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On the Approximation of Moments for Nonlinear Systems
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Abstract—Model reduction by moment-matching relies upon the
availability of the so-called moment. If the system is nonlinear,
the computation of moments depends on an underlying specific
invariance equation, which can be difficult or impossible to solve.
This article presents four technical contributions related to the
theory of moment matching: first, we identify a connection between
moment-based theory and weighted residual methods. Second, we
exploit this relation to provide an approximation technique for the
computation of nonlinear moments. Third, we extend the defini-
tion of nonlinear moment to the case in which the generator is
described in explicit form. Finally, we provide an approximation
technique to compute the moments in this scenario. The results
are illustrated by means of two examples.

Index Terms—Moment matching, moments, nonlinear systems,
steady state, weighted residual methods.

|. INTRODUCTION

The theory behind model order reduction by moment-matching
relies upon the notion of moment, which was originally conceived
within an interpolation framework for linear systems described by
differential equations, see, e.g., [1]. Subsequently, the definition of
moment has been extended to a wider class of systems, see [2], [3],
including nonlinear systems. A comprehensive review of the state of
the art on model reduction by moment matching, including connections
between the notion of moment introduced in [2] and [3] and previously
established definitions (such as those related to Krylov methods), can
be found in [2] and [4]. Note that, apart from the notion of moment
arising in systems theory, a different notion can be found in the field
of probability (see [5], [6]). While the latter is not considered within
the scope of this article, we note that recent efforts have been presented
in [7] to bridge the gap between the notions of moment in probability
theory and in systems theory.
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The moment as defined in [2] and [3] is strongly related to the
steady-state output response of the interconnection between the system
under analysis and a signal generator. When the system is nonlinear,
the moment is essentially defined in terms of the solution of an in-
variance equation, which can be difficult or impossible to solve. In
other words, the computation of a reduced model by moment-matching
depends upon the availability of a suitable technique to approximate
the corresponding moment.

In this article, the moment-based theory as introduced in [2] and [3]
is connected to the classical formulation of weighted residual methods
(WRMs), i.e., spectral (Galerkin) and pseudospectral (collocation)
methods, see, e.g., [8], [9]. The family of WRMs aims to compute
approximate solutions of differential equations by expanding the system
variables in a set of basis functions to then minimize a particular (ap-
proximation) error function termed residual. These methods have been
successfully applied to a variety of problems in different applications,
including, for instance, numerical approximation of solutions for the
Navier—Stokes equations [8], [10].

This article provides four technical contributions related to the frame-
work of moment matching. First, we formalize a connection between
moment-based theory and the family of WRMs. Second, inspired by
this result, we propose a method to approximate the moment of a
nonlinear system driven by signal generators in implicit form (loosely
speaking, generators described by differential equations). We note that
approximation methods for the moment of a nonlinear system driven
by this class of inputs have been studied in [11]. However, since [11]
relies on computations on the steady-state response, [11] assumes local
exponential stability of an equilibrium point of the underlying system,
which is not required for the methods proposed in this article. The third
contribution of the article is to extend the moment-based framework to
nonlinear systems driven by signal generators in explicit form (loosely
speaking, generators not necessarily described by differential equa-
tions). In particular, we focus on periodic and potentially discontinuous
inputs (motivated by the existence of a large number of applications
in which this class of signals occurs). Note that, up until this point,
this explicit framework was only defined for linear systems (see [12]).
Finally, combining all the previous results, we propose a method to
approximate the moment of a nonlinear system driven by generators in
explicit form.

We briefly mention that while our contribution is technical and
strictly related to the definition and computation of moments, these
technical contributions allow computing and defining new classes of
reduced order models. These models, which are essential for a variety
of engineering applications (see, e.g., [1]), directly motivate this article.
Moreover, we note that the contributions of this article can also be
potentially used to compute approximate solutions to optimal control
problems, following the moment-based control framework presented
in [13] and [14].

The remainder of this article is organized as follows. Section II briefly
recalls both the theory behind moments for systems driven by implicit
signal generators and the theory of WRMs. Then, a connection between
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those methodologies is formalized. Section III proposes a method to
approximate the moment of a nonlinear system driven by an implicit
signal generator. Section IV formalizes the definition of the moment of
a nonlinear system driven by an explicit signal generator and proposes
a method to approximate such a moment, with particular focus on
periodic discontinuous signals. Finally, Section V concludes this article.

A. Notation and Preliminaries

Standard notation is used throughout this article, with some excep-
tions detailed in this preliminary section. R™ (R™) denotes the set of
nonnegative (nonpositive) real numbers. C° denotes the set of purely
imaginary complex numbers and C_o denotes the set of complex
numbers with a negative real part. The symbol N, indicates the set
of all positive natural numbers up to g, i.e., N, = {1,2,...,¢}. The
symbol 0 stands for any zero element, according to the context. The
symbol I,, denotes the identity matrix of size n. If x is a real-valued
row/column vector, then x; € R denotes the ith element of x. We write
a matrix X € R™*™ elementwise as X = [z;;]™™. The spectrum
of a matrix A € R™*", i.e., the set of its eigenvalues, is denoted as
o(A). The symbol O], denotes the direct sum of n matrices, i.e.,
@D, A; = blkdiag(A;, As, ..., A,). If F € R™™ is a symmetric
matrix, the expression F' > 0 means that F' is positive definite. The
symbol L{f(t)} denotes the Laplace transform of the function f
(provided that f is Laplace transformable) and, abusing the notation,
o(L{f(t)}) denotes the set of poles of L{f(t)}. The set of square
integrable functions on the interval = C R is denoted as L?(E). The
Kronecker product between two matrices M; and M is denoted as
M, ® M. The symbol €,, € R™*! denotes a vector with entries in
odd positions equal to 1 and even positions equal to 0. Finally, we
recall a definition from [2].

Definition 1: Let z, with z(t) € R™ be the state of the dynamical
system' 3, and u, u(t) € R, be the input of 3. Let ¢y and zg = z(t)
be the initial time and the initial state, respectively. If there exists a
function ® : R x R x R™ x L?(R) — R™ such that

l‘(t) = é(tvtmxovu[to,t)% vVt > tg (€Y

we call (1), the representation in explicit form, or the explicit model, of
3. Assume that ® (¢, tg, zo, u) has a continuous derivative with respect
tot forevery ¢y, xo and u, and there exists a function f : R™ x R — R"
continuous for each ¢ over R™ x R such that

T = f(z,u). 2)

We call the differential equation (2) the representation in implicit form,
or the implicit model, of 3.

Il. MOMENT-BASED THEORY AND WEIGHTED RESIDUAL METHODS

This section briefly recalls the notion of moment for systems driven
by generators in implicit form. We, then, specialize this notion to linear
systems to formalize a connection between moment-based theory and
the family of WRM:s.

"'We adopt the standard definition (and associated notation) of a dynamical
system arising in the field of systems theory (see [15, Ch. 2]).

A. Notion of Moment

Consider a nonlinear, single input, single output, continuous time,
system described by?

T = f(a:,u) = fl(xzu) + fnl(xvu)
y=h(x) = hi(z) + hn(x) 3)

with z(t) € R™, u(t) € R, y(t) € R, and f and h analytic map-
pings defined in the neighborhood of the origin of R™. Assume
that system (3) is minimal, i.e., observable and accessible (see [2,
Ch. 2]), and suppose that f(0,0) =0 and h(0) =0. The map-
pings fi(z,u) = Az + Bu,with A = 0f/0x|(5,u)=(0,0), A € R™*™,
B = (9f/6u‘(xﬁu):(0,0), B eR™ and C' = 8y/8x|<x’u):(070), Ce
R'™ describe the linearization of system (3) around the origin and
fu(z,u) = f(z,u) — fi(z,u) and hy;(z) = h(z) — hi(x) describe
the nonlinear parts of f and h, respectively. Consider a signal generator,
i.e., an external system “generating” the input « in (3) (see [16, Ch. 8]
for further detail), described by

w=5Sw, u=Lw 4)
with w(t) € R¥, S € R, and L € R'*”. Consider now the inter-
connected system

w=Sw, &= f(z,Lw), y=h() (5)
Following [2] and [3], we consider a set of assumptions to formalize
the definition of moment.

Assumption 1: There exists amapping , locally® defined in aneigh-
borhood W of w = 0, with 7(0) = 0, which satisfies the following

differential equation:

or(w)
ow

Sw = f(m(w), Lw) (6)

forallw € W.

Assumption 2: The triple (L, S,w(0)) is minimal.*

Definition 2 ([2, Definition 2.13] [3]): Consider the system (3)
and the signal generator (4). Suppose Assumptions 1 and 2 hold. The
mapping h o 7 is the moment of system (3) at (S, L).

Finally, we recall aresult which, introducing additional assumptions,
connects the definition of moment with the steady-state response of the
output of the interconnected system (5).

Assumption 3: The signal generator (4) is such that all eigenvalues
of S are simple and with zero real part.

Theorem 1 ([2], [3] ): Consider the system (3) and the signal
generator (4). Suppose Assumptions 2 and 3 hold and that the zero
equilibrium of the system (3) is locally exponentially stable, i.e.,
o(A) € C.p. Then, Assumption 1 holds and the moment of system (3)
at (S, L) computed along a trajectory w(t) coincides with the steady-
state response’ of the output y,,(¢) of the interconnected system (5),
few uo (1) = h(m(w(1)):

Remark 1: While moments can be naturally defined for nonlinear
signal generators in implicit form (see [2], [3]), this is beyond the scope

2From now on, and aiming to simplify the notation, the dependence on ¢ is
dropped when clear for the context.

3 All statements are local, although global versions can be straightforwardly
derived.

4Minimality of the triple (L, S, w(0)) implies observability of the pair (S, L)
and excitability of the pair (S,w(0)) (see [17, Definition 2] for further detail).
Note that, for linear systems, excitability is equivalent to reachability, i.e., with
w(0) playing the role of the input matrix, see [17, Sec. III].

3See [18] for a formal definition of steady-state response.



5540

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 11, NOVEMBER 2021

of this article: the class of input signals, which motivates the technical
contributions presented herein are captured by the linear generator (4)
(see also Remark 3), and the implicit form generator (33), discussed in
Section IV.

B. Special Case of Linear Systems

Suppose fri(z,u) =0 and h,;(z) =0 in (3). The assumptions
required in the nonlinear case to formalize the definition of moment
are less restrictive when the mapping f is purely linear, as detailed
in [2] and [3] and briefly recalled in the following.

Assumption 4: The matrices A and S are such that o(S)N
a(A) =0.

Lemma 1 ([2], [3]): Suppose Assumption 4 holds. Then, there
exists a unique matrix II € R™*", which solves the following Sylvester
equation:

IIS = ATl + BL. )

Definition 3 ([2], [3] ): Consider the system (3), with f,,; (z,u) =0
and h.,,; () = 0, and the signal generator (4). Suppose Assumptions 2
and 4 hold. Then, we call the matrix C'TI the moment of system (3) at

(S,L).

C. Weighted Residual Methods and Moments

Let = be a closed interval in R. The basic idea behind the family
of WRMs relies on the selection of a complete set {1t} of orthogonal
functions ¢, : £ — R : t — 1)y (t) defined on a function space .7’ with
domain =, and with the inner product on the space .7# defined as®

(o). 10) = [ prryedr ®)
where p € 7,1 € 77, and w : = — R is a weighting function. The

standard assumption in WRMs (see [8, Ch. 1]) is that the state vector
and the control input in (3) admit the expansions

zi(t) = Ziiﬂ/’j(t)a u(t) = Zﬁﬂl}j (t) )

where Z;; € R, 4; € R, with j € Ny, denote, respectively, the coef-
ficients of the expansion of x; and u. Note that M may be infinity.
Defining the set {1 (t)}2_, with N < M, it is possible to write the
corresponding N-dimensional approximations of = and u, denoted 2™V
and u”, respectively, as

() =N (t) = X, 0(), ut)=uN(t)=UT({t) (10)
where X; € RPN U € RN N (t) € R™, and the vector ¥(t) €
RY is defined as

(1) = [ (1), n ()]

Defining the matrix X = [XT, ..., X%]T € R™*¥ and substituting
(10) into the dynamic equation (3), the residual function [8], [9]

an

R(X,U,T(t)) := 2™ (t) — F(XT(t),UT(t)) (12)

can be defined, in which the approximated time derivative of the state
" is given by

BN (t) = XW(t). (13)

%We adopt the inner-product definition given by (8)

Then, given values of U, the approximated state trajectory is computed
in terms of the n/NV unknown coefficients of X as the solution of the
system of n? N2 algebraic equations’

(B:(X,U,W(t)),¢;(t) =0

for i € N,, and j € Ny, where R=[R], ... ,RT]T and the test
functions (;, assumed to be sufficiently regular, form an orthogonal
set {¢; }j\’zl If the test functions (; are elements of the same set as
the basis functions approximating the state, that is ¢; = 1;, then, the
method is known as spectral or Galerkin method. If the test functions
are translated Dirac-delta functions d;; = 6(t — t;), then, the method
is known as pseudospectral or collocation method, and the points ¢;
are called collocation points. From now on, we focus our study on
the Galerkin method, since the collocation approach can be made
equivalent to Galerkin method by an appropriate selection of the set
{t;} C E(see, e.g., [8, Ch. 4]).

We now present a connection between WRMs and moment-based
theory in terms of the solution of the Sylvester equation (7). To this end,
we assume that in (3) f,,;(z,u) = 0 and h,,;(z) = 0, i.e., the system
dynamics are linear.

Remark2: If f,;(x,u) = Oand h,,;(x) = 0, then, the approximated
output of system (3) can be computed as y™¥ (t) = Y ¥(¢) where Y =
C' X, with X solution of (14).

Proposition 1: Consider system (3) with f,;(z,u) =0 and
hni(x) = 0, and the signal generator (4). Suppose that Assumption
2 holds and that u admits an expansion as in (10). Let ¥ (¢) = w(t).
Then, the coefficients of the solution Y computed using the Galerkin
method coincide with the elements of CTI.

Proof: Consider system (3) with fp;(xz,u) =0 and h,(z) =0,
and the approximating state and input vectors X W(¢) and UW(¢),
respectively. The residual equation defined in (12) can be written as

R(X,U,¥(t)) :== XW(t) — AXU(t) — BUW(t)

(14)

)

and the approximating trajectory =™V can be computed in terms of X
solving the equation

(XW(t) — AXTU(t) — BUT(t), T(t)T) = 0. (16)

Assume now that the vector of basis functions W(¢) belongs to the
class of functions generated by (4), i.e., we assume W (¢) = w(t). Then,
W(t) = w(t) = Sw(t) and, considering the superposition property of
the inner product, (16) can be written as

(XS — AX — BU) (w(t),w(t)T) = 0. (17

Defining © = (w(t),w(t)T), the proof follows once noted that 0 ¢
() since Q = QT > 0 under the excitability condition on the pair
(S,w(0)) (see Assumption 2). In particular, Y = C'X = C1I, where
II is the unique solution of (7). | |

Inspired by Proposition 1, we present, in the following sections, a
general framework to approximate the moment of nonlinear dynamical
systems driven by a wide class of input signals. Furthermore, we show
that, under additional assumptions, the methods described in this article
can be used to approximate the steady-state behavior of system (3)
driven by this general class of inputs.

Remark 3: The class of input signals defined by (4) contains some
of the most widely-used basis functions, such as polynomials and
trigonometric functions. For instance, the first v polynomial functions
can be generated with S in (4) such that S = .4, where .4;, € R*"* is
amatrix with ones in the upper diagonal and zeros elsewhere. To address

TThe reader is referred to, for instance, [8, Ch. 2] for a discussion on
computational aspects of WMRs.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 11, NOVEMBER 2021

5541

more general cases, let A € A(S) C C, and let p be the dimension of
the largest Jordan block associated with A. Then, for each A, the signal
generator (4) can generate linear combinations of the set of functions
{trextyrt

q=0"

Remark 4: The methods proposed in Sections III and IV compute
the moment for a particular trajectory w(t). We note that, if required,
the methods can be modified to incorporate different w(t), following
an analogous procedure to that used in the so-called “Ll/97” variation
proposed in [11].

IIl. APPROXIMATION OF MOMENTS: IMPLICIT SIGNAL
GENERATOR CASE

In this section, we propose a method to approximate the moment
of the nonlinear system (3) driven by the signal generator (4). For this
purpose, we introduce an additional signal generator. We note that the
assumptions considered in this section on the function 7 [solution of
(6)] resemble those in [11].

To begin with, consider the “extended” signal generator described
by the set of first order differential equations

We = Sewe, U = [L O]we = Lewe (18)
where we(t) = [wT(t),w;T(t)]T € RN, wi(t) = [we, (1), ..., Wey
()], with N > v integer, and the matrix S, € R™*¥ given by

S 0
Se = 19
|:0 Se (19)

with any matrix S} such that the pair (S,,w,(0)) is excitable (in line
with Assumption 2).

Remark 5: The signals u(t) generated by (4) and (18) coincide.
Consequently, the moment of system (3) at (S, L) coincides with its
moment at (S, Le).

After introducing the implicit signal generator (18), we identify two
sets of functions: F,, = {w;}?_,, withwasin(4),and F,, = {we, }¥;,
with w, as in (18). Note that the relation F,, C F, holds. We now
introduce the following standing assumption.

Assumption 5: The elements of the set F,,, C ¢, where J is a
complete inner-product space with (closed) domain = C R, are orthog-
onal in the interval =. Moreover, each component of the function 7, i.e.,
., k € N,,, which solves (6), belongs to 7.

Remark 6: Under Assumption 5, one can always extend the set of
functions F,, to form an orthogonal basis of .7#’ by simply considering
the orthogonal complement of the subspace spanned by the elements
of F,,, (see, for instance, [19] and [20]).

Assumption 5, together with Remark 6, directly imply that 7, can
be expanded as [19]

N
Te(w) =Y of we, + €x(we) = Miwe + e (we)

i=1

(20)
where 7(w) = [m1(w), ..., T (w)]T, with af €R, for i € Ny,
o, = [af,, ... ,af ], for some mapping e : RN — R. The exis-
tence of €, such that (20) holds follows directly from Remark 6.

Remark 7: Note that, under Assumption 5, we can always write m
as the sum of two contributions, namely

7(w) = Hwe + E(w,) QD

where IT = [TIT, ..., IIT]T and E = [e1(we), - - - , €n (we)]-

In the following, we proceed to formulate a method, which allows
the computation of an approximation of 7 in terms of the set F,,_, i.e., in
terms of the N-dimensional expansion Iw.. We do this by minimizing

a residual equation analogously to what done for the family of WRMs
(see Section II-C).

Proposition 2: Consider the nonlinear system (3) and the linear gen-
erator (4). Suppose that Assumptions 1, 2, and 5 hold. Then, h(Ilw,),
where IT is the solution of the system of algebraic equations

(IIS. — AIl — BL¢){we, w) — (frni(Mwe, Lewe),wl) =0 (22)
is the least-square minimizer of the residual R(II, Le, w, ), i.e., h(Tlw, )
is a least-square approximation of the moment of system (3) at (S, L).

Proof: By Assumption 5, we can define a residual equation in terms
of the extended signal generator (18) as R(ﬁ, Le,w,) [similarly to (12)],
replacing ﬁwe in (6), i.e.,

R(II, L,we) = (I1S; — AIl — BLe)we — fri(Hwe, Lewe).  (23)
Then, we compute the approximating solution in terms of I by forcing
the residual (23) to be orthogonal to the /N-dimensional space spanned
by the set ., . Equation (22) follows after considering the superposition
property of the inner product. |

Note that Proposition 2 makes explicit use of the extended signal
generator (18) to compute an /N-dimensional approximation of 7 in
terms of the set F,,, by projecting the residual equation (23) into the
same set of functions, analogously to what done in the family of WRMs.
In other words, the extended signal generator, which defines the set F,,_,
generates the function space used to approximate the corresponding
moment (see also Remark 9).

Corollary 1: Let Assumptions 1, 2, and 5 hold, and suppose £ = 0
in (21). Then

R(IL, Le,we) = 0 < (R(IL Le, w.), weT) = 0. (24)

Proof: (=) This implication is straightforward as the inner product
of any function with the zero function is zero by definition.

(<) Under Assumption 5, each component of the residual function
Ry, (ﬁ, Le,w.) € A, fork € N,,, where Ry, denotes the kth row of R.
Then, for all Kk € N,,

<Rk(ﬁ7 Le7we)7we1> =0

= R,(II, Le,we) =0 (25)

<Rk(ﬁ7 Le7we)7wez\r> =0

as a direct consequence of the fact that the elements of the set I, are
orthogonal in 7 [19]. |

Corollag 1 implies that, if £ = 0 in (20), i.e., 7 can be exactly
written as Ilwe, then, the approach of Proposition 2 effectively recovers
the exact solution II.

Remark 8: If, additionally, Assumption 3 holds and the zero equi-
librium of the system & = f(x,0) is locally exponentially stable, then
h(ﬁwe), with II computed as in Proposition 2, approximates the
steady-state response of the output of the interconnected system (5)
(see Theorem 1).

We now rewrite the system of algebraic equations (22) of
Proposition 2 in a more convenient form, in which the contribution
of the linear and nonlinear parts of system (3) can be easily identified.

Corollary 2: Let Assumptions 1, 2, and 5 be satisfied. Then, the
system of nonlinear algebraic equations (22) can be equivalently written
as

(ILS, — AIl — BL,) — Fy (IL L) ' =0 (26)
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where Q = (w,, w]), the matrix F,;(II, L.) € R™*~ is given by ! I I | | | —
08
(frry (Mwe, Lewe ), wl) Eo06
- :
F, (I, L.) = 27 = 04

<fnln (ﬁwey Lewe)v W;—>

and f,,;, is the ith row of the mapping f;.

Proof: Straightforward once noted that 0 ¢ o(€2), since 2 = QT >
0 as a direct consequence of the excitability assumption of the pair
(Se, we(0)). ~ |

Remark 9: The term F,;(I1, L,)Q~! in (26) is the projection of
St (ﬁwe, L.w,) onto the function space spanned by the set F,

Corollary 2 provides the approximating solution in a very specific
form: the linear Sylvester equation (7) appears explicitly with a non-
linear “correction” term.

Remark 10: 1f f,;(z,u) = 0, then F,,; (I1, L <) = 0, and the solution
of (26) can be straightforwardly computed as IT = II, = [H 0], with
H the solution (provided it exists) of the Sylvester equation All -
[IS = — BL. In other words, if system (3) is linear, then, the solution
of the proposed method coincides with that of the classical approach
(discussed in Section II-B).

Remark 11: State-of-the-art numerical routines, such as those de-
scribed in [21], can be readily used to solve the homogeneous system
of algebraic equations (26) in II. _

Remark 12: The choice of an appropriate initial guess Il is crucial
for the fast convergence of any numerical routine when solving (26).
In most cases a sensible initial point is the solution of (26) with
fui(z,u) = 0in (3),i.e., we select [Ty = 11, with II; as in Remark 10.

Remark 13: From the previous remark, we note that the use of the
“phantom” input, which does not appear in the linear part (because of
the block of zeros in L, = [L 0]), is instrumental to interpolate the
nonlinear term in (22).

To conclude this section, we illustrate the proposed method by means
of the following example.

Example 1: Consider the forced Van der Pol oscillator with a non-
linear output map described by the following differential equations:

3
T1 = T2, To :75(1737%)3727331 + u, y:l'g (28)
where u(t) = A, cos(fot), with A, € R and fo € RT \ {0}. We can

write u using the signal generator

w=8w, u=Lw 29)
with
0 fo
- L=1[A, 0], = 6. 30
S [fo 0 [Ay, 0], w(0) =&y (30)

Note that, with this selection of matrices, the triple (L, .S,w(0)) is
minimal. For this example, the set describing the input signal is
F,, = {w1,wa} = {cos(fot), —sin(fot)}. Following (18), we define
the extended signal generator

We = Sewea u = Lewe (31)

with matrices

k
@[ o pgo] L Le=[L0], w(0) =2, (32)
—1 0

where N = 2 k, with k € N. Note that the pair (S., w.(0)) is excitable
and F,, C F,, . The parameters of u are selectedas A,, = 1and fy, = %
Given that, for this example, the origin of & = f(z,0) is locally

exponentially stable and the matrix S of the signal generator (31) has

Fig. 1. Top: time histories of the approximated moment for the forced
Van der Pol oscillator driven by the signal generator (31) for different
values of k. Bottom: time histories of the corresponding absolute errors.

all simple eigenvalues with zero real part, the assumptions of Theorem 1
are fulfilled, and hence, the moment of (28) computed along a particular
trajectory w(t) coincides with the steady-state response of the output
of the interconnected system. Thus, the moment of the system can be
computed along w(¢) using a numerical integration method. This allows
for a direct comparison with the approximated moment.

Note that, defining = = [¢, ¢ + TO] with Ty = 27/ fo, implies that
the elements of the set F,,, = {w, }7¥; are orthogonal on L?(Z) under
the inner-product definition in (8) w1th weighting function w(t) = 1.
Furthermore, note that Assumption 5 holds for this example with .77 =
L?(Z), as discussed in the following. Given the nature of the signal gen-
erator defined in (29) the input w is always 7y -periodic. Moreover, since
the zero equilibrium of & = f(x,0) is locally exponentially stable,
the (well-defined) steady-state solution of the interconnection between
(28) and (29) is Ty-periodic [22, Sec. VII, i.e., zs5(t) = xss(t — Tp).
Since, as discussed in the previous paragraph, Theorem 1 holds, i.e.,
xss(t) = w(w(t)), it is straightforward to conclude that each element
of the mapping 7 belongs to L2(Z).

To illustrate the method proposed, we compute II as in (26), for
a different number of basis functions {we, }, with w, as in (31). The
algorithm used to solve (26) is based on the interior-reflective Newton
method described in [21].

Fig. 1 (top) depicts the time histories of h(m(w(t))) (i.e., the
moment of system (28) along w(t)) computed using a Runge—
Kutta method (solid-black line), and the corresponding approximated
moment, i.e., h(Iwe(t)) = ([0 1]Tw,(¢))? for k € {3,5,10} (dot-
dashed-blue, dotted-red, and dashed-cyan lines, respectively). Note that
a clear improvement can be appreciated with an increasing number of
basis functions. This is further confirmed in Fig. 1 (bottom), in which
the time histories 0~f the absolute value of the approximation error, i.e.,
|h(m(w(t))) — h(we(t))], is plotted for each value of k considered.
Note that Fig. 1 (top) also shows the associated linear solution ﬁl
(solid-gray line), which is used as initial guess to solve (26) (see Remark
12).

IV. APPROXIMATION OF MOMENTS: EXPLICIT SIGNAL
GENERATOR CASE

The mathematical formalism behind moments has been extended to
the case in which system (3) is linear and the input is given in explicit
form [12], [23]. This provides an extension of the moment-based
framework for a very general class of inputs, including discontinuous
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periodic signals. Motivated by this, in this section, we first provide
a further extension of the notion of moment to nonlinear systems
driven by explicit signal generators. Then, based and inspired by the
methods developed in Section III, we propose a method to compute an
approximation of such a moment.

A. Moment for Nonlinear Systems at Explicit Signal Generators

From now on, we focus our interest on signals described by a 7'-
periodic explicit form signal generator as

wa(t) = A{t)wa(0), wa(t) =wa(t —T), u(t) = Lwa(t) (33)

t > T, where the matrix A(t) € R”*¥ is nonsingular for all ¢t € RT.
Analogously to the implicit signal generator case of Section II-A, we
now introduce a set of assumptions required to formalize the definition
of moment.

Assumption 6: There exists a unique mapping 7(t,wy ), defined
in a neighborhood of (x,w,) = (0,0), which is the solution of the
following integral equation

t
m(t,wp) = {Em‘ i e BLw, (1)dr
“eo J;

t A=) Frr(m(T,wA (7'))7 Loy (T))dT‘ (34)

+ lim
t——o00 Jf
Assumption 7: The vectors L and wx(0) in (33) are such that

o (L{LA(Bw(0)}) = o(LIA(L)}).

Definition 4: Consider system (3) and the signal generator (33).
Suppose Assumptions 6 and 7 hold. Then, we call the function h o 7
the moment of system (3) at (A, L).

Analogously to the linear case discussed in [12] and [23], defining
the moment of system (3) according to Definition 4 is justified by the
equivalence, when an implicit model of (33) is available, between the
new and the classical definition (see Definition 2).

Assumption 8: wy (t) in (33) is Laplace transformable and such that
o(L{wa(t)}) C CO.

Assumption 7 plays the role of the minimality condition of As-
sumption 2 for the implicit signal generator case, while Assumption 8
corresponds to the persistence of excitation condition of Assumption 3.
We now formulate a proposition, which relates the moment as in
Definition 4 with the steady-state output response of system (3) driven
by (33).

Proposition 3: Consider system (3) and the signal generator (33).
Suppose Assumptions 7 and 8 hold and that the zero equilibrium of
systemz = f(x,0) is locally exponentially stable. Then, Assumption 6
holds and the moment of (3) at (A, L) computed along the trajectory
w(t) coincides with the (locally well-defined) steady-state output re-
sponse of system (3) driven by (33), i.e., yss(t) = h(m(t,wa)).

Proof: We begin by noting that the input u is bounded and periodic
by Assumption 8. Then, since the zero equilibrium of & = f(x,0) is
locally exponentially stable, the steady-state response x; is locally
well-defined [22, Sec. VI] and, using the well-known “variation of
parameters formula,” can be written as

t
Zss(t) = lim AT BLwy (1)dr

t——o00 Jf

t

+ lim e fr1 (w45 (7), Lwa (7)) dr.

t——o0 J

(353)

The proof follows by noting that zs5(t) = (¢, w, ) in (34) and, hence,
yss(t) = h(ﬂ(t7wA))' L

In the following, we explicitly exploit the 7'-periodicity of wy to
simplify the computation of the mapping 7 for the case in which the
zero equilibrium of & = f(x, 0) is locally exponentially stable.

Corollary 3: Suppose Assumptions 7 and 8 hold and the zero
equilibriumof system = f(z, 0) is locally exponentially stable. Then,
given that (33) is T™-periodic, (34) becomes

¢
w(t,wpa) = P {/ e BLwy (1)dr
t-T

[ D o (rltwn(r), Loa(r)dr | (36
t—T

with P € R™™ a constant matrix defined as P = (I,, — eA7)~1.

Proof: Under the abovementioned assumptions, if the input is 7'-
periodic, the (locally well-defined) steady-state solution is also 7'-
periodic [22, Sec. V1], i.e., z5s(t) = xss(t — T). Since under the same
set of assumptions the equality x4 (t) = (¢, w, ) holds (see Proposi-
tion 3), it is straightforward to conclude that 7(¢,w,) is T-periodic.
Finally, (36) follows analogously to the proof of [2, Corollary 5.5]. B

In other words, the result of Corollary 3 indicates that (under the
above assumptions) the moment of (3) at (A, L) can be fully described
by computing (34) over only one time period 7'.

Remark 14: The mapping m, solution of (34), can always be ex-
pressed as (¢, wa (t)) = I(t)wa (t).

Remark 15: 1f system (3) is linear (i.e., f,;(x,u) = Oand h,,;(x) =
0) then, the solution 7; (¢, wx) = I1;(t)wa (¢) of (34) with

t
I(t) = lim [ e BLw,(7)dr A(t)™"

t——o00 t

37)
coincides with the solution obtained in [12] and [24].

B. Approximation of IL(t) Driven by (A, L)

In this section, we present a method to approximate the moment of
a nonlinear system (3) driven by an explicit signal generator (33) (as
formalized in Definition 4). To achieve this, we introduce the following
assumption.

Assumption 9: The set Fy,, = {1y (t)}2L, C 2, with ¢, (t) €
R and where .7#”* is complete inner-product space with (closed) domain
= C R, is a complete orthogonal set in = and each component of the
mapping II(¢) = [II(¢),;]™" belongs to £, i.e., it can be expressed
as a unique linear combination of the set F,,, as

M
I(t)i; = Z%‘jkwk(t) =TV (t) (38)

k=1
where 7;;, € R for k€ Ny, Up(t) = [41(t), ... , ¥ (2)]7, and

Lij = Dijs -+ Yisadl-

Note that, for this explicit signal generator case, we propose to
approximate the matrix valued function I1 directly, and then reconstruct
the moment as 7(t, wa (t)) = II(¢)wa (t).

Remark 16: Under Assumption 9, II(¢) can be written as I1(t) =
'Y, ® War(t)) where I € R™N¥ is given by

FH - [F”]n’u (39)

Moreover, defining the vectors U (¢) = [¢1(t), ..., ¥ (¢)]T with N >
M and U4, (t) = [Yn41(t), .., ¥ar(¢)]T, we can always expand
I1(¢) as
M(t) = I'(L, ® ¥ (1) + B(L © U3(1))

where_fn = [f”]n’y,WIthf” = [’yijl, cen
with F” = [’yijN+17 e ,’}/ijju].

As in the implicit signal generator case, we now propose a method
to compute an N-dimensional approximation I1(¢) of II(¢) based on a
residual equation. This is considered in the following proposition.

Proposition 4: Consider the nonlinear system (3) driven by the
explicit signal generator (33). Suppose that Assumptions 6, 7, and 9

(40)

s Yigy lrand E = [Dy;]™",
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hold. Then, the moment of system (3) at (A, L) can be approximated as
R(IT(t)wa (t)), where TI(t) = I'(I, ® ¥(t)) and I'" is the solution
of the system of algebraic equations

(TL(ton (8) = Tu(Owa () = D (1), Wa®T) =0 @D)
where W, () = (I, ® ¥(t))wa(t) and
I, (t) = /Ot eA(t_T)BLwA(T)dT At)
i, (1) = /0 A=) (Ti(FYwn (7). Lwoa (7)) dr.  (42)

Proof: We omit the proof since it is analogous to that of Proposi-
tion 2, using the integral equation (34) and Remark 14. |

Remark 17: If, additionally, Assumption 8 holds and the zero
equilibrium of # = f(x,0) is locally exponentially stable, then
h(IL(t)w, (), with TI(£) computed as in Proposition 4, approximates
the steady-state output response of system (3) driven by (33). Addi-
tionally, exploiting the periodicity of the steady state and following the
result of Corollary 3, itis possible to compute II; and I1,,; in Proposition
4 as

I, ( P/ e BLwy (1)drA(t) ™

P/ AT £ (TL(T)wa (1), Lwa (T))dr— (43)

and, hence, II can be fully described using only information over one
period.

Corollary 4: Let Assumptions 6, 7, and 9 be satisfied. Then, the
system of algebraic equations (41) can be equivalently written in matrix
form as

(f“ - H}I’A’l) %A =0 (44)

where the matrices A € R¥N**N and TI, TI%, € R™*" are defined
as

A = (UA (1), T (H)T)
I = (IL, (t)wa (1), WA (1)T)
Y = (I (t), Ua(t)T).

Proof: Note that, considering the orthogonality of the set Fy =
{ab;}}¥_| under Assumption 9, the matrix A can be explicitly written as
A=y, ® | [[¢;wa, ] where || - || denotes the norm induced by
the inner-product defined in (8). Then, it follows from the minimality
condition of Assumption 7 and the invertibility of A(¢) for ¢ > 0,
that wy, # 0 for all ¢ € N, and then |[¢h;wy,[|? > 0 for all j € Ny
and ¢ € N,. Hence, 0 ¢ 0(A) since A = AT >0 and the proof
follows. ]

Analogously to the implicit case presented in Corollary 2, (44) is
decomposed in a specific form, in which the contribution of the linear
solution II; appears explicitly, together with a nonlinear “correction”
term.

Remark 18: As in the case of (26), a sensible choice for the initial
guess F secures a fast convergence rate when solving (44). This can
be chosen in terms of the linear solution of (44), i.e., o= H‘I’A L

To conclude this section, we provide an example that illustrates the
applicability of the proposed method.

Example 2: Consider the nonlinear resonant inverter circuit depicted
in Fig. 2, with dynamics described by the differential equations

d’Uc . dil _

Cdt =1,

(45)

N(i) +u, y=14 (46)

N(iy) L

Fig. 2. Resonant converter.

Linear

Moment

2 (t,wa (1)) = h(AT(E)wa (1))

t [s] 107

Fig. 3. Top: time histories of the approximated moment for the nonlin-
ear resonant converter driven by the signal generator (47), for different
values of k. Bottom: time histories of the corresponding absolute errors
(logarithmic scale).

where the voltage at the nonlinear resistor is given by N (4;) = R(i; +
«i?), with o > 0. The input w is a switching function, which is given
by a square wave with angular frequency wn, described in explicit form

as [23]
[ﬂ 47
47)

where M(t) = sign(sin(t)), with sign(0) = 0. We select the parameters
L and C of the system (46) as in [23],i.e., L = 229.3 [u H], C = 10
[ F1, while the resistance is set to R = 5 [€2]. The characteristic of the
sourceissetto V, = 2,wr = —— and the nonlinear resistor coefficient
is set to o = 1.5. Note that the signal generator (47) satisfies all the
assumptions of Definition 4. In addition, (47) satisfies Assumption 8
and the zero equilibrium of & = f(x, 0) is locally exponentially stable,
hence, the result of Proposition 3 holds, and the moment of system (46)
driven by (47) coincides with the steady-state output response of such
an interconnected system.

Given the periodic nature of the input, we select trigonomet-
ric polynomials as orthogonal set of basis functions in = = [t;¢ +
Th], with T =27 /wn, ie., the set {¢;} is chosen as Fy =
1 U {cos(pwnt),sin(pwnt)}F_,. Fig. 3 shows the time history of
h(m(t,wa(t))) computed using a Runge-Kutta method, and the time
history of A(II(t)w, (t)) considering a different number of basis
functions in the set Fy, i.e., k = {10,20100}. The large number of
components to successfully approximate the moment relates to the

M(wnt + g)
M(wnt)

M (wnt)

walt) = N(wnt + %)

ult) = [VS o] wa ()
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discontinuous nature of the problem. In fact, it can be seen in Fig. 3
(bottom) that the absolute value of the approximation error becomes
higher at the points where wy () is discontinuous, though improving
with increasing k.

V. CONCLUSION

This article presents a framework to approximate the moment of
nonlinear systems driven by signal generators. The methods proposed
are inspired by a connection between moment-based theory and the
family of WRMs. This article formalizes and exploits this connection
to propose a set of methods to approximate the moment of a nonlinear
system driven by an implicit signal generator. Furthermore, we present
the formal definition of moments for nonlinear systems driven by
explicit signal generators and we propose a method to compute such
moments, extending the applicability of the framework to a very general
class of inputs, including periodic discontinuous sources. While our
contributions are technical and strictly related to the definition and
computation of moments, these contributions allow the computation
and definition of new classes of reduced order models, following the
system-theoretic approach to nonlinear model reduction by moment-
matching presented in, e.g., [2]. For instance, using the contributions
of this article, one can define and compute a family of reduced models
achieving moment matching at an explicit signal generator for a general
class of nonlinear systems, extending the framework presented in [2] for
linear dynamical systems driven by this class of input signals. Finally,
we article that the methods proposed in this article are illustrated by
means of simple examples.
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