) ∈ Ū

x j+1 Om ∈ Rm

ξ̄(j)
v w

j j+1

It is assumed that the admissible control is chosen
such that the price manager gives the priority to the
reservations . By denoting with the vector having
all 0 as components, the dynamics of the state variable
can be described as follows (note that the superscripts and
are used to indicated the state variable values at and ,
respectively):
^ ∥x j∥1 ≤ N ∥x j+1∥1 = N ψ For , (similarly for the action),

T j : Ξ j F→ Om
ν→ Om

G→ Ξ j+1,and
pξ̄v ξ̄w

(
ν
)
= 1.

(20)

ξ̄(j) = ξ̄v

ξ̄(j+1) = ξ̄w ξ̄w = x j+1
Note that the state transition from into

 is deterministic, and that .
^ ∥x j∥1 < N ∥x j+1∥1 < N For , ,

T j : Ξ j F→ Ξ Ū7→ Ξ G→ Ξ j+1,and (21)
∥ξ̄(j)∥1 < N1) if ,

pξ̄v ξ̄w
(
ū(j)
)

:= p
[
ξ(j+1) = ξw|ξ(j) = ξv, ū(j)

]
(22)

ū(j) = ci ū(j) = νsuch that, if , or , then

pξ̄v ξ̄w
(
ci
)
= pξvi

i ξ
wi
i

(
ci
)× m∏

l=1
l,i

p
ξ

vl
l ξ

wl
l

(
ν
)
,or (23)

pξ̄v ξ̄w
(
ν
)
=

m∏
l=1

p
ξ

vl
l ξ

wl
l

(
ν
)
, respectively. (24)

{c1, . . . ,cm, ν}
ξ̄(j)

2) If none of the controls are admissible at the
current state , then the price manager forces some
customers with lower growth rates to release their resources.
In this case, we have

T j : Ξ j F→ Ξ
ψ
7→ Ξ G→ Ξ j+1. (25)

The transition (25) is performed deterministically since the
customers are forced to release the resources.
^ ∥x j∥1 = N ∥x j+1∥1 < N ū(j) = ci ū(j) = ν For , , if , or ,

T j : Ξ j F→ Om
Ū→ Om

G→ Ξ j+1

pξ̄v ξ̄w
(
ci
)
= pξvi

i ξ
wi
i

(
ci
)× m∏

l=1
l,i

p
ξ

vl
l ξ

wl
l

(
ν
)

pξ̄v ξ̄w
(
ν
)
=

m∏
l=1

p
ξ

vl
l ξ

wl
l

(
ν
)
. (26)

^ ∥x j∥1 = N ∥x j+1∥1 = N ν

j+1
 For , , the admissible control is for

any resource request for the time slot . The transition is

therefore

T j : Ξ j F→ Om
ν→ Om

G→ Ξ j+1

pξ̄v ξ̄w
(
ν
)
= 1.

(27)

R : Ξ j→ [0,+∞)• is the reward function, defined in this
case as

R
(
ξ̄(j)
)
=

m∑
i=1

ciξ̄i(j). (28)

m = 2 N = 2
Example 1: Consider a resource allocation problem with

, and the following two cases:
x j = (1,1)′ x j+1 = (0,1)′• and ;
x j = (0,0)′ x j+1 = (0,1)′• and .

x j = (1,1)′ x j+1 = (0,1)′

j
ξ̄(j) = (1,1) F ξ̄(j) = (1,1)

F→ ξ(j) =
(0,0)
ci ν

1) If and , based on the Ti-MDP
definition, the only feasible state at the time slot is

. By applying , we have
. By using the formulas in (26) with admissible controls

 and , we have
ū(j) = c1• If ,

ξ(j) = (0,0)
c17→
[(0,0)
(1,0)

] probabilities
=⇒

[(1−λ1)
(λ1)

]
Gand by applying the function

 [(0,0)
(1,0)

] G→ ξ̄(j+1) =
[(0,1)
(1,1)

]
.

ū(j) = c2• If ,

ξ(j) = (0,0)
c27→
[(0,0)
(0,1)

] probabilities
=⇒

[(1−λ2)
(λ2)

]
Gand by applying the function

 [
(0,0)
(0,1)

] G→ ξ̄(j+1) =
[
(0,1)
(0,2)

]
.

ū(j) = ν• If ,

ξ(j) = (0,0)
ν7→ [(0,0)]

probability
=⇒ [1]

Gand by applying the function

[(0,0)]
G→ ξ̄(j+1) = [(0,1)] .

ξ̄(j) = (1,1)
It can be noted that all the controls are admissible for the

state thanks to the reservation vectors for the two
subsequent time slots.

x j = (0,0)′ x j+1 = (0,1)′

j
x j = (0,0)

(0,2) {c1, . . . ,cm, ν}

ψ ^

2) If and , based on the Ti-MDP
definition, all the states at the time slot are feasible since the
reservation vector is . However, there exist some
states (e.g.,), where none of the controls
are admissible and the price manager has to apply the control

. .

IV. DP Framework for Solving Resource Allocation
Problems With Advance Resource Requests

This section introduces the DP framework used to compute
a proper pricing policy for resource allocation problems with
advance resource requests. Such framework along with its
related definitions is used in the next section, where the
reservation pricing algorithm is described.

J∗,x
j

j
(
ξ̄(j)
)

We denote with the optimal value function at the

 980 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 4, JULY 2020

Authorized licensed use limited to: Maynooth University Library. Downloaded on June 15,2022 at 09:12:41 UTC from IEEE Xplore. Restrictions apply.

j ξ̄(j) ∈ Ξ j

x j
generic time slot , starting from any state and with
the reservation vector . By exploiting Bellman’s principle of
optimality, it is possible to write the following expression:

J∗,x
j

j
(
ξ̄(j)
)
= max

ū(j)∈{c1,...,cm,ν,ψ}
E

 m∑
i=1

ciξ̄i(j)+ J∗,x
j+1

j+1
(
ξ̄(j+1)

) .
(29)

ū∗(j)

π̄∗ = {ū∗(0), . . . , ū∗(T −1)} T

π̄∗

j

The control function which satisfies (29) is denoted by
. The previous expression is the core of the exact DP

algorithm [7], and allows to calculate the optimal policy
 over the whole time horizon (note

that we assume that the underlying Ti-MDP is
computationally tractable). With the knowledge of the
reservation vectors for the entire planning horizon time, the
price manager can apply the calculated optimal policy .
Since the exact DP algorithm is applied, such optimal policy
exists and is unique. In the following, such solution is referred
to as DP off-line solution. At each time slot , in case of
changes in the future reservation vectors, it is required to
recompute the DP off-line solution. This recursive refresh of
the exact DP algorithm results links the concepts of the MPC
to the DP for resource allocation problems [13].

P∗(x j, j) ∈ RΩ×Ω+
j ≥ k C j

π̄∗

Prior to illustrating the reservation pricing algorithm, we
need to discuss some further aspects and introduce the related
notation. The transition probability matrix at
a generic time slot for the system (when controlled by
the policy) is defined as follows:

P∗(x j, j) :=

 [pξ̄v ξ̄w (x j, ū∗(j))], ξ̄v
i (j) ≥ x j

i , ξ̄
w
i (j+1) ≥ x j+1

i

[0], otherwise
(30)

pξ̄v ξ̄w
(
x j, ū∗(j)

)
= pξ̄v ξ̄w

(
ū∗(j)
)

R+

ξ̄i(j) < x j
i 0

pξ̄v(j)ξ̄w(j+1)
(·)

where and stands for the set
of non-negative real numbers. The transition probabilities
associated with the infeasible states are set to .
With a slight abuse of notation, it is noticed that the right hand
side of (30) includes all the elements of the transition
probability matrix, and that the dependency on the time slot in

 is removed.
ε∗(x j, j) ∈ RΩ+ C jThe probability distribution vector for the

system is defined as follows:

ε∗(x j, j) :=

 [ε∗
ξ̄v (x j, j)], ξ̄v

i (j) ≥ x j
i

[0], otherwise
(31)

ε∗
ξ̄v (x j, j)

ξ̄v j ∥ε∗(x j, j)∥1 = 1
C j π̄∗

ξ̄(k) ξ̄w ∈ Ξk

where stands for the probability of being at the state
 at the time slot (with). It is assumed that

the system is controlled by the policy and that the initial
condition is set to . In other words, we have
 {

εξ̄v (xk,k) = 1 ξ̄(k) = ξ̄w

εξ̄w (xk,k) = 0 ξ̄(k) , ξ̄w.

ξ̄i(j) < x j
i

0
The probability of being at the infeasible states is

set to . It is noticed that the right hand side of (31) includes
all the elements of the probability distribution vector.

P∗(x j, j)

The following relation holds between the probability
distribution vector and the transition probability matrix

:

ε∗(xh−1,h−1)′ = ε(xk,k)′×
h−2∏

j=k+1

P∗
(
x j, j
)
. (32)

π̄∗

It follows from the property of Markov chains, i.e., for a
given initial probability distribution of the process one can
calculate the probability distribution of the MDP for an
arbitrary time slot in the future [21]. In case of large state
spaces, one can execute the policy and use Monte Carlo
simulations to approximate the values of the probability
distribution vector [7], [20].

eci ∈ Nm
0 i

ci

e j
ci eci

j V j : U → Nm
0

j

We define as the unitary vector having 1 in the -th
entry (corresponding to the price) and 0 in all the others.
Additionally, we denote by the unitary vector at the
time slot . We introduce the auxiliary vector at
the time slot as

V j(u) =
{

x j+ e j
ci , u ∈ {c1, . . . ,cm}

x j, u = ν
(33)

V j
iand indicate by an element of this vector.

A. Applying the Principle of Optimality for the Advance
Resource Reservations

h > k
π̄∗

[k,h−1]
J∗,x

k

k
(
ξ̄(k)
)

ξ̄(k)

Let us suppose that the price manager has to allocate a new
resource for its future utilisation at the time slot and that
the DP offline solution is available. By focusing on the
time interval and by exploiting Bellman’s principle
of optimality [7], the optimal value function related
to such DP offline solution (computed at the current state)
can be expressed and developed as follows:

J∗,x
k

k
(
ξ̄(k)
)
= max

ū∗(j)∈{c1,...,cm,ν,ψ}
E
{

R
(
ξ̄(k)
)

+
h−3∑
j=k

R
(
ξ̄(j+1)|ξ̄(j), ū(j)

)
+ J∗,x

h−1

h−1
(
ξ̄(h−1)

)}
= R
(
ξ̄(k)
)

+ max
ū(j)∈{c1,...,cm,ν,ψ}

E
{

h−3∑
j=k

R
(
ξ̄(j+1)|ξ̄(j), ū(j)

)
+ J∗,x

h−1

h−1
(
ξ̄(h−1)

)}
= R
(
ξ̄(k)
)
+E
{

h−3∑
j=k

R
(
ξ̄(j+1)|ξ̄(j), ū∗(j)

)}
+ max

ū(h−1)∈{c1,...,cm,ν}
E
{

R
(
ξ̄(h−1)|ξ̄(h−2), ū∗(h−2)

)
+ J∗,x

h

h
(
ξ̄(h)
)}
.

π̄∗

k h−2
[k,h−2]
h−1

J∗,x
k

k
(
ξ̄(k)
)

This means that the DP offline solution can be applied
from the current time slot up to the time slot : in other
words, the decisions made during the time interval
can be decoupled from the one made at the time slot . As
a consequence, the reservation pricing algorithm evaluates
how each possible price for the additional resource can affect
the value function . Then, the algorithm selects the
action maximizing the computed value function.

π̄∗ h−2

ξ̄(k)
JV

h(u)
k
(
ξ̄(k)
)̄
ξ(k)

π̄∗k =
{
ū∗(k), . . . , ū∗(h−2)

}
u ∈ U = {c1, . . . ,cm} h−1

From an implementation perspective, this implies applying
the DP offline solution up to (by using Monte Carlo
simulations in case of large state spaces) and compute the new
value function at for the different possible decisions. In
this regard, we define as the value function
calculated at the initial state , when the policy

 is applied and a decision
 at the time slot is selected to allocate

FOROOTANI et al.: APPROXIMATE DYNAMIC PROGRAMMING FOR STOCHASTIC RESOURCE ALLOCATION PROBLEMS 981

Authorized licensed use limited to: Maynooth University Library. Downloaded on June 15,2022 at 09:12:41 UTC from IEEE Xplore. Restrictions apply.

h
JV

h(u)
k
(
ξ̄(k)
)the new resource at the time slot . More specifically,
 can be defined and expanded as follows:

JV
h(u)

k
(
ξ̄(k)
)
= R
(
ξ̄(k)
)

+E
{ h−3∑

j=k

R
(
ξ̄(j+1)|ξ̄(j), ū∗(j)

)}

+E
{

R̄
(
ξ̄(h−1)|ξ̄(h−2), ū∗(h−2)

)
+ JV

h(u)
h
(
ξ̄(h)
)}

= R
(
ξ̄(k)
)
+E
{ h−3∑

j=k

R
(
ξ̄(j+1)|ξ̄(j), ū∗(j)

)}

+

[∑
ξ̄(h−1)∈Ξh−1

ε∗
ξ̄
(Vh−1(ν),h−1

)
×
{
R
(
ξ̄(h−1)|ξ̄(h−2), ū∗(h−2)

)
+
∑

ξ̄(h)∈Ξh

pξ̄(h−1)ξ̄(h)
(Vh−1(ν),u

)
JV

h(u)
h
(
ξ̄(h)
)}]

s.t. ∥ξ̄(j)∥1 ≥ ∥V j(ν)∥1, j ∈ [k,h−1]

∥ξ̄(h)∥1 ≥ ∥Vh(u)∥1.
(34)

It is worth highlighting that:
J∗,x

h

h
(
ξ̄(h)
)

JV
h(u)

h
(
ξ̄(h)
)

max
u ∈ U

h−1

• Compared with the previous expression, has
been replaced with . The operator has been
also removed since a specific action is chosen at the
time slot .

ε∗
ξ̄

(Vh−1(ν),h−1)
)

V j(ν) = x j

j ∈ [k,h−1]

• The probability distribution vector can
be calculated by using the (31). Note that when

.
JV

h(u)
h
(
ξ̄(h)
)

• The function can be computed as follows:

JV
h(u)

h
(
ξ̄(h)
)
= R
(
ξ̄(h)
)

+
∑

∀ξ̄(h+1)∈Ξh+1

pξ̄(h)ξ̄(h+1)
(Vh(u), ū∗(h)

)
J∗h+1
(
ξ̄(h+1)

)
s.t. ∥ξ̄(h)∥1 ≥ ∥Vh(u)∥1.

(35)
u

ξ̄(h)
h

J∗h+1(·)

It can be noted that: i) the action for allocating the new
resource affects the state (see also (34)); ii) the DP off-
line solution is applied at the time slot ; iii) the optimal value
function is used.

V. Reservation Pricing Algorithm for Specified Time
Interval Reservation Requests

[h1,h2]

This section describes the algorithm for calculating the price
profile to be proposed by the price manager in case of a
reservation request for the future time interval .

The following assumptions are made:
ξ̄(k)• The current system state is known to the decision

maker.
x j

j ∈ [0,T −1]
• The initial reservation vectors for all the time slots

 are provided. Note that, as time goes by, these
vectors can be updated since customers can request resources
in advance to satisfy their future needs.

π̄∗

[0,T −1]
k,h1,h2 ∈ [0,T −1] π̄∗

• The DP off-line solution is available over the finite time
horizon . In this regard, we remind that

. Like the reservation vectors, the policy
can be recomputed, as shown in the algorithm.

• Without any loss of generality, the underlying Ti-MDP is
computationally tractable, that is to say, ADP and Monte
Carlo simulations are not needed.

h ∈ [h1,h2]

In the algorithm, a backwards iteration strategy is proposed.
More specifically, the whole time interval is scanned
backwards, and for each the best price is
calculated. At the same time, the temporary set of reservations
is updated along with the associated optimal value function
and policy. Finally, the resulting price profile is proposed to
the customer. In case the customer accepts it, the new set of
reservations is confirmed, as well as the associated optimal
value function and policy.

k = 0
The reservation pricing algorithm consists of the following

steps (at the beginning):

[k,T −1] C j = ⟨Ξ j, x j, Ū,T j,R⟩
j ∈ [k,T −1]

k

1) Apply the exact DP algorithm over the finite horizon
 for the Ti-MDP with the tuple

and , before processing the new resource request
at the current time .

ū∗(j) J∗,x
j

j
(
ξ̄(j)
)

j ∈ [k,T −1]
2) Save and the optimal value functions as

the tabular representation for the time interval
based on the previous step.

h = h23) Set
g j = x j

j ∈ [k,h2]
4) Set the auxiliary variable for the interval

.
h ≥ h15) While

^ V j(ν) = g j j ∈ [k,h−1] Set for the time interval .
^ u ∈ U JV

h(u)
k
(
ξ̄(k)
)

 For each calculate as described in
Section IV-A.
^ h Compute the optimal reservation price for the time slot

as follows:

c∗i = argmax
u∈Ū

JV
h(u)

k
(
ξ̄(k)
)
.

^ gh← gh+ eh
c∗i
.

^ c = {ch1 , . . . ,ch2 } ch = c∗i Update the price profile with .
^
C j = ⟨Ξ j,g j, Ū,T j,R⟩ j ∈ [k,h]

 Apply the exact DP algorithm for the Ti-MDP with the
tuple over the time interval ,
and save the results.
^ h← h−1 Set .

J∗,g
k

k
(
ξ̄(k)
)

h = h1
h ∈ [h1,h2]

6) The optimal value function , which is
calculated at the last iteration , takes into account the
price profile over the time intervals .

7) Calculate the following expected value:

JτE,k
(
ξ̄(k)
)
= γacc J∗,g

k

k
(
ξ̄(k)
)
+ (1−γacc) J∗,x

k

k
(
ξ̄(k)
)

(36)

γacc

[h1,h2]

where is the acceptance probability of the proposed price
profile from the customer side over the entire time interval

.
8) The price manager accepts or rejects the reservation

request by comparing these two values:

max
J

{
JτE,k(ξ̄(k)), J∗,x

k

k (ξ̄(k))
}

(37)

 982 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 4, JULY 2020

Authorized licensed use limited to: Maynooth University Library. Downloaded on June 15,2022 at 09:12:41 UTC from IEEE Xplore. Restrictions apply.

J∗,x
k

k (ξ̄(k))where is the expected optimal value function in
case the reservation request is rejected.

c

9) If fulfilling the reservation request is more profitable than
rejecting it (using (37)), the price manager offers the price
profile .

x j← g j j ∈ [h1,h2]
10) If the customer accepts the proposed price profile, set

 for the entire interval .
k← k+1 111) Set and go to Step .

It is easy to verify that single time slot reservation requests
can be derived from the above algorithm. The stochastic
prediction of the system evolution (up to the time where the
new resource is requested), the effect of the possible prices on
the current expected total revenue, and the renewal of the
policy pricing (in case of the customer's acceptance) shows a
strong link between MPC and DP, as already discussed in
[13].

VI. Modeling Resource Allocation Problems With
Specified and Unspecified Time Interval

Reservation Requests

h > k

µi

In the normal course of events, it may happen that
customers request resources for future utilization without
specifying their release time. As a result, unlike the allocation
time , such resources are released according to the
system stochastic dynamics, that is to say, the release event is
linked to the death rate of the proposed price. This section
outlines the modeling of the underlying Ti-MDP with
specified and unspecified time interval reservation vectors, as
well as the associated pricing algorithm.

sLet be the set of unspecified time interval reservations. In
particular, we define

s = {. . . , s j−1, s j, s j+1, . . . } (38)
s j ∈ Nm

0 , j ∈ N i s j s j
i

ci
j

where , and the -th element of , namely , is
the number of booked resources at the price at the generic
time instant .

C j = ⟨Ξ j, x j, s j, Ū,T j,R⟩

The dynamic of the underlying Ti-MDP for resource
allocation problems with specified and unspecified time
interval reservation requests can be defined by the tuple

, where
Ξ j j Ξ j =

{
ξ̄ι = (ξ̄ι11 ,

. . . , ξ̄ιmm) ∈�m
i=1Ξi : ιi ≥ x j

i + s j
i & ||ξ̄ι||1 ≤ N

}
ξι = (ξι11 ,

ξ
ι2
2 , . . . , ξ

ιm
m)
ξ̄ := ξ̄ι

ξ̄i := ξ̄ιii ξ̄(j)
j |Ξ j| = Ω j, Ξ j ⊆ Ξ

• is the state space at the time slot ,
, where

. To simplify the complexity in the notation, we
denote as a generic state of the process; the same for

. Moreover, we denote with the state variable at
time slot , .

x j, s j ∈ Nm
0• are the reservation vectors having the

constraint

0 ≤ ∥x j+ s j∥1 ≤ N. (39)
Note that these vectors are considered deterministic.

Ū = {c1, . . . ,cm, ν,ψ}• is the overall input set. Two general
cases can happen
^ ∥x j+ s j∥1 ≤ N ∥x j+1+ s j+1∥1 = N ,

Ū(ξ̄) = {ν,ψ} (40)
^ ∥x j+ s j∥1 ≤ N ∥x j+1+ s j+1∥1 < N ,

Ū(ξ̄) = {c1, . . . ,cm, ν,ψ}. (41)

ū(j) jWe denote with the input at time .
T j• is the state transition mapping, which is defined as

follows:

T j : Ξ j F→ Ξ Ū7→ Ξ B→ Ξ j+1 (42)
Bwhere the function is

B : Ξ→ Ξ j+1

B(ξ(j)
)
=
{
ξ̄(j+1) ∈ Ξ j+1 : ξ̄i(j+1) = ξi(j)+ x j+1

i + s j+1
i
}
.
(43)

G B

0 ≤ ∥x j+ s j∥1 ≤ N

The state transition probabilities can be derived in the same
way of specified time interval reservation requests. The only
differences are the replacement of the function with and
the new condition on the reservation vectors, i.e.,

.
R : Ξk→ [0,+∞)• is the reward function, defined as

R
(
ξ̄(j)
)
=

m∑
i=1

ciξ̄i(j). (44)

A. Reservation Pricing Algorithm for Solving Resource
Allocation Problems With Specified and Unspecified Time
Interval Requests

k

π̄∗

The reservation pricing algorithm shown in Section V can
be easily extended to handle resource requests with
unspecified time intervals. In particular, at the current time
slot , three cases can be managed, that is to say, the one for
the instant reservation requests (where the proposed price is
given by the DP offline solution), the one for the advance
reservations with specified time interval, and the one for the
advance reservations with unspecified time interval.

h

h

As for the latter, the main difference derives from the fact
that only the allocation time for the new resource is
provided. Thus, the algorithm has to evaluate how each
possible price used to allocate such resource at the only time
slot affects the current optimal value function. Besides that,
some notation has to be adapted, e.g.,

J∗,x
j s j

j
(
ξ̄(j)
)• The optimal value function defined in (29) is denoted by
.

V j : U → Nm
0 j• The auxiliary vector at the time slot

becomes

V j(u) =
{

x j+ s j+ e j
ci , u ∈ {c1, . . . ,cm}

x j+ s j, u = ν.
(45)

VII. Reservation Pricing Approach for Resource
Allocation Problems With Large State Space

This section addresses resource allocation problems with
large state space. In particular, we assume that the underlying
Ti-MDP is not computationally tractable, thus ADP and
Monte Carlo simulations are needed. More specifically, this
section outlines the ADP based approach used for solving
resource allocation problems with a large state space, and
shows the changes to the reservation pricing algorithm
described in Section V.

J∗,x
j,s j

j (·)
The USLS-ADP algorithm is adopted to compute an

approximation of the optimal value function over the

FOROOTANI et al.: APPROXIMATE DYNAMIC PROGRAMMING FOR STOCHASTIC RESOURCE ALLOCATION PROBLEMS 983

Authorized licensed use limited to: Maynooth University Library. Downloaded on June 15,2022 at 09:12:41 UTC from IEEE Xplore. Restrictions apply.

[0,T −1]finite time horizon . Such algorithm belongs to the
value function approximation category [8] and was presented
by the authors in [19], in a different context. The reader can
refer to such paper for more details about its theoretical
aspects (e.g., its contraction mapping and the monotonicity
properties) and its convergence results over an infinite time
horizon. It is worth highlighting that the USLS-ADP
algorithm is used over a finite time horizon in this paper.

x j s j

Hereafter, we apply the USLS-ADP algorithm to solve the
curse of dimensionality for resource allocation problems with
instant and future resource requests. For the sake of
simplicity, we drop the notation concerning the future
reservation requests, e.g., the reservation vectors and .

J∗j ∈ RΩConsider a low-dimensional approximation of that
has the form (note that the explicit dependency on the state
has been removed as well)

J∗j ≈ Φr∗j , j = 0, . . . ,T −1 (46)

Φ ∈ RΩ×q

r∗j ∈ Rq

q <<Ω J̃∗j = Φr∗j
J∗j

j

where is the feature matrix whose columns are the
basis functions, and is the parameter vector that has to
be computed (). We define by the
approximate value of vector . This leads us to the following
weighted Euclidean least squares minimization problem at
each time slot :

r∗j = arg min
r j∈Rq

∥J∗j −Φr∥2ϵ (47)

ϵ ∈ RΩ+ ∥ϵ∥1 = 1
r∗j

∥ · ∥ϵ
ϵ

where and . These weights show the
importance of each state in the calculation of vector . In this
paper, all the states have the same weights, i.e., a uniform
probability distribution. Here, denotes weighted
Euclidean norm respect to the weight vector .

The solution of the least squares minimization problem (47)
in the compact form is

r∗j =
(
Φ′ΘΦ

)−1(
Φ′Θ
)
J∗j (48)

Θ ∈ RΩ×Ω+
ϵ ∈ RΩ+

(
Φ′ΘΦ

)−1

Φ

where is the diagonal matrix having the vector
 along the diagonal. The term exists since the

feature matrix is full column rank [20] (prime stands for
transpose).

r∗j

Φ
J∗j

r̂∗j r∗j
z ∈ N

j q < z <<Ω

For the large state space systems, the calculation of the
vector for each time slot requires matrix inversion and
multiplication of impractical size. Therefore, it is suggested to
select a small number of rows of and the corresponding
elements of , and use least squares on the samples to
calculate the approximation of the parameter vector . In
particular, we gather samples from the state space at
each time slot , where . The samples are chosen
randomly based on a uniform probability distribution.

Φ̂ j ∈ Rz×q ˆ̃J∗j ∈ RzIf we denote by , , the sampled feature
matrix and the sampled value function, respectively, the
following regression based unweighted least squares problem
then will be solved:

r̂∗j = argmin
r∈Rq

{∥ ˆ̃J∗j − Φ̂ jr∥2+β∥r− r̄∥2}, j = 0,1, . . . ,T −1 (49)

r̄
β ∈ R+ r∗j r̂∗j

where is an initial guess of the solution at each time slot,
 is positive coefficient. The vector is replaced by

∥ · ∥
since we solve a low dimensional least squares problem. Here,

 denotes norm-2.
ξ̂v(j)

j ˆ̃J∗j
(
ξ̂v)If we show by any arbitrary state chosen randomly at

the time slot , the sampled value function in (49) is
calculated by the following formula at each time slot:

ˆ̃J∗j
(
ξ̂v) = R

(
ξ̂v)+ max

u(j)∈U

∑
ξw∈Ξ

pξvξw (u)ϕ′(ξw)r̂∗j+1

j = 0,1, . . . ,T −1 (50)
r̂∗T

r̂T

k 0

where is provided in advance. One might consider either a
heuristic guess or any approximation method to replace an
appropriate value for . The pseudo-code of the USLS-ADP
algorithm shown in Algorithm 1 (note that the current time
slot is assumed to be equal to).

r̂∗j

r̂∗j

The (finite) sequence of the parameter vectors inherits
both the contraction mapping and monotonicity properties of
the exact DP algorithms. The mathematical convergence of
the sequence is only applicable over an infinite time
horizon, for which the USLS-ADP algorithm converges [19].
Such converge is guaranteed by the aforementioned
contraction mapping and monotonicity properties. The USLS-
ADP convergence over an infinite time horizon is indicative
of the goodness (boundedness) of the calculated solutions,
when applied over a finite time horizon.

In the literature, there are well-known Approximate DP
algorithms supported by similar arguments, for instance see
the Sequential DP Approximation algorithm [7]. Like the
proposed USLS-ADP, it is a sample-based algorithms, is used
over a finite time horizon, and inherits the contraction
mapping and monotonicity properties of the exact DP
algorithms.

A. Definition of the Basis Functions for the Resource Allocation
Problems

q = m+1
ξ = (ξ1, . . . , ξm)′

For the USLS-ADP approach, we define the following
 basis (or feature) functions with the state variable

 as argument:

ϕ0(ξ) = 1, ϕi(ξ) = ξi, i = 1, . . . ,m. (51)
The related linear approximation is

J̃(ξ,r) = r0+

m∑
i=1

riξi. (52)

r′ = (r0,r1, . . . ,rm) ri
i r

ξi

where is the parameter vector (note that is
the -th component of the generic parameter vector related to

). The linear relation between the reward function and the
number of customers allocated for each price (see (10)) can
justify the proposed basis function definition and the
associated approximation architecture.

It is worth mentioning that a limited number of well-crafted
feature functions can capture the dominant non-linearities of
the value function of complex systems, and their linear
combination can work well as an approximation architecture,
see [8], [20]. In this paper, we do not discuss the construction
of the feature functions, even though we note the possibility of
their optimal choice within some restricted class by using

 984 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 4, JULY 2020

Authorized licensed use limited to: Maynooth University Library. Downloaded on June 15,2022 at 09:12:41 UTC from IEEE Xplore. Restrictions apply.

gradient and random search algorithms, see [20], [24]. The
construction of the basis functions for subspace approximation
is an important research issue, and has received considerable
attention recently in the ADP literature, see also [25].

Algorithm 1 USLS-ADP Algorithm [19]

z T β• Choose sample size , time horizon , and regularized term .
rT ∈ Rq

J̃T (ξ,r) = ϕ(ξ)rT

• Set the parameter vector for the terminal condition, i.e.,
.

j← T•
j ≥ 1while

j← j−1•

∆ j ∈ Rz×Ω

Ξ̂ j

• Sample the original state space with uniform probability
distribution, construct the sampling matrix and the
sampling set .

ˆ̃J∗j• Compute

ˆ̃J∗j
(
ξ̂v) = R

(
ξ̂v)+max

u∈U

∑
ξw∈Ξ

pξ̂vξw (u)ϕ(ξw)r̂∗j+1,

ξ̂v ∈ Ξ̂k , ξ
w ∈ Ξ.

Φ̂ j = ∆ jΦ• Compute .
• Solve the following least squares problem:

r̂∗j = arg min
r j∈Rq

{
∥Φ̂ jr j − ˆ̃J∗j ∥22 +β∥r j − r̂∗j+1∥

2
2

}
by the following formula:

r̂∗j =
(
Φ̂′jΦ̂ j +βI

)−1(
Φ̂′j

ˆ̃J∗j +βr̂∗j+1
)
.

J̃∗j (ξ
v) = ϕ(ξv)r̂∗j

ξv ∈ Ξ
• Define the projected value function , for any given

state .
end while

B. Reservation Price Algorithm Adaptation
The reservation pricing algorithm can be adapted for

resource allocation problems with large state space. In
particular, the modifications to be applied to the procedure
described in Section V can be summarized as follows:

• The exact DP algorithm has to be replaced with the USLS-
ADP algorithm.

J∗,x
j

j (·)

r̂∗j
J̃∗,x

j

j (ξv) = ϕ(ξv)r̂∗j ξv ∈ Ξ

• As a consequence, the optimal value function is
calculated approximately in the feature sub-space. Thus, we
compute the parameter vector and the approximate optimal
value function , for any given state .

JV
h(u)

k
(
ξ̄(k)
)

J̃V
h(u)(ξ̄(k)

)• This means that the notation of all the value functions has
to be updated, e.g., becomes .

J̃V
h(u)(ξ̄(k)

)• Monte Carlo simulations are used to compute the terms
composing (see (34)).

VIII. Simulation Results

λ µ i ∈ {1, . . . ,m}
N m

T

The proposed approach has been evaluated over numerical
cases to show its effectiveness. Both exact DP and ADP
techniques have been used with the support of on-purpose
developed MATLAB programs. The latter is configurable,
meaning that they provide the capability of defining the values
of the problem to be solved, e.g., ’s and ’s for ,
the number of resources () and prices (), and the time
horizon (). For all the examples we have used the basis

ci ri

functions given by (52), i.e., the number of resources
associated to each price multiplied by parameter .

m N
It can be shown that the state space explosion can occur

even with relatively small values of and . Indeed,
increments in such parameters cause an exponential growth in
the size of the state space [19]. Hence, the exact DP becomes
impractical even for relatively small problem instances. The
simulation examples are divided into two main parts. The first
part is dedicated to the DP reservations algorithm results,
while the second part is for the USLS-ADP algorithm.

j

Policies computed by DP techniques can be represented by
means of lookup tables. In other words, for a given state and
time slot , one can associate the corresponding action
calculated by the proposed algorithm. However, such
representation can be impractical even for small state and
action spaces. Therefore, more compact representations could
be used [18]. In this regard, we apply a statistical index
showing the frequency distribution of each action at each time
slot over the entire state space. It is worth highlighting that
such statistical index for policies can also be impractical in
cases of large action spaces.

In all the proposed examples, we have used the following
state dependent birth and death probabilities:

µi(ξi) = µmax(ci)
(
1− e

−ξi
N
)

λi(ξi) = λmin(ci)+
(
λmax(ci)−λmin(ci)

)
e
−ξi
N . (53)

We have assumed that the death (birth) probability increases
(decreases) with the number of the allocated resources.

m = 3
N = 6 c = [0.9 1.0 1.1] λmax = [0.55 0.5 0.3] λmin =

[0.3 0.2 0.1] µmax = [0.5 0.6 0.6]

Example 2: Number of prices , number of resources
, price , ,

, .

c = [c1 c2 c3]

The cardinality of the state space is 84, and the exact DP
algorithm can be applied. Here, for the sake of simplicity, we
enclosed the prices in bracket, e.g., .

The following operational scenario has been considered:

j = 2,3,4
• Specified time interval reservation requests at the

consecutive time slots with the duration reported in
Table I.

j = 1 h = 20
• Unspecified time interval reservation request at the time

slot for the time slot .

T = 40

The frequency distribution of the different actions
(normalised versus the state space cardinality and over the
finite time horizon) is shown in Fig. 3. In particular,
the above-defined operational scenario (with reservation
requests) is compared with the case of no reservation requests,
where the DP off-line solution calculated at the beginning can
be applied for instant resource needs. To analyze the result,
one has to start from the terminal stage and move backwards.
Since there are neither unspecified nor specified time interval

TABLE I

2
Specified Time Interval Reservation Requests

for the Example

j 2 3 4
h1 12 13 14
h2 16 17 21

FOROOTANI et al.: APPROXIMATE DYNAMIC PROGRAMMING FOR STOCHASTIC RESOURCE ALLOCATION PROBLEMS 985

Authorized licensed use limited to: Maynooth University Library. Downloaded on June 15,2022 at 09:12:41 UTC from IEEE Xplore. Restrictions apply.

j > 21reservations for the time slots , based on the principle of
optimality, the frequency distributions of the reservation and
no reservation cases are identical.

ν

ψ

As shown in the same figure, the frequency distribution of
the rejection control increases for the intervals with
reservations. It is noticed that for the case of no reservation,
the control is never applied. Therefore, it is not plotted.

x s
c3

c2

c3

Additionally, the specified time interval reservation vector
set and the unspecified time interval reservation vector set
are depicted in Fig. 4. As shown in the figure, the price is
more likely to be chosen than the others. Moreover, for the
case of specified time interval reservations, the algorithm does
not propose the price to the costumer requests; hence, we
do not plot the associated plot. In the case of unspecified time
interval reservations, the algorithm only proposes the price ;
hence, we do not plot the other prices.

[h1,h2] = [14,21]
Finally, it is worth highlighting that the specified time

interval reservation request is rejected by the
algorithm.

Example 3: The same resource allocation problem set-up of
the Example 2 is considered, but with a more complex
operational scenario.

The following operational scenario has been considered:

j = 1,4,5,7, . . . ,12
• Specified time interval reservation requests handled at the

time slots with the durations reported in
Table II.

j = 2,3,6 h = 12,22,25
• Unspecified time interval reservation requests handled at

the time slots for the time slots ,
respectively.

j > 25
14 ≤ j ≤ 16

14 ≤ j ≤ 16 ν

Thanks to the principle of optimality, the frequency
distribution curves of the reservation and no reservation cases
are identical for the time slots , see Fig. 5. However, for
the time intervals , there are differences between
such curves. For the interval , the rejection policy
is on its maximum point since the system is fully reserved for
the associated time slots.

x s
c2

x s

14 ≤ j ≤ 16

Furthermore, the vectors and are depicted in Fig. 6.
Unlike the previous scenario, the price is proposed for some
intervals. The total number of customers corresponding to
reservation vectors and (regardless of the associated
prices) are depicted in Fig. 7, which shows that all the
resources are allocated for the time interval .

TABLE II

3
Specified Time Interval Reservation Requests for the

Example

j 1 4 5 7 8 9 10 11 12
h1 14 14 14 14 14 14 14 14 14
h2 21 16 16 19 19 19 21 21 18

5 10 15 20 25 30 35 40

5 10 15 20 25 30 35 40

5 10 15 20 25 30 35 40

5 10 15 20 25 30 35 40

5 10 15 20 25 30 35 40

1.0
0.5

0.4
0.2

0

0.4

0.2
0

0

1.0
0.5

0

0.10
0.05

0

Time

c 1
c 2

c 3
ν

ψ

Reservation case
No reservation case

Fig. 3. Comparison of the action frequency distributions for the reservation
and no-reservation cases (Example 2).

Time

1

0

1

2

0

1

0

8

8

8

10 12 14 16 18 20 22

10 12 14 16 18 20 22

10 12 14 16 18 20 22

Reservation vector x

Reservation vector s

c 1
c 2

c 3

x sFig. 4. Specified and unspecified time interval reservation vectors and

(Example 2).

0.4
0.2

0

0.4
0.2

0

0.2
0.1

0

5 10 15 20 25 30 35 40

5 10 15 20 25 30 35 40

5 10 15 20 25 30 35 40

5 10 15 20 25 30 35 40

5 10 15 20 25 30 35 40

Time

1.0

0
0.5

1.0

0
0.5ν

ψ
c 1

c 2
c 3

Reservation case
No reservation case

Fig. 5. Comparison of the action frequency distributions for the reservation
and no-reservation cases (Example 3).

 986 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 4, JULY 2020

Authorized licensed use limited to: Maynooth University Library. Downloaded on June 15,2022 at 09:12:41 UTC from IEEE Xplore. Restrictions apply.

m = 4
N = 30 c = [0.9 1 1.1 1.2] λmax = [0.55 0.5 0.3 0.2]
λmin = µmax = [0.5 0.6 0.6 0.62]

Example 4: Number of prices , number of resources
, price , ,
 [0.3 0.25 0.1 0.08], .

Due to the large state space, the reservation pricing
algorithm with the USLS-ADP is employed. In this example,
the following operational scenarios have been considered:

1) Only instant resource requests.

j = 1,2, . . . ,7
2) Specified time interval reservation requests handled at the

consecutive time slots with the duration reported
in Table III.

j = 7,8,10,11

j = 1, . . . ,6,9,12
h = 4,6,5,11,22,14,26,26

3) Specified time interval reservation requests handled at the
consecutive time slots with the duration
reported in Table IV; unspecified time interval reservation
requests handled at the time slots for the time
slots , respectively.

j = 2,4, . . . ,7

j = 1,3 h = 25,27

4) Specified time interval reservation requests handled at the
consecutive time slots with the duration reported
in Table V; unspecified time interval reservation requests
handled at the time slots for the time slots ,
respectively.

∥r̂∗j∥

∥r̂∗j∥

j ≥ 32

23 ≤ j ≤ 32

∥r̂∗j∥
1 ≤ j ≤ 26

j ≤ 12

j > 12

In all these operational scenarios, the terminal value
function has been calculated by means of a Temporal
Difference based approach over an infinite time horizon. The
value of of such scenarios is plotted in Fig. 8. Generally
speaking, it is noteworthy that the reservation time and its
duration affect the value of . Starting from the terminal
stage and moving backwards, it can be noted that all the
curves increase in the same way. Such behavior is in line with
the definitions of the scenarios, i.e., for the time slots
no resource is assigned for future utilization. The curve of the
Scenario 4 grows faster than the other ones in the interval

, since such scenario targets all the advance
resource requests in that time interval. On the whole, the
Scenario 3 exhibits the higher growth rate of since the
reservation requests span over the entire time slots .
The Scenarios 1, 2, and 4 have the same growth rate for the
time slots , where they have no allocated resource.
However, they have a different offset due to the different
allocated resources for . The Scenario 1 has no resource
reservation, thus the associated parameter vector has the
lowest profile.

TABLE III

2 4
Specified Time Interval Reservation Requests for the

Scenario of the Example

j 1 2 3 4 5 6 7
h1 13 10 12 17 23 15 19
h2 17 20 14 26 32 17 26

TABLE IV

3 4
Specified Time Interval Reservation Requests for the

Scenario of the Example

j 7 8 10 11
h1 12 17 25 18
h2 15 17 28 20

TABLE V

4 4
Specified Time Interval Reservation Requests for the

Scenario of the Example

j 2 4 5 6 7
h1 23 28 30 26 32
h2 26 28 30 29 32

Time

4
2
0

4
2
0

3
2
1
0

1

0

1

0

10

10

10

10

10

12 14 16 18 20 22 24 26 28

12 14 16 18 20 22 24 26 28

12 14 16 18 20 22 24 26 28

12 14 16 18 20 22 24 26 28

12 14 16 18 20 22 24 26 28

Reservation vector x

Reservation vector s

c 1
c 1

c 2
c 3

c 3

x sFig. 6. Specified and unspecified time interval reservation vectors and

(Example 3).

Time

Time

4

6

2

0

1

0

1210 14 16 18 20 22 24 26 28

1210 14 16 18 20 22 24 26 28

Total number of customers with specified time interval

Total number of customers with unspecified time interval

Fig. 7. Total number of customers at different time slots (Example 3,
Scenario 2).

5 10 15 20 25 30 35 40
Time

2247

2246

2245

2244

2243

2242

2241

Scenario 2
Scenario 1
Scenario 3
Scenario 4

N
or

m
-2

 v
ec

to
r r

r̂∗jFig. 8. Norm-2 of the vector for different scenarios defined in Example 4.

FOROOTANI et al.: APPROXIMATE DYNAMIC PROGRAMMING FOR STOCHASTIC RESOURCE ALLOCATION PROBLEMS 987

Authorized licensed use limited to: Maynooth University Library. Downloaded on June 15,2022 at 09:12:41 UTC from IEEE Xplore. Restrictions apply.

IX. Related Work

In this section, an essential literature review about the most
pertinent articles on MDP modeling and relative solutions for
resource allocation problems is provided. A homogeneous
continuous-time Markov chain is proposed in [26] to model
the patient flows for the hospital ward management. The
optimization of the matching between the resources and the
demands is performed by means of a local search heuristic
algorithm. MDPs are employed in [27] for Business Process
Management with the goal of making appropriate decisions to
allocate the resources by trying to minimize the long-term cost
and to improve the performance of the business process
execution. A heuristic based Reinforcement Learning
approach is adopted as optimization method. In [28], a
resource allocation problem for the vehicular cloud computing
systems is discussed. Since the objective is the maximization
of the total long-term expected reward, the optimization is
formulated as an infinite horizon MDP with the state space,
action space, reward model, and transition probability
distribution of the particular case study. An iteration algorithm
is utilized to develop the optimal scheme that computes which
action has to be taken in a certain state. MDP based modelling
and solution methodology for scheduling patients in a multi-
class, multi-resource surgical system is employed in [29]. The
proposed model provides a scheduling policy for all surgeries,
and minimizes a combination of the lead time between patient
request and surgery date, overtime in the operating room, and
congestion in the wards. A least square temporal difference
ADP approach is to deal with the curse of dimensionality. One
of the most important operations in the production of
growing-finishing pigs is the marketing of pigs for slaughter.
In [30], a sequential marketing decisions at the herd level is
considered as a high dimensional infinite horizon MDP. A
value iteration ADP algorithm is used to estimate the value
function for this infinite time horizon problem. The stochastic
behavior of the food banks inventory system has been
modelled by using an MDP in [31], which has the advantage
of indicating the best way to allocate supplies based on the
inventory level of the food bank. Such paper presents a novel
transformation of the state space to account for the large
distribution quantities observed in practice and shows that the
particular underlying stochastic behavior can be approximated
by a normal distribution. Similarly to our approach, both
stochastic and deterministic aspects are addressed. In [32], a
sequential resource allocation problem with an objective
function aimed at equitable and effective service for the
problem of distributing a scarce resource to meet the
customer's demands is carried out. In this work, through a DP
framework, the structure of the optimal allocation policy for a
given sequence of the customer's demand is characterized as
continuous probability distributions. In this regard, by using
the identified optimal structure, a heuristic base allocation
policy for the instances with discrete demand distribution has
been proposed.

In some other works, resource allocation problems are
treated as multi-agent systems. In [33], for instance, the
dynamic of the agents is considered as second order

differential equations, while they communicate over weight-
balanced and strongly connected digraphs. The optimization
problem is formulated as a constrained convex objective
function. The effectiveness of the method, however, is
evaluated for a small number of agents, only. An alternative
approach can be found in [34], where the distribution of a
common resource between two sources of time varying
demand is carried out to develop the time-efficient methods
for minimizing delays at severely congested airports. In this
work, the problem is formulated as a DP optimization and the
objective is based on the second moments of the stochastic
queue lengths. It is shown that for sufficiently high volumes
of the demand, optimal values can be well approximated by
the quadratic functions of the system state. Again, a heuristic
based approach is applied as ADP method. A comparison
between Monte Carlo tree search and rolling horizon
optimisation approaches is carried out in [35] for two
challenging dynamic resource allocation problems: the wild
fire management and the queuing network control. Even
though this work shows interesting results, the reported
techniques are suitable just for the specific applications
considered. Another example of resource allocation strategies
can be found in [36], where the problems of budget
allocations of non profit organizations on geographically
distinct areas is tackled. The proposed solution consists in
formulating the overall resource allocation problem as a two-
stage stochastic mixed integer programming problem. A
heuristic-based approach is finally used to simplify the
original formulation.

An interesting variant to the solution of (stochastic) resource
allocation problems is represented by the MPC, especially
suited when the dynamics of the systems is considered to be
variable over time (time-variant processes). In [37], for
instance, it is shown how the stochastic resource allocation
problem can be addressed by suitably modifying the MDP and
the optimal control problem and using MPC to allocate
resources over time. In particular, a new class of algorithms
for the stochastic unreliable resource allocation problem is
proposed, when there is a chance that the task will not be
completed by that resource. However, a well-defined and
accurate prediction model is a priori needed for an effective
strategic allocation control. Similarly, in [38], the solution for
the stochastic resource allocation problem makes use of MPC
integrated with machine learning and Markov chain model.
The theory is based on a three layer lambda architecture and
particularly tailored to the case study of a dispatch decision
problem from an energy distribution utility.

As a general remark, it is noted that our paper provides a
sufficiently comprehensive modeling framework, which is not
limited to a specific application. Moreover, the optimization
algorithms for price policy calculation exploit the most
advanced ADP techniques to address the scalability issues of
real-world applications, instead of resorting to heuristic or
example driven methods. To the best of the authors'
knowledge, the current literature on this topic do not have
these features.

Admittedly, one of main difficulties of applying ADP based
approaches is the choice of proper basis functions, which is a

 988 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 4, JULY 2020

Authorized licensed use limited to: Maynooth University Library. Downloaded on June 15,2022 at 09:12:41 UTC from IEEE Xplore. Restrictions apply.

current area of research (see Section VII-A). Moreover, it is
assumed to know the system stochastic mechanisms and the
related probability distributions. If this is not feasible, one can
resort to computer simulators (generating samples according
to such probability distribution) or Reinforcement Learning
based approaches [8], [12].

X. Conclusions

Resource reservations in resource allocation problems have
been modelled as a general-purpose MDP based framework.
Stochastic DP based approaches have been proposed to
compute proper pricing policies, and show how Bellman’s
principle of optimality can play a role in the implementation
of the resulting pricing reservation algorithms. However, the
resulting framework, which also includes an overbooking
business strategy, becomes computationally intractable in case
of realistic resource allocation problems. As a consequence,
ADP techniques based on linear function approximations have
been employed to solve such scalability issues. In particular,
the novel USLS-ADP algorithm has been applied. Examples
addressing both specified and unspecified time interval
reservation requests have been shown, solved, and analyzed to
verify the soundness of the proposed approach.

As for future work, we plan to apply the proposed
framework to relevant business applications, such as flight
ticket booking, urban parking management, and smart energy
management systems. This implies defining the probability
distributions of the underlying stochastic processes. In case of
their unavailability, it is possible to resort to computer
simulators (generating samples according to such probability
distribution) or reinforcement learning based approaches.

References
 D. Bertsimas, S. Gupta, and G. Lulli, “Dynamic resource allocation: A
flexible and tractable modeling framework,” European J. Operational
Research, vol. 236, pp. 14–26, 2014.

[1]

 S. M. Kandil, H. E. Z. Farag, M. F. Shaaban, and M. Z. El-Sharafy, “A
combined resource allocation framework for PEVs charging stations,
renewable energy resources and distributed energy storage systems,”
Energy, vol. 143, pp. 961–972, 2018.

[2]

 J. Acimovic and S. C. Graves, “Making better fulfillment decisions on
the fly in an online retail environment,” Manufacturing & Service
Operations Management, vol. 17, no. 1, pp. 1–18, 2014.

[3]

 T. Liu, B. Tian, Y. Ai, Y. Zou, and F. Y. Wang, “Parallel reinforcement
learning-based energy efficiency improvement for a cyber-physical
system,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 617–626, 2020.

[4]

 L. Jiang, H. Huang, and Z. Ding, “Path planning for intelligent robots
based on deep Q-learning with experience replay and heuristic
knowledge,” IEEE/CAA J. Autom. Sinica, 2019.

[5]

 A. Pietrabissa, F. D. Priscoli, A. D. Giorgio, A. Giuseppi, M. Panfili,
and V. Suraci, “An approximate dynamic programming approach to
resource management in multi-cloud scenarios,” Int. J. Control, vol. 90,
pp. 492–503, 2017.

[6]

 D. P. Bertsekas, “Dynamic Programming and Optimal Control, Vol. I”
Athena Scientific, Belmont, Massachusetts, USA, 2017. [Online].
Available: http://www.athenasc.com/dpbook.html

[7]

 D. P. Bertsekas, “Dynamic Programming and Optimal Control, Vol. II”
Athena Scientific, Belmont, Massachusetts, USA, 2012. [Online].
Available: http://www.athenasc.com/dpbook.html

[8]

 C. Quan and F. Ren, “Weighted high-order hidden Markov models for
compound emotions recognition in text,” Information Sciences, vol. 329,
pp. 581–596, 2016.

[9]

 V. M. Baskaran, Y. C. Chang, J. Loo, K. Wong, and M. Gan,[10]

“Dominant speaker detection in multipoint video communication using
Markov chain with non-linear weights and dynamic transition window,”
Information Sciences, vol. 464, pp. 344–362, 2018.
 A. Pietrabissa, M. Castrucci, and A. Palo, “An MDP approach to
faulttolerant routing,” European J. Control, vol. 18, no. 4, pp. 334–347,
2012.

[11]

 D. P. Bertsekas, “Feature-based aggregation and deep reinforcement
learning: A survey and some new implementations,” IEEE/CAA J.
Autom. Sinica, vol. 6, no. 1, pp. 1–31, 2019.

[12]

 D. P. Bertsekas, “Dynamic programming and suboptimal control: A
survey from ADP to MPC,” European J. Control, vol. 11, no. 4,
pp. 310–334, 2005.

[13]

 Z. Zhang and D. Zhao, “Clique-based cooperative multiagent
reinforcement learning using factor graphs,” IEEE/CAA J. Autom.
Sinica, vol. 1, no. 3, pp. 248–256, 2014.

[14]

 M. Kumar, K. Rajagopal, S. N. Balakrishnan, and N. T. Nguyen,
“Reinforcement learning based controller synthesis for flexible aircraft
wings,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 4, pp. 435–448, 2014.

[15]

 A. Forootani, M. Tipaldi, M. G. Zarch, D. Liuzza, and L. Glielmo,
“Modelling and solving resource allocation problems via a dynamic
programming approach,” Int. J. Control, 2019.

[16]

 A. Forootani, D. Liuzza, M. Tipaldi, L. Glielmo, “Allocating resources
via price management systems: a dynamic programming-based
approach,” Int. Journal of Control, 2019.

[17]

 D. P. Bertsekas, “Temporal difference methods for general projected
equations,” IEEE Trans. Automatic Control, vol. 56, no. 9,
pp. 2128–2139, 2011.

[18]

 A. Forootani, R. Iervolino, and M. Tipaldi, “Applying unweighted least
squares based techniques to stochastic dynamic programming: Theory
and application,” IET Control Theory & Applications, vol. 13, no. 15,
pp. 2387–2398, 2019.

[19]

 D. Bertsekas, “Approximate policy iteration: A survey and some new
methods,” J. Control Theory and Applications, vol. 9, no. 3,
pp. 310–335, 2011.

[20]

 D. P. Bertsekas and J. N. Tsitsiklis, Introduction to Probability, Athena
Scientific Optimization and Computation Series, 2nd. ed., Belmont,
Massachusetts, USA, 2008.

[21]

 D. P. de Farias and B. Van Roy, “The linear programming approach to
approximate dynamic programming,” Operations Research, vol. 51,
no. 6, pp. 850–865, 2003.

[22]

 H. Yu and D. P. Bertsekas, “Convergence results for some temporal
difference methods based on least squares,” IEEE Trans. Automatic
Control, vol. 54, no. 7, pp. 1515–1531, 2009.

[23]

 L. Busoniu, D. Ernst, B. De Schutter, and R. Babuska, “Cross-entropy
optimization of control policies with adaptive basis functions,” IEEE
Trans. Systems, Man, and Cybernetics - Part B: Cybernetics, vol. 41,
no. 1, pp. 196–209, 2011.

[24]

 D. P. Bertsekas and H. Yu, “Projected equation methods for
approximate solution of large linear systems,” J. Computational and
Applied Mathematics, vol. 227, pp. 27–50, 2009.

[25]

 A. R. Andersen, B. F. Nielson, and L. B. Reinhardt, “Optimization of
hospital ward resources with patient relocation using Markov chain
modeling,” European J. Operational Research, vol. 260, no. 3,
pp. 1152–1163, 2017.

[26]

 Z. Huang, W. M. Van Der Aalst, Xu. Lu, and H. Duan, “Reinforcement
learning based resource allocation in business process management,”
Data & Knowledge Engineering, vol. 70, no. 1, pp. 127–145, 2011.

[27]

 K. Zheng, H. Meng, P. Chatzimisios, L. Lei, and X. Shen, “An SMDP
based resource allocation in vehicular cloud computing systems,” IEEE
Trans. Industrial Electronics, vol. 62, no. 12, pp. 7920–7928, 2015.

[28]

 D. Astaraky and J. Patrick, “A simulation based approximate dynamic
programming approach to multi-class multi resource surgical
scheduling,” European J. Operational Research, vol. 245, no. 1,
pp. 309–319, 2015.

[29]

 R. Pourmoayed and L. R. Nielsen, “An approximate dynamic
programming approach for sequential pig marketing decisions at herd
level,” European J. Operational Research, vol. 276, no. 3, pp. 1056–
1070, 2019.

[30]

 S. Fianu and L. B. Davis, “A Markov decision process model for
equitable distribution of supplies under uncertainty,” European J.
Operational Research, vol. 264, pp. 1101–1115, 2018.

[31]

FOROOTANI et al.: APPROXIMATE DYNAMIC PROGRAMMING FOR STOCHASTIC RESOURCE ALLOCATION PROBLEMS 989

Authorized licensed use limited to: Maynooth University Library. Downloaded on June 15,2022 at 09:12:41 UTC from IEEE Xplore. Restrictions apply.

 R. W. Lien, S. M. R. Iravani, and K. R. smilowitz, “Sequential resource
allocation for nonprofit operations,” Operations Research, vol. 62, no. 2,
pp. 301–317, 2014.

[32]

 Z. Deng, “Distributed algorithm design for resource allocation problems
of second-order multi-agent systems over weight-balanced digraphs,”
IEEE Trans. Systems, Man, and Cybernetics, 2019.

[33]

 R. Shone, K. Glazebrook, and K. G. Zografos, “Resource allocation in
congested queueing systems with time-varying demand: An application
to airport operations,” European J. Operational Research, vol. 276,
no. 2, pp. 566–581, 2019.

[34]

 D. Bertsimas, J. D. Grifth, V. Gupta, M. J. Kochenderfer, and V. V.
Misic, “Comparison of Monte Carlo tree search and rolling horizon
optimization for large-scale dynamic resource allocation problems,”
European J. Operational Research, vol. 263, no. 2, pp. 664–678, 2017.

[35]

 A. Bayram, S. Solak, and M. Johnson, “Stochastic models for strategic
resource allocation in non profit foreclosed housing acquisitions,”
European J. Operational Research, vol. 233, no. 1, pp. 246–262, 2014.

[36]

 D. Castanon, J. M. Wohletz, “Model predictive control for stochastic
resource allocation,” IEEE Trans. Automatic Control, vol. 54, no. 8,
pp. 1739–1750, 2009.

[37]

 M. P. Dal Pont, R. S. Ferreira, W. W. Teixeira, D. M. Lima, and J. E.
Normey-Rico, “MPC with machine learning applied to resource
allocation problem using Lambda architecture,” IFAC-Papers OnLine,
vol. 52, no. 1, pp. 550–555, 2019.

[38]

Ali Forootani (M’19) received the M.Sc. degree in
electrical engineering and automatic control system
from Power and Water University of Technology,
Iran, in 2011, and the Ph.D. degree in automatic
control system from Department of Engineering,
University of Sannio, Italy, in 2019. From 2011 to
2012, he worked on the monitoring of high voltage
circuit breakers and wind turbine control system at
Niroo Research Institute, Iran. He worked as a
control and instrumentation Engineer at the Ministry

of Power and Energy (Water and Sewage khuzestan Engineering Company)
from 2012 to 2015. He worked as a Research Fellow at the Measurement and
Instrumentation Laboratory University of Sannio, as well as Post Doc.
Research Fellow at the University of Salerno from Dec. 2018 to Jan. 2020.
Currently he is doing research at Hamilton Institute, Maynooth University,
Ireland. His current research interests include Markov decision processes,
approximate dynamic programming, reinforcement learning in optimal

control, and learning in network control systems. He is a Member of IEEE
Control System Society and Reviewer of several important journals.

Raffaele Iervolino (M’19) received the laurea
degree cum laude in aerospace engineering from the
University of Naples, Italy, in 1996, where he also
obtained the Ph.D. degree in electronic and computer
science engineering in 2002. Since 2003 he is an
Assistant Professor of automatic control at the
University of Naples. From 2005 he is also a Adjoint
Professor of automatic control with the Department
of Electrical Engineering and Information
Technology at the same University. He is Member of

IEEE Control System Society. His research interests include piecewise affine
systems, opinion dynamics and consensus in social networks, and human
telemetry systems.

Massimo Tipaldi received the master degree in
computer science engineering and the Ph.D. degree
in information technology from the University of
Sannio, Italy, in 1998 and 2017, respectively. He
possesses more than 20 years of industrial experience
in the managerial and technical coordination of
ESA/ASI/CNES space project (satellite systems,
experimental equipment for the International Space
Station, and ground segments). He holds 1 patent and
has co-authored more than 40 papers published in

proceedings of international conferences or international archival journals.
His research interests include space systems engineering, critical SW systems,
reinforcement learning, approximate dynamic programming, stochastic
systems, and advanced system control techniques.

Joshua Neilson is a Ph.D. candidate in information
technology at the University of Sannio, Italy, where
he studies optical coatings for gravitational wave
interferometers. He received the master degree in
physics from California State University, USA, in
2017. He has been a Member of the LIGO Scientific
Collaboration since 2016, has co-authored several
peer-reviewed papers and more than 40 LIGO
collaboration papers.

 990 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 4, JULY 2020

Authorized licensed use limited to: Maynooth University Library. Downloaded on June 15,2022 at 09:12:41 UTC from IEEE Xplore. Restrictions apply.

