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a b s t r a c t

Value function approximation has a central role in Approximate Dynamic Programming (ADP) to
overcome the so-called curse of dimensionality associated to real stochastic processes. In this regard,
we propose a novel Least-Squares Temporal Difference (LSTD) based method: the ‘‘Multi-trajectory
Greedy LSTD’’ (MG-LSTD). It is an exploration-enhanced recursive LSTD algorithm with the policy
improvement embedded within the LSTD iterations. It makes use of multi-trajectories Monte Carlo
simulations in order to enhance the system state space exploration.

This method is applied for solving resource allocation problems modeled via a constrained
Stochastic Dynamic Programming (SDP) based framework. In particular, such problems are formulated
as a set of parallel Birth–Death Processes (BDPs). Some operational scenarios are defined and solved
to show the effectiveness of the proposed approach. Finally, we provide some experimental evidence
on the MG-LSTD algorithm convergence properties in function of its key-parameters.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Stochastic Dynamic Programming (SDP) is a general method
or modeling and solving sequential decision problems under un-
ertainty. The first comprehensive books on such topic were writ-
en by Bellman (1957) and Howard (1960). Since then, SDP based
pproaches have been widely applied in many fields, see Bert-
ekas (2017) and Powell (2011). In principle, there exist consol-
dated approaches to solve SDP problems, and calculate (even
xactly) the corresponding optimal policy. In particular, we can
ention the Value Iteration (VI), the Policy Iteration (PI) and

he linear programming methods (Bertsekas, 2012a), chapter
. However, as for real-world applications, their applicability is
imited by severe scalability problems. It is worth highlighting
hat such issue (also known as the curse of dimensionality) can be
aused by both the system state space and the set of alternative
ecisions at each state (action space). As a consequence, real-
orld problems become intractable due to computational burden
nd memory requirements. In this regard, Approximate Dynamic
rogramming (ADP) proves to offer powerful tools for address-
ng such scalability issues (Bertsekas, 2012a), chapter 6. ADP
s a flourishing research area, emerged through a fruitful cross
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fertilization of ideas from artificial intelligence, optimal control
theory, and operations research. Very recent applications can be
found in different fields, such as smart home energy management
system (Keerthisinghe, Verbic, & Chapman, 2016), multi-agent
robotic systems (Deng, Chen, & Belta, 2017), spacecraft mission
operations planning (D’Angelo, Tipaldi, Palmieri, & Glielmo, 2019;
Tipaldi & Glielmo, 2018), and power systems (Guo, Liu, Si, He,
Harley, & Mei, 2016; Tang, He, Wen, & Liu, 2015).

The ADP methods can be grouped into two main classes, that is
to say, approximation in value space and approximation in policy
space (Bertsekas, 2012a), chapter 6. In this paper, we focus on
the former, and more specifically on the value function approx-
imation. A value function gives the expected cumulative reward
when starting from a specific state, and then following a given
policy (expectation being done over all possible trajectories). An
optimal policy is one that maximizes the value function for each
state (Bertsekas, 2012a). In this context, the main technique to
address the curse of dimensionality is to approximate such value
function via a more compact parametric representation, which
is also referred to as the approximation architecture (Bertsekas,
2011a; De Farias & Van Roy, 2003; Geist & Pietquin, 2013). More
specifically, in this paper, we approximate the (optimal) value
function by adopting a feature extraction mechanism to map the
original set of states onto a much smaller set of feature vectors.

Among the different value function approximation methods
(Geist & Pietquin, 2013), we consider the least-squares projected
fixed point category (Bertsekas, 2011b). In literature, we find two
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main techniques, that is to say, the Least Square Temporal Differ-
ence (LSTD) and Least Squares Policy Evaluation (LSPE) (Bertsekas,
2011a; Geist & Pietquin, 2013). They adopt Monte Carlo simula-
tions to compute the approximate value function of a given policy
in the lower dimensional feature space. The key idea behind sim-
ulations is to express the SDP optimality condition as expected
value with respect to some probability distribution, and then to
approximate the expected value by sampling according to such
distribution. Both LSTD and LSPE are performed as the policy
evaluation of the PI algorithm. In particular, an approximate
value function of a fixed policy is calculated, and then the policy
improvement step is performed separately, by assuming that it
can be performed even when we have a large state space (Bert-
sekas, 2012a), paragraph 6.1.2. Hereafter, we consider that such
assumption is not valid, thus we propose to incorporate the policy
improvement step within the Monte Carlo simulations.

In this paper, we propose a novel LSTD based approach, which
is an exploration-enhanced recursive LSTD algorithm with the PI
policy improvement embedded within the LSTD iterations. We
call this algorithm ‘‘Multi-trajectory Greedy LSTD’’ (MG-LSTD). In-
stead of having a predetermined policy, we actually apply a policy
derived from a step-by-step optimization process. In other words,
we address the curse of dimensionality both in the state and
in the action spaces. In particular, we calculate the approximate
value function via multi-trajectories Monte Carlo simulations in
order to enhance the system state exploration and to generate a
richer mixture of state visits. We assume that a good estimation
of the underlying MDP state transition probabilities is avail-
able. Thus, the MG-LSTD is a model-based approach. However,
it could also work in case we have a computer simulator (with
the capability of generating samples according to such probability
distributions) or the real system, which could make the proposed
algorithm closer to model-free approaches, such as the Least
Squares Policy Iteration (LSPI) (Lagoudakis & Parr, 2003). In such a
case, the MG-LSTD algorithm should be extended to approximate
Q-factor functions, rather than value functions (Bertsekas, 2019a).

The MG-LSTD algorithm is applied to solve resource allocation
problems, which are modeled by means of parallel Birth–Death
processes (BDP) (Bertsekas & Tsitsiklis, 2000; Crawford, Minin, &
Suchard, 2014). Dynamic pricing policies can be applied, meaning
that price managers can propose different prices for the same
resource over time with the aim of maximizing the expected total
revenue. In our model, each feasible price corresponds to a spe-
cific BDP, while stochastic arrivals and departures of customers
are respectively the birth and the death of such BPDs. This way,
customers can hold a resource as long as they like. The complete
formulation becomes a SDP problem aiming at maximizing the
expected total revenue over an infinite time horizon. Its under-
lying optimization problem is solved by the proposed algorithm
with the aim of addressing the curse of dimensionality. Significant
operational scenarios are defined and solved with the support of
a Matlab based application in order to show the effectiveness of
the proposed approach.

The rest of the paper is organized as follows. Section 2 pro-
vides some background on ADP and projected fixed point ap-
proaches. Section 3 describes the proposed MG-LSTD algorithm,
and investigates the properties of the resulting value function
approximation as well as some connections with the LSPE. Sec-
tion 4 analyzes the motivation of the MG-LSTD algorithm, its
key-aspects, and its connections with other approaches reported
in the literature. Resource allocation problem formulation via a
constrained SDP/ADP framework is addressed in Section 5. Sec-
tion 6 shows numerical results of the MG-LSTD algorithm when
used to solve resource allocation problems. Given the empiri-
cal nature of the paper, such section shows some experimental
evidence on the MG-LSTD algorithm convergence properties in
function of its key-parameters and provides some guidance
on the proper application of the MG-LSTD algorithm. Finally,
Section 7 concludes the paper.
2. Preliminaries on ADP and projected Bellman equation

This section provides an essential background on some math-
ematical models and tools we will exploit in the MG-LSTD al-
gorithm and the resource allocation problem formulation. For a
more rigorous and detailed dissertation on the topics here briefly
outlined, the reader can refer to the cited literature.

In this paper, we use the value function approximation to cope
with the curse of dimensionality, in particular we substitute the
original value function with an approximated representation de-
fined over a restricted set of selected features (Bertsekas, 2012a),
Section 6.1. We refer to SDP problems structured as Markov
Decision Processes (MDPs), defined as follows:

• Ξ = {ξ 1, . . . , ξΩ} is the finite set of states, where ξ v, ξw ∈
Ξ are two generic elements of this set (note that, for the
sake of generality, we have chosen a symbolic notation for
the MDP states). |Ξ | = Ω is the cardinality of this set.
The state variable at time k is denoted with ξ (k), where
ξ (k) ∈ Ξ .
• U = {u1, . . . , un} is the finite set of actions (also called

decisions or inputs), where u is a generic element of this
set. We denote the action variable at time k with u(k), where
u(k) ∈ U . In case the set of admissible actions depends on
the state ξ v , we write U(ξ v).
• T ⊆ Ξ × U × Ξ is the state transition probability matrix,

whose elements are

pξvξw (u) := P
[
ξ (k+ 1) = ξw| ξ (k) = ξ v, u(k) = u

]
.

It represents the probability that an action u ∈ U , performed
in the state ξ v ∈ Ξ at the time slot k, leads the system into
the state ξw ∈ Ξ at the time slot k+ 1.
• R : Ξ × U → [0,+∞) is the reward function, obtained

when taking an action ui at any state ξ v ∈ Ξ . In this paper,
we consider that reward function only depends on the state,
so we can simply write R(ξ v).

By using SDP based frameworks, it is possible to formulate and
olve sequential decision problems under stochastic uncertainty
odeled as MDPs. At the core of such frameworks, there is the

esolution of a stochastic optimization problem.
More specifically, let us define µk(·) : Ξ → U as the control

unction mapping states into controls (i.e., µk(·) represents the
ecisions selected at time k on the whole state space Ξ ). Let π =
µ0, . . . , µN−1} denote the policy, that is to say, the sequence
f control functions µk(·) applied on the whole state space Ξ
ver the finite time horizon N . The value function of the policy π
tarting from the initial state ξ (0) over the infinite time horizon
an be written as follows

π

(
ξ (0)

)
= lim

N→∞
E

{
N−1∑
k=0

αkR
(
ξ (k)

)}
, (1)

here E{·} is the expectation operator (calculated over the se-
uence of states ξ (k) visited by applying the policy π ), and 0 <
< 1 is the discount factor. The optimal value function can be

xpressed as follows

∗
(
ξ (0)

)
= max

π
lim

N→∞
E

[
N−1∑
k=0

αkR
(
ξ (k)

)]
. (2)

With a slight abuse of notation, we can define Eqs. (1) and
2) for a generic state ξ ∈ Ξ as Jπ (ξ ) and J∗

(
ξ
)
, respectively.

ereafter, we consider only stationary policies over an infinite
ime horizon (i.e., π = {µ,µ, . . . } and N →∞). We can denote
he value function of stationary policies with J (ξ ).
µ
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For any value function J : Ξ → R (R is the set of real
numbers), we define the Bellman operator for policies and the
Bellman optimality operator (Bertsekas, 2012a), section 1.1

(TµJ)(ξ v) = R(ξ v)+ α
∑
ξw∈Ξ

pξvξw
(
µ(ξ v)

)
J(ξw), (3)

(TJ)(ξ v) = max
u∈U(ξv )

[
R(ξ v)+ α

∑
ξw∈Ξ

pξvξw (u)J(ξw)
]
. (4)

Both operators can be viewed as mappings operating on the
function J to produce other functions of states, respectively TµJ
and TJ . Jµ and J∗ are also the fixed points of such mappings, that
is to say, Jµ = TµJµ and J∗ = TJ∗ (Bertsekas, 2012a), section 1.2
Note that the action u to be chosen in (4) does not depend on
the reward R(ξ v). This is not true when the reward function also
depends on the action selected in the current state. However, for
the sake of generality, we prefer to keep the Bellman optimality
operator in its more general form in the remainder of the paper.

There exist consolidated approaches to solve SDP problems,
and calculate the corresponding optimal policy. In this context,
we can mention the PI algorithm. It is an iterative algorithm, in
which each iteration is composed of two steps: policy evalua-
tion and policy improvement. Such approaches solve exactly the
SDP problems, but can be hardly used in real-world applications
because of the above-mentioned curse of dimensionality.

Approximate Dynamic Programming (ADP) proves to offer
powerful tools for addressing such scalability issues. In this paper,
we focus on approximation in value space (Bertsekas, 2012a;
Powell, 2011; Tsitsiklis & Van Roy, 1997). The key idea is to ap-
proximate the value function J with a more compact parametric
representation, that is to say, J̃(ξ, r), J̃ : Ξ × Rq

→ R, where
r ∈ Rq is an adjustable parameter vector with all the components
ri to be ‘‘trained’’. The choice of the architecture is very significant
for the success of the approximation approach. One possibility is
to use the following linear form

J̃(ξ, r) =
q∑

i=1

riφi(ξ ), (5)

where φi(ξ ) are some known scalars that depend on the state ξ .
For each state ξ , the approximate value J̃(ξ, r) is the inner product
(ξ )′r with φ(ξ ) =

(
φ1(ξ ), . . . , φq(ξ )

)′ (note that the prime
ign denotes the transpose operator). We refer to φ(ξ ) as the
eature vector of ξ , and its components φi(ξ ) as features. In other
ords, we approximate the original value function J by adopting
feature extraction mechanism to map the original set of states
nto a much smaller set of features. Such features can be regarded
s functions encoding some state properties, and are defined
ased on the problem to be solved. The value function vector J
J ∈ RΩ with components J(ξ v)) is approximated by a vector in
he subspace

= {Φr|r ∈ Rq
}, (6)

here

=

⎡⎢⎣φ1(ξ 1) . . . φq(ξ 1)
...

...
...

φ1(ξΩ ) . . . φq(ξΩ )

⎤⎥⎦
s the feature matrix. Note that, in general we have q ≪ Ω . The
q columns of Φ are viewed as basis functions, and Φr as a linear
combination of basis functions. The value function of a policy
Jµ(ξ ) and the optimal value function J∗(ξ ) can be approximated
respectively as J̃µ(ξ, r) = φ(ξ )′rµ and J̃∗(ξ, r) = φ(ξ )′r∗.

Now we recall some definitions, assumptions, and results pro-
viding the mathematical background for the LSTD and the MG-

LSTD. For further investigation and deep insight regarding the
importance of these assumptions (along with the convergence
result of temporal difference learning approaches with linear
function approximation), we refer the reader to the original work
reported in Tsitsiklis and Van Roy (1997).

Definition 2.1. Let us denote the MDP state transition proba-
bility matrix for a specific stationary policy µ with P ∈ RΩ×Ω ,
its value function vector with Jµ ∈ RΩ (with components Jµ(ξ v)),
and the reward vector with R ∈ RΩ (with components R(ξ v)). The
Bellman operator for the policy µ can be written in the following
matrix form

TµJ = R+ αPJ.

Assumption 1. For each admissible stationary policy µ, the
underlying Markov chain is irreducible and regular. The related
stochastic matrix P has a steady state probability vector ε ∈ RΩ

+

with components εξv > 0 (v = 1, . . . ,Ω).

Assumption 2. The matrix Φ has rank q.

Assumption 1 implies that the underlying Markov chain has
a single recurrent class and no transient states. Assumption 2
means that each vector J in the subspace ∆ can be represented
in the form Φr with a unique vector r .

In order to introduce the projected form of the Bellman oper-
ators, we use the weighted Euclidean norm of any value function
vector J ∈ RΩ with respect to the vector of positive weights ε

∥J∥ε =
(
J ′ΘJ

) 1
2 , (7)

whereΘ is the diagonal matrix with the steady state probabilities
εξ1 , . . . , εξΩ along the diagonal. Let Π denote the projection
operation of any J ∈ RΩ onto ∆ with respect to this norm. In
other words, Π J implies computing the unique vector in ∆ that
minimizes the following

r̂ = argmin
r∈Rq

∥J −Φr∥2ε . (8)

It can also be written as

Π J = Φ r̂, (9)

with

r̂ = (Φ ′ΘΦ)−1Φ ′ΘJ, (10)

where Π = Φ(Φ ′ΘΦ)−1Φ ′Θ . Thanks to Assumption 2, the
inverse (Φ ′ΘΦ)−1 exists.

By using the projection operator, we can introduce the pro-
jected Bellman operator ΠTµJ = Π (R + αPJ). It can be seen
that, under the above-mentioned assumptions, the corresponding
projected Bellman equation Φr = ΠTµ(Φr) has a unique fixed
point (Bertsekas, 2011a). In particular, the mappings Tµ and ΠTµ
are contractions of modulus α with respect to the weighted
Euclidean norm (7). We denote with J̃µ = Φrµ the fixed point
of ΠTµ, i.e. Φrµ = ΠTµ(Φrµ). It is worth highlighting that the
projection equation has to be solved in the subspace ∆ by setting
a proper combination of the basis functions.

Solving the projection equation implies performing matrix–
vector multiplications and inner products of size Ω when calcu-
lating rµ (Bertsekas, 2011b). We can address such issue by using
iterative approaches based on temporal difference (TD) methods
and Monte Carlo simulations.

2.1. The matrix form for the projected Bellman equation

Let us write the projected Bellman equation Φr = ΠTµ(Φr) in
a more explicit form. It can be shown that its solution is the vector
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J̃µ = Φrµ, where the parameter vector rµ satisfies the following
orthogonality condition (Bertsekas, 2012a), section 6.3

Φ ′Θ
(
Φrµ − (R+ αPΦrµ)

)
= 0. (11)

Thus, the optimality condition of the projected Bellman equa-
tion can be written in the following equivalent matrix form

Crµ = y, (12)

where

C = Φ ′Θ(I − αP)Φ, and y = Φ ′ΘR. (13)

It can be potentially solved by matrix inversion, that is to say,
rµ = C−1y (C is invertible and positive definite in the sense that
r ′Cr > 0,∀r ̸= 0 Bertsekas, 2011b). Unlike the Bellman equation
Jµ = TµJµ, the optimality condition of the projected Bellman
equation has a smaller dimension (q rather than Ω). However,
computing C and y requires performing high-dimensional linear
algebra, e.g., inner products of size Ω . Consequently, as for prob-
lems whereΩ is very large, the explicit computation of C and y is
infeasible. Furthermore, it requires the knowledge of the steady
state probabilities εξ1 , . . . , εξΩ . Both these issues can be solved by
using the Monte Carlo simulations and LSTD based algorithms.

3. The multi-trajectory greedy least-squares temporal differ-
ence algorithm

Starting from the recursive LSTD, this section describes the
proposed MG-LSTD algorithm, and investigates the properties of
the resulting value function approximation.

The LSTD algorithm adopts Monte Carlo simulations to train
the approximate value function of a given policy in the fea-
ture space with low-dimensional linear algebra. The key idea of
simulation is to express the optimality condition (see (11) for
the matrix form of the projected Bellman equation) as expected
value with respect to some probability distribution, and then to
approximate the expected value by sampling according to such
distribution (Bertsekas, 2011b). The LSTD is performed as the
policy evaluation step of the Policy Iteration algorithm (Bertsekas,
2012a), section 6.3. As a result, we compute a simulation-based
approximation of rµ, which is denoted with r̂µ.

In the recursive LSTD approach (see Algorithm 1), M samples
from one long trajectory are collected by applying a fixed policy.
The parameter vector r̂s is renewed at each new sample along
such trajectory by using the sampled version of the matrix C and
the vector y, that is to say, Cs and ys (note that s is the index of
the sth sample generated by the Monte Carlo simulation, starting
from ξ (0)). The definitions of Cs and ys are given in the Algorithm
1. At the end of the long trajectory, the approximate parameter
vector r̂µ is set to r̂M . Moreover, Σ ∈ R

q×q
+ is selected as a

symmetric positive definite matrix and σ is a positive scalar. For
more details, we refer the reader to Nedić and Bertsekas (2003)
and Yu and Bertsekas (2009), where the LSTD method and its
convergence proof have been deeply investigated.

The MG-LSTD (see Algorithm 2) is an exploration-enhanced
recursive LSTD algorithm with the policy improvement step em-
bedded within the LSTD iterations. It aims at calculating the
optimal value function J∗(ξ ) approximated via the linear feature-
based architecture given by (5). In other words, it calculates the
vector r̂∗ via the LSTD successive approximations of the parame-
ter vector r̂s. Two main elements differentiate the MG-LSTD from
the recursive LSTD:

• We use multiple M-length simulation trajectories, each of
them having an initial state chosen according to some prob-
ability distribution. In particular, we consider Q trajectories,
Algorithm 1: Recursive Least-Squares Temporal Difference
• Set s to 0
while s ≤ M, s ∈ {0, 1, . . . ,M} do
• Generate the next state sample ξ (s+ 1) from the current
state ξ (s) by Monte Carlo simulation and by applying the
policy µ under evaluation
• Compute the corresponding feature vector φ

(
ξ (s+ 1)

)
• Compute the reward of the current state R

(
ξ (s)

)
if s = 0 then

Set r̂−1 ← r̄ (with r̄ being a heuristic guess based on
some intuition about the problem), C−1 = 0, and y−1 = 0

end
• Calculate the matrix Cs

Cs = (1−
1

s+ 1
)Cs−1+(

1
s+ 1

)φ
(
ξ (s)

)(
φ
(
ξ (s)

)
−αφ

(
ξ (s+1)

))′
• Calculate the vector ys

ys = (1−
1

s+ 1
)ys−1 +

1
s+ 1

φ
(
ξ (s)

)
R
(
ξ (s)

)
• Having Cs and ys, compute the parameter vector update r̂s
as follows r̂s =

(
C ′sΣ

−1Cs + σ I
)−1(C ′sΣ−1ys + σ r̂s−1)

• Set s← s+ 1, Cs−1 ← Cs, and ys−1 ← ys
end
• Set r̂µ = r̂M , and J̃µ = Φ r̂µ with the components
J̃µ(ξ, r) = φ(ξ )′ r̂µ

where j ∈ {1, 2, . . . ,Q } represents the jth trajectory. With a
slight abuse of notation, ξ j(s) is the state at the sth iteration
along the jth trajectory, with s ∈ {0, . . . ,M}. We denote
with r̂ js the approximate parameter vector computed up
to the sth iteration within the jth trajectory. Once the jth
trajectory is terminated, the calculated r̂ jM is replaced as the
initial guess for the next one. In the end, we set r̂∗ equal to
r̂QM.
• The policy improvement is embedded into the LSTD steps:

given a generic current state ξ j(s) along the current Monte
Carlo jth trajectory, we generate a set of possible next states
ξ
j
ui (s + 1), one for each admissible action ui ∈ U(ξ j(s)).
This set is created from the state transition probabilities
pξ j(s)ξw (ui). For each candidate next state, the corresponding
parameter vector update r̂ js(ui) is calculated (note that the
same definitions used in the recursive LSTD are applied
to C j

s and yjs (see Algorithm 2)). Then, we choose the pair
(candidate next state, candidate parameter vector update)
by maximizing the sampled approximate value function

argmax
r̂ js(ui),ξ

j
ui (s+1)

(
R
(
ξ j(s)

)
+ αφ

(
ξui (s+ 1)

)′ r̂ js(ui)

)
. (14)

Note that we denote with uj(s) the control action selected
in the sth iteration within the jth Monte Carlo trajectory by
Eq. (14), leading the system from ξ j(s) into ξ j(s+ 1).

In the MG-LSTD, we have adopted a sampled version of the
atrix form for the projected Bellman equation, whose matrix C

s invertible (Bertsekas, 2011b). However, this property may not
old for C j

s until a sufficient number of samples in the Monte
arlo simulation are acquired for its calculation. To solve such
ssue, a regularization term is introduced. More specifically, in
ach iteration along the jth Monte Carlo trajectory, we compute
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Algorithm 2: Multi-trajectory Greedy LSTD (MG-LSTD)
• Choose the number of trajectories Q and their length M , set j = 1 and s = 0
• Initialize the vector r̂1

−1 = r̄ and the initial state ξ 1(0) = ξ 10
while j ≤ Q , j ∈ {1, . . . ,Q } do

while s ≤ M, s ∈ {0, 1, . . . ,M} do
if s = 0 & ȷ = 1 then
• C1
−1 = 0, y1

−1 = 0, r̂1
−1 = r̄

end
foreach ui ∈ U(ξ j(s)) do
• From the current state ξ j(s), generate a candidate next state ξ jui (s+ 1) by Monte Carlo simulation and by applying the admissible
control action ui
• Compute the corresponding feature vector φ

(
ξ
j
ui (s+ 1)

)
and the reward of the current state R

(
ξ j(s)

)
• Calculate the matrix C j

s(ui)

C j
s(ui) =(1−

1
s+ 1

)C j
s−1 + (

1
s+ 1

)φ
(
ξ j(s)

)(
φ
(
ξ j(s)

)
− αφ

(
ξ jui (s+ 1)

))′
• Calculate the vector yjs (necessary only for the first admissible control action)

yjs = (1−
1

s+ 1
)yjs−1 +

1
s+ 1

φ
(
ξ j(s)

)
R
(
ξ j(s)

)
• Compute the candidate parameter r̂ js(ui) as follows

r̂ js(ui) =
(
C ′js (ui)Σ−1C j

s(ui)+ σ I
)−1(C ′js (ui)Σ−1yjs + σ r̂

j
s−1

)
end
• Choose the pair (r̂ js(ui), ξ j(s+ 1)) and the related greedy control action uj(s) by

argmax
r̂ js(ui),ξ

j
ui (s+1)

(
R
(
ξ j(s)

)
+ αφ

(
ξui (s+ 1))′ r̂ js(ui)

)

• Set C j
s ← C j

s(uj(s)), ξ j(s+ 1)← ξ
j
uj(s)

(s+ 1), r̂ js ← rs(uj(s)), s← s+ 1
end
• Set j← j+ 1, C j

−1 = C j−1
M , yj

−1 = yj−1M , r̂ j
−1 = r̂ j−1M

• Select the initial state ξ j(0) = ξ j0 for the next trajectory and set s to 0
end
• Set r̂∗ = rQM, and J̃∗ = Φ r̂∗ with the components J̃∗(ξ, r) = φ(ξ )′ r̂∗
t

µ

r̂ js(u) by solving the following least square problem

min
r

{(
yjs(u)− C j

s(u)r
)′
Σ−1

(
yjs(u)− C j

s(u)r
)
+ σ∥r − r̂ js−1∥

2
}
.

y setting the objective function gradient to 0, we have

ˆ
j
s(u) =

(
C ′js (u)Σ

−1C j
s(u)+ σ I

)−1(C ′js (u)Σ−1yjs(u)+ σ r̂ js−1), (15)

here the quadratic term σ∥r − r̂ js−1∥
2 is known as a regulariza-

tion term (here, ∥ · ∥ denotes the L2-norm), and has the effect
of biasing the estimate r̂ js(u) towards the previous parameter
vector estimation r̂ js−1. As for the first iteration, we consider the
heuristic guess r̄ for the parameter vector r̂1

−1. It is based on
some intuition about the problem at hand. Moreover, the matrix
Σ and the coefficient σ are respectively positive definite and
positive (Hoffman, Lazaric, Ghavamzadeh, & Munos, 2012).

Instead of having one single long trajectory, we use multiple
shorter trajectories starting from different initial states ξ j(0).
Within a specific trajectory, the selection of the states to be vis-
ited is determined by the state transition probabilities pξ j(s)ξw (ui)
and the greedy control action maximizing Eq. (14). Fig. 1 provides
a schematic representation of the next state selection process of
the MG-LSTD algorithm. This way, the MG-LSTD algorithm can
experience a variety of situations and progressively favor those
that appear to be the best. As a result of the overall approach,
a better approximation of the optimal value function (and its
computed parameter vector r̂∗) is expected.

Once all the Monte Carlo simulation trajectories have been
processed, we can set r̂∗ equal to r̂Q . Then, we can calculate the
M
approximate optimal policy µ̃∗(·) by replacing J̃∗ = Φ r̂∗ as the
erminal value function in the Bellman optimality operator

˜
∗(ξ v) = argmax

ui∈U(ξv )

[
R(ξ v)+ α

∑
ξw∈Ξ

pξvξw (ui)φ(ξw)′ r̂∗
]
. (16)

The MG-LSTD convergence properties have been experimen-
tally verified when solving the optimization problems for the
operational scenarios presented in Section 6. It is worthwhile
highlighting that we always use admissible policies when embed-
ding the policy improvement step into its iterations, see Eq. (14).
More importantly, we have to remind that using projected fixed-
point approaches (such as LSTD or LSPE) for the policy evaluation
within the PI algorithm iterations, and combining them with the
policy improvement step may lead to oscillations. This is due
to the fact that, though the projected Bellman operator can be
a contraction, it lacks of monotonicity (Bertsekas, 2012a), para-
graph 6.4.3. In this regard, the MG-LSTD approach can provide
an alternative since a sampled version of the policy improvement
has been incorporated into its iterations, and the full policy
improvement is only performed at the end by using (16).

3.1. Properties of the MG-LSTD value function approximation

In this paragraph, we derive a relevant accuracy implication
for the value function calculated by the MG-LSTD algorithm. In
particular, we have exploited the results of the following theorem
reported in De Farias and Van Roy (2003), Section 3.
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Fig. 1. Example of next state selection by the MG-LSTD algorithm (note that for
the sake of simplicity we have removed the trajectory index j): starting from
the initial state ξ (0) with three admissible actions (i.e., U(ξ (0)) = {u1, u2, u3}),
we apply all the admissible actions ui ∈ U(ξ (0)) and generate three next state
candidates ξui (1) based on pξ (0)ξw (ui). We calculate the corresponding C0(ui),
0(ui) and r̂0(ui), and then we select the state according to Eq. (14). As shown
n the figure, the control action u2 is chosen in the state ξ (0), which brings the
ystem into the state ξ (1) = ξu2 (1).

heorem 3.1. Consider the following weighted L1-norm ∥ · ∥1,z
efined by

J∥1,z =
Ω∑
v=1

z(ξ v)|J(ξ v)|,

here z ∈ RΩ is called state relevance weights, with positive
omponents z(ξ ) and

∑Ω

v=1 z(ξ
v) = 1. A vector r solves

max
r∈Rq

z ′Φr

s.t. TΦr ≥ Φr

f and only if it solves

min
r∈Rq
∥J∗ −Φr∥1,z

s.t. TΦr ≥ Φr.

Proof. It is well known that the Bellman optimality operator T is
monotonic and has J∗ as unique fixed point. Thus, it follows that,
for any bounded function satisfying J ≤ TJ , we have

J ≤ TJ ≤ T 2J ≤ . . . ≤ J∗.

For any parameter vector r satisfying the constraint TΦr ≥ Φr ,
we have that Φr ≤ J∗. It follows that

∥J∗ −Φr∥1,z =
Ω∑
v=1

z(ξ v)|J∗(ξ v)− φ(ξ v)′r| = z ′J∗ − z ′Φr.

This means that maximizing z ′Φr is equivalent to minimizing
∥J∗ − Φr∥1,z . Note that a similar conclusion can be derived in
case TΦr ≤ Φr . □
Theorem 3.1 proves a connection between the maximization
of Φr and the minimization of the term ∥J∗−Φr∥1,z . In the MG-
LSTD algorithm, we choose the control action at each iteration
according to Eq. (14), which is a sampled version of the maxi-
mization problem of Theorem 3.1. This way, we can reduce the
distance to J∗ as the MG-LSTD algorithm collects more and more
samples along the different trajectories and Eq. (14) is applied.
Moreover, the choice of the state relevance weights bears a signif-
icant impact on the quality of the value function approximation.
In the LSTD approach, the parameter vector r is computed by
Monte Carlo simulation over a long trajectory by applying a spe-
cific policy. In this regard, the state relevant weights correspond
to the probability of being at a specific state when time goes
to infinity and the policy under evaluation is applied (Bertsekas,
2012a), section 6.3. As for the MG-LSTD algorithm, the definition
of the Monte Carlo simulation paths (and the explored states) is
based on Eq. (14), thus the proposed algorithm tends to visit the
states that have more value compared to the others (on a sampled
basis). Therefore, the state relevance weights can be linked to the
MDP steady state probability vector under the policy calculated
by Eq. (14), which can converge to a specific policy as time goes
by and a steady approximation r̂∗ to the parameter vector r∗ is
achieved.

3.2. Connection of the MG-LSTD with the LSPE

Now we explore some interesting links of the MG-LSTD with
the other relevant method of least-squares value function approx-
imation, that is to say, the LSPE. Without loss of generality, we
apply the MG-LSTD with the number of trajectories Q = 1, and
thus we remove the dependency from the current Monte Carlo
trajectory j.

To start with, we define ξ (s+ 1) as the state generated along
he Monte Carlo trajectory from the current state ξ (s) by apply-
ng the sth iteration of the MG-LSTD algorithm (see Fig. 1 and
q. (14)). In addition, u(s) is the corresponding action and µ(s) is
he resulting policy. The latter can be derived as follows. We start
ith an initial policy µ(0), for instance a base policy (Bertsekas,
012a), paragraph 2.3.4. As the simulation goes on, we replace the
ontrol actions for the visited states by the ones calculated by the
G-LSTD algorithm. The existence of the steady state probability
ector ε(s) of the resulting µ(s) (if it is applied as a stationary
olicy) is guaranteed by Assumption 1.
If we knew ε(s), we could write the following least squares

ormula to calculate the parameter vector rµ(s) of the policy
(s) as follows (note that with εξv (s) is the component of ε(s)
orresponding to the state ξ v)

µ(s) = argmin
r∈Rq

Ω∑
v=1

εξv (s)

(
φ(ξ v)′r

− max
u∈U(ξv )

(
R(ξ v)+ α

Ω∑
w=1

pξvξw (u)φ(ξw)′rµ(s− 1)
))2

.

ote that the definition of parameter vector rµ(s) is different from
he one given in the paragraph 2.1. It results from a weighted
ormminimization problem over the complete state space, where
or each state we have considered the temporal difference with
he Bellman optimality operator, whose terminal value function
s calculated from rµ(s − 1). By setting the objective function
radient to 0, we have

µ(s) =

(
Ω∑
εξv (s)φ(ξ v)φ(ξ v)′

)−1

v=1
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(
Ω∑
v=1

εξv (s)φ(ξ v) max
u∈U(ξv )

(
R(ξ v)+ α

Ω∑
w=1

pξvξw (u)φ(ξw)′rµ(s− 1)
))
.

ince we do not know the steady state probability vector ε(s),
e have to use the experimental values calculated as the Monte
arlo simulation goes on. If we consider ε̂ξv (s) and p̂ξvξw (s) as the
mpirical frequencies of being in state ξ v and of the state tran-
ition (ξ v, ξw) respectively observed by applying the MG-LSTD
lgorithm, we have the following

ˆξv (s) =

∑s
l=0 δ

(
ξ (l) = ξ v

)
s+ 1

,

ˆξvξw (s) =

∑s
l=0 δ

(
ξ (l) = ξ v, ξ (l+ 1) = ξw

)∑s
l=0 δ

(
ξ (l) = ξ v

) ,

where δ(·) is the indicator function, that is to say, δ(EV ) = 1 if
the boolean predicate EV is true, and if not, δ(EV ) = 0.

As a consequence, we can write

rµ(s) ≈

(
Ω∑
v=1

ε̂ξv (s)φ(ξ v)φ(ξ v)′
)−1

×

(
Ω∑
v=1

ε̂ξv (s)φ(ξ v) max
u∈U(ξv )

(
R(ξ v)+ α

Ω∑
w=1

p̂ξvξw (u)φ(ξw)′rµ(s− 1)
))
.

By considering only the actual visited states, we have

r̂µ(s) =

(
s∑

l=0

φ
(
ξ (l)

)
φ
(
ξ (l)

)′)−1

×

(
s∑

l=0

φ
(
ξ (l)

)(
R
(
ξ (l)

)
+ αφ

(
ξ (l+ 1)

)′ r̂µ(s− 1)
))
. (17)

Note that the max operator has been replaced by the sampled
state transition derived from Eq. (14). This formula is exactly the
one used in the LSPE, embedding the above-mentioned policy im-
provement (Bertsekas, 2012a), paragraph 6.3.4. In other words,
the MG-LSTD algorithm can be easily converted into the MG-LSPE
algorithm.

4. Further considerations on the MG-LSTD algorithm

In this section, we analyze the key-aspects of the MG-LSTD
algorithm, its motivation, and its connections with other ap-
proaches reported in the literature. In this regard, we examine
the MG-LSTD algorithm convergence properties and the role of its
input parameters (e.g., the feature matrix Φ) from a qualitative
point of view by using the convergence results of LSTD based
approaches available in the scientific literature. The study on the
MG-LSTD convergence properties from an analytical point of view
is regarded as future work.

4.1. MG-LSTD key-aspects, motivation and connection with other
approaches

The main objectives of proposing the MG-LSTD algorithm can
be summarized as follows: to address real-world systems with a
large state space; to learn proper policies over the complete state
space; to improve the system behavior exploration capabilities.

Like all the ADP methods, the MG-LSTD algorithm can be used
to address the scalability issue of real-world stochastic problems.
ADP methods can be grouped into two main classes, that is to
say, approximation in value space and approximation in policy
space (Bertsekas, 2012a), Section 6. Among the different value
function approximation methods reported in the literature (Geist
& Pietquin, 2013), we can consider the least-squares projected
fixed point category and its two main techniques, that is to say,
the LSTD and the LSPE (Bertsekas, 2011b). Such techniques are
used to evaluate the state value function of a specific policy by
using Monte Carlo simulations and the sampled version of the
projected Bellman equation (Bertsekas, 2011b). However, they
are not suitable for stochastic optimal control applications, where
we are interested in finding suitable policies to achieve specific
tasks in a proper way. As a consequence, the policy improvement
step of the PI algorithm becomes necessary for such applications.

In this regard, a difficulty can arise when the number of ac-
tions at each stage is very large, and thus the policy improvement
step can also be computationally unfeasible. In the literature,
there exist different methods to learn good decision policies from
samples. They can be categorized into model-based (e.g., the
λ-Policy Iteration Bertsekas, 2012b) and model-free approaches
(e.g., Least Square Policy Iteration (Lagoudakis & Parr, 2003) and
Monte Carlo Tree Search (MCTS) methods Browne, et al., 2012).
For instance, in Silver, et al. (2017), we can find a successful
application of the MCTS to the program AlphaGo. The MCTS al-
gorithm can be applied to any finite length decision making
processes, such as computer games. Such algorithm explores
the most promising moves, by expanding the search tree based
on the random sampling of the state space and the estimated
value function. In Silver, et al. (2017), the value function is the
probability of winning, and moves are selected by using deep
neural networks. The latter are trained on a combination of super-
vised learning (i.e., moves from games played by human experts)
and reinforcement learning (i.e., gaining experience from playing
against its own clone).

There are three main differences between the MCTS approach
presented in Silver, et al. (2017) and our proposed MG-LSTD algo-
rithm. In particular, the latter can be regarded as a model-based
approach and operates over an infinite time horizon. Moreover, it
addresses the PI algorithm by embedding its policy improvement
step within the recursive LSTD iterations in order to compute an
approximation of the optimal value function. In the MG-LSTD, the
policy under evaluation is renewed at each iteration by exploiting
the information from the already-visited states and by using
a greedy approach for the selection of the next control action
along the current Monte Carlo trajectory, see Eq. (14). Unlike the
recursive LSTD algorithm (see Algorithm 1), the matrix C j

s(ui) is
calculated for all the control actions admissible in the current
state ξ j(s), namely, ui ∈ U(ξ j(s)). Then, the MG-LSTD algorithm
sets the matrix C j

s to the one corresponding to the greedy control
action uj(s) (see Algorithm 2).

The MG-LSTD algorithm also addresses the dilemma of explo-
ration versus exploitation, i.e., trying out non-optimal actions to
explore the system behavior versus exploiting the (so-far) best
perceived actions to obtain rewards (see Arulkumaran, Deisen-
roth, Brundage, & Bharath, 2017, paragraph VI.B). In particular,
the MG-LSTD algorithm makes useful progress when it applies
Eq. (14) and exploits the (so-far) best perceived actions, while
defining the path along the current Monte Carlo trajectory. On the
other hand, for each admissible action ui in the current state ξ j(s)
(with ui ∈ U(ξ j(s))), the candidate next state ξ jui (s+1) is generated
ccording to the MDP state transition probabilities pξ j(s)ξw (ui),
hus contributing to the system state space exploration (note that
he candidate next state ξ jui (s + 1) is an input for the greedy ac-
ion selection). Moreover, we adopt a multi-trajectory approach,
hich implies starting the Monte Carlo simulation from a differ-
nt initial state ξ j(0) at the beginning of each jth trajectory. Such
nitial state can be chosen according to a fixed probability dis-
ribution γ (0) =

(
γξ1 (0), . . . , γξv (0), . . . , γξΩ (0)

)
, with γξv (0) =

r
(
ξ j(0) = ξ v

)
and Pr(·) denoting any probability mass function

ver the state space.
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It is also worth highlighting that, along each MG-LSTD tra-
jectory, we preserve the information from the already-visited
states via the matrix C j

s , the vector yjs, and the regularization
term (see Algorithm 2). In addition, the initial conditions of the
next trajectory are set according to the results calculated in the
previous one (e.g., r̂ j

−1 = r̂ j−1M ).

4.2. Literature review on the convergence property of the LSTD based
approaches

Temporal Difference (TD) learning is a widely applied and
highly successful approach for approximating the value function
associated to a certain policy π on a Markov Decision Process
⟨Ξ ,U, T , R⟩. It combines Monte Carlo simulations and Dynamic
Programming (Sutton & Barto, 2018), chapter 6. LSTD based ap-
proaches belong to the family of TD learning methods (Bertsekas,
2012a), section 6.3.

As proven in Tsitsiklis and Van Roy (1997), for linear function
approximation, the convergence of TD learning based methods is
guaranteed if the states are sampled according to the frequencies
natural to the underlying Markov Chain, e.g., the steady-state
probability distribution of Assumption 1. In other words, samples
consist in a sequence of the actual visited states obtained either
through simulation of the underlying Markov chain or observa-
tion of the actual physical system (Bertsekas, 2012a), section
6.3. In this case, an on-policy reinforcement learning scheme is
considered (Sutton & Barto, 2018), section 5.5.

Conversely, TD learning based methods can diverge when
states are sampled according to some probability distributions
different from the underlying Markov chain dynamics (Tsitsiklis
& Van Roy, 1997). Such approach is called off-policy in the re-
inforcement learning. This means modifying the state transition
probability matrix of a given policy µ by occasionally generating
transitions other than the ones dictated by µ (Bertsekas, 2012a),
paragraph 6.4.2. The distribution of updates in the off-policy case
is not according to the on-policy distribution (Sutton & Barto,
2018), section 5.7. As a result, the convergence of the LSTD based
approaches cannot be guaranteed in case we do not sample states
with the frequencies natural to the underlying Markov chain (see
the examples provided by the papers referenced in Tsitsiklis and
Van Roy (1997), section IX). In such a case, the convergence
depends on the selection of the feature matrix Φ , the stationary
probability distribution of the policy under evaluation, the dis-
count factor as well as the used offline probability distribution
(see Theorem 3 reported in Tsitsiklis & Van Roy, 1997).

The MG-LSTD algorithm starts each episode (or trajectory)
from a feasible initial state, while holding the previous values
of C j

s , r̂
j
s and yjs as the initial setting of the upcoming simulation.

This approach does not violate the convergence result presented
in Tsitsiklis and Van Roy (1997) since, in the LSTD based methods,
there is no assumption about the choice of a specific initial
setting at the beginning of the Monte Carlo simulation (Bert-
sekas, 2019b), section 4.10. The MG-LSTD algorithm should be
regarded as an on-policy approach since, during each episode,
the state visits are selected according to the frequencies natural
to the underlying Markov chain: thus, its convergence should be
guaranteed. In this regard, an analysis of LSTD method conver-
gence under general conditions can be found in Yu (2012), where
the convergence properties of enhanced-exploration methods are
investigated. In particular, for the discounted cost criterion, the
convergence can be guaranteed for the enhanced-exploration
approaches under mild and minimal conditions.

Moreover, as for multi-trajectory PI approaches using LSTD
for the policy evaluation step, it is important to mention the
convergence study of the multi-trajectory λ− PI algorithm re-
ported in Bertsekas (2012b) (in particular, see Section 4.3). The
main common aspects between such algorithm and the MG-
LSTD approach is the usage of multiple short trajectories with
an exploration-enhanced restart, rather than a single infinitely
long trajectory. However, there are some important differences.
Besides the greedy approach for selection of the next control
action within the LSTD iterations, the MG-LSTD algorithm uses
trajectories with a fixed length (rather than trajectories with ran-
dom geometrically distributed length) and single step simulations
(rather than multi-step simulations).

Like all the LSTD methods, based on the results presented
in Bertsekas (2011a), its asymptotic convergence rate should not
be affected by the defined input parameters (e.g., the feature
matrix), but instead it should only depend on the choice of the
state sampling mechanisms. It means that the convergence rate
of the LSTD algorithm (where we evaluate a specific policy) is
expected to be different from the one of the MG-LSTD algorithm
(where the policy under evaluation is renewed at each iteration,
see Eq. (14)): the two state sampling mechanisms, even though
based on the underlying system dynamics, are different. Thus,
the MG-LSTD convergence rate is expected to be slower than the
one of the single trajectory LSTD, implemented according to the
Algorithm 1.

4.3. Feature selection, computational cost, and input parameter def-
inition

The selection of a suitable feature matrix Φ for the problem
at hand is an active area of research, and plays an important
role in the computational complexity of LSTD based methods
and the quality of the computed parameter vector (Bertsekas,
2011a; Bertsekas & Yub, 2009). For instance, in Keller, Mannor,
and Precup (2006), a method that uses Neighborhood Component
Analysis (NCA) to select new features to be added into the feature
matrix is proposed. More specifically, sampled trajectories are
used to generate the approximate Bellman error for each state.
By using NCA, a transformation is learned that maps states with
similar Bellman errors together, which is then used to select fea-
tures for the new basis functions to be used in the next iteration.
The computational cost of LSTD based algorithms increases with
the number of features. Some approaches can be applied, such
as the incremental LSTD methods as reported in Gehring, Pan,
and White (2016) and Geramifard, Bowling, and Sutton (2006).
In this manuscript, the MG-LSTD algorithm is adopted to solve
resource allocation problems formulated via a constrained SDP
based framework. The feature matrix Φ is a given input param-
eter to the problem to be solved, and the investigation on how
the feature selection process can affect the MG-LSTD algorithm
solutions goes beyond the scope of this paper.

It is also worth noting that the sample computational com-
plexity of both the recursive LSTD and MG-LSTD algorithms is
mainly driven by a matrix operation inversion. Unlike the re-
cursive LSTD, in the MG-LSTD, we need to execute a q × q
matrix inversion (q is the number of features) in order to cal-
culate the candidate parameter vector r̂ js(ui) for each admissible
action ui in the current state ξ j(s). This computational cost can
e reduced from O(q3) to O(q2) by using the Sherman–Morrison
ormula (Dann, Neumann, & Peters, 2014).

As discussed in the previous paragraph, as long as we sample
ccording to the underlying system dynamics, the asymptotic
onvergence rate of LSTD based approaches is not affected by the
efined input parameters (e.g., the feature matrix), but instead it
epends on the choice of the state sampling mechanisms (Bert-
ekas, 2011a). The feature matrix definition can affect the quality
f the value function approximation (Bertsekas, 2011a). This is
ot the case of the other input parameters, such as the matrix
(as for the latter, provided that it is positive definite and
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symmetric Bertsekas, 2011a; Nedić & Bertsekas, 2003; Yu & Bert-
sekas, 2009). Such matrix is used to reduce the sensitivity to the
amount of sampling required for reliable simulation-based matrix
inversion: in particular, it can happen that the sampled version
C j
s of the matrix form for the projected Bellman equation is not

invertible at the beginning of the MG-LSTD algorithm (Bertsekas,
2011a). The parameter σ has the effect of biasing the estimate r̂ js
towards the heuristic initial guess r̄ . An inappropriate initial guess
should not be an issue since the resulting bias tends to vanish as
the Monte Carlo simulations over the different trajectories go on.
In the end, both σ and Σ can be defined according to the specific
needs of the problem at hand (e.g., Σ can be set to the identity
matrix if the matrix C j

s is always invertible) and should not affect
the convergence properties of the algorithm (Bertsekas, 2011a;
Nedić & Bertsekas, 2003; Yu & Bertsekas, 2009).

As for the MG-LSTD, another relevant aspect is the choice
of the number of trajectories Q and their length M . A trade-
off among the MG-LSTD computational cost, its system state
exploration capability for systems with a large state space, and
the quality of the computed parameter vector has to be consid-
ered. Having a low number of trajectories with a high value of
M is not a good choice. Indeed, M should be set in a way to
make a significant progress in the calculation of the parameter
vector over a specific trajectory, and Q has to be chosen in order
to guarantee the convergence of the final computed parameter
vector.

The MG-LSTD algorithm could also be applied for continuous
state/action space problems (Hasselt & Wiering, 2007). Often, the
related systems can be converted into discrete systems, either
because the application itself is characterized by discrete state
values and actions (in such a case, only the time variable has to be
discretized) or because the overall continuous decision problem
can be approximated via quantizing also the state and the action
spaces.

In the remaining part of the paper, we show how to apply
the MG-LSTD algorithm to resource allocation problems modeled
via an SDP based framework. This way, we perform a numerical
investigation of its convergence properties, analyze the effect
of the MG-LSTD algorithm input parameters on the computed
parameter vector, and compare the proposed MG-LSTD algorithm
with the recursive LSTD approach.

5. Formulating resource allocation problems as a constrained
SDP framework

This section shows how to structure resource allocation prob-
lems as a set of parallel BPDs. The resulting constrained SDP
formulation allows us to calculate a proper pricing policy by
applying ADP techniques, that is to say, the MG-LSTD algorithm.
Such formulation was presented and analyzed by the authors
in Forootani, Tipaldi, Ghaniee Zarch, Liuzza, and Glielmo (2019).
More specifically, a discretization process was applied to model
resource allocation problems as a set of discrete-time BDPs, and
then integrated into one Markov decision process. Since the appli-
cation itself is characterized by discrete state values and actions,
it was only necessary to perform the discretization of the time
variable. Hereafter, the main aspects of such constrained SDP
framework are outlined. For more details, the reader can refer
to Forootani, Iervolino, and Tipaldi (2019) and Forootani, Tipaldi,
Ghaniee Zarch, Liuzza, and Glielmo (2019).

We consider the problem of dynamically pricing N resources
in order to address resource requests from customers over time.
We have a set of m hourly prices (or prices per unit of time),
nd price managers can select one of them in order to maximize
he expected total revenue. There is a dedicated BDP for each
easible price in order to model the unpredictable behavior of
customers in requesting and releasing resources. The state of each
BDP corresponds to the number of customers holding resources at
that price. Price managers can charge different prices for the same
resource over time depending on the resource availability and
expected profit. In our model, we assume that all the resources
are equivalent and that customers always accept the proposed
price, whereas price managers can reject a resource request if
not convenient from a profit standpoint. Therefore, the system
evolves as a set of parallel BDPs. By assigning a specific price at
each time slot, the price manager defines which BDP is active
for one (possible) birth and one (possible) death, whereas all
the others are active only for one (possible) death (we assume
that only one customer associated to each BDP may leave at any
time). This way, we can establish the decision making process by
integrating all the BDPs into one MDP.

Having said that, we can proceed by providing the mathemat-
ical formulation of the resulting SDP framework.

Definition 5.1. The constrained MDP associated to each price ci
is defined by a tuple Ci = ⟨Ξi,Ui, Ti, Ri⟩ where

• Ξi is the state space, Ξi = {ξ
0
i , ξ

1
i , . . . , ξ

N
i }. The state

variable at time k is denoted with ξi(k), where ξi(k) ∈ Ξi. In
particular, ξi(k) = ξ

hi
i means that hi resources are allocated

at current time k at price ci. Moreover, we denote by ξ vii and
ξ
wi
i two generic states of the process.

• The maximum number of allocable resources is assumed to
be finite and equal to N , and we define |ξ hii | = hi ≤ N .
• Ui is a finite set of control actions (also called decisions or

inputs), defined as Ui = {ci, ψ}, where ci represents ‘‘alloca-
tion’’ with price ci and ψ denotes the action of ‘‘rejection’’.
It is the action space of the MDP Ci. With a slight abuse of
notation, we denote with Ui(ξi) the set of inputs admissible
at state ξi. Hence, for each state ξ hii , with hi = 0, 1, . . . ,N ,
we have{
Ui(ξi) = {ci, ψ}, if |ξi| < N,

Ui(ξi) = {ψ}, if |ξi| = N.
(18)

The input variable at time k is denoted as ui(k) ∈ Ui(ξi(k)).
• Ti ⊆ Ξi × Ui × Ξi is the state transition probability matrix

with elements

p
ξ
vi
i ξ

wi
i
(ui(k)) := P

(
ξi(k+ 1) = ξwi

i |ξi(k) = ξ
vi
i , ui(k)

)
, (19)

s.t. vi − 1 ≤ wi ≤ vi + 1.

Here, the state transition probabilities can be calculated by
means of the birth and death rates. In the other cases, the
transition probabilities are simply set to zero.
• Ri : Ξi → [0,+∞) is the reward function. In our case

Ri(ξi) = ci|ξ
hi
i | = cihi. (20)

Note that, for the problem considered, the reward depends
only on the state. We can denote ξi := ξ

hi
i for a specific price,

and we can drop the norm notation and write directly ξi when it
is clear from the context.

Fig. 2 shows the state transition probabilities of the MDP Ci
according to the admissible control actions. By applying the deci-
sion ui = ci, the resulting Markov chain Ci allows a birth transition
from the current state with probability λi (it is the BDP birth rate,
and represents the probability of a customer requiring a resource
at hourly price ci), a death transition with probability µi (it is
the BDP death rate, and represents the probability of a customer
releasing a resource previously purchased at hourly price ci) and
a self-transition with probability 1 − λi − µi (representing the
fact that no customer releases or asks for a resource). On the

other hand, when the decision ui = ψ is taken, no customer can
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Fig. 2. The MDP Ci . State transitions allowed with the input ui = ci are depicted
n the top. State transitions allowed with the input ui = ψ are depicted in the
ottom.

urchase the resource at price ci, and only a death transition or a
elf-transition from the current state are allowed.
The ‘‘composition’’ of m different Ci corresponding to each

rice and the common constraint of having N available resources
ive rise to the overall system C.

efinition 5.2. The constrained MDP of the overall system is
efined by a tuple C = ⟨Ξ ,U, T , R⟩ where

• Ξ is the entire state space, Ξ =
{
ξ h = (ξ h11 , . . . , ξ

hm
m ) ∈

m
i=1Ξi : ∥ξ

h
∥1 ≤ N, ∥ξ h∥1 =

∑m
i=1 hi

}
(here, ∥ · ∥1

denotes the L1-norm). We show with ξ (k) the state at time k.
Moreover, we denote by ξ v = (ξ v11 , ξ

v2
2 , . . . , ξ

vm
m ) and ξw =

(ξw1
1 , ξ

w2
2 , . . . , ξ

wm
m ) two generic state of the MDP. To sim-

plify the complexity in the notation, we denote ξ := ξ h

as a generic state of the process. We recall that Ω is the
cardinality of the set Ξ .
• U = {c1, . . . , cm, ψ} is the overall input set. With a slight

abuse of notation, we denote with U(ξ ) the set of admissible
inputs at any state ξ ∈ Ξ . We have{
U(ξ ) = {c1, . . . , cm, ψ}, if ∥ξ∥1 < N,
U(ξ ) = {ψ}, if ∥ξ∥1 = N.

(21)

• T ⊆ Ξ × U × Ξ is the state transition probability matrix,
whose elements are

pξvξw
(
u(k)

)
:= p

[
ξ (k+ 1) = ξw|ξ (k) = ξ v, u(k)

]
. (22)

In case u(k) = ci we have

pξvξw (ci) = p
ξ
vi
i ξ

wi
i
(ci) ·

m∏
j=1
j̸=i

p
ξ
vj
j ξ

wj
j
(ψ), (23)

s.t. vi − 1 ≤ wi ≤ vi + 1,
vj − 1 ≤ wj ≤ vj,

while if u(k) = ψ

pξvξw (ψ) =
m∏
j=1

p
ξ
vj
j ξ

wj
j
(ψ), (24)

s.t. vj − 1 ≤ wj ≤ vj.

We can also highlight the following aspects for the transi-
tion from the state ξ v into the state ξw

max ∥ξw∥1 = min (∥ξ v∥1 + 1,N) , (25)

min ∥ξw∥1 = max (0, ∥ξ v∥1 −m) . (26)

• R : Ξ → [0,+∞) is the reward function, defined in this
case as the summation of hourly prices paid for the various
Fig. 3. The graph shows the MDP state space and the corresponding state
transition probabilities for a resource allocation problem with N = 2, m =
, and for the control input u(k) = c1 . The system states are (ξ1, ξ2) ∈
(0, 0), (0, 1), (1, 0), (1, 1), (0, 2), (2, 0)}, where ξ1 and ξ2 are associated to c1 and
2 , respectively. As for the states where {(2, 0), (1, 1), (0, 2)}, the only admissible
ontrol input is u = ψ .

resources

R(ξ ) =
m∑
i=1

ci|ξi| =
m∑
i=1

cihi. (27)

Note that, as for the case of the single Ci, the overall reward
epends only on the state. Fig. 3 shows the MDP state space
nd the state transition probabilities for a resource allocation
roblem with N = 2 and the action space U = {c1, c2, ψ}. It
s worth highlighting that for the states where ∥ξ∥1 = N , the
nly admissible control input is ψ , while for the other states the
ontrol input c1 is applied.

.1. Resource allocation problem resolution via an ADP approach

The presented model allows us to structure resource allocation
roblems via a constrained SDP formulation. In particular, we aim
t finding the optimal control that maximizes the expected total
evenue over an infinite time horizon. More formally, we address
he following objective function (π is a stationary policy)

∗
(
ξ (0)

)
= max

π
lim

N→∞
E

[
N−1∑
k=0

αk
m∑
i=1

ciξi(k)

]
. (28)

We adopt a linear feature-based architecture to approximate
he value function and calculate a sub-optimal stationary policy.
n particular, the value function J(ξ ) can be approximated as
˜(ξ, r) = φ(ξ )′r , where φ(ξ ) = [φ0(ξ ), φ1(ξ ), . . . , φq(ξ )]′ is the
ector of feature (or basis) functions evaluated over ξ , and r =
r0, r1, . . . , rq)′ is a vector of q + 1 parameters to be tuned by
raining the selected architecture.

In this paper, for each state ξ = (ξ1, ξ2, . . . , ξm), we define the
ollowing feature functions

0(ξ ) = 1, φi(ξ ) = hi, i = 1, . . . ,m. (29)

In other words, the number of features is equal to m+ 1 and
he features are defined as a bias constant plus the number of
esources allocated at each price ci. Such feature selection arises
rom the reward function definition (27). In the next section, we
rain the selected architecture by means of the MG-LSTD algo-
ithm to compute a suitable r̂∗ to approximate J∗(ξ ) as J̃∗(ξ, r̂∗) =
(ξ )′ r̂∗.
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Table 1
State space cardinality with different number of resources N and
prices m.
m N Number of states

2 10 66
3 20 1771
5 20 53130
6 20 230230
4 50 316251
5 50 3478761

6. Simulation results

In this section, we define some operational scenarios for re-
ource allocation problems. Sub-optimal stationary value func-
ions and policies are calculated over an infinite time horizon
y means of the MG-LSTD algorithm. We also provide some
xperimental evidence on the MG-LSTD algorithm convergence
roperties in function of its key-parameters and some guidance
n its proper usage.
A Matlab based application has been developed to construct

he system state space, to define the state transition probability
atrix concerning the parallel BDPs, to solve the optimization
roblem via the MG-LSTD algorithm, to analyze the related re-
ults, as well as to performMonte Carlo simulations for evaluating
he calculated pricing policies. In this respect, such application
akes as input parameters all the data necessary to set up the
DP formulation and the related SDP framework, e.g., the birth
nd death rates associated to each price, the number of resources,
nd the discount factor.
Table 1 shows how the number of allocable resources N and

dmissible prices m can affect exponentially the cardinality Ω of
he MDP state space Ξ . The usage of exact DP algorithms, such
s PI, is likely to become infeasible in case of realistic problems,
hus we have to apply ADP based techniques.

xample 6.1. Number of prices m = 3, number of resources N =
, α = 0.996, prices c = [0.9 1 1.1], birth rates λ = [0.6 0.5 0.3],
eath rates µ = [0.2 0.2 0.4], σ = 0.01, and Σ is the identity
atrix.

Even though the SDP problem of this example is computation-
lly tractable (the state space cardinality is 35), we have applied
he MG-LSTD algorithm with Q = 200 trajectories of M = 1000
terations in length. Linear basis functions of the form (29) have
een considered to approximate the value function. Hence, r is a
× 1 dimensional vector. The calculated parameter vector of the
G-LSTD algorithm is r̂∗ = [725.63 3.84 5.02 2.55]′.
In this example, by applying a Monte Carlo simulation based

pproach for policy evaluation (see Forootani, Tipaldi, Ghaniee Za-
ch, Liuzza, & Glielmo, 2019 for more details), we compare the
G-LSTD pricing policy calculated by means of (16) against the

ollowing non-optimal policies:

• Non-optimal policy 1: if mod(k, 3) = 2 choose price c1,
if the time instant k is divisible by 3 choose price c2, if
mod(k, 3) = 1 choose price c3.
• Non-optimal policy 2: choose a price randomly.
• Non-optimal policy 3: choose price c1.
• Non-optimal policy 4: if ∥ξ (k)∥1 ≤ 2 then choose price c1, if
∥ξ (k)∥1 = 3 then choose price c2.

In particular, 100 randomly generated experiments are car-
ied out by running all the addressed policies. Their long-term
evenues, calculated by summing the revenues of all the visited
tates (plus the terminal value function for the last visited state),
re shown in Fig. 4. Note that we have used J̃∗(ξ, r) = φ(ξ )′ r̂∗
Fig. 4. Example 6.1: long-term revenues of 100 experiments when applying the
MG-LSTD pricing policy and the non-optimal ones.

Table 2
Example 6.1: MG-LSTD vs. non-optimal policies.
Policy Revenue mean value

MG-LSTD 45378
Non-optimal policy 1 45138
Non-optimal policy 2 45176
Non-optimal policy 3 45144
Non-optimal policy 4 45210

as terminal value function in all the cases. As shown in Table 2,
the long-term revenue mean value of the MG-LSTD policy is
slightly greater than the ones obtained by applying the non-
optimal policies. Fig. 4 would have displayed a more marked
difference in favor of the MG-LSTD pricing policy if we had ap-
plied, as terminal value function, the approximate value function
of the non-optimal policies in the computation of their long-term
revenue. This aspect is further investigated in the next example.

Example 6.2. The same set-up of Example 6.1.

In this example, we have computed the parameter vector
r̂π of the non-optimal policies defined in Example 6.1 by using
the recursive LSTD approach. By applying the Algorithm 1, the
following parameter vectors have been calculated:

• r̂π1 = [661.47 6.70 6.30 2.86]′,
• r̂π2 = [682.23 6.39 6.80 2.28]′,
• r̂π3 = [678.30 6.02 3.11 2.07]′,
• r̂π4 = [606.29 7.95 2.44 1.27]′,

where, e.g., r̂π1 denotes the parameter vector associated to the
non-optimal policy 1.

Contrary to the previous example, the approximate value func-
tions J̃µ(ξ, r) = φ(ξ )′ r̂µ of the non-optimal policies have been
regarded as terminal value functions in the calculation of their
long-term revenues for 100 randomly generated experiments. As
for the MG-LSTD pricing policy, the approach described in the
previous example is applied. In this example, we compare the
proposed MG-LSTD approach with the recursive LSTD algorithm
in terms of long term revenues. As shown in Fig. 5, the computed
MG-LSTD policy outperforms significantly the other non-optimal
policies.

Example 6.3. Number of prices m = 4, number of resources
N = 50, α = 0.996, prices c = [0.9 1 1.1 1.2], birth rates
λ = [0.6 0.5 0.3 0.2], death rates µ = [0.2 0.2 0.4 0.4], σ = 0.01,
and Σ is the identity matrix.

The cardinality of the state space is 316251, thus exact DP
methods cannot be applied. In this example, we have used Q =
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Fig. 5. Example 6.2: MG-LSTD algorithm vs. the recursive LSTD approach.

Fig. 6. Example 6.3: long-term revenues of 200 experiments when applying the
MG-LSTD pricing policy and the non-optimal ones.

1000 trajectories of M = 20 000 iterations in length to ap-
ply the MG-LSTD algorithm. As before, linear basis functions
of the form (29) have been considered to represent the ap-
proximation subspace. The calculated parameter vector is r̂∗ =
[3735.7 12.52 2.64 1.6 8.36]′.

As done before, we have compared the MG-LSTD pricing policy
calculated via (16) against the following non-optimal policies:

• Non-optimal policy 1: if mod(k, 4) = 2 choose price c1,
if the time instant k is divisible by 4 choose price c2, if
mod(k, 4) = 1 choose price c3, if mod(k, 4) = 3 choose price
c4.
• Non-optimal policy 2: choose a price randomly.
• Non-optimal policy 3: choose price c1.
• Non-optimal policy 4: if ∥ξ (k)∥1 ≤ 25 then choose price c1,

if ∥ξ (k)∥1 = 35 then choose price c2, otherwise choose price
c3.

We have carried out 200 experiments. We have used J̃∗(ξ, r) =
φ(ξ )′ r̂∗ and J̃µ(ξ, r) = φ(ξ )′ r̂µ as the terminal value functions
for the MG-LSTD pricing policy and the non-optimal ones, re-
spectively. Their long-term revenues have been calculated and
are shown in Fig. 6. The long-term revenue mean value achieved
by the MG-LSTD is greater than the ones achieved by the other
non-optimal policies (see Table 3).

In Fig. 7 we show the number of customers holding resources
at price c2 over the temporal horizon of 100 time slots for a
specific execution of the MG-LSTD pricing policy and the non-
optimal ones. As we can see, the MG-LSTD policy tends to choose
the price c2 more frequently than the other policies. Fig. 8 shows
the number of customers holding resources at price c3. As we
Fig. 7. Example 6.3: number of customers holding resources at price c2 when
applying the MG-LSTD and the non-optimal policies.

Fig. 8. Example 6.3: number of customers holding resources at price c3 when
applying the MG-LSTD and the non-optimal policies.

Table 3
Example 6.3: MG-LSTD vs. non-optimal policies.
Policy Revenue mean value

MG-LSTD 322070
Non-optimal policy 1 245250
Non-optimal policy 2 245220
Non-optimal policy 3 283880
Non-optimal policy 4 261510

can see, the MG-LSTD pricing policy never selects the policy c3
over the horizon (this is due to the fact that λ3 < µ3, thus
ustomers are very likely to release resources purchased at price
3). Notice also that the non-optimal policy 4 tends to choose
he price c3 more frequently than the other policies. This can
e simply explained by the actual number of resources allocated
ver time (see the definition of the non-optimal policy 4).

xample 6.4. The same set-up of Example 6.3.

We compare the MG-LSTD pricing policy with a non-optimal,
ut slightly more appropriate policy:

• Choose a random price consistently with its death rate,
i.e., prices c1 and c2 are more likely to be chosen than c3.

n this example, we have used Q = 1000 trajectories of M =
0 000 iterations in length to apply the MG-LSTD algorithm. The
alculated parameter vector r̂∗ is the same of Example 6.3. The
utcome of this example is shown in Fig. 9, where the long-term
evenues of 200 experiments of the two different policies are
lotted. Also in this case, the MG-LSTD pricing policy achieves
greater long-term revenue mean value than the non-optimal
olicy.
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Fig. 9. Example 6.4: long-term revenues of 200 experiments when applying the
MG-LSTD pricing policy and the non-optimal one.

6.1. Experimental evidence on the MG-LSTD convergence and the
role of its input parameters

In this paragraph, we provide some numerical evidence on the
convergence properties of the proposed MG-LSTD algorithm. To
this aim, we verify such convergence in case of different values
of the MG-LSTD algorithm input parameters (e.g., the matrix Σ).
Moreover, being an LSTD based approach, the effectiveness of the
MG-LSTD algorithm can rely on the model accuracy (in our case,
the birth/death probability values λi’s and µi’s associated to the
prices ci). The computed parameter vector r̂∗ is sensitive to the
model parameter values. All these aspects are shown in the next
example.

Example 6.5. Number of prices m = 3, resources N = 10, α =
0.95, price c = [0.9 1 1.1], λ = [0.6 0.5 0.3], µ = [0.2 0.2 0.4].

The following cases are addressed:

1. We choose different heuristic guesses r̄ as the initial value
for the parameter vector, and then verify the MG-LSTD
algorithm convergence. As displayed in Fig. 10, all the
executions of the MG-LSTD algorithm converge to the same
parameter vector r̂∗ regardless of its different initial values
r̄ .

2. We choose a fixed value for the parameter σ , and then
verify the MG-LSTD algorithm convergence with different
matrix Σ (see Fig. 11).

3. We choose a specific matrix Σ , and then verify the MG-
LSTD algorithm convergence for different values of the
parameter σ (see Fig. 12).

4. We choose different values for the matrixΣ , the parameter
σ , and the initial value of the parameter vector r̄ . Then, we
verify the MG-LSTD algorithm convergence (see Fig. 13).

5. We compare the single trajectory recursive LSTD algorithm
with the MG-LSTD approach. As shown in Fig. 14, the
recursive LSTD converges faster to the steady-state value
r̂π since the exploration through the state space is biased
towards the applied policy (we recall that the recursive
LSTD is used to calculate the approximate value function
of a specific policy). Conversely, as for the MG-LSTD, the
convergence rate is slower since the selection of the states
to be visited is determined by the greedy control actions
maximizing Eq. (14). However, as expected, its calculated
parameter vector r̂∗ is greater in norm than r̂π . This case
proves the effectiveness of the MG-LSTD algorithm in gen-
erating a proper mixture of state visits (in spite of its
slower convergence rate).
6. We analyze the results of the MG-LSTD algorithm for re-
source allocation problems with probabilities λ̄ = [0.55 0.5
0.3], µ̄ = [0.15 0.2 0.35], and with probabilities λ =
[0.6 0.5 0.3], µ = [0.2 0.2 0.4]. As expected, the computed
parameter vector r̂∗ depends on the model parameters (see
Fig. 15).

In all the above cases, we have always considered Q = 100
trajectories with M = 3000 iterations in length to compute the
parameter vectors. Moreover, we have shown the evolution of
the parameter vector L2-norm during their calculation over the
Monte Carlo trajectories. Thanks to the fact that we use a linear
feature-based architecture with the feature vectors having non-
negative integer components (see paragraph 5.1), such norm can
be linked to the expected total revenue obtained when applying
a specific policy (such as the MG-LSTD pricing policy obtained by
using Eq. (14)). This aspect can be used to prove that the MG-LSTD
approach outperforms the recursive LSTD algorithm (without the
need of calculating and comparing long-term revenues, as done
in the previous examples).

6.2. Further remarks and some guidance on the MG-LSTD algorithm
usage

This section has provided some empirical evidence on the MG-
LSTD algorithm effectiveness and convergence properties when
applied to resource allocation problems.

Even though such aspects are also supported by the theoretical
results of LSTD based approaches available in the literature (see
Section 4), we have to highlight that the application of MG-
LSTD algorithm requires a careful selection of its key-parameters
since their improper definition can affect its effectiveness and
convergence. In this regard, the following elements have to be
considered:

• Being a model-based approach, the computed parameter
vector r̂∗ is sensitive to the model parameter values, which
determine the associated probability distributions. The MG-
LSTD can also work in case we have a computer simulator
(with the capability of generating samples according to such
probability distributions). In both cases, the goodness of the
sample generating mechanism can affect the quality of the
resulting value function approximation.
• The convergence rate of the MG-LSTD algorithm is expected

to increase in case of systems with a very large state space.
Being based on Monte Carlo simulations, one can define
regions of specific interest and select the initial states of the
Monte Carlo trajectories from such regions without going
to the expense of accurately evaluating the rest of the state
space (Sutton & Barto, 2018), chapters 5 and 8.
• The selection of the feature vectors plays an important role

in the computational costs of the MG-LSTD algorithm and
the quality of the resulting value function approximation.
Such aspect has not been investigated in the paper. To select
a proper set of features, a good knowledge of the problem
at hand is necessary at least.
• The number of trajectories Q and their length M should be

defined in order to guarantee the convergence of the final
computed parameter vector. In this respect, the parameter
vector learned by the MG-LSTD algorithm under an inap-
propriate choice of such parameters can diverge (Tsitsiklis &
Van Roy, 1997) (e.g., when M = 1 the MG-LSTD algorithm
works in an off-policy fashion). From an empirical point of
view, M should be much greater than Q to assure a signifi-
cant progress in the calculation of the parameter vector over
long enough trajectories.
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Fig. 10. Example 6.5: MG-LSTD algorithm convergence when choosing different
nitial conditions r̄ .

Fig. 11. Example 6.5: MG-LSTD algorithm convergence when choosing a fixed
value for the parameter σ and different matrices Σ .

Fig. 12. Example 6.5: MG-LSTD algorithm convergence when choosing a fixed
matrix Σ and different values for the parameter σ .

• The selection mechanism of the initial state for each Monte
Carlo simulation can bias the computed value function ap-
proximation. Choosing such initial states according to a fixed
probability distribution over the entire state space can be
inappropriate for systems with very large state space. To
counteract this issue, the state space can be partitioned by
applying approaches such as the feature-based aggregation
method (Bertsekas, 2012a), section 6.5.

A study on the MG-LSTD convergence properties from an
analytical point of view as well as a deep analysis of the computed
parameter vector sensitivity to the model parameter values, both
supported by more complex examples, are regarded as future
work.
T

Fig. 13. Example 6.5: MG-LSTD algorithm convergence when changing the
parameters r̄ , σ , and Σ .

Fig. 14. Example 6.5: Comparison between the single trajectory recursive LSTD
(dashed line) and the MG-LSTD (solid line) algorithms.

Fig. 15. Example 6.5: Sensitivity of the parameter vector r̂∗ to the birth/death
robability values (λ̄, µ̄ (dashed line) and λ,µ (solid line)).

. Conclusions

In this paper, we have presented a Least-Squares Temporal
ifference (LSTD) based method called ‘‘Multi-trajectory Greedy
STD’’ (MG-LSTD). It is an exploration-enhanced recursive LSTD
lgorithm with the policy improvement embedded within the
STD algorithm iterations. This way, we can address the scala-
ility issues both in the state and the action space for real-world
pplications modeled via Stochastic Dynamic Programming (SDP).
he proposed algorithm has been analyzed by investigating the
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properties of the resulting value function approximation and its
connection with the Least-Squares Policy Evaluation (LSPE).

We have applied the MG-LSTD algorithm to solve resource
allocation problems. They have been modeled as a set of parallel
Birth–Death Processes (BDPs), each of them corresponding to one
admissible price. A dynamic pricing policy can be calculated in
order to maximize the expected total revenue over an infinite
time horizon. Some significant operational scenarios have been
defined and solved to show the advantages in applying the pricing
policies computed by the MG-LSTD.

At the same time, we have provided some experimental evi-
dence on the MG-LSTD algorithm convergence properties in func-
tion of its key-parameters. Such convergence properties have
been also addressed from a more qualitative point of view, by
analyzing the MG-LSTD key-aspects and its connections with
other approaches (and the related convergence results) reported
in the literature.

As for future work, we intend to investigate the role of differ-
ent exploration mechanisms in the value function approximation.
Moreover, we plan to analyze the MG-LSTD convergence prop-
erties from an analytical point of view. Finally, we intend to
extend the presented formulation for resource allocation prob-
lems to incorporate further requirements, such as the possibility
of handling advance resource requests together with the related
overbooking issues.
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