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Abstract— Linear dynamics are virtually always assumed when
designing optimal controllers for wave energy converters (WECs),
motivated by both their simplicity and computational conve-
nience. Nevertheless, unlike traditional tracking control appli-
cations, the assumptions under which the linearization of WEC
models is performed are challenged by the energy-maximizing
controller itself, which intrinsically enhances device motion to
maximize power extraction from incoming ocean waves. In this
article, we present a moment-based energy-maximizing control
strategy for WECs subject to nonlinear dynamics. We develop
a framework under which the objective function (and system
variables) can be mapped to a finite-dimensional tractable
nonlinear program, which can be efficiently solved using state-
of-the-art nonlinear programming solvers. Moreover, we show
that the objective function belongs to a class of generalized
convex functions when mapped to the moment domain, guar-
anteeing the existence of a global energy-maximizing solution
and giving explicit conditions for when a local solution is,
effectively, a global maximizer. The performance of the strategy
is demonstrated through a case study, where we consider (state
and input-constrained) energy maximization for a state-of-the-
art CorPower-like WEC, subject to different hydrodynamic
nonlinearities.

Index Terms— Energy maximization, moment, moment match-
ing, nonlinear optimal control, wave energy.

I. INTRODUCTION

ENERGY-MAXIMIZING control of wave energy convert-
ers (WECs) has been shown to be one of the fundamental

contributions toward efficient energy extraction from ocean
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waves [1], [2]. In particular, optimal control strategies sig-
nificantly improve maximum time-averaged power extraction
from waves, potentially reducing the levelized cost of energy
and hence contributing to the roadmap toward successful
commercialization of WECs.

Any energy-maximizing control strategy for WECs must
consider the inherent physical limitations of both the device
itself and the power take-off (PTO) actuator dynamics such
that energy extraction is maximized while also minimizing the
risk of component damage. The above control specifications
form the basis for a range of studies, which are mostly
formulated in terms of an optimal control problem (OCP)
subject to both state and input constraints. A comprehensive
review of these strategies can be found in [2] and [3].

Linear dynamics are virtually always considered when
designing optimal controllers for WECs (see [3, Table 3]),
motivated by both their simplicity (in terms of formulation
and solution of the corresponding OCP), and their associated
computational convenience. In other words, these model-based
control strategies must be computed in real time,1 therefore
limiting the computational complexity of the hydrodynamic
models employed. Moreover, there is also a limit to the
complexity of mathematical models for which an optimal
control solution can be effectively found, either algebraically
or numerically. Another strongly contributing factor to the use
of linear dynamics is that linear hydrodynamic theory is a
well-established field where considerable effort and refinement
has been expended in the calculation of linear hydrodynamic
parameters. There is therefore little appetite to extend these
models to include nonlinear effects.

Nevertheless, despite the list of motives described above,
the linearity assumption has been recently an object of debate
(see [6], [7]); WECs are, by their nature, prone to show
significant and diverse nonlinear effects since their principal
aim, pursued by the optimal control strategy, is to enhance the
amplitude of motion to maximize power extraction. In other
words, and in contrast to traditional set-point tracking control
systems, where the control system ensures that the system
operation is around the set point and actively attempts to
reduce the variance around this point, the assumptions under
which the linearization of WEC models is performed are

1Though beyond the scope of this study, we note that control techniques
that optimize control parameters/laws offline have also been proposed within
the WEC literature. The reader is referred to, for instance [4] and [5].
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challenged by the controller itself, particularly in relation to
small movements around the equilibrium position. This may,
in certain conditions, return poor results, both in terms of accu-
racy of motion prediction that in terms of power production
assessment [6], which are the key variables involved in any
energy-maximizing OCP.

This provides significant motivation for optimal con-
trol strategies that can effectively handle nonlinear effects,
both in terms of the well-posedness of the OCP (i.e.,
existence of global energy-maximizing solutions) and real-
time capabilities. Some attempts to address this prob-
lem have already been offered within the WEC control
literature. We provide a brief review in the following
paragraphs.

The papers [8] and [9] propose one of the first nonlinear
optimal control formulations in the WEC literature: nonlinear
energy-maximizing model predictive control (MPC) applied
to (different) heaving point absorbers. The nonlinear effects
considered in [8] arise from the forces exerted by the mooring
system utilized to attach the device to the seafloor. Nev-
ertheless, nonlinear hydrodynamic effects, such as viscous
forces (which are significant in this type of device [7])
are disregarded, while (nonparametric) radiation forces are
completely neglected. Concerning computational efficiency,
the authors specifically claim that the study in [8] does not
focus on real-time applicability, but rather on highlighting the
advantages of using nonlinear MPC compared to its linear
counterpart. A follow up of this study can be found in [10],
where the discretization for the MPC is modified (from a zero-
to a second-order hold), and a state estimator is incorporated.
On a different note, while Tom and Yeung [9] assumed linear
dynamics for the WEC, they compute the control force using
a nonlinear MPC formulation given by a time-varying system
(written in the explicit form), which naturally induces a time-
varying objective function.

The papers [11]–[13] apply pseudospectral optimal control
methods (see [14] for a review) to different WEC technologies,
subject to a number of nonlinearities: viscous forces (see [11],
[12]), nonlinear hydrostatic restoring force (see [12], [13]), and
a nonideal PTO system ([11]). Although these pseudospectral
formulations are indeed appealing from a computational per-
spective, the results in [11]–[13] do not guarantee existence
of solutions to the proposed OCPs. Moreover, even if a
solution is found, it is not clear under which conditions
this energy-maximizing control law is effectively a globally
optimal solution.

Recently, a novel energy-maximizing optimal control frame-
work for WECs was presented in [15] and [16]. This approach
is based on the concept of moment (discussed in Section II)
and maps the original energy-maximizing OCP into a concave
quadratic program (QP), systematically guaranteeing a unique
solution for the original energy-maximizing control objective,
subject to both state and input constraints. Nevertheless, the
mathematical framework in [15] and [16] considers WECs
subject to linear dynamics, hence hindering the application
of this strategy to more realistic scenarios in which nonlinear
effects become significant, as previously discussed in this
section.

Exploiting the concept of nonlinear moment introduced
in [17], this article presents an energy-maximizing control
strategy for WECs subject to nonlinear dynamics. In particular,
we propose an approximation method that allows us to
efficiently parameterize the energy-maximizing OCP subject
to both state and input constraints. To this end, this article
provides the following contributions.

1) We propose a method to map the objective function
(and system variables) to a finite-dimensional tractable
nonlinear program (NP), which can be efficiently solved
using state-of-the-art nonlinear programming solvers
(see [18]).

2) By showing that the objective function arising from the
proposed moment-based strategy belongs to a family
of approximately convex/concave mappings (particularly
to the so-called outer �-convex/concave [19] func-
tions), we guarantee the existence of a global energy-
maximizing solution, under mild assumptions.

3) In analogy to the case of convex/concave functions,
where each local solution is also global, we give
explicit conditions to determine whether a local energy-
maximizing solution is, effectively, a global maximizer
for the proposed moment-based OCP, having strong
practical implications when numerically solving the
associated NP.

4) Finally, we present an extensive case study based
on the energy-maximization problem for a state-of-
the-art CorPower-like WEC subject to hydrodynamic
nonlinearities.

The remainder of this article is organized as follows.
Section II recalls the key theoretical concepts behind the
nonlinear moment-based framework. Section III describes and
formalizes the energy-maximizing problem for WECs subject
to nonlinear dynamics, while Section IV details the main con-
tributions of this article, i.e., the proposed nonlinear moment-
based optimal control strategy. Finally, Section V discusses
the application of this approach to a state-of-the-art CorPower-
like heaving WEC, while Section VI encompasses the main
conclusions of this study.

A. Notation and Preliminaries

Standard notation is considered throughout this study.
R+ (R−) denotes the set of nonnegative (nonpositive) real
numbers. C0 denotes the set of pure-imaginary complex num-
bers. The symbol 0 stands for any zero element, dimensioned
according to the context. The notation Nq indicates the set of
all positive natural numbers up to q , i.e., Nq = {1, 2, . . . , q}.
The symbol In denotes the identity matrix of order n, while the
notation 1n×m is used to denote an n × m Hadamard identity
matrix (i.e., an n×m matrix with all its entries equal to 1). The
spectrum of a matrix A ∈ Rn×n , i.e., the set of its eigenvalues,
is denoted by λ(A). The superscript ᵀ denotes the transposition
operator. The symbol

⊕
denotes the direct sum of n matrices,

i.e.,
⊕n

i=1 Ai = diag(A1, A2, . . . , An). The notations �{z}
and �{z}, with z ∈ C, stand for the real- and imaginary-
part operators, respectively. The symmetric part of a matrix
A ∈ Rn×n is defined (and denoted) as H {A} = (A + Aᵀ)/2.
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The Frobenius norm of a matrix X ∈ Rn×m is denoted as
‖X‖F , whereas the Euclidean norm of a row vector V ∈ Rn

is denoted as ‖V ‖2. The generalized Dirac-δ function, shifted
by t j ∈ R+, is denoted as δt j = δ(t − t j ). The Kronecker
product between two matrices M1 ∈ Rn×m and M2 ∈ Rp×q is
denoted by M1 ⊗M2 ∈ Rnp×mq . The convolution between two
functions f and g over the set � ⊂ R, i.e.,

∫
� f (τ )g(t −τ )dτ

is denoted as f ∗ g. Let f and g be two functions belonging
to the Hilbert space L2(�) = { f : � → R | ∫� | f (τ )|2dτ <
+∞}, where � ⊂ R is closed. Then, the inner product between
f and g is given by 〈 f, g〉 = ∫� f (τ )g(τ )dτ . The span of the
set X = {xi }k

i=1 ⊂ Z , where Z is a vector space over the
field R, is denoted as span{X }. The closed ball contained
in Rn , with center z ∈ Rn and radius r ∈ R+, is defined
as B(z, r) = {y ∈ R

n | ‖y − z‖2 ≤ r}. Finally, the symbol
εn ∈ Rn denotes a vector with odd entries equal to 1 and even
entries equal to 0.

In the remainder of this section, the formal definitions of
two important operators are presented since their definition in
the literature can often be ambiguous.

Definition 1 (Kronecker Sum) [20]: The Kronecker sum of
two matrices P1 and P2, with P1 ∈ Rn×n and P2 ∈ Rk×k ,
is defined (and denoted) as

P1⊕̂P2 � P1 ⊗ Ik + In ⊗ P2. (1)

Definition 2 (Vec Operator) [20]: Given a matrix P =
[p1, p2, . . . , pm] ∈ R

n×m , where p j ∈ R
n , j ∈ Nm , the vector

valued operator vec is defined as

vec{P} �

⎡
⎢⎢⎢⎣

p1
p2
...

pm

⎤
⎥⎥⎥⎦ ∈ R

nm . (2)

Finally, we recall a useful property of the vec operator.
Property 1 [20]: Let P3 ∈ Rn×m and P4 ∈ Rm×q . Then

vec{P3 P4} = (Iq ⊗ P3)vec{P4} = (Pᵀ
4 ⊗ In

)
vec{P3}. (3)

II. MOMENT-BASED THEORY

To keep this article reasonably self-contained, this section
briefly recalls some of the key concepts behind the moment-
based framework, as developed in [17] and [21]. In particular
(after recalling a set of standing assumptions), this section is
mainly concerned with the definition of moment for nonlinear
systems.

We consider a nonlinear, single-input–single-output,
continuous-time, system described, for t ∈ R

+, by the set of
equations2

ẋ = f (x, u)

y = h(x) (4)

with x(t) ∈ Rn , u(t) ∈ R, y(t) ∈ R, and f : Rn×R → Rn

and h : Rn → R sufficiently smooth mappings defined in the
neighborhood of the origin of Rn . Assume that the origin is
an equilibrium point of (4), i.e., f (0, 0) = 0 and h(0) = 0.

2From now on, we drop the dependence on t when clear from the context.

Fig. 1. Block diagram of the composite system (6), showing the relationship
between the steady-state output and the moment.

Now, consider a signal generator (often also referred to as
exogenous system [22]) described by the equations

ξ̇ = Sξ

u = Lξ (5)

with ξ(t) ∈ Rν , S ∈ Rν×ν , and Lᵀ ∈ Rν , and the so-called
composite (or interconnected) system

ξ̇ = Sξ

ẋ = f (x, Lξ)

y = h(x). (6)

Following [17] and [21], we now introduce a set of standing
assumptions to formalize the definition of moment. Recall
that a system is minimal if it is observable, accessible, and
described by analytic mappings (see [21, Ch. 2]).

Assumption 1: There exists a mapping π , locally3 defined
in a neighborhood of ξ = 0 and with π(0) = 0, which solves
the partial differential equation

∂π(ξ)

∂ξ
Sξ = f (π(ξ), Lξ). (7)

Assumption 2: System (4) is minimal and the pair (S, L)
is observable.

Definition 3 ([17], [21]): Consider system (4) and the sig-
nal generator (5). Suppose that Assumptions 1 and 2 hold. The
mapping h ◦ π is the moment of system (4) at (S, L).

Finally, we recall a result that connects the definition of
moment (as in Definition 3) with the steady-state response
of the output of the interconnected system (6) (as in Fig. 1),
introducing an additional assumption concerning the dynamics
of (5).

Assumption 3: The signal generator (5) is such that all
eigenvalues of S are simple and with zero real part. Moreover,
the pair (S, ξ(0)) is excitable.4

Remark 1: For linear systems, excitability is equivalent to
reachability, i.e., with ξ(0) playing the role of the input matrix
(see [23]).

Theorem 1 ([17], [21]): Consider system (4) and the signal
generator (5). Suppose that Assumptions 2 and 3 hold and
that the zero equilibrium of the system (4) is locally exponen-
tially stable. Then, Assumption 1 holds, and the moment of
system (4), computed along a trajectory ξ(t), coincides with
the steady-state response of the output of the interconnected
system (6), i.e., yss(t) = h(π(ξ(t))).

3Statements are local, though global versions can be directly derived.
4We refer the reader to [23] for the definition of excitability.
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III. PROBLEM FORMULATION: OPTIMAL

CONTROL FOR WECs

WEC optimal control design entails an energy-maximization
criterion, where the objective is to maximize the absorbed
energy from ocean waves over a finite time interval
� = [0, T ] ⊂ R+. To be precise, the useful energy absorbed
from incoming waves is converted in the PTO system and can
be directly computed as the time integral of converted (instan-
taneous) power, i.e., this energy-maximizing control procedure
can be cast as an OCP, with objective function J defined as

J (u) = 1

T

∫
�

u(τ )ẋ(τ )dτ (8)

where ẋ : � → R and u : � → R denote the velocity of the
device and control (PTO) force, respectively.

We now briefly recall the basics behind control-oriented
WEC modeling in Section III-A, to later pose the OCP for
wave energy systems subject to the motion (state and input)
constraints in Section III-B.

A. WEC Dynamics

We begin this section by recalling (see [24]) well-known
facts behind control-oriented WEC modeling. For simplicity,
we assume a one-degree-of-freedom (DoF) device and recall
that a similar analysis can be carried out for multi-DoF devices
following the moment-based multiple-input–multiple-output
approach presented in [16].

Remark 2: In what follows, to simplify notation, the ter-
minology associated with a 1-DoF translational device is
employed with some minor abuse. This is without loss of
generality, and the same analysis can be carried out for a
rotational 1-DoF device.

The equation of motion for such a WEC can be expressed
in the time domain, in terms of Newton’s second law, as

mẍ = Fr + F l
h + Fe + Fnl − u (9)

where m is the mass of the buoy, x is the device excursion (dis-
placement), Fe is the wave excitation force (external input),
F l

h is the linear component of the hydrostatic restoring force,
Fr is the radiation force, and u is the exerted control (PTO)
force. The mapping Fnl represents the potential sources of
nonlinearity depending on x and ẋ , such as viscous drag force
and nonlinear hydrostatic effects (see Section V-A). Note that,
in line with the assumptions in Section II, it is assumed that
the mapping Fnl is sufficiently smooth.5 The linear component
of the hydrostatic force can be written as F l

h(t) = −sh x(t),
where sh = ρgr D denotes the hydrostatic stiffness, with ρ the
water density, D the characteristic area of the device, and gr

the gravitational constant. The radiation force Fr is modeled
based on linear potential theory and, using the well-known
Cummins’ equation [26], can be written as

Fr (t) = −μ∞ ẍ(t) −
∫

R+
k(τ )ẋ(t − τ )dτ (10)

5If the mapping Fnl is nonsmooth, smooth approximations can be used to
apply the framework proposed in our study. Note that smooth approximations
have been previously exploited, within the WEC control literature, for
example, in [25].

where μ∞ = limω→+∞ Ã(ω)> 0 is the added mass at
infinite frequency, Ã(ω) is the radiation added mass6 and
k : R+ → R+ is the (causal) radiation impulse response
function containing the memory effect of the fluid response.
Finally, the equation of motion of the WEC is given by

Mẍ + k ∗ ẋ + sh x − Fnl = Fe − u (11)

with M = m + μ∞. We note that (11) is of a Volterra
integrodifferential form, specifically of the convolution class.7

B. Physical Limitations: State and Input Constraints

As it is well known in the wave energy literature, the
unconstrained energy-maximizing optimal control law, i.e., the
maximizer of J in (8), often requires unrealistic device motion
and excessively high PTO (control) forces, which consigns this
optimal unconstrained solution to the academic realm, far from
being practically viable. Aiming to derive an implementable
solution, we consider constraints on both the displacement and
the velocity of the WEC, x and ẋ , and on the exerted control
force u. This guarantees that the physical limits associated with
device and actuator dynamics are consistently respected while
effectively maximizing, at the same time, absorbed energy
from incoming waves. This set of constraints can be compactly
written as ⎧⎪⎨

⎪⎩
|x(t)| ≤ Xmax

|ẋ(t)| ≤ Vmax

|u(t)| ≤ Umax

(12)

with t ∈ R+, and where {Xmax, Vmax, Umax} ⊂ R+. Having
knowledge of the control objective function defined in (8) (i.e.,
the mapping J ), the nonlinear dynamics of the WEC in (11),
and the set of state and input constraints defined in (12), the
constrained energy-maximizing OCP can be posed as follows.

Problem 1 (Energy-Maximizing OCP): Find an optimal
control input uopt : � → R such that

uopt = arg max
u

J

s.t.:

{
nonlinear WEC dynamics (11)

state and input constraints (12).
(13)

Remark 3: We assume that the set of state and input
constraints in (13) is feasible, i.e., (12) is given in terms of
a feasible set (region). We refer the reader to, for instance,
[28], for an explicit analysis and discussion of the feasibility
problem for WEC energy-maximizing control systems, as a
function of the wave excitation input.

IV. NONLINEAR MOMENT-BASED WEC CONTROL

In this section, we present the main contributions of this
article. First, we develop a method to find approximate solu-
tions to the problem of determining the moment of nonlinear
systems describing WECs. Second, we formulate and solve the
unconstrained OCP in the moment domain. Third, we extend
the solution to the state and input constrained problem.

6See [24] for the definition of Ã(ω).
7The interested reader is referred to [16] and [29] for further detail on this

class of integrodifferential operators.
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A. Approximation of Moments for Nonlinear Systems

We begin by rewriting the equation of motion (11) in state
space as

ϕ̇ = f (ϕ,U ) = Aϕ − B(k ∗ Cϕ) + BU + fnl (ϕ)

y = h(ϕ) = Cϕ (14)

where ϕ(t) = [ϕ1(t), ϕ2(t)]ᵀ = [x(t), ẋ(t)]ᵀ ∈ R2, is the
state vector of the continuous-time model and y = ẋ is the
output of the system (assuming the velocity as the measurable
output of the device). The function U : R

+ → R, defined as
the input of system (14), is given by the expression8

U = Fe − u. (15)

Under this representation, the triple of matrices (A, B, C) and
the nonlinear mapping fnl : R2 → R2 forming the equation
of motion (14) are given by

A =
[

0 1
−shM−1 0

]
, B =

[
0

M−1

]
, Cᵀ =

[
0
1

]

fnl (ϕ) =
[

0
Fnl(ϕ)

]
. (16)

We recall from [30] that the standard assumption for the
mathematical representation of wave excitation forces in ocean
engineering applications is that Fe can be written as a finite
sum of harmonics of a so-called fundamental frequency ω0.
Following the moment-based theory presented in Section II,
the wave excitation force input can be written as a signal
generator described, for t ∈ R+, by the set of equations

ξ̇ = Sξ

Fe = Leξ (17)

where ξ(t) ∈ Rν , Lᵀ
e ∈ Rν and the dynamic matrix S ∈ Rν×ν

can be written in a block-diagonal form as

S =
f̃⊕

p=1

[
0 pω0

−pω0 0

]
(18)

with ν = 2 f̃ , f̃ > 0 integer.
Remark 4: To simplify the notation used throughout the

upcoming results and to explicitly focus this article on the
formulation of a nonlinear moment-based controller, it is
assumed that the moment-domain equivalent Le, character-
izing the wave excitation Fe as in (17), is known, i.e.,
full (instantaneous and future) knowledge of Fe is available
over the time interval � ⊂ R+. This is without loss of
generality since estimation and forecasting algorithms for Fe

(which are often required due to the inherent difficulty behind
measuring wave excitation forces in a moving body [31]) can
be incorporated straightforwardly, by following the adapta-
tion of the moment-based representation of Fe for receding-
horizon control presented in [32, Sec. IV-A], without further
modifications.

8Similar arguments can be adopted for multi-DoF systems. The reader is
referred to [16] and [29] for further detail.

Even though the wave excitation force is composed of f̃
harmonics multiple of the (angular) fundamental frequency
ω0, it is convenient (for the subsequent theoretical results) to
assume that the control input u can be composed of a higher
number f̃ + d of harmonics, with d > 0 integer. For this
purpose, we define the auxiliary “extended” signal generator
as follows. Let S̄ ∈ R(ν+ι)×(ν+ι) be such that

S̄ = S ⊕
⎛
⎝ d⊕

p=1

[
0 (p + f̃ )ω0

−(p + f̃ )ω0 0

]⎞⎠ (19)

with ι = 2d . We can now express the wave excitation force
and the control input u as a function of this extended signal
generator as

˙̄ξ = S̄ξ̄

Fe = [Le 0]ξ̄ = L̄e ξ̄

u = L̄u ξ̄ (20)

where ξ̄ (t) ∈ Rν+ι and ξ̄ (0) = [ξ(0)ᵀ, ξ�(0)ᵀ]ᵀ, ξ�(0) ∈
Rι. Note that the input defined in (15) can be expressed
accordingly as U = (L̄e − L̄u)ξ̄ .

Remark 5: The signal generator (20) is an extension of the
one defined in (17) in the sense that it inherently incorporates
the matrix S while adding d harmonics multiple of the
fundamental frequency ω0. With the selected initial condition
ξ̄ (0), the wave excitation force Fe can be written as a function
of ξ̄ by simply using an appropriate inclusion mapping, i.e.,
completing Le with zeros accordingly.
In preparation for the upcoming results, we introduce, without
loss of generality, three further assumptions. The first one is
on the signal generator defined in (20).

Assumption 4: The triple of matrices (L̄e − L̄u , S̄, ξ̄ (0)) is
minimal, i.e., observable and excitable.

Note that the previous assumption is without loss of gen-
erality as the signal generator is user-defined, and therefore,
it can always be constructed such that the assumption holds.

Remark 6: Let ξ̄i be the i th entry of ξ̄ , with i ∈ Nν+ι, and
define the set X̄ = {ξ̄i }ν+ι

i=1. Note that, if Assumption 4 holds,
then the pair (S̄, ξ̄ (0)) is excitable and it is straightforward to

check that span{X̄ } = span{{cos(pω0t),− sin(pω0t)} f̃ +d
p=1 }.

As a consequence, the input U is always T -periodic, where
T = 2π/ω0 ∈ R+ is the fundamental period of U .

We now state the following standard assumption on the
nonlinear mapping fnl , to later prove existence and unique-
ness of the moment of system (14) at the signal generator
(S̄, L̄e − L̄u).

Assumption 5: The mapping fnl : R2 → R2 is such that

fnl (0) = 0,
∂ fnl (ϕ)

∂ϕ

∣∣∣∣
ϕ=0

= 0. (21)

Note that the assumption is without loss of generality because
the matrices in (14) and the mapping fnl can always be
redefined to satisfy it. Finally, we introduce an assumption
on the stability in the first approximation of system (14).

Assumption 6: The zero equilibrium of system

ϕ̇ = Aϕ − B(k ∗ Cϕ) (22)

is asymptotically stable.
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As discussed in several studies, such as [24] and [33], the
linear equation of motion (22) is asymptotically stable for any
meaningful values of the involved parameters (and impulse
response function k). Thus, this assumption is, in practice,
also without loss of generality.

Proposition 1: Suppose that Assumptions [4]–[6] hold.
Then, there exists a mapping π , which solves the partial
differential equation

∂π(ξ̄)

∂ξ̄
S̄ξ̄ = f (π(ξ̄), (L̄e − L̄u)ξ̄ ). (23)

Moreover, the moment of system (14) at the signal generator
(S̄, L̄e − L̄u) computed along a particular trajectory ξ̄ (t)
coincides with the well-defined steady-state output response of
the interconnected system (14)–(20), i.e., yss(t) = h(π(ξ̄(t))).

Proof: Note that, under Assumption 4, the triple of
matrices (L̄e−L̄u, S̄, ξ̄ (0)) is minimal. Moreover, the extended
signal generator defined in (20) is such that λ(S) ⊂ C0 with
simple eigenvalues, in line with Assumption 3. Therefore,
Proposition 1 automatically holds as long as the zero equilib-
rium of the system ϕ̇ = f (ϕ, 0) is locally exponentially stable
(see Theorem 1). Since this is the case by Assumption 6, the
proof is concluded. �

In slightly different words, Proposition 1 guarantees that
the steady-state response of system (14), driven by (20), can
be effectively computed using the corresponding moment at
(S̄, L̄e − L̄u). Nevertheless, even if the existence of π [solution
of (23)] is guaranteed, it is virtually impossible to compute its
analytic expression when the mapping f in (14) is nonlinear.

The very nature of the mapping π intrinsically depends on
both the characteristics of the signal generator (20) and the
system dynamics defined by f . Aiming to formally character-
ize π , we introduce the following key remarks, which drives
the next main result.

Remark 7: Let � be defined as � = [0, T ] ⊂ R
+.

Note that the set X̄ , defined in Remark 6, belongs to the
Hilbert space L2(�) and is orthogonal under the standard inner
product operator. Moreover, if Assumption 4 holds, we can
always complete X̄ to an orthogonal basis X of L2(�), i.e.,
we define (see [34, Ch. 8])

X = X̄ ∪ X̆

X̆ = {cos(pω0t),− sin(pω0t)}∞
p= f̃ +d+1

= {X̆i }∞i=ν+ι+1.

Remark 8: If Assumption 4 holds, one can always find a
set of mappings Ii : Rν+ι → R such that X̆i = Ii (ξ̄ ), for
every i > ν + ι integer. This (standard) result states that we
can always generate the elements of the set X̆ (i.e., higher
order harmonics of the fundamental frequency ω0) by solely
operating on the ν + ι trigonometric polynomials defined by
the entries of ξ̄ (see [35]).

Proposition 2: Suppose that Assumptions [4]–[6] hold.
Then, each element of the mapping π , as the solution to (23),
i.e., πk , k ∈ N2, belongs to the Hilbert space L2(�) with
� = [0, T ] ⊂ R

+, where T = 2π/ω0, i.e., it can be uniquely
expressed as

πk(ξ̄ ) =
ν+ι∑
i=1

αki ξ̄i + εk = �̄k ξ̄ + εk (24)

where εk =∑∞
i=ν+ι+1 αki Ii (ξ̄ ), αki ∈ R∀i , with Ii as defined

in Remark 8, and the matrix �̄
ᵀ
k ∈ Rν+ι is given by �̄k =

[αk1 , . . . , αkν+ι ].
Proof: Given the nature of the signal generator defined

in (20), the function U is T -periodic, with T = 2π/ω0 (see
Remark 6). Moreover, under the above assumptions, the zero
equilibrium of ϕ̇ = f (ϕ, 0) is locally exponentially stable
and its (well-defined) steady-state solution is also T -periodic
[36, Sec. VI], i.e., ϕss(t) = ϕss(t − T ). Since under Assump-
tions [4]–[6], ϕss(t) = π(ξ̄(t)) (see Proposition 1), it is
straightforward to conclude that each element of the mapping
π belongs to L2(�), i.e., it can be expressed as a unique
linear combination of the orthogonal basis X (as defined in
Remark 7), which concludes the proof. �

Remark 9: The result of Proposition 2 allows π to be
compactly expressed as

π(ξ̄) =
[
�̄1

�̄2

]
ξ̄ +

[
ε1
ε2

]
= �̄ξ̄ + E (25)

where the term E : Rν+ι → R2 is called the truncation error.
Note that, if we “ignore” the truncation error E , the mapping
π can be effectively approximated as π̄(ξ̄ ) = �̄ξ̄ , i.e., by its
expansion on the (ν + ι)-dimensional set X̄ . This motivates
the following key definition.

Definition 4: We call the function Cπ̄ , where π̄(ξ̄ ) =
�̄ξ̄ , the approximated moment9 of system (14) at the signal
generator (S̄, L̄e − L̄u). In addition, we refer to the matrix
Ȳ = C�̄ as the approximated moment-domain equivalent10

of y.
Remark 10: Under the same set of assumptions as Propo-

sition 2, the approximated moment-domain equivalent of
y can be effectively used to approximate the steady-
state output of system (14) driven by (S̄, L̄e − L̄u), i.e.,
yss(t) ≈ C�̄ξ̄ (t) = Ȳ ξ̄ (t).

Aiming to propose a method to compute Ȳ and inspired by
the family of mean weighted residual methods [38], [39], we
define the residual mapping R : R2 → R2 as

R(�̄ξ̄ ) := �̄S̄ξ̄ − f (�̄ξ̄ , (L̄e − L̄u)ξ̄ ) (26)

which directly arises from “replacing” π with π̄ in (23). Using
this residual equation, we consider a collocation approach
[39, Ch. 4] to compute the approximated moment-domain
equivalent Ȳ = C�̄. In other words, we force (26) to be
exactly zero at a finite set of collocation points. We make this
approximation method explicit in the following proposition.

Proposition 3: Consider the nonlinear system (14) and the
signal generator defined by (20). Suppose that Assumptions
[4]–[6] hold. Then, the approximated moment-domain equiv-
alent of y can be computed as C�̄, where �̄ is the solution
of the algebraic system of equations

(�̄S̄− A�̄+BC�̄R−B(L̄e− L̄u))〈ξ̄ , δt j 〉−〈 fnl (�̄ξ̄ ), δt j 〉=0

(27)

9This notion is analogous to the one given in [37].
10This definition is analogous to that used in the linear moment-based WEC

control studies [15], [16].
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with Tδ = {ti }ν+ι
i=1 ⊂ � a set of uniformly distributed

time instants, and where the matrix R ∈ R
(ν+ι)×(ν+ι) is

defined as

R =
f̃ +d⊕
p=1

[ �{K (pω0)} �{K (pω0)}
−�{K (pω0)} �{K (pω0)}

]
(28)

with K : R → C, ω �→ K (ω), the Fourier transform of the
impulse response function associated with radiation effects,
i.e., k in (14).

Proof: Note that, using (14), the residual equation (26)
can be equivalently written as

(�̄S̄− A�̄−B(L̄e − L̄u))ξ̄ + B(k ∗ C�̄ξ̄ )− fnl(�̄ξ̄ ) (29)

where the convolution operation involved, associated with the
effect of radiation forces acting on the device, can be shown
to be such that [15], [16]

k ∗ C�̄ξ̄ = C�̄R ξ̄ (30)

with R as in (28). Then, following the well-known collocation
method [39, Ch. 4], the residual function is forced to be
orthogonal (under the standard inner-product of L2(�)) to
the set of translated Dirac-δ functions {δti }ν+ι

i=1. Equation (27)
follows after considering the superposition property of the
inner product operator. �

Corollary 1: The system of algebraic equations (27) can be
equivalently written in the matrix form as

(�̄S̄ − A�̄+BC�̄R − B(L̄e − L̄u)) − Fnl(�̄)�−1 =0

(31)

where the matrices Fnl (�̄) ∈ R2×(ν+ι) and � ∈ R(ν+ι)×(ν+ι)

are defined as

� = [
ξ̄ (t1) · · · ξ̄ (tν+ι)

]
Fnl (�̄) = [

fnl (�̄ξ̄ (t1)) · · · fnl (�̄ξ̄ (tν+ι))
]
. (32)

Proof: Note that if the set {t j } ⊂ �, then 〈 f, δt j 〉 =
f (t j ), for any continuous function f : � → R. Then, the
result follows as a consequence of the excitability of the pair
(S̄, ¯ξ(0)), which implies that the matrix � is always full rank
[23]. �

Remark 11: If the set of uniformly distributed time instants
Tδ is chosen such that tk = −T/2 + T k/(ν + ι), tk ∈ Tδ

for all k ∈ Nν+ι, then the collocation approach utilized in
Proposition 3 is identical to the Galerkin method [39, Ch.
4]. The main advantage of Proposition 3 (collocation) lies in
its simplicity of implementation, i.e., we simply use function
evaluation (see Corollary 1).

Remark 12: In the light of Remark 11, standard results of
Galerkin methods (see [40]) apply to this WEC case. In par-
ticular, the existence of solutions to system (27) [equivalently
(31)], under the hypothesis of Proposition 3, is always guar-
anteed for all sufficiently large ι. Moreover, the approximated
moment π̄(ξ̄ ) = �̄ξ̄ converges uniformly toward the exact
solution (25) as ι → ∞ (see also [40]).

We now present a corollary, which illustrates the result of
Proposition 3 (through Corollary 1) in a more convenient form
for the upcoming nonlinear moment-based energy-maximizing

control formulation. In particular, we show that (31) can be
fully expressed in terms of the approximated moment-domain
equivalent Ȳ = C�̄, effectively reducing the number of
variables involved in such an equation.

Corollary 2: The system of algebraic equations (31) can
be fully written as a function of the approximated moment-
domain equivalent Ȳ = C�̄ as

Ȳ − (L̄e − L̄u)�̄ᵀ + vec{Fnl(g(Ȳ ))}ᵀ�
ᵀ
� = 0 (33)

where �̄ ∈ R(ν+ι)×(ν+ι) and �� ∈ R(ν+ι)×2(ν+ι) are given by
the expressions

�̄ = (Iν+ι ⊗ C)�−1(Iν+ι ⊗ −B)

�� = (Iν+ι ⊗ C)�−1(�−1ᵀ ⊗ I2)

� = S̄⊕̂A + Rᵀ ⊗ −BC (34)

and the mapping g : R1×(ν+ι) → R2×(ν+ι) is defined as

g(Ȳ ) = (I2 ⊗ Ȳ )

[
S̄−1

Iν+ι

]
. (35)

Proof: A direct application of the vec operator (and
Property 1) to (32) yields

vec{�̄} + �−1(Iν+ι ⊗ B)vec{L̄e − L̄u}
+ �−1(�−1ᵀ ⊗ I2)vec{Fnl(�̄)} = 0 (36)

in which we make explicit use of the skew symmetricity
of S̄, i.e., −S̄ᵀ = S̄ to obtain � as in (34). The invert-
ibility of the matrix � has been shown in [15] and [16].
Equation (33) follows after multiplying both sides of (36) by
(Iν+ι ⊗ C), where we note that vec{C�̄} = vec{Ȳ } = Ȳ ᵀ and
vec{L̄e − L̄u} = (L̄e − L̄u)ᵀ. Finally, the mapping g arises
as a result of [41, Proposition 1]: given that ϕ̇1 = ϕ2 = y in
(14), �̄ can be written in terms of Ȳ simply as

�̄ =
[

Ȳ S̄−1

Ȳ

]
= (I2 ⊗ Ȳ )

[
S̄−1

Iν+ι

]
= g(Ȳ ) (37)

which concludes our proof. �
Remark 13: If Fnl (g(Ȳ )) = 0, i.e., system (14) is linear,

the approach of Proposition 3 (through Corollary 2) recovers
(without approximation) the linear moment-domain equivalent
Ȳ = (L̄e − L̄u)�̄ᵀ, presented in [15] and [16]. In other words,
(33) can be regarded as the linear moment domain equivalent
of y plus a nonlinear “perturbation” term.

B. Motion Unconstrained Nonlinear Moment-Based OCP

The results presented in Section IV-A can be effectively
used to approximate the energy-maximizing OCP presented in
Definition 1, making explicit use of the connection between
moments and the steady-state behavior of system (14). In the
following, we provide a definition of the so-called approx-
imated energy-maximizing OCP, using the approximated
moment-domain equivalent Ȳ , presented in Definition 4. Note
that we do not yet include the set of state and input con-
straints defined in (12). These are explicitly incorporated in
Section IV-C.
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Problem 2 (Approximated Energy-Maximizing OCP): Sup-
pose that Assumptions [4]–[6] hold. Find the optimal control

input ūopt = L̄opt
u ξ̄ such that

L̄opt
u = arg max

L̄ᵀ
u ∈Rν+ι

1

T

∫
�

L̄u ξ̄ (τ )Ȳ ξ̄ (τ )dτ

s.t.: Ȳ − (L̄e − L̄u)�̄ᵀ+vec{Fnl(g(Ȳ ))}ᵀ�
ᵀ
� =0

(38)

where Ȳ is the approximated moment domain equivalent of the
output of system (14) (see Definition 4) and ξ̄ is the solution
of (20).

Remark 14: The main idea behind Problem 2 relies
on substituting the integrodifferential (equality) constraint,
corresponding with the nonlinear WEC dynamics (14),
by the algebraic equation (33). Note that the latter charac-
terizes the approximated moment-domain equivalent of the
velocity of the device ẋ = y [which is the key state variable
involved in the energy-maximizing objective function (8)].
In other words, the approximated OCP posed in Problem 2
explicitly utilizes an approximation of the steady-state (output)
behavior of system (14), parameterized in terms of Ȳ , i.e.,
ẋss = yss(t) ≈ Ȳ ξ̄ (t) (see Remark 10), to solve for the
corresponding optimal control input ūopt, in terms of the signal
generator (20).

Remark 15: Following Remark 12, if ι → ∞, then the
steady-state output response of system (14) is exactly given
by yss(t) = Ȳ ξ̄ (t) and the algebraic equality constraint in
the OCP of Problem 2 corresponds to the exact steady-state
motion of the device, without approximations.

Based on Problem 2, we are now ready to propose a
solution to the motion unconstrained energy-maximizing OCP,
i.e., (13) without considering input and state constraints (see
Problem 2), in terms of a specific tractable finite-dimensional
NP. This claim is formalized in the following proposition.

Proposition 4 (Nonlinear Moment-Based Unconstrained
NP): Suppose that Assumptions [4]–[6] hold, and let ξ̄ (0) =
εν+ι. Then, for ι sufficiently large, the solution of the (motion
unconstrained) approximated energy-maximizing OCP, posed
in Problem 2, can be computed as ūopt = L̄opt

u ξ , where

L̄opt
u = − (Ȳ opt + vec{Fnl(g(Ȳ opt))}ᵀ�

ᵀ
� − L̄e

)
�̄−1ᵀ

(39)

and the matrix Ȳ opt is the solution of the finite-dimensional
NP

Ȳ opt = arg max
Ȳ ᵀ∈Rν+ι

J̄QP(Ȳ ) + J̄nl(Ȳ ) (40)

with J̄QP : R
ν+ι → R, J̄nl : R

ν+ι → R defined as

J̄QP(Ȳ ) = −1

2
Ȳ �̄−1Ȳ ᵀ + 1

2
Ȳ L̄ᵀ

e

J̄nl (Ȳ ) = −1

2
Ȳ �̄−1�� vec{Fnl (g(Ȳ ))}. (41)

Proof: The fundamental step toward this proof lies in
[15, Proposition 3]. In particular, due to the (harmonic) nature
of the signal generator defined in (20), the objective function
corresponding with the approximated OCP, i.e., (38), can be
equivalently written [15] as

J̄ = 1

T

∫
�

Ȳ ξ̄ (τ )L̄u ξ̄ (τ )dτ = 1

2
Ȳ L̄ᵀ

u (42)

for ξ̄ (0) = εν+ι. Substituting L̄u in (42), using the result of
Corollary 2, we can write J̄ , as a function of Ȳ , as

J̄ = −1

2
Ȳ �̄−1Ȳ ᵀ + 1

2
Ȳ L̄ᵀ

e − 1

2
Ȳ �̄−1�� vec{Fnl(g(Ȳ ))}

J̄ = J̄QP(Ȳ ) + J̄nl (Ȳ ) (43)

where the optimal control input ūopt = L̄opt
u ξ̄ can be straight-

forwardly recovered using the equality (33), yielding (39),
which concludes our proof. �

Proposition 4 explicitly uses the approximated moment
domain equivalent Ȳ to propose a finite-dimensional tractable
optimization problem, allowing for the computation of an
energy-maximizing control solution for the approximated OCP
posed in Problem 2 when the WEC is subject to nonlinear
dynamics. Note that there is (almost) no restriction on the
nature of the mapping fnl , so that a general class of nonlinear
effects can be considered, including complex hydrodynamic
nonlinearities, such as those discussed in Section V.

Remark 16: The moment-based NP stated in Proposition 4
has to be carried out over the approximated moment domain
equivalent Ȳ ᵀ ∈ Rν+ι only, i.e., in terms of the moment-
domain representation of the velocity of the device, and can
be solved using efficient state-of-the-art numerical routines,
such as interior-point methods (IPMs) [42].

Remark 17: There is an intrinsic tradeoff between the
degree of accuracy behind the approximated OCP, controlled
by the parameter ι (see Remark 15), and the underlying
computational complexity of (40). In other words, a higher
ι results in improved energy absorption but also intrinsically
increases the computational requirements of the strategy.

Remark 18: If J̄nl (Ȳ ) = 0, Proposition 4 recovers the
optimal moment-based control input proposed in [15] for the
linear WEC case. To be precise, if there are no nonlinearities
involved in (14), (40) is of a concave quadratic type, i.e., a QP
written as

Ȳ opt
l = arg max

Ȳ ᵀ∈Rν+ι
−1

2
Ȳ �̄−1Ȳ ᵀ + 1

2
Ȳ L̄ᵀ

e (44)

where the function J̄QP is strictly concave for any physically
meaningful parameters involved in the WEC equation of
motion (14) (see [15, Proposition 4]).

Following Remark 18, it is straightforward to note that the
NP stated in Proposition 4 can be seen as a QP problem
characterized by the objective function J̄QP and “perturbed”
by the action of the nonlinear mapping J̄nl . Nevertheless,
unlike the linear moment-based energy-maximizing OCP of
[15] and [16] (recalled herein in Remark 18), there is no
guarantee that the nonlinear OCP of Proposition 4 admits a
global maximizer. Aiming to secure the existence of a global
solution to problem (40), we introduce the following standing
assumption, to later formalize an appropriate proposition guar-
anteeing the existence of a global energy-maximizing solution
to (40).

Assumption 7: The mapping J̄nl : R1×(ν+ι) → R is
bounded by a parameter αnl ∈ R+, i.e.,

sup
Ȳ ᵀ∈Rν+ι

|J̄nl (Ȳ )| ≤ αnl < +∞. (45)
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As demonstrated in Section V, Assumption 7 is without loss of
generality since the mapping ϕ �→ Fnl(ϕ), which effectively
defines the nonlinear nature of J̄nl [see (41)], is sufficiently
smooth (see Section III-A) and hence bounded on any compact
set.

Proposition 5: Suppose that Assumption 7 holds. Then, the
NP with objective function J̄ defined in Proposition 4 always
admits a global maximum Ȳ opt.

Proof: The key concept behind this proposition lies in
the decomposition of J̄ as in (41), i.e., as the sum of a
concave problem J̄QP and, under Assumption 7, a bounded
perturbation J̄nl . To be precise, if J̄nl is bounded, then the
function −J̄ is strictly outer �-convex (see Definition 5 and
Theorem 2 in the Appendix), for � ⊂ R1×(ν+ι), where the set
� is given by

� = B (0, r) , r =
√

2αnl

min λ(H {�̄−1}) . (46)

Finally, given that the mapping J̄QP has a unique global
maximizer Ȳ opt

l (see Remark 18) and the set � ∩ R
1×(ν+ι)

is closed, the NP defined by the objective function J̄ always
admits a global optimal solution Ȳ opt (see [43, Lemma 4.3]
and Property 3 in the Appendix). �

Proposition 5 makes explicit use of the strictly outer �-
convexity of the function −J̄ to ensure the existence of
a global solution to the moment-based energy-maximizing
OCP proposed in this study. In other words, in contrast to
state-of-the-art nonlinear WEC control techniques [9]–[13],
we explicitly guarantee the existence of globally optimal
solutions to the associated energy-maximizing OCP.

Remark 19: Informally, the concept of outer �-convexity,
introduced in [19], is a formalization of the concept of convex-
ity for a class of functions that are “roughly” convex, i.e., they
possess properties similar to those of convex functions [43].
The reader is referred to Definition 5 in the Appendix for a
formal treatment of this concept.

Moreover, recalling key theoretical results from [43], we can
use the following property of strictly outer convex functions
(see Property 4 in the Appendix), which establishes a direct
relationship between local and global maximizers for J̄ ,
having strong practical implications.

Property 2 [43]: Let Ȳ opt be a �-local maximizer of J̄ ,
i.e.,

J̄ (Ȳ opt) = max
Ȳ∈B(Ȳ opt,r)

J̄ (Ȳ ) (47)

with r as in (46). Then, Ȳ opt is a global maximizer of J̄ .
Property 2 (or, analogously, Property 4 in the Appendix)

acts as the analog of the global optimality property of concave
functions (i.e., every local solution is a global solution).
In other words, if Ȳ opt is a maximizer for B(Ȳ opt, r), a subset
of R1×(ν+ι), then it is automatically a global maximizer of J̄ .
This not only gives explicit conditions for global energy
maximization within our nonlinear moment-based approach
(in contrast to available nonlinear WEC optimal control tech-
niques) but also considerably reduces the “search” space when
numerically solving (40), enhancing the efficiency behind the
proposed moment-based strategy.

C. On the Inclusion of State and Input Constraints

As discussed in Section III-B, any energy-maximizing
optimal control strategy must consider physical limitations,
arising from both the device itself, and the actuator (PTO
system) dynamics. Following the moment-based NP defined
in Proposition 4, we propose a framework to incorporate the
set of state and input constraints (12) to the energy-maximizing
unconstrained solution of Proposition 4.

To be precise, and in line with [15] and [16], we map the
set of constraints defined in (12) onto their respective moment
domain equivalents as⎧⎪⎨

⎪⎩
|x(t)| ≤ Xmax

|ẋ(t)| ≤ Vmax

|u(t)| ≤ Umax

�→

⎧⎪⎨
⎪⎩

|Ȳ S−1ξ̄ (t)| ≤ Xmax

|Ȳ ξ̄ (t)| ≤ Vmax

|L̄u ξ̄ (t)| ≤ Umax

(48)

and we enforce them only at a finite set of Nρ uniformly

spaced time instants Tρ = {ti }Nρ

t=1 ⊂ �, i.e., using a collocation
approach. To that end, we define the matrices �̄ ∈ R

(ν+ι)×Nρ

and �̄ ∈ R(ν+ι)×2Nρ as

�̄ = [ξ̄ (t1) · · · ξ̄ (tNρ )
]
, �̄ = [�̄ −�̄

]
. (49)

Finally, we can formulate a moment-based energy-maximizing
constrained optimal control solution for WECs, subject to
nonlinear dynamics, as follows.

Corollary 3 (Nonlinear Moment-Based Constrained NP):
Suppose that Assumptions [4]–[6] hold, and let ξ̄ (0) = εν+ι.
Then, for ι sufficiently large, the solution of the approximated
energy-maximizing OCP, posed in Problem 2, subject to the
set of state and input constraints (48), can be computed as
ūopt = L̄opt

u ξ , where

L̄opt
u = − (Ȳ opt + vec{Fnl(g(Ȳ opt))}ᵀ�

ᵀ
� − L̄e

)
�̄−1ᵀ

(50)

and the matrix Ȳ opt is the solution of the inequality-constrained
finite-dimensional NP

Ȳ opt = arg max
Ȳ ᵀ∈Rν+ι

J̄QP(Ȳ ) + J̄nl(Ȳ ) (51)

s.t.:

⎧⎪⎨
⎪⎩

ȲAx ≤ Bx

ȲAẋ ≤ Bẋ

ȲAu + Nu(Ȳ ) ≤ Bu

(52)

where

Ax = S̄−1�̄, Bx = Xmax11×2Nρ

Aẋ = �̄, Bẋ = Vmax11×2Nρ

Au = −�̄−1ᵀ
�̄, Bu = Umax11×2Nρ + L̄eAu

Nu(Ȳ ) = −vec{Fnl(g(Ȳ ))}ᵀ�
ᵀ
�Au . (53)

Proof: Note that under the set of assumptions considered
in this corollary, (50) and (51) follow directly from Proposi-
tion 4. With respect to the incorporation of the set of state
and input constraints defined in (48), let us first consider the
constraint associated with the control input, and note that

|L̄u S−1 ξ̄ (t)| ≤ Umax ⇒ −Umax ≤ L̄u ξ̄ (t) ≤ Umax. (54)

Authorized licensed use limited to: Maynooth University Library. Downloaded on October 10,2021 at 18:55:58 UTC from IEEE Xplore.  Restrictions apply. 



2542 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 29, NO. 6, NOVEMBER 2021

Equation (54), enforced at the set of collocation instants Tρ ,
can be straightforwardly written in terms of the matrix �̄
defined in (49), i.e.,

L̄u�̄ ≤ Umax11×2Nρ . (55)

The left-hand side of (55) can be expanded using the result
of Corollary 2 as

L̄u�̄ = ȲAu − L̄eAu + vec{Fnl (g(Ȳ ))}ᵀ�
ᵀ
�Au (56)

from where both the matrix Bu and the nonlinear mapping
Nu follow directly. Finally, the claim of this corollary follows
by writing the set of constraints associated with displacement
and velocity, defined in (48), as in (55), i.e., in terms of the
matrix �̄. �

Remark 20: The set of inequality constraints associated
with the displacement and the velocity is linear in Ȳ . This
is not the case for the control input-related constraint, which
can be decomposed as the sum of a linear and a nonlinear
mapping Nu : R1×(ν+ι) → R1×2Nρ .

Remark 21: Other types of constraints different from those
considered in (48), e.g., limits on maximum rated power
[44], unidirectional power flow [11], or specific nonlinear
constraints on the control force arising from selecting a spe-
cific PTO system [45], can be incorporated into the presented
moment-based approach by following an analogous proce-
dure to that described in this section. In other words, these
constraints can be included by a suitable mapping onto their
respective moment-domain equivalents, followed by a (time)
collocation approach.

V. CASE STUDY: A CorPower-LIKE DEVICE

To demonstrate the performance of the nonlinear moment-
based controller proposed in Section IV-B, we consider a
full-scale state-of-the-art CorPower-like wave energy device
oscillating in heave (translational motion). The actual Cor-
Power device is a wave energy system currently under devel-
opment by the Swedish company CorPower Ocean11, with the
aim of making a mass and volume-efficient solution using
bottom-referenced heaving buoys. The development of such
a WEC builds heavily on research results and earlier expe-
rience, and the interested reader is referred to, for instance,
[47] and [48]. Note that this type of device is often considered
as a case study, due to its intrinsic geometrical complexity
(see [49]). Fig. 2 shows a schematic of the CorPower-like
WEC, along with its corresponding hydrodynamic character-
ization, i.e., the frequency-response K ( jω) associated with
the impulse response mapping k. Note that K ( jω) has been
computed using the boundary element method solver NEMOH
[50]. The dimensions of this device are based on the experi-
mental study performed in [48].

In the remainder of this section, we consider waves gen-
erated stochastically from a JONSWAP spectrum [51], with
fixed significant wave height Hs of 2 [m], varying peak period
Tp ∈ [5, 12] [s], peak shape parameter γ = 3.3, and a
total time length (fundamental period) of T = 120 [s]. The

11See [46] for up-to-date information on the CorPower device.

Fig. 2. Schematic of the CorPower-like device, along with the frequency
response of the radiation impulse response mapping k. The still water level
is indicated using a blue-colored (shaded) plane.

Fig. 3. SDFs for different JONSWAP spectra with fixed wave height of
Hs = 2 [m] and varying peak period Tp ∈ [5, 12] (the direction of increasing
Tp is indicated by the arrow). The peak shape parameter is fixed to γ = 3.3.

corresponding spectral density functions (SDFs) are shown,
for reference, in Fig. 3. Since the waves are generated from
sets of random amplitudes [30], it is found that a mean of ≈ 40
simulations (per sea state) is necessary to obtain statistically
consistent performance results for the nonlinear moment-based
controller presented in this study, particularly those discussed
in Fig. 5.

A. Characterization of Nonlinear Hydrodynamic Effects

In this section, we characterize the nonlinear effects associ-
ated with the CorPower-like device, i.e., the mapping Fnl in
(11), considered for this case study. In particular, we consider
two main hydrodynamic forces: viscous effects Fv and the
presence of a nonlinear restoring force Fnl

r , so that Fnl =
Fv +Fnl

r . We give explicit motivation behind the consideration
of these nonlinear effects in the upcoming paragraphs.

Viscous effects, arising from vortex shedding and tur-
bulence, are particularly present in heaving point absorber
devices [52], such as the CorPower-like WEC considered.
One common way of including viscous drag effects in the
equation of motion is by means of a Morison-like term [53],
i.e., we define

Fv (ẋ) = −βv |ẋ |ẋ (57)

where βv = (1/2)ργd D, γd ∈ R+ is the so-called drag
coefficient, and D is the characteristic area of the device
(as defined in Section III-A). The drag coefficient is set to
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Fig. 4. Nonlinear hydrodynamic effects considered in this study: hydro-
static force (displacement-dependent, left axis), and viscous force (velocity-
dependent, right axis).

γd = 0.35, based on the analysis performed in [7] for the
device of Fig. 2. Fig. 4 (right axis, dashed line) shows the
output of the mapping Fv .

The mapping Fnl
r , characterizing nonlinear restoring effects,

is computed based on the experimental results presented in
[48] for this full-scale CorPower device. In particular, inspired
by [48], we define

Fnl
r (x) = βr1 x2 + βr2 x3 (58)

where the coefficients {βr1, βr2} ⊂ R are determined based
on a least-squares fit, using the experimental results given in
[48] as target set, giving a final result of βr1 = −1.55 × 104

[kg/ms2] and βr2 = 0.82 × 104 [kg/m2s2]. The output of the
nonlinear restoring force mapping Fnl

r is presented in Fig. 4
(left axis, solid line).

Note that both nonlinear effects, as described in (57) and
(58), fulfill Assumption 5. To show that Assumption 7 holds,
recall that the energy-maximizing optimal control law is such
that the state-variables ϕ1 = x and ϕ2 = ẋ have maximum
allowed values Xmax and Vmax, respectively [see (48)]. Then,
the following inequality, involving the nonlinear mapping
Fnl = Fv + Fnl

r :

|Fnl(ϕ)| = βv |ϕ2|2 + β1|ϕ1|2 + β2|ϕ2|3
≤ βv Vmax + (β1 + β2 Xmax)X2

max = α̃nl (59)

holds for all t ∈ �. Using (59), and considering well-known
(Euclidean) norm properties, it is straightforward to show that

‖vec{Fnl(g(Ȳ ))}‖2 ≤ (ν + ι)α̃2
nl . (60)

Recalling from the set of moment-domain constraints (48) that
|Ȳ ξ̄ (t)| ≤ Vmax for all t ∈ �, and, if ξ̄ (0) = εν+ι, then
‖ξ̄‖2

2 =∑ν+ι
i=1〈ξ̄i , ξ̄i 〉 = T (ν + ι)/2, we can directly obtain the

following estimate for αnl in (45):

|J̄nl(Ȳ )| ≤ 1

2T
(Vmax‖�̄−1��‖F α̃nl)

2

= αnl < +∞ (61)

and, hence, the moment-based energy-maximizing OCP
always admits a global maximizer under the effect of the
nonlinear dynamics defined in Fnl (see Proposition 5).

B. Results and Discussion

Based on the CorPower-like device of Fig. 2, subject to the
nonlinear effects described in Section V-A, we now present
and discuss the results of applying the nonlinear moment-
based energy-maximizing control strategy developed through-
out Section IV, under the effect of irregular (polychromatic)
wave excitation forces.

We begin by setting the maximum allowed displacement
and velocity values as Xmax = 2 [m] and Vmax = 2 [m/s].
The wave excitation force Fe is computed using ν = 60
components in (18), while the order of the extended signal
generator (20) is set to ν + ι = 100. Note that the latter
effectively defines the “size” of the optimization variable, i.e.,
Ȳ ᵀ ∈ Rν+ι. With respect to the collocation instants used to
enforce the constraints, as in Section IV-C, we have selected
ten uniformly distributed collocation points per second of
simulation, i.e., Nρ = 1200. The constrained moment-based
OCP stated in Corollary 3 can be solved using a variety of
state-of-the-art numerical routines, belonging to the families
of both local and global optimization methods.

In this study, we opt for a local IPM, where we take explicit
advantage of the strict outer convexity of the energy-related
objective function when mapped to the moment-domain; we
use Property 2 to numerically ensure that the (potentially local)
solution computed with IPMs is, effectively, a global energy
maximizer. In particular, we propose the following simple
algorithm, written in pseudocode.

Starting from the linear solution Ȳ opt
l of the concave QP

problem of Corollary 3, i.e., with Fnl (g(Ȳ )) = 0, this heuristic
attempts to compute a local solution using IPMs and simply
uses function evaluation at a finite set of P random points
contained in the set B(Ȳ opt, r), to (approximately) determine
whether the solution corresponds to a global maximizer using
the result expressed by Property 2. If we can find an element
Ȳi , contained in the set P , such that J̄ (Ȳi ) ≤ J̄ (Ȳ opt), then
the algorithm is restarted, but now updating the initial guess
for the IPM to Ȳi .

Remark 22: For the nonlinear mapping associated with the
CorPower-like device defined in Section V-A, the heuristic
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Fig. 5. Constrained (displacement and velocity) power absorption for the
nonlinear moment-based energy-maximizing controller proposed in this article
(black circles) and its linear counterpart (gray diamonds).

discussed above provides a global solution virtually always
after a single iteration (with the cardinality of the set P chosen
as P = 50). In particular, comparisons have been carried
out against global optimization routines based on genetic
algorithms (GAs), to determine whether the solution obtained
with the proposed heuristic effectively coincides with that
computed by GA. The IPM utilized to solve (51) is based
on [54]. Note that a range of other numerical optimization
methods can be equally applied to solve (51).

Remark 23: The moment-based controller normalized run
time, i.e., the ratio between the time required to compute the
energy-maximizing optimal control input for the duration of
the simulation and the length of the simulation itself, is always
less than a second for the totality of the preceding simulations,
which is consistent with the typical sampling time of a full-
scale WEC [15], hence achieving real-time performance. We
note that the real-time application of the proposed technique
can be performed in a receding-horizon fashion, by directly
following the moment-based methodology described in [32,
Sec. IV] (see also Remark 4).

We now present performance results for the proposed non-
linear moment-based controller, in terms of energy absorp-
tion, under both displacement and velocity constraints. Fig. 5
explicitly shows the value of J̄ (black circles), for sea states
with Hs = 2 [m] and Tp ∈ [5, 12], where the displacement
and velocity of the CorPower-like device are constrained
to Xmax = 2 [m] and Xmax = 2 [m/s], respectively. In
addition, Fig. 5 shows the performance of the linear moment-
based controller (gray diamonds), i.e., solving the OCP in
Corollary 3, assuming that J̄nl is zero, applied to the nonlinear
system described by (14). It can be readily appreciated that the
performance of the proposed nonlinear approach outperforms
its linear counterpart, for the totality of the sea states analyzed
in this study, with differences of up to ≈ 45% in total power
absorption. We note that, though not penalized in the results of
Fig. 5 (to offer a best case scenario for the linear controller),
the solution based on linear assumptions can often violate the
physical limitations imposed as state constraints, as a direct
consequence of ignoring nonlinear effects in the computation
of such an energy-maximizing control law. This is illustrated
and discussed in the following paragraph, where we fully
expose the capabilities of the nonlinear moment-based control
strategy presented in this study.

Fig. 6. Motion and control results for polychromatic wave excitation
with Hs = 2 [m] and Tp = 10 [s], for both linear (black dotted line)
and nonlinear (black solid line) moment-based controllers. (a) Displacement.
(b) Velocity and (scaled) wave excitation force input (blue dashed–dotted
line). (c) Corresponding control inputs, used to elicit the motion results. The
dashed–dotted horizontal lines represent constraint values.

Fig. 6 shows the time histories of displacement (a), velocity
(b), and control input (c), for a specific example of sea-state
realization with Tp = 10 [s], where we have also included
a maximum control (PTO) force constraint Umax = 1 × 106

[N]. Some key features associated with the presented moment-
based strategy can be directly appreciated from Fig. 6, as
discussed in the following. To begin with, the state and
input limits, under the action of the nonlinear moment-based
control strategy (solid black), are being consistently respected
throughout the complete simulation, hence illustrating the
capability of the approach to maximize energy absorption
for WECs subject to nonlinear hydrodynamic effects while
respecting the physical limitations of both device and actuator
(PTO). This is clearly not the case for the solution based on
linear assumptions (black dotted line), where a consistent vio-
lation can be appreciated, for both displacement and velocity
(state constraints). Though not significant (in magnitude) for
this particular sea state, this violation happens consistently in
time and can potentially damage device components.

Finally, we note that, as can be appreciated in Fig. 6(b),
the velocity of the device under optimal control condi-
tions, for both linear and nonlinear moment-based controllers,
remains “in-phase12” with the (scaled) wave excitation force

12We use the term “in-phase” to indicate that the peaks (local maxima and
minima) of both signals are aligned in time.
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(blue dashed–dotted line), agreeing with well-known the-
oretical results for unconstrained energy-maximization of
WECs [24].

VI. CONCLUSION

This study introduces a nonlinear moment-based energy-
maximizing control framework for WECs, subject to both state
and input constraints. The use of nonlinear moments, in con-
junction with an appropriate approximation method (based on
the family of weighted residual methods), allows the objective
function, associated with the energy-maximizing OCP, to be
mapped to a finite-dimensional NP, which can be solved effi-
ciently by state-of-the-art numerical solvers. We guarantee the
existence of a globally optimal solution within the presented
framework, under mild assumptions. In addition, we give
explicit conditions that relate local and global optima, which
are effectively exploited in the numerical implementation.
The performance of this method is illustrated through a case
study, where a CorPower-like device is considered, subject
to nonlinear hydrostatic restoring force and viscous forces.
We show that physical limitations are consistently respected
within this nonlinear moment-based framework, maximizing
absorbed energy while effectively minimizing the risk of
component damage. Comparisons are presented with its linear
counterpart, i.e., a moment-based controller without explicitly
considering hydrodynamic nonlinearities when computing the
control law, consistently showing improved performance for
the totality of the sea states analyzed, with up to ≈ 45%
of increase in energy absorption. Finally, future work will
compare the presented nonlinear moment-based approach with
established techniques in the WEC control field, both in terms
of computational speed and energy-maximizing performance.

APPENDIX

OUTER �-CONVEXITY

To keep this article self-contained, we recall some facts from
[43]. These are particularly useful for the results derived in
Section IV-B. In particular, we begin by recalling the definition
of outer �-convexity, originally proposed in [19] and [43].

Definition 5 (Outer �-Convexity [19], [43]): Let � ⊂ Rn

and g : Rn → R. The function g is said to be outer �-
convex on a given nonempty convex set D ⊂ Rn if, for all
{x0, x1} ⊂ D satisfying x0 − x1 /∈ �, there is a closed subset
Z ⊂ [0, 1] containing {0, 1} such that

[x0, x1] ⊂ {(1 − ζ )x0 + ζ x1 | ζ ∈ Z} + 1

2
� (62)

and

g((1 − ζ )x0 + ζ x1) ≤ (1 − ζ )g(x0) + ζg(x1) (63)

∀ζ ∈ Z\{0, 1}. If the inequality (63) holds strictly, then g is
said to be strictly outer �-convex.

Definition 5 has shown to be useful in deriving specific
properties of boundedly perturbed strictly convex quadratic
functions [43]. In particular, let A ∈ Rn×n be a symmetric
positive definite matrix, b ∈ Rn , and

f (x) := xᵀAx + bᵀx (64)

with x ∈ R
n . For a given set D ⊂ Rn , (64) gives origin to the

convex QP, termed problem (P)

min
x∈D

f (x). (65)

Consider now the modified problem (P̃)

min
x∈D

f̃ (x) := f (x) + p(x) (66)

where p : Rn → R is lower semicontinuous. For convenience,
we call p the perturbation, f̃ the perturbed function, and
(P̃) the perturbed problem. We now recall the following
fundamental result from [43].

Theorem 2 [43, Th. 2.2]: Suppose that the perturbation p
is bounded by a parameter s, i.e., supx∈D |p(x)| ≤ s < +∞.
Then, the perturbed function f̃ = f + p is strictly outer �-
convex on D for � = B(0, r), with r = (2s/ min λ(A))1/2.

The result of Theorem 2 shows that a bounded perturbation
p does not completely destroy the strict convexity of the
quadratic function f (x) = xᵀAx + bᵀx , but the perturbed
function f̃ = f + p is still strictly outer �-convex for some
suitable set � ⊂ R

n . This has two fundamental implications
for the perturbed problem (P̃), which we recall below as
properties. Note that we explicitly state the source of each of
these properties, by pointing to specific results of [43]. In what
follows, we shall assume that the perturbation p is bounded
by a parameter so that Theorem 2 can be used.

Property 3 [43, Lemma 4.3]: Let x∗
QP be the global mini-

mizer of problem (P) and suppose that the set B(x∗
QP, r)∩D is

closed. Then, problem (P̃) always admits a global minimizer.
Property 4 [43, Th. 3.1]: Let x∗ be a local �-minimizer

of f̃ , i.e.,

f̃ (x∗) = min
x∈B(x∗,r)∩D

f̃ (x). (67)

Then, x∗ is a global minimizer of f̃ , i.e.,

f̃ (x∗) = min
x∈D

f̃ (x). (68)
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