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   Abstract—A stochastic resource allocation model, based on the
principles  of  Markov  decision  processes  (MDPs),  is  proposed  in
this  paper.  In  particular,  a  general-purpose  framework  is
developed,  which  takes  into  account  resource  requests  for  both
instant  and future needs.  The considered framework can handle
two  types  of  reservations  (i.e.,  specified  and  unspecified  time
interval  reservation  requests),  and  implement  an  overbooking
business  strategy  to  further  increase  business  revenues.  The
resulting dynamic pricing problems can be regarded as sequential
decision-making problems under uncertainty,  which is  solved by
means  of  stochastic  dynamic  programming  (DP)  based
algorithms.  In  this  regard,  Bellman’s  backward  principle  of
optimality is exploited in order to provide all the implementation
mechanisms for the proposed reservation pricing algorithm. The
curse of dimensionality, as the inevitable issue of the DP both for
instant  resource  requests  and  future  resource  reservations,
occurs.  In  particular,  an  approximate  dynamic  programming
(ADP)  technique  based  on  linear  function  approximations  is
applied  to  solve  such  scalability  issues.  Several  examples  are
provided to show the effectiveness of the proposed approach.
    Index Terms—Approximate  dynamic  programming  (ADP),
dynamic  programming  (DP),  Markov  decision  processes  (MDPs),
resource allocation problem.
 

I.  Introduction

R ESOURCE allocation is defined as the set of problems in
which  one  has  to  assign  resources  to  tasks  over  some

finite time horizon to customer requests. Many important real-
world  matters  can  be  cast  as  resource  allocation  problems,
including  applications  in  air  traffic  flow  management  [1],
energy [2], logistics, transportation, and fulfillment [3]. These
problems  are  notoriously  difficult  to  solve  for  two  reasons.
First,  they  typically  exhibit  stochasticity,  i.e.,  the  requests  to
be  processed  may  arrive  randomly  according  to  some
stochastic  process  which,  itself,  depends  on  where  resources
are  allocated.  Second,  they  exhibit  extremely  large  state  and
action  spaces,  making  solution  by  traditional  methods

infeasible  [4],  [5].  In  the  fields  of  operational  research  and
artificial  intelligence,  primarily,  the  state  space  as  well  as
decisions  (or  actions)  are  discrete.  In  this  regard,  resource
allocation  problems  with  discrete  states  and  decisions  are
studied  at  length  under  the  umbrella  of  Markov  decision
processes  (MDPs)  [6].  Systems  with  uncertainty  and
nondeterminism can be naturally  modelled as  MDPs [7],  [8].
For  instance,  emotion  recognition  in  text  [9],  speaker
detection  [10],  and  fault-tolerant  routing  [11]  are  considered
as MDPs.

The optimal policy for MDPs can be computed by applying
exact  dynamic  programming  (DP)  techniques  thanks  to  their
strength  in  solving  sequential  decision  making  problems  [7].
However,  it  is  well  known  that  such  techniques  suffer  from
the Curse of Dimensionality,  which is due to state and action
space explosion of real-world applications [8]. For this reason,
efforts  have  been  devoted  to  finding  the  techniques  able  to
solve this problem in an approximate way [12]. This field has
evolved  under  a  variety  of  names  including  approximate
dynamic  programming  (ADP),  neuro-dynamic  programming,
and reinforcement learning [13]–[15].

In  this  paper,  resource  allocation  problems  are  formulated
and  solved  via  a  general-purpose  MDP-based  framework,
which  can  be  used  for  different  real  business  contexts.  We
address both instant (i.e.,  customers requires a resource to be
allocated immediately) and advance (i.e.,  the customer books
a  resource  for  future  use)  resource  requests.  It  is  considered
that the same resource can be sold at different price values at
different  times  to  take  the  advantage  of  heterogeneous
preferences of customers over time, e.g., a seat on an airplane
or  a  room  in  a  hotel.  Both  the  formulation  and  the
corresponding  resolution  for  resource  allocation  problems
with  instant  resource  requests  were  firstly  explored  by  the
authors  in  [16],  where  only  exact  DP  approaches  were
applied. In [17], the authors further extended the approach to
incorporate  the  possibility  that,  besides  an  immediate
allocation request, a customer can book a resource in advance
for  future  utilisation.  Two types  of  booking  procedures  were
considered,  that  is  to  say,  booking  resources  with  specified
and unspecified time interval options.

The  main  differences  of  this  paper  with  [17]  are  the
following:  i)  new  assumptions  and  procedures  both  in
modeling  and  in  the  resource  reservation  approach;  ii)  the
usage of the unweighted sample based least  squares (USLS)-
ADP  algorithm  instead  of  a  temporal  difference  ADP  based
approach  [18]  to  solve  the  curse  of  dimensionality;  iii)
comprehensive  and  analytical  algorithms  suitable  for
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computer  based  implementation.  As  for  the  first  aspect,  the
proposed solution manages the overbooking situations, which
occur  when  the  number  of  allocated  resources  at  the  current
time slot can not be confirmed since new resources have been
already allocated for the next one (due to the advance resource
reservation  mechanism),  and  the  overall  needs  can  not  be
satisfied  by  the  system  overall  capacity.  Such  overbooking
situations  occur  since  the  system  handles  both  instant  and
future  resource  requests.  Managing them entails  a  significant
update  in  the  modelling  of  resource  allocation  problems,  its
dynamics, and the resulting allocation policy.

The  USLS-ADP algorithm was  presented  for  the  first  time
by the authors in [19],  where its convergence properties over
an  infinite  time  horizon  are  also  discussed.  The  USLS-ADP
algorithm  inherits  both  the  contraction  mapping  and
monotonicity  properties  of  the  exact  discounted  DP
algorithms [20]. Thanks to this, it is suited for both finite and
infinite  time  horizons.  As  a  consequence,  it  can  be  used  for
solving resource allocation problems with instant and advance
reservation  requests.  The  latter  case  actually  involves  time
intervals over finite (possibly very large) time horizons.

As  for  the  third  aspect,  we  provide  the  implementation
mechanisms  of  the  reservation  pricing  algorithms,  starting
from the steps defined in [17]. For instance, we show how to
exploit  Bellman’s  principle  of  optimality  [7]  to  assess  the
allocation  of  future  resources  at  different  prices  and  their
impact  on  the  current  expected  total  revenue.  More
specifically,  a  stochastic  prediction  of  the  system  evolution
(up  to  the  time  when  the  new  resource  is  requested)  is
performed.  Then,  the  set  of  possible  prices  is  applied  and
assessed  based  on  how they  affect  the  current  expected  total
revenue. When the most suitable price is chosen, the complete
pricing policy is renewed. This approach shows how to bridge
the gap between model predictive control (MPC) and DP [13].

Various  parts  of  the  proposed  modeling  and  optimization
approach,  consisting of DP, reservation procedure,  and ADP,
are  implemented  in  the  MATLAB  environment  for  resource
allocation  problems  in  a  general  framework.  Moreover,
different  examples  are  provided  to  support  and  evaluate  the
effectiveness of the method.

This paper is organized as follows. Section II shows how to
model  resource  allocation  problems  via  MDPs.  Resource
allocation  problem  modeling  with  specified  time  interval
reservation  requests  and  the  related  pricing  algorithm  are
provided in Sections III–V. Resource allocation problems with
unspecified  reservation  time  intervals  are  outlined  in  Section
VI.  Section  VII  addresses  the  usage  of  the  proposed
reservation pricing algorithm for resource allocation problems
with  large  state  space.  Simulation  results  are  provided  in
Section  VIII.  Section  IX  outlines  the  scientific  literature
relevant to this work. Finally, Section X concludes the paper. 

II.  Preliminaries and Modelling Resource Allocation
Problems as MDPs

This  section  shows  how  to  formulate  resource  allocation
problems  as  a  set  of  constrained  parallel  discrete-time  birth
death  processes  (BDPs)  [21],  which  are  integrated  into  one
Markov  decision  process  (MDP).  The  configuration  of  the

m
resulting  MDP  based  framework  can  be  controlled  by  the
price manager, who assigns a price among  possible choices
by applying a specific pricing policy.

Such approach was firstly introduced by the authors in [16].
Hereafter,  the  main  aspects  of  such  framework  are  outlined
along  with  the  notation  used  in  this  manuscript.  We  also
provide  some  preliminaries  on  how  to  solve  the  related
decision  making  problem  via  DP  based  techniques  [7],  [20].
For more details, the reader can refer to [16]. 

A.  MDP Notation
The following MDP notation is adopted in the paper:
Ξ = {ξ1, . . . , ξΩ} ξv, ξw ∈ Ξ

v,w = 1, . . . ,Ω
j

ξ( j) ∈ Ξ

•   is  the finite set  of states,  where 
denote  two  generic  elements  of  this  set,  with .
The  state  variable  at  the  generic  time  slot  is  denoted  with

.  Note  that,  for  the  sake  of  generality,  a  symbolic
notation for the MDP states is used.

U = {u1, . . . ,un}
u

u(ξ, j)
Ξ U

j
u(ξ, j) := u( j)

•   is  the  finite  set  of  actions  (also  called
decisions or controls), where  is a generic element of this set.
We define the control function  as the mapping between
the whole  state  space  and the  set  of  actions ,  at  the  time
slot . For the sake of simplicity, in the paper we remove the
explicit dependency on the state, i.e., .

pξvξw (u) :=
[
p(ξ( j+1) = ξw|ξ( j) = ξv,u( j) = u)

]
u ∈ U ξv j

ξw j+1

•   is  the state
transition probability function. It gives the probability that an
action , performed in the state  at the time slot , leads
the system to the state  at the time slot .

R : Ξ×U → [0,+∞)
ui ξv ∈ Ξ

R(ξv)

•  is the reward function, obtained when
taking  an  action  at  any  generic  state .  In  this  paper,
we consider that reward function only depends on the state, so
it can be written as . 

B.  Modeling Resource Allocation Problems as MDP

N ∈ N
m

ci i = 1 . . .m

This  paragraph  addresses  the  problem  of  dynamically
pricing  equivalent  resources  and  allocating  them  to
customers. A set of  hourly prices (or prices per unit of time)
is given, and price managers can select one of them in order to
maximize  the  expected  total  revenue.  They  can  also  reject
resource  requests  from  customers,  if  deemed  not  convenient
from a profit  standpoint.  Price managers can charge different
prices  for  the  same  resource  over  time  depending  on  the
resource availability and expected profit. As shown in [16], it
is  possible  to  formulate  such  price  management  system  as  a
set  of  BDPs.  In particular,  there is  a  dedicated BDP for each
feasible price  (with ), which allows modelling the
unpredictable  behavior  of  customers  in  requesting  and
releasing resources. As a result, the system evolves as a set of
parallel BDPs. By assigning a specific price at each time slot,
the  price  manager  defines  which  BDP  is  active  for  one
(possible)  birth  and  one  (possible)  death,  whereas  all  the
others are active only for one (possible) death. In this regard,
we assume that:

• At maximum, only one customer can request a resource at
each  time  slot.  Moreover,  each  customer  can  request  it  for
either immediate or future reservation (the latter addressed in
the next sections).

ci• The time slot duration is chosen so that, for each price ,
at  most  one  customer  associated  to  each  BDP  may  leave  at
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any time slot.
This way, we can establish the decision making process by

integrating all the BDPs into one MDP.

ci
Ci = ⟨Ξi,Ui,Ti,Ri⟩

Having  said  that,  we  can  proceed  by  providing  the
mathematical formulation of resource allocation problems for
a  specific  price.  The  MDP associated  with  each  price  is
defined by a tuple  where,
Ξi Ξi = {ξ0

i , ξ
1
i , . . . , ξ

N
i }

j ξi( j) ∈ Ξi

ξ
vi
i ξ

wi
i

ξi( j) = ξvi
i vi j

ci

•  is the state space, . The state variable
at time  is denoted with . Moreover, we denote with

 and  two generic states of the process. In simpler words,
 means  that  resources  are  allocated  at  time  at

price .

N |ξvi
i | = vi ≤ N

•  The maximum number  of  allocable  resources  is  assumed
to be finite and equal to , and we define .

Ui
Ui = {ci, ν} ci ∈ R+

ci ν

Ui(ξi) ξi( j)
ξi

•   is  the  finite  set  of  actions  (also  called  decisions  or
controls),  defined  as ,  where  represents
“allocation” with  price  and  denotes  the  action  of
“rejection”.  With  a  slight  abuse  of  notation,  we  denote  with

 the set of actions admissible for the state variable .
Hence, for each state , we have
  Ui(ξi) = {ci, ν}, if |ξi| < N

Ui(ξi) = {ν}, if |ξi| = N.
(1)

j ui( j) ∈ Ui(ξi( j))
N ∈ N

The  decision  at  time  is  denoted  as .  As
previously defined,  is the number of resources.
Ti•  is the state transition mapping, represented by the state

transition probability matrix with elements
 

pξvi
i ξ

wi
i

(ui( j)) := p
[
ξi( j+1) = ξwi

i |ξi( j) = ξvi
i ,ui( j)

]
s.t. max{0,vi−1} ≤ wi ≤min{N,vi+1}

(2)

where  the  constraint  implies  the  fact  that  the  system  is
modelled  as  a  BDP.  Therefore,  all  the  pairs  of  states  not
fulfilling  it  have  associated  transition  probabilities  equal  to
zero.

Ri : Ξi→ [0,+∞)•  is the reward function. In our case
 

Ri(ξi) = ciξi (3)

ξi
vi

where,  for  the  sake  of  simplicity  and  with  a  slight  abuse  of
notation,  the  state  variable  is  used  instead  of  the
corresponding allocated number of resources .

Ci

ui = ci Ci
λi

ci µi

ci
1−λi−µi

ui = ν

The  MDP  shown  in Fig. 1 depicts  the  state  transition
probabilities  among  the  various  states.  By  applying  the
decision ,  the resulting Markov chain  allows a  birth
transition  from  the  current  state  with  probability 
(representing  the  probability  that  a  customer  requires  the
resource  at  price ),  a  death  transition  with  probability 
(representing  the  probability  a  customer  releases  a  resource
previously  reserved  at  price ),  and  a  self-transition  with
probability  (representing  the  probability  that  no
customer releases or  asks for  a  resource).  On the other  hand,
when  the  decision  is  taken,  no  customer  can  purchase
the  resource,  and  only  a  death  transition  or  a  self-transition
from the current state is allowed.

m Ci

N
C

The “composition” of  different  corresponding to each
price  and  a  common  constraint  representing  the  fact  that  the
number  of  available  resources  is  equal  to ,  give  rise  to  the
overall  system .  In  particular,  it  can  be  modelled  as  a

C = ⟨Ξ,U,T ,R⟩
constrained  time-homogeneous  (or  stationary)  MDP,  defined
by a tuple  where

Ξ Ξ =
{
ξh = (ξh1

1 , . . . , ξ
hm
m )′ ∈�m

i=1Ξi : ||ξh||1 ≤ N,h = (h1, . . . ,hm)′, ||ξ||1 =
∑m

i=1 hi
}

Ξ Ω

ξv = (ξv1
1 , ξ

v2
2 , . . . , ξ

vm
m )′ ξw = (ξw1

1 , ξ
w2
2 ,

. . . , ξwm
m )′

ξh( j)
j ξ( j) ξ

hi
i ξi hi

•   is  the  entire  state  space, 
.  The  car-

dinality  of  is  denoted  by .  Moreover,  we  denote  two
generic  states  with  and 

. To simplify the complexity in the notation and with
a slight abuse of notation, we indicate the state variable 
at time  as , and we can use indistinctly , , and .

U = {c1, . . . ,cm, ν}
U(ξ) ξ

•  is the overall action set. We denote with
 the set of actions admissible at state . We have

  U(ξ) = {c1, . . . ,cm, ν}, if ||ξ||1 < N

U(ξ) = {ν}, if ||ξ||1 = N.
(4)

u( j) jWe denote with  the control function at time .
T•  is the state transition mapping, represented by the state

transition probability matrix with elements.
 

pξvξw
(
u( j)
)

:= p
[
ξ( j+1) = ξw|ξ( j) = ξv,u( j)

]
. (5)

u( j) = ciIn case  we have
 

pξvξw (ci) = pξvi
i ξ

wi
i

(ci)×
m∏

l=1
l,i

p
ξ

vl
l ξ

wl
l

(ν)

s.t. max{0,vi−1} ≤ wi ≤min{N,vi+1}
max{0,vl−1} ≤ wl ≤ vl (6)

u( j) = νwhile if 
 

pξvξw (ν) =
m∏

l=1

p
ξ

vl
l ξ

wl
l

(ν)

s.t. max{0,vl−1} ≤ wl ≤min{N,vl}.
(7)

ξv ξw
We  can  also  highlight  the  following  aspects  for  the

transition from the state  into the state :
 

max∥ξw∥1 =min
(∥ξv∥1+1,N

)
(8)

 

min∥ξw∥1 =max
(
0,∥ξv∥1−m

)
. (9)

R : Ξ→ [0,+∞)•  is the reward function, defined as
 

R(ξ) =
m∑

i=1

ciξi. (10)

N = 2
m = 2 U = {c1,c2, ν}

Fig. 2 shows a  resource  allocation problem modelled as  an
MDP  with  number  of  resources ,  number  of  prices

, and the action set . Its generic state can be

 

ui = ci ξ0
i ξ1

i
...

ui = ν ξ0
i ξ1

i ξ2
i

ξ2
i

...

λi

µi

λi

1 − λi − µi1 − λi

µi

1 − λi − µi

µi

1 1 − µi

µi

1 − µi

 
Ci ui = ci

ui = ν

Fig. 1.     MDP .  Transitions  allowed  with  the  input  are  depicted  in
the  top  part  of  the  figure.  Transitions  allowed  with  the  input  are
depicted in the bottom part.
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(ξ1, ξ2) ∈ Ξ = {(0,0), (0,1), (1,0), (1,1), (0,2), (2,0)}
ξ1 ξ2

c1 c2

denoted by ,
where  and  correspond  to  the  number  of  resources
allocated at price  and , respectively.
 

C.   Preliminaries  on  DP  Techniques  for  Solving  Resource
Allocation Problems

Once a resource allocation problem is modelled as an MDP,
we  can  apply  DP  techniques  in  order  to  solve  the  related
decision  making  problem  and  calculate  proper  pricing
policies.

π = {u(0), . . . ,u(T −1)}

T Jπ : Ξ→ R

To start with, let  be the policy, that is
to  say,  the  sequence  of  control  functions  applied  over  the
finite time horizon . We define its value function 
as follows:
 

Jπ
(
ξ(0)
)
= E
{

JT (ξ(T ))+
T−1∑
j=0

R
(
ξ( j+1)|ξ( j),u( j)

)}
(11)

E{·} JT (·)
ξ(T ) T

JT
(
ξ(T )
)

R
(
ξ(T )
)

E{·}

T

where  is  the  expectation  operator,  is  the  terminal
value  function,  and  is  the  state  at  the  terminal  time .
The  terminal  value  function  is  assumed  to  be  known  and
bounded:  in  particular,  in  this  paper,  is  set  to

.  Note  that  the  expected  operator  is  applied  over
the  actual  visited  states,  which  determine  the  actual  rewards
collected  over  the  finite  time  horizon .  This  explains  the
operator “|” coming from the conditional probability notation
used in the previous definition.

Jπ(·)

T

π∗

The value function of a specific policy  can be regarded
as  the  expected  total  revenue  computed  over  the  finite  time
horizon  for  resource allocation problems,  when applying a
specific  pricing  policy.  DP  techniques  aim  at  finding  the
optimal  policy  that  maximizes  the  expected  total  reward
defined as
 

J∗
(
ξ(0)
)
=max

π
Jπ
(
ξ(0)
)
. (12)

Under the assumption of having a relative small number of
states,  we  can  apply  the  exact  DP  algorithm,  which  exploits

Bellman’s  principle  of  optimality  [7].  In  particular,  starting
from the terminal value function
 

JT
(
ξ(T )
)
= R(ξ(T )) =

m∑
i=1

ciξi(T )

the optimal value function can be recursively expressed as
 

J∗j
(
ξ( j)
)
= max

u( j)∈{c1,c2,...,cm,ν}
E

 m∑
i=1

ciξi( j)+ J∗j+1
(
ξ( j+1)

)
=

m∑
i=1

ciξi( j) + max
u( j)∈{c1,c2,...,cm,ν}

E
{
J∗j+1
(
ξ( j+1)

)}
=

m∑
i=1

ciξi( j)+max
[
E
{
J∗j+1
(
ξ( j+1)

) |u( j) = c1
}
,

E
{
J∗j+1
(
ξ( j+1)

) |u( j) = c2
}
, . . . ,

E
{
J∗j+1(ξ( j+1)) |u( j) = cm

}
,

E
{
J∗j+1
(
ξ( j+1)

) |u( j) = ν
}]
.

max
u( j)∈{c1,c2,...,cm,ν}

E
{
·
}

J∗j (·)
j

j T
j

ξ( j) ξ( j+1)
J∗j+1(·)

J∗
(
ξ(0)
)

ξ(0)

The  last  expression  comes  from  the  expansion  of  the  term
.  Thanks  to  Bellman’s  principle  of

optimality, the generated value function  at each time slot
 is  equal  to  the  optimal  value  function  for  the  tail  sub-

problem  from  time  to  time .  It  is  worth  noting  that  the
price chosen at the time slot  affects the state transitions from

 to ,  and  thus  the  expected  value  of  the  value
function . The value generated at the last step is equal to
the optimal revenue  from the initial state .

J∗(ξ) Jπ(ξ)
J̃(ξ,r) = ϕ(ξ)′r ϕ(ξ) = [ϕ1(ξ),ϕ2(ξ), . . . ,ϕq(ξ)]′

ξ
r = [r1,r2, . . . ,rq]′

J̃ ∈ RΩ
Φ ∈ RΩ×q ϕ′(ξ)

ξ ∈ Ξ J̃ = Φr

As  for  real-world  resource  allocation  problems,  the
applicability  of  exact  DP  methodologies  is  limited  by  severe
scalability  issues,  due  both  to  memory  and  computational
requirements  [20].  This  phenomenon,  known  as  curse  of
dimensionality, is caused by the cardinality of the system state
space. In this regard, ADP approaches prove to offer powerful
tools  for  addressing  such  scalability  issues.  The  key  idea  to
cope with the state space explosion is to substitute the original
value  function  with  a  function  having  a  more  compact
representation  achieved  by  using  a  restricted  set  of  selected
features.  Such  a  representation  is  also  termed  as
approximation  architecture  [22],  [23].  The  linear  architecture
consists of approximating the value functions  and 
as ,  where  is  a
vector  of  feature  (or  basis)  functions  evaluated  over  and

 is  a  vector  of  parameters  to  be  tuned  by  a
suitable  training  process.  In  a  more  concise  form and  with  a
slight  abuse  of  notation,  for  a  value  function  and  a
feature  matrix  having  as  rows  corresponding
to each state , we can set . 

III.  Modeling Resource Allocation Problems With
Specified Time Interval Reservation Requests

From  a  practical  point  of  view,  in  resource  allocation
problems,  there  must  be  the  possibility  for  customers  to
request resources in advance to satisfy their future needs. Due
to the advance reservations, we have to consider that a portion
of the resources can have already been allocated to customers
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N = 2
c1,c2

u = c1

{(2,0), (1,1), (0,2)} u = ν

Fig. 2.     An example of a resource allocation problem with  resources
and  prices .  The  graph  shows  the  entire  state  space  and  the  state
transition  probabilities  under  the  control .  As  for  the  states

, the only admissible control is .
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at specific time slots in the future. In this case, the number of
available resources can change over time, thus the underlying
allocation  process  has  to  be  treated  as  a  time-inhomogenous
MDP (Ti-MDP).

k ≥ 0

[h1,h2] h1 ≥ k

τ = h2−h1

ci

N

More specifically, at the current time slot , a customer
can  ask  for  a  resource  by  specifying  a  finite  time  interval

 for  its  utilisation  (with ).  Such  information
determines  both  the  allocation  and  release  times  of  the
required  resources,  the  latter  not  subject  to  the  customer
stochastic  behaviour.  The  minimum duration  time 
is  considered as one time slot.  A suitable price profile has to
be  proposed  for  maximising  the  expected  total  revenue.  As
shown later,  such  price  profile  can  be  composed  of  different
prices,  that  is  to  say,  the  same  resources  can  be  allocated  at
different  prices  over  the  given  time  interval.  Booking  in
advance implies a significant upgrade of the MDP framework
described in Section II: the number of the available resources

 can change over time since some resources can be already
assigned or  released in  advance,  decreasing or  increasing the
set of resources subject to the system stochastic dynamics.

The  formulation  and  the  related  resolution  for  resource
allocation  problems  with  instant  and  advance  resource
requests  were  firstly  addressed  by  the  authors  in  [17].
Hereafter,  the  followings  requirements  are  additionally
considered:

j
j+1

N

1)  The  proposed  system  manages  the  overbooking
situations,  which  occur  when  the  number  of  allocated
resources  at  the  (generic)  time  slot  can  not  be  confirmed
since new resources are already allocated at the time slot 
(due to the advance resource reservation mechanism), and the
overall  needs  can  not  be  satisfied  by  the  system  overall
capacity  of  resources.  This  overbooking  situation  occurs
since  the  system  handles  both  instant  and  future  resource
requests.

2) Customers can hold the resources to the necessary extent
only  if  the  system  capacity  allows  it:  already-reserved
resources  for  the  next  time  slot  can  cause  an  overbooking
situation.

3)  In  such  circumstances,  the  price  manager  forces  the
customers with the lowest growth rates (as defined later in the
paper)  to  release  their  own  resources  (or  some  of  them)  in
order to fulfill the reservations of the next time slot under the
system capacity constraint.

T
C j j

j
T

As  shown  in  the  previous  section,  resource  allocation
problems with no advance resource requests can be modelled
by  means  of  a  time-homogeneous  MDP,  featured  by  a
stationary  state  transition  mapping .  In  this  section,  the
system  is introduced, with the superscript  indicating that
its underlying MDP dynamics become time-variant due to the
already  reserved  resources  (note  that  we  denote  with  a
generic time slot over the finite time horizon ).

j j+1

Ū
ψ Ū = {c1, . . . ,cm, ν,ψ} ψ

As  shown  in  this  section,  state  transitions  between  two
consecutive  time  slots  and  may  occur  either
stochastically or deterministically, the latter depending on the
set of reservations for such two consecutive time slots. Unlike
[17],  the  set  of  actions,  denoted  by ,  has  the  additional
action ,  i.e., .  Such  control  is  applied
whenever the price manager has to force customers to release

their own resources in order to solve an overbooking situation.
Moreover,  we  provide  a  formulation  for  resource  allocation
problems  and  their  corresponding  resolution  algorithms
suitable for computer based implementation.

Prior  to  addressing  the  modeling,  it  is  necessary  to  define
some terms and notation.

k
h > k

Definition  1: A reservation  request occurs  whenever  the
customer  at  the  current  time  slot  asks  for  allocation  of  a
resource in advance for the future time slot .

ci
ci

h > k
k

Definition 2: We call  the price  a reservation price if  the
decision  maker  allocates  a  resource  with  the  price  for  the
time  slot  in  response  of reservation  request at  the
current time slot .

(λi−µi)
ci λi µi

Definition 3: We define the term  as the growth rate
associated with the price , where  and  are allocation and
deallocation probability requests, respectively.

Definition 4: We define the set of reservations for different
time slots as
 

x = {. . . , x j−1, x j, x j+1, . . . } (13)
x j ∈ Nm

0 , j ∈ N i x j x j
i

ci
j x j

where , the -th element of , namely , is the
number of reserved resources at the price  at the generic time
slot . The vector  is referred to as reservation vector.

C j = ⟨Ξ j, x j, Ū,T j,R⟩
The Ti-MDP for resource allocation problems with advance

reservations can be defined by the tuple ,
where

Ξ j j
Ξ j =

{
ξ̄ι = (ξ̄ι11 , . . . , ξ̄

ιm
m )′ ∈�m

i=1Ξi : ιi ≥ x j
i & ||ξ̄ι||1 ≤ N

}
ξ̄ := ξ̄ι

ξ̄
ιi
i ξ̄i ιi

ξ̄( j) ∈ Ξ j j |Ξ j| = Ω j

Ξ j ⊆ Ξ

•   is  the  state  space  at  the  generic  time  slot ,
.  To

simplify the complexity in the notation with a slight abuse of
notation,  we  denote  as  a  generic  state  of  the  process.
We  can  use  indistinctly , ,  and .  Moreover,  we  denote
with  the  state  variable  at  time slot , ,  and

.
x j ∈ Nm

0•  is the reservation vector having the constraint
 

0 ≤ ∥x j∥1 ≤ N. (14)
Ū = {c1, . . . ,cm, ν,ψ}•   is  the  overall  input  set.  Two  general

cases can happen:
^ ∥x j∥1 ≤ N ∥x j+1∥1 = N, 

 

Ū(ξ̄) = {ν,ψ} (15)
^ ∥x j∥1 ≤ N ∥x j+1∥1 < N, 

 

Ū(ξ̄) = {c1, . . . ,cm, ν,ψ}. (16)
ū( j) jWe denote with  the control function at time .

T j

→
7→

•  is the state transition mapping, computed by applying
the following composition (note that  means function, while

 mapping)
 

T j : Ξ j F→ Ξ Ū7→ Ξ G→ Ξ j+1 (17)
F Gwhere the functions  and  are

 

F : Ξ j→ Ξ
F (ξ̄( j)

)
=
{
ξ( j) ∈ Ξ : ξi( j) = ξ̄i( j)− x j

i
}

(18)
 

G : Ξ→ Ξ j+1

G(ξ( j)
)
=
{
ξ̄( j+1) ∈ Ξ j+1 : ξ̄i( j+1) = ξi( j)+ x j+1

i
}
. (19)
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j ξ̄( j)
x j

F x j+1

j+1 G

At each time slot , we remove from the state variable 
the reservation vector  by applying the subtraction function

, and we add the reservation vector  of the next time slot
 by applying the addition function .

T j

pξ̄v( j)ξ̄w( j+1)
(
x j, ū( j)

)
ξ̄v( j) ∈ Ξ j ξ̄w( j+1) ∈ Ξ j+1

pξ̄v ξ̄w
(
x j, ū
)

pξ̄v ξ̄w
(
ū
)

The elements of the state transition mapping  are denoted
by ,  with  and .
For the sake of simplicity, the dependency on the time slot and
the  reservation  vector  can  be  removed,  thus  we  have,
respectively:  and .

ū( j) ∈ Ū

x j+1 Om ∈ Rm

ξ̄( j)
v w

j j+1

It is assumed that the admissible control  is chosen
such  that  the  price  manager  gives  the  priority  to  the
reservations . By denoting with  the vector having
all  0  as  components,  the  dynamics  of  the  state  variable 
can be described as follows (note that the superscripts  and 
are  used  to  indicated  the  state  variable  values  at  and ,
respectively):
^ ∥x j∥1 ≤ N ∥x j+1∥1 = N ψ For ,  (similarly for the action ),

 

T j : Ξ j F→ Om
ν→ Om

G→ Ξ j+1,and
pξ̄v ξ̄w

(
ν
)
= 1.

(20)

ξ̄( j) = ξ̄v

ξ̄( j+1) = ξ̄w ξ̄w = x j+1
Note  that  the  state  transition  from  into

 is deterministic, and that .
^ ∥x j∥1 < N ∥x j+1∥1 < N For , ,

 

T j : Ξ j F→ Ξ Ū7→ Ξ G→ Ξ j+1,and (21)
∥ξ̄( j)∥1 < N1) if ,

 

pξ̄v ξ̄w
(
ū( j)
)

:= p
[
ξ( j+1) = ξw|ξ( j) = ξv, ū( j)

]
(22)

ū( j) = ci ū( j) = νsuch that, if , or , then
 

pξ̄v ξ̄w
(
ci
)
= pξvi

i ξ
wi
i

(
ci
)× m∏

l=1
l,i

p
ξ

vl
l ξ

wl
l

(
ν
)
,or (23)

 

pξ̄v ξ̄w
(
ν
)
=

m∏
l=1

p
ξ

vl
l ξ

wl
l

(
ν
)
, respectively. (24)

{c1, . . . ,cm, ν}
ξ̄( j)

2) If none of the controls  are admissible at the
current  state ,  then  the  price  manager  forces  some
customers  with  lower  growth  rates  to  release  their  resources.
In this case, we have
 

T j : Ξ j F→ Ξ
ψ
7→ Ξ G→ Ξ j+1. (25)

The transition (25)  is  performed deterministically  since the
customers are forced to release the resources.
^ ∥x j∥1 = N ∥x j+1∥1 < N ū( j) = ci ū( j) = ν For , , if , or ,

 

T j : Ξ j F→ Om
Ū→ Om

G→ Ξ j+1

pξ̄v ξ̄w
(
ci
)
= pξvi

i ξ
wi
i

(
ci
)× m∏

l=1
l,i

p
ξ

vl
l ξ

wl
l

(
ν
)

pξ̄v ξ̄w
(
ν
)
=

m∏
l=1

p
ξ

vl
l ξ

wl
l

(
ν
)
. (26)

^ ∥x j∥1 = N ∥x j+1∥1 = N ν

j+1
 For , , the admissible control is  for

any  resource  request  for  the  time  slot .  The  transition  is

therefore
 

T j : Ξ j F→ Om
ν→ Om

G→ Ξ j+1

pξ̄v ξ̄w
(
ν
)
= 1.

(27)

R : Ξ j→ [0,+∞)•   is  the  reward  function,  defined  in  this
case as
 

R
(
ξ̄( j)
)
=

m∑
i=1

ciξ̄i( j). (28)

m = 2 N = 2
Example  1: Consider  a  resource  allocation  problem  with

,  and the following two cases:
x j = (1,1)′ x j+1 = (0,1)′•  and ;
x j = (0,0)′ x j+1 = (0,1)′•  and .

x j = (1,1)′ x j+1 = (0,1)′

j
ξ̄( j) = (1,1) F ξ̄( j) = (1,1)

F→ ξ( j) =
(0,0)
ci ν

1)  If  and ,  based  on  the  Ti-MDP
definition,  the  only  feasible  state  at  the  time  slot  is

.  By  applying ,  we  have 
.  By using the formulas in (26) with admissible controls

 and , we have
ū( j) = c1• If ,

 

ξ( j) = (0,0)
c17→
[(0,0)
(1,0)

] probabilities
=⇒

[(1−λ1)
(λ1)

]
Gand by applying the function 

 [(0,0)
(1,0)

] G→ ξ̄( j+1) =
[(0,1)
(1,1)

]
.

ū( j) = c2• If ,
 

ξ( j) = (0,0)
c27→
[(0,0)
(0,1)

] probabilities
=⇒

[(1−λ2)
(λ2)

]
Gand by applying the function 

 [
(0,0)
(0,1)

] G→ ξ̄( j+1) =
[
(0,1)
(0,2)

]
.

ū( j) = ν• If ,
 

ξ( j) = (0,0)
ν7→ [(0,0)]

probability
=⇒ [1]

Gand by applying the function 
 

[(0,0)]
G→ ξ̄( j+1) = [(0,1)] .

ξ̄( j) = (1,1)
It  can  be  noted  that  all  the  controls  are  admissible  for  the

state  thanks to the reservation vectors for the two
subsequent time slots.

x j = (0,0)′ x j+1 = (0,1)′

j
x j = (0,0)

(0,2) {c1, . . . ,cm, ν}

ψ ^

2)  If  and ,  based  on  the  Ti-MDP
definition, all the states at the time slot  are feasible since the
reservation  vector  is .  However,  there  exist  some
states  (e.g., ),  where  none  of  the  controls 
are admissible and the price manager has to apply the control

. . 

IV.  DP Framework for Solving Resource Allocation
Problems With Advance Resource Requests

This section introduces the DP framework used to compute
a proper pricing policy for resource allocation problems with
advance  resource  requests.  Such  framework  along  with  its
related  definitions  is  used  in  the  next  section,  where  the
reservation pricing algorithm is described.

J∗,x
j

j
(
ξ̄( j)
)

We denote with  the optimal value function at the
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j ξ̄( j) ∈ Ξ j

x j
generic time slot , starting from any state  and with
the reservation vector . By exploiting Bellman’s principle of
optimality, it is possible to write the following expression:
 

J∗,x
j

j
(
ξ̄( j)
)
= max

ū( j)∈{c1,...,cm,ν,ψ}
E

 m∑
i=1

ciξ̄i( j)+ J∗,x
j+1

j+1
(
ξ̄( j+1)

) .
(29)

ū∗( j)

π̄∗ = {ū∗(0), . . . , ū∗(T −1)} T

π̄∗

j

The  control  function  which  satisfies  (29)  is  denoted  by
.  The  previous  expression  is  the  core  of  the  exact  DP

algorithm  [7],  and  allows  to  calculate  the  optimal  policy
 over the whole time horizon  (note

that  we  assume  that  the  underlying  Ti-MDP  is
computationally  tractable).  With  the  knowledge  of  the
reservation  vectors  for  the  entire  planning  horizon  time,  the
price  manager  can  apply  the  calculated  optimal  policy .
Since the exact  DP algorithm is  applied,  such optimal  policy
exists and is unique. In the following, such solution is referred
to  as  DP  off-line  solution.  At  each  time  slot ,  in  case  of
changes  in  the  future  reservation  vectors,  it  is  required  to
recompute  the  DP off-line  solution.  This  recursive  refresh  of
the exact DP algorithm results links the concepts of the MPC
to the DP for resource allocation problems [13].

P∗(x j, j) ∈ RΩ×Ω+
j ≥ k C j

π̄∗

Prior  to  illustrating  the  reservation  pricing  algorithm,  we
need to discuss some further aspects and introduce the related
notation. The transition probability matrix  at
a generic time slot  for the  system (when controlled by
the policy ) is defined as follows:
 

P∗(x j, j) :=

 [pξ̄v ξ̄w (x j, ū∗( j))], ξ̄v
i ( j) ≥ x j

i , ξ̄
w
i ( j+1) ≥ x j+1

i

[0], otherwise
(30)

pξ̄v ξ̄w
(
x j, ū∗( j)

)
= pξ̄v ξ̄w

(
ū∗( j)
)

R+

ξ̄i( j) < x j
i 0

pξ̄v( j)ξ̄w( j+1)
( · )

where  and  stands for the set
of  non-negative  real  numbers.  The  transition  probabilities
associated  with  the  infeasible  states  are  set  to .
With a slight abuse of notation, it is noticed that the right hand
side  of  (30)  includes  all  the  elements  of  the transition
probability matrix, and that the dependency on the time slot in

 is removed.
ε∗(x j, j) ∈ RΩ+ C jThe probability distribution vector  for the 

system is defined as follows:
 

ε∗(x j, j) :=

 [ε∗
ξ̄v (x j, j)], ξ̄v

i ( j) ≥ x j
i

[0], otherwise
(31)

ε∗
ξ̄v (x j, j)

ξ̄v j ∥ε∗(x j, j)∥1 = 1
C j π̄∗

ξ̄(k) ξ̄w ∈ Ξk

where  stands for the probability of being at the state
 at  the time slot  (with ).  It  is  assumed that

the  system is controlled by the policy  and that the initial
condition  is set to . In other words, we have
 {

εξ̄v (xk,k) = 1 ξ̄(k) = ξ̄w

εξ̄w (xk,k) = 0 ξ̄(k) , ξ̄w.

ξ̄i( j) < x j
i

0
The probability of being at the infeasible states  is

set to . It is noticed that the right hand side of (31) includes
all the elements of the probability distribution vector.

P∗(x j, j)

The  following  relation  holds  between  the  probability
distribution  vector  and  the  transition  probability  matrix

:

 

ε∗(xh−1,h−1)′ = ε(xk,k)′×
h−2∏

j=k+1

P∗
(
x j, j
)
. (32)

π̄∗

It  follows  from  the  property  of  Markov  chains,  i.e.,  for  a
given  initial  probability  distribution  of  the  process  one  can
calculate  the  probability  distribution  of  the  MDP  for  an
arbitrary  time  slot  in  the  future  [21].  In  case  of  large  state
spaces,  one  can  execute  the  policy  and  use  Monte  Carlo
simulations  to  approximate  the  values  of  the  probability
distribution vector [7], [20].

eci ∈ Nm
0 i

ci

e j
ci eci

j V j : U → Nm
0

j

We define  as the unitary vector having 1 in the -th
entry  (corresponding  to  the  price )  and  0  in  all  the  others.
Additionally,  we  denote  by  the  unitary  vector  at  the
time slot . We introduce the auxiliary vector  at
the time slot  as
 

V j(u) =
{

x j+ e j
ci , u ∈ {c1, . . . ,cm}

x j, u = ν
(33)

V j
iand indicate by  an element of this vector.

 

A.   Applying  the  Principle  of  Optimality  for  the  Advance
Resource Reservations

h > k
π̄∗

[k,h−1]
J∗,x

k

k
(
ξ̄(k)
)

ξ̄(k)

Let us suppose that the price manager has to allocate a new
resource for its future utilisation at the time slot  and that
the  DP  offline  solution  is  available.  By  focusing  on  the
time  interval  and  by  exploiting  Bellman’s  principle
of optimality [7], the optimal value function  related
to such DP offline solution (computed at the current state )
can be expressed and developed as follows:
 

J∗,x
k

k
(
ξ̄(k)
)
= max

ū∗( j)∈{c1,...,cm,ν,ψ}
E
{

R
(
ξ̄(k)
)

+
h−3∑
j=k

R
(
ξ̄( j+1)|ξ̄( j), ū( j)

)
+ J∗,x

h−1

h−1
(
ξ̄(h−1)

)}
= R
(
ξ̄(k)
)

+ max
ū( j)∈{c1,...,cm,ν,ψ}

E
{

h−3∑
j=k

R
(
ξ̄( j+1)|ξ̄( j), ū( j)

)
+ J∗,x

h−1

h−1
(
ξ̄(h−1)

)}
= R
(
ξ̄(k)
)
+E
{

h−3∑
j=k

R
(
ξ̄( j+1)|ξ̄( j), ū∗( j)

)}
+ max

ū(h−1)∈{c1,...,cm,ν}
E
{

R
(
ξ̄(h−1)|ξ̄(h−2), ū∗(h−2)

)
+ J∗,x

h

h
(
ξ̄(h)
)}
.

π̄∗

k h−2
[k,h−2]
h−1

J∗,x
k

k
(
ξ̄(k)
)

This  means  that  the  DP  offline  solution  can  be  applied
from the current time slot  up to the time slot : in other
words,  the  decisions  made  during  the  time  interval 
can be decoupled from the one made at the time slot . As
a  consequence,  the  reservation  pricing  algorithm  evaluates
how each possible price for the additional resource can affect
the value function .  Then,  the algorithm selects  the
action maximizing the computed value function.

π̄∗ h−2

ξ̄(k)
JV

h(u)
k
(
ξ̄(k)
)̄
ξ(k)

π̄∗k =
{
ū∗(k), . . . , ū∗(h−2)

}
u ∈ U = {c1, . . . ,cm} h−1

From an  implementation  perspective,  this  implies  applying
the DP offline solution  up to  (by using Monte Carlo
simulations in case of large state spaces) and compute the new
value  function  at  for  the  different  possible  decisions.  In
this  regard,  we  define  as  the  value  function
calculated  at  the  initial  state ,  when  the  policy

 is  applied  and  a  decision
 at the time slot  is selected to allocate
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h
JV

h(u)
k
(
ξ̄(k)
)the  new  resource  at  the  time  slot .  More  specifically,
 can be defined and expanded as follows:

 

JV
h(u)

k
(
ξ̄(k)
)
= R
(
ξ̄(k)
)

+E
{ h−3∑

j=k

R
(
ξ̄( j+1)|ξ̄( j), ū∗( j)

)}

+E
{

R̄
(
ξ̄(h−1)|ξ̄(h−2), ū∗(h−2)

)
+ JV

h(u)
h
(
ξ̄(h)
)}

= R
(
ξ̄(k)
)
+E
{ h−3∑

j=k

R
(
ξ̄( j+1)|ξ̄( j), ū∗( j)

)}

+

[ ∑
ξ̄(h−1)∈Ξh−1

ε∗
ξ̄
(Vh−1(ν),h−1

)
×
{
R
(
ξ̄(h−1)|ξ̄(h−2), ū∗(h−2)

)
+
∑

ξ̄(h)∈Ξh

pξ̄(h−1)ξ̄(h)
(Vh−1(ν),u

)
JV

h(u)
h
(
ξ̄(h)
)}]

s.t. ∥ξ̄( j)∥1 ≥ ∥V j(ν)∥1, j ∈ [k,h−1]

∥ξ̄(h)∥1 ≥ ∥Vh(u)∥1.
(34)

It is worth highlighting that:
J∗,x

h

h
(
ξ̄(h)
)

JV
h(u)

h
(
ξ̄(h)
)

max
u ∈ U

h−1

•  Compared  with  the  previous  expression,  has
been  replaced  with .  The  operator  has  been
also  removed  since  a  specific  action  is  chosen  at  the
time slot .

ε∗
ξ̄

(Vh−1(ν),h−1)
)

V j(ν) = x j

j ∈ [k,h−1]

• The probability distribution vector  can
be  calculated  by  using  the  (31).  Note  that  when

.
JV

h(u)
h
(
ξ̄(h)
)

• The function  can be computed as follows:
 

JV
h(u)

h
(
ξ̄(h)
)
= R
(
ξ̄(h)
)

+
∑

∀ξ̄(h+1)∈Ξh+1

pξ̄(h)ξ̄(h+1)
(Vh(u), ū∗(h)

)
J∗h+1
(
ξ̄(h+1)

)
s.t. ∥ξ̄(h)∥1 ≥ ∥Vh(u)∥1.

(35)
u

ξ̄(h)
h

J∗h+1(·)

It  can  be  noted  that:  i)  the  action  for  allocating  the  new
resource  affects  the  state  (see  also  (34));  ii)  the  DP off-
line solution is applied at the time slot ; iii) the optimal value
function  is used. 

V.  Reservation Pricing Algorithm for Specified Time
Interval Reservation Requests

[h1,h2]

This section describes the algorithm for calculating the price
profile  to  be  proposed  by  the  price  manager  in  case  of  a
reservation request for the future time interval .

The following assumptions are made:
ξ̄(k)•  The  current  system  state  is  known  to  the  decision

maker.
x j

j ∈ [0,T −1]
•  The  initial  reservation  vectors  for  all  the  time  slots

 are  provided.  Note  that,  as  time  goes  by,  these
vectors can be updated since customers can request resources
in advance to satisfy their future needs.

π̄∗

[0,T −1]
k,h1,h2 ∈ [0,T −1] π̄∗

• The DP off-line solution  is available over the finite time
horizon .  In  this  regard,  we  remind  that

. Like the reservation vectors, the policy 
can be recomputed, as shown in the algorithm.

• Without any loss of generality, the underlying Ti-MDP is
computationally  tractable,  that  is  to  say,  ADP  and  Monte
Carlo simulations are not needed.

h ∈ [h1,h2]

In the algorithm, a backwards iteration strategy is proposed.
More  specifically,  the  whole  time  interval  is  scanned
backwards,  and  for  each  the  best  price  is
calculated. At the same time, the temporary set of reservations
is  updated  along  with  the  associated  optimal  value  function
and  policy.  Finally,  the  resulting  price  profile  is  proposed  to
the  customer.  In  case  the  customer  accepts  it,  the  new set  of
reservations  is  confirmed,  as  well  as  the  associated  optimal
value function and policy.

k = 0
The reservation pricing algorithm consists  of  the following

steps (at the beginning ):

[k,T −1] C j = ⟨Ξ j, x j, Ū,T j,R⟩
j ∈ [k,T −1]

k

1)  Apply  the  exact  DP  algorithm  over  the  finite  horizon
 for the Ti-MDP with the tuple 

and ,  before  processing  the  new resource  request
at the current time .

ū∗( j) J∗,x
j

j
(
ξ̄( j)
)

j ∈ [k,T −1]
2) Save  and the optimal value functions  as

the  tabular  representation  for  the  time  interval 
based on the previous step.

h = h23) Set 
g j = x j

j ∈ [k,h2]
4)  Set  the  auxiliary  variable  for  the  interval

.
h ≥ h15) While 

^ V j(ν) = g j j ∈ [k,h−1] Set  for the time interval .
^ u ∈ U JV

h(u)
k
(
ξ̄(k)
)

 For  each  calculate  as  described  in
Section IV-A.
^ h Compute the optimal reservation price for the time slot 

as follows:
 

c∗i = argmax
u∈Ū

JV
h(u)

k
(
ξ̄(k)
)
.

^ gh← gh+ eh
c∗i
. 

^ c = {ch1 , . . . ,ch2 } ch = c∗i Update the price profile  with .
^
C j = ⟨Ξ j,g j, Ū,T j,R⟩ j ∈ [k,h]

 Apply  the  exact  DP  algorithm  for  the  Ti-MDP  with  the
tuple  over  the  time  interval ,
and save the results.
^ h← h−1 Set .

J∗,g
k

k
(
ξ̄(k)
)

h = h1
h ∈ [h1,h2]

6)  The  optimal  value  function ,  which  is
calculated  at  the  last  iteration ,  takes  into  account  the
price profile over the time intervals .

7) Calculate the following expected value:
 

JτE,k
(
ξ̄(k)
)
= γacc J∗,g

k

k
(
ξ̄(k)
)
+ (1−γacc) J∗,x

k

k
(
ξ̄(k)
)

(36)

γacc

[h1,h2]

where  is the acceptance probability of the proposed price
profile  from  the  customer  side  over  the  entire  time  interval

.
8)  The  price  manager  accepts  or  rejects  the  reservation

request by comparing these two values:
 

max
J

{
JτE,k(ξ̄(k)), J∗,x

k

k (ξ̄(k))
}

(37)
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J∗,x
k

k (ξ̄(k))where  is  the  expected  optimal  value  function  in
case the reservation request is rejected.

c

9) If fulfilling the reservation request is more profitable than
rejecting  it  (using  (37)),  the  price  manager  offers  the  price
profile .

x j← g j j ∈ [h1,h2]
10)  If  the  customer  accepts  the  proposed  price  profile,  set

 for the entire interval .
k← k+1 111) Set  and go to Step .

It is easy to verify that single time slot reservation requests
can  be  derived  from  the  above  algorithm.  The  stochastic
prediction  of  the  system evolution  (up  to  the  time  where  the
new resource is requested), the effect of the possible prices on
the  current  expected  total  revenue,  and  the  renewal  of  the
policy pricing (in case of the customer's acceptance) shows a
strong  link  between  MPC  and  DP,  as  already  discussed  in
[13]. 

VI.  Modeling Resource Allocation Problems With
Specified and Unspecified Time Interval

Reservation Requests

h > k

µi

In  the  normal  course  of  events,  it  may  happen  that
customers  request  resources  for  future  utilization  without
specifying their release time. As a result, unlike the allocation
time ,  such  resources  are  released  according  to  the
system stochastic dynamics, that is to say, the release event is
linked to the death rate  of the proposed price. This section
outlines  the  modeling  of  the  underlying  Ti-MDP  with
specified and unspecified time interval reservation vectors, as
well as the associated pricing algorithm.

sLet  be the set of unspecified time interval reservations. In
particular, we define
 

s = {. . . , s j−1, s j, s j+1, . . . } (38)
s j ∈ Nm

0 , j ∈ N i s j s j
i

ci
j

where , and the -th element of , namely , is
the number of booked resources at  the price  at  the generic
time instant .

C j = ⟨Ξ j, x j, s j, Ū,T j,R⟩

The  dynamic  of  the  underlying  Ti-MDP  for  resource
allocation  problems  with  specified  and  unspecified  time
interval  reservation  requests  can  be  defined  by  the  tuple

, where
Ξ j j Ξ j =

{
ξ̄ι = (ξ̄ι11 ,

. . . , ξ̄ιmm ) ∈�m
i=1Ξi : ιi ≥ x j

i + s j
i & ||ξ̄ι||1 ≤ N

}
ξι = (ξι11 ,

ξ
ι2
2 , . . . , ξ

ιm
m )
ξ̄ := ξ̄ι

ξ̄i := ξ̄ιii ξ̄( j)
j |Ξ j| = Ω j, Ξ j ⊆ Ξ

•   is  the  state  space  at  the  time  slot , 
,  where 

.  To  simplify  the  complexity  in  the  notation,  we
denote  as  a  generic  state  of  the  process;  the  same  for

.  Moreover,  we  denote  with  the  state  variable  at
time slot , .

x j, s j ∈ Nm
0•   are  the  reservation  vectors  having  the

constraint
 

0 ≤ ∥x j+ s j∥1 ≤ N. (39)
Note that these vectors are considered deterministic.

Ū = {c1, . . . ,cm, ν,ψ}•   is  the  overall  input  set.  Two  general
cases can happen
^ ∥x j+ s j∥1 ≤ N ∥x j+1+ s j+1∥1 = N , 

 

Ū(ξ̄) = {ν,ψ} (40)
^ ∥x j+ s j∥1 ≤ N ∥x j+1+ s j+1∥1 < N , 

 

Ū(ξ̄) = {c1, . . . ,cm, ν,ψ}. (41)

ū( j) jWe denote with  the input at time .
T j•   is  the  state  transition  mapping,  which  is  defined  as

follows:
 

T j : Ξ j F→ Ξ Ū7→ Ξ B→ Ξ j+1 (42)
Bwhere the function  is

 

B : Ξ→ Ξ j+1

B(ξ( j)
)
=
{
ξ̄( j+1) ∈ Ξ j+1 : ξ̄i( j+1) = ξi( j)+ x j+1

i + s j+1
i
}
.
(43)

G B

0 ≤ ∥x j+ s j∥1 ≤ N

The state transition probabilities can be derived in the same
way of  specified  time interval  reservation  requests.  The  only
differences are the replacement of the function  with  and
the  new  condition  on  the  reservation  vectors,  i.e.,

.
R : Ξk→ [0,+∞)•  is the reward function, defined as

 

R
(
ξ̄( j)
)
=

m∑
i=1

ciξ̄i( j). (44)
 

A.   Reservation  Pricing  Algorithm  for  Solving  Resource
Allocation  Problems  With  Specified  and  Unspecified  Time
Interval Requests

k

π̄∗

The  reservation  pricing  algorithm  shown  in  Section  V  can
be  easily  extended  to  handle  resource  requests  with
unspecified  time  intervals.  In  particular,  at  the  current  time
slot , three cases can be managed, that is to say, the one for
the  instant  reservation  requests  (where  the  proposed  price  is
given by the DP offline solution ),  the one for the advance
reservations  with  specified  time  interval,  and  the  one  for  the
advance reservations with unspecified time interval.

h

h

As for  the  latter,  the  main  difference  derives  from the  fact
that  only  the  allocation  time  for  the  new  resource  is
provided.  Thus,  the  algorithm  has  to  evaluate  how  each
possible price used to allocate such resource at  the only time
slot  affects the current optimal value function. Besides that,
some notation has to be adapted, e.g.,

J∗,x
j s j

j
(
ξ̄( j)
)•  The optimal value function defined in (29) is  denoted by
.

V j : U → Nm
0 j•  The  auxiliary  vector  at  the  time  slot 

becomes
 

V j(u) =
{

x j+ s j+ e j
ci , u ∈ {c1, . . . ,cm}

x j+ s j, u = ν.
(45)

 

VII.  Reservation Pricing Approach for Resource
Allocation Problems With Large State Space

This  section  addresses  resource  allocation  problems  with
large state space. In particular, we assume that the underlying
Ti-MDP  is  not  computationally  tractable,  thus  ADP  and
Monte  Carlo  simulations  are  needed.  More  specifically,  this
section  outlines  the  ADP  based  approach  used  for  solving
resource  allocation  problems  with  a  large  state  space,  and
shows  the  changes  to  the  reservation  pricing  algorithm
described in Section V.

J∗,x
j,s j

j (·)
The  USLS-ADP  algorithm  is  adopted  to  compute  an

approximation of the optimal value function  over the
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[0,T −1]finite  time  horizon .  Such  algorithm  belongs  to  the
value function approximation category [8] and was presented
by the  authors  in  [19],  in  a  different  context.  The  reader  can
refer  to  such  paper  for  more  details  about  its  theoretical
aspects  (e.g.,  its  contraction  mapping  and  the  monotonicity
properties)  and  its  convergence  results  over  an  infinite  time
horizon.  It  is  worth  highlighting  that  the  USLS-ADP
algorithm is used over a finite time horizon in this paper.

x j s j

Hereafter,  we apply  the  USLS-ADP algorithm to  solve  the
curse of dimensionality for resource allocation problems with
instant  and  future  resource  requests.  For  the  sake  of
simplicity,  we  drop  the  notation  concerning  the  future
reservation requests, e.g., the reservation vectors  and .

J∗j ∈ RΩConsider  a  low-dimensional  approximation of  that
has  the  form  (note  that  the  explicit  dependency  on  the  state
has been removed as well)
 

J∗j ≈ Φr∗j , j = 0, . . . ,T −1 (46)

Φ ∈ RΩ×q

r∗j ∈ Rq

q <<Ω J̃∗j = Φr∗j
J∗j

j

where  is  the  feature  matrix  whose  columns are  the
basis functions, and  is the parameter vector that has to
be  computed  ( ).  We  define  by  the
approximate value of vector . This leads us to the following
weighted  Euclidean  least  squares  minimization  problem  at
each time slot :
 

r∗j = arg min
r j∈Rq

∥J∗j −Φr∥2ϵ (47)

ϵ ∈ RΩ+ ∥ϵ∥1 = 1
r∗j

∥ · ∥ϵ
ϵ

where  and .  These  weights  show  the
importance of each state in the calculation of vector . In this
paper,  all  the  states  have  the  same  weights,  i.e.,  a  uniform
probability  distribution.  Here,  denotes  weighted
Euclidean norm respect to the weight vector .

The solution of the least squares minimization problem (47)
in the compact form is
 

r∗j =
(
Φ′ΘΦ

)−1(
Φ′Θ
)
J∗j (48)

Θ ∈ RΩ×Ω+
ϵ ∈ RΩ+

(
Φ′ΘΦ

)−1

Φ

where  is  the  diagonal  matrix  having  the  vector
 along the diagonal. The term  exists since the

feature  matrix  is  full  column  rank  [20]  (prime  stands  for
transpose).

r∗j

Φ
J∗j

r̂∗j r∗j
z ∈ N

j q < z <<Ω

For  the  large  state  space  systems,  the  calculation  of  the
vector  for  each  time  slot  requires  matrix  inversion  and
multiplication of impractical size. Therefore, it is suggested to
select  a  small  number  of  rows  of  and  the  corresponding
elements  of ,  and  use  least  squares  on  the  samples  to
calculate  the  approximation  of  the  parameter  vector .  In
particular,  we  gather  samples  from  the  state  space  at
each  time  slot ,  where .  The  samples  are  chosen
randomly based on a uniform probability distribution.

Φ̂ j ∈ Rz×q ˆ̃J∗j ∈ RzIf  we  denote  by , ,  the sampled  feature
matrix and  the sampled  value  function,  respectively,  the
following regression based unweighted least squares problem
then will be solved:
 

r̂∗j = argmin
r∈Rq

{∥ ˆ̃J∗j − Φ̂ jr∥2+β∥r− r̄∥2}, j = 0,1, . . . ,T −1 (49)

r̄
β ∈ R+ r∗j r̂∗j

where  is  an  initial  guess  of  the  solution  at  each  time  slot,
 is  positive coefficient.  The vector  is  replaced by 

∥ · ∥
since we solve a low dimensional least squares problem. Here,

 denotes norm-2.
ξ̂v( j)

j ˆ̃J∗j
(
ξ̂v)If we show by  any arbitrary state chosen randomly at

the  time  slot ,  the  sampled  value  function  in  (49)  is
calculated by the following formula at each time slot:
 

ˆ̃J∗j
(
ξ̂v) = R

(
ξ̂v)+ max

u( j)∈U

∑
ξw∈Ξ

pξvξw (u)ϕ′(ξw)r̂∗j+1

j = 0,1, . . . ,T −1 (50)
r̂∗T

r̂T

k 0

where  is provided in advance. One might consider either a
heuristic  guess  or  any  approximation  method  to  replace  an
appropriate value for .  The pseudo-code of the USLS-ADP
algorithm  shown  in  Algorithm  1  (note  that  the  current  time
slot  is assumed to be equal to ).

r̂∗j

r̂∗j

The  (finite)  sequence  of  the  parameter  vectors  inherits
both  the  contraction  mapping  and  monotonicity  properties  of
the  exact  DP  algorithms.  The  mathematical  convergence  of
the  sequence  is  only  applicable  over  an  infinite  time
horizon, for which the USLS-ADP algorithm converges [19].
Such  converge  is  guaranteed  by  the  aforementioned
contraction mapping and monotonicity properties. The USLS-
ADP  convergence  over  an  infinite  time  horizon  is  indicative
of  the  goodness  (boundedness)  of  the  calculated  solutions,
when applied over a finite time horizon.

In  the  literature,  there  are  well-known  Approximate  DP
algorithms  supported  by  similar  arguments,  for  instance  see
the  Sequential  DP  Approximation  algorithm  [7].  Like  the
proposed USLS-ADP, it is a sample-based algorithms, is used
over  a  finite  time  horizon,  and  inherits  the  contraction
mapping  and  monotonicity  properties  of  the  exact  DP
algorithms. 

A.  Definition of the Basis Functions for the Resource Allocation
Problems

q = m+1
ξ = (ξ1, . . . , ξm)′

For  the  USLS-ADP  approach,  we  define  the  following
 basis  (or  feature)  functions  with  the  state  variable

 as argument:
 

ϕ0(ξ) = 1, ϕi(ξ) = ξi, i = 1, . . . ,m. (51)
The related linear approximation is

 

J̃(ξ,r) = r0+

m∑
i=1

riξi. (52)

r′ = (r0,r1, . . . ,rm) ri
i r

ξi

where  is the parameter vector (note that  is
the -th component of the generic parameter vector  related to

).  The  linear  relation  between  the  reward  function  and  the
number  of  customers  allocated  for  each  price  (see  (10))  can
justify  the  proposed  basis  function  definition  and  the
associated approximation architecture.

It is worth mentioning that a limited number of well-crafted
feature  functions  can  capture  the  dominant  non-linearities  of
the  value  function  of  complex  systems,  and  their  linear
combination can work well  as an approximation architecture,
see [8], [20]. In this paper, we do not discuss the construction
of the feature functions, even though we note the possibility of
their  optimal  choice  within  some  restricted  class  by  using

 984 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 4, JULY 2020

Authorized licensed use limited to: Maynooth University Library. Downloaded on June 15,2022 at 09:12:41 UTC from IEEE Xplore.  Restrictions apply. 



gradient  and  random  search  algorithms,  see  [20],  [24].  The
construction of the basis functions for subspace approximation
is  an important  research issue,  and has  received considerable
attention recently in the ADP literature, see also [25].

Algorithm 1 USLS-ADP Algorithm [19]

z T β• Choose sample size , time horizon , and regularized term .
rT ∈ Rq

J̃T (ξ,r) = ϕ(ξ)rT

•  Set  the  parameter  vector  for  the  terminal  condition,  i.e.,
.

j← T• 
j ≥ 1while 

j← j−1• 

∆ j ∈ Rz×Ω

Ξ̂ j

•  Sample  the  original  state  space  with  uniform  probability
distribution,  construct  the  sampling  matrix  and  the
sampling set .

ˆ̃J∗j• Compute 
 

ˆ̃J∗j
(
ξ̂v) = R

(
ξ̂v)+max

u∈U

∑
ξw∈Ξ

pξ̂vξw (u)ϕ(ξw)r̂∗j+1,

ξ̂v ∈ Ξ̂k , ξ
w ∈ Ξ.

Φ̂ j = ∆ jΦ• Compute .
• Solve the following least squares problem:

 

r̂∗j = arg min
r j∈Rq

{
∥Φ̂ jr j − ˆ̃J∗j ∥22 +β∥r j − r̂∗j+1∥

2
2

}
by the following formula:

 

r̂∗j =
(
Φ̂′jΦ̂ j +βI

)−1(
Φ̂′j

ˆ̃J∗j +βr̂∗j+1
)
.

J̃∗j (ξ
v) = ϕ(ξv)r̂∗j

ξv ∈ Ξ
• Define the projected value function , for any given

state .
end while

 

B.  Reservation Price Algorithm Adaptation
The  reservation  pricing  algorithm  can  be  adapted  for

resource  allocation  problems  with  large  state  space.  In
particular,  the  modifications  to  be  applied  to  the  procedure
described in Section V can be summarized as follows:

• The exact DP algorithm has to be replaced with the USLS-
ADP algorithm.

J∗,x
j

j (·)

r̂∗j
J̃∗,x

j

j (ξv) = ϕ(ξv)r̂∗j ξv ∈ Ξ

•  As  a  consequence,  the  optimal  value  function  is
calculated  approximately  in  the  feature  sub-space.  Thus,  we
compute the parameter vector  and the approximate optimal
value function , for any given state .

JV
h(u)

k
(
ξ̄(k)
)

J̃V
h(u)(ξ̄(k)

)• This means that the notation of all the value functions has
to be updated, e.g.,  becomes .

J̃V
h(u)(ξ̄(k)

)•  Monte  Carlo  simulations  are  used  to  compute  the  terms
composing  (see (34)).
 

VIII.  Simulation Results

λ µ i ∈ {1, . . . ,m}
N m

T

The  proposed  approach  has  been  evaluated  over  numerical
cases  to  show  its  effectiveness.  Both  exact  DP  and  ADP
techniques  have  been  used  with  the  support  of  on-purpose
developed  MATLAB  programs.  The  latter  is  configurable,
meaning that they provide the capability of defining the values
of the problem to be solved, e.g., ’s and ’s for ,
the  number  of  resources  ( )  and  prices  ( ),  and  the  time
horizon  ( ).  For  all  the  examples  we  have  used  the  basis

ci ri

functions  given  by  (52),  i.e.,  the  number  of  resources
associated to each price  multiplied by parameter .

m N
It  can  be  shown  that  the  state  space  explosion  can  occur

even  with  relatively  small  values  of  and .  Indeed,
increments in such parameters cause an exponential growth in
the size of the state space [19]. Hence, the exact DP becomes
impractical  even  for  relatively  small  problem  instances.  The
simulation examples are divided into two main parts. The first
part  is  dedicated  to  the  DP  reservations  algorithm  results,
while the second part is for the USLS-ADP algorithm.

j

Policies computed by DP techniques can be represented by
means of lookup tables. In other words, for a given state and
time  slot ,  one  can  associate  the  corresponding  action
calculated  by  the  proposed  algorithm.  However,  such
representation  can  be  impractical  even  for  small  state  and
action spaces. Therefore, more compact representations could
be  used  [18].  In  this  regard,  we  apply  a  statistical  index
showing the frequency distribution of each action at each time
slot  over  the  entire  state  space.  It  is  worth  highlighting  that
such  statistical  index  for  policies  can  also  be  impractical  in
cases of large action spaces.

In  all  the  proposed  examples,  we  have  used  the  following
state dependent birth and death probabilities:
 

µi(ξi) = µmax(ci)
(
1− e

−ξi
N
)

λi(ξi) = λmin(ci)+
(
λmax(ci)−λmin(ci)

)
e
−ξi
N . (53)

We have assumed that the death (birth) probability increases
(decreases) with the number of the allocated resources.

m = 3
N = 6 c = [0.9 1.0 1.1] λmax = [0.55 0.5 0.3] λmin =

[0.3 0.2 0.1] µmax = [0.5 0.6 0.6]

Example  2: Number  of  prices ,  number  of  resources
,  price , , 

, .

c = [c1 c2 c3]

The  cardinality  of  the  state  space  is  84,  and  the  exact  DP
algorithm can be applied. Here, for the sake of simplicity, we
enclosed the prices in bracket, e.g., .

The following operational scenario has been considered:

j = 2,3,4
•  Specified  time  interval  reservation  requests  at  the

consecutive time slots  with the duration reported in
Table I.

j = 1 h = 20
•  Unspecified  time  interval  reservation  request  at  the  time

slot  for the time slot .

T = 40

The  frequency  distribution  of  the  different  actions
(normalised  versus  the  state  space  cardinality  and  over  the
finite  time  horizon )  is  shown  in Fig. 3.  In  particular,
the  above-defined  operational  scenario  (with  reservation
requests) is compared with the case of no reservation requests,
where the DP off-line solution calculated at the beginning can
be  applied  for  instant  resource  needs.  To  analyze  the  result,
one has to start from the terminal stage and move backwards.
Since there are neither unspecified nor specified time interval

 

TABLE I  

2
Specified Time Interval Reservation Requests

for the Example 

j 2 3 4
h1 12 13 14
h2 16 17 21
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j > 21reservations for the time slots , based on the principle of
optimality,  the  frequency  distributions  of  the  reservation  and
no reservation cases are identical.

ν

ψ

As shown in  the  same figure,  the  frequency distribution of
the  rejection  control  increases  for  the  intervals  with
reservations.  It  is  noticed  that  for  the  case  of  no  reservation,
the control  is never applied. Therefore, it is not plotted.

x s
c3

c2

c3

Additionally,  the  specified  time  interval  reservation  vector
set  and the unspecified time interval reservation vector set 
are depicted in Fig. 4.  As shown in the figure,  the price  is
more  likely  to  be  chosen  than  the  others.  Moreover,  for  the
case of specified time interval reservations, the algorithm does
not  propose  the  price  to  the  costumer  requests;  hence,  we
do not plot the associated plot. In the case of unspecified time
interval reservations, the algorithm only proposes the price ;
hence, we do not plot the other prices.

[h1,h2] = [14,21]
Finally,  it  is  worth  highlighting  that  the  specified  time

interval reservation request  is rejected by the
algorithm.

Example 3: The same resource allocation problem set-up of
the  Example  2  is  considered,  but  with  a  more  complex
operational scenario.

The following operational scenario has been considered:

j = 1,4,5,7, . . . ,12
• Specified time interval reservation requests handled at the

time  slots  with  the  durations  reported  in
Table II.

j = 2,3,6 h = 12,22,25
•  Unspecified  time  interval  reservation  requests  handled  at

the  time  slots  for  the  time  slots ,
respectively.

j > 25
14 ≤ j ≤ 16

14 ≤ j ≤ 16 ν

Thanks  to  the  principle  of  optimality,  the  frequency
distribution curves of the reservation and no reservation cases
are identical for the time slots , see Fig. 5. However, for
the  time  intervals ,  there  are  differences  between
such curves. For the interval , the rejection policy 
is on its maximum point since the system is fully reserved for
the associated time slots.

x s
c2

x s

14 ≤ j ≤ 16

Furthermore,  the  vectors  and  are  depicted  in Fig. 6.
Unlike the previous scenario, the price  is proposed for some
intervals.  The  total  number  of  customers  corresponding  to
reservation  vectors  and  (regardless  of  the  associated
prices)  are  depicted  in Fig. 7,  which  shows  that  all  the
resources are allocated for the time interval .

 

TABLE II  

3
Specified Time Interval Reservation Requests for the

Example 

j 1 4 5 7 8 9 10 11 12
h1 14 14 14 14 14 14 14 14 14
h2 21 16 16 19 19 19 21 21 18
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Fig. 3.     Comparison of the action frequency distributions for the reservation
and no-reservation cases (Example 2).
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(Example 2).
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Fig. 5.     Comparison of the action frequency distributions for the reservation
and no-reservation cases (Example 3).
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m = 4
N = 30 c = [0.9 1 1.1 1.2] λmax = [0.55 0.5 0.3 0.2]
λmin = µmax = [0.5 0.6 0.6 0.62]

Example  4: Number  of  prices ,  number  of  resources
,  price , ,
 [0.3 0.25 0.1 0.08], .

Due  to  the  large  state  space,  the  reservation  pricing
algorithm with the USLS-ADP is employed. In this example,
the following operational scenarios have been considered:

1) Only instant resource requests.

j = 1,2, . . . ,7
2) Specified time interval reservation requests handled at the

consecutive time slots  with the duration reported
in Table III.

j = 7,8,10,11

j = 1, . . . ,6,9,12
h = 4,6,5,11,22,14,26,26

3) Specified time interval reservation requests handled at the
consecutive  time  slots  with  the  duration
reported  in Table IV;  unspecified  time  interval  reservation
requests handled at the time slots  for the time
slots , respectively.

j = 2,4, . . . ,7

j = 1,3 h = 25,27

4) Specified time interval reservation requests handled at the
consecutive time slots  with the duration reported
in Table V;  unspecified  time  interval  reservation  requests
handled at  the time slots  for  the time slots ,
respectively.

∥r̂∗j∥

∥r̂∗j∥

j ≥ 32

23 ≤ j ≤ 32

∥r̂∗j∥
1 ≤ j ≤ 26

j ≤ 12

j > 12

In  all  these  operational  scenarios,  the  terminal  value
function  has  been  calculated  by  means  of  a  Temporal
Difference based approach over an infinite time horizon. The
value of  of such scenarios is plotted in Fig. 8.  Generally
speaking,  it  is  noteworthy  that  the  reservation  time  and  its
duration  affect  the  value  of .  Starting  from  the  terminal
stage  and  moving  backwards,  it  can  be  noted  that  all  the
curves increase in the same way. Such behavior is in line with
the  definitions  of  the  scenarios,  i.e.,  for  the  time  slots 
no resource is assigned for future utilization. The curve of the
Scenario  4  grows  faster  than  the  other  ones  in  the  interval

,  since  such  scenario  targets  all  the  advance
resource  requests  in  that  time  interval.  On  the  whole,  the
Scenario  3  exhibits  the  higher  growth  rate  of  since  the
reservation requests span over the entire time slots .
The  Scenarios  1,  2,  and  4  have  the  same growth  rate  for  the
time  slots ,  where  they  have  no  allocated  resource.
However,  they  have  a  different  offset  due  to  the  different
allocated resources for . The Scenario 1 has no resource
reservation,  thus  the  associated  parameter  vector  has  the
lowest profile. 

 

TABLE III  

2 4
Specified Time Interval Reservation Requests for the

Scenario  of the Example 

j 1 2 3 4 5 6 7
h1 13 10 12 17 23 15 19
h2 17 20 14 26 32 17 26

 

 

TABLE IV  

3 4
Specified Time Interval Reservation Requests for the

Scenario  of the Example 

j 7 8 10 11
h1 12 17 25 18
h2 15 17 28 20

 

 

TABLE V  

4 4
Specified Time Interval Reservation Requests for the

Scenario  of the Example 

j 2 4 5 6 7
h1 23 28 30 26 32
h2 26 28 30 29 32
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(Example 3).
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Fig. 7.     Total  number  of  customers  at  different  time  slots  (Example  3,
Scenario 2).
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r̂∗jFig. 8.     Norm-2 of the vector  for different scenarios defined in Example 4.
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IX.  Related Work

In this section, an essential literature review about the most
pertinent articles on MDP modeling and relative solutions for
resource  allocation  problems  is  provided.  A  homogeneous
continuous-time  Markov  chain  is  proposed  in  [26]  to  model
the  patient  flows  for  the  hospital  ward  management.  The
optimization  of  the  matching  between  the  resources  and  the
demands  is  performed  by  means  of  a  local  search  heuristic
algorithm.  MDPs  are  employed  in  [27]  for  Business  Process
Management with the goal of making appropriate decisions to
allocate the resources by trying to minimize the long-term cost
and  to  improve  the  performance  of  the  business  process
execution.  A  heuristic  based  Reinforcement  Learning
approach  is  adopted  as  optimization  method.  In  [28],  a
resource allocation problem for the vehicular cloud computing
systems is discussed. Since the objective is the maximization
of  the  total  long-term  expected  reward,  the  optimization  is
formulated  as  an  infinite  horizon  MDP  with  the  state  space,
action  space,  reward  model,  and  transition  probability
distribution of the particular case study. An iteration algorithm
is utilized to develop the optimal scheme that computes which
action has to be taken in a certain state. MDP based modelling
and  solution  methodology  for  scheduling  patients  in  a  multi-
class, multi-resource surgical system is employed in [29]. The
proposed model provides a scheduling policy for all surgeries,
and minimizes a combination of the lead time between patient
request and surgery date, overtime in the operating room, and
congestion  in  the  wards.  A  least  square  temporal  difference
ADP approach is to deal with the curse of dimensionality. One
of  the  most  important  operations  in  the  production  of
growing-finishing pigs is the marketing of pigs for slaughter.
In  [30],  a  sequential  marketing  decisions  at  the  herd  level  is
considered  as  a  high  dimensional  infinite  horizon  MDP.  A
value  iteration  ADP  algorithm  is  used  to  estimate  the  value
function for this infinite time horizon problem. The stochastic
behavior  of  the  food  banks  inventory  system  has  been
modelled by using an MDP in [31],  which has the advantage
of  indicating  the  best  way  to  allocate  supplies  based  on  the
inventory level of the food bank. Such paper presents a novel
transformation  of  the  state  space  to  account  for  the  large
distribution quantities observed in practice and shows that the
particular underlying stochastic behavior can be approximated
by  a  normal  distribution.  Similarly  to  our  approach,  both
stochastic  and  deterministic  aspects  are  addressed.  In  [32],  a
sequential  resource  allocation  problem  with  an  objective
function  aimed  at  equitable  and  effective  service  for  the
problem  of  distributing  a  scarce  resource  to  meet  the
customer's demands is carried out. In this work, through a DP
framework, the structure of the optimal allocation policy for a
given  sequence  of  the  customer's  demand  is  characterized  as
continuous  probability  distributions.  In  this  regard,  by  using
the  identified  optimal  structure,  a  heuristic  base  allocation
policy for the instances with discrete demand distribution has
been proposed.

In  some  other  works,  resource  allocation  problems  are
treated  as  multi-agent  systems.  In  [33],  for  instance,  the
dynamic  of  the  agents  is  considered  as  second  order

differential  equations,  while  they  communicate  over  weight-
balanced  and  strongly  connected  digraphs.  The  optimization
problem  is  formulated  as  a  constrained  convex  objective
function.  The  effectiveness  of  the  method,  however,  is
evaluated  for  a  small  number  of  agents,  only.  An  alternative
approach  can  be  found  in  [34],  where  the  distribution  of  a
common  resource  between  two  sources  of  time  varying
demand  is  carried  out  to  develop  the  time-efficient  methods
for  minimizing  delays  at  severely  congested  airports.  In  this
work, the problem is formulated as a DP optimization and the
objective  is  based  on  the  second  moments  of  the  stochastic
queue  lengths.  It  is  shown that  for  sufficiently  high  volumes
of  the  demand,  optimal  values  can  be  well  approximated  by
the quadratic functions of the system state. Again, a heuristic
based  approach  is  applied  as  ADP  method.  A  comparison
between  Monte  Carlo  tree  search  and  rolling  horizon
optimisation  approaches  is  carried  out  in  [35]  for  two
challenging  dynamic  resource  allocation  problems:  the  wild
fire  management  and  the  queuing  network  control.  Even
though  this  work  shows  interesting  results,  the  reported
techniques  are  suitable  just  for  the  specific  applications
considered. Another example of resource allocation strategies
can  be  found  in  [36],  where  the  problems  of  budget
allocations  of  non  profit  organizations  on  geographically
distinct  areas  is  tackled.  The  proposed  solution  consists  in
formulating the overall resource allocation problem as a two-
stage  stochastic  mixed  integer  programming  problem.  A
heuristic-based  approach  is  finally  used  to  simplify  the
original formulation.

An interesting variant to the solution of (stochastic) resource
allocation  problems  is  represented  by  the  MPC,  especially
suited  when the  dynamics  of  the  systems is  considered  to  be
variable  over  time  (time-variant  processes).  In  [37],  for
instance,  it  is  shown  how  the  stochastic  resource  allocation
problem can be addressed by suitably modifying the MDP and
the  optimal  control  problem  and  using  MPC  to  allocate
resources  over  time.  In  particular,  a  new  class  of  algorithms
for  the  stochastic  unreliable  resource  allocation  problem  is
proposed,  when  there  is  a  chance  that  the  task  will  not  be
completed  by  that  resource.  However,  a  well-defined  and
accurate  prediction  model  is  a  priori  needed  for  an  effective
strategic allocation control. Similarly, in [38], the solution for
the stochastic resource allocation problem makes use of MPC
integrated  with  machine  learning  and  Markov  chain  model.
The theory is  based on a  three  layer  lambda architecture  and
particularly  tailored  to  the  case  study  of  a  dispatch  decision
problem from an energy distribution utility.

As  a  general  remark,  it  is  noted  that  our  paper  provides  a
sufficiently comprehensive modeling framework, which is not
limited  to  a  specific  application.  Moreover,  the  optimization
algorithms  for  price  policy  calculation  exploit  the  most
advanced ADP techniques to address the scalability issues of
real-world  applications,  instead  of  resorting  to  heuristic  or
example  driven  methods.  To  the  best  of  the  authors'
knowledge,  the  current  literature  on  this  topic  do  not  have
these features.

Admittedly, one of main difficulties of applying ADP based
approaches is the choice of proper basis functions, which is a
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current  area  of  research  (see  Section  VII-A).  Moreover,  it  is
assumed  to  know  the  system  stochastic  mechanisms  and  the
related probability distributions. If this is not feasible, one can
resort  to  computer  simulators  (generating  samples  according
to  such  probability  distribution)  or  Reinforcement  Learning
based approaches [8], [12]. 

X.  Conclusions

Resource reservations in resource allocation problems have
been  modelled  as  a  general-purpose  MDP  based  framework.
Stochastic  DP  based  approaches  have  been  proposed  to
compute  proper  pricing  policies,  and  show  how  Bellman’s
principle  of  optimality  can  play  a  role  in  the  implementation
of  the  resulting  pricing  reservation  algorithms.  However,  the
resulting  framework,  which  also  includes  an  overbooking
business strategy, becomes computationally intractable in case
of  realistic  resource  allocation  problems.  As  a  consequence,
ADP techniques based on linear function approximations have
been  employed  to  solve  such  scalability  issues.  In  particular,
the  novel  USLS-ADP  algorithm  has  been  applied.  Examples
addressing  both  specified  and  unspecified  time  interval
reservation requests have been shown, solved, and analyzed to
verify the soundness of the proposed approach.

As  for  future  work,  we  plan  to  apply  the  proposed
framework  to  relevant  business  applications,  such  as  flight
ticket booking, urban parking management, and smart energy
management  systems.  This  implies  defining  the  probability
distributions of the underlying stochastic processes. In case of
their  unavailability,  it  is  possible  to  resort  to  computer
simulators  (generating  samples  according  to  such  probability
distribution) or reinforcement learning based approaches.
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