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Abstract—Wave energy converters (WECs) are a promising
technology aimed at harvesting energy by converting the device
motion induced by ocean and sea waves. The control strategy
adopted to guide the power take-off (PTQO) system is among
the most crucial aspects in the energy conversion process.
Indeed, the solution of such an energy-maximizing optimal control
problem is fundamental for the economic viability of this type of
emerging technology. State-of-the-art WEC control technology
can be almost fully enclosed within the family of model-based
control strategies: The optimal control law, which maximizes
energy absorption, is computed based upon knowledge of a
dynamical model of the device, able to predict the associated
motion. Nonetheless, models constructed for WEC control pur-
poses are inherently affected by several sources of uncertainty,
especially in terms of the associated hydrodynamic effects. As
a consequence, there is a significant appetite to adopt model-
free control strategies to overcome this issue. In this study, we
propose a perturbation-based extremum-seeking control (ESC) in
which a class of soft-constraint handling has been introduced to
deal with excessive motion values for a heaving point absorber
WEC. We test such a strategy in different operating conditions
to highlight the influence of the soft constraint mechanism on
power absorption, applied control action, and WEC velocity.

Index Terms—Wave energy converter, Model-free control,
Extremum seeking control, Constrained optimal control

I. INTRODUCTION

Among the present global challenges, among which the need
for energy sources alternative to those from fossil fuels is
rising, the scientific community is showing an increasing in-
terest in renewable energy research, and, in particular, efficient
extraction of ocean wave energy [1]. Devices aimed at wave
energy conversion are called wave energy converters (WECs).
Such devices are able to convert the energy from the motion
caused by the waves in oceans and seas. Many solutions
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have been proposed, characterized by different methods to
exploit the wave motion [2]. Nonetheless, due to the relatively
immature stage of WEC technology development affected by
different issues to be solved, none of the studied concepts have
yet succeeded in achieving commercial success [3]. One of the
main challenges to overcome in the process towards economic
feasibility of these devices is the development of suitable
energy-maximizing control systems, which are responsible
for maximizing the energy extracted, while also minimizing
the risk of component damage, and adapting to a constantly
changing environment. It is worth noting that, since the process
of computing such an energy-maximizing law can be formally
posed in terms of a constrained optimization problem, WEC
control solutions naturally fall under the umbrella of optimal
control theory [4]. The solution of the associated optimal
control problem (OCP) is virtually always performed by
explicitly using a control-oriented model of the WEC. Some
examples of model-based optimal control applications in the
wave energy field are model predictive control (MPC) [4]-
[6], and moment-based control [7]-[9]. The models adopted
for such computations are, however, the result of a trade-off
between accuracy and complexity. Indeed, to facilitate real-
time computation of the associated control action, the WEC
model complexity must be compatible with the computational
capabilities of each specific controller. The resulting trade-
off produces a model that approximates the WEC behaviour
with a certain degree of inaccuracy and/or uncertainty [10]. To
deal with this issue, a robust control solution can be developed
[11], [12] or a model-free control approach can be followed.
The former, which intrinsically requires a characterization of
the corresponding uncertainty set, tends to be conservative by
definition, since the control objective is that of minimizing
the worst-case performance for the defined uncertainty set.
The latter, on the contrary, avoids the definition of a model at
all, and only operates in terms of accessible variables of the



device (i.e. manipulated inputs and measurable outputs).

In this study, we propose a model-free control solution to
the OCP for WECs. In particular, we extend the perturbation-
based extremum-seeking control (ESC) strategy presented in
[13] by incorporating a methodology to handle constraints
on the motion of the considered device. Furthermore, we
explicitly demonstrate the influence that this type of strategy
has both on the constrained variable, and the performance
measure, i.e. power absorption.

The remainder of the paper is organised as follows. In Section
II, the model of the point absorber WEC, adopted as a
case study, is presented, together with the definition of the
associated energy-maximizing OCP. Section III introduces the
adopted ESC framework, and describes the strategy proposed
to include constraints on the ESC design. In Section IV,
numerical analysis of the presented approach, in regular wave
conditions, is provided. Finally, in Section V, a set of consid-
erations are offered regarding the advantages of adopting this
type of approach in the ESC-based solution of the OCP for
WEC systems.

II. PROBLEM DEFINITION

This section introduces the WEC control problem addressed
in this study. In particular, the dynamics of a point absorber
WEC is presented in Section II-A, together with the main
equations describing its motion, while the energy-maximizing
optimal control problem is formulated in Section II-B.

A. WEC modelling

Among WEC technologies, one of the most popular is the
so-called point absorber. This type of device is commonly
constituted by a hull moored to the seabed, able to extract
energy from its (predominantly) heave motion by means of the
power take-off (PTO) system. It is characterized by its small
dimension with respect to the wavelength of the site in which
it is deployed. Two different categories of point absorbers can
be identified: floating, and submerged point absorbers [14]. In
this study, we consider the submerged point absorber adopted
in [13]. A graphical representation is presented in Fig. II-A.
The equation of motion of this type of device! is given by

— Fpro(t), (D

where m is the point absorber mass, z(t) is the heave dis-
placement, F,(¢) is the force that the wave exerts on the hull
(i.e. the so-called excitation force), F;.(t) is the radiation force,
F,(t) is the viscous drag force, and Fpro(t) is the force the
PTO generates to extract energy (i.e. the control force). From
now on, being this work a preliminary analysis, we assume the
device is subject to regular waves, and hence the force F,,(t)
is formulated as:

H
Fult) = £l

mi(t) = Fy(t) + Fo(t) + Fy(t)

sin (wt + Zfew), )

'We consider a single degree-of-freedom (DoF) for simplicity of exposition.
Note that similar arguments can be made for multi-DoF devices (see, for
instance, [15]).
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Fig. 1.

Scheme of a submerged point absorber.

where f, is the geometry-dependent excitation force coeffi-
cient’ at frequency w = 27 /T, with wave period T, and H is
the corresponding wave height. Following Cummins’ equation
[17], the radiation force F.(t) can be expressed as:

Fo(t) = —AL2(t) — /Ot K, (t —7)2(t)dr. 3)

In (3), A, is the added-mass at infinite frequency (see
[16]), while the mapping K, € L?(R) represents the fluid-
memory effect, modeled in terms of the so-called radiation
impulse response function. Given the inherent representational
and computational drawback associated with the convolution
operator in (3), the radiation force term has been approxi-
mated by means of a state-space system, identified using the
Finite Order Approximation by Moment-Matching (FOAMM)
toolbox [18]. The viscous drag force F,(t) in (1) has been
modeled following Morison’s formulation of the drag force
[19]. It must be highlighted that, in contrast to the floating
point absorber case, the hydrostatic stiffness effect is not
present in (1), since the considered point absorber is effectively
submerged [13]. Because of that, the amount of submerged
volume is the actual point absorber volume, and for this
reason, it is always the same. As a consequence no recall
force is generated by the heave oscillation.

B. Energy-maximizing optimal control problem

As introduced in Section I, the main objective of the control
system in the WEC case is the maximization of the energy
extracted over a certain time set 7 = [a,b] C R™. Since the
instantaneous absorbed power is the product of the PTO force

2See, for instance, [16].



Fero(t) and the device velocity £(t), the control objective J
can be formulated as’:

1
J (Fpro) = T/TFPTO(T)Z'(T)CZT, “4)

where T = b — a. Aiming to maximize energy, while min-
imising risk of component damage, a set of limitations (i.e.
constraints) is often introduced along with (4). In particular,
constraints on maximum displacement 2,4, maximum ve-
locity Zpqqe, and maximum control action Fpro,maqe, can be
incorporated as

|Z| < Zmax
12] < Zmaa (5)
|FPTO| < FPTO,ma:n

with V¢ € R, and {zmaz, Zmaz, Fp10,maz } C RT. Hence, in
the general case, the optimal control problem can be fully
written as

opt
Fro = argmax J (Fpro)
Fpro

s.t.: 6)
WEC dynamics (1),

Motion and input constraints (5).

In order to solve (6), different strategies may be applied [20].
Most of them rely on the adoption of a model able to describe
the system behaviour over the time interval 7. In contrast, as
discussed in Section I, we adopt a model-free real-time ESC,
following [13].

III. EXTREMUM-SEEKING CONTROL

ESC is a model-free control strategy, since it does not rely
upon access to a model for control action computation, and is
purely based upon online measurements. As consequence of
the latter characteristic, the control law is of a feedback type
f (z,0), where x denotes the state-vector of the associated
system, parameterized in terms of a vector ¢, and hence the
adopted performance function Jgsc (z,6) depends on both x
and 6. The controlled system behavior can be summarized as*

x =g(x,u,d), (7)
y = Jesc (z,0), ¥
u=f(x,0), )

where ¢ is the function (not necessarily linear or known)
describing the system dynamics, w is the control action (Fpro
in the WEC case), y is the evaluated performance, and d is
an exogenous uncontrolled input (and hence not necessarily
known) characterizing external disturbances (e.g. the wave
force F,, in the WEC control application). It is important
to note that the closed-loop behaviour of the system in (7)
can be characterized by a set of equilibria directly depending

3From now on, the dependence on ¢ is dropped when clear from the context.

#In line with the single-DoF WEC system adopted in Section II-A, the ESC
formulation is presented here for single-input single-output systems. Note that
similar arguments can be adopted for multiple-input multiple-output systems
(see [21]).

on the control parameterization #. To guarantee that the ESC
formulation is stable for the general class of nonlinear systems
described by (7)-(8)-(9), the following assumptions must be
met [21]:
1) The equilibrium of system (7)-(8)-(9) is described by a
smooth function I, § — [(0), such that g(x, u(z,0),0) =
0 if and only if z =[(6).
2) For each 0, the equilibrium = = () is locally exponen-
tially stable. As a consequence, the chosen control law
(9) is stabilizing independently of the parameterisation
of the law itself.
3) There exists an optimal parameter 6* such that the
derivative of (8) with respect to 6 is zero, i.e.

0Jesc (1(6%), 6%)

=0 10
90 ; (10)
and the second derivative is strictly negative
0? 1(6), 0"
Tesc (1(0), 0°) <0. (11)

062
This assumption therefore implies that the output equi-
librium map y = Jgsc({(0), ) is concave in the param-
eter 0, and has a minimum at 6 = 6*.

4) In steady-state conditions, the parameter 6, controlled
by ESC, evolves much slowly than the system dynamics
described by (7). As a consequence, the eventual time-
dependence of the objective function [Jgsc induced by
the plant dynamics can be neglected. In such conditions,
the time-derivative Jgsc can be reasonably approxi-
mated as’,

_OJescdd _ 0Jesc ,
Jesc 20 & o0 0. (12)

It is important to note that, in (12), the variation in time
of 6 is controlled by the ESC and, hence, measuring jESC
provides the algorithm with knowledge of %. Since the
ESC formulated as a gradient-based real-time optimization
process, this latter information on jESC is required to con-
verge to the optimal parameter 6*, and hence maximize the
performance function. Moreover, an implicit assumption in
(12) is that the evaluation of the objective function in ESC
is considered to be time-invariant. As detailed in [13], by
choosing an appropriate formulation for the performance map
Jesc, such an assumption can still be reasonably adopted
even in the wave energy case, where the optimal steady-
state regime is effectively time-variant. In particular, [13]
shows that the dynamics of transition between sea-states is
sufficiently slow to allow the assumption of a slowly evolving
performance mapping over the evaluation time required by the
corresponding ESC.

In the following, we adopt the classical continuous-time
perturbation-based ESC presented in [21], with the setting
proposed in [13]. This type of ESC is composed of the
combination of a high-pass filter (HPF) with cut-off frequency

5The already mentioned dependence of Jgsc ((t),6(t)) from time-
varying x(t) and 6(¢) is dropped here.
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Fig. 2. Scheme of the developed perturbation-based ESC.

wg > 0, a low-pass filter (LPF) with cut-off frequency
wr, > 0, an integrator, and a sinusoidal dither signal with
frequency w, > 0, i.e. dgsc(t) = sin (wpt), introduced both
in additive and multiplicative forms. The system of equations
describing the behaviour of this type of ESC is:
1 =wp(Jesc — 1),
& =wr ((Jesc — 1) desc — &)
0 = K¢,
0= é + Cl,pdEsc,

13)

where 7 is that part of the performance function Jgsc
filtered by the HPF with cut-off frequency wys, while £ is an
estimate of %, formulated as the output of the LPF placed
after the first multiplicative perturbation dgsc, as shown in
Fig. III. Additionally, K is the integration gain, and g is an
estimate of the optimal 6 which, after the incorporation of
the additive dither signal with amplitude a,, composes the
effective 6 applied by the ESC. A graphical representation of
the developed perturbation-based ESC is shown in Fig. III. In
the design procedure, the gain K and amplitude a, must be
small enough to guarantee convergence, while the frequency
wp, must be lower than the frequencies that characterize the
dynamics of the point absorber to guarantee equation (12).

A. On the inclusion of constraints in ESC design

In [13], the performance function Jgsc is purely based
upon the measure of extracted power. Indeed, to compute an
effective measure of the objective function, the absorbed power
signal

J = Paps = FproZ (14)

is used as input of the composite function consisting of (in
order of interconnection):
1) A low pass filter with cut-off frequency wy, 7 > wp.
2) A moving-average operator with a time-window defined
as three times the period of the slowest operating wave,
behaving similarly to another LPF but with different cut-
off frequency.
3) A logarithmic function for data compression.

TABLE I
SCALED SPHERICAL POINT ABSORBER MAIN CHARACTERISTICS.

Symbol Quantity Value
Dg Diameter 0.16 [m]
Ps Homogeneous Mass Density | 922.5 [kg/m?]
ds Submergence Depth 0.25 [m]
dy Water Mean Depth 0.65 [m]
TABLE I

CHARACTERISTICS OF THE REGULAR WAVES ADOPTED.

Wave ID T [s] H [m]
1 0.625 | 0.0100
2 0.800 | 0.0200
3 1.000 | 0.0075

The output of this composite modulation function (highlighted
in Fig. III) is the performance function Jgsc. Since ESC is, by
its nature, not capable of dealing directly with the constraints
that may characterize a system (since the incorporation of
state-dependent hard constraints inherently requires a model
of the process), we include a term in J to penalize excessive
violations of motion limits, i.e. a soft-constraint, in the spirit
of equation (5). In particular, in the present case study, J is
augmented, from (14) as

J = Fproz — r3?, (15)

where 7 € R is the weight adopted for the penalization of
excessive velocities. It is important to note that, with this
soft-constraint formulation, constraint satisfaction cannot be
guaranteed for all ¢ € R, but rather in an average fashion,
fully depending on the value selected for r. We discuss how
to tune such a value in Section IV.

IV. NUMERICAL ANALYSIS

The presented approach to the ESC has been applied on
a scaled-down point absorber with the same characteristics
of the spherical one presented in [13]. The main dimensions
of this scaled WEC are reported in Table I, while the set of
regular waves, considered to evaluate the performance of the
proposed strategy, are presented in Table II.

The ESC has been used in this application to optimally
compute two parameters, described by a vector 6 = [B, K|" €
R?, i.e. a classical PI (proportional—integral) control law is
considered. Note that such a controller, which is often referred
to as reactive control in the field of wave energy conversion
[22]-[24], can be written as

In (16), the control action results in a linear combination of a
damping term proportional to the velocity z, and of a stiffness
contribution, proportional to the device displacement z. These
two parameters are usually found in irregular wave conditions,
by an extensive set of simulations, designing any constraint
handling mechanism a-posteriori. In regular wave conditions,
and for the unconstrained scenario, optimality is reached by
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Fig. 4. Influence of r on optimal stiffness value K at convergence.

means of the solution of the so-called impedance-matching
problem [23].

To evaluate the proposed strategy, 200 values of r logarith-
mically spaced between = 0 (equivalent to an ESC without
a soft-constraint), and a maximum weight value of r» = 50,
have been simulated for each of the 3 wave conditions in
Table II. The length of the simulations has been set to
secure convergence of the controlled parameters, in order to
evaluate the corresponding performances at steady conditions.
For each r value and wave condition, the value at convergence
of the estimate of the optimal parameters 6 = [B , K }Lmean
absorbed power P,;s, mean-square of the velocity 22, and
mean-square of the control action FPQTO, have been considered
in the analysis. Looking at Fig. IV, it is possible to notice that
the optimal damping value B varies linearly in function of the
weight r. Such a behaviour can be fully justified in terms of the
formulation of J. In particular, for the PI control law described
in (16), the contribution of the absorbed power FproZ depends
only upon the product of the damping coefficient B and the
square of the velocity #2. In particular, note that the mapping
(4) defines an inner-product operation in L?([0,77]), where
T corresponds with the period of the associated input wave.
Under these conditions, the inner-product between steady-state
displacement and velocity, arising from the definition of the PI
control law in (16), is effectively zero, i.e. they are orthogonal
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functions under the operator (4). As a consequence, the
performance function in steady-state conditions is proportional
only to the square of the device velocity, i.e.

jESC = (B - 7’)227

where the weight r acts as an additional damping term.

The stiffness parameter k, on the other hand, is only
slightly affected by variations in r, as shown in Fig. IV. The
velocity behaviour, with respect to the weight r, is presented
in Fig. IV. As it is possible to notice, the mean-square value
of the velocity 22 is strongly reduced by the addition of the
penalizing term in J. It is important to note that, depending
on the required level of constraint, this type of analysis is
able to return a preliminary guidance on the design of the
objective function. Moreover, since the reactive control action
is also dependent on the velocity itself, the mean-square value
of Fpro is also directly affected and penalized by r. In this
way, the soft-constraint on 2z also behaves as a soft-constraint
on excessive PTO forces. However, the presence of such a
term in the objective function has also an influence on the
absorbed power, reducing the relative weight of the power
absorption term in the optimality definition in the OCP. From
the previously presented simulations, with 7" = 0.625[s] and
H = 0.01[m], a graphical representation of the existing
relation between r, the mean absorbed power P,;s, and the
value of u,,s at convergence, is presented in Fig. IV. As can
be directly appreciated, with a value » < 6, it is possible
to significantly reduce the control effort, measured via s,
while only slightly affecting the obtained performance.

a7)

V. CONCLUSIONS

We propose, in this study, a solution for the inclusion of
constraints in the formulation of an ESC strategy applied to
a WEC. By means of a soft-constraint approach, we reduce
excessive values of the heave velocity of a scaled-down point
absorber. Because of the type of feedback control law adopted,
the inclusion of the velocity-dependent penalizing term in
the objective function also facilitates constraint handling of
the control force Fpro applied by the PTO. In addition, we
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demonstrate that the relation between power absorbed and the
penalizing weight, for low values of r, can significantly reduce
motion and control values without generating a massive impact
on the total absorbed power. The results presented in this
study can help in the pathway towards an efficient model-
free solution for WECs under realistic scenarios, directly
contributing to effective commercialization of a wide variety
of wave energy conversion systems.
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