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Abstract: The immunocompromised airways are susceptible to infections caused by a range of
pathogens which increases the opportunity for polymicrobial interactions to occur. Pseudomonas
aeruginosa and Staphylococcus aureus are the predominant causes of pulmonary infection for individ-
uals with respiratory disorders such as cystic fibrosis (CF). The spore-forming fungus Aspergillus
fumigatus, is most frequently isolated with P. aeruginosa, and co-infection results in poor outcomes
for patients. It is therefore clinically important to understand how these pathogens interact with
each other and how such interactions may contribute to disease progression so that appropriate
therapeutic strategies may be developed. Despite its persistence in the airways throughout the life
of a patient, A. fumigatus rarely becomes the dominant pathogen. In vitro interaction studies have
revealed remarkable insights into the molecular mechanisms that drive agonistic and antagonistic
interactions that occur between A. fumigatus and pulmonary bacterial pathogens such as P. aerugi-
nosa. Crucially, these studies demonstrate that although bacteria may predominate in a competitive
environment, A. fumigatus has the capacity to persist and contribute to disease.
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1. Introduction

By definition, polymicrobial communities are a collection of microbial species that co-
exist in a particular habitat [1]. Arising from co-habitation, interspecies interactions occur,
and these interactions shape the landscape of the environment in which the microbial
communities reside [2]. When that environment exists in humans, such interactions
can influence the health status of an individual. In the context of infectious disease,
polymicrobial interactions can be synergistic, whereby the combined effect of multiple
microbial species is worse than that where individual species act alone [2]. On the other
hand, antagonistic interactions arise due to competition, and occur when one species
suppresses the other [3]. The mechanisms employed by microbes as a consequence of these
interactions is often detrimental to host health. Inter-species interactions may influence
microbial pathogenesis by altering microbial virulence factors and disease progression [1].
Thus, an understanding of how polymicrobial communities, interact with each other and
with the host is important when deciding appropriate therapeutic strategies [1,4].

Individuals with chronic pulmonary disease such as cystic fibrosis (CF) or chronic
obstructive pulmonary disease (COPD) are susceptible to respiratory infections caused
by a multitude of microbial species; the filamentous fungus Aspergillus fumigatus is the
dominant cause of fungal infections in the immunocompromised airways, while the bac-
terium Pseudomonas aeruginosa is the chief cause of bacterial infections [5,6]. Importantly,
these pathogens do not act in isolation, rather their development in the airways is gov-
erned by their environment and mutual interactions. Co-infection of the lungs by these
pathogens is associated with poor prognostic outcomes for the patient, thus, understand-
ing how these interactions affect disease progression can be key to identifying enhanced
control mechanisms.
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By their very nature, polymicrobial interactions are difficult to dissect and the results
are largely dependent upon the in vitro model systems used to analyze these interactions.
Nonetheless, the findings arising from such studies increase our understanding of these re-
lationships and may provide a pathway to design new therapeutic targets. This review will
highlight some of the studies concerning the interactions that occur between A. fumigatus
and other common pulmonary pathogens, with a focus on P. aeruginosa, and will consider
how the findings may influence the pathogenesis of pulmonary diseases caused by the
co-existence of these pathogens in the airways.

2. Aspergillus fumigatus

A. fumigatus is an opportunistic fungal pathogen and the most pathogenic member of
its genus [7]. Although its natural ecological niche is the soil, A. fumigatus is ubiquitous,
existing indoors and outdoors [8]. Because of this, inhalation of conidia is a daily occurrence.
A. fumigatus is a versatile microorganism that is equipped to survive and propagate in a
variety of environments [9]. The fungus possesses a number of features that make it an
excellent human pathogen, including the ability to grow at high temperatures and varying
pH. A. fumigatus can sustain growth above 42 ◦C, which in the context of human infection
is beneficial for maintaining infection during a febrile state [10]. Additionally, it can adapt
to the changing pH of the mammalian host by activating a set of pH-responsive genes
regulated by the PacC transcription factor [11,12].

Like many pathogens, A. fumigatus can form a biofilm which enables persistence
in the host. A. fumigatus biofilms are formed when conidia and hyphae become embed-
ded in a self-made hydrophobic extracellular matrix composed of glucans, galactoman-
nans, monosaccharides, hydrophobins, and major antigen proteins [13,14]. The emer-
gence of hyphae within biofilm coincides with the production of secondary metabolites
(e.g., gliotoxin, fumagillin), antigenic surface molecules (β(1,3) glucans), and antigens
(e.g., aspergillopepsin), which the host responds to by inducing a proinflammatory re-
sponse. Biofilm formation is dependent upon fungal cell density [15], thus, the ability to
reach this density threshold may play a factor in the ability of A. fumigatus to establish
biofilms in the host. Biofilms enable fungal persistence in the pulmonary cavity by pro-
viding protection against cells of the immune system and antifungal drugs. Furthermore,
in vitro studies have shown that while hyphae contained in biofilms may be inhibited by
competing microbes, they are difficult to kill [16–18].

The physical size and hydrophobic nature enable A. fumigatus conidia to enter the
respiratory tract through inhalation, bypass mucociliary clearance, and reach the alveoli.
A. fumigatus conidia may evade initial host-cell recognition by masking β(1,3)-glucan
residues on the condial cell wall with a thin proteinaceous hydrophobic layer called
RodA hydrophobin [19]. As conidia germinate, the RodA layer is shed and β(1,3)-glucan
residues are revealed, allowing for recognition by cells of the innate immune system [20].
The shedding of RodA also reveals dihydroxynapthalene (DHN)-melanin, a secondary
metabolite found in the conidial cell wall. In the environment, DHN-melanin confers
resistance against desiccation and damage from UV radiation, and in the host it plays an
important role in virulence by scavenging reactive oxygen species (ROS) and protecting
conidia against phagocytosis by host cells [21–23].

Where the immune system is compromised, conidia germinate and hyphae may
form [20]. This may lead to the manifestation of a disease called aspergillosis, the sever-
ity of which is determined by the immune status of the host. There are three forms of
aspergillosis; allergic aspergillosis, the most common form of which is known as allergic
bronchopulmonary aspergillosis (ABPA) is characterized by the induction of an immune
response triggered by the secretion of toxins and allergens from the developing fungus.
Saprophytic aspergillosis is characterized by the development of aspergilloma (fungal ball)
in chronic lung cavities of the pulmonary tissue, such as those caused by tuberculosis [24].
Invasive aspergillosis (IA) is the most devastating form of aspergillosis and is characterized
by the dissemination of fungal hyphae throughout the tissues of the affected area. This
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occurs in the lungs in more than 90% of cases and is called invasive pulmonary aspergillosis
(IPA) [25]. IA targets severely immunocompromised individuals including individuals
with neutropenia, organ transplant recipients, and chemotherapy patients [7].

A. fumigatus is the causative agent of allergic bronchopulmonary aspergillosis (ABPA).
It is estimated that 1–2% of asthma patients and 1–15% of CF patients are affected by
ABPA [26]. Clinical manifestations of ABPA include wheezing and bronchospasms and
for individuals with CF, decline in lung function may occur [27]. For non-CF patients,
ABPA diagnostic criteria include asthma, elevated serum levels of Aspergillus-specific IgG
antibodies, elevated serum levels of IgE and eosinophilia [28,29]. Several of the diagnostic
criteria for ABPA are common manifestations of CF, for example, elevated IgG and IgE
anti-A. fumigatus antibodies are not uncommon in CF serum due to sensitization to A.
fumigatus in CF [30]. For this reason diagnosis of ABPA in a CF patient may present certain
challenges [29]. Nonetheless, in the context of ABPA diagnosis, A. fumigatus-specific IgE
levels are recognized as the most useful diagnostic tool [30,31].

ABPA is described as a hypersensitivity lung disease in response to bronchial colo-
nization by A. fumigatus [32]. It occurs when conidia deposited in the airways begin to
germinate and release metabolites such as gliotoxin, fumagillin, and allergens such as Asp
f family of allergens [33,34]. These toxins disturb the epithelial barrier and impede mucocil-
iary clearance [35,36]. An influx of pulmonary macrophages and neutrophils mediate a
proinflammatory cytokine cascade that promote a Th2-type adaptive immune response
involving the release of IL-4, IL-5, IL-9, and IL-13 [37]. IL-4 induces IgE production, which
binds to, and sensitizes granulocytes including basophils and mast cells. IL-5 and IL-9
recruit eosinophils and mast cells to the infection site and IL-13 induces mucus hyper-
secretion, airway fibrosis, and eotaxin production, thus contributing to the eosinophilic
inflammatory response [38,39]. These factors contribute to the chronic inflammation that
feature heavily in the CF airways.

In the absence of ABPA, the role of A. fumigatus in CF is becoming better understood
and more appreciated. Until recently, young children with CF were thought to be less
affected by A. fumigatus than older patients, with a prevalence rate of 6%–25%, compared
with up to 57% in adults [40,41]. Traditional culture methods, such as plate assays, likely
underestimate the actual prevalence of A. fumigatus among this group of patients [42].
The inclusion of molecular methods (qPCR) as a diagnostic tool for A. fumigatus infec-
tions provide a more accurate scenario and indicate that A. fumigatus is more prevalent
in juveniles than previously reported [42]. Recent longitudinal studies have provided
evidence to support this and A. fumigatus infections in children are now recognized as a
major contributing factor in lung function decline in this cohort of patients, affecting up
to 68% of patients [42–45]. This is, in part, associated with aggressive antibiotic therapies
targeting bacterial pathogens, which thereby provide fungal pathogens with an oppor-
tunity to colonize [44]. A. fumigatus infection during early childhood is correlated with
structural damage to the lung and decline in lung function, and while co-infection with
other pathogens exacerbates disease prognosis the long term effects of early exposure to A.
fumigatus remain to be explored [43,45–47].

3. Pseudomonas aeruginosa

P. aeruginosa is a Gram-negative, rod-shaped bacterium that is ubiquitous in nature,
particularly in aquatic and soil environments. Its ubiquity is due to the ability of P. aerugi-
nosa to survive in environmental niches that are intolerable to other microorganisms and
its nutritional versatility. The genome of P. aeruginosa is large (~6.3 kbp) [48], and approxi-
mately 8–10% of these genes are predicted to be regulators of gene expression [49]. This
confers P. aeruginosa with an incredible capacity to adapt rapidly to environmental changes
such as nutritional availability [49]. Additionally, P. aeruginosa possess several efflux pumps
which can expel toxic compounds, such as antibiotics, from the cell faster than they can
accumulate [49,50]. A classic feature of chronic infection caused by P. aeruginosa is the
increased exopolysaccharide production and the emergence of biofilms. Biofilms confer a
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layer of protection against phagocytic cells such as neutrophils, and antibiotics. Although
neutrophils migrate to biofilms, they become immobilized and surrounded by bacteria that
escape from biofilms. Neutrophil degranulation is compromised as a result and oxygen
consumption by both neutrophils and the biofilm is increased, thereby reducing oxygen
availability on the airways [51].

P. aeruginosa biofilm formation is dependent upon quorum sensing (QS), the mecha-
nism by which bacteria communicate [52]. QS occurs in a cell density-dependent manner
and is necessary for the biosynthesis of secondary metabolites such as pyocyanin and rham-
nolipids, which induce neutrophil apoptosis and necrosis, respectively [53,54]. Biofilms are
unable to form in the absence of iron and under iron-limiting conditions, QS regulates iron
acquisition systems by inducing the production of siderophores such as pyoverdin [55,56].

The switch from non-mucoid to the over-producing alginate mucoid strain is prob-
ably the most pronounced phenotypic change that P. aeruginosa adopts as it establishes
chronic infection [57]. Alginate plays an important role in the maturation and structural
stability of P. aeruginosa biofilm and increases bacterial evasion of host immune cells and
antibiotics [58]. Several loss-of-function mutations that occur during adaptation in the CF
lung are characteristic of the establishment of chronic infection, including loss of motility,
repression of type three secretion systems and downregulation of QS regulatory genes,
such as lasR [59–61].

4. The Microbial Environment of the Immunocompromised Airways

The microbial environment of the CF airways is an evolving ecosystem, and from
infancy, the lungs of CF patients are subject to colonization by a diverse range of microbial
species from various genera including Streptococcus, Prevotella, Rothia, Veillonella, and
Actinomyces [62,63]. The CF airways are characterized by an age-related succession of
microbial species; in children under the age of 16, Staphylococcus aureus, Haemophilus
influenzae, and Stenotrophomonas maltophilia predominate [64,65]. The reduction of infection
with H. influenzae and S. aureus is strongly correlated with increased colonization by P.
aeruginosa and Burkholderia spp., and a decline in lung function [62,65,66]. It is estimated
that chronic infection with P. aeruginosa affects up to 80% of adults with CF.

Despite the diverse nature of the microbial community that exists in the CF airways,
P. aeruginosa is consistently identified as the most common pathogen isolated from the
lungs of patients after their first decade of life [64,67,68]. Reflected in this observation,
in vitro and in vivo interaction studies involving P. aeruginosa demonstrate a greater ca-
pacity of P. aeruginosa, to outcompete other CF-associated species such as S. aureus and
H. influenzae [69,70]. For this reason, P. aeruginosa has become the focus for many studies
investigating the role of polymicrobial interactions in the context of CF.

Individuals that live with chronic non-cystic fibrosis-related respiratory diseases such
as COPD and bronchiectasis are susceptible to infection by pathogens from multiple taxa
including Pasteurellaceae, Streptococcaceae, and Pseudomonadaceae [71]. Microbial diversity is
associated with clinical status and is reduced where acute exacerbations occur [71,72]. Two
of the most common pathogens detected from the airways of individuals with bronchiecta-
sis are P. aeruginosa and H. influenzae, however, due to antagonistic interactions that occur
between these pathogens, when one is detected, the other is absent [71,72].

The prevalence of P. aeruginosa in adults with COPD is estimated to be between 4–15%
and higher for individuals with severe COPD and bronchiectasis as part of the diagno-
sis [73,74]. In contrast, the frequency of chronic P. aeruginosa infection for individuals with
bronchiectasis as the primary condition is between 9–31% [75]. Compared to infection by
other pathogens, P. aeruginosa is associated with disease progression, recurrent pulmonary
exacerbations, and poorer clinical outcomes, including a higher rate of mortality in patients
with bronchiectasis [76,77].

The immunocompromised airways are susceptible to infection by a range of fungal
pathogens and several of these, including Candida spp., Cryptococcus spp., and Scedosporium
aurantiacum have been studied in the context of co-infection with P. aeruginosa [78–80]. In all
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cases, P. aeruginosa inhibits fungal growth and/or biofilm formation. Perhaps one of the
most fascinating of the fungal-bacterial relationships associated with pulmonary infections,
are those arising from the interactions between Aspergillus fumigatus and P. aeruginosa.
Aspergillus fumigatus is the most common fungal pathogen isolated from the CF airways. It
is detected from early childhood and is persistent in the airways throughout the life of a CF
patient [42,64,66]. Longitudinal studies have shown that colonization with A. fumigatus is
associated with an increased risk of P. aeruginosa colonization in CF, and disease prognosis
is poor when both pathogens are present [47,81–83]. The prevalence of co-colonization
with P. aeruginosa and A. fumigatus in the CF airways is estimated to be between 3.1 and
15.8%, although this occurrence may be higher [47,81,82].

Co-infection with P. aeruginosa and A. fumigatus have been detected in severe cases
of COPD, and the presence of P. aeruginosa in the airways is considered a risk factor for A.
fumigatus infection [84]. A. fumigatus is frequently isolated from the airways of individuals
with COPD and bronchiectasis, and infection with A. fumigatus is a known risk factor for
the onset of bronchiectasis in COPD [85–88]. ABPA is employed as a diagnostic feature of
bronchiectasis and can inform treatment programs [89].

Due to the frequency at which these pathogens co-exist in the airways, the interactions
that occur between A. fumigatus and P. aeruginosa are of immense clinical importance in the
area of pulmonology. What drives pulmonary exacerbation when the two pathogens are
present remains to be fully elucidated [90,91]. The increased number of studies that have
begun to investigate A. fumigatus–P. aeruginosa interactions in the past decade is a reflection
on the clinical importance of co-colonization with these pathogens. In general, the results
of these studies show that P. aeruginosa outcompetes A. fumigatus, a finding supported by
the predominance of the bacteria in the CF lung.

5. The Interactions Between A. fumigatus and P. aeruginosa

A. fumigatus persists in the CF airways throughout childhood and into adulthood, yet
despite this, P. aeruginosa eventually predominates [42,47,81]. This suggests that interactions
with pathogens such as A. fumigatus may influence the pathogenicity of P. aeruginosa by
altering its virulence and the host environment to pave the way for chronic P. aeruginosa
infection [92].

Analysis of the interactions between A. fumigatus and P. aeruginosa in vitro have
revealed several antifungal mechanisms by which P. aeruginosa can outcompete A. fumiga-
tus [16,93–96] (Figure 1). P. aeruginosa isolates taken from patients with cystic fibrosis have
a greater antifungal capacity than non-cystic fibrosis isolates. Non-mucoid isolates are
more inhibitory than mucoid isolates, which may explain why A. fumigatus is detected at
higher levels in older cystic fibrosis patients where chronic (mucoid) P. aeruginosa infections
are more common [91,97–99]. Many of these interaction studies have focused on the direct
effects of P. aeruginosa on A. fumigatus-biofilm formation, on the effects of bacterial biosyn-
thetic products (e.g., phenazines) on the fungal growth and development or, of fungal
metabolites on P. aeruginosa [95,96,100–102].

P. aeruginosa secretes a range of compounds that inhibit A. fumigatus development and
biofilm formation [16,94,95]. Phenazines (pyocyanin, phenazine-1-carboxamide, 1-HP and
phenazine-1-carboxylic acid) are QS-regulated redox-active molecules that are important in
bacterial respiration and energy production in oxygen-limiting environments such as the CF
airways [103]. Phenazines are ROS producing compounds and in the host, changes in the
redox balance caused by ROS result in host-cell damage and death [103]. The production
of ROS by phenazines also has implications for A. fumigatus survival [95]. Phenazines can
enter into swollen, but not resting, conidia and target the mitochondria, inducing ROS
production [95]. The accumulation of ROS is thought to interfere with A. fumigatus growth
and biofilms by inducing fungal apoptosis [95,96]. Exposure of A. fumigatus biofilms to
culture supernatants from non-mucoid and mucoid P. aeruginosa CF isolates resulted in a
greater increase of ROS in fungal biofilms exposed to the non-mucoid strain [96]. In the CF
airways, mucoid strains are associated with the downregulation of QS-regulated molecules
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including phenazines [104]. This suggests that these antagonistic interactions may occur
prior to the switch from non-mucoid to mucoid and the establishment of chronic infection
in the CF lung.

Microorganisms 2021, 9, 435 6 of 15 
 

 

 
Figure 1. (A) P. aeruginosa cells (right) grown alongside A. fumigatus conidia (left) on nutrient agar. 
P. aeruginosa inhibits growth of A. fumigatus as evidenced by reduced mycelial expansion on the 
side of bacterial growth. The green pigment produced by P. aeruginosa is pyocyanin. (B) A magni-
fied image of (A) in which A. fumigatus growth is inhibited by P. aeruginosa; the expansion of A. 
fumigatus mycelia are inhibited by the close proximity to P. aeruginosa cells. By contrast, the absence 
of bacteria on the left hand side of the fungus allow mycelia to expand outward. 

P. aeruginosa secretes a range of compounds that inhibit A. fumigatus development 
and biofilm formation [16,94,95]. Phenazines (pyocyanin, phenazine-1-carboxamide, 
1-HP and phenazine-1-carboxylic acid) are QS-regulated redox-active molecules that are 
important in bacterial respiration and energy production in oxygen-limiting environ-
ments such as the CF airways [103]. Phenazines are ROS producing compounds and in 
the host, changes in the redox balance caused by ROS result in host-cell damage and 
death [103]. The production of ROS by phenazines also has implications for A. fumigatus 
survival [95]. Phenazines can enter into swollen, but not resting, conidia and target the 
mitochondria, inducing ROS production [95]. The accumulation of ROS is thought to in-
terfere with A. fumigatus growth and biofilms by inducing fungal apoptosis [95,96]. Ex-
posure of A. fumigatus biofilms to culture supernatants from non-mucoid and mucoid P. 
aeruginosa CF isolates resulted in a greater increase of ROS in fungal biofilms exposed to 
the non-mucoid strain [96]. In the CF airways, mucoid strains are associated with the 
downregulation of QS-regulated molecules including phenazines [104]. This suggests 
that these antagonistic interactions may occur prior to the switch from non-mucoid to 
mucoid and the establishment of chronic infection in the CF lung. 

The definitive role of phenazines as a fungicidal agent is uncertain, however, as 
phenazine-deficient mutants have also been shown to inhibit fungal growth, although 
the authors of this study acknowledge the possible anti-fungal role of an unknown mol-
ecule upregulated as a result of phenazine depletion [94]. The P. aeruginosa siderophores, 
pyoverdin and 1-hydroxyphenazine (1-HP), chelate iron in the environment, depriving 
A. fumigatus of a necessary nutrient, thereby suppressing fungal growth and biofilm 
formation [94,95]. Pyoverdin is thought to be the key component involved in outcom-
peting A. fumigatus, and mutants deficient in pyoverdin biosynthesis were unable to in-
hibit fungal growth [94]. 

Another class of P. aeruginosa QS-regulated molecules are dirhamnolipids. These 
biosurfactant molecules alter A. fumigatus cell-wall phenotype by interfering with the 
extracellular matrix, enabling enhanced bacterial binding to the fungus, increasing mel-
anin production and inhibiting β 1,3-glucan synthase, causing the hyphal cell-wall to 

Figure 1. (A) P. aeruginosa cells (right) grown alongside A. fumigatus conidia (left) on nutrient agar.
P. aeruginosa inhibits growth of A. fumigatus as evidenced by reduced mycelial expansion on the side
of bacterial growth. The green pigment produced by P. aeruginosa is pyocyanin. (B) A magnified
image of (A) in which A. fumigatus growth is inhibited by P. aeruginosa; the expansion of A. fumigatus
mycelia are inhibited by the close proximity to P. aeruginosa cells. By contrast, the absence of bacteria
on the left hand side of the fungus allow mycelia to expand outward.

The definitive role of phenazines as a fungicidal agent is uncertain, however, as
phenazine-deficient mutants have also been shown to inhibit fungal growth, although the
authors of this study acknowledge the possible anti-fungal role of an unknown molecule up-
regulated as a result of phenazine depletion [94]. The P. aeruginosa siderophores, pyoverdin
and 1-hydroxyphenazine (1-HP), chelate iron in the environment, depriving A. fumigatus
of a necessary nutrient, thereby suppressing fungal growth and biofilm formation [94,95].
Pyoverdin is thought to be the key component involved in outcompeting A. fumigatus, and
mutants deficient in pyoverdin biosynthesis were unable to inhibit fungal growth [94].

Another class of P. aeruginosa QS-regulated molecules are dirhamnolipids. These
biosurfactant molecules alter A. fumigatus cell-wall phenotype by interfering with the
extracellular matrix, enabling enhanced bacterial binding to the fungus, increasing melanin
production and inhibiting β 1,3-glucan synthase, causing the hyphal cell-wall to thicken,
thereby suppressing fungal growth development [102]. In co-cultures, A. fumigatus stim-
ulates P. aeruginosa elastase production, which inhibits the growth of fungus and is also
cytotoxic to the alveolar epithelial cells, A549, in vitro [105].

These findings are of clinical relevance because although the arsenal of secondary
metabolites secreted by P. aeruginosa in the presence of A. fumigatus may have anti-fungal
properties, these bacterial compounds and the consequences arising from their interactions
with A. fumigatus, may have negative implications for the host. For example, in vivo,
melanin enables fungal evasion of phagocytic activity [106]. P. aeruginosa elastases can
degrade host antimicrobial surfactant proteins SP-A and SP-D and disrupt tight junctions
between epithelial cells [107–109]. Phenazines contribute to cytokine-mediated damage
to host cells by induce proinflammatory cytokines and siderophores contribute to iron
depletion in the host environment [110,111]

Despite the demonstrable ability of P. aeruginosa to subdue A. fumigatus growth
(Figure 1) [16,17,94,95,102], several studies reported the capacity of A. fumigatus to com-
pete with P. aeruginosa [100,112]. This supports the notion that A. fumigatus can persist
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in the CF airways, despite not being the dominant pathogen. For example, P. aeruginosa
can inhibit the growth of A. fumigatus conidia, but not of preformed hyphae [17]. This
may be attributed to the ability of hyphae, but not conidia to produce gliotoxin which
has anti-Pseudomonas activity [100,113]. A. fumigatus produce hydroxamate-containing
siderophores (ferricrocin, hydroxyferricrocin, fusarinine C, triacetylfusarinine C) in re-
sponse to iron limitation. The production of these siderophores can mitigate the effect of P.
aeruginosa pyoverdin and, in part, protect A. fumigatus biofilm, as shown in A. fumigatus
siderophore-deficient mutants, which are more susceptible to the effects of pyoverdin than
the wild-type [112].

A. fumigatus secretes a range of degradative enzymes that contribute to the ubiquity
of the fungus in nature by supporting fungal growth on plant matter [114–116]. Many
of these biological determinants also play a role in establishing disease in humans and
are associated with virulence and pathogenesis [9,115–119]. How these enzymes directly
or indirectly influence bacterial growth has not yet been investigated in detail, however,
recent studies have shown that A. fumigatus alters the environmental conditions in vitro,
by converting a nutrient-poor, nitrate-rich environment into one rich in amino acids. These
conditions, known to exist in the CF airways, may enable P. aeruginosa to outcompete A.
fumigatus by promoting a metabolic-driven increase in bacterial growth [113]. Analysis
of the culture filtrates produced by A. fumigatus identified an abundance of degradative
enzymes which are also involved in virulence, including alkaline protease 1, alkaline
protease 2, aspergillopepsin-1, and major allergen Asp f 2 [115,117–119]. The increase
in bacterial growth owing to the presence of A. fumigatus may affect the ability of host
epithelial cells to efficiently internalize incoming pathogens and participate in microbial
clearance [120]. This may be exacerbated by A. fumigatus-mediated inhibition of host cell
apoptosis [121–123].

On semi-solid nutrient agar plates, P. aeruginosa cells can travel from one area of the
plate toward the developing hyphae of A. fumigatus at another area, and form a cluster
around the hyphal tips (Figure 2). This may be caused by an area of increased nutrient
availability for the bacterial cells and indicates the ability of bacterial cells to interact
directly with the fungus.
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Figure 2. P. aeruginosa cells (indicated with black arrows) travel toward A. fumigatus mycelia and
cluster around the hyphal tips. Viewed through an Olympus BX61 fluorescent microscope (40X).

While the relationship between P. aeruginosa–A. fumigatus is antagonistic for the most
part, there is increasing evidence to show that P. aeruginosa volatile organic compounds
(VOC) stimulate the growth of A. fumigatus without the requirement for direct contact
between the pathogens [101,124]. Volatile sulfur compounds (VSC) such as dimethyl
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sulfide (DMS) released by P. aeruginosa provide A. fumigatus with a sulfur source, which
is necessary for fungal growth [124]. In the CF airways, P. aeruginosa releases VOCs [125],
thus the VOC-mediated stimulation of fungal growth may facilitate the persistence of
A. fumigatus in the lungs.

6. Interactions Between A. fumigatus and Other Pulmonary Pathogens

With the exception of P. aeruginosa, the interactions between A. fumigatus and other
pulmonary pathogens remain relatively unexplored, although this is changing as the
recognition for the impact of polymicrobial interactions involving this pathogen on disease
progression begin to surface [6]. A better understanding of these dynamics may help
predict the treatment regimens necessary to ameliorate pulmonary infections.

While bacteria such as S. aureus are associated with chronic colonization in juvenile
CF patients, A. fumigatus persists throughout the lifetime of individuals with CF, but rarely
establishes chronic infection [64,126,127]. Co-cultures of S. aureus and A. fumigatus conidia
revealed antagonistic interactions resulting in the bacteria outcompeting the fungus [18].
In this study, S. aureus cells adhered to conidia and fungal-bound bacteria served as a
chemoattractant for other bacterial cells. Fungal inhibition by S. aureus was most effective
where bacteria adhered to the surface first. Bacteria induced lysis of the conidia and
interfered with hyphal development [18].

The Gram-positive bacterium, Streptococcus pneumoniae, is the causative agent of
pneumonia and sepsis in elderly people and children [128–130]. These bacteria are also
detected in the airways of CF patients and associated with pulmonary exacerbations,
particularly in children [131–133]. S. pneumoniae inhibit the development of A. fumigatus
in vitro, and disassemble pre-formed fungal biofilm, the mechanism for which is regulated
by pneumolysin and hydrogen peroxide, which bacteria produce as a byproduct of aerobic
respiration [134].

Although Klebsiella pneumoniae is not typically associated with CF infections, it is
nonetheless a common cause of pulmonary disease [135,136]. In vitro, in mixed biofilms,
K. pneumoniae suppressed A. fumigatus conidial germination, hyphal development, and
biofilm formation without killing the fungus [137]. On the contrary, K. pneumoniae biofilm
increased in the presence of A. fumigatus. These effects were dependent upon direct contact
between the fungal and bacterial pathogens in which K. pneumoniae induced oxidative
stress and upregulation of cell wall synthesis genes in A. fumigatus [137].

Stenotrophomonas maltophilia is an emerging CF-associated pathogen [138]. Interactions
between S. maltophilia and A. fumigatus were analyzed in mixed biofilms and, similar to that
which was observed during studies using S. aureus and K. pneumoniae, the results showed
that S. maltophilia interacted directly with fungal biofilm and in the presence of bacteria, A.
fumigatus hyphal formation was delayed, conidiation was abrogated and biofilm formation
was reduced. Moreover, the conidial cell wall was thicker in the presence of S. maltophilia.

These interaction studies indicate that while bacteria outcompete A. fumigatus in terms
of growth, such encounters do not kill the fungus, but rather subdue its ability to become
invasive. In the context of CF and asthma, this may be clinically relevant, because although
A. fumigatus does not become invasive, it does persist and induce prolonged inflamma-
tion [139,140]. The propensity for the bacteria discussed here to disrupt fungal biofilm
formation suggest that the pathogens do not co-exist in biofilms. However, these bacteria
are frequently isolated with A. fumigatus from the immunocompromised airways, thereby
indicating that although co-infections exist, the pathogens may be spatially segregated.
The implications for this is the occurrence of colonization by multiple microbial species
in different areas of the respiratory system, which may necessitate tailored therapeutic
strategies.

7. Conclusions

For a long time, bacteria were thought to be the main drivers of disease in the im-
munocompromised airways [90]. However, advanced molecular techniques have identified
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fungal pathogens as a major contributing factor in the onset and development of pulmonary
infections. In particular, A. fumigatus is recognized as one of the most prevalent pathogens
associated with the lungs, rarely becoming invasive, but regularly inducing a hypersensi-
tive response in the patient. The way in which A. fumigatus interacts with other members
of the pulmonary ecosystem is fundamental to understanding how this pathogen com-
petes with others to establish infection or facilitates the establishment of other pathogens.
The consequences of synergistic and antagonistic interactions arising from co-infection
with A. fumigatus and other bacteria may have serious implications for the respiratory
health of patients and the importance of understanding how these pathogens interact is
underpinned by the negative impact of co-infection between A. fumigatus and P. aerugi-
nosa in CF patients. Thus, understanding the dynamics of the relationship between these
pathogens is fundamental for the development of targeted therapeutics that may disturb
these interactions and improve patient health.
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