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a b s t r a c t 

A novel location obfuscation method for online route planning is proposed which is robust to privacy 

inferences by the service provider regarding route source and destination. This is achieved by performing 

the task of route computation in a distributed manner. Specifically, the client decomposes the required 

route into a sequence of shorter routes between intermediate locations. These routes are subsequently 

requested from independent online route planners with the results being integrated by the client to give 

the route originally required. Robustness to privacy inferences is a consequence of the fact that, without 

significant coordination and sharing of information, an individual online route planner cannot infer with 

high probability the true route source or destination. An evaluation of the proposed method is performed 

in the context of route planning within the street network of Boston. This evaluation demonstrates that 

the proposed method offers robustness to privacy inferences while exhibiting a reasonable reduction in 

quality of service. 
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. Introduction 

The ubiquity of location aware mobile devices has resulted in

he birth of a new type of online service known as a location-

ased service (LBS) where the service provided is a function of

he client’s location. Online route planners represent one of the

ost popular types of LBS where the client requests the speci-

cation of a route from a service provider ( Mooney and Corco-

an, 2012 ). Such requests are usually made subject to constraints

uch as the route must follow the street network or use a partic-

lar transportation mode. Unlike their offline counterparts, online

oute planners typically take advantage of real time information re-

ated to traffic and weather conditions when recommending routes

o clients ( Vicente et al., 2011 ). The wide spread usage of online

oute planners has raised concerns regarding the potential for pri-

acy inference attacks whereby an attacker infers private informa-

ion relating to the client ( Krumm, 2007 ). If a client requests such

 service, an attacker in the form of a service provider or some-

ne eavesdropping on the communication could potentially infer

uch private information regarded the client ( Lee et al., 2009 ). If

ne assumes the use of a secure communication protocol, such as

SH which exploits advances in encryption, the threat posed by an
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ttacker eavesdropping on the communication can be considered

inimal. Therefore the most significant threat is that posed by an

ttacker in the form of a service provider, and this represents the

ocus of this paper. 

The most important aspects of a route which may be used by a

ervice provider to infer private information are the corresponding

ource and destination locations. To illustrate this consider the case

here a client requests a route to a HIV clinic. Using this informa-

ion a service provider could infer very sensitive information re-

arding potential health conditions of the client. Furthermore, the

ervice provider could infer the source location to be the home of

he client. Another aspect of a route which may be used by a ser-

ice provider to infer private information is the route constraints.

or example, if a client consistently requests routes subject to the

onstraint that the transportation mode is public transportation,

he service provider could infer that the client does not own a ve-

icle. 

Given the above concerns regarding inferences of private infor-

ation, it is important to many clients that their usage of on-

ine route planners is robust to such inferences. Existing meth-

ds for online route planning are undistributed in nature. That

s, the client requests the specification of a route from a single

ervice provider. In their basic form, undistributed methods are

ot robust to inferences by the service provider regarding route

ource and destination; this information is explicitly communi-

ated by the client when making a request. To overcome this

https://doi.org/10.1016/j.cose.2020.101850
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2020.101850&domain=pdf
mailto:corcoranp@cardiff.ac.uk
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Fig. 1. In (a) the client does not employ any location obfuscation method and requests the route ( s, d ) from a single service provider. In (b) the client employs the proposed 

location obfuscation method where they decompose the route ( s, d ) into a sequence of 3 shorter routes ( s 1 , d 1 ), ( s 2 , d 2 ) and ( s 3 , d 3 ) such that s 1 = s, d 3 = d, d 1 = s 2 and 

d 2 = s 3 . Each of these routes are requested from an independent online route planner. 
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limitation, many methods for online route planning have been pro-

posed which achieve the robustness in question by adding an addi-

tional layer of location abstraction between the client and the ser-

vice provider. For example, a commonly employed location abstrac-

tion method involves indirectly submitting a request to a service

provider via a trusted anonymizer such as a virtual private net-

work (VPN) ( Rodden et al., 2002 ). If successful, the service provider

is unable to infer the identity of the client and, in turn, cannot

link/attribute any private information to them. 

We propose a novel location obfuscation method for online

route planning which achieves robustness to privacy inferences

regarding route source and destination by performing the task

of route computation in a distributed manner. To illustrate this

method consider the situation where a client requires a route from

a source location s to a destination location d satisfying given con-

straints. We denote any such route as ( s, d ) where the notation (.,.)

denotes a route between two locations satisfying the constraints

in question. When not employing any location obfuscation method,

the client requests ( s, d ) from a single service provider. This is illus-

trated in Fig. 1 (a). When employing the proposed location obfusca-

tion method, the task of route computation is performed in a dis-

tributed manner. Specifically, the client decomposes the route ( s, d )

into a sequence of n shorter routes { ( s 1 , d 1 ) . . . ( s n , d n ) } such that

s 1 = s, d n = d and d i = s i +1 for i = 1 . . . n − 1 . These routes are sub-

sequently requested from independent online route planners with

the results being integrated by the client to give the route origi-

nally required. This method is illustrated in Fig. 1 (b). We prove that

this method is robust to privacy inferences whereby, without sig-

nificant coordination and sharing of information, an online route

planner cannot infer with high probability the true route source

or destination. Furthermore, we demonstrate that the use of this

method does not result in a significant reduction in quality of ser-

vice. 

The layout of this paper is as follows. In Section 2 we review

existing methods for online route planning which are robust to

privacy inferences. In Section 3 the proposed method for online

route planning is described. Section 4 presents an evaluation of

this method with respect to privacy inference robustness, time

and communication complexity, and quality of service. Finally, in

Section 5 we draw conclusions from this work and discuss possi-

ble future research directions. 

2. Related works 

In this section we review existing methods for online route

planning which are robust to privacy inferences. These methods
chieve the desired robustness by either employing established

echniques, such as data encryption, which generalize to a wide

pectrum of applications, including online route planning, and/or

xploiting the specific structure of the route planning problem. 

Mouratidis and Yiu (2012) and Xi et al. (2014) proposed meth-

ds employing Private Information Retrieval (PIR) which is a gen-

ral protocol allowing a client to query a database located on

 server without the query being revealed to the server. How-

ver this approach requires full cooperation of the service provider

hereby they support this protocol. Buchanan et al. (2013) pro-

osed a method which involves submitting an additional set of dis-

inct requests to the service provider along with the true request.

f the service provider cannot differentiate between the additional

nd true requests robustness is achieved. However this method re-

uires the user to propose additional requests which are plausible

nd sufficiently different to the true request. Furthermore, submit-

ing a sufficient number of additional requests introduces signifi-

ant communication and path computation overhead. In a related

ork Lee et al. (2009) proposed to reduce this overhead using a

umber of optimization techniques. 

Interacting with a LBS (location-based service) indirectly via a

rusted anonymizer is a general approach to achieving robustness

o privacy inferences which generalizes to online route planning

 Luo and Yang, 2017 ). An anonymizer can be used to achieve K-

nonymity by constructing a K-Anonymizing Spatial Region ( K-

SR) which cont ains K − 1 other client s and submitting request s

t the resolution of this region ( Gruteser and Grunwald, 2003 ).

owever such approaches are vulnerable if the anonymizer is

ompromised ( Ghinita et al., 2007 ). To overcome this limitation

 number of solutions have been proposed which eliminate the

eed for a centralized anonymizer by using a distributed comput-

ng paradigm. Chow et al. (2006) proposed a peer-to-peer (P2P)

ethod which does not require a centralized server and constructs

-ASRs by considering groups of clients within close spatial prox-

mity to each other. Ghinita et al. (2007b) proposed a similar

odel which constructs K-ASRs using an overlay network which

esembles a B 

+ -tree. In a related work, Xu et al., 2018 proposed

 model whereby clients are clustered into groups based on tra-

ectory similarity, and these groups are in turn used to achieve

-anonymity. Similarly, Shokri et al. (2014) proposed a method

here clients collaborate and share information, thus minimizing

he number of requests made to the service provider. As identi-

ed by Zhong and Hengartner (2008) , one of the issues with these

istributed models is that each client must trust all other clients.

o overcome this limitation, the authors proposed a method based

n encryption which limits the information exchanged between
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Fig. 2. A route decomposition D = { (a, b) , (b, c) , (c, d) , (d, e ) } where each individual 

route is represented by a vector from source to destination. 
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1 More formally, they can define a monotone map between the total orders on R 

and D (see Definition 1.59 in Fong and Spivak, 2018 ) 
lients. A number of authors have proposed methods for construct-

ng K-ASRs in situations where a client’s location is constrained

o lie in a street network ( Chow et al., 2011; Mouratidis and Yiu,

010 ). 

As noted by Dorfmeister et al. (2015) , K-anonymity is not a suf-

cient condition for achieving robustness to inferences regarding

he source and destination of a route. If all K destinations are con-

ained within a region which corresponds to a single realistic des-

ination, such as the grounds of a particular hospital, an attacker

an directly infer the destination. The same argument holds for

he source location. In this work we refer to regions correspond-

ng to a single realistic source or destination as semantic regions .

ote that a location may not lie in a semantic region. Examples

f such locations include the center of a lake or a motorway. To

vercome the above limitation of K-anonymity, the concept of l -

iversity has been proposed and is achieved when the set of lo-

ations in question are contained in at least l different seman-

ic regions ( Xue et al., 2009 ). Dorfmeister et al. (2015) proposed

 method for achieving l -diversity with respect to the source and

estination of a route where the client requests a route between

egions such that both source and destination satisfy l -diversity.

hat is, these large regions contain l different semantic regions.

he client subsequently locally performs the necessary route com-

utation within these regions. Zhang et al. (2012) proposed a gen-

ral framework for adjusting the parameters of a given location

bfuscation method. In this framework a client specifies the de-

ree of obfuscation required, and this is used in turn to spec-

fy access control constraints and adjust the parameters of the

ethod. 

As discussed above, a distributed computing paradigm has pre-

iously been considered in several methods for online route plan-

ing toward achieving robustness to privacy inferences. In these

ethods computation is distributed across multiple clients. The

ethod proposed in this paper also employs a distributed comput-

ng paradigm, but is fundamentally different to the above. Instead

f computation being distributed across multiple clients, it is dis-

ributed across multiple independent service providers. 

. Distributed location obfuscation method 

This section describes the proposed location obfuscation

ethod and is structured as follows. Section 3.1 states all as-

umptions made with respect to the client and service provider.

ection 3.2 describes the method in question. 

.1. Method assumptions 

The proposed method makes the assumption that there exists

 single client and a set of online route planners. The following

ssumptions are made with respect to each of these parties. 

lient 

The client requires a route from a source location s to a destina-

ion location d which satisfies the constraints that it is reasonably

hort and follows the street network. We denote any such route as

 s, d ) where the notation (.,.) denotes a route between two loca-

ions satisfying the constraints in question. We assume that both

 and d lie within semantic regions. The client does not have any

rior knowledge of the street network or the ability to perform

oute planning in a street network. Instead the client wishes to ob-

ain the route ( s, d ) from the set of online route planners. 

The set of online route planners are known to the client to pro-

ide a reliable service. However the client has concerns regarding

he potential of these service providers to perform inferences with

espect to s and d . The client therefore wishes to obtain the route

 s, d ) in a manner which is robust to such inferences. They are
illing to accept some reduction in quality of service with respect

o route length in order to achieve this robustness. Toward this

oal the client decomposes the route ( s, d ) into a sequence of n

horter routes D = { ( s 1 , d 1 ) . . . ( s n , d n ) } such that s 1 = s, d n = d and

 i = s i +1 for i = 1 . . . n − 1 . Each of these routes is subsequently re-

uested from an independent online route planner. Upon receipt of

he routes in question, the client performs the necessary integra-

ion to obtain the route ( s, d ). The above steps are specified pre-

isely in Section 3.2 . 

nline route planner 

Each online route planner has an accurate weighted graph

odel of the street network Bondy and Murty, 1976 . This model

s denoted by G = (V, E) where V and E are the vertices and edges

f the graph respectively. The vertices V correspond to street in-

ersections and deadends, while the edges E correspond to street

egments connecting pairs of vertices. This is a commonly used

treet network model known as a primary representation ( Corcoran

t al., 2015; Hannah et al., 2018 ). In this work the weight on an

dge is equal to the length of the corresponding street segment.

owever one could also consider a weight equal to travel time.

ach online route planner has the ability to perform route plan-

ing between any pair of vertices in this model. That is, compute

.,.) for any pair of vertices. This is computed using Dijkstra’s algo-

ithm ( Mehlhorn and Sanders, 2008 ). Dijkstra’s algorithm is a stan-

ard algorithm used for route planning in street networks. How-

ver, when dealing with very large networks, it is common to pre-

rocess the network such that the time complexity of subsequent

oute planning is reduced ( Bast et al., 2016 ). For example contrac-

ion hierarchies is one such technique which preprocesses the net-

ork by adding shortcut edges ( Geisberger et al., 2012 ). 

The online route planners are aware that the client is employ-

ng the proposed method for online route planning and they wish

o infer s and d . If the online route planners do not coordinate and

hare information, each will have knowledge of at most a single

oute request in the route decomposition D . On the other hand, a

ubset of route planners may coordinate and share route requests

hey receive. In such cases a single online route planner may have

nowledge of a subset of route requests in the route decomposition

 . Let R denote this subset and m be the number of elements it

ontains where 1 ≤ m ≤ n . Note that, if m ≤ 1 this corresponds to

he case where online route planners do not coordinate and share

oute requests. 

We assume that an online route planner can define a total or-

er on R which is consistent with the total order defined on D . 1 

iven this order they can determine the route ( s s , d s ) ∈ R such

hat s ≤ j for all ( s j , d j ) ∈ R and the route ( s d , d d ) ∈ R such that

 ≥ j for all ( s j , d j ) ∈ R . That is, they can determine the routes in

 which occur earliest and latest respectively in the route decom-

osition D . To illustrate this consider the route decomposition D =
 (a, b) , (b, c) , (c, d) , (d, e ) } displayed in Fig. 2 , where each individ-

al route is represented by a vector from source to destination. If

n online route planner has knowledge of R = { (a, b) , (b, c) , (d, e ) }
e assume they can determine that ( a, b ) appears before ( b, c ) and
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Fig. 3. For the Boston street network in (a), the source location s and destination location d for a route required by a client are represented by red dots in the lower left 

and upper right respectively. For n = 8 the sequence of interpolating points { t i } n i =0 
between these locations are represented by red dots in (b). The corresponding sequence of 

routes D = { ( s 1 , d 1 ) . . . ( s 8 , d 8 ) } are represented in (c) using alternating colors of blue and red. The result of integrating these routes is represented in (d). (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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( d, e ) in D . Furthermore, we assume they can also determine that

( d, e ) appears after ( a, b ) and ( b, c ) in D . 

An online route planner has no knowledge of n , the number of

routes that ( s, d ) has been decomposed into. However, they have

sufficient knowledge which allows them to either place a prior

estimation or obtain an upper bound on this value. A prior es-

timate on n could be obtained by surveying a set of individuals

who use the service and using the empirical distribution of n as

an estimate of the true distribution ( Efron and Tibshirani, 1994 ).

An upper bound on n could be obtained by performing an on-

line search for online route planners and counting the number of

results retrieved. Let 1 (. ) denote an indicator function which in-

dicates if a given location lies in a semantic region. The online

route planners have the ability to accurately evaluate this function

at all source and destination locations in R . We assume the on-

line route planners have no knowledge of previous route requests

made by a given client. If the client wishes to request multiple

routes, this assumption may be satisfied by making all requests via

a trusted anonymizer. Finally, the online route planners are semi-

honest meaning that given a client’s request they return an accu-

rate result and will not return an incorrect result toward gaining

knowledge ( Dorfmeister et al., 2015; Xue et al., 2009 ). 

3.2. Method description 

The proposed method for online route planning contains three

steps. In the first step the client decomposes the route ( s, d ) into

a sequence of n routes D = { ( s , d ) . . . ( s n , d n ) } such that s = s,
1 1 1 
 n = d and d i = s i +1 for i = 1 . . . n − 1 . In the second step the client

btains each of these routes from an independent online route

lanner. In the third step the client integrates this sequence of

outes to form a single route ( s, d ). We now describe in turn how

ach of these three steps are implemented. 

The client decomposes the route ( s, d ) using the following ap-

roach. The client first linearly interpolates the route using a se-

uence of n + 1 locations { t i } n i =0 
between s and d using Eq. (1) . 

 i = s + i ×
(

d − s 

n 

)
(1)

Those locations in the subsequence { t i } n −1 
i =1 

are subsequently

erturbed by the addition of Gaussian noise. The Gaussian in ques-

ion has mean equal to the zero vector and covariance matrix equal

o a diagonal matrix with diagonal elements equal to 500 meters.

t is assumed that by adding noise the direction in which the client

s traveling is obscured. Finally, the client assigns s i and d i to the

ocations t i −1 and t i respectively for i = 1 . . . n . 

Given the above decomposition the client obtains each route in

 from an independent online route planner. Here independence is

chieved by selecting without replacement n online route planners

rom the set of all available online route planners. 

To illustrate the above two steps consider the Boston street net-

ork which is shown in Fig. 3 (a). In this figure s and d correspond-

ng to an example route are represented by red dots in the lower

eft and upper right corners respectively. For n = 8 the correspond-

ng set of locations { t i } 8 i =0 
are represented by red dots in Fig. 3 (b).

he corresponding sequence of routes D = { ( s , d ) . . . ( s , d ) } ob-
1 1 8 8 
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Fig. 4. For the example street network in (a), the source location s and destination 

location d for a route required by a client are represented by red dots in the upper 

left and upper right respectively. For n = 2 the sequence of interpolated points { t 0 , 

t 1 , t 2 } between these locations are represented by red dots in (b). The corresponding 

sequence of routes ( s 1 , d 1 ) and ( s 2 , d 2 ) are represented in (c) by the color blue 

and (d) by the color red respectively. The result of integration in a naive manner 

is illustrated in (e) while the result of integration using the proposed solution is 

illustrated in (f). (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 5. An illustration of the street network in Fig. 4 where its vertices have been 

labeled a, b, c and d is displayed. 

s  

t  

t

 

i  

t  

d  

(  

v  

s  

h  

6  

a  

w  

b

4

 

f  

a  

t  

t  

T  

f  

o

4

 

n  
ained from independent online route planners are illustrated

n Fig. 3 (c) where ( s i , d i ) is represented by the color blue if i

( mod 2) = 1 and the color red otherwise. Note each of these routes

s in fact the shortest route between the source and destination lo-

ations in question. 

Having obtained the sequence of routes D , the client integrates

his sequence to form a single route ( s, d ). If the client performs

his integration in a naive manner by concatenating the routes, the

esulting route ( s, d ) may contain redundant detours. To illustrate

his consider the toy street network in Fig. 4 (a) and the situation

here s and d correspond to the red dots in the upper left and

pper right of the figure respectively. For n = 2 the corresponding

nterpolated locations { t i } 2 i =0 
are illustrated in Fig. 4 (b) using red

ots. The routes ( s 1 , d 1 ) and ( s 2 , d 2 ) between these points are il-

ustrated in Fig. 4 (c) and (d) using the colors blue and red respec-

ively. If these routes are integrated by concatenating ( s 1 , d 1 ) and

 s 2 , d 2 ), the resulting route ( s, d ) will contain a redundant detour.

his is illustrated in Fig. 4 (e) where the route in question is repre-

ented by the color blue. 

To overcome this issue we integrate the sequence of routes us-

ng the algorithm described in Algorithm 1 which removes any de-

Algorithm 1: Integration of routes. 

Input : A sequence of n routes ( s 1 , d 1 ) . . . ( s n , d n ) such that 

s 1 = s , d n = d and d i = s i +1 for i = 1 . . . n − 1 . 

Output : A single route ( s, d ) containing no detours such that 

s 1 = s and d n = d. 

1 begin 

2 route = () 

3 for i ← 1 to n do 

4 route.append ( vertex_sequence ( ( s i , d i ) ) ) 
5 end 

6 highest_index = dict() 

7 for i ← 1 to size(route) do 

8 highest_index(route( i )) = i 

9 end 

10 route_new = () 

11 i = 1 

12 while i ≤ size(route) do 

13 v = route (i ) 

14 route_new.append( v ) 
15 if highest_index(v) > i then 

16 i = highest_index(v) + 1 

17 else 

18 i = i + 1 

19 end 

20 end 

21 return route_new 

22 end 

ours. Let vertex_sequence(.) be a function which maps a route to

ts corresponding sequence of vertices in the street network graph

 . In lines 2 to 5 the algorithm first represents each route ( s i , d i )

y its corresponding sequence of vertices and concatenates these

equences to form a sequence entitled route. In lines 6 to 9 the al-

orithm next computes a function highest_index(.) using a dictio-

ary data structure which maps each vertex in the sequence route

o the index at which it last appears in the sequence. Note that,

he statement route( i ) returns the vertex at location i in the se-

uence route. In lines 10 to 20 the algorithm constructs a new se-

uence entitled route_new by removing all subsequences from the
equence route between the first and last appearance of each ver-

ex. The sequence route_new corresponds to a route without de-

ours and is returned in line 21. 

To illustrate this integration consider again the case of comput-

ng a route in the toy street network of Fig. 4 . A representation of

his street network where its vertices have been labeled a, b, c and

 is displayed in Fig. 5 . Given this labelling, the representations of

 s 1 , d 1 ) and ( s 2 , d 2 ) in terms of their corresponding sequence of

ertices are [ a, d, b ] and [ b, d, c ] respectively. Concatenating these

equences to form a single sequence gives [ a, d, b, b, d, c ]. The

ighest indices at which the vertices a, b, c and d appear are 1, 4,

 and 5 respectively. Removing all subsequences between the first

nd last appearance of each vertex results in the sequence [ a, d, c ]

hich contains no detours. This route is represented by the color

lue in Fig. 4 (f). 

. Evaluation 

This section presents an evaluation of the proposed location ob-

uscation method for online route planning. Specifically we evalu-

te the method with respect to robustness to privacy inferences,

ime and communication complexity, and quality of service. These

hree aspects are discussed in Sections 4.1, 4.2 and 4.3 respectively.

his evaluation includes a number of experiments which were per-

ormed using the Boston street network illustrated in Fig. 3 (a) and

btained from OpenStreetMap ( Corcoran et al., 2013 ). 

.1. Robustness 

In this section we demonstrate that, without significant coordi-

ation and sharing of route requests, an online route planner can-
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Table 1 

The probability values P ( s s = s | 1 (s s ) = 1 , R, n ) and P ( d d = d | 1 (d d ) = 1 , R, n ) 

for different values of n and m are displayed. Here n is the number of routes in 

the decomposition D, R is the subset of D which the online route planner has 

knowledge of and m is the number of routes in R . 

n = 1 n = 2 n = 4 n = 8 n = 16 n = 32 n = 64 

m = 1 1.00 0.59 0.39 0.24 0.14 0.07 0.04 

m = 2 1.00 0.49 0.27 0.15 0.08 0.04 

m = 4 1.00 0.36 0.17 0.08 0.04 

m = 8 1.00 0.23 0.09 0.04 

m = 16 1.00 0.14 0.05 

m = 32 1.00 0.07 

m = 64 1.00 
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d  
not infer s and d with high confidence. Recall from Section 3.1 that

an online route planner has knowledge of R which is a subset of

the route decomposition D . Furthermore, recall that they can deter-

mine ( s s , d s ) ∈ R and ( s d , d d ) ∈ R which correspond to the routes

which occur earliest and latest respectively in the route decompo-

sition D . 

Let D s and D d denote the set of source and destination locations

respectively in D . Also, let R s and R d denote the set of source and

destination locations respectively in R . The route ( s s , d s ) is the only

route in R which may equal ( s 1 , d 1 ) in D . In turn, s s is the only

location in R s which may equal s . Similarly the route ( s d , d d ) is

the only route in R which may equal ( s n , d n ) in D . In turn, d d is

the only location in R d which may equal d . In what follows we

present inferences with respect to s s . A similar inference applies

with respect to d d . 

As stated in Section 3.1 , we assume an online route planner has

sufficient knowledge which allows them to either place a prior es-

timation or obtain an upper bound on the value of n , the number

of routes that ( s, d ) has been decomposed into. We first consider

the case where the online route planner has a prior estimation of

n . 

If s s does not lie in a semantic region, that is 1 (s s ) = 0 , then the

online route planner wishes to estimate P ( s s = s | 1 (s s ) = 0 , R, n ) .

Since we assume s lies in a semantic region this implies that s s � = s .

That is, since s lies in a semantic region but s s does not they can-

not be the same location. The probability P ( s s = s | 1 (s s ) = 0 , R, n )
is therefore zero and the online route planner cannot infer s given

R . 

If s s lies in a semantic region, that is 1 (s s ) = 1 , then the on-

line route planner wishes to estimate P ( s s = s | 1 (s s ) = 1 , R, n ) . Let

T denote the set of elements in D s which may equal s . Eq. (2) de-

fines the expected size of T where |.| is the set size operator. The

factor n − m equals the number of locations in the set D s − R s . The

factor P (1 (s i ) = 1 | s i ∈ D s ) equals the probability that an element

in this set lies in a semantic region and therefore may equal s . The

added term 1 corresponds to the fact that s s ∈ D s , where 1 (s s ) = 1

is the single element in R s ⊂ D s which may equal s . 

E [ | T | ] = (n − m ) P (1 (s i ) = 1 | s i ∈ D s ) + 1 (2)

Toward estimating the term P (1 (s i ) = 1 | s i ∈ D s ) in Eq. (2) , we

perform the factorization in Eq. (3) . 

P (1 (s i ) = 1 | s i ∈ D s ) 

= P (1 (s i ) = 1 | s i ∈ D s , s i = s ) P (s i = s ) 

+ P (1 (s i ) = 1 | s i ∈ D s , s i � = s ) P (s i � = s ) 

= 1 

1 

n 

+ P (1 (s i ) = 1 | s i ∈ D s , s i � = s ) 
n − 1 

n 

= 

1 

n 

+ P (1 (s i ) = 1 | s i ∈ D s , s i � = s ) 
n − 1 

n 

(3)

Toward estimating the term P (1 (s i ) = 1 | s i ∈ D s , s i � = s ) in

Eq. (3) we note that a location satisfying the conditions s i ∈ D s 

and s i � = s is a random interpolated location. We therefore esti-

mate this probability by sampling a set of random locations in the

environment and computing the proportion of which lie in seman-

tic regions. By the law of large numbers this estimate converges to

the true probability as the number of random locations increases.

In order to determine if a given random location lies in a seman-

tic region we used the following approximation which represents a

lower bound. We first determine the street which is closest to the

location in question. If this street is of the type residential then we

classify the location as lying in a semantic region. Otherwise we

classify the location as not lying in a semantic region. This approx-

imation represents a lower bound because it only considers streets

and ignores other features of the environment which would result

in a point being classified as lying in a semantic region. For ex-

ample if the point in question lies in the grounds of a hospital it
hould be classified as lying in a semantic region irrespective of

he type of street it is closest to. Applying the above approximation

n the context of the Boston street network and using 10,0 0 0 ran-

om locations, the probability P (1 (s i ) = 1 | s i ∈ D s , s i � = s ) was esti-

ated to be 0.36. 

Substituting the above results into Eq. (2) gives us the esti-

ated expectation in Eq. (4) . 

 [ | T | ] = (n − m ) 
(

1 

n 

+ 0 . 36 

n − 1 

n 

)
+ 1 (4)

If we assume each element in the set T equals s with equal

robability, the probability P ( s s = s | 1 (s s ) = 1 , R, n ) is defined in

q. (5) . 

 ( s s = s | 1 (s s ) = 1 , R, n ) = 

1 

E [ | T | ] (5)

To illustrate the above inferences consider an example where

 = 10 and m = 10 . That is, the online route planner has knowl-

dge of all route requests in the route decomposition D =
 ( s 1 , d 1 ) . . . ( s n , d n ) } . The online route planner can determine s s and

f 1 (s s ) = 1 they can in turn infer that P ( s s = s | 1 (s s ) = 1 , R, n ) = 1 .

 similar inference can be applied to the location d . Consider

 second example where n = 32 and m = 1 . That is, the online

oute planner has knowledge of a single route request. The on-

ine route planner can determine s s and if 1 (s s ) = 1 they can in

urn infer that P ( s s = s | 1 (s s ) = 1 , R, n ) = 0 . 07 . Again a similar in-

erence can be applied to the location d . The probability values

 ( s s = s | 1 (s s ) = 1 , R, n ) and P ( d d = d | 1 (d d ) = 1 , R, n ) for differ-

nt values of n and m are displayed in Table 1 . From these proba-

ility values we note that coordinating online route planners can-

ot infer s or d with high confidence provided that m is relatively

maller than n . 

In the above inferences we assume the online route planner has

 prior estimation on the value of n . Let us assume now that this

s not the case and instead the online route planner has only an

pper bound u on this value. In this case the online route plan-

er may assign a uniform distribution over the possible values of

 = m,...,u . That is, P (n ) = 1 / (u − m + 1) . Note that, m is a lower

ound for n because this is the number of route requests the on-

ine route planner has knowledge of. Given 1 (s s ) = 1 , the online

oute planner may attempt to estimate P ( s s = s | 1 (s s ) = 1 , R, u ) by

erforming a marginalization of n using Eq. (6) . Again, an identical

nference applies with respect to d d . 

 ( s s = s | 1 (s s ) = 1 , R, u ) = 

u ∑ 

n = m 

P ( s s = s | 1 (s s ) = 1 , R, n ) P (n ) (6)

The probability values P ( s s = s | 1 (s s ) = 1 , R, u ) and

 ( d d = d | 1 (d d ) = 1 , R, u ) for different values of u and m are

isplayed in Table 2 . From these probability values, we note that
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Table 2 

The probability values P ( s s = s | 1 (s s ) = 1 , R, u ) and P ( d d = d | 1 (d d ) = 1 , R, u ) for 

different values of u and m are displayed. Here u is an upper bound on n the 

number of routes in the decomposition D, R is the subset of D which the online 

route planner has knowledge of and m is the number of routes in R . 

u = 32 u = 64 u = 128 u = 256 u = 512 u = 1024 

m = 1 0.20 0.13 0.08 0.04 0.02 0.01 

m = 2 0.21 0.13 0.08 0.04 0.02 0.01 

m = 4 0.23 0.14 0.08 0.04 0.02 0.01 

m = 8 0.25 0.15 0.08 0.05 0.02 0.01 

m = 16 0.33 0.16 0.09 0.05 0.02 0.01 

m = 32 1.00 0.22 0.10 0.05 0.03 0.01 

c  

c

4

 

t  

r

 

w  

p  

c  

g  

p  

h  

w  

‖  

t  

y  

c  

a  

d  

r  

t  

s  

(  

S  

t  

p

 

E  

p  

e  

‖  

t  

t  

j  

s  

s  

r  

|  

w

∑

∑

∑

Fig. 6. The shortest route from s to d is displayed. 

Table 3 

Mean and standard deviation of 10 0 0 route lengths measured 

in meters computed using the proposed method for different 

parameter values of n . 

Mean length Std length 

Distributed n = 1 9386 3821 

Distributed n = 2 9685 3889 

Distributed n = 4 10,161 4010 

Distributed n = 8 10,789 4352 

Distributed n = 16 11,646 4697 
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T  
oordinating online route planners cannot infer s or d with high

onfidence provided that m is relatively smaller than u . 

.2. Computational and communication complexity 

In this section we evaluate the computational and communica-

ion complexity of the proposed method with respect to the online

oute planners and the client. 

We first consider the computational complexity of the method

ith respect to the online route planners. We prove that the com-

utational complexity of running Dijkstra’s algorithm n times to

ompute the routes ( s i , d i ) is proportional to running Dijkstra’s al-

orithm a single time to compute the route ( s, d ). That is, the

roposed method for computing routes in a distributed manner

as computational complexity proportional to traditional models

hich compute routes in an undistributed manner. Let ‖ ( x, y ) ‖ and

 x − y ‖ denote the length of the shortest route and Euclidean dis-

ance respectively between locations x and y . To simplify our anal-

sis we make the reasonable assumption that for any pair of lo-

ations x and y , ‖ ( x, y ) ‖ is proportional to ‖ x − y ‖ . Let ( s i , d i ) be

 route request made by a client to an online route planner. As

iscussed in Section 3.1 , the online route planner computes the

oute in question using Dijkstra’s algorithm where the weights on

he graph edges correspond to street length. A property of Dijk-

tra’s algorithm is that the computational complexity of computing

 s i , d i ) is proportional to ‖ ( s i , d i ) ‖ ( Lee et al., 2009; Mehlhorn and

anders, 2008 ). This is due to the fact that the algorithm searches

he space of shortest paths in a manner which considers shorter

aths first. 

The fact that ‖ ( s i , d i ) ‖ is proportional to ‖ s i − d i ‖ is stated in

q. (7a) and this implies Eq. (7b) . Since linear interpolation of

oints between s and d was employed, the sum of ‖ s i − d i ‖ is

qual to ‖ s − d‖ . This implies the result stated in Eq. (7c) . Since

 s − d‖ is proportional to ‖ ( s, d ) ‖ , this implies Eq. (7d) . Given that

he computational complexity of computing a route is proportional

he length of that route, Eq. (7d) implies that in the case of Di-

kstra’s algorithm the computational complexity of computing the

equence of routes ( s i , d i ) is proportional to that of computing the

ingle route ( s, d ). The computational complexity of computing the

oute ( s, d ) using Dijkstra’s algorithm is O (| E| + | V | log| V | ) where

 V | and | E | are the number of vertices and edges in the street net-

ork graph G ( Lee et al., 2009; Mehlhorn and Sanders, 2008 ). 

‖ ( s i , d i ) ‖ ∝ ‖ s i − d i ‖ (7a) 
n 

 

i =1 

‖ ( s i , d i ) ‖ ∝ 

n ∑ 

i =1 

‖ s i − d i ‖ (7b) 

n 
 

i =1 

‖ ( s i , d i ) ‖ ∝ ‖ s − d‖ (7c) 

n 
 

i =1 

‖ ( s i , d i ) ‖ ∝ ‖ ( s, d ) ‖ (7d) 
We next consider the computational complexity of the model

ith respect to the client. Having received the sequence of n routes

 s i , d i ) from independent online route planners, the client performs

ntegration to form a route from s to d . The algorithm described in

ection 3.2 for performing this integration performs two iterations

ver the sequence of vertices in the concatenation of the n routes

 ( s 1 , d 1 ) . . . ( s n , d n ) } . The computational complexity of this integra-

ion is therefore O ( m ) where m is the number of vertices in the

equence. Finally the complexity of communication between the

lient and online route planners is also O ( m ). 

.3. Quality of service 

The routes computed using the proposed location obfuscation

ethod will in many cases be different from the shortest route

rom s to d . For example, consider again the example illustrated in

ig. 3 (a). Fig. 3 (d) displays the corresponding route computed us-

ng the proposed method with the parameter n = 8 . On the other

and, Fig. 6 displays the corresponding shortest route; that is, the

oute computed using the proposed method with the parameter

 = 1 . It is evident that these two routes are different, and in fact

he route computed using the proposed method with parameter

 = 8 is quite different from the shortest route. This discrepancy

an be attributed to the fact that the proposed method integrates

 sequence of locally shortest routes and therefore may not return

he globally shortest route. As such, the proposed method offers a

ower quality of service relative to traditional undistributed mod-

ls. Here quality of service is measured as the difference between

he length of the route returned and the length of the shortest

oute. 

In order to quantify the quality of service of the proposed

ethod we randomly sampled 10 0 0 pairs of s and d locations.

able 3 displays the mean and standard deviation of the corre-
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o  
sponding route lengths measured in meters where the routes were

computed by the proposed method using different values of the

parameter n . Note that, a route computed using the proposed

method with parameter n = 1 corresponds to the shortest route

from s to d . From this table we see that as the parameter n in-

creases the mean and standard deviation of the routes also in-

creases. However the order of this increase is not significant. For

example, the mean length of the routes computed by the proposed

method with parameter values n = 1 and n = 16 was 9386 m and

11646 m respectively, i.e. approximately a 25% increase. This rep-

resents a relatively small reduction in quality of service in return

for increased robustness to privacy inferences. 

5. Conclusions 

This paper proposes a novel location obfuscation method for

online route planning which employs a distributed computing

paradigm to achieve robustness to inferences regarding route

source and destination. Although the use of such a paradigm has

previously been considered, the method proposed in this paper is

fundamentally different from existing methods. Instead of compu-

tation being distributed across multiple clients, as is the case in

existing methods, it is distributed across multiple independent ser-

vice providers. 

It is important to note that the proposed location obfuscation

method is not applicable in all situations. It naturally requires

that the client has access to a set of independent online route

planners, who do not perform significant coordination and shar-

ing of information. In some situations, this requirement may not

be satisfied, and the use of an alternative location obfuscation

method should be considered. In this and other cases, the pro-

posed method could also be integrated with other location obfus-

cation methods, such as submitting additional fake route requests

to the service providers, to further increase robustness to privacy

inferences. 

Given the original nature of this work, there exists many po-

tential avenues for future research. One avenue would be the de-

velopment of more sophisticated means for decomposing the re-

quired route into a sequence of shorter route requests. In the pro-

posed method a very simple linear interpolation with the addi-

tion of noise was employed. However, robustness to privacy infer-

ences could be improved if prior knowledge regarding the loca-

tions of semantic regions was used to ensure interpolated points

lie in such regions. Such prior knowledge could be obtained by

querying an additional service provider. Another avenue for future

research would be the development of a method which, as men-

tioned above, integrates the proposed method with other location

obfuscation methods. 
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