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ABSTRACT: Effective modelling of Wave Energy Converters (WEC) is fundamental in the design and
implementation of power-maximizing controllers. It is possible to get accurate dynamic models with system
identification techniques based on experimental input-output data. However, even though these techniques are
well developed in other application areas they are seldom used in the context of WECs. This work describes
the methodology used to model a three-body hinge-barge wave energy device using experimental data. Some
identification strategies are discussed to get a linear time-invariant dynamic model. The obtained model is
validated against a data set separate from that used for identification, to ensure the generalisation capabilities

of the model.

1 INTRODUCTION

Global concerns over climate change has resulted in
new policies and regulations that have stimulated the
interest in alternative energy sources. A wave energy
converter is a system that captures energy from
ocean waves. In order to compete with other energy
systems, WEC systems have to overcome many
challenges. One of these challenges is to absorb the
maximum time average power from the ocean,
which can be greatly assisted by constructing effect-
ive dynamic models and designing power-
maximizing controllers. In (Ringwood et al. 2014)
and (Ringwood 2020), an overview is given about
the state of technology development for WEC
models and control systems.

The efficacy of power-maximizing controllers is
closely related to the WEC dynamical models that
they use. WEC models can be classified mainly into
three categories, depending on which techniques are
used to get the model (other generalized classifica-
tions can be found in (Ljung 2010)):

*  White-box models. Based only on physical con-
siderations, i.e., hydrodynamic modelling.

* Black-box models. Based only on system identifi-
cation (SI) techniques.

* QGrey-box models. Combination of hydrodynamic
modelling and SI techniques.

Hydrodynamic models, in the wave energy field,
are generally based in linear potential theory (LPT),

which assumes inviscid fluid, irrotational flow, small
waves and small body motion. These models use
Cummin’s equation (Cummins 1962), which is
derived using LPT and Newton’s second law:

(m + me)%(t) + /Ol K, (t — 0)x(zr)de + Spx(t) = f;
(1)

where m and m,, are the mass and the infinite fre-
quency added mass of the system, respectively, K, is
the radiation impedance impulse response, S is the
hydrostatic stiffness and f; = f,, + f. + fpro, With fi,
the mooring forces, f, the excitation force from the
fluid and fpro (also denoted as f,) the control force
applied by a power take off (PTO) system. x(¢), x(¢)
and x(¢) denote the body displacement, velocity, and
acceleration, respectively.

In (O’Cathain et al. 2007), an analytical
approach for modelling multibody wave energy
devices is presented. The Newton-Euler equations
with eliminated constraints are utilized to capture
the rigid body dynamics of the constrained multi-
body system. In a recent study, Paparella et al.
(2016) presents two different analytical formula-
tions to describe the dynamics of multibody sys-
tems. The results are validated with experimental
tests using a three-body hinge-barge device as
a case study. The same WEC is analyzed in
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(Paparella and Ringwood 2017), but this time,
the authors focus on the optimal control problem,
which takes into account physical constraints.

Several works have been reported to increase the
accuracy of linear hydrodynamic models by identify-
ing some of their terms, or by adding nonlinear terms
(see Giorgi et al. 2019 and references therein). They
apply SI techniques to get the terms and obtain so-
called grey-models. In addition, there are reported
works that have extended the use of SI techniques
from the identification of specific hydrodynamic
terms to the complete dynamic model (black-box
models), see also (Giorgi et al. 2019) for a detailed
review of related works.

In this work, a complete (black-box) dynamic
model for a three-body hinge-barge wave energy
device is derived using SI techniques. Several strat-
egies are presented to get an accurate linear model.
The derived model is tested on unseen data, i.c., on
a validation data set separate from that used for SI.

The remainder of the paper is organized as fol-
lows. Section 2 presents the fundamentals of
system identification applied to wave energy
devices. A detailed description of the case study
of this work is presented in Section 3. Section 4
introduces the main results of this paper. It
details the strategies developed to get the esti-
mated linear model, while model validation is
also discussed in this Section. Finally, Section 5
is devoted to conclusions.

2 SYSTEM IDENTIFICATION

The system identification methodology consists of
the following steps (Davidson et al. 2016):

* aparametric structure is chosen for the model,

+ a suitable input signal, u(¢) is synthesized and
input to the experimental system,

* the input signal, u(¢) and resulting output signal,
() are recorded,

+ an identification algorithm is used to determine
the optimal parameter vector, which minimizes
some error metric between the actual measured
output y(#) and that produced by the identified
parametric model 3(¢|6).

The most usual way to identify models is by using
input and output time signals (time-domain data):
ZN = {u(1),y(1),...,u(N),y(N)}. A continuous-
time linear time-invariant model can be written as

Gls 0)_bosm+b1s’”*1+~-+bm )
T st a4 +ay

where s is the Laplace variable, and 6 are the model
parameters: by...b, and a;...a,. The simulated
output for a particular set of parameters can be
defined as follows:

232

1l0) = G(p, O)u(1) 3)

where p denotes the differentiation operator. The
parameters are then estimated by minimizing the
loss function J(0) (also denoted as the error metric)
(Giorgi et al. 2019, Ljung 2002, Ljung 2009, Ljung
1999, Ljung 2019):

Oy = argmin J(6). (4)

The error metric used in this work is the Normal-
ized Root Mean Squared Error (NRMSE) (Ljung
2019):

J(0) = N — St 1200 = 5(61) |
S () = (e |

where y(#) is the discrete time measured output
data, y(#) is its mean, and y(#|6) is the discrete time
predicted response of the model.

It is also possible to identify continuous-time trans-
fer function models from frequency domain data when
the input-output data are given in the frequency
domain as Fourier transforms (see (see Ljung 1999,
Section. 7.7 and Ljung 2002, Ozdemir and Gumussoy
2017). In (Ozdemir and Gumussoy 2017), In (Ozdemir
and Gumussoy 2017), the authors describe the method-
ology to follow in such a case. In this last work, we can
note that the identification procedure not only is quite
different from the time-domain case, but also diverse
issues may be found in this methodology, such as
numerical issues or lack of convergence to a local
minimum.

Some works have been proposed that use the fre-
quency domain estimation methodology to identify
discrete-time transfer function models, such as the
work presented in (Garcia-Violini et al. 2020). In
that work, the authors estimate the transfer function
for a single-body WaveStar wave energy converter
with a single operational degree of freedom in pitch.
Then, using the identified model, an LTI energy
maximising controller is developed. A set of
observed data from a numerical WEC-Sim model:
w = {u(1),y(1),...,u(n),y(n)} where each elem-
ent corresponds to an experiment with an input
signal with same shape but different amplitude was
utilized to compute their Fourier transforms and then
estimate a set of empirical transfer functions - one
estimate for each experiment; i.c.,

H,(jo)

(6)

where H, is the nth empirical transfer function esti-
mate (ETFE), Y, and U, are the frequency responses



of the nth output and input signals, respectively. Then,
the averaged frequency response (AFR) H(jo) is cal-
culated by averaging the frequency response of all of
the ETFEs. This is done to build a low-variance data
set. After that, the methodology described in (Ljung
1999, Section. 7.7) and (Ozdemir and Gumussoy
2017) is used to obtain the discrete-time transfer func-
tion estimate Gy (jw) using the AFR H (jw) as primary
data.

In the context of wave energy, the recorded data for
system identification can be originated from two
sources: real tank (RT) tests and numerical wave tank
(NWT) simulations. NWT can be implemented using
boundary-element methods or computational fluid
dynamics (CFD). CFD-based NWTs offer fully non-
linear hydrodynamic calculations by solving the
Navier-Stokes equations. In (Davidson et al. 2016) and
(Giorgi et al. 2016) the authors describe advantages
and disadvantages of RT and NWT. In this work, we
use RT tests to gather the data for the identification
process. In Section 3, a detailed description of the data
logging setup is given.

Depending on the forces applied to excite the
system (see Figure 1), it is possible to obtain two dif-
ferent WEC models (Davidson et al. 2016): free sur-
face elevation (FSE) to body motion, and input force
to body motion. In the former case, wave excitation
experiments — which produce the fluid excitation
forces f, — are used to provide two time series vec-
tors, one containing the FSE (the input) and the other
the body displacement (the output). In the latter case,
input force experiments (f,) are used to identify the
model. Two time series vectors are produced by
these experiments: one containing the input force
(the input) and the other the body displacement (the
output). In the present work, we use the input force
to body motion approach, where the input force is
given by the PTO system f,,, while the excitation and
the mooring forces are zero, i.e., f, =0 and f,, =0,
respectively. The main advantage of using this forced
(PTO) response approach is that it allows total free-
dom over the choice of input signal to be applied to
the system and can elicit responses and fluid struc-
ture interactions beyond those achievable with wave
excitation alone. In this regard, it is important to
ensure that the input signal covers the frequency
range of interest and that input power is applied to
the parts of the spectrum where the identified model
is required to perform well (Davidson et al. 2016).
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Figure 1. Forces applied to wave energy converters.

This work, where SI techniques are used to get
a representative linear model, follows the notions
presented in (Davidson et al. 2015).

3 CASE STUDY

The system under study in this work is a three-body
hinge-barge wave energy converter. Figure 2 shows
the hinge-barge (HB) device which consists of the
fore, central and aft bodies, two linear motors with
250 N max. force capacity manufactured by
LinMot, two load cells connected to the motors to
measure the applied forces, and two rotary encoder
sensors to measure the relative angles between the
fore and central, and between the aft and central
bodies. The experiments were conducted in this
device by applying a set of excitation signals to
each motor, separately, and recording the angles of
both encoders. The data logging setup is shown in
Figure 3. It consist of rotary encoder and load cell
sensors, a data acquisition system (DAS), a main
computer to control the DAS, another computer to
control the originated waves and the wave tank
itself, which dimensions are 25 m x 15 m x
1 m deep. The main computer uses dSpace to com-
pile the models and to control the DAS.

The HB device belongs to the attenuator class of
devices. Other hinge barge devices include the
M-Ocean (Mocean Energy 2020), M4 device
(Stansby et al. 2015) as well as other devices which
achieved some degree of deployment such as Sea-
power (Seapower 2020) deployed in Galway bay
2016, the McCabe Wave Pump (deployed in the
Shannon estuary in 1996) and perhaps, most fam-
ously, the Pelamis device (Yemm et al. 2012).

Indeed, the three-bodied device in this study is the
direct descendant of the original McCabe Wave
Pump. The original McCabe wave pump consisted of
three rectangular steel pontoons, which are hinged
together across their beam. The pontoons move rela-
tive to each other with the waves. A damper plate is
attached to the central pontoon, which ensures that it
stays still as the fore and aft pontoons move relative

Figure 2. Three-body hinge-barge wave energy converter.
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Figure 3. Wave tank and data logging setup.

to the central pontoon by pitching about the hinges.
Energy is extracted from the rotation about the hinge
points by linear hydraulic pumps mounted between
the central and two outer pontoons near the hinges
(de Almeida and Moura 2007).

The current 1:20 scale device was built by the
Wave Energy Conversion Corporation of America
(WECCA) (who also submitted a 1:50 scale model
for the wave energy prize (Offshore Energy 2016).
The device was significantly modified as part of the
current BenchWEC project with the addition of two
PS01-37x120F-HP-C  LinMot motors so that
advanced modelling and control techniques could be
investigated.

4 RESULTS

The model structure chosen for the identification
process is a continuous-time linear time invariant
structure. This is the most simple model structure;
nevertheless, it has significant precedent due to the
number of linear controllers for WECs available in
the literature. As stated in Section 2, the input excita-
tion signal should cover the whole range of frequen-
cies and amplitudes of the normal system operation
in order to get a model with ability to be consistent
on new experiments. In this regard, wave excitation
tests were conducted to get the natural resonance fre-
quency of the HB device, and this information was
used to establish the operational range of frequencies
of the device. A set of chirp signals was used for
input excitation, with a linear frequency sweep from
0.5 to 8 rad/s, and five different amplitudes:
IES = {37,53,85,102,134} N. Figure 4 shows
a chirp signal with an 85 N amplitude.

Chirp Signal

Newtons
o

20

40 +

-60

.80 I

-100 L () L L
0 50 100 150 200 250
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Figure 4. Chirp signal with frequency swept from 0.5 to 8
rad/s and 85 N amplitude.

4.1 Data preprocessing

Experimental data may have flaws of several types
due to many reasons such as uncalibrated sensors (off-
sets), leading and/or trailing null information (for syn-
chronization purposes), different sample periods
between inputs and outputs, non-constant sample
period in the same input and/or output set, and missing
information (due to other demanding tasks in the oper-
ating system); thus, it is necessary to do some data
preprocessing to alleviate these problems to the great-
est extent possible. Figure 5 shows some of the prob-
lems found in the recorded data for the HB WEC.
Graph a) in Figure 5 shows the angle measure-
ments in the aft barge sensor with a chirp input
signal of 85 N amplitude applied to the aft linear
motor. Notice the offset of this signal (around -8°),
and the leading and trailing null information. In
graph b) of the same figure, there are two segments
of missing information in the force measurements of
the fore body. The input excitation is a chirp signal
with an amplitude of 53 N applied to the fore linear
motor. Each segment has missing information of
around one second duration; with a 1/1000 sample
period, about 1000 samples are lost in each segment.

4.2 Linear model estimation

The first step in the model identification process was
to establish if the system can be approximated with
a linear model as opposite to a nonlinear model. In
this respect, the ETFE of each experiment data set
was calculated as shown in (6). Figure 6 shows the
frequency response for each ETFE. It can be noticed
that the models have a similar frequency response,
except for some of the smaller input signal ampli-
tudes, i.e., 37 and 53 N. This is due to the lower
signal-to-noise ratios for these signals.
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Figure 5. Problems found in the experimental data.
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Figure 6. Empirical transfer function estimates.

In order to get an accurate linear model, several
identification strategies were used. They are
described as follows.

1. Calculate the ETFE for each input excitation
signal in the set IES, and then calculate the aver-
aged frequency response of all of the ETFEs. The
identified model is calculated by using frequency
domain SI techniques that employ the averaged
frequency response as primary data. Note that
this is the same methodology employed in
(Garcia-Violini et al. 2020) and it is fully
described in Section 2.
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2. Estimate the continuous transfer function for each
input excitation signal in the set IES using time-
domain SI techniques and then calculate a global
estimate using a weighting sum of each estimated
transfer function.

. Merge the data for all the recorded input and output
signals and then estimate the continuous transfer
function with these merged data, using time-domain
SI techniques. When estimating the transfer func-
tion in this way, the prediction error vector is
formed over the entire collection of experiments,
assigning equal weight to observations in each
experiment, i.e., the identification is done using all
the input and output signals of the five experiments
at the same time.

Each identification strategy produced a transfer
function matrix (TFM) H;(s), which consists of 2x2
elements, where each element in the matrix corres-
ponds to a transfer function between each input
signal (aft and fore forces) and each output signal
(aft and fore angles):

MO 0
- Ui(s) Ua(s)
Hi(s) = 7
9= ™)
U (s) U (s)

where ~ denotes estimation, Y, and U, are the
Laplace transforms of the output and input signals,
respectively. Suffixes 1 and 2 stand for aft and fore
bodies, respectively.

The optimal transfer function order was achieved
by using the parsimony principle which states that
“the model should contain the smallest number of
free parameters required to represent the true system
adequately” (Soderstrom and Stoica 1989). The best
results were obtained using four poles and three
zeros for each transfer function in (7).

The fit criterion is calculated using the NRMSE
metric:

Fit = 100(1 — NRMSE) (8)

Fit is a percent value and varies between —oo
(poor fit) to 100 (perfect fit) (Ljung 2019).

The fit criterion (8) is used to compare the accur-
acy of each identification strategy. It is given as a 2x2
matrix where each percent value corresponds to the fit
metric for each transfer function element in (7).

Table 1 shows the fitting percent for each strategy.
As can be noted, the third one clearly gives more
accurate results than the other strategies.

4.3  Model validation

The model obtained with the third strategy was val-
idated against a chirp signal with the same frequency



Table 1.  Fit value for each element of the TFM in (7) for
each identification strategy.

Strategy 1 Strategy 2 Strategy 3

438 22.04 28.23  77.66 80.96 77.82
7.05 26.59 —72.70 73.13 74.89 77.05
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Figure 7. Comparison of modelled and experimental system.

sweep but with 69 N amplitude. Figure 7 shows the
comparison between the experimental data output
and the identified model output. It can be seen that
the Fit value is above 84%.

5 CONCLUSIONS

A linear model was obtained using system identifica-
tion techniques and experimental data. In order to do
the identification, it was necessary to preprocess the
data first. Several strategies were developed to get an
accurate linear model. It was found that merging the
data of all the recorded input and output signals and
then estimating the transfer function with these data,
gives the best results. The identified model was val-
idated against a chirp signal with a different ampli-
tude. The simulated response of the estimated linear
model has a fidelity of 84% with this new signal.
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