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Abstract

Antibiotic resistance is regarded as one of the most serious threats to human health worldwide. The rapid increase in resist-
ance rates has been attributed to the extensive use of antibiotics since they became commercially available. The use of anti-
biotics as growth promotors has been banned in numerous regions for this reason. Mannan- rich fraction (MRF) has been 
reported to show similar growth- promoting effects to antibiotics. We investigated the effect of MRF on the microbial commu-
nity, resistome and metabolic pathways within the caecum of commercial broilers at two different timepoints within the growth 
of the broiler, day 27 and day 34. The data indicated an overall increase in health and economic gain for the producer with the 
addition of MRF to the diet of the broilers. The only significant difference across the microbial composition of the samples was 
in the richness of the microbial communities across all samples. While all samples harboured resistance genes conferring 
resistance to the same classes of antibiotics, there was significant variation in the antimicrobial resistance gene richness 
across time and treatment and across combinations of time and treatment. The taxa with positive correlation comprised Bacilli 
and Clostridia. The negative correlation taxa were also dominated by Bacilli, specifically the Streptococcus genera. The KEGG- 
pathway analysis identified an age- related change in the metabolism pathway abundances of the caecal microflora. We suggest 
that the MRF- related increases in health and weight gain in the broilers may be associated with changes in the metabolism of 
the microbiomes rather than the microbial composition. The resistome variations across samples were correlated with specific 
genera. These data may be used to further enhance the development of feed supplements to reduce the presence of antibiotic 
resistance genes (ARGs) within poultry. While the ARGs of greatest concern to human or animal health were not detected in this 
study, it has identified the potential to reduce the presence of ARGs by the increase in specific genera.

DATA SUMMARY
The metagenome sequences have been deposited in the 
European Nucleotide Archive (ENA) under primary acces-
sion PRJEB29033 and secondary accession ERP111299. The 
corresponding analysed data is available in MGnify under the 
project codes MGYS00003447 and ERP111299.

INTRODUCTION
Over 1000 different species of bacteria inhabit the gastroin-
testinal tracts of poultry and livestock. These bacteria enter 
the human food chain through the consumption of meat 
products, which are regarded as a major source of protein 

for humans [1]. Poultry is the fastest growing agricultural 
sub- sector, with continued growth expected as the global 
population increases [2]. This places enormous pressure on 
poultry producers, with production often being large- scale 
and highly intensive. Within such systems, large densities 
of birds are housed in close proximity to each other [3], 
and are in constant contact with effluent and secretions 
from other birds [4]. This creates an ideal environment for 
bacteria (commensal or pathogenic) to spread throughout the 
flock. For example, bird- to- bird transmission of the enteric 
pathogen Campylobacter occurs rapidly within a flock, with 
almost the entire flock becoming colonized within a few days 
of when the first bird was colonized [5]. In the same manner, 
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antibiotic resistant bacteria (ARB) and antibiotic resistance 
genes (ARGs) are also disseminated throughout poultry 
flocks.

The threat of antibiotic resistance to global health is ever- 
increasing. The continued overuse and misuse of antibiotics 
in both humans and animals has drastically accelerated the 
development and spread of antibiotic resistance [6]. The link 
between the use of antibiotics in agriculture, whether for 
treatment or prevention of disease, or to promote the growth 
of animals, to increased resistance rates has been well docu-
mented [7–9]. Antibiotic use creates a selective pressure that 
allows for the proliferation of ARB [10]. The gut microbiome 
of food- producing animals is a known reservoir of ARGs, 
with bacteria having the ability to harbour these genes even 
in the absence of selective pressure from antibiotic use [11]. 
These ARGs can transfer to human and animal pathogens 
[12]. The caecum is the most densely populated region of 
the chicken gastrointestinal tract, and is known to harbour 
an assortment of micro- organisms, which are involved in 
vital processes such as the recycling of nitrogen, digestion of 
resistant carbohydrates, absorption of additional nutrients, 
prevention of colonisation with pathogens and detoxification 
of harmful substances [13]. However, it can also harbour 
pathogens such as Salmonella enterica and Campylobacter 
jejuni, which cause disease in humans.

Prebiotics are described as nondigestible feed additives that 
benefit the host by selectively stimulating the growth or meta-
bolic activity of a small number of intestinal micro- organisms 
[14]. Supplementation of the diet of broilers with the prebi-
otic mannan oligosaccharide (MOS) has been reported to 
improve bird weight and feed efficiency [15]. However, how 
the supplementation of the broiler diet with prebiotics influ-
ences the resistome and microbiome is not fully elucidated. 
Our study aimed to investigate the effect of mannan- rich frac-
tion (MRF) supplementation in the diet of commercial broiler 
chickens on the microbiome and resistome at two different 
timepoints within the growth of the broiler. A metagenomics- 
based approach was employed to examine any MRF- induced 
changes in the structure and diversity of the microbial 
community and the resistome within the broiler caecum. 
We also aimed to identify metabolic pathway changes and 
changes in correlation of the microbiome and resistome data 
across time and treatment.

METHODS
Broiler caecal sample collection
The broiler samples were collected from a commercial produc-
tion site in the EU. All animals were taken from a commercial 
hatchery and transported to the commercial sheds on the day 
of hatching. Approximately 10000 birds were mirror imaged 
from the hatchery into the production sheds, where they 
received either a control standard commercial corn- soy diet or 
a standard diet plus MRF (Alltech Biotechnology, Dunboyne, 
Ireland) at the manufacturer’s recommended inclusion rates 
(800 grams per ton (g/t-1)[starter ration], 400 g/t-1 [grower 
ration] and 200 g/t-1 [finisher ration]). The birds were raised 

and fed under typical commercial production conditions, 
receiving feed and water ad libitum. All other conditions were 
kept uniform for all sheds. At days 27 and 34 post- hatch, the 
intact caecal pouches of four randomly caught birds per treat-
ment group were removed immediately after euthanization. 
Animals were euthanized in accordance with humane killing 
protocols as set forth in European Union Council Regula-
tion (EC) 1099/2009. Samples were lyophilized and stored 
at −80 °C before analysis. Samples 1–4=day 34 MRF treated, 
5–8=day 34 control, 9–12=day 27 MRF treated, 13–16=day 
27 control (Table S1, available in the online version of this 
article). Control samples lacked MRF in their diets.

Microbiota maturation in chickens occurs between days 15 
and 22 and has been found to remain in a stable status there-
after [16]. Thus, the first timepoint of 27 days was chosen to 
ensure that background variability effects due to the lack of 
microbiota maturation would not confound the data analysis. 
Broilers are usually slaughtered between day 35 and 49 for 
meat production. The broilers at day 34 represented the last 
day before slaughter and as such the final day connecting the 
broiler feed to the broiler and then meat. This is an important 
day as it is the closest link between broiler and human for 
potential transmission of antibiotic resistance.

Analysis of broiler growth indices
Average live weight (kg) was calculated by measuring bird 
weights on arrival to the slaughter house and dividing by the 
total number of birds on arrival. Bird mortality was recorded 
daily on farm and reported at the end of crop as a percentage 
of total birds placed in the shed. Feed intake was calculated 

Impact Statement

Advances in molecular technologies has allowed for more 
sensitive detection of the components of the metagen-
omes from numerous environments. We examined the 
metagenomes of 16 broiler chickens from a commer-
cial production facility at two different time points. Half 
of the broilers received a mannan- rich fraction (MRF) 
supplementation in their diets. We noted that variabilities 
were found within the ceacal microbiome communities 
between birds, even within the same group living in iden-
tical conditions. A large number of antibiotic resistance 
genes (ARGs) were identified (n=171) across all samples, 
displaying the presence of ARGs even in the absence of 
selective pressures from antibiotics. There was signifi-
cant variation in the antimicrobial resistance gene rich-
ness across time and treatment and across combina-
tions of time and treatment. The negative correlation 
between specific taxa and ARGs may be useful to develop 
a strategy of enhancing these bacteria within the micro-
biome to reduce ARGs. The presence of high numbers of 
ARGs in food- producing animals could adversely affect 
both animal and human health.
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as the amount of feed consumed during each growing phase 
(starter, grower and finisher). Feed conversion ratio (FCR) 
and European production efficiency factor (EPEF) were 
calculated at the end of flock based on the average liveweight, 
total mortality and amount of feed consumed. Feed conver-
sion ratio (FCR) was calculated as follows: FCR (kg feed/
kg gain)=cumulative feed intake (kg)/total weight gain (kg). 
European production efficiency factor (EPEF) was calculated 
based on the following formula, where viability (%) is=100 - 
mortality (%)

 EPEF = viability (%)×body weight (kg)
Age(d)×FCR × 100  

A lower FCR indicates that the broiler needs less feed to gain 
the same weight. A higher EPEF indicates overall better health 
and more uniform weight gain.

Total DNA extraction and Illumina sequencing
Total DNA was extracted from 0.05 g of each caecal sample 
(n=16, labelled 1–16 as described for the samples) using the 
Qiagen DNeasy PowerSoil kit (Hilden, Germany) according 
to the manufacturer’s guidelines. The concentration and 
purity of the extracted DNA was measured using an Invit-
rogen Qubit Fluorometer (dsDNA high- sensitivity assay kit) 
(Waltham, MA) and a DeNovix DS-11 spectrophotometer. 
The sequencing was performed at the Centre for Genomics 
Research, University of Liverpool. Illumina unamplified 
fragment libraries were prepared using the TruSeq PCR- free 
kit (350 bp inserts). The samples were paired end sequenced 
(2×150 bp) using an Illumina HiSeq 4000. Between 60 and 
80 million raw reads were obtained per sample. The raw 
Fastq files were trimmed for the presence of Illumina adapter 

sequences using Cutadapt version 1.2.1. The 3′ end of any 
reads, which matched the adapter sequence for 3 bp or more, 
were trimmed. Sickle version 1.200 was used to further trim 
reads, with a minimum window quality score of 20. Reads 
that were shorter than 20 bp after trimming were removed.

Bioinformatic analysis
The total reads per sample analysed after quality control and 
trimming ranged from 57 465 201 reads to 82 809 780 reads. 
The trimmed reads were uploaded to the European Nucleo-
tide Archive (ENA). Metagenome assembly were performed 
using Megahit (v1.2.6, parameters: -continuous –kmin- 
1pass –k- min 27 –k- max 87 –min- contig- len 500) [17]. The 
metagenomic classsifer Kaiju was used for taxonomic profiling 
in the community (v1.7.4, -a greedy -e 5 m 11 s 75 x, NCBI 
RefSeq database) [18]. The genomic annotation of assembled 
contigs was performed using Prokka (v1.14.6) with default 
settings [19]. The protein sequences predicted by Prokka were 
subjected to the functional annotation using ghostkoala 
[20]. Antimicrobial resistance annotation was performed 
using DeepARG [21]. The machine- learning solution, which 
utilizes card, ardb and uniprot databases first removes 
low- quality reads using trimmomatic, then merges reads 
into one file (VSEARCH) and submits them for classification 
to the DeepARG algorithm22. The relative abundance of ARGs 
was normalised to the 16S rRNA content of each sample. The 
ARGs were assigned using the following parameters: identity: 
80 %, e- value: 1e-10, coverage: 50 % and probability: 0.8. The 
resulting data were visualized and analysed using Calypso 
(http:// cgenome. net/ calypso/) [22]. Spearman’s correlation 
analysis using the SciPy package was employed to assess the 

Table 1. Comparison of the growth indices of the broilers with and without MRF in their diets

Mortality (%) Average live wt (kg) Feed conversion ratio European production efficiency factor

Control 3.71 2.09 1.65 341.54

MRF 3.44 2.44 1.57 373.54

Fig. 1. Rarefaction analysis at all taxonomic ranks demonstrating a sufficient sequencing depth for each sample.

http://cgenome.net/calypso/
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relationship between antibiotic resistance genes and bacte-
rial taxa [23]. The network correlating antibiotic resistance 
genes with bacterial taxa was constructed using Cytoscape 
(v3.8.2) [24]. The KEGG Orthology (KO) tables were mapped 
to KEGG pathways by MinPath (v1.5) [25].

Statistical analysis
The data were normalized for statistical analysis and rare 
taxa, with less than 0.001 % relative abundance were removed. 
Samples were compared based on treatment group (control vs 
MRF) and time- point (day 27 vs day 34). Rarefaction analyses 
and principal component analysis (PCA) of the microbiome 
were performed. The microbial community composition was 
quantitatively visualized by bar charts. ANOVA was used to 
compare the relative abundances of taxa between treatment 
groups. Bacterial alpha diversity was estimated using the 
Shannon index and richness estimated using Chao1.

Antibiotic resistance genes were assigned to the core resistome 
if they were present in all samples. Antibiotic resistance 
genes detected in at least one sample but less than the total 
number of samples was assigned to the accessory resistome. 
The statistical analysis and correlation analysis of the ARGs 
was performed using the PAleontological STatistics (past) 
version 3.2 [26]. Samples were compared using ANOVA 
Mann–Whitney pairwise tests with Bonferroni correction 
for multiple comparisons [27]. PCA were performed in past 
using default settings. The sequences are deposited in the 
European Nucleotide Archive (ENA) under primary acces-
sion PRJEB29033 and secondary accession ERP111299.

Fig. 2. Microbial community composition displaying the top 20 most abundant taxa across all samples. (a) is displayed at phylum 
taxonomic level. (b) is displayed at genera taxonomic level.

Fig. 3. PCA of the microbial taxa across each sample. Each sample is 
grouped according to time and treatment.
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To analyse the correlations between antibiotic resistance 
genes and bacterial taxa, Spearman’s rank correlation coef-
ficients were calculated. A correlation was considered strong 
when absolute value of Spearman’s r >0.7 and when P<0.05.

RESULTS & DISCUSSION
Broiler growth characteristics
The growth indices of the broilers fed with the addition of 
MRF were compared with those of the broilers lacking the 
MRF addition (Table 1). The lower FCR of the broilers with 
MRF in their diets indicated that the broilers needed less feed 
to gain the same weight, which is a more efficient use of feed. 
The higher EPEF indicated overall better health and more 
uniform weight gain in the broilers with MRF in their diets in 
comparison with the control broilers. These data indicated an 
overall increase in health and economic gain for the producer 
with the addition of MRF to the diet of the broilers.

Microbial community composition
Rarefaction analysis showed a sufficient sequencing depth 
was achieved (Fig. 1). The microbiome was dominated by 
Firmicutes across all samples, with an average of 39.34 % of 
all classified reads from day 27 control, 34.24 % for day 27 
MRF, 59.38 % from day 34 control and 63.93 % from day 
34 MRF (Fig. 2a, Tables S2 and S3). This was followed by 
Proteobacteria, with an average of 2.05 % of all classified reads 
from day 27 control, 2.22 % for day 27 MRF, 4.19 % from day 
34 control and an average of 3.96 % from the day 34 MRF 
group. We then identified a number of unclassified reads in 
all samples with an average of 40.8 % of all classified reads. 
Previous studies have also found unclassified reads within 
their samples26. The relative abundances were then followed 
by Actinobacteria and Bacteroidetes. Variation within sample 
groups was noted across Firmicutes and Proteobacteria. These 
findings are in keeping with other studies investigating the 

Fig. 4. Statistical analysis of taxon microbial alpha diversity using Shannon- index analysis. (a) describes the alpha diversity comparison 
of the samples across time. (b) describes the alpha diversity of the microbial taxa within the groups of samples based on time and 
treatment. The P value demonstrates statistically significant difference across the samples where P<0.05. The black line denotes the 
median value in each dataset.

Fig. 5. The microbial community richness was assessed using Chao1. (a) describes the comparative community richness of the samples 
across time. (b) describes the comparative community richness of the samples based on time and treatment. The P value demonstrates 
statistically significant difference across the samples where P<0.05. The black line denotes the median value in each dataset.
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broiler microbiome [7, 28]. Variation within samples has also 
been observed previously, and has been attributed to factors 
such as farm workers, housing conditions, biosecurity level, 
litter and feed access [29]. An average of 45.45 % of all reads 
in all samples were unclassified at genera level (Fig.  2b). 
Lachnoclostridium was the next most dominant, followed by 
Blautia, Clostridium and Lactobacillus. The large components 
of unclassified bacteria at each level of analysis of microbiome 
composition indicates that most of the broiler caecal micro-
biome is unclassified and requires targeted efforts to identify 
these bacteria.

A previous study into the effect of mannan oligosaccharide 
on the broiler microbiome found a shift from Firmicutes to 
Bacteroides at phylum level [30]. We did not observe this 
same change in microbiota, with ours remaining dominated 
by Firmicutes at phylum level. The authors also noted a 
change to a Bacteroidia dominant microbiota at class level 
from Clostridia. We saw a slightly higher relative abundance 
of Bacteroidia in the MRF group but this was not found to be 
significant. Mannan oligosaccharide has been described to 
increase the abundance of Lactobacillus spp. in the caecum 
[31]. However, Lactobacillus genus was already dominant 

Fig. 6. The evenness of the microbial community is compared between the treated and control samples (a) or across the four sample 
types (b). The P value demonstrates statistically significant difference across the samples where P<0.05.

Fig. 7. Antimicrobial resistance gene relative abundances per sample as normalised using 16S rRNA gene abundances per sample 
grouped according to resistance to class of antimicrobial across all samples.
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within the classified taxa of all samples, and we did not observe 
notable changes between the control group and the group that 
received MRF. Studies have shown that pathogenic bacteria 
that possess mannose- specific fimbriae can bind to mannose, 
which reduces the risk of pathogens including Salmonella and 
Escherichia coli in the gastrointestinal tract [32].

PCA was used to plot the relative abundance of taxa (Fig. 3). 
The observed patterns between D27 and D34 MRF groups 
and one of the D34 control group samples were similar. The 
D27 control taxa displayed no overlap with the MRF- treated 
samples. The distances between individual samples of the 
same group, i.e. D24 control, D34 control and D34 treated 
were further apart than the distances between samples across 

the groups. The exception was D27 MRF treated, which clus-
tered closer together. The variation across samples within a 
group were as influential on the distribution as the treatments 
or time. Thus no significant variations were attributed to 
treatment or time.

Alpha diversity
The Shannon index was used to assess the microbial alpha 
diversity (Fig. 4). No significant differences were observed 
between the control and MRF- treated birds (P=0.29) (Fig. 4a) 
or across the four sample types (P=0.71) (Fig.  4b). The 
microbial community richness was assessed using Chao1. No 
significant differences were observed between the control and 

Fig. 8. Antimicrobial resistance gene richness was assessed using Chao1. (a) describes the antimicrobial resistance gene richness 
comparison of the samples across time. (b) describes the antimicrobial resistance gene richness within the groups of samples based 
on time and treatment.

Fig. 9. PCA of samples based on the relative abundance of antimicrobial resistance genes present in the core resistome (a) and accessory 
resistome (b). Purple: day 34 MRF, blue: day 34 control, pink: day 27 MRF, green: day 27 control.
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MRF- treated birds (P=0.12) (Fig. 5a). Significant difference 
(P=0.00029) was seen across the four sample types (Fig. 5b), 
indicating a lower number and therefore less rich community 
in the control D27 than D27 treated or D34 control and a 
wider distribution of community richness across the D34- 
treated samples. No significant differences were observed in 
the evenness of the microbial community between the treated 
and control samples or across the four sample types (Fig. 6). 
Thus, the only significant difference across the samples was in 
the richness of the microbial communities across the samples.

Resistome analysis

A total of 171 ARGs were identified across all samples. 
The samples were from healthy broiler chickens that had 
not been administered antibiotics. The trends of resistance 
across all samples were investigated by summing the relative 
abundance of ARGs per sample by antibiotic class (Fig. 7). 
All samples harboured resistance genes conferring resist-
ance to the same classes of antibiotics. The greatest propor-
tions of ARGs present in all samples included tetracycline, 

Fig. 10. Network analysis of the correlation between antimicrobial resistance genes and taxa. The figure displays the strong and 
significant correlation between antimicrobial resistance genes and specific bacterial taxa.
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aminoglycoside, multidrug, glycopeptide and macrolide- 
lincosamide- streptogramin B (MLSB), nucleoside and 
peptide resistance genes. Resistance to the remaining classes 
of antibiotics was relatively low. It must also be noted that the 
numbers of different ARGs that confer resistance to the tetra-
cycline and aminoglycoside classes are much larger than some 
other classes, for example, ARGs conferring fluoroquinolone 
resistance. This will always increase the prevalence of those 
resistance genes relative to others. However, there is a wide 
variety of beta- lactam resistance genes detected in bacteria 
but in our samples they are present in very low proportions, 
indicating that they are not ARGs of concern in these samples.

From the total resistomes, 69 ARGs were assigned to the core 
resistome as they were present in all 16 samples (Table S4). 
The remaining ARGs that were present in at least one but 
not all samples were assigned to the accessory resistome, 
totalling 102 ARGs. The core resistome included a large 
number of efflux pumps (n=21), as well as porins (n=3), 
tetracycline (n=9), glycopeptide (n=10), beta- lactam (n=2), 
aminoglycoside (n=5), peptide (n=4), MLSB (n=1), lincosa-
mide (n=2), streptogramin (n=1), macrolide (n=1), unclas-
sified (n=6), nucleoside (n=2), fluoroquinolone (n=1) and 
diaminopyrimidine (n=1) ARGs (Table S5). The distribution 
of genes was reasonably consistent across all samples within 

Fig. 11. KEGG- pathway analysis across all samples. (a) Distribution of the core and shared pathways across all sample types. (b) 
Statistical analysis of the richness of the diversity of pathways in the samples using Shannon index. (c) The evenness of the relative 
diversities across the KEGG pathways in the samples. The P value demonstrates statistically significant difference across the samples 
where P<0.05.
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the core resistome. The tetW (tetracycline resistance), lnuC 
(lincosamide resistance) and aadE (aminoglycoside resist-
ance) genes were the most abundant. A review of the faecal 
resistome of pigs and broilers from nine European countries 
also found less consistency and far more variability in the 
relative proportions of resistance in the broiler samples in 
comparison to pigs [33]. The reasons for these levels of vari-
ability is yet to be determined. However, in this study the 
housing conditions, feed and locations of the birds within 
the groups were identical and cannot explain the variability. 
This is an important gap in our knowledge as certain birds 
within a flock may pose more of a risk to the spread of ARGs 
than others.

The accessory resistome was comprised of 102 ARGs. The 
ermF gene and rpoB2 were the most abundant accessory 
genes, which confer resistance to MLSB antibiotics and 
rifamycin, respectively. The following genes have been 
reported as co- located on the same plasmids or within the 
same mobile elements on plasmids isolated from food borne 
pathogens, such as Salmonella species and Escherichia coli: 
aph(3′)- I, dfrA17, aac(3)- II, tetR, dfrA12 and aac(3)- IV 
[34, 35]. However, our study did not detect significant levels 
of Salmonella species or E. coli in the birds. These genes were 
in the accessory resistome and as such most likely to not be 
present on the natural microbiome chromosomes. These data 
suggest that there may be a non- pathogenic reservoir of the 
ARGs commonly identified in food- borne pathogens present 
in the gut microbiome.

Antimicrobial resistance gene richness (total number of 
detected ARGs in each sample group) were compared across 
time and each sample type (Fig. 8). Statistically significant 
differences were identified between day 27 and day 34 samples 
(P=0.04) (Fig. 8a) and between the four sample types across 
treatment and control (P=0.015). These data analysis identi-
fies the significant variation in the resistome across time and 
treatment and across combinations of time and treatment.

PCA was performed on the core (Fig.  9a) and accessory 
(Fig. 9b) resistomes. An overlap in the core resistomes of all 
sampled groups was observed. The core resistomes of samples 
from the day 27 MRF group had a large intra- cluster distance 
along the PC1 axis, while the core resistomes of the 27 control, 
34 control and 34 MRF had a greater intra- cluster distance 
along the PC2 axis. The core resistomes of samples from day 
34 clustered together. Those from the day 27 groups had a 
defined inter- cluster distance, indicating the differences in 
the abundance of core ARGs between the MRF and control 
groups. This was also observed within the accessory resistome, 
where the day 27 groups also had a large inter- cluster distance, 
with a clear separation between the control and MRF groups. 
The day 34 MRF group (purple) had a larger intra- cluster 
distance along the PC1 axis but still clustered with the day 34 
control samples (blue). It appears that MRF had an effect on 
ARG abundances at day 27. We conclude from the resistome 
analysis that MRF appears to enable a stabilization of core 
resistomes where they are highly variable but will not inhibit 
the stability of the resistomes where they are already stable.

Correlation analysis
In total 36 different taxa significantly correlated with ARGs 
(Tables S6 and S7). Overall 30 different taxa had significant 
positive correlations with ARGs and six had significant nega-
tive correlations with ARGs. Two different taxa had significant 
positive correlations with both bacitracin and peptide ARGs 
and one with beta- lactams, multidrug resistance and peptide 
ARGs. One taxon had significant negative correlations with 
aminoglycoside, bacitracin and MLSB ARGs. Among the 
significant correlations, 13 taxa had positive, two taxa had 
negative correlations with peptide resistance genes, five taxa 
had positive and one taxon had negative correlations to baci-
tracin resistance genes. Other significant positive correlations 
included beta- lactam, fluoroquinolone, multidrug resistance, 
nucleoside and tetracycline and significant negative correla-
tions glycopeptide, MLSB, aminoglycoside and tetracycline 
ARGs. The taxa displaying correlation were predominantly 
within Firmicutes. Those with positive correlation varied 
predominantly across Bacilli and Clostridia. The negative 
correlation taxa were also dominated by Bacilli. The genus 
Streptococcus was negatively correlated with tetracycline, 
aminoglycoside, bacitracin, MLSB and glycopeptide ARGs. 
While previous studies have analysed the correlation between 
ARG diversity and bacterial diversity or co- occurrence of 
ARGs across samples of poultry or migratory birds, they have 
not included a co- occurrence analysis of the microbial taxa 
and the ARGs [36, 37].

A network was created based on strong and significant 
correlations between bacterial taxa and ARGs. The network 
contained 46 nodes, 42 edges and formed eight clusters 
(Fig. 10). The arrows denote the dependency direction in 
the network. As presented in the network (Fig. 10), peptide 
resistance genes had the most edges with bacterial taxa, 
followed by bacitracin and tetracycline. Taxa 5796 and 6468 
were significant correlated with three groups of ARGs. The 
network also showed that the hubs of most of the clusters 

Fig. 12. PCA of samples based on the relative abundance of present in 
the KEGG pathways.
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were ARGs, which indicated the important roles of ARGs in 
the network construction.

Functional analysis
The KEGG Orthology (KO) data were mapped to KEGG path-
ways by MinPath (v1.5) (Table S8). Core pathways (n=256) 
predominated across all samples types (Fig. 11a). There were 
few unique pathways identified in only one group of samples, 
e.g. the Sphingolipid signalling KEGG pathways were unique 
to the day 27 control samples. A statistically significant 
difference in Shannon’s diversity index was identified within 
identified pathways in all samples (P=0.003) (Fig. 11b). The 
evenness of pathways was also statistically significant different 
across the KEGG pathways in the samples (Fig. 11c). This 
indicates that while the pathways were common across all 
samples the relative abundances of the pathway genes and in 
turn their availability for utilization was significantly different 
across the sample groups. Both richness and evenness 
decreased significantly from day 27 to day 34. This indicates 
an age- related change in the metabolism pathway abundances 
of the caecal microflora. This can also be seen in the PCoA 
(Fig. 12) with day 34 samples clustered and day 27 separated.

CONCLUSION
We suggest that the MRF- related increases in health and 
weight gain in the broilers may be associated with changes in 
the metabolism of the microbiomes rather than the microbial 
composition. The resistome variations across samples were 
correlated with specific genera. These data may be used 
to further enhance the development of feed supplements 
to reduce the presence of ARGs within poultry. While the 
ARGs of greatest concern to human or animal health were not 
detected in this study it has identified the potential to reduce 
the presence of ARGs by the increase in specific genera.
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