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a b s t r a c t

Feature selection is a key step when dealing with high-dimensional data. In particular, these techniques
simplify the process of knowledge discovery from the data by selecting the most relevant features
out of the noisy, redundant and irrelevant features. A problem that arises in many of these practical
applications is that the outcome of the feature selection algorithm is not stable. Thus, small variations
in the data may yield very different feature rankings. Assessing the stability of these methods becomes
an important issue in the previously mentioned situations. We propose an information-theoretic
approach based on the Jensen–Shannon divergence to quantify this robustness. Unlike other stability
measures, this metric is suitable for different algorithm outcomes: full ranked lists, feature subsets as
well as the lesser studied partial ranked lists. This generalized metric quantifies the difference among
a whole set of lists with the same size, following a probabilistic approach and being able to give more
importance to the disagreements that appear at the top of the list. Moreover, it possesses desirable
properties including correction for change, upper/lower bounds and conditions for a deterministic
selection. We illustrate the use of this stability metric with data generated in a fully controlled way
and compare it with popular metrics including the Spearman’s rank correlation and the Kuncheva’s
index on feature ranking and selection outcomes, respectively. Additionally, experimental validation
of the proposed approach is carried out on a real-world problem of food quality assessment showing
its potential to quantify stability from different perspectives.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Feature selection is a key step in many classification prob-
lems [1–3], in particular in those with high dimensional datasets.
It is well known that the size of the training dataset needed
to calibrate a model grows exponentially with the number of
dimensions (the curse of the dimensionality problem). The main
motivation to implement these techniques has been to improve
the classification performance by selecting an optimum subset of
features. Numerous papers have examined feature selection with
respect to classification performance [4–6].

Additionally, the process of knowledge discovery from the
data in fields like biomedicine, bioinformatics, genetics or chemo-
metrics is simplified with the use of feature selection meth-
ods. Removing the noisy and irrelevant features while keeping
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the most relevant features is essential for understanding the
underlying process.

Identifying the most relevant features for the problem studied
has been the goal of many research papers. It has been ap-
plied to discriminate different types of cancer [7,8], to categorize
healthy and diseased tissue [9], to uncover the risk factors for a
disease [10,11] or to select genes related to a disease [12–14].

Although feature selection techniques are of great help to
identify the most relevant features in these domains, a problem
that arises in many practical problems is that the outcome of
the feature selection algorithm does not tend to be stable in the
sense that small variations in the data may yield to very different
feature rankings.

Stability (or robustness) issues have long been overlooked
in the literature. However, the topic of robustness of feature
selection techniques has attracted an increasing interest in the
machine learning field in the past few years [15–24]. The issues
have arisen as a consequence of the difficulties of reproducing
different research findings.

Evaluating the stability of the lists that come out of the feature
ranking (or selection) techniques becomes crucial before trying
to gain insight into the data. Otherwise, the conclusions derived
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from the study may be completely unreliable. Suitable stability
metrics for the different outcomes of the feature selection al-
gorithms are required. Moreover, these metrics should possess
desirable properties so that they allow for a useful interpretation
of stability and similarly comparisons among feature selection
methods.

Most proposals to quantify stability only apply to feature sub-
sets: Jaccard distance [15,25], Tanimoto distance [15], Kuncheva’s
stability index [26], Consistency measures [27], etc. Others only
deal with full ranked lists such as the Spearman’s rank correlation
coefficient [15,25,28] or the Canberra distance [16].

An interesting alternative that lies between full ranked lists
and lists with feature subsets is the use of partial ranked lists, that
is, a list with the top-k features and the relative ranking among
them. This approach has been used in the information retrieval
domain [29] to evaluate queries and it seems more natural when
the goal is to analyze a subset of features.

It seems reasonable that when it comes to assess the ro-
bustness of feature selection techniques, two ranked lists should
be considered much less similar if their differences occurred at
the ‘‘top’’ rather than at the ‘‘bottom’’ of the lists. Up to our
knowledge only a modified version of the Canberra distance has
been proposed for this purpose [30] but it does not extend to
other feature selection outcomes.

We propose a stability measure based on information the-
ory that takes this into consideration. Our proposal is based
on mapping each ranked list into a probability distribution and
then, measuring the dissimilarity among these distributions using
the information-theoretic Jensen–Shannon divergence. This sin-
gle metric, SJS (Stability based on the Jensen–Shannon divergence)
applies to different algorithm outcomes: full ranked lists, partial
ranked lists as well as top-k lists with equal length. Furthermore,
it also fulfills the desirable properties for a stability metric so
that it enables suitable comparison and interpretation of stability
values.

The rest of this paper is organized as follows: In Section 2
we formulate the problem of feature selection. In Section 3 we
describe the robustness issue and common metrics to quantify
the stability together with a comparison among them. The new
metric based on the Jensen–Shannon divergence SJS is presented
in Section 4. Experimental evaluation is shown in Section 5.
Finally Section 6 summarizes our main conclusions.

2. Feature selection techniques

Consider a training dataset D = {(xi, di), i = 1, . . . ,M} with
M examples and a class label d associated with each sample. Each
sample xi is a t-dimensional vector xi = (xi1, xi2, . . . , xit ) where
each component xij represents the value of a given feature fj for
that example i, that is, fj(xi) = xij.

Feature selection techniques measure the importance of a
feature ranking or a subset of features according to a given
measure [1,31]. From a functional point of view the output of a
feature selection algorithm may be a ranking (weighting-score)
on the features or feature set [5,31]. Obviously, representation
changes are possible and thus, a feature subset can be extracted
from a full ranked list by selecting the most important features
and a partial ranked list can be also derived directly from the full
ranking by removing the least relevant features.

Consider now a feature ranking algorithm that leads to a
ranking vector r with components

r = (r1, r2, r3, . . . , rt ) (1)

where 1 ≤ ri ≤ t . Note that 1 is considered the highest rank.
Consider also a top-k list as the outcome of a feature selection

technique

s = (s1, s2, s3, . . . , st ), si ∈ {0, 1} (2)

where 1 indicates the presence of a feature and 0 the absence and∑t
i=1 si = k for a top-k list.
Lists with a full ranking of features can be converted into top-

k lists that contain the most important k features. Converting a
ranking output into a feature subset is easily conducted according
to

si =
{

1 if ri ≤ k
0 if otherwise

A fundamental property of a feature selection method is its
robustness [19,24,32]. This becomes critical in many domains
where the stability of a feature selection method is crucial for
interpretation by domain experts. Robustness has been defined
as the sensitivity of the method to small perturbations in the
training set [15].

Suppose we ran a feature ranking algorithm K times and
obtained a set of rankings A = {r1, r2, . . . rK }. For the purpose of
illustration, Fig. 1 shows an example where instances are defined
by ten features (t = 10) and the feature ranking algorithm is
applied to five different subsamples of the data (K = 5)

Once obtained, the dissimilarity among the outputs can be
measured at different levels:

• Among full ranked lists
• Among feature subsets (top-k lists)
• Among partial ranked lists (top-k ranked lists)

Thus, the outcomes for full ranked lists can be gathered in a
matrix A with elements rij with i = 1, . . . , t and j = 1, . . . , K
that indicate the rank assigned in run j for feature i. Note that Afr

stands for set of lists with full ranking.

Afr =
[
r′1 r′2 r′3 r′4 r′5

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 9 7 8 7
2 1 2 3 3
4 7 3 5 2
9 6 10 9 8
5 3 5 1 4
10 5 8 7 9
7 10 9 10 10
8 2 6 6 5
1 4 1 2 1
6 8 4 4 6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
10×5

Fig. 2 shows the top-4 ranked lists and the top-4 lists for
the example presented above. Additionally, some of the stability
metrics that are commonly applied for each output format are
also shown.

The outcomes for the top-4 lists can also be gathered in a
matrix A∫ with elements sij with i = 1, . . . , t and j = 1, . . . , K
that indicate whether or not the feature-i has been selected
among the top-4 most relevant in the run-j.

As =
[
s′1 s′2 s′3 s′4 s′5

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
1 1 1 1 1
1 0 1 0 1
0 0 0 0 0
0 1 0 1 1
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
1 0 1 1 1
0 0 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
10×5
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Fig. 1. Illustration of the stability problem for feature ranking methods.

In the case of dealing with partial ranked lists, the set of lists
can be represented in matrix Apr

Apr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0 0 0 0
2 1 2 3 3
4 0 3 0 2
0 0 0 0 0
0 3 0 1 4
0 0 0 0 0
0 0 0 0 0
0 2 0 0 0
1 4 1 2 1
0 0 4 4 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
10×5

In next section, we review the most common ways to assess
the robustness of feature selection techniques.

3. Related work: Quantifying the stability of feature selection
techniques

Non-stability of feature selection is a problem that may appear
in practical applications, but in particular it is more noticeable
when the available dataset is small and the feature dimension-
ality is high, as is common in biomedicine, bioinformatics, and
chemometrics. Instability issues make the feature rankings unre-
liable for clinical use. Therefore, it becomes essential to provide
metrics to evaluate the robustness of given feature selection
techniques when applied to our data. Efforts have also been

made in order to increase the robustness of feature selection
methods [21,22,33–35].

The assessment of stability has attracted great interest in
the field of feature selection. In general, stability is quantified
following two different approaches: (i) Given a set of rankings
(or subsets), pairwise similarities are computed and then re-
duced to a single metric by averaging. (ii) Defining a function
applied on matrix A but not based on pairwise similarities. An-
other qualitative option for this assessment is a visual analysis of
stability.

Next, we present desirable properties for the stability metrics
and a review of previous proposals highlighting their advantages
and drawbacks.

3.1. Properties of stability metrics

There are some properties that a stability metric should pos-
sess so that it allows for a useful interpretation of stability
and similarly comparisons among feature selection/ranking tech-
niques. Kuncheva [26] was the first to provide a list of desirable
properties for a similarity measure SM between two feature
subsets of equal length.

These properties proposed in [26], however, only refer to
similarity measures (SM ) and they do not necessarily imply that
the stability index obtained by computing pairwise similarities
have the same properties as the distance metric. On the other
hand, there are other proposals such as [27] (or ours) that are not



4 R. Alaiz-Rodríguez and A.C. Parnell / Knowledge-Based Systems 195 (2020) 105745

Fig. 2. Outcomes for feature selection techniques: full ranked lists, partial ranked lists (top-k ranked lists) and top-k lists.

based on calculating pairwise similarities. These properties were
later refined in [24] where the authors study the properties from
the wider viewpoint of the stability metric.

Nogueira et al. [24] focused on feature selection techniques
that may select feature subsets of arbitrary cardinality identi-
fying some properties necessary for a given stability measure.
These desirable properties are: upper and lower bounds, cor-
rection for chance, maximum stability, and fully defined. They
further showed that many stability measures widely used in the
literature do not possess all these properties.

The four properties proposed by [26] and [24] are:

Property 1: Upper and Lower Bounds
The stability metric Φ should have upper and lower bounds
that do not depend on the total number of features or the
feature subset length.
Property 2: Maximum ←→ Deterministic Selection The sta-
bility metric Φ(A) should reach its maximum if-and-only-if
all feature sets in A are identical.
Property 3: Correction For Chance
When the selection is random, that is feature sets of size
ki have an equal probability of being drawn, the expected
value of Φ(A) should be constant, which is set for conve-
nience to 0.
Property 4: Fully Defined
The stability metric Φ(A) should be completely defined for
any set A of features. This property ensures the stability
metric can cope with feature subsets of any size.

This latter property enables the application of a stability met-
ric to domains where the feature selection algorithm may return
subsets with different number of features. Nonetheless, we con-
sider this property as optional but not essential since there are
many scenarios in which the number of selected features is fixed
to a number k for a given study.

3.2. Stability metrics based on computing pairwise similarities

The most widely used approach to evaluate the stability of
a feature selection (or ranking) algorithm that provides several
results A = {r1, r2, . . . rK }, is to compute pairwise similarities and
average the results. This approach leads to a scalar value:

Φ(A) =
2

K (K − 1)

K−1∑
i=1

K∑
j=i+1

SM (ri, rj) (3)

where SM refers to any similarity metric which takes as input the
appropriate format of A.

3.2.1. Similarity metric for feature subsets
When the goal is to measure the similarity between fea-

ture subsets (also referred as top-k lists) different authors have
proposed similarity metrics: Jaccard distance [15], Tanimoto dis-
tance [15], Kuncheva’s stability index [26], Adjusted Stability
Measure (ASM) [36], Relative Hamming distance [37],
Dice–Sorense’s index [38], Ochiai’s index or Percentage of over-
lapping features [39]. Of these, the Jaccard distance and the
Kuncheva’s stability index appear to be the most widely ac-
cepted [22,26,39].

Let consider now s and s′ as the output vector of a feature
selection algorithm applied to two different subsamples of D.

The Jaccard stability index is defined as

JI(s, s′) ==
|s ∧ s′|
|s ∨ s′|

=
o
l

(4)

where s and s′ are the two feature subsets, o is the number of fea-
tures that are common in both lists and l the number of features
that appear in any of the two lists. The Jaccard index lies in the
range (0, 1). This metric can cope with feature subsets of different
length but it does not take into account the similarity between
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Table 1
Eligible stability metrics for different feature rankings and feature subset formats.
Stability metric Full ranked

lists
Partial ranked
lists

Partial ranked lists
with different length

Feature subset
lists

Feature subset lists
with different length

Canberra distance [40] Yes – – – –

Canberra adapted
distance [30]

Yes Yes Yes – –

Spearman’s rank
correlation coefficient
[15]

Yes – – – –

Jaccard distance [15] – – – Yes Yes

Tanimoto [15] – – – Yes Yes

Relative Hamming
distance [37]

– – – Yes Yes

Kuncheva’s stability
index [26]

– – – Yes –

Adjusted Stability
Measure ASM [36]

– – – Yes Yes

Relative Weighted
Consistency CWrel [27]

– – – Yes Yes

Dice–Sorense’s index
[38]

– – – Yes Yes

Our proposal:
Jensen–Shannon stability
metric

Yes Yes – Yes –

subsets of features due to chance (randomness) and therefore it
does not possess the correction for chance property [24].

The Kuncheva’s index (KI) for these two top-k lists is
given by

KI(s, s′) =
ot − k2

k(t − k)
(5)

where t is the total number of features, o is the number of
features that are present in both lists and k is the length of the
sublists, that is,

∑t
i=1 si =

∑t
i=1 s

′

i = k. The KI satisfies −1 <

KI ≤ 1, achieving its maximum when the two lists are identical
(o = k) and values close to zero for independently drawn lists s
and s′ (i.e. o expected to be around k2/t).

The KI metric possesses the aforementioned three properties
of a stability metric but it is limited to feature subsets of equal
length and it cannot be extended to ranked lists (either full or
partial).

3.2.2. Similarity metric for ranked lists (full and top-k)
Consider r and r′ the output of a feature ranking technique

applied to two subsamples of D. The Spearman’s rank correlation
coefficient [15,25,36,39] and Canberra distance [40] have been
proposed to measure the similarity between rankings. Of the two,
Spearman’s rank correlation coefficient (SR) is perhaps the most
popular. The SR between two ranked lists r and r′ is defined by

SR(r, r′) = 1− 6
t∑

i=1

(ri − r ′i )
2

t(t2 − 1)
(6)

where ri is the rank of feature-i and t the total number of features.
SR values range from −1 to 1. It takes the value one when
the rankings are identical and the value zero when there is no
agreement between rankings. This metric is only suitable for lists
with the same size.

A less studied situation is to focus on the top ranked features
but unlike the top-k list, keeping the ranking information. Thus,
the Canberra distance, initially proposed to assess the similarity
between full feature rankings, was extended to top-k ranked lists
using a location parameter [30].

3.3. Stability metrics based on a function definition

Generally, we can define a function Φ(A) to avoid computing
all pairwise similarities. A popular measure in this category is the
Relative Weighted Consistency Measure CWrel [27]. This stability
metric is a direct function of the frequency of the features after
feature selection. Other proposals within this category include
the frequency of selection normalized by the number of feature
subsets and averaged over all features [23]. Although the CWrel
metric can cope with lists with arbitrary length, it lacks of two
desired aforementioned properties: maximum and correction for
change (proofs can be found in [24]).

3.4. Metric comparison: Advantages and limitations

The output of a technique that selects the most relevant fea-
tures may come in different formats. Table 1 summarizes for
which output format some widely known stability metrics can
be applied.

It is evident that the stability metrics developed for feature
subsets cannot deal with rankings and in general the opposite
is also true. There are metrics, however, such us the Canberra
distance – initially proposed for full feature rankings – that was
extended to compute the distance between upper partial lists
of the original rankings [30]. By contrast, we propose a stability
measure, SJS , that can deal with full ranked lists, partial ranked
lists as well as feature sets.

Regarding the three properties mentioned previously, Table 2
shows a general overview of these properties for several stability
metrics proposed for feature selection methods. Note that the
fully defined property defined in [24] was included in Table 2
(last column, feature subsets with arbitrary length). As mentioned
before, we consider it useful to determine whether or not a
stability metric can be applied to a given output format but in our
opinion this cannot be viewed as an essential property by itself.

Many of the metrics proposed for computing the stability for
feature sets can handle lists of different length: Tanimoto, ASM,
CWrel, the relative Hamming distance, the Jaccard distance and
Dice–Sorense’s index. The popular Kuncheva index (and ours)
applies only to lists with equal length, though. Note, however,
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Table 2
Properties of stability metrics for feature selection methods.
Stability metric Upper and

Lower bounds
Maximum Correction

Jaccard distance [15] Yes Yes –
Tanimoto [15] Yes Yes –
Relative Hamming distance [37] Yes Yes –
Kuncheva’s stability index [26] Yes Yes Yes
Adjusted Stability Measure ASM [36] Yes – Yes
Relative Weighted Consistency CWrel [27] Yes – –
Dice–Sorense’s index [38] Yes Yes –
Our proposal: Jensen–Shannon stability Yes Yes Yes

that these metrics able to deal with lists with arbitrary length do
not possess either one or two of the desired properties.

Thus, some well known stability metrics do not verify the cor-
rection for change property, such as Tanimoto, Relative Hamming
distance, Jaccard distance, Dice–Sorense’s index or the CWrel
metric. Besides this, stability metrics like ASM or CWrel do not
fulfill the Maximum property. It is only the Kuncheva index that
has the three properties that appear in Table 2.

The main strength of the metric SJS we propose is that it
possesses as we will show in Section 4.3 the essential properties
defined for a stability metric and additionally, it can deal either
with feature rankings (full /partial) or feature subsets. Moreover,
it does not require such pairwise comparison that becomes com-
putationally expensive for large datasets. In any case, the feature
lists should have the same number of elements.

3.5. Visual analysis of robustness

The outcome of a feature ranking algorithm can be interpreted
as a point in a high dimensional space (with t dimensions).
The stability of a pairwise ranking can be viewed as computing
distances between points in that high dimensional space and
averaging the results. These (scalar) metrics can be seen as pro-
jections to one dimensional space and their use only provides
guidance as to where the feature selector stands in relation to
a stable and a random ranking algorithm.

The use of graphical methods as a simple alternative approach
to evaluate the stability of feature ranking algorithms has been
proposed in [11]. It has been highlighted that if we change from
a projection to a space with one dimension, into a space with
two or more dimensions, we can conduct a visual analysis that
allows the user to visually assess stability as well as establish
comparisons with other feature ranking or selection methods.

In [11], a dimensionality reduction technique like Multi-
Dimensional Scaling (MDS) [41] has been proposed for a visual
analysis of robustness. It allows the projection of data from a
high dimensional space to a 2D or 3D space while preserving the
distance in the original high dimensional space.

Fig. 3 illustrates this approach with several feature ranking
algorithms:FR-a, FR-b, FR-c, FR-d, FR-e. The algorithms are run on
seven sub-samples of the data. This figure allows the user to see
in a single figure that the most unstable algorithm is FR-a since
the points are very scattered. The outcomes of FR-d, however,
are clustered together. The same applies to the FR-e and these
therefore are the most stable. This figure also allows the user to
see that FR-e generates a similar ranking to FR-d. Finally, note
that FR-c is very different to the aforementioned groups.

4. An information theoretic approach to measure robustness

Our approach to measure the stability of feature selection/
ranking techniques is based on mapping the output of the feature
selection/ranking algorithm into a probability distribution. Then,
the distance between these distributions is measured with the
Jensen–Shannon divergence [42].

Fig. 3. Visual-based stability analysis for five hypothetical feature rankings (FR).

Fig. 4. Mapping of ranks into probabilities for full ranked lists.

Below we present our proposal for full ranked lists and then
Sections 4.1 and 4.2 describe its extension to top-k ranked lists
and lists with feature subsets, respectively.

Given the output of a feature ranking algorithm, features at the
top of the list should be given the highest probability (or weight)
and it should smoothly decrease according to the rank. Thus,
following [29] the ranking vector r = (r1, r2, r3, . . . , rt ) would be
mapped into the probability vector p = (p1, p2, p3, . . . , pt ) where

pi =
1
2t

⎛⎝1+
t−ri∑
j=0

(ri + j)−1

⎞⎠ (7)

where by design
∑t

i=1 pi = 1. Fig. 4 illustrates the mapping of
rankings into probabilities for full ranked lists.

We can thus quantify the similarity between two ranked lists
r and r′ by measuring the divergence between the distributions
p and p′ associated with them.
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The most widely used metric for measuring the difference
between two probability distributions is the Kullback–Leibler (KL)
divergence DKL [43], given by

DKL(p∥p′) =
∑

i

pi log
pi
p′i

(8)

This measure is always non negative, taking values from 0 to∞,
and DKL(p∥q) = 0 if p = q. The KL divergence, however, has
two important drawbacks, since (a) in general it is asymmetric
(DKL(p∥q) ̸= DKL(q∥p) thus not a true distance measure, and (b)
it does not generalize to more than two distributions. For this
reason, we use the related Jensen–Shannon divergence [42], that
is a symmetric version of the Kullback–Leibler divergence and is
given by

DJS(p∥p′) =
1
2

(
DKL(p∥p̄)+ DKL(p′∥p̄)

)
(9)

where p̄ is the average of the distributions.
Given a set of K distributions {p1, p2, . . . , pK }, where each one

corresponds to a run of a given feature ranking algorithm, we
can use the Jensen–Shannon divergence to measure the similarity
among the distributions produced by different runs of the feature
ranking algorithm, what can be expressed as

DJS(p1, . . . , pK ) =
1
K

K∑
i=1

DKL(pi∥p̄) (10)

or equivalently as

DJS(p1, . . . , pK ) =
1
K

K∑
j=1

t∑
i=1

pij log
pij
p̄i

(11)

with pij being the probability assigned to feature i in the ranking
output j and p̄i the average probability assigned to feature i.

Some desirable constraints that this stability measure pos-
sesses includes:

• It falls in the interval [0 ,1]
• It takes the value zero for completely random rankings
• It takes the value one for stable rankings
• It is invariant to the ordering of the ranking probability

distributions

We define the stability metric SJS (Stability based on the
Jensen–Shannon divergence) as:

SJS(p1, . . . , pK ) = 1−
DJS(p1, . . . , pK )
D∗JS(p1, . . . , pK )

(12)

where DJS is the Jensen–Shannon Divergence among the K rank-
ing outcomes and D∗JS is the divergence value for a ranking gen-
eration that is completely random. In a random setting, p̄i = 1/t
which leads to a constant value D∗JS

D∗JS(p1, . . . , pK ) =
1
K

K∑
j=1

t∑
i=1

pij log(pijt)

=
1
K
K

t∑
i=1

pi log(pit) =
t∑

i=1

pi log(pit) (13)

where pi is the probability assigned to a feature with rank ri. Note
that this maximum value depends exclusively on the number of
features and it can be computed beforehand with the mapping
provided by (7).

We can check that:

• For a completely stable ranking algorithm, pij = p̄i in (11).
That is, the rank of feature-j is the same in any run-i of
the feature ranking algorithm. This leads to DJS = 0 and a
stability metric SJS = 1

Fig. 5. Mapping of ranks into probabilities for partial ranked lists.

• A random ranking will lead to DJS = D∗JS and therefore
SJS = 0
• For any ranking neither completely stable nor completely

random, the similarity metric SJS ∈ (0, 1). The closer to 1,
the more stable the algorithm is.

4.1. Extension to partial ranked lists

The similarity between partial ranked lists, that is, partial lists
that contain the top-k features with relative ranking informa-
tion can be also measured with the SJS metric. In this case, the
probability is assigned to the top-k ranked features is:

pi =

⎧⎪⎪⎨⎪⎪⎩
1
2k

⎛⎝1+
k−ri∑
j=0

(ri + j)−1

⎞⎠ if ri ≤ k

0 otherwise

(14)

Fig. 5 shows the mapping of rankings into probabilities for
top-k ranked lists.

The SJS is computed according to (12) with the normalizing
factor D∗JS given by (13) and the probability pi assigned to a feature
with rank ri computed as stated in (14).

4.2. Extension to feature subsets

When we deal with feature subsets with a given number of
top-k features, a uniform probability is assigned to the selected
features (see Fig. 6) according to

pi =

{ 1
k

if ri ≤ k
0 otherwise

(15)

The SJS is computed according to (12) with the probability pi
assigned to a feature according to (15) and the normalizing factor
D∗JS given by

D∗JS(p1, . . . , pK ) =
t∑

i=1

pi log(pit) =
t∑

i=1

1
k
log

(
1
k
t
)
= log

(
t
k

)
(16)

where k is the length of the sublist and t the total number of
features.

Algorithm 1 summarizes the different options for computing
the stability metric SJS depending on the outcome of the feature
selection technique.
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Fig. 6. Mapping of ranks to probabilities for feature subsets (top-k lists).

Algorithm 1: Stability metric based on the Jensen–Shannon
Divergence SJS
1 h! function SJS (A, ListFormat);
Input : Matrix A: Feature selection/ranking outputs

ListFormat: List Format in A
Output: SJS(A)

2 if ListFormat=FullRanking then

3 pi =
1
2t

⎛⎝1+
t−ri∑
j=0

(ri + j)−1

⎞⎠
4 D∗JS(p1, . . . , pK ) =

∑t
i=1 pi log(pit)

5 else if ListFormat=PartialRanking then

6 pi =

⎧⎪⎪⎨⎪⎪⎩
1
2k

⎛⎝1+
k−ri∑
j=0

(ri + j)−1

⎞⎠ if ri ≤ k

0 otherwise

7 D∗JS(p1, . . . , pK ) =
t∑

i=1

pi log(pit)

8 else if ListFormat=FeatureSubset then

9 pi =

{ 1
k

if ri ≤ k
0 otherwise

10 D∗JS(p1, . . . , pK ) = log
(
t
k

)
11 end

12 Compute DJS(p1, . . . , pK ) =
1
K

K∑
j=1

t∑
i=1

pij log
pij
p̄i

13 Return SJS(p1, . . . , pK ) = 1−
DJS(p1, . . . , pK )
D∗JS(p1, . . . , pK )

4.3. Properties of the stability metric SJS

The SJS stability measure presented in this work possesses the
first three of the aforementioned properties:

Property 1: Upper and Lower Bounds
The stability metric SJS takes values in the interval [0 ,1]
Property 2: Maximum←→ Deterministic Selection
The stability metric SJS reaches its maximum value 1 if-and-
only-if all feature sets in A are identical.
Property 3: Correction For Chance

When the selection is random, there is a normalizing term
D∗JS(p1, . . . , pK ) that corresponds to the divergence value for
a feature set or ranking that is completely random. In that
case, SJS takes the value 0.

The stability metric we propose in this paper focuses on prob-
lems where the feature rankings or feature subsets have the same
length, hence the fully defined property does not apply.

To summarize, feature selection techniques can represent fea-
ture relevance as a feature subset or as a ranking. So far, there
exist stability metrics that are only suitable for specific outcomes
of the feature selection techniques. Our proposal provides a solu-
tion for unifying stability of subset selection and rankings since
SJS applies to feature subsets and full ranked lists. It also extends
to the least studied partial ranked lists that only keep the ranking
information for the best ranked features. This is interesting since
the variability of the ranks for non relevant features definitely
adds noisy information in this process.

When the ranking is taken into account (either full or partial
ranked lists) differences at the top of the list would be considered
more important than differences at the bottom part. This unifying
framework satisfies the desired properties for a stability metric
(bounds, maximum and correction for change). Moreover, it is
function-based metric that, unlike most stability metrics, is not
based on computing pairwise similarities, and therefore is less
computationally expensive for large high-dimensional datasets.
The application of the SJS metric is limited, however, to lists with
the same cardinality.

The SJS metric has been initially proposed to measure the
stability of feature selection techniques. Nonetheless, it can be
extended to other applications that require ranking comparisons
since this metric provides an indication of how similar rankings
are. For instance, ranking is a very important topic in information
search where retrieval rankings need to be compared in order to
find, for example, patterns of similarity and differences in sets
of rankings. Other domains like computational biology, genetics
or biomedicine also base decision-making processes on sets of
rankings that need to be compared.

5. Experimental results

5.1. Illustration on artificial outcomes

In this section we illustrate the stability metric SJS for the
outcomes of some hypothetical feature ranking algorithms. We
generate sets of N = 100 rankings of t = 2000 features. We
simulate several Feature Ranking (FR) algorithms:

• FR-0 with 100 random rankings, that is, a completely ran-
dom FR algorithm
• FR-1 with one fixed output, and 99 random rankings.
• FR-2 with two identical fixed outputs, and 98 random rank-

ings.
• FR-i with i identical fixed outputs, and 100 − i random

rankings.
• FR-100 with 100 identical rankings, that is, a stable FR

technique.

Fig. 7 shows our stability metric based on the Jensen–Shannon
divergence (SJS) compared ton the Spearman’s rank correlation
coefficient (SR) for FR techniques that vary from completely ran-
dom (FR-0, on the left) to completely stable (FR-100 on the right).
For the FR-0 method, the stability metric SJS takes the value 0,
while its value is 1 for the stable FR-100 algorithm. Note that SJS
takes similar values to the Spearman’s rank correlation coefficient
SR.
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Fig. 7. SJS metric and Spearman rank correlation for Feature Ranking (FR)
techniques that vary from completely random (FR-0 on the left) to completely
stable (FR-100 on the right).

Fig. 8. SJS metric and the KI for Feature Selection (FS) techniques that vary from
completely random (FS-0 on the left) to completely stable (FS-100 on the right).
The metrics work on top-k lists with k=600.

Suppose now we have some Feature Selection (FS) techniques,
for which stability needs to be assessed. These FS methods (FS-
0,FS-1, . . . ,FS-100) have been obtained from the corresponding FR
techniques described above, extracting the top-k features (k =
600). In the same way, they vary smoothly from a completely
random FS algorithm (FS-0) to stable FS a completely stable one
(FS-100).

The Jensen–Shannon metric SJS together with the Kuncheva
Index (KI) are depicted for top-600 lists in Fig. 8. Note that the
SJS metric applied to top-k lists provides similar values to the KI
metric. The Jensen–Shannon based measure SJS can be applied to
full ranked lists and partial lists, while the KI is only suitable for
partial lists and the SR only to full ranked lists.

Generating partial ranked feature lists is an intermediate step
between: (a) generating and comparing full ranked feature lists
that are, in general, very long and (b) extracting sublists with
the top-k features, but with no relevance information for each
feature. The SJS metric based on the Jensen–Shannon divergence
also allows to compare these partial ranked lists.

Suppose we have sets of sublists with the 600 most important
features out of 2000 features. We generated several sets of lists:
some of them show high differences in the lowest ranked features
whilst others show high differences in the highest rank features.
The same sublist can come either with the ranking information

Fig. 9. SJS (partial ranked lists), SJS (top-k list) and the Kuncheva index (top-
k lists) for Feature Selection (FS) techniques that extract the top-600 features
out of 2000. The overlap among the lists is around 350 common features. The
situations vary smoothly from sets of partial lists with differences at the bottom
of the list (left) to sets of lists that show high differences at the top of the list
(right).

(partial ranked lists) or with no information about the feature
importance (top-k lists). The overlap among the lists is around
350 features. Fig. 9 shows the value SJS (partial ranked lists), SJS
(top-k list) and the Kuncheva index (top-k lists) for the lists.

Even though the lists have the same average overlap (350
features), some of them show more discrepancy about which are
the top features (Fig. 9, on the right), while other sets show more
differences at the bottom of the list.

The KI cannot handle this information since it only works
with top-k lists and therefore, it assigns the same value for these
very different situations. When the SJS works at this level (top-
k list), it also gives the same measure for all the scenarios. The
SJS can also handle the information provided in partial ranked
lists, considering the importance of the features and therefore
assigning a lower stability value for those sets of lists with high
differences at the top of the lists, that is with high discrepancy
about the most important features.

Likewise, it assigns a higher stability value for those sets
where the differences appear in the least important features,
but there is more agreement about the most important features.
Fig. 9 illustrates this fact where SJS (for partial ranked lists) varies
according to the location of the differences in the list, while SJS
(top-k lists) and the KI assign the same value regardless of where
the discrepancies appear.

Next, consider the situation where the most important 600
features out of 2000 have been extracted and the overlap among
the top-600 lists is 100%. We have evaluated several scenarios:

• The feature ranks are identical in all the lists (Identical)
• The ranking of a given feature is assigned randomly (Ran-

dom)
• Neither completely random nor completely identical.

Working with top-k lists (KI), the stability metrics provide a
value of 1 that is somewhat misleading considering the different
scenarios that may appear. It seems natural that, even though all
agree about the 600 most important features, the stability metric
should be lower than 1 when there is low agreement about which
are the most important features.

The SJS measure allows us to work with partially ranked
lists and therefore establish differences between these scenarios.
Fig. 10 shows the SJS (partial ranked lists) and the SJS , KI (top-k
lists) highlights this fact. SJS (partial ranked lists) takes a value
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Fig. 10. SJS (top-k list) and SJS (partial ranked lists) for Feature Selection (FS)
techniques that extract the top-600 features out of 2000. The overlap among
the sublists with 600 features is complete. The ranking assigned to each feature
varies from FS techniques for which it is random (left) to FS techniques for
which each feature ranking is identical in each sublist (right).

slightly higher than 0.90 for a situation where there is complete
agreement about which are the most important 600 features, but
complete discrepancy about their importance. Its value increases
to 1 as the randomness in the feature ranking assignment de-
creases. In contrast with this, KI would assign a value of 1 which
may mislead when studying the stability issue.

5.1.1. Computational time
In order to more thoroughly examine the stability metrics and

consider real-time constraints, we have measured the execution
time required to compute the stability metrics analyzed previ-
ously in four different scenarios. These scenarios, that differ in
the number of features t and the number of feature lists K , are:

• Scenario-A: K = 100 and t = 2000
• Scenario-B: K = 300 and t = 2000
• Scenario-C: K = 100 and t = 3000
• Scenario-D: K = 300 and t = 3000

The procedures have been implemented in Matlab and for
program profiling the following configuration was used:

• Processor: Intel (R) Core (TM) 2 Duo E4500 (2.20 GHz).
• Memory: 2 GB.
• Operating System: Windows10 Enterprise (64-bit).

Fig. 11 shows execution times for the SR and SJS metrics in
the aforementioned scenarios. As we can see, the computation
time for SR is always higher than the required for SJS , being
from twice its value to 24 times higher. Execution time for SR
is also very sensitive to both dimensionality and the number
of rankings. Consider we change from scenario-A to scenario-D,
where this latter scenario has 200 more rankings and the lists
have 1000 more features than scenario-A. In this situation, com-
putation time for KI goes from 60 ms in scenario-A to 1830 ms
in scenario-D. The execution time for SJS is, however, much lower
and less sensitive as it goes from 27 ms in scenario-A to 75 ms in
scenario-D.

Fig. 12 shows execution times for the KI and SJS for top-
600 lists extracted from the four scenarios defined above. The
KI index also requires more computational time than SJS in all
the scenarios evaluated. For instance, SJS is computed in 6 ms
when we have 100 rankings and 2000 lists of top-600 features
while KI requires 39 ms. This means the computation of the KI
metric 6 times much slower that the one for SJS . Differences are

Fig. 11. Computation time (ms) for the SJS stability metric and the Spearman’s
rank correlation coefficient for different scenarios: Scenario A (K = 100, t =
2000), scenario B (K = 300, t = 2000), scenario C (K = 100, t = 3000), scenario
D (K = 300, t = 3000).

Fig. 12. Computation time (ms) for the SJS stability metric and the Kuncheva’s
stability index coefficient for different scenarios with top-600 features: Scenario
A (K = 100, t = 2000), scenario B (K = 300, t = 2000), scenario C (K = 100,
t = 3000), scenario D (K = 300, t = 3000).

even larger when we increase either the number of lists or the
dimensionality. Thus, in Scenario-D, computing SJS takes 28 ms
whereas computing KI requires 780 ms, (over 27 times more time
than calculating SJS) what makes SJS more suitable for real-time
applications.

5.2. Practical application of food quality assessment

In this section we evaluate the SJS metric to quantify the
stability of feature selection techniques applied to a real practical
application of food quality assessment. We address the problem
of authentication of suckling lamb meat with respect to the
type of feeding. The rearing system determines the difference in
quality and prices in the market. The use of FTIR spectroscopy
for the discrimination of fat samples according to the rearing
system provides several advantages over conventional analytical
methods in a laboratory, mainly its speed, cost and versatility.

The FTIR spectra comprise, however, a large number of irrele-
vant and redundant information. Appropriate feature selection is
an aid to identify spectrum regions with more prediction power
and link this information with chemical interpretation, what has
high interest for the veterinarian professionals.

Omental fat samples were collected from carcasses of suckling
lambs [44]. Lambs came from the flocks of three farms affiliated
to the ‘Asociación Nacional de Criadores de Ganado Ovino de Raza
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Table 3
Stability of several feature selectors evaluated with the similarity measure based
on the Jensen–Shannon divergence (SJS ) on a set of 50 rankings.

SJS (full ranked list)

1R χ2 GR Relief

0.87 0.92 0.94 0.94

Churra’, which is a Churra breeders association from the region of
‘Castilla-Leon’ (Spain). Lambs were reared either exclusively on
Ewe Milk (EM) or on a Milk Replacer (MR). The whole dataset
has 134 instances: 66 from lambs being fed with a MR, while the
other 68 are reared on EM. All FTIR spectra were recorded from
4000 to 750 cm−1 with a resolution of 4 cm−1, what leads to a
total of 1687 features.

The SJS stability metric has been used to experimentally assess
the stability of four feature selectors: χ2 [45–47], Information
Gain Ratio (GR) [46,48,49], Relief [46,50] and other based on
the parameter values of an independent classifier (Decision Rule
1R) [46,51].

The dataset was randomly split in ten folds, launching the
feature ranking algorithm with nine out the ten folds, in a consec-
utive way. Five runs of this process resulted in a total of N = 50
rankings. Feature ranking was carried out with WEKA [46] and
the computation of the stability with MATLAB [52].

The SJS (full ranked list) measure gives an overall view of the
stability. The results (Table 3) indicate that in the case of the
spectral data, the most stable methods seem to be Relief and GR,
while 1R appears as the one with less global stability.

The metric SJS also enables an analysis focused on the top
ranked or selected features. Fig. 13 depicts the SJS for a given
number of the top-k selected features (continuous line) and the
SJS for the top-k ranked features (dashed line).

The differences between SJS for top-k lists and top-k ranked
lists is explained by the fact that in the latter, differences/
similarities in the lowest ranks are attached less importance

Table 4
Stability of several feature selectors evaluated with the similarity measure based
on the Spearman’s rank correlation coefficient (SR) on a set of 50 rankings.
SR (full ranked list)

1R χ2 GR Relief

0.79 0.85 0.90 0.94

than differences/similarities in the highest ranks. Thus, results
show that the four feature selectors share a common trend: SJS
(top-k) assigns a lower value of stability that may be some-
times substantially different. Thus, for the 1R feature selector, SJS
(ranked top-400) is 0.82, but it drops to 0.70 when all features are
given a uniform weight. This is explained by the fact that many
differences appear at the bottom of the list and when they are
given the same importance as differences at the top of the list,
the stability measure drops considerably.

When we focus on the top-k (selected/ranked) features and
the value of k is low, the feature selectors are quite stable. For
example, for k = 10, SJS takes the value 0.92 for χ2, 0.73 for 1R,
0.92 for GR and 0.91 for Relief.

The plots in Fig. 13 allow to see that the stability decreases
as the cardinality of the feature subset increases for the feature
selection techniques 1R, χ2 and GR while Relief shows an stability
profile with high stability regardless of the size of sublist. Looking
at the whole picture GR is as stable as Relief. However, when we
focus on lists with the most important features, GR’s robustness
decreases as the feature subset size increases, whereas Relief does
not.

Next, we compare the proposed metric SJS with the Spear-
man’s rank correlation coefficient (SR) when it comes to measure
the stability of full ranked lists. Likewise, we compare it with
the Kuncheva’s stability index (KI) if partial lists are considered.
Note, however, that SJS is more versatile and suitable for whatever
output format.

Fig. 13. Feature selection methods 1R, χ2 , GR and Relief applied on the Omental Fat Spectra Dataset. Stability measure SJS for feature subsets with different cardinality.
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Fig. 14. Feature selection methods 1R, χ2 , GR and Relief applied on the Omental Fat Spectra Dataset. Stability measure SJS and KI for top-k lists with different
cardinality.

Measuring the robustness with SR and KI requires the compu-
tation of 50(50−1)

2 pairwise similarities for each algorithm to end
up averaging these computations as stated in Eq. (3). According to
the SR values recorded in Table 4, Relief appears as the most stable
(0.94) ranking algorithm, whereas 1R is quite unstable (0.79).
When SJS works on the full ranked lists, it gives a quantification
of stability similar to SR and the findings derived from them are
not contradictory. When SJS works on the top-k lists, its value is
similar to the provided by KI (see Fig. 14), what allows to see the
SJS measure as a generalized SJS metric that can work not only
with full ranked lists or top-k lists, but also with top-k ranked
lists, while the others are restricted to a particular list format.

This study shows that either for feature selection or feature
ranking and regardless of the cardinality of the feature list, Relief
is the most stable feature selector for this problem.

6. Conclusions

Quantifying the stability of feature selection/ranking tech-
niques becomes crucial before trying to gain insight into the
data.

We have proposed a unifying stability metric based on the
Jensen–Shannon divergence (SJS) able to quantify the stability for
whatever outcome of the feature selection techniques (feature
subsets, full rankings as well as the useful, but least studied, par-
tial rankings). Up to our knowledge, no metric has been proposed
so far to quantify the stability at all these levels.

The SJS stability metric has the following desired properties
for a stability metric: upper and lower bounds, conditions for a
deterministic selection and correction for change. Therefore, it
enables a useful interpretation of stability as well as comparisons
among feature selection/ranking techniques.

Unlike most metrics that are based on computing pairwise
similarities, SJS evaluates the whole set of lists directly, what

makes this approach faster and more efficient for large high-
dimensional datasets. This metric applies to feature sets/rankings
with the same length, though.

The experimental study with an artificial dataset generated in
a fully controlled way show that the new metric SJS is: (a) close
to the Spearman’s rank correlation coefficient for full ranked lists,
(b) similar to the Kuncheva’s index for top-k lists and (c) able
to capture the mismatch among sublists with the top-k ranked
features. In that sense, it can be seen as a generalized metric.

Experimental results with a real problem of food quality as-
sessment shows that SJS is able to quantify the stability from
different perspectives. It allows to see that Relief has a profile
with high stability regardless of the number of top relevant
features and 1R turns out to be the least stable feature selection
method for this practical application.

Potential future work includes the exploration of visual tech-
niques with this new metric embedded and its extension to
feature lists with arbitrary length.
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