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A B S T R A C T

Blood biomarkers may be used to detect physiological imbalance and potential disease. However, blood sam-
pling is difficult and expensive, and not applicable in commercial settings. Instead, individual milk samples are
readily available at low cost, can be sampled easily and analysed instantly. The present observational study
sampled blood and milk from 234 Holstein dairy cows from experimental herds in six European countries. The
objective was to compare the use of three different sets of milk biomarkers for identification of cows in phy-
siological imbalance and thus at risk of developing metabolic or infectious diseases. Random forests was used to
predict body energy balance (EBAL), index for physiological imbalance (PI-index) and three clusters differ-
entiating the metabolic status of cows created on basis of concentrations of plasma glucose, β-hydroxybutyrate
(BHB), non-esterified fatty acids (NEFA) and serum IGF-1. These three metabolic clusters were interpreted as
cows in balance, physiological imbalance and “intermediate cows” with physiological status in between. The
three sets of milk biomarkers used for prediction were: milk Fourier transform mid-IR (FT-MIR) spectra, 19
immunoglobulin G (IgG) N-glycans and 8 milk metabolites and enzymes (MME). Blood biomarkers were sampled
twice; around 14 days after calving (days in milk (DIM)) and around 35 DIM. MME and FT-MIR were sampled
twice weekly 1−50 DIM whereas IgG N-glycan were measured only four times. Performances of EBAL and PI-
index predictions were measured by coefficient of determination (R2

cv) and root mean squared error (RMSEcv)
from leave-one-cow-out cross-validation (cv). For metabolic clusters, performance was measured by sensitivity,
specificity and global accuracy from this cross-validation. Best prediction of PI-index was obtained by MME
(R2

cv = 0.40 (95 % CI: 0.29−0.50) at 14 DIM and 0.35 (0.23−0.44) at 35 DIM) while FT-MIR showed a better
performance than MME for prediction of EBAL (R2

cv = 0.28 (0.24−0.33) vs 0.21 (0.18−0.25)). Global ac-
curacies of predicting metabolic clusters from MME and FT-MIR were at the same level ranging from 0.54 (95 %
CI: 0.39−0.68) to 0.65 (0.55−0.75) for MME and 0.51 (0.37−0.65) to 0.68 (0.53−0.81) for FT-MIR. R2

cv and
accuracies were lower for IgG N-glycans. In conclusion, neither EBAL nor PI-index were sufficiently well pre-
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dicted to be used as a management tool for identification of risk cows. MME and FT-MIR may be used to predict
the physiological status of the cows, while the use of IgG N-glycans for prediction still needs development.
Nevertheless, accuracies need to be improved and a larger training data set is warranted.

1. Introduction

Diseases at calving and during early lactation account for the ma-
jority of health and welfare problems in dairy production (Ingvartsen
et al., 2003). These include production diseases such as fatty liver,
ketosis, rumen acidosis and lameness. Most of such diseases in peri-
parturient cows are argued to be the result of physiological imbalance
(Ingvartsen, 2006). Correspondingly, infectious diseases such as mas-
titis and metritis may occur as the immune system is strongly inter-
linked with physiological imbalance via the endocrine system and
metabolites that must accommodate to the demands for lactation facing
the transition cow (Ingvartsen and Moyes, 2015). The consequences of
subclinical and clinical diseases are suboptimal animal welfare, pro-
duction and fertility. Thus, physiological imbalance leading to these
subclinical and clinical diseases should have high priority of being
addressed with regard to development of management tools. In parti-
cular, subclinical stages of diseases can be detected by biomarkers while
the cow may appear completely healthy. A number of biomarkers in
blood are well described but are currently less well characterized in
milk. In the review of Ingvartsen (2006), it is documented that plasma
concentrations of glucose, non-esterified fatty acids (NEFA) and β-hy-
droxybutyrate (BHB) are relevant indicators to determine subclinical
ketosis. LeBlanc et al. (2005) also identified blood NEFA and BHB as

relevant indicators of displaced abomasum in dairy cows. Piechotta
et al. (2012) reported that concentrations of serum NEFA and plasma
IGF-1 prepartum are associated with postpartum diseases, while IGF-1
postpartum was the best predictor of both left displaced abomasum and
risk of culling (Lyons et al., 2014). However, collecting and analysing
blood samples for measuring biomarkers is difficult and expensive, and
not applicable in commercial settings. Instead, individual milk samples
are readily available and milking systems even provide automatic
sampling and measurement of e.g. milk conductivity. Such automatic
systems can be expanded to measure e.g. milk BHB (e.g. Herd Navi-
gator™, http://www.herdnavigator.com). Enjalbert et al. (2001)
showed that subclinical ketosis can be identified by measuring BHB in
milk with enzymatic analysis or with Ketolac test strips. Other studies
also reported milk BHB to be a relevant indicator of subclinical and
clinical ketosis (e.g., Nielsen et al., 2005). Free glucose, glucose-6-
phosphate (Larsen and Moyes, 2015), and isocitrate (Larsen, 2014)
reflect the nutrient availability and metabolic turnover in the mammary
gland that are linked to the blood levels and therefore potentially in-
dicators of physiological imbalance and risk of disease. Larsen et al.
(2010) and Kitchen et al. (1978), respectively, reported that the milk
enzymes lactate dehydrogenase (LDH) and N-acetyl-β-D-glucosamini-
dase (NAGase) performed equally with somatic cell count and acute
phase proteins as inflammatory indicators of mastitis. In addition,

Fig. 1. Box-and-whiskers plots for graphical interpretation (note that bars are medians) of k-means clusters into metabolic clusters as indicated by colours: balanced
cluster (magenta), intermediate cluster (orange) and physiological imbalanced cluster (yellow). Distribution of standardised blood metabolites and IGF-1 in each
cluster (1, 2 and 3), at 14 DIM (first row), at 35 DIM (second row), for primiparous Holstein dairy cows (first column), second parity cows and for parity 3+ cows
(last column). The horizontal lines indicate +/-0.5 SD. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article).
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Fourier transform mid-IR (FT-MIR) spectrum of milk is known to con-
tain information on milk composition and cow status (Gengler et al.,
2016), and measures of milk immunoglobulin G (IgG) N-glycans may be
potential new biomarkers.

Based on the same data as here, two other papers (De Koster et al.,
2019; Grelet et al., 2019) have considered the prediction of metabolic
status (balanced/imbalanced) using metabolic clusters based on k-
means clustering of four blood biomarkers; glucose, NEFA and BHB in
plasma and IGF-1 in serum. Grelet et al. (2019) only considered FT-
MIR, and De Koster et al. (2019) only used multiparous cows and both
studies only considered prediction of clusters. The present paper sup-
plements these studies by comparing random forests predictions from
three different sets of milk biomarkers; metabolites and enzymes
(MME), FT-MIR spectra and IgG N-glycans among all parities and by
comparing predictions of body energy balance (EBAL) and index for
physiological imbalance (PI-index) (Ingvartsen, 2006; Moyes et al.,
2013a, 2013b). Additionally, the present paper focuses deeper on MME
and also investigates the potential of IgG N-glycans as a set of milk
biomarkers and contributes to the understanding of the clustering ap-
proach. The main objective was to compare the use of MME, FT-MIR
and IgG N-glycans for identification of cows in physiological imbalance
and thus at risk of developing a metabolic or infectious disease.

2. Material and methods

Study design, sampling and analysis of milk and blood have been
described in De Koster et al. (2019), Grelet et al. (2019) and Krogh et al.
(2019). In brief, cows were observed in the six research herds involved
in the GplusE project. The location of the research herds were Northern
Ireland (UK), Denmark (DK), Belgium (BE), Italy (IT), Germany (DE)
and Ireland (IE) and for each herd at least 25 cows were planned to be
included, attaining a total number of cows that was larger than most
recent studies at that time. A total of 234 Holstein dairy cows (55 first
parity, 66 second parity, and 113 in third or higher parity (3+)) were
recorded for the first 50 days in milk (DIM), see Supplementary Table
S1. Data from additionally 7 cows that were culled before 50 DIM were
removed before analysis. In four locations, all cows were fed a standard
diet typical for the particular country. In the UK and DK, a standard diet
and two alternative diets were used. In total, the observations were
done in six different production systems and with ten different diets to
represent the variation in feeding and management in northern and
western European countries. An overview of the diets is shown in
Table 1 of Krogh et al. (2019).

2.1. Derived measures

The calculation of EBAL was described in De Koster et al. (2019) and
Krogh et al. (2019). EBAL was only calculated if both morning and
evening milk yield was available for that day. Afterwards, three days
(i.e., +/- 1 days in milk (DIM)) moving averages of EBAL were calcu-
lated and used for the analyses. The average live body weights within
calendar week was used to smooth large day-to-day variation and
measurement errors of scales. Summary statistics of EBAL are shown in
supplementary tables of Krogh et al. (2019).

PI-index was calculated as [log10(NEFA)] + [log10(BHB)] − [glu-
cose] (Moyes et al., 2013a), where plasma concentrations of the in-
dividual metabolites were standardised to an overall mean of zero and
variance of one (as indicated by square brackets). Moyes et al. (2013a)
used the natural logarithm (ln) but since log10 and ln are proportional,
ln(y) = ln(10)log10(y), the standardised values will be exactly equal,
i.e. [ln(y)] = [log10(y)]. Thus, since the manuscripts of Grelet et al.
(2019) and De Koster et al. (2019) applied log10-transformations of
NEFA and BHB this same approach was used here.

2.2. Metabolic clusters

As an alternative phenotype to negative EBAL and PI-index, clusters
were created by use of the k-means method of Hartigan and Wong
(1979) from standardised measures of plasma glucose, plasma
log10(BHB), plasma log10(NEFA), and serum log10(IGF-1). As men-
tioned in the Introduction, these four blood biomarkers contained
complementary information on the physiological status of the animal.
Three clusters (k = 3) were constructed for each combination of three
parities (1, 2 and 3+ lactations) and two periods in early lactation
(around 14 and 35 DIM) as visualised in Fig. 1. Deciding on the number
of clusters can be intricate but in the present sample k = 3 was found to
be a fair compromise between size and similarity (in terms of the within
cluster sum of squares, results not shown). Based on a graphical inter-
pretation using boxplots of the standardised concentrations of plasma
glucose, NEFA and BHB and serum IGF-1 (see Fig. 1), three metabolic
clusters were defined as representing balanced, intermediate and im-
balanced cows.

Criteria to define the imbalanced metabolic cluster are the most
important. We defined the metabolic cluster as imbalanced if standar-
dised plasma glucose and serum IGF-1 concentrations were both lower
than those of plasma BHB and plasma NEFA, and in addition both
median BHB and NEFA were above 0.5 SD (Fig. 1). Intermediate and
balanced metabolic clusters had less sharp definitions: The intermediate
metabolic cluster generally had lower standardised glucose and IGF-1
concentrations than BHB and NEFA, with NEFA and BHB boxes in
the ± 0.5 SD area and glucose and IGF-1 around or below -0.5 SD. The
balanced metabolic cluster had standardised glucose and IGF-1 con-
centrations around 0.5 SD and standardised NEFA and BHB con-
centrations below or equal to those of glucose and IGF-1, or all four
approximately equal and around -0.5 SD. The metabolic cluster was
also considered balanced if all four boxes were inside the ± 0.5 SD area.

2.3. Milk biomarkers

Three different sets of milk biomarkers (MME, FT-MIR spectra and
IgG N-glycans) were considered as predictors. Metabolites and enzymes
consisted of six milk metabolites (glycose-6-phosphate, free glucose,
BHB, isocitrate, urea and uric acid) and two enzymes (NAGase and
LDH). Milk Fourier transform mid-IR spectra were obtained from dif-
ferent instruments and consequently standardised into a common
format. FT-MIR data consisted of absorbance values at 212 wave-
numbers selected from a total of 1060 by removal of areas known to be
non-reproducible between instruments or non-informative due to the
water component in milk (Grelet et al., 2016). Finally, 19 peaks of IgG
N-glycans were manually identified and integrated. Each peak's per-
centage of the total area under the 19 peaks was used as the measure for
the statistical analyses. Further details on the laboratory analysis are
given in De Koster et al. (2019).

2.4. Random forests predictions

Each of the three sets of milk biomarkers were used to predict the
responses (EBAL, PI-index and metabolic clusters) separately for each
parity and period by use of the random forests algorithm (see below),
i.e. in total 54 predictions. In addition, each of the six plasma meta-
bolites and serum IGF-1 were predicted. To make a more fair compar-
ison with IgG N-glycans, we also made a comparison using only data
that were complete across all three sets of milk biomarkers in relation to
the two periods; around DIM 14 and DIM 35. Random forests belongs to
the field of machine learning and is an ensemble of classification or
regression trees (Breiman, 2001) with each tree being a set of decision
rules. A short description of the algorithm is given below, whereas we
refer to Breiman (2001) for a technical presentation and introduction to
random forests. We generally used default settings of the implementa-
tion except that we used 2500 trees (instead of the default 500) to

L. Foldager, et al. Preventive Veterinary Medicine 179 (2020) 105006

3



stabilise estimates of accuracy.

2.5. Random forests algorithm

In summary, for each of a pre-specified number of trees a sample is
drawn from the original data by sampling with replacement (bootstrap
sample). These samples have the same size as the original data but
contain on average approximately two thirds of the individual records,
since some are selected more than once and some not at all. Each
bootstrap sample is used for training an unpruned tree. At each node of
the tree, a set of predictors (default for binary classification: square root
number of predictors) are chosen at random as candidates for splitting
the data present at the current (parent) node into two chunks (child
nodes). The algorithm then selects the candidate (categorical) or
cut–point (continuous) that give the largest reduction of the Gini index
(Breiman et al., 1984), i.e., the most homogeneous child nodes. Each
tree is grown as large as possible. The random selection of candidate
predictors at each node protects from overfitting (Breiman, 2001) and
pruning is not necessary. When the random forest of trees have been
developed, new records are passed through each tree and a majority
voting or averaging predicts their classes or values.

2.6. Statistical analysis

The statistical analyses were carried out using R version 3.6.2 (R
Core Team, 2020). For k-means clustering the kmeans function of R was
used. Random forests modelling was carried out by use of the ran-
domForest package (Liaw and Wiener, 2002). We evaluated perfor-
mance of random forests predictions for metabolic clusters by a leave-
one-cow-out (internal) cross-validation strategy, i.e., in turn preserving
data from one cow as test set and using data from the other cows for
training of a random forests model. By use of the confusionMatrix
function of the caret package (Kuhn, 2008), we calculated global ac-
curacy (proportion of correctly classified samples, i.e., the diagonal of
the 3 by 3 contingency table of predicted versus true cluster also known
as the confusion matrix), sensitivity for each cluster (proportion cor-
rectly predicted to that cluster) and specificity (proportion correctly
predicted not to be in that cluster). In addition, the precision of pre-
dictions for the individual blood biomarkers, EBAL and PI-index was
measured by the coefficient of determination of cross-validation (R2

cv)
and the root mean squared error (RMSEcv).

To explore the ranking of the individual MME biomarkers within
parity and period, the variable importance measure (VIM) was calcu-
lated (Breiman, 2001) and plotted using randomForests. This measure is

based on the internal out-of-bag samples, i.e., the third not picked to be
included in each bootstrap sample, see Breiman (2001).

Characteristics and differences among metabolic clusters in milk
metabolite concentrations, enzyme activities and daily milk yield were
examined separately for parity 2 and 3+ at DIM 14 by ANOVA with F-
tests. Since most health events and imbalances are expected to happen
in the first part of the early lactation period, we only focused on DIM 14
for this part. First parity cows were not given further attention since
none of these were classified to the imbalanced cluster at DIM 14 and
all were in clusters classified as balanced at DIM 35.

3. Results

Summary statistics for production, blood biomarkers and MME can
be found in tables and supplementary tables of Krogh et al. (2019).

3.1. Predictions of EBAL and PI-index by sets of milk biomarkers

The performances (R2
cv and RMSEcv) of predicting measures of EBAL

and PI-index by the three sets of milk biomarkers as determined by
leave-one-cow-out cross-validation are shown in Table 1. The best
precision was obtained when predicting PI-index by MME with an R2

cv of
0.40 (95 % CI: 0.29−0.50) at 14 DIM and 0.34 (0.23−0.44) at 35 DIM.
For FT-MIR, the corresponding R2

cv was 0.26 (0.16−0.36) and 0.19
(0.10−0.30). For EBAL, however, FT-MIR showed a better performance
than MME with an R2

cv of 0.28 (0.24−0.33) vs 0.21 (0.18−0.25). The
RMSEs from MME and FT-MIR predictions were respectively 23.7
(22.6−24.7) and 23.4 (22.1−24.6) for EBAL and between 1.62
(1.44−1.78) and 1.93 (1.60−2.21) for PI-index. Predictions of EBAL
and PI-index by IgG N-glycans had the lowest precisions, with R2

cv

ranging between 0.01 (0.00−0.08) and 0.06 (0.02−0.12) and with
RMSEcv being 26.3 (23.7−28.6) for EBAL and 2.04 (1.75−2.30) for PI-
index.

3.2. Predictions of individual blood biomarkers by sets of milk biomarkers

Predictions of individual blood biomarkers are shown in Table 2.
The best precisions were obtained with MMEs for plasma urea
(R2

cv = 0.62 (95 % CI: 0.53−0.69) for 14 DIM and 0.59 (0.51−0.67) for
35 DIM) and for plasma BHB (R2

cv = 0.46 (0.36−0.56) and 0.40
(0.30−0.50)). Precisions of serum IGF-1 were at the same level as
plasma BHB for DIM 35 (R2

cv = 0.40 (0.30−0.50)) and somewhat lower
for DIM 14 (R2

cv = 0.32 (0.22−0.42)). The precisions by IgG N-glycans
were always the lowest whereas generally, FT-MIR were at the same

Table 1
Precision of random forests predictions of EBAL and PI-index with three sets of milk biomarkers (MME, FT-MIR and IgG N-glycans)a in Holstein dairy cows in six
herds. The performance was measured by R2

cv and RMSEcv. Individual milk biomarkers were standardised using all available data before matching. In addition to sets
of milk biomarkers, parity (1, 2 and 3+) as a factor and DIM (days in milk) as continuous covariate were included as predictors for EBAL, whereas only parity was
added as predictor for PI-index. Number of cows (samples) are after removal of records excluded due to missing values.

Response Period (DIM) Sets of milk biomarkers Ncows (Nsamples) R2
cv (95 % CI) RMSEcv (95 % CI)

EBAL (only using DK, IE and UK herds) 1−50 MME 132 (1608) 0.21 (0.18−0.25) 23.7 (22.6−24.7)
FT-MIR 132 (1230) 0.28 (0.24−0.33) 23.4 (22.1−24.6)
IgG 122 (328) 0.06 (0.02−0.12) 26.3 (23.7−28.6)

PI-index 14 MME 216 0.40 (0.29−0.50) 1.62 (1.44−1.78)
FT-MIR 201 0.26 (0.16−0.36) 1.86 (1.59−2.09
IgG 133 0.01 (0.00−0.08) 2.04 (1.68−2.35)

35 MME 218 0.34 (0.23−0.44) 1.71 (1.48−1.91)
FT-MIR 195 0.19 (0.10−0.30) 1.93 (1.60−2.21)
IgG 134 0.05 (0.00−0.15) 2.04 (1.75−2.30)

a Milk biomarkers were matched with the EBAL closest in sampling date (+/- 3 days). For FT-MIR this matching strategy was also applied to PI-index for the
period noted in the column denoted “Period (DIM)”. If no perfect match (same day) was found, we proceeded as follows: Step 1 day backward first (day before milk
biomarker sampling date), then 2 days forward (i.e. 1 day after the sampling data), then 3 days back (corresponding to 2 days before sampling), then 4 days forward,
5 days backward and 6 days forward. That is, closest match within 7 days (a week) centred in the milk biomarker's sampling date. For IgG N-glycans, the measure
from the period noted was used for these two measurements. Averages of measures of milk metabolites and enzymes within the same week (Monday-Sunday) as
blood sampling were used for PI-index.
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level as MME but in some cases much lower.

3.3. Metabolic cluster changes

The numbers of cows in each of the three metabolic clusters at DIM
14 and DIM 35 are reported in Table 3 with indications of changes
between the two periods. All the 52 primiparous cows were interpreted
balanced at DIM 35. Among the 28 parity 2 cows in the intermediate
cluster at DIM 14, 17 (61 %) did not shift to a cluster deemed to be
more "balanced" at DIM35, staying in an intermediate cluster, while the
rest changed to a balanced cluster (N = 11). Most of the 23 parity 2
cows in the balanced cluster at DIM 14 stayed in a balanced cluster at
DIM 35 (N = 21) with only two cows shifting; one to an imbalanced
and one to an intermediate cluster at DIM 35. For 15 (4 + 11) out of 18
(7 + 11) (83 %) parity 2 and 3+ cows in the imbalanced cluster DIM
14, extra attention may be relevant as they were also in an imbalanced
cluster DIM 35. Concerning parity 3+ cows in the balanced cluster DIM
14, 31 out of 38 (82 %) were still in a balanced cluster at DIM 35 while
the rest changed to an imbalanced cluster. Of the 54 parity 3+ cows in
the intermediate cluster DIM 14, 39 (72 %) changed to a balanced
cluster at DIM 35, while the rest changed to an imbalanced cluster.

Table 2
Precision (R2

cv and RMSEcv) of random forests predictions of plasma metabolites and serum IGF-1 with three sets of milk biomarkers (MME, FT-MIR and IgG N-
glycans) in Holstein dairy cows. Individual milk biomarkers were standardised and the sample matching the blood sample date (+/- 3 days) was used. In addition,
parity (1, 2 and 3+) was included as a predictor. Number of cows are after removal of those excluded due to missing values.

Blood biomarker Period (DIM) Sets of milk biomarkers Ncows R²cv (95 % CI) RMSEcv (95 % CI)

Plasma fructosamine 14 MME 213 0.12 (0.05−0.21) 16.9 (15.1−18.6)
FT-MIR 198 0.11 (0.04−0.20) 17.2 (15.6−18.7)
IgG 131 0.03 (0.00−0.11) 17.6 (15.4−19.5)

35 MME 214 0.18 (0.10−0.28) 16.4 (14.6−18.0)
FT-MIR 191 0.02 (0.00−0.08) 18.5 (16.1−20.6)
IgG 132 0.11 (0.03−0.23) 17.2 (14.8−19.3)

Plasma urea 14 MME 216 0.62 (0.53−0.69) 0.72 (0.63−0.80)
FT-MIR 201 0.06 (0.01−0.13) 1.08 (0.97−1.18)
IgG 133 0.01 (0.00−0.07) 1.07 (0.92−1.20)

35 MME 218 0.59 (0.51−0.67) 0.78 (0.69−0.87)
FT-MIR 195 0.13 (0.05−0.22) 1.13 (1.02−1.23)
IgG 134 0.01 (0.00−0.07) 1.16 (1.00−1.29)

Plasma cholesterol 14 MME 216 0.09 (0.03−0.17) 0.68 (0.62−0.74)
FT-MIR 201 0.01 (0.00−0.06) 0.72 (0.64−0.78)
IgG 133 0.01 (0.00−0.07) 0.72 (0.63−0.79)

35 MME 218 0.12 (0.05−0.20) 0.98 (0.90−1.06)
FT-MIR 195 0.03 (0.00−0.10) 1.02 (0.92−1.12)
IgG 134 0.04 (0.00−0.12) 1.02 (0.91−1.13)

Plasma log10(NEFA) 14 MME 216 0.13 (0.06−0.23) 0.25 (0.22−0.27)
FT-MIR 201 0.10 (0.03−0.19) 0.26 (0.23−0.28)
IgG 133 < 0.01 (0.00−0.01) 0.26 (0.22−0.29)

35 MME 218 0.09 (0.03−0.17) 0.30 (0.27−0.33)
FT-MIR 195 0.03 (0.00−0.09) 0.31 (0.28−0.34)
IgG 134 0.01 (0.00−0.06) 0.32 (0.28−0.36)

Plasma glucose 14 MME 216 0.29 (0.19−0.39) 0.41 (0.36−0.45)
FT-MIR 201 0.23 (0.13−0.33) 0.43 (0.37−0.48)
IgG 133 0.11 (0.03−0.23) 0.49 (0.41−0.56)

35 MME 218 0.32 (0.22−0.43) 0.43 (0.37−0.47)
FT-MIR 195 0.19 (0.10−0.29) 0.48 (0.42−0.53)
IgG 134 0.17 (0.07−0.29) 0.49 (0.42−0.55)

Plasma log10(BHB) 14 MME 216 0.46 (0.36−0.56) 0.16 (0.14−0.18)
FT-MIR 201 0.27 (0.17−0.37) 0.20 (0.16−0.22)
IgG 133 0.04 (0.00−0.12) 0.24 (0.19−0.27)

35 MME 218 0.40 (0.30−0.50) 0.17 (0.14−0.19)
FT-MIR 195 0.25 (0.15−0.36) 0.19 (0.16−0.22)
IgG 134 < 0.01 (0.00−0.02) 0.22 (0.18−0.25)

Serum log10(IGF-1) 14 MME 216 0.32 (0.22−0.42) 0.27 (0.24−0.30)
FT-MIR 204 0.36 (0.26−0.47) 0.26 (0.22−0.30)
IgG 136 0.24 (0.12−0.37) 0.29 (0.26−0.32)

35 MME 216 0.40 (0.30−0.50) 0.21 (0.19−0.23)
FT-MIR 197 0.35 (0.24−0.46) 0.22 (0.20−0.25)
IgG 138 0.14 (0.05−0.26) 0.25 (0.22−0.28)

Table 3
Number of Holstein dairy cows per metabolic cluster (balanced, intermediate,
imbalanced) at DIM 14 and 35. Furthermore, the last column shows which
clusters the DIM 35 cows belonged at DIM 14.

Cluster and parity Number of cows Cluster affiliation at DIM 14 for DIM 35
cows

DIM 14 DIM 35

Parity 1
Balanced 38 52 38 Balanced + 14 Intermediate
Intermediate 14 0
Imbalanced 0 0

Parity 2
Balanced 23 32 21 Balanced + 11 Intermediate
Intermediate 28 21 1 Balanced +17 Intermediate + 3

Imbalanced
Imbalanced 7 5 1 Balanced + 4 Imbalanced

Parity 3+
Balanced 38 70 31 Balanced + 39 Intermediate
Intermediate 54 0
Imbalanced 11 33 7 Balanced +15 Intermediate + 11

Imbalanced
Total 213 213
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3.4. Prediction of metabolic clusters

Accuracies to predict the clusters from sets of milk biomarkers with
random forests models are presented in Table 4 for each combination of
parity (1, 2 and 3+) and period (DIM 14 and 35). As in Grelet et al.

(2019) and De Koster et al. (2019), including milk yield as a factor with
the aim to help distinguishing between classes did not improve the
accuracy (results not shown). Global accuracies from MME and FT-MIR
were at the same level and ranged from 0.54 (95 % CI: 0.39−0.68) to
0.65 (0.55−0.75) for MME and 0.51 (0.37−0.65) to 0.68 (0.53−0.81)

Table 4
Leave-one-cow-out cross-validation of performance for random forests predictions of metabolic clusters by MME, FT-MIR and IgG N-glycans. Clusters based on k-
means clustering (k = 3) of standardised values of plasma glucose, log10(BHB) and log10(NEFA) and serum log10(IGF-1) in Holstein dairy cows.

Period and parity Cluster numbera Metabolic clusterb Sensitivity Specificity Global accuracyc (95 % CI)

MME FT-MIR IgG MME FT-MIR IgG MME FT-MIR IgG

Parity 1
DIM 14 1 Balanced 0.74 0.70 0.38 0.52 0.61 0.48 0.54

(0.39−0.68)
0.51
(0.37−0.65)

0.32
(0.17−0.51)2 Balanced 0.14 0.40 0.10 0.89 0.75 0.79

3 Intermediate 0.60 0.31 0.45 0.84 0.87 0.70
DIM 35 1 Balanced 0.63 0.25 0.00 0.98 0.90 1.00 0.62

(0.47−0.75)
0.68
(0.53−0.81)

0.43
(0.25−0.63)2 Balanced 0.68 0.83 0.69 0.63 0.71 0.21

3 Balanced 0.53 0.69 0.18 0.73 0.87 0.68
Parity 2

DIM 14 1 Imbalanced 0.50 0.00 0.00 0.98 0.98 1.00 0.55
(0.42−0.68)

0.59
(0.45−0.72)

0.46
(0.29−0.63)2 Balanced 0.50 0.70 0.42 0.68 0.65 0.70

3 Intermediate 0.61 0.70 0.61 0.53 0.68 0.29
DIM 35 1 Imbalanced 0.00 0.00 0.00 0.98 0.96 1.00 0.58

(0.44−0.70)
0.55
(0.40−0.69)

0.53
(0.35−0.70)2 Balanced 0.79 0.69 0.71 0.50 0.52 0.53

3 Intermediate 0.36 0.50 0.44 0.70 0.71 0.60
Parity 3+

DIM 14 1 Imbalanced 0.70 0.00 0.00 1.00 0.99 1.00 0.63
(0.53−0.73)

0.66
(0.56−0.76)

0.51
(0.38−0.64)2 Intermediate 0.74 0.76 0.74 0.51 0.63 0.17

3 Balanced 0.46 0.70 0.17 0.78 0.76 0.74
DIM 35 1 Imbalanced 0.71 0.59 0.10 0.87 0.74 0.73 0.65

(0.55−0.75)
0.59
(0.49−0.70)

0.44
(0.31−0.57)2 Balanced 0.71 0.63 0.71 0.68 0.82 0.70

3 Balanced 0.50 0.56 0.45 0.90 0.83 0.73

a The cluster numbers are arbitrary and cannot be compared among period/parity combinations.
b As interpreted from Fig. 1. The metabolic clusters are comparable among period/parity combinations.
c Proportion of correctly classified observations by the prediction, i.e. the diagonal of the confusion matrix.

Table 5
Characteristicsa of milk yield, metabolites and enzymes and comparisons among the three metabolic clusters (balanced, intermediate and physiological imbalanced)
of Holstein dairy cows at DIM 14 in parity 2 and 3+, respectively. Results of ANOVA F-tests for differences among metabolic clusters are indicatedb.

Milk measure and parity Balanced (n = 24)d Intermediate (n = 28) Imbalanced (n = 9)d

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

Parity 2
Glucose-6-P (mM) 0.17 0.22 0.28 0.14 0.18 0.20 0.16 0.18 0.23 *
Free glucose (mM) 0.18 0.25 0.28 0.17 0.22 0.26 0.07 0.12 0.15 **
log10 (BHB)c 1.56 1.63 1.72 1.66 1.76 1.85 1.98 2.06 2.40 ***
Isocitrate (mM) 0.15 0.17 0.19 0.17 0.19 0.20 0.19 0.28 0.29 **
Urea (mM) 2.47 3.15 3.83 2.16 3.18 3.79 2.66 2.82 4.90 ns
Uric acid (μM) 161 176 204 154 164 203 139 173 181 ns
log10 (NAGase)c 0.24 0.35 0.46 0.18 0.26 0.41 0.41 0.42 0.46 ns
log10 (LDH)c 0.37 0.46 0.63 0.42 0.56 0.68 0.46 0.57 0.72 ns
Milk yield (kg/day) 30.5 32.4 36.8 26.3 31.6 35.9 28.2 30.5 34.4 ns

Milk measure and parity Balanced (n = 39)d Intermediate (n = 54) Imbalanced (n = 11)

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

Parity 3+
Glucose-6-P (mM) 0.15 0.19 0.24 0.15 0.17 0.22 0.16 0.18 0.20 ns
Free glucose (mM) 0.17 0.21 0.24 0.13 0.16 0.18 0.09 0.10 0.11 ***
log10 (BHB)c 1.55 1.66 1.74 1.66 1.74 1.92 2.05 2.12 2.23 ***
Isocitrate (mM) 0.14 0.16 0.19 0.15 0.18 0.21 0.22 0.26 0.28 ***
Urea (mM) 2.26 3.12 3.63 1.87 2.76 3.57 2.96 3.17 4.62 ns
Uric acid (μM) 126 166 200 114 155 187 144 174 203 ns
log10 (NAGase)c 0.17 0.27 0.36 0.24 0.35 0.47 0.48 0.55 0.62 **
log10 (LDH)c 0.28 0.41 0.61 0.38 0.48 0.67 0.55 0.64 0.73 ns
Milk yield (kg/day) 34.3 36.4 40.6 32.1 34.6 38.6 29.9 33.0 36.7 ns

a Q1: first quartile, Q2: second quartile (median), Q3: third quartile, M: molar (mol/L).
b ns P ≥ 0.05; * P < 0.05; ** P < 0.01; *** P < 0.001.
c BHB (μM), NAGase (units/L), LDH (units/L).
d The difference in totals compared to Table 3 is due to cows only having measures DIM 14.
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for FT-MIR. Accuracies were lower for IgG N-glycans; ranging from 0.32
(0.17−0.51) to 0.53 (0.35−0.70). The sensitivity for prediction of the
imbalanced cluster was better with MME than with FT-MIR and IgG N-
glycans. Unfortunately, examples of zero sensitivity (none predicted
correctly) were seen, likely due to a relatively low number of cows in
the imbalanced clusters, see Table 3.

Results from predictions using only data that were complete across
all three sets of milk biomarkers in each period are shown in
Supplementary Table S2 and are less stable with confidence intervals
that are bit wider due to the smaller number of observations.
Nevertheless, predictions by IgG N-glycans tend to be less unfavourable
compared with MME and FT-MIR when judged on this reduced data set,
potentially giving a more fair comparison. Global accuracies tended to
be lower with the reduced data set and ranged from 0.39 (95 % CI:
0.22−0.58) to 0.59 (0.45−0.72) for MME, 0.34 (0.19−0.53) to 0.67
(0.46−0.83) for FT-MIR and 0.19 (0.07−0.36) to 0.57 (0.37−0.76) for
IgG N-glycans. Using this reduced data set, we also examined the
pairwise agreement of predictions among the three sets of milk bio-
markers, see Supplementary Table S3. The best agreement with a global
accuracy of 0.76 (95 % CI: 0.62−0.87) was found between MME and
FT-MIR for parity 3+ cows around DIM 14 but it should be noted that
for these, none of the cows in the imbalanced cluster were correctly
determined by FT-MIR. The lowest agreement was seen between FT-
MIR and IgG N-glycans for parity 3+ cows around DIM 35 with a global
accuracy of 0.27 (0.16−0.41). Generally, the agreements were at the
same level among all three sets of milk biomarkers.

To ease comparison with table 6 in Grelet et al. (2019) and Fig. 5 in
De Koster et al. (2019), we calculated the global accuracy for predicting
the imbalanced cluster vs intermediate and balanced combined. For
MME in parity 3+ this accuracy was 0.97 (0.92−0.99) and 0.82
(0.73−0.89) for DIM 14 and 35, respectively. For FT-MIR the corre-
sponding accuracies were 0.89 (0.81−0.95) and 0.69 (0.59−0.78) and
for IgG N-glycans 0.92 (0.82−0.97) and 0.53 (0.40−0.66). These ac-
curacies tend to be higher DIM 14 and at the same level or lower DIM
35 than those found in Grelet et al. (2019) and De Koster et al. (2019).
For parity 2, number of cows in the imbalanced clusters were quite low
(see Table 3) and almost all sensitivity estimates were 0 and specifi-
cities at or close to 1 (see Table 4). Thus, parity 2 accuracies are high
(e.g. 0.93 (0.83−0.98) for MME at 14 DIM) but driven by specificity.

3.5. Differences in milk metabolite contents among metabolic clusters

Considering further the characteristics of parity 2 and 3+ cows at
DIM 14, Table 5 presents quartiles for milk yield, metabolites and en-
zymes for each of the three metabolic clusters. These results indicate
that some of the milk metabolites and enzymes were significantly dif-
ferent between the three metabolic clusters. The concentration of free
glucose was significantly lower in the imbalanced cluster while, gen-
erally, those of BHB and isocitrate were higher. For the parity 2 cows,
glucose-6-phosphate, and free glucose concentrations were higher for
the balanced cluster than for the imbalanced, while for BHB, isocitrate
and NAGase the concentrations or activities were lower or tended
(P = 0.07) to be lower for the balanced compared with the imbalanced
cluster. For parity 3+ cows, glucose-6-phosphate did not differ be-
tween the metabolic clusters but otherwise the results were similar to
those of second parity cows. For parity 3+ cows, the urea concentra-
tion also tended (P = 0.07) to be higher for the imbalanced cluster
compared with the balanced cluster. To explore the ranking of im-
portance within parity and period for the eight milk metabolites and
enzymes in the MME set of milk biomarkers, VIM plots are shown in
Supplementary Figs. S1–S4. BHB is among the most important for both
the 14 and 35 DIM periods whereas isocitrate is important for both
parity in the period around DIM 14 but only for the oldest (3+) cows
around DIM 35. For second lactation cows around DIM 35, free glucose
and LDH were marginally more important than BHB which ranked
third. For the oldest cows (3+) free glucose was more important than

isocitrate around DIM 14 whereas around DIM 35, uric acid and urea
were also important for the prediction of the metabolic clusters.

4. Discussion

The objective was to compare the use of three different sets of milk
biomarkers for identification of cows in physiological imbalance and
thus at risk of developing a metabolic or infectious disease. The ana-
lysed data derived from six different countries with ten different diets,
which should improve the external validity of the results.

IgG N-glycans performed really poorly compared with the other two
sets of milk biomarkers for prediction of individual blood biomarkers,
EBAL, PI-index and metabolic clusters. Since IgG N-glycans in humans
appear to be associated mostly with ageing (Krištić et al., 2014; Yu
et al., 2016) and inflammation (Dall’Olio et al., 2013) it is not sur-
prising that the predictive power of the IgG N-glycans on measures
associated with metabolic health in cattle was less promising. In addi-
tion, the poor predictive power may partly be due to a less dense
sampling of this milk biomarker. Nevertheless, even when accounting
for the difference in sampling density IgG N-glycans had lower pre-
diction accuracies than MME, FT-MIR or both. In addition, the analy-
tical procedure involves multiple steps and is more complex than other
methods. Thus, also in that respect more work is needed to make this
milk biomarker useful in herd health management.

The precision of predictions for the individual blood biomarkers,
EBAL and PI-index was measured by the coefficient of determination of
cross-validation (R2

cv) and by the root mean squared error (RMSEcv).
These two measures of precision were interpreted with the re-
commendations from Alexander et al. (2015) in mind that as a rule of
thumb the R2 should higher than 0.6 and the RMSE within 10 % of the
outcome’s range.

To predict individual blood biomarkers, the best models were ob-
tained by MME with R2

cv of 0.62 (95 % CI: 0.53−0.69) and 0.59
(0.51−0.67) for plasma urea at 14 and 35 DIM, respectively. These
were the only predictions reaching the 0.6 threshold mentioned above.
Moreover, RMSEcv for MME predictions (0.72 (0.63−0.80) and 0.78
(0.69−0.87)) were below 10 % of the plasma urea range at 8.45 mM
(supplementary tables of Krogh et al., 2019). The R2

cv for FT-MIR
models were generally lower than for MME and in some cases much
lower, e.g. 0.06 (0.01−0.13) at DIM 14 and 0.13 (0.05−0.22) at DIM
35 for plasma urea. Correspondingly, the RMSEcv for FT-MIR were
higher, e.g. 1.08 (0.97−1.18) and 1.13 (1.02−1.23) for plasma urea at
14 and 35 DIM. Based on the same data, Grelet et al. (2019) fitted FT-
MIR models to predict blood glucose, IGF-1, NEFA and BHB that per-
formed much better (R2

cv 0.44, 0.61, 0.39 and 0.70) than found in the
present study (R2

cv 0.23, 0.36, 0.1, 0.27 at DIM 14 and 0.19, 0.35, 0.03
and 0.25 at DIM 35). This may be explained by different methodologies
as Grelet et al. (2019) included milk yield and parity in the models and
combined all DIM into one global model, increasing the ranges and thus
the R² (Davies and Fearn, 2006). Further, the distribution of data were
artificially modified in Grelet et al. (2019); a first derivative was ap-
plied to spectra and partial least squares regression was used instead of
random forests. These differences were one of the reasons for redoing
the FT-MIR predictions in the present paper. Comparison of FT-MIR
models from different studies are even more difficult, due to differences
in datasets characteristics and analytical and validation procedures.
However, one of the central problems of predicting blood NEFA, BHB
and glucose is that we want to predict the results of the few deviating
samples with e.g., high BHB. Benedet et al. (2019) predicted blood BHB
from milk FT-MIR. They found a R2

cv of 0.64, which suggests the po-
tential use of FT-MIR. However, when estimating the performance to
detect cows with more than 1.2 mmol/L BHB in blood, they found a
sensitivity of 0.28 and a specificity of 0.98. These results indicate that
the prediction models appear to have a decent performance, but this is a
result of predicting the vast majority of the samples within the normal
range. The estimated sensitivity in the study by Benedet et al. (2019) is
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too low to be useful for management at a cow level. Combined with
results from other studies and the difficulties to interpret the perfor-
mance of the predictive power of FT-MIR, this emphasizes the im-
portance that such predictive models should be assessed based on a
clear well-defined purpose of developing them (Kostoulas et al., 2017).

For EBAL, FT-MIR showed a better performance than MME with an
R2

cv of 0.28 (95 % CI: 0.24−0.33) vs 0.21 (0.18−0.25) whereas the
opposite was the case when predicting PI-index with R2

cv of 0.26
(0.16−0.36) vs 0.40 (0.29−0.50) at 14 DIM and 0.19 (0.10−0.30) vs
0.34 (0.23−0.44) at 35 DIM. Clearly these are below the 0.6 rule of
thumb. The RMSEs from EBAL predictions (between 23.4 (22.1−24.6)
and 26.3 (23.7−28.6)) were lower than 10 % of the absolute range,
whereas for PI-index only RMSEs from MME predictions (1.62
(1.44−1.78) and 1.71 (1.48−1.91)) were around 10 % of the absolute
range. That MME is not able to provide better prediction is somewhat
surprising because it is close to using milk BHB and glucose to predict a
composite measure of blood BHB, NEFA and glucose. However, other
studies have also estimated the correlation between blood and milk
BHB and found correlations of 0.64 (Enjalbert et al., 2001).

Metabolic clusters were created as alternative phenotypes. The
global accuracy of predicting the metabolic clusters varied from 0.54
(0.39−0.68) to 0.65 (0.55−0.75) and 0.51 (0.37−0.65) to 0.68
(0.53−0.81) for MME and FT-MIR predictions, respectively. Thus, the
performance of MME and FT-MIR was at an equal level. It should be
noted that examples of sensitivity of zero and specificity close to one
were seen and may have biased the accuracy upwards. There was no
improvement when daily milk yield was included in the prediction
models, as also concluded by Ingvartsen et al. (2003). It is not milk
yield per se that increases the risk of diseases but rather physiological
imbalance reflecting difficulties for some animals to adapt to the major
physiological changes that occur particularly in the transition cow.
Moreover, this is in accordance with results in Grelet et al. (2019) and
De Koster et al. (2019) though comparison with these two studies is
complicated by differences in examined periods and parities. The pre-
sent study did notice differences in blood biomarker profiles among
parities but more data would be desirable for such differentiation. In
this study, work has focused on the first 7 weeks after calving and does
not apply to cows at later stages. Since no clusters of primiparous cows
were considered imbalanced, it generally seems that first parity cows do
not require extra care and the attention should be on the multiparous
cows, at least in the present study. Parity 2 also had relatively few cows
in the imbalance clusters and sensitivity estimates of zero and specifi-
cities close to one. Thus, neither first nor second parity cows were really
informative for the ability to predict the imbalanced cluster.

The purpose of the presented random forests algorithms were to
identify cows in physiological imbalance at risk of developing sub-
clinical or more severe stages of diseases. Such cows may need extra
attention and potentially altered feeding or other management actions
to prevent the physiological imbalance developing into subclinical or
more severe disease states. Requirements for the accuracy of detection
may be less demanding for this purpose since there is no risk of harm to
the animal or use of medicine. The accuracies mentioned in this paper
are likely too low for diagnosing diseases that require medical treat-
ment with e.g., antibiotics. Generally, the required accuracy depends on
the specific purpose and of e.g., disease prevalence, costs associated
with treatment and possible side-effects. The required accuracy could
be established by methods like decision trees (Rojo-Gimeno et al.,
2018). Possibly, a larger data set for training prediction algorithms
would improve the accuracies and the results presented here may be
used to guide sample size decisions for future studies.

Presently, no sensors are available to measure e.g., free glucose,
isocitrate and glucose-6-phosphate, but since FT-MIR algorithms tended
to give as accurate predictions as MME, FT-MIR may give the same
opportunities to make relevant classification of cows as balanced or in
physiological imbalance (see also Grelet et al., 2019 and De Koster
et al., 2019). Moreover, it would also be interesting to investigate direct

prediction of udder inflammation from FT-MIR as opposed to the use of
e.g., LDH and NAGase enzymes that constitute an alternative for so-
matic cell counts, helping in the detection of subclinical diseases
(Kitchen et al., 1978; Larsen et al., 2010; Hovinen et al., 2016).

4.1. Conclusion

Neither EBAL nor PI-index were sufficiently precise to be used as a
management tool for identification of risk cows. As an alternative, cows
were divided into clusters based on measures of glucose, BHB and NEFA
in plasma and IGF-1 in serum. These can be interpreted into metabolic
clusters and the cluster of imbalanced cows can be predicted equally
well by MME and FT-MIR. Nevertheless, accuracies still need to be
improved and a larger data set for training the prediction algorithms
would probably be needed. Free glucose, isocitrate, glycose-6-phos-
phate, BHB and NAGase measured in milk were significantly different
among the three metabolic clusters (balanced, intermediate and phy-
siological imbalanced). Thus, if MME is the preferred set of milk bio-
markers to predict cows in physiological imbalance and at risk of de-
veloping a production or infectious disease, the above mentioned
metabolites and enzyme should have high priority for inclusion. The
use of IgG N-glycans for prediction still needs development. The pre-
diction algorithms should be validated using an external data
set although this was not possible in the present study.

Author’s contribution

LF, CGa, MAK, MTS and KLI made the first draft of the paper. LF,
CGr, MS, MH and other partners from GC undertook data handling and
data quality control. LF, CGr, MS and MH did the major parts of the
statistical analyses including the conception of the idea of using k-
means clusters to combine selected blood biomarkers with contribution
to the latter from MTS and KLI. LF, CGa, MAK, MTS and KLI colla-
boratively defined the metabolic interpretation of these clusters. MTS,
MAC, KLI and other partners from GC did the conception and designed
the study. TL handled storage of milk and blood samples and did lab
analyses of milk metabolites, milk enzymes and blood metabolites and
assisted during the data quality control of these biomarkers. CGr and
other partners from GC undertook analyses and calibrations of FT-MIR.
EM, ROF, FC, MAC and other partners from GC did lab analyses and
interpretation of IgG N-glycans. All authors critically revised the first
draft and approved the final version of the manuscript.

Funding

This project has received funding from the European Union's
Seventh Framework Programme for research, technological develop-
ment and demonstration under grant agreement no 613689. The views
expressed in this publication are the sole responsibility of the authors
and do not necessarily reflect the views of the European Commission.

Ethics statement

The experiments were carried out in accordance with the standards
recommended by the EU Directive 2010/63/EU for animal experi-
ments.

Software and data repository resources

None of the data were deposited in an official repository.

Declaration of Competing Interest

There is no direct financial interest of the authors and affiliations in
the subject matter discussed in the manuscript. All financial support is

L. Foldager, et al. Preventive Veterinary Medicine 179 (2020) 105006

8



identified in the Funding section.

Acknowledgements

The barn staff is acknowledged for their animal care work, Jens
Clausen and Carsten Berthelsen, Aarhus University, for lab work and
Martin Bjerring, Aarhus University, for data management. Dr L.J.
Spicer, Oklahoma State University, is acknowledged for assistance with
the IGF-1 radioimmunoassay and Dr Parlow, the National Hormone &
Peptide Program (NHPP), for supplying the anti-hIGF-I, NHPP-NIDDK.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the
online version, at doi:https://doi.org/10.1016/j.prevetmed.2020.
105006.

References

Alexander, D.L.J., Tropsha, A., Winkler, D.A., 2015. Beware of R2: simple, unambiguous
assessment of the prediction accuracy of QSAR and QSPR models. J. Chem. Inf.
Model. 55, 1316–1322. https://doi.org/10.1021/acs.jcim.5b00206.

Benedet, A., Franzoi, M., Penasa, M., Pellattiero, E., De Marchi, M., 2019. Prediction of
blood metabolites from milk mid-infrared spectra in early-lactation cows. J. Dairy
Sci. 102, 11298–11307. https://doi.org/10.3168/jds.2019-16937.

Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/
A:1010933404324.

Breiman, L., Friedman, J.M., Olshen, R.A., Stone, C.J., 1984. Classification and Regression
Trees. Chapman &amp; Hall/CRC, Boca Raton, FL, USA.

Dall’Olio, F., Vanhooren, V., Chen, C.C., Slagboom, P.E., Wuhrer, M., Franceschi, C.,
2013. N-glycomic biomarkers of biological aging and longevity: a link with in-
flammaging. Ageing Res. Rev. 12, 685–698. https://doi.org/10.1016/j.arr.2012.02.
002.

Davies, A., Fearn, T., 2006. Back to basics: calibration statistics. Spectrosc. Europe 18,
31–32,. accessed 8 Apr 2020. https://www.spectroscopyeurope.com/system/files/
pdf/TD_18_2.pdf.

De Koster, J., Salavati, M., Grelet, C., Crowe, M., Opsomer, G., Foldager, L., GplusE
Consortium, Hostens, M., 2019. Prediction of metabolic clusters in early lactation
dairy cows using models based on milk biomarkers. J. Dairy Sci. 102, 2631–2644.
https://doi.org/10.3168/jds.2018-15533.

Enjalbert, F., Nicot, M.C., Baourthe, C., Moncoulon, R., 2001. Ketone bodies in milk and
blood of dairy cows: relationship between concentrations and utilization for detection
of subclinical ketosis. J. Dairy Sci. 84, 583–589. https://doi.org/10.3168/jds.S0022-
0302(01)74511-0.

Gengler, N., Soyeurt, H., Dehareng, F., Bastin, C., Colinet, F., Hammami, H., Vanrobays,
M.L., Lainé, A., Vanderick, S., Grelet, C., Vanlierde, A., Froidmont, E., Dardenne, P.,
2016. Capitalizing on fine milk composition for breeding and management of dairy
cows. J. Dairy Sci. 99, 4071–4079. https://doi.org/10.3168/jds.2015-10140.

Grelet, C., Fernández Pierna, J.A., Dardenne, P., Soyeurt, H., Vanlierde, A., Colinet, F.,
Gengler, N., Baeten, V., Dehareng, F., 2016. Development of Fourier transform mid-
infrared calibrations to predict acetone, β-hydroxybutyrate and citrate contents in
bovine milk through a European dairy network. J. Dairy Sci. 99, 4816–4825. https://
doi.org/10.3168/jds.2015-10477.

Grelet, C., Vanlierde, A., Hostens, M., Foldager, L., Salavati, M., Ingvartsen, K.L., Crowe,
M., Sorensen, M.T., Froidmont, E., Ferris, C.P., Marchitelli, C., Becker, F., Larsen, T.,
Carter, F., GplusE Consortium, Dehareng, F., 2019. Potential of milk mid-IR spectra to
predict metabolic status of cows through blood components and an innovative
clustering approach. Animal 13, 649–658. https://doi.org/10.1017/
S1751731118001751.

Hartigan, J.A., Wong, M.A., 1979. A K-means clustering algorithm. J. R. Stat. Soc. Ser. C
Appl. Stat. 28, 100–108. https://www.jstor.org/stable/2346830.

Hovinen, M., Simojoki, H., Poso, R., Suolaniemi, J., Kalmus, P., Suojala, L., Pyorala, S.,
2016. N-acetyl-beta-D-glucosaminidase activity in cow milk as an indicator of mas-
titis. J. Dairy Res. 83, 219–227. https://doi.org/10.1017/S0022029916000224.

Ingvartsen, K.L., 2006. Feeding- and management-related diseases in the transition cow:
physiological adaptations around calving and strategies to reduce feeding-related
diseases. Anim. Feed Sci. Technol. 126, 175–213. https://doi.org/10.1016/j.
anifeedsci.2005.08.003.

Ingvartsen, K.L., Moyes, K.M., 2015. Factors contributing to immunosuppression in the
dairy cow during the periparturient period. Jpn. J. Vet. Res. 63 (Suppl. 1), S15–S24.

https://doi.org/10.14943/jjvr.63.suppl.s15.
Ingvartsen, K.L., Dewhurst, R.J., Friggens, N.C., 2003. On the relationship between lac-

tational performance and health: is it yield or metabolic imbalance that cause pro-
duction diseases in dairy cattle? A position paper. Livest. Prod. Sci. 83, 277–308.
https://doi.org/10.1016/S0301-6226(03)00110-6.

Kitchen, B.J., Middleton, G., Salmon, M., 1978. Bovine milk N-acetyl-b-D-glucosamini-
dase and its significance in the detection of abnormal udder secretions. J. Dairy Res.
45, 15–20. https://doi.org/10.1017/S0022029900016149.

Kostoulas, P., Nielsen, S.S., Branscum, A.J., Johnson, W.O., Dendukuri, N., Dhand, N.K.,
Toft, N., Gardner, I.A., 2017. STARD-BLCM: standards for the reporting of diagnostic
accuracy studies that use bayesian latent class models. Prev. Vet. Med. 138, 37–47.
https://doi.org/10.1016/j.prevetmed.2017.01.006.

Krištić, J., Vučković, F., Menni, C., Klarić, L., Keser, T., Beceheli, I., Pučić-Baković, M.,
Novokmet, M., Mangino, M., Thaqi, K., Rudan, P., Novokmet, N., Sarac, J., Missoni,
S., Kolčić, I., Polašek, O., Rudan, I., Campbell, H., Hayward, C., Aulchenko, Y.,
Valdes, A., Wilson, J.F., Gornik, O., Primorac, D., Zoldoš, V., Spector, T., Lauc, G.,
2014. Glycans are a novel biomarker of chronological and biological ages. J.
Gerontol. A Biol. Sci. Med. Sci. 69, 779–789. https://doi.org/10.1093/gerona/
glt190.

Krogh, M.A., Hostens, M., Salavati, M., Grelet, C., Sorensen, M.T., Wathes, D.C., Ferris,
C.P., Marchitelli, C., Signorelli, F., Napolitano, F., Becker, F., Larsen, T., Matthews, E.,
Carter, F., Vanlierde, A., Opsomer, G., Gengler, N., Dehareng, F., Crowe, M.A.,
Ingvartsen, K.L., Foldager, L., 2019. Between and within-herd variation in blood and
milk biomarkers in Holstein cows in early lactation. Animal 14 (5), 1067–1075.
https://doi.org/10.1017/S1751731119002659. e-pub ahead of print 7 Nov 2019.

Kuhn, M., 2008. Building predictive models in R using the caret package. J. Stat. Softw.
28 (5). https://doi.org/10.18637/jss.v028.i05.

Larsen, T., 2014. Fluorometric determination of free and total isocitrate in bovine milk. J.
Dairy Sci. 97, 7498–7504. https://doi.org/10.3168/jds.2014-8018.

Larsen, T., Moyes, K.M., 2015. Are free glucose and glucose-6-phosphate in milk in-
dicators of specific physiological states in the cow? Animal 9, 86–93. https://doi.org/
10.1017/S1751731114002043.

Larsen, T., Rontved, C.M., Ingvartsen, K.L., Vels, L., Bjerring, M., 2010. Enzyme activity
and acute phase proteins in milk utilized as indicators of acute clinical E. coli LPS-
induced mastitis. Animal 4, 1672–1679. https://doi.org/10.1017/
S1751731110000947.

LeBlanc, S.J., Leslie, K.E., Duffield, T.F., 2005. Metabolic predictors of displaced abo-
masum in dairy cattle. J. Dairy Sci. 88, 159–170. https://doi.org/10.3168/jds.S0022-
0302(05)72674-6.

Liaw, A., Wiener, M., 2002. Classification and regression by randomForest. R News 2,
18–22,. Accessed 8 April 2020. https://www.r-project.org/doc/Rnews/Rnews_2002-
3.pdf.

Lyons, N.A., Cooke, J.S., Wilson, S., van Winden, S.C., Gordon, P.J., Wathes, D.C., 2014.
Relationships between metabolite and IGF1 concentrations with fertility and pro-
duction outcomes following left abomasal displacement. Vet. Rec. 174, 657. https://
doi.org/10.1136/vr.102119.

Moyes, K.M., Bendixen, E., Codrea, M.C., Ingvartsen, K.L., 2013a. Identification of hepatic
biomarkers for physiological imbalance of dairy cows in early and mid lactation using
proteomic technology. J. Dairy Sci. 96, 3599–3610. https://doi.org/10.3168/jds.
2012-5900.

Moyes, K.M., Larsen, T., Ingvartsen, K.L., 2013b. Generation of an index for physiological
imbalance and its use as a predictor of primary disease in dairy cows during early
lactation. J. Dairy Sci. 96, 2161–2170. https://doi.org/10.3168/jds.2012-5646.

Nielsen, N.I., Friggens, N.C., Chagunda, M.G.G., Ingvartsen, K.L., 2005. Predicting risk of
ketosis in dairy cows using in-line measurements of beta-hydroxybutyrate: a biolo-
gical model. J. Dairy Sci. 88, 2441–2453. https://doi.org/10.3168/jds.S0022-
0302(05)72922-2.

Piechotta, M., Sander, A.K., Kastelic, J.P., Wilde, R., Heppelmann, M., Rudolphi, B.,
Schuberth, H.J., Bollwein, H., Kaske, M., 2012. Short communication: prepartum
plasma insulin-like growth factor-I concentrations based on day of insemination are
lower in cows developing postpartum diseases. J. Dairy Sci. 95, 1367–1370. https://
doi.org/10.3168/jds.2011-4622.

R Core Team, 2020. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria Accessed 8 April 2020.
https://www.R-project.org.

Rojo-Gimeno, C., Fievez, V., Wauters, E., 2018. The economic value of information
provided by milk biomarkers under different scenarios: case-study of an ex-ante
analysis of fat-to-protein ratio and fatty acid profile to detect subacute ruminal
acidosis in dairy cows. Livest. Sci. 211, 30–41. https://doi.org/10.1016/j.livsci.2018.
02.001.

Yu, X., Wang, Y., Kristic, J., Dong, J., Chu, X., Ge, S., Wang, H., Fang, H., Gao, Q., Liu, D.,
Zhao, Z., Peng, H., Pucic Bakovic, M., Wu, L., Song, M., Rudan, I., Campbell, H., Lauc,
G., Wang, W., 2016. Profiling IgG N-glycans as potential biomarker of chronological
and biological ages: a community-based study in a Han Chinese population. Medicine
(Baltimore). 95, e4112. https://doi.org/10.1097/MD.0000000000004112.

L. Foldager, et al. Preventive Veterinary Medicine 179 (2020) 105006

9

https://doi.org/10.1016/j.prevetmed.2020.105006
https://doi.org/10.1016/j.prevetmed.2020.105006
https://doi.org/10.1021/acs.jcim.5b00206
https://doi.org/10.3168/jds.2019-16937
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
http://refhub.elsevier.com/S0167-5877(19)30743-3/sbref0020
http://refhub.elsevier.com/S0167-5877(19)30743-3/sbref0020
https://doi.org/10.1016/j.arr.2012.02.002
https://doi.org/10.1016/j.arr.2012.02.002
https://www.spectroscopyeurope.com/system/files/pdf/TD_18_2.pdf
https://www.spectroscopyeurope.com/system/files/pdf/TD_18_2.pdf
https://doi.org/10.3168/jds.2018-15533
https://doi.org/10.3168/jds.S0022-0302(01)74511-0
https://doi.org/10.3168/jds.S0022-0302(01)74511-0
https://doi.org/10.3168/jds.2015-10140
https://doi.org/10.3168/jds.2015-10477
https://doi.org/10.3168/jds.2015-10477
https://doi.org/10.1017/S1751731118001751
https://doi.org/10.1017/S1751731118001751
https://www.jstor.org/stable/2346830
https://doi.org/10.1017/S0022029916000224
https://doi.org/10.1016/j.anifeedsci.2005.08.003
https://doi.org/10.1016/j.anifeedsci.2005.08.003
https://doi.org/10.14943/jjvr.63.suppl.s15
https://doi.org/10.1016/S0301-6226(03)00110-6
https://doi.org/10.1017/S0022029900016149
https://doi.org/10.1016/j.prevetmed.2017.01.006
https://doi.org/10.1093/gerona/glt190
https://doi.org/10.1093/gerona/glt190
https://doi.org/10.1017/S1751731119002659
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.3168/jds.2014-8018
https://doi.org/10.1017/S1751731114002043
https://doi.org/10.1017/S1751731114002043
https://doi.org/10.1017/S1751731110000947
https://doi.org/10.1017/S1751731110000947
https://doi.org/10.3168/jds.S0022-0302(05)72674-6
https://doi.org/10.3168/jds.S0022-0302(05)72674-6
https://www.r-project.org/doc/Rnews/Rnews_2002-3.pdf
https://www.r-project.org/doc/Rnews/Rnews_2002-3.pdf
https://doi.org/10.1136/vr.102119
https://doi.org/10.1136/vr.102119
https://doi.org/10.3168/jds.2012-5900
https://doi.org/10.3168/jds.2012-5900
https://doi.org/10.3168/jds.2012-5646
https://doi.org/10.3168/jds.S0022-0302(05)72922-2
https://doi.org/10.3168/jds.S0022-0302(05)72922-2
https://doi.org/10.3168/jds.2011-4622
https://doi.org/10.3168/jds.2011-4622
https://www.R-project.org
https://doi.org/10.1016/j.livsci.2018.02.001
https://doi.org/10.1016/j.livsci.2018.02.001
https://doi.org/10.1097/MD.0000000000004112

	Predicting physiological imbalance in Holstein dairy cows by three different sets of milk biomarkers
	Introduction
	Material and methods
	Derived measures
	Metabolic clusters
	Milk biomarkers
	Random forests predictions
	Random forests algorithm
	Statistical analysis

	Results
	Predictions of EBAL and PI-index by sets of milk biomarkers
	Predictions of individual blood biomarkers by sets of milk biomarkers
	Metabolic cluster changes
	Prediction of metabolic clusters
	Differences in milk metabolite contents among metabolic clusters

	Discussion
	Conclusion

	Author’s contribution
	Funding
	Ethics statement
	Software and data repository resources
	Declaration of Competing Interest
	Acknowledgements
	Supplementary data
	References




