
Soft Computing (2020) 24:14757–14770
https://doi.org/10.1007/s00500-020-04829-4

METHODOLOGIES AND APPL ICAT ION

On the analysis of hyper-parameter space for a genetic programming
systemwith iterated F-Race

Leonardo Trujillo1 · Ernesto Álvarez González1 · Edgar Galván2 · Juan J. Tapia3 · Antonin Ponsich4

Published online: 17 March 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Evolutionary algorithms (EAs) have been with us for several decades and are highly popular given that they have proved
competitive in the face of challenging problems’ features such as deceptiveness, multiple local optima, among other character-
istics. However, it is necessary to define multiple hyper-parameter values to have a working EA, which is a drawback for many
practitioners. In the case of genetic programming (GP), an EA for the evolution of models and programs, hyper-parameter
optimization has been extensively studied only recently. This work builds on recent findings and explores the hyper-parameter
space of a specific GP system called neat-GP that controls model size. This is conducted using two large sets of symbolic
regression benchmark problems to evaluate system performance, while hyper-parameter optimization is carried out using three
variants of the iterated F-Race algorithm, for the first time applied to GP. From all the automatic parametrizations produced by
optimization process, several findings are drawn. Automatic parametrizations do not outperform the manual configuration in
many cases, and overall, the differences are not substantial in terms of testing error. Moreover, finding parametrizations that
produce highly accurate models that are also compact is not trivially done, at least if the hyper-parameter optimization process
(F-Race) is only guided by predictive error. This work is intended to foster more research and scrutiny of hyper-parameters
in EAs, in general, and GP, in particular.

Keywords Hyper-parameter optimization · Iterated F-Race · Genetic programming

1 Introduction

Hyper-parameters are configuration variables that regulate or
control the behavior of an optimization or learning algorithm
(Birattari 2009; Sipper et al. 2018). For evolutionary algo-
rithms (EAs), hyper-parameters1 include population size,

1 They are also referred to as parameters, but the distinction between
parameters and hyper-parameters is important, particularly when the
EA is performing a learning process, searching for models that might
also include their own parameters.
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mating rates, number of generations and others. In all
meta-heuristic search techniques, the proper setting of hyper-
parameter values can be a difficult and tedious endeavor
(Birattari 2009). This is also true for EAs that often lack a
theoretical foundation to derive their optimal parametrization
values analytically, with few exceptions (Hansen and Oster-
meier 2001). This work focuses on hyper-parameter tuning
or optimization (Birattari 2009; Neumüller et al. 2012), also
referred to as meta-optimization, which is performed off-
line, in contrast to hyper-parameter control where an EA, or
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any othermeta-heuristic algorithm, dynamicallymodifies the
hyper-parameter values during online execution (Karafotias
et al. 2015).

This topic has been studied extensively for EAs, but has
received less attention in genetic programming (GP) (Koza
1992; Langdon and Poli 2010). In GP, an EA is used to search
for models, functions or small programs that perform a par-
ticular computational process, usually following a supervised
learning problem formulation, such as regression (Vanneschi
et al. 2019) or automatic improvement of code (López-López
et al. 2018). Probably, the most extensive experimental study
regarding hyper-parameter optimization for GP was recently
published by Sipper et al. (2018). These authors also present
an up to date survey on this topic.

Sipper et al. (2018) evaluate two different GP systems
using several standard GP benchmark problems and super-
vised learning on classification benchmark problems. Two
hyper-parameter optimization procedures are tested: an EA
(meta-evolution) and a random search. They consider com-
mon hyper-parameters for EAs and GP, such as population
size, number of generations, crossover rate,mutation rate and
tournament size. The authors performed an extensive number
ofGP runs to gather their results, allowing them to draw inter-
esting insights and suggestions. Surprisingly, random search
seems to be as good as an EA for this task, and at least two
conclusions reported by the authors are noteworthy and use-
ful for practitioners and applied researchers. First, it seems
that good parametrizations (specific combination of hyper-
parameter values) can be found all over hyper-parameter
space; i.e., good parameter settings can be quite diverse, and
they are not clustered in specific regions of hyper-parameter
space. Second, finding general hyper-parameter values (that
are applicable to several different problems) is more difficult
compared to finding good parameter values for a single prob-
lem instance, since the latter can be efficiently done through
random search.

It is fair to say, however, that there are some aspects
that were not considered by Sipper et al. (2018). First, the
authors do not account for the fact that most problems that
are solved with GP are supervised learning problems. In such
cases, fitness is proportional to training performance, which
is the measure used to evaluate different hyper-parameter
configurations. However, of more interest to practitioners
is performance on an unseen test set of fitness cases. Test
performance is not considered (Sipper et al. 2018). Second,
the study focuses on very general hyper-parameters, and it
does not consider system-specific parameters, even for the
more sophisticated GP system studied (Cava et al. 2019).
Third, the work does not explore the effect that different
parametrizations have on solution size, an important aspect
inmostGP-based systems (Trujillo et al. 2016). Finally, there
are other state-of-the-art methods for hyper-parameter opti-
mization, namely racing algorithms (Birattari et al. 2002;

López-Ibáñez et al. 2016), that can be used for this task
besides a basic EA and random search, particularly since rac-
ing algorithms have been widely used for hyper-parameter
optimization of search and optimization algorithms.

Therefore, this paper aims to address the aforementioned
limitations, with the following contributions:.

1. Hyper-parameter space is explored for a bloat-free GP
system called neat-GP (Trujillo et al. 2016). Two com-
mon EA hyper-parameters are considered (crossover rate
andmutation rate), aswell as three system-specific hyper-
parameters of neat-GP.

2. Three variants of the iterated F-Race algorithm are eval-
uated, using two extensive sets of 15 easy and 16 hard
benchmark problems.

3. Results are evaluated considering testing performance,
solution size and best parameter values found, all relative
to the manual configuration suggested in Trujillo et al.
(2016).

4. Results are contrasted with those reported in Sipper et al.
(2018), showing agreement in some results while diverg-
ing in other relevant aspects.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a brief overview of required background,
discussing the general principles of hyper-parameter opti-
mization and the basics of racing algorithms. Section 3
presents a summary of the neat-GP system and discusses the
hyper-parameters considered in this study. Afterward, Sect. 4
presents the experimentalwork anddetailed results. Section 5
contains a discussion of the results. Concluding comments
are presented in Sect. 6.

2 Background

The goal in this section is to provide a brief introduction to the
problem of hyper-parameter optimization and to the racing
algorithms used in this work, namely the iterated F-Race
algorithm. For a more thorough account of these subjects,
the interested reader is referred to (Birattari 2009; Neumüller
et al. 2012; Sipper et al. 2018) for the former and (Birattari
et al. 2002; López-Ibáñez et al. 2016) for the latter.

2.1 Hyper-parameter optimization

The process of hyper-parameter optimization is also known
as meta-optimization, automatic parameter tuning and, in
the case of an EA, meta-evolution (Sipper et al. 2018). It
consists in using an optimization algorithm to automatically
tune the hyper-parameters of another algorithm, such that
the expected performance on a given (set of) problem(s) can
be maximized (or minimized as the case may be). In other
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words, an optimization algorithm, which can be referred to
as the meta-optimizer MO, searches for an optimal set (or
vector) of hyper-parameter values θ that represent a particu-
lar parametrization for an optimization or learning algorithm
A, such that A achieves the best possible performance on a
set of problems {Pi }, with i = 1, . . . , n.

To perform hyper-parameter optimization, the following
must be defined:

1. The algorithm A to be tuned.
2. The hyper-parameters of A that are considered in θ and

their valid ranges.
3. The meta-optimizer MO to be used.
4. The set(s) of problems {Pi } that are used to evaluate

the quality of different parametrizations θ ; these can be
thought of as meta-fitness cases in a GP sense.

Some comments of how previous works relate to the four
points mentioned above are relevant. Hyper-parameter opti-
mization is now widely known, but often not used due to
the associated computational cost. It has been applied to
a wide variety of optimization algorithms, meta-heuristic
search techniques and machine learning algorithms. How-
ever, one class of algorithms has received relatively lesser
attention, namely GP. Probably the most notable study con-
cerning GP is Sipper et al. (2018), as discussed above.

Regarding the hyper-parameters to be optimized, these
can be numerical, ordinal or categorical parameters. In the
case of an EA or GP, numerical parameters can be population
size or number of total generations, categorical parameters
can refer to the type of crossover that is used, while ordinal
parameters are similar to categorical, but with an implicit
ordering. This work focuses on numerical hyper-parameters,
as done in Sipper et al. (2018).

With regard to the type of meta-optimizer, there is a
variety of methods in the current literature, most of which
are gradient-free heuristics or meta-heuristics, experimental
design techniques or statistical modeling approaches. Prob-
ably the simplest approach is to perform a random search
(Bergstra and Bengio 2012) or a grid search (Olson et al.
2017), which are easy to implement, tend to achieve good
performance improvements compared to manual tuning and
are widely used.

Another common strategy is to use EAs, as in Sipper et al.
(2018). However, one class of algorithms that have proved
to be particularly successful are racing approaches (Birat-
tari et al. 2002; López-Ibáñez et al. 2016), since they deal
with one of the main issues in hyper-parameter optimization,
which is the computational cost. Performinghyper-parameter
optimization is often avoided because it requires multi-
ple executions (using different parameter values) of the
algorithm to be tuned. Moreover, meta-heuristics are often
stochastic search techniques, meaning that their performance

level for solving one problem instance has to be evaluated
in terms of some statistical measure (for instance, mean or
median value) computed over several executions of the algo-
rithm.This increases the computational burdenof performing
hyper-parameter optimization. This is particularly problem-
atic for EAs, in general, and GP, in particular, which are
notoriously plagued by long run times. Racing algorithms
perform a race between different candidate parametrizations,
and discard those parametrizations that show theweakest per-
formance over a subset of the problems used for evaluation;
these methods are further discussed in the following subsec-
tion.

Finally, racing algorithms and, more precisely, iterated
versions of the algorithm, have not been previously used to
tune a GP system. This paper presents the first extensive
study that considers this combination, using a diverse set of
widely accepted benchmarks for symbolic regression using
GP (McDermott et al. 2012).

2.2 F-Race and iterated F-Race

In racing algorithms for hyper-parameter optimization, a set
of candidate parametrizations {θ j }, with j = 1, . . . ,m, are
generated using a given distribution, with θ j = [x1, . . . xp],
xu being the uth hyper-parameter and p the total number of
hyper-parameters. For instance, if we define X as the space
of valid parametrizations considered in a given study, then
{θ j } can be constructed by uniform random sampling of X ,
using an independent distribution for each hyper-parameter.
Then, each parametrization is sequentially evaluated on each
problem from set {Pi }. For each parametrization θ j , a perfor-
mance or cost vector is constructed of the formC(θ j , {Pi }) =
[C j (P1),C j (P2), . . .], where C j (Pi ) represents the perfor-
mance of parametrization θ j applied to problem Pi . After
a certain number of problems 1 ≤ s ≤ n have been
evaluated, and after each subsequently tested problem, the
parametrizations are compared according to their accumu-
lated performance vector [C j (P1), . . . ,C j (Ps)].

Depending on the racing algorithm used, a specific crite-
rion is applied to eliminate theworst performing parametriza-
tions based on their accumulated performance vectors. In
the case of F-Race, the criterion for removal from the race
is based on Friedman’s nonparametric two-way analysis
of variance by ranks. In particular, if a parametrization θ j

is performing statistically worse than at least one other
parametrization in the race, then θ j is deleted. The param-
eter s is the minimum number of problems that have to
be evaluated such that the Friedman test has sufficient
evidence within the corresponding performance vectors to
determine whether a statistically significant difference exists
between parametrizations and is normally set to 3. At the
end of the run, F-Race returns the subset ΘO ⊂ {θ j } of
parametrizations that contains all of the statistically supe-
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rior and equivalent parametrizations, also referred to as elite
parametrizations.

A common extension to the F-Race algorithm consists
in performing the racing process multiple times sequen-
tially, which is referred to as the iterated F-Race or iF-Race
(López-Ibáñez et al. 2016). The algorithm returns the set
{⋃ ΘO

l } with l = 1, . . . , s and ΘO
l being the optimal set of

parametrizations returned after iteration l, with the process
executed a total of s iterations. The iF-Race algorithm is a
direct extension of the F-Race algorithm, where the crucial
step is in how the set {θ j } is generated at the beginning of
each iteration. In particular, three variants are considered in
the present paper, following (López-Ibáñez et al. 2016):

Original iF-Race. This variant creates a new set {θ j } for
each iteration of iF-Race using a uniform distribution
over X , executing several independent F-Race execu-
tions. A useful feature is that each F-Race execution can
be run in parallel. However, there is an obvious loss of
information between runs that might be useful to make
the racing process more efficient. This observation justi-
fies the strategies in the following two variants.
iF-Race with Elitism. In this case, the set ΘO

l is used to
seed the set {θ j } for iteration l + 1. If |ΘO

l | < m, then
the remaining m − |ΘO

l | parametrizations are randomly
generated using a uniformdistribution like in theOriginal
iF-Race.
iF-Race with Gaussian update. This strategy is based
on (López-Ibáñez et al. 2016), with minor changes to
simplify the process. As with iF-Race with Elitism, the
set ΘO

l is used to seed the set {θ j } for iteration l + 1.
However, new parametrizations are generated as pertur-
bations from the parametrizations returned in ΘO

l . First,
with equal probability for each elite configuration, a sin-
gle elite parametrization θe is chosen from ΘO

l . A new
parametrization is generated by sampling a normal dis-
tribution for each hyper-parameter xu , using the value of
xu in θe as the mean and setting the standard deviation
σ l
u = (xmax− xmin)/2, and decreasing this value for each

subsequent iteration l by σ l
u = σ l−1

u (̇m − |ΘO
l−1|)(−1/p)

with p the total number of hyper-parameters to be tuned.

The aforementioned three variants of iF-Race are used in
this work, which we refer to as Original, Elitism and Gaus-
sian, respectively. If we consider iF-Race as a search process,
then the methods range from an explorative process (Origi-
nal), to a more greedy exploitative approach (Gaussian). In
the first one, the process repeats the F-Race algorithm for s
iterations. The Elitism strategy is a more greedy approach
since the set of parametrizations used by F-Race at each iter-
ation is seeded by the best parametrizations found in previous
iterations. This allows the algorithm to be more efficient, by
quickly discarding bad parametrizations as the iF-Race pro-

cess progresses. TheGaussian approach increases the level of
exploitation in the search, by using the best parametrizations
from previous iterations and by generating new parametriza-
tions as tweaked versions of these elite parametrizations,
similar to what is done in a random walk with Gaussian per-
turbation.

The former observations regarding exploration/
intensification behaviors provide some hints with respect to
the convergence rates of the three tackled variants. Clearly,
the highly greedy aspect of the Gaussian version is likely
to involve higher (i.e., faster) convergence rates than the
two other variants, although presenting the risk of prema-
ture convergence toward the first good configurations found
and reducing the diversity of the candidate configurations
produced. Conversely, the original version should be the
slowest to achieve convergence toward a set of statistically
satisfactory configurations, since a wider exploration of the
hyper-parameter space is allowed.

As reported by López-Ibáñez et al. (2016), iterated rac-
ing procedures such as iF-Race present some drawbacks,
the first one being the unavoidable computational burden
due to the intensive experiments performed on many distinct
instances. On the other hand, iF-Race processes also have a
certain number of parameters to be tuned, which may have
some influence on the final configurations obtained. Finally,
an undesired behavior has been observed in some practical
cases, for which the order of instances chosen for each race
(iteration) can bias the results. For instance, a good qual-
ity configuration might be prematurely discarded after the
first round, while it might provide good solutions for other
instance classes. Despite the above-mentioned cons, the rec-
ognized pros of iF-Race make it one of the most relevant
options for meta-optimization. First, because the selection of
the best configurations produced is based on specific statis-
tical tests (which is generally not done with manual tuning).
Further, the experimental working mode allows not to test
all configurations for all instances, since unsuitable con-
figurations are progressively discarded during the iterated
racing process. Also, parallelization is considered in most
practical implementations, so that the final computational
burden can be mitigated w.r.t. manual configuration. Finally,
the automation and randomization of the whole experimental
process allow for determining robust configuration’s without
any human effort.

3 neat-GP: Bloat-free genetic programming

A standard or canonical GP system, as proposed by Koza
(Koza 1992; Langdon and Poli 2010), uses a variable-size
tree-based representation for candidate solutions, which are
syntax trees that encode a particular model or more generally
an individual program that is a solution candidate. Trees are
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composed by elements from a finite set of terminal elements
(terminal set) that can be used as leaves in individual trees and
that represent problem inputs, while internal nodes contain
elements from a finite set of functions (function set) that
represent operators that can be used by the GP system to
construct individual models.

Bloat is the tendency of GP to generate unnecessarily
large solutions (large syntax trees), even when larger solu-
tions do not provide a proportional improvement in fitness.
In general, bloat is seen as a problem that needs to be over-
come inmost GP systems, since it produces solutions that are
more complex and difficult to interpret, while also slowing
down the search process since larger solutions require more
computational resources to be evaluated, without necessarily
producing an improvement over time. In general, neat-GP is
a bloat control GP system that is based on the neuroevolu-
tion of augmenting topologies algorithm (NEAT) (Stanley
and Miikkulainen 2002), achieving strong results in regres-
sion, classification and computer vision problems (Trujillo
et al. 2016; Hernández-Beltran et al. 2019).

The main features of neat-GP are the following: The ini-
tial population only contains shallow GP trees (three levels,
with the root at level 1), while most GP algorithms initialize
the search with small andmedium sized trees (depth between
three and six levels). TheNEAT approach is to start with sim-
ple (small) solutions and to progressively build complexity
(add size) as the search progresses. The population is divided
into species, such that each species contains individuals of
similar size and shape; this process is called speciation,which
protects innovation during search. The algorithm uses fitness
sharing, whereby the fitness of individuals is penalized pro-
portionally to the size of the species to which it belongs.
This allows the search to maintain an heterogeneous popula-
tion of individuals based on their size. The only exceptions
are the best individuals from each species, and these are not
penalized to allow the search to maintain the best candidate
solutions for the problem. This is the last element of neat-GP,
a strong selection pressure that uses elitism frequently.

3.1 Speciation, tree dissimilarity and fitness sharing

In neat-GP, individuals are grouped together into species
based on their size and shape. For a tree T , let nT repre-
sent the size of the tree (number of nodes) and dT represent
its depth (number of levels). Moreover, let Si, j represent the
shared structure between two trees Ti and Tj , starting from
the root node (upper region of the trees), which is also a tree.
Then, the dissimilarity between two trees, Ti and Tj , is given
by

δT
(
Ti , Tj

) = β
Ni, j−2nsi, j
Ni, j−2 + (1 − β)

Di, j−2dsi, j
Di, j−2 (1)

where Ni, j = nTi + nTj , Di, j = dTi + dTj and β ∈ [0, 1].
This measure is used to group similar individuals into

species. Note that thismeasure is not ametric, but non-metric
dissimilarity functions can be used to create groups or clus-
ters efficiently (Ackermann et al. 2008). Each time a new
individual Ti is generated, the individual is compared with a
randomly chosen individual Tj from each species, and this is
done sequentially using a random shuffling of all species. If
δT (Ti , Tj ) < h, with threshold h being an algorithm param-
eter, then Ti is grouped into the same species as Tj and no
other comparisons are made. If Ti is not assigned to an exist-
ing species, then a new species is created. Fitness sharing is
then applied at the species level; in this way, each individual
receives a penalization that is proportional to the size of the
species.

The above penalization is not applied to the best solution
of each species. Moreover, the penalization is only consid-
ered during parent selection, which is done deterministically
by ordering the individuals of the population based on their
adjusted fitness. In this way, individuals that were penalized
by a large amount might not be able to produce offspring.
While GP is prone to generate a large number of isomor-
phic trees, controlling this can be computationally prohibitive
(Burke et al. 2004). However, the speciation process of neat-
GP is a simple heuristic approach to indirectly control the
amount of isomorphic trees.

3.2 Selection, genetic operators and survival

Selection is elitist, in each species the pworst% of the worst
individuals are removed, and these are then replaced by the
samenumber of offspring. This is done by setting amaximum
number of offspring for each individual, determined in a pro-
portional manner relative to their raw fitness. Individuals are
ranked based on their adjusted fitness, they are then chosen
in that order and the genetic operator applied (crossover or
mutation) is determined randomly.When a parent is selected,
the number of expected offspring is reduced accordingly,
and individuals cannot be chosen as parents when this value
reaches zero.

3.3 Hyper-parameter optimization for neat-GP

In the present study, we choose to focus on the following
hyper-parameters of neat-GP:

1. Crossover rate (Cp) and mutation rate (Mp). Since new
individuals are only created through these two genetic
operators, and since the operators are mutually exclusive
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Table 1 Neat-GP
hyper-parameters, showing the
manual configuration reported
in (Trujillo et al. 2016;
Hernández-Beltran et al. 2019)
and the range of values
considered by the iF-Race
optimization

Parameter Manual setting Optimization range

Crossover probability Cp 0.7 [0 − 1]
Mutation probability Mp 0.3 1 − Cp

Species criterion β 0.5 [0 − 1]
Species threshold h 0.15 [0.05 − 0.40]
Elitism pworst% 0.5 [0.2 − 0.8]

in neat-GP, then both hyper-parameters can be defined
with one numerical value given that Mp = 1 − Cp.

2. Species criterionβ. This is the short name for theβ hyper-
parameter in Eq. 1, which defines the relative importance
in the similarity measure used to consider both the size
and depth of trees when they are compared in the speci-
ation process.

3. Species threshold h. This hyper-parameter controls the
creation of new species during the search and can be
thought of as a niche radius in an EA framework.

4. Elitism pworst%. The hyper-parameter determines the
amount of elitism used by the search in each individual
species.

Table 1 summarizes the above-mentioned neat-GP hyper-
parameters and also shows the manual values defined for
these parameters in earlier works (Trujillo et al. 2016;
Hernández-Beltran et al. 2019) in the second column from
left to right. Moreover, the third column shows the range
of values considered by the iF-Race algorithms during the
hyper-parameter optimization reported in the next section.
Note that for h and pworst%, in theory both hyper-parameters
could have values between 0 and 1. However, smaller ranges
are used in this study for the following reasons. In a series of
preliminary tests, when these hyper-parameters took values
outside the range specified in Table 1, the search process pro-
duced very poor results or bloated solutions. When pworst%
is large (above 0.8), selective pressure is too high and the
algorithm prematurely converges to a local optima, and if it
is too low (below 0.2), then the algorithm converges very
slowly to a high fitness solution. Regarding h, when this
value was set to high (above 0.4) then almost all individuals
were grouped into a single large species, thus eliminating
the speciation process. Therefore, by limiting the ranges of
these hyper-parameters iF-Race focuses on more promising
regions of hyper-parameter space.

4 Experiments

The goal of the experimental work is to characterize the
hyper-parameter space of the neat-GP algorithm. Three
variants of iF-Race are considered, namely the Original for-

mulation, the Elitism and Gaussian approaches described in
Sect. 2. The test problems are defined in the following sub-
section, along with the experimental setup.

4.1 Problems and experimental setup

Two sets of benchmark problems suggested in (McDermott
et al. 2012) are used; these are shown in Tables 2 and 3. All
of the problems define symbolic regression tasks, the most
common application domain of GP, i.e., learning problems
with one or several real-valued inputs and a single real-valued
output, defined by a training set used to compute fitness and
a test set to validate the performance of the best model found.
The first set of problems, which consist of the 15 Koza and
Nguyen problems shown in Table 2, are considered to be
easy problems. The second set of problems, the 16 Pagie
and Korns problems shown in Table 3, present more difficult
regressions tasks.

For all problems, the goal is to optimize the hyper-
parameters shown in Table 1, and the remaining hyper-
parameters were set as follows. In all runs, neat-GP used

Table 2 First set of easy benchmark problems: Koza and Nguyen

ID Name Inputs Function

P1 Koza-1 1 x4 + x3 + x2 + x

P2 Koza-2 1 x5 − 2x3 + x

P3 Koza-3 1 x6 − 2x4 + x2

P4 Nguyen-1 1 x3 + x2 + x

P5 Nguyen-2 1 x4 + x3 + x2 + x + 1

P6 Nguyen-3 1 x5 + x4 + x3 + x2 + x

P7 Nguyen-4 1 x6 + x5 + x4 + x3 + x2 + x

P8 Nguyen-5 1 sin(x2)cos(x) − 1

P9 Nguyen-6 1 sin(x) + sin(x + x2)

P10 Nguyen-7 1 ln(x + 1) + ln(x2 + 1)

P11 Nguyen-8 1
√
x

P12 Nguyen-9 2 sin(x) + sin(y2)

P13 Nguyen-10 2 2sin(x) + sin(y2)

P14 Nguyen-11 2 x y

P15 Nguyen-12 2 x4 − x3 + y2

2
− y
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Table 3 Second set of hard benchmark problems: Pagie and Korns

ID Name Inputs Function

P1 Pagie-1 2 1
1+x4

+ 1
1+y4

P2 Korns-1 2 1.57 + (24.3v)

P3 Korns-2 5 0.23 + 14.2 v+y
3w

P4 Korns-3 5 −5.41 + 4.9
v−x+ y

w

3w

P5 Korns-4 5 −2.3 + 0.13sin(z)

P6 Korns-5 5 3 + 2.13ln(w)

P7 Korns-6 5 1.3 + 0.13
√
x

P8 Korns-7 5 213.80940889(1 − e−0.54723748542x )

P9 Korns-8 5 6.87 + 11
√
7.23xvw

P10 Korns-9 5
√
x

ln(y) e
z

v2

P11 Korns-10 5 0.81 + 24.3 2y+3z2

4v3+5w4

P12 Korns-11 5 6.87 + 11cos(7.23x3)

P13 Korns-12 5 2 − 2.1cos(9.8x)sin(1.3w)

P14 Korns-13 5 32 − 3 tan(x)
tan(y)

tan(z)
tan(v)

P15 Korns-14 5 22 − 4.2(cos(x) − tan(y)) tanh(z)sin(v)

P16 Korns-15 5 12 − 6 tan(x)
ey (ln(z) − tan(v))

a population of 100 individuals and 100 generations. Fit-
ness was computed based on the training set of fitness cases
using the root mean squared error (RMSE) (thus defin-
ing a minimization problem). The terminals for all GP
trees were the input variables of the problems and random
ephemeral constants, and the function set was defined as
{+,−,×,÷, sin, cos, log, sqrt, tan, tanh}.2 In all cases, the
training and testing setswere sampled following (McDermott
et al. 2012).

Given that three variants of iF-Race are considered (Orig-
inal, Elitism and Gaussian) and given two sets of problems
(Koza and Nguyen and Pagie and Korns), six different sets
of experiments are carried out. In all cases, training RMSE is
used to compare solutions during racing, but testing perfor-
mance is also recorded and reported below. For all iF-Race
variants, a total of s = 10 iterations is performed, and a set
of 200 random parametrizations are used to initialize each
race.

The number of total neat-GP runs executed during a
single iF-Race experiment is large. Take, for instance, the
most extreme case, applying the Original iF-Race on the 16
Pagie and Korns problems. For each iteration of the race,
200 candidate parametrizations are considered initially. If
at the end of an iteration there are, for example, at least
30 elite parametrizations, then the total number of runs is
greater than 30× 16× 10 = 4, 800 runs for that experiment

2 The division÷ is protected, returning the numerator when the denom-
inator is zero

Table 4 Total elite parametrizations produced in each experiment

Problem set iF-Race variant Total parametrizations

Koza and Nguyen Original 31

Koza and Nguyen Elitism 61

Koza and Nguyen Gaussian 42

Pagie and Korns Original 612

Pagie and Korns Elitism 227

Pagie and Korns Gaussian 45

alone. Given this high computational cost, the entire sys-
tem was implemented using the DEAP (De Rainville et al.
2012) implementation of neat-GP (Juárez-Smith and Trujillo
2016),3 using Python 2.7 and parallelized using Message
Passing Interface (MPI) mpi4py Python package running
over Ubuntu 16.04, on a cluster with five nodes, where each
node had a four core Intel i5-4590 CPUs @3.30 GHz and 8
GB RAM. The server node functioned as the administrator
in charge of distributing independent threads of single neat-
GP executions and also collects all the results from the client
nodes.

4.2 Results

This section provides a detailed presentation of the main
results. Table 4 presents a summary of the total number of
elite parametrizations found in each experiment (each iF-
Race variant and each problem set). Notice two trends. First,
the number of parametrizations produced in the easier set
of problems, Koza and Nguyen, is smaller than on the more
difficult setwhen using theOriginal andElitism iF-Race vari-
ants. This suggests that there are some elite parametrizations
that quickly dominate the racing process for these prob-
lems. On the other hand, for the more difficult problems,
Pagie and Korns, it seems to be more challenging to find
parametrizations that dominate the iF-Race process; i.e., it is
more difficult to find parametrizations that are good for all
the problems. Such a result is not surprising, since it is known
that in order to achieve the best possible results on difficult
problem instances it is often necessary to tune an algorithm
for that specific scenario (Michalewicz 1996).

In the case of iF-Race with Gaussian update, the number
of elite parametrizations is similar for both problem sets. This
result, however, may be better explained by the greedy nature
of this optimization process, compared to the behavior of the
Original and Elitism variants. The more explorative Original
iF-Race is able to randomly find many parametrizations that
cannot be discarded during the racing process. This is aligned
with the logic of the algorithm and is corroborated by some

3 https://github.com/saarahy/NGP-LS
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of the results presented by Sipper et al. (2018), where the
authors concluded that for difficult problems it is feasible to
find random parametrizations that produce good results, but
most of these parametrizations will not generalize to other
problems. This highlights the need to conduct more research
on hyper-parameter optimization in difficult real-world sce-
narios.

4.2.1 Sampling Density of Hyper-Parameter Space

Figures 1 and 2 present density plots for each hyper-
parameter produced by each experiment. The plots show how
the elite parametrizations produced by each iF-Race variant
are clustered in hyper-parameter space. For reference, the
plots also show the manual setting (as a solid red vertical
line), as suggested in the original neat-GP paper (Trujillo
et al. 2016). Several trends are noticeable in these plots. First,
the Gaussian variant, denoted by a broken blue line, produces

density plots where values are more tightly clustered, but
this is more apparent for two hyper-parameters in particular:
crossover probability and species criterion, as shown in Figs.
1 and 2, in subplots (b) and (c), respectively. This applies
for both problem groups. Second, the manual configuration
shows up very close to the maximum of the density curves
for two hyper-parameters: species criterion and elitism per-
centage. This suggests good agreement between the iF-Race
optimization and the manual configuration for these hyper-
parameters. However crossover probability and, to a lesser
extent, species threshold show larger deviations between the
maxima of the iF-Race density and themanual configuration.

A more detailed view of the elite hyper-parameters found
by each iF-Race variant is shown in the radar plots depicted in
Fig. 3 (easyKoza andNguyen problems in Table 2) and Fig. 4
(hard Pagie and Korns problems in Table 3). The plots high-
light all of the elite parametrizations produced by the racing
methods, namely (a) Original, (b) Elitism and (c) Gaussian.

(a) Species threshold (b) Crossover Probability

(c) Species Criterion (d) Elitism

Fig. 1 Density plots for each hyper-parameter on the Koza and Nguyen
problems: a species threshold; b crossover probability; c species cri-
terion; and d Elitism. Each plot shows curves for the three iF-Race

variants (Original, Elitism and Gaussian) and a vertical line for the
manual configuration from (Trujillo et al. 2016)
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(a) Species threshold (b) Crossover Probability

(c) Species Criterion (d) Elitism

Fig. 2 Density plots for each hyper-parameter on the Pagie and Korns
problems: a species threshold; b crossover probability; c species cri-
terion; and d Elitism. Each plot shows curves for the three iF-Race

variants (Original, Elitism and Gaussian) and a vertical line for the
manual configuration from (Trujillo et al. 2016)

(a) Original (b) Elitism (c) Gaussian

Fig. 3 Radar plots for each hyper-parameter on the Koza and Nguyen problems: a Original; b Elitism; and c Gaussian. Each plot shows curves
(darker line) for the manual configuration from (Trujillo et al. 2016)
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(a) Original (b) Elitism (c) Gaussian

Fig. 4 Radar plots for each hyper-parameter on the Pagie and Korns problems: a Original; b Elitism; and c Gaussian. Each plot shows curves
(darker line) for the manual configuration from (Trujillo et al. 2016)

We included the manual configuration values as a reference
point, denoted by a black solid line in the plots. Notice how
the elite parametrizations are similar to the manual config-
uration for the crossover parameter on the easy problems,
regardless of the method used (right-hand side of each plot
in Fig. 3). The same can be observed for the species crite-
ria, but only for the Gaussian method. For the rest of the
parameters in the easy problems, the situation is less clear.

If we now focus our attention on the difficult problems,
as shown in Fig. 4, we can see that the Gaussian method is
able to find solutions in a more compact region of parameter
space for all the considered hyper-parameters. In this case,
the manual parametrization is close to the upper limit of the
range of values produced by the Gaussian method for all
hyper-parameters, except for the species threshold. On the
other hand, the Original and Elitism iF-Race variants gener-
ate elite parametrizations that basically cover the entire space
of allowed values, the manual configuration lying basically
in the middle.

4.2.2 Test RMSE and Solution Size

It is also relevant to analyze the performance of the elite
parametrizations produced by iF-Race, based on perfor-
mance and size of the models generated by neat-GP. Perfor-
mance is measured by the testing RMSE of the best model
found (remember that the racing elimination process was
based on training RMSE), while solution size is computed
as the average number of nodes of all individuals in the final
population of the neat-GP evolution. Figure 5 presents the
testing RMSE achieved on each of the 15 problems in the
Koza and Nguyen set, using the enumeration in Table 2. Fig-
ure 6 shows the same information for the Pagie and Korns set
of 16 problems. The results are shown as a parallel coordinate
plot, where each curve represents one elite parametrization
and the vertical axis represents each benchmark problem.

Moreover, two curves are shown with special lines: first, in
black the average performance, over 30 runs, of the manual
configuration as specified in (Trujillo et al. 2016) and second,
with a dashed red line, a single randomly chosen elite con-
figuration produced by the iF-Race variant, referred to as the
single automatic solution (SAS). This second curve is used to
provide a visual comparison with the manual configuration,
and it is chosen randomly since the iF-Race does not provide
a mechanism to prefer a particular elite parametrization over
the rest. In all of these plots, lower is better since the goal is
to minimize error.

Notice that while the automatic parametrizations do out-
perform the manual parametrization on some problems,
this is not always the case. In fact, on most problems,
the performance of the manual configuration and the elite
parametrizations produced by iF-Race aremore or less equiv-
alent. While this may seem counter intuitive, it is important
to remember that this comparison is based on testing RMSE
and that iF-Race is based on trainingRMSE.Hence,while iF-
Race pushes the search for optimal hyper-parameters toward
better performing parametrizations, these might not trans-
late to substantial (if any) gains in testing error due to the
possibility of overfitting.

A similar analysis for solution size is presented in Figs. 7
and 8, for the Koza and Nguyen and Pagie and Korns prob-
lem sets, respectively. The plots show the average size of
all individuals in the final population (end of the run) of
each GP search process. These results show that the man-
ual configuration evolves smaller trees, and this is true for
both sets of problems. In fact, this difference is much more
pronounced on the more difficult problem set, Pagie and
Korns, as shown in Fig. 8. On the one hand, results such
as these seem reasonable, since all of the iF-Race are exclu-
sively focusing on predictive accuracy of the GP trees as
measured by RMSE. The hyper-parameter optimization does
not consider solution size, so there is no reason to expect
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(a) Original (b) Elitism (c) Gaussian

Fig. 5 Parallel coordinates plots for the test error (RMSE) on the Koza and Nguyen problems: a Original; b Elitism; and c Gaussian. Each plot
shows curves (darker line) for the manual configuration from (Trujillo et al. 2016) and a dashed red line for the randomly chosen single automatic
solution (SAS)

(a) Original (b) Elitism (c) Gaussian

Fig. 6 Parallel coordinates plots for the test error (RMSE) on the Pagie and Korns problems: a Original; b Elitism; and c Gaussian. Each plot
shows curves (darker line) for the manual configuration from (Trujillo et al. 2016) and a dashed red line for the randomly chosen single automatic
solution (SAS)

(a) Original (b) Elitism (c) Gaussian

Fig. 7 Parallel coordinates plots for the average size (number of nodes)
of all individuals in the final population for the Koza and Nguyen prob-
lems: a Original; b Elitism; and c Gaussian. Each plot shows curves

(darker line) for the manual configuration from (Trujillo et al. 2016)
and a dashed red line for the randomly chosen single automatic solu-
tion (SAS)

that the optimized parametrizations should produce compact
solutions or eliminate bloat. On the other hand, such a wide
gap between the automatic and manual parametrizations was
unexpected. Moreover, the difference in solution size is con-
sistent over all problems, probably the most consistent result
in all of our experiments. Finally, it is worth noting that other
measures could have been adopted besides solution size to

analyze solution complexity, such as the order of nonlinearity
(Vladislavleva et al. 2009). However, in the study presented
in this work this measure of complexity would be similar
among the solutions yielded by the methods because the use
of inner functions was not controlled in any way as done in
(Vladislavleva et al. 2009).
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(a) Original (b) Elitism (c) Gaussian

Fig. 8 Parallel coordinates plots for the average size (number of nodes)
of all individuals in the final population for the Pagie and Korns prob-
lems: a Original; b Elitism; and c Gaussian. Each plot shows curves

(darker line) for the manual configuration from (Trujillo et al. 2016)
and a dashed red line for the randomly chosen single automatic solu-
tion (SAS)

5 Discussion

The most useful way to analyze the results presented so far
is to contrast them with the results presented by Sipper et al.
(2018). To do so, we will focus on some of the main find-
ings by Sipper et al. (2018) and discuss how our results
can be viewed from that perspective. Before doing so, it is
important to keep in mind three differences between both
studies. First, Sipper et al. (2018) considered common GP
hyper-parameters, such as population size, while the present
work focused on more specialized parameters of the neat-GP
algorithm. Second, Sipper et al. (2018) used fitness (training
performance) to evaluate the hyper-parameter optimization
process, while the present work uses fitness to guide the
hyper-parameter optimization process, but also considers test
performance and solution size in the subsequent analysis.
Finally, Sipper et al. (2018) used random search and an EA
to perform hyper-parameter optimization, while this work
uses iF-Race.

Sipper et al. (2018) suggest that hyper-parameter space
is rich with parametrizations that can achieve high perfor-
mance levels. In other words, determining optimal values
for a single hyper-parameter is not a realistic goal, since
there are strong dependencies between different parameters
(for instance between population size and number of gener-
ations), such that many different values might lead to good
performance when properly combined. The results presented
in this paper, particularly those summarized in Figs. 1, 2, 3
and 4, seem to validate this assertion since at least two of the
iF-Race variants (Original and Elitism) tend to cover almost
the entire range of allowable parametrizations considered in
our experiments.

Another conclusion from Sipper et al. (2018) is that find-
ing a single parametrization that works well for a single
problem is relatively easy, but finding a parametrization that
works well across multiple problems is a more difficult task.
In general, the results presented here cannot be said to con-

tradict this conclusion, but do suggest that, at the very least,
a better hyper-parametrization process (such as iF-Race) can
consistently find parametrizations that actually generalize
well across multiple problems.

On the other hand, some of the aspects not considered in
the study by Sipper et al. (2018) reveal the following useful
insights. First, that themanual configuration proposed in Tru-
jillo et al. (2016) for neat-GP is actually comparable to the
elite parametrizations produced by iF-Race. It seems clear
that the automatic method can generate hyper-parameter set-
tings that outperform the manual configuration in several
problems, if not most, particularly when considering the pre-
dictive accuracy of the models. However, this comes at a
non-negligible computational cost, which can be important
in a real-world scenario. Conversely, the manual configura-
tion is actually quite competetive and even outperforms the
iF-Race parametrization in several cases.

Second, the elite iF-Raceparametrizations producebloated
GP runs. Notice that the manual parametrization relies on
single parameter values that are similar to many of the elite
configurations produced by iF-Race, as clearly shown in the
radar plots of Figs. 3 and 4. One possible explanation might
be to assume that the elite parametrizations produced by
iF-Race overfit the problem data. However, this is not the
case. Figures 9 and 10 show comparisons of training RMSE
between the elite parametrizations and the manual configu-
ration. Clearly, the manual configuration shows, in general,
lower training errors, particularly for the second set of prob-
lems. This suggests that the lack of bloat control by the elite
parametrizations is not due to overfitting. In fact, this also
reveals a good property of the elite parametrizations pro-
duced by iF-Race relative to the manual configuration, since
the former produces less overfitting than the latter.

This suggests that the manual configuration is, in fact,
unique, a just right setting that allows neat-GP to produce
good solutions while also limiting the effect of bloat. If this
is true, it could imply that the algorithm might be fragile,
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(a) Original (b) Elitism (c) Gaussian

Fig. 9 Parallel coordinates plots for the training error (RMSE) on the Koza and Nguyen problems: a Original; b Elitism; and c Gaussian. Each plot
shows curves (darker line) for the manual configuration from (Trujillo et al. 2016) and a dashed red line for the randomly chosen single automatic
solution (SAS)

(a) Original (b) Elitism (c) Gaussian

Fig. 10 Parallel coordinates plots for the training error (RMSE) on the Pagie and Korns problems: a Original; b Elitism; and c Gaussian. Each plot
shows curves (darker line) for the manual configuration from (Trujillo et al. 2016) and a dashed red line for the randomly chosen single automatic
solution (SAS)

in the sense that even slight hyper-parameter changes can
have drastic effects on its ability to control bloat. Therefore,
future work will focus on using a hyper-parameter optimiza-
tion procedure that accounts for both performance measures
(solution size and RMSE) concurrently, since iF-Race did
not consider it in our experiments, while the manual config-
uration was tuned to account for this phenomenon.

6 Concluding remarks

This paper presents an experimental characterization of the
hyper-parameter space for neat-GP. This work builds upon
recent findings (Sipper et al. 2018), considering system-
specific parameters and other important aspects to account
for in a GP system, namely test performance and size.

There are several conclusions to be drawn from this paper.
GP systems, and particularly neat-GP, can produce good test
error using a wide range of different hyper-parameter values.
The iF-Race algorithmcan consistently find parametrizations
that compare favorably with a manual configuration in terms
of testing RMSE. However, most of these parametrizations
have a negative effect on the ability of neat-GP to control

bloat. This points to the need to perform multi-objective
hyper-parameter optimization, which would be a non-trivial
task, and to the best of our knowledge has not been car-
ried out in the GP community, opening up a great possibility
for future work. The results shown also lead to the conclu-
sion that the manual configuration reported in (Trujillo et al.
2016) is, in fact, fragile and unique. The manual configura-
tion shows lower training errors and basically equal testing
error compared to the automatic parametrizations. The indi-
vidual parameter values do not seem unique, and they are
well within the ranges explored by iF-Race, but the specific
combination used is clearly beneficial for bloat control.

From a more general perspective, this paper suggests that
hyper-parameter optimization in GP is a difficult task to per-
form. This is true because GP can, and for many practitioners
should, produce human readablemodels, and the ability to do
so is an advantage the method has over other learning meth-
ods. However, having balance between both solution quality
and solution sizemakes hyper-parameter optimization amore
difficult computational task. This clearly highlights the need
for more research on this topic.
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