
Journal of Ocean Engineering and Marine Energy (2020) 6:303–337
https://doi.org/10.1007/s40722-020-00175-7

REVIEW ARTICLE

Boundary element and integral methods in potential flow theory: a
review with a focus on wave energy applications

Louis Papillon1 · Ronan Costello2 · John V. Ringwood3

Received: 2 April 2020 / Accepted: 14 September 2020 / Published online: 27 September 2020
© Springer Nature Switzerland AG 2020

Abstract
This paper presents a comprehensive review of boundary element methods for hydrodynamic modelling of wave energy
systems. To design and optimise a wave energy converter (WEC), it is estimated that several million hours of WEC operation
must be simulated. Linear boundary element methods are sufficiently fast to provide this volume of simulation and high speed
of execution is one of the reasons why linear boundary element methods continue to underpin many, if not most, applied
wave energy development efforts; however, the fidelity of the physics included is inadequate for some of the required design
calculations. Judicious use of non-linear boundary element methods provides a route to increase the fidelity of the modeling
while maintaining speed and other advantages over more computationally demanding alternatives such as Reynolds averaged
Navier–Stokes (RANS) or smooth particle hydrodynamics (SPH). The paper presents some background to each aspect of the
boundary methods reviewed, building up a relatively complete theoretical framework. Both linear and nonlinear methods are
covered, and consideration is given to the computational complexity of the methods reviewed. The paper aims to provide a
review that is useful in selection of the most appropriate techniques for the next generation of WEC design tools.

Keywords Wave energy converter design tools · Potential flow theory · Boundary element method · Zero forward speed
problem · Wave energy converter

1 Introduction

Despite continuous attention from both commercial and aca-
demic researchers over the past 50 years, wave energy has
still not achieved large-scale commercialisation. It is evi-
dent that the development of economically attractive WEC
technology is a difficult endeavour. Analysis of the reasons
why wave energy research is so difficult and why it remains
inconclusive at this time has been reported in detail byWeber
(2012) and Weber et al. (2013). A new R&D management
approach,more suited to the challenges ofwave energydevel-
opment, has been followed from Weber (2012) and Weber
et al. (2013) and is further developed in Bull et al. (2016),

B John V. Ringwood
john.ringwood@mu.ie

Louis Papillon
louis.papillon67@gmail.com

1 Ecole Centrale Nantes, Nantes, France

2 Wave Venture, Cork, Ireland

3 Centre for Ocean Energy Research, Maynooth University,
Maynooth, Ireland

Roberts et al. (2017), Weber and Laird (2018) and Costello
et al. (2019). This new R&Dmanagement methodology may
be termed the performance before readiness approach, since
it emphasises the importance of achieving high-technology
performance level (TPL) at low-technology readiness level
(TRL) to increase overall performance and to reduce risks due
to premature large-scale testing of new technologies. This
performance before readiness methodology relies implicitly
on heavy use of simulation and optimisation to provide low-
cost evaluation of multiple instances of multiple candidate
technologies while at low TRL.

Previous work, related to the present paper, has explored
a wider set of CFD techniques that might be used in the
next generation of wave energy design tools (Davidson and
Costello 2020). That review targeted CFD techniques with
the fidelity of included physics (and also computation time),
intermediate to linearized potential flow (LPF), and RANS.
The present paper presents a narrower but more detailed
review of a particularly relevant subset of these CFD tech-
niques, closer to LPF than to RANS, but still encompassing
non-linear methods, namely Boundary Element and Integral
Methods in Potential Flow.
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1.1 Place of simulation in wave energy R&D

Central to theperformancebefore readiness approach towave
energy R&D is the visualisation of research progress as a
trajectory on the TRL–TPL plane (see Fig. 1 and a further
important concept is the partitioning of the TRL–TPL plane
into a low-TRL left-hand domain and a high-TRL right-hand
domain (Weber 2012). In the low-TRL left-hand side, R&D
activities are relatively lowcost and low risk, the performance
before readiness approach holds that technology fundamen-
tals should flexible and the imperative is innovation with an
emphasis on evaluation and optimisation of many alternative
designs. Conversely, in the high-TRL, right-hand domain,
R&Dactivities are high cost and high risk, technology funda-
mentals should be fixed and the imperative in these activities
is risk management rather than innovation. The usages of
simulation tools differ in these left and right domains of the
TRL–TPL plane. In the left-hand, low-TRL domain, the use
of simulation is for evaluation andoptimisation ofmany alter-
native designs while in the right-hand, high-TRL domain,
the use of simulation is primarily concerned with risk miti-
gation, in particular quantification of environmental loading
and adequacy of structural dimensioning in a singular proto-
type design rather than many alternative candidates. In this
paper, we are primarily focused on methods suitable for the
former use case but, nevertheless, the methods reviewed may
also be suitable for the latter.

The combination of stochastic wave inputs and large num-
ber of design decision variables means that the number of
simulations required to characterise the performance of a
technology in a certain location is large. On the right-hand
of Fig. 1 representing the high-risk, high-TRL, domain, this
will often be in the thousands of runs while in the left-hand,
low-risk, low-TRL domain, this can run into the millions
of runs. This level of simulated time precludes the use of
hi-fidelity RANS or SPH type simulation and motivates the
use of more computationally efficient approaches. This need
for computational efficiency explains the widespread use of
phenomenological models based primarily on LPF in wave
energy research. These models have served the wave energy
sector well but have drawbacks related to the invalidation
of underlying assumptions in the presence of large body
motions (accentuated by control systems as in (Giorgi et al.
2016)) and in high and steep waves. In addition, present
implementations of these methods suffer from non-physical
results at so-called “irregular frequencies” (or“irregular val-
ues”), corresponding to the eigenfrequencies of the interior
homogeneous Dirichlet problem (Ohmatsu 1975).

Given the emphasis placed on low-TRL assessment and
optimisation in the performance before readiness approach,
it follows that a key requirement forWEC simulation tools is
suitability for use in the calculation of objective functions in
automatic optimisation. To satisfy this requirement, David-

son and Costello (2020) state that a WEC simulation tool
should

(a) be reliable for all possible trial vectors that an optimiza-
tion algorithm might generate for evaluation (fidelity
requirement).

(b) be general enough to be applicable to a wide variety of
candidate WEC concepts (flexibility requirement) and,

(c) be fast/affordable enough to allow sufficient generations
or iterations to be completed in practical time scales
on available and affordable hardware (computational
requirement).

LPF, and related approaches, scores very well in terms
of the flexibility and computational requirements but have
limitations in termsoffidelity. These limitations are due to the
linearisation of the body boundary condition, linearisation
of the water free surface boundary condition and also due to
the invicid/irrotational assumptions inherent to all potential
flow methods. The methods explored in this paper include
methods that overcome two of these three difficulties, more
specifically the methods are all potential flow methods but
extend to nonlinear treatment of boundary conditions at the
water free surface and the body surfaces.

1.2 Distinguishing characteristics of the wave
energy problem

Potential flowandboundary integralmethods are usedwidely
in most, if not all, fields within offshore design and naval
architecture. Historically, it is from these disciplines that
wave energy research has emerged so it should not be sur-
prising that wave energy also inherited a strong tradition in
use of these methods. Nevertheless, wave energy has a num-
ber of characteristics that distinguish its analysis from that
of other floating bodies. The ideal simulation tool for wave
energy might not be the same as the ideal tool for analysis of
a floating wind turbine, offshore platform or ship hull.

Floating platforms and ships are generally designed to
minimise motion response to waves; in a small number of
cases, this is accomplished through active systems but more
typically it is done through optimisation of geometry and
dynamic properties tominimise the response amplitude oper-
ator, at least in the predominant frequency range of the local
waves. Conversely, WEC systems are designed to maximise
wave interactions, at least with respect to power absorp-
tion. Most usually maximising power absorption also results
in attracting very large wave forces and very large motion
response amplitudes, at least in the power absorbing modes.

WEC devices are further distinguished by the presence of
power take off (PTO) machinery and associated control sys-
tems. PTO systems are superficially similar to sub-systems
present in other offshore systems, for example, gyroscopic
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Fig. 1 TRL/TPL WEC
development trajectories (Weber
2012)

ship stabilisation systems or crane heave compensation sys-
tems. These systems all introduce forces acting on floating
bodies in addition to the wave forces. However, ship sta-
bilisation or heave compensation systems generally reduce
motion of the bodies that they act upon. WEC PTO systems,
especially ones with advanced control systems, will tend to
amplify the motion of the WEC bodies in response to waves.
This is achieved through impedance matching, complex con-
jugate control, latching, unlatching or other approaches that
manipulate the phase of the motion response so that the
response velocity and wave forcing are in phase resulting
in increased power and motion.

A first distinguishing characteristic of WEC systems is,
therefore, increased response amplitudes when compared to
other offshore structures in waves. It follows that that the
assumptionsmade to allow linearisation of the boundary con-
ditions are often invalidated in WEC simulations.

A second, techno-economic, distinguishing characteris-
tic that separates WEC design from other offshore system
design is that a minimum viable product has not yet been
identified in WEC design whereas in other offshore design
applications, a minimum viable product, and in many cases,
multiple generations of incremental product improvements,
has been demonstrated. The implication of this observation
is that, in platform design and ship design, certain design
approaches are known to work and we can be confident that
the trade-offs, assumptions and imperfections in the analysis

methodologies do not prevent production of a commercially
successful design. It is necessary to search for more powerful
design tools that reduce assumptions and trade-offs so that
more insightful analysis is possible.

Mature general purpose software packages, both commer-
cial and open source, exist for wave structure interaction
and wave energy simulation. However, the theoretical and
methodological underpinnings of these mature software
packages encompass only a fraction of the breadth of the
available methods that have been studied to date. Broadly
speaking, these mature software packages are either LPF
or RANS. Notwithstanding the extensive use that has been
made of LPF and the potential of RANS in wave energy
research, neither of these methods is ideal; LPF is fast but
excludes important physical effects while RANS includes
relevant physics but is too computationally demanding to be
widely/solely applied in WEC design.

Boundary element methods, based on potential flow, have
become a standard modelling tool for hydrodynamic mod-
ellers, both in industry and research laboratories. However,
many are unaware of the range of modelling possibilities
within the family of boundary element techniques, and the
basis upon which these methods are formed is not always
completely understood. As a result, many hydrodynamic
modellers opt for the default case of linear potential methods,
defined by Wehausen and Laitone (1960).
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The objective of this paper is to review potential flow for-
mulations that might play a part in next-generation WEC
design tools. Of particular interest are potential flow formu-
lations that are non-linear in the body boundary condition
(if not all boundary conditions) and are free from “irregular
frequencies”. The work is a partnership between Wave Ven-
ture and the Centre for Ocean Energy Research at Maynooth
University and is one of the number of early steps taken by
Wave Venture in selecting the most appropriate theory for an
advanced wave structure interaction model specially adapted
to the needs of wave energy projects.

1.3 Previous reviews

Some hydrodynamic modelling reviews exist and cover a
larger domain than boundary element methods, while gener-
ally focus on linear theory and second-order problems, such
as those byNewman (2018), Faltinsen (1991),Ogilvie (1966)
(for linear theory) orOgilvie (1983) (for second-order). Some
reviews do focus on specific applications, for example Beck
and Reed (2001), but are not in the main application area
of interest (zero speed) of this study. There are some broad-
based reviews in the general application area of interest, such
asPenalba et al. (2017), butwithout particular focus onpoten-
tial flow, and lack detail on the methods employed. A wide
variety of reviews exist on CFD modelling, e.g. Windt et al.
(2018), but serve to accentuate the dearth of coverage of the
area relating to potential flow. However, the review made by
Yeung (1982) focuses on the theory for the different meth-
ods used to solve potential flow problems (boundary element
method, finite difference and finite element method).

1.4 Outline of this paper

This paper presents a reviewof linear and non-linear potential
flow models using the boundary element method for prob-
lems including a free-surface and bodies with no forward
speed. Assumptions and equations leading to potential flow
problems are treated. The linear theory at first order and the
discretization of the problem by the panel method are pre-
sented. The two different methods used to solve the problem,
respectively, theGreen functionmethod andRankine sources
are discussed, in both time and frequency domains, as well
as the different existing approaches applied for the compu-
tation of the hydrodynamic forces exerted on a body. This
paper reviews the linear and nonlinear numerical models that
appeared since the 1970s thanks to the rapid development of
numerical computation.

2 General equations

All the equations and software presented thereafter in this
paper consider bodies as rigid bodies and do not include
flexible bodies.

We consider the fixed right-handed coordinate system
(x, y, z), with positive z vertically upwards through the cen-
ter of gravity of the body and the origin in the plane of the
undisturbed free-surface. The displacements at the center of
gravity of the body in the x-, y-, and z-directions,with respect
to the origin are xG , yG and zG , respectively, so that xG is
surge, yG is sway and zG is the heave displacement. Let the
angular displacements at the center of gravity of the body of
the rotational motion about the x-, y-, and z-axes be αr , βr ,
γr .

Hence, to express the generalized body motion vector
X(t), we denote

X(t) =
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. (1)

The assumptions of an incompressible, inviscidfluid and irro-
tational flow lead to a set of equations for potential flow
theory, which, for a velocity potential φ and a free-surface
elevation η, leads to

– the Laplace equation in the entire fluid domain (D)

Δφ = 0, (2)

– a kinematic free-surface boundary condition (nomaterial
flux across the free-surface) (on z = η)

∂η

∂t
− ∂φ

∂z
+ ∇φ.∇η = 0, (3)

– a dynamic free-surface boundary condition (Euler’s inte-
gral, pressure on the free-surface elevation equal to the
atmospheric pressure, where Patm = 0 without loss in
generality) (on z = η)

gη + ∂φ

∂t
+ 1

2
|∇φ|2 = 0, (4)

– an impermeability condition on the seabed, with a unit
normal vector to the surface n

∂φ

∂n
= 0, (5)
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– a body boundary condition (impermeability condition)
for a body moving at a velocity V , with a normal n, on
the wetted surface of the body

∂φ

∂n
(M, t) = V .n(M, t), (6)

– a radiation condition, where the perturbed potential φp

tends to 0 moving away from the body, where V is the
velocity vector, the total potential φ is equal to the sum
of an incident potential φ0 and a perturbed potential φp

φ = φ0 + φp, (7)

with Δ the Laplace operator, ∇ the gradient operator, ∂
the partial operator, g the acceleration due to gravity, and
M any point in the fluid domain.

In the literature, different methods are proposed to solve
the potential flow problem. Boundary element methods
(BEMs), or panel methods, are based on the distribution of
singularities (e.g., source) on the boundaries of the domain.
The resulting equations are solved to obtain the source singu-
larity strengths and, therefore, the velocity potentials. Other
methods, such as finite difference methods (FDMs), finite
volume methods (FVMs), or finite element methods (FEMs)
are based on the discretization of the entire fluid domain
where, in each node (or cell), the partial differential equations
(PDE)of the problemare computed, either directly (FDM), or
in their integral (FVM) or weak (FEM) formulation, depend-
ing on the particular method used. These three methods have
significantlymore unknowns than aBEMapproach, since the
entire fluid domain is discretised, but the matrix that must be
inverted is very sparse, and the total computational effort
and accuracy depends on the details of the code. The present
study is only focused on BEMmethods, largely employed in
the field of wave–structure interactions.

Assuming incompressible and inviscid fluid, the govern-
ing Navier–Stokes equations evolve into Euler’s equation.
Progressively applying the assumption of irrotational flow
leads to Euler’s integral, giving access, knowing the velocity
potential, to the pressure p

p = −ρgz − ρ
∂φ

∂t
− 1

2
ρ|∇φ|2, (8)

where ρ is the water density.
The integration of the pressure gives the resulting hydro-

dynamic and hydrostatic forces (and moments) Fhydro acting
on a surface (S) of normal n

Fhydro = −
∫∫

S
pnds, (9)

with the generalized unit normal vector n

n =
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Thus, applying Newton’s second law, the equations of
motion for a floating body can be expressed as

MẌ = Fhydro − Fg + Fexter, (11)

with

Fg3 = mg, (12)

where Fg is the gravitational force vector, m the mass of
the body,M its mass matrix, and Fexter represents additional
forces (due to mooring, PTO, etc.).

The potential can be represented in two different ways: by
a mixed distribution of sources and dipoles over the domain
boundaries (called the double-layer, or potential formula-
tion), or by a distribution of sources only (also called the
source formulation).

In the potential formulation, the potential outside the fluid
domain (D) is assumed to be arbitrary. Green’s second iden-
tity transforms a volumetric problem into an equivalent one
on the boundary domain (S)

∫∫∫

D
(φ(P)ΔG(M, P) − G(M, P)Δφ(P)) dD

=
∫∫

S

(

φ(P)
∂G(M, P)

∂n
− G(M, P)

∂φ(P)

∂n

)

dS, (13)

with G a Green function, P(a, b, c) a point where a source
(or dipole) is placed, and M(x, y, z) a point in the domain.
The potential φ is itself a harmonic function that satisfies the
Laplace equation in (2); therefore, the identity simplifies to

∫∫∫

D
φ(P)ΔG(M, P)dD

=
∫∫

S

(

φ(P)
∂G(M, P)

∂n
− G(M, P)

∂φ(P)

∂n

)

dS. (14)

Using Green’s third identity, the volumetric integral term
can be expressed as

∫∫∫

D
φ(P)ΔG(M, P)dD = −2πφ(P), (15)
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which leads, with Eq. (14), to the boundary integral equation,
for the potential formulation. On the boundaries S of the
domain, the boundary integral equation is given by

2πφ(M) +
∫∫

S
φ(P)

∂G

∂n
(M, P)dS

−
∫∫

S

∂φ(P)

∂n
G(M, P)dS = 0, on S, (16)

where the unknown potential can be interpreted as a distribu-
tion of sources and its derivative by a distribution of dipoles.

Alternatively, in the source formulation, when assuming
that the potential inside and outside the domain are equal at
the boundaries, the potential is expressed by a distribution of
unknown sources of strength σ in the form

φ(M) =
∫∫

S
σ(P)G(M, P)dP, (17)

and Eq. (16) leads to the following integral equation:

∂φ

∂n
(M) = 2πσ(M) +

∫∫

S
σ(P)

∂G(M, P)

∂n
dS. (18)

The potential and source formulations are very similar and
both involve the same amount of computational effort. Usu-
ally, the potential formulation is preferred since it is more
general and efficient, in particular with relatively thin ele-
ments. However, if the fluid velocity or second-order forces
are required, the source formulation has an advantage, as it
does not require the computation of the second derivatives
of the Green function.

3 Discussion on existingmodels

In the field of potential flow theory, for water wave–
body interaction problems, different numerical models have
emerged over the last 50 years or so, thanks to advances in
numerical computation. The biggest issues in solving poten-
tial flow problems lie in the computation of the nonlinear
free-surface boundary condition equations, and in the treat-
ment of the body boundary condition (in the case of freely
moving bodies) which takes into account the relative motion
between the moving body and the unsteady free-surface
elevation. Different levels of assumption are made in the
treatment of those conditions, which lead to more or less
complex models (see Fig. 2). Unsurprisingly, a greater num-
ber of assumptions generally leads tomathematical problems
which are easier to solve and faster numerical computation;
however, the scope of validitywill inevitably be reduced. The
present study is focused on models based on boundary ele-
ment methods, and do not cover the finite difference, finite
volume, and finite element methods.

In the context of boundary elementmethods, a free-surface
Green function or a Rankine source is used to simplify and
transform a volumetric problem into a surface one. Strictly
speaking, both the free-surface Green function and Rank-
ine singularity are Green functions; however, for the sake
of simplicity, in the present study, we will refer to the “free-
surfaceGreen function” by the shorter term“Green function”.
By construction, the Green function satisfies the linearized
free-surface conditions and the radiation condition; hence,
singularities are distributed only on the wetted surface of
the body. This yields a significant computational reduction,
but only waves with small steepness should be considered
due to the linearisation of the free-surface. However, the
analytical expression for the Green function is difficult to
handle and has to be approximated. Moreover, the convolu-
tion product inside the Green functionmakes its computation
time-consuming since it must be evaluated a large number
of times. In the case of finite depth problems, the sea-bottom
is assumed flat. The determination of the Green function is
discussed in Sect. 5. The Rankine source is much easier to
compute, but does not satisfy the free-surface conditions,
which are approximated numerically by discretising the free-
surface. Neither way is the radiation condition fulfilled, and
has to be implemented either numerically, by the inclusion
of a damping zone around the body, or via a hybrid method,
where the Green function method, which satisfies the radia-
tion condition, is used around the edges of the computational
domain. Rankine sources are discussed in Sect. 6.

When solving potential flow problems which include a
body, two problems have to be solved: the equation of the
body motion and the equation of the fluid (potential flow
problem), where both are linked by the hydrodynamic forces
actingon thebody.The solutionof the problem takes different
routes, depending on whether a Green function approach or
Rankine sources are used. Likewise, problems which include
fixed bodies (diffraction problem) or bodies undergoing pre-
scribed or freely motion (radiation problem) must be treated
differently. The different methods developed to compute
hydrodynamic forces are presented in Sect. 7.

Across all the existing BEM models, the greatest level
of simplification is achieved by considering the problem to
be fully linear, by linearisation at the first-order of the free-
surface and body boundary conditions. By consideringwaves
with small steepness, and a free-surface elevation linearized
around the plane z = 0, the free-surface conditions simplify
into ordinary differential equations. Small body motion is
assumed, and forces are computed on the mean wetted body
surface. Linearisation allows the decomposition of the total
potential into incident, diffraction and radiation potentials.
Hydrostatic, Froude–Krylov, diffraction and radiation forces
are assumed linear. Time-domain and frequency-domain rep-
resentations are related via the Fourier transform.
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Fig. 2 Potential models in boundary element method

The first step to consider nonlinearities is to extend the
linear model by computing second-order terms using a per-
turbation method. The second-order problem, in addition to
extending the validity of the results, predicts some phenom-
ena which cannot be accounted for, such as second-order
effects forces and mean drift forces, by linear models.

A step towards the inclusion of nonlinearity is the use of
the body-exact method. The main assumption is to assume
that the body can undergo large motions in the presence
of waves with small steepness. There are two versions
of the body-exact method. In the first method, the con-
cept, although inconsistent, consists of computing nonlinear
Froude–Krylov (NLFK) and restoring forces on the instanta-
neous wetted surface of the body. The system becomes time
varying and the link between time and frequency domains is,
in principle, no longer available. However, the free-surface
conditions remain linearized, and the linear diffraction–
radiation forces are still computed on the mean wetted
surface, and can be taken from a fully linear potential flow
code.NLFKand restoring forces are computed by integration
of the pressure on the exact wetted surface, and the position
of the body is explicitly calculated (actualized) at each time
step. The interface between the wetted surface and the free-
surface elevation requires re-meshing of the body, which is
time-consuming. However, taking into account the NLFK
forces significantly improves the quality for the results for a

relatively small increase in computation, under more signif-
icant body motion.

A second improvement of the body-exact method is
to include nonlinearity related to the diffraction–radiation
forces. Such an inclusion has a significant impact in the com-
putation time of the Green function (or Rankine sources),
which has to be re-evaluated at each time step.

All the models presented hitherto assume linear free-
surface boundary conditions around the plane z = 0, and
can be solved using the Green function or Rankine sources.
The next level of complexity takes into the consideration full
or partial nonlinearities of the free-surface conditions. The
Green function, as explained before, can only deal with lin-
earized free-surface equations, hence Rankine singularities
are used in the following models.

The weak-scatterer approach that can be originally found
in Pawlowski (1994) assumes that the perturbation potential
is small compared to the incident one, and linearization of
the free-surface elevation is made around the incident free-
surface z = η0. Themain advantage of this method is that the
incident wave is still known analytically and does not need
to be propagated from a wave-maker, allowing the mesh to
be refined only in the vicinity of the body.

The fully nonlinear model, which could be termed a
numerical wave tank (NWT), does not make any particu-
lar assumptions and computes the fully nonlinear problem
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with Rankine sources. The free-surface elevation is no longer
known, and some instability in the computation of the free-
surface elevation can appear. This method is very demanding
in terms of computation time.

Nonlinearities can also be added in potential flow mod-
els by the inclusion of terms that take into account viscous
effects, as the addition of drag forces. There are different
ways to evaluate those forces, but the most popular remains
theMorison’s equation (can be found in Sarpkaya 1986). The
inclusion of drag is beyond of the scope of the present review,
and further details can be found in Ertekin and Rodenbusch
(2016) (Section 35.1.6).

The linear potential flow model at first order, widely used
in wave–structure interaction, is developed in Sect. 4. The
nonlinear models (linear extended to second order, body
exact, weak scatterer and fully nonlinear) are presented in
Sect. 8.

Table 1 lists commercial and non-commercial potential
codes which use the models described above. This non-
exhaustive state-of-the-art overview highlights the different
choices and techniques employed across different codes and
gives a rough relative count of the codes available for the five
potential models (fully linear, body exact linear/nonlinear
radiation–diffraction, weak scatterer, and fully nonlinear).
Codes dealing with any degree of nonlinearity are exclu-
sively in the time domain, as hydrodynamic forces of a body
undergoing sinusoidalmotion becomeno longer simply sinu-
soidal. However, the LAMP code in Shin et al. (2003) is the
only code to the best of the authors’ knowledge that pro-
poses a frequency-domain computation for large amplitude
roll motion of a fishing vessel using the curve of statical
stability (GZ curve), which leads to different responses for
a given frequency. The two codes LAMP-4 and WS_Cn
are weak-scatterer models, but both propose an option to
consider linearized free-surface conditions, which lead to a
body-exact nonlinear problem.

4 Linear potential flow theory

The free-surface boundary conditions (3) and (4) are difficult
to implement numerically; hence, some linearisation is usu-
ally applied to the problem. The free-surface conditions (3)
and (4) are highly nonlinear, and linearisation can be useful
if considering small wave steepness. Assumptions are also
usually made on the decomposition of the potential (7) and
the body boundary condition (6).

4.1 Potential expression

Linearisation of the problem allows the decomposition of
the perturbed potential expressed in (7) into a diffraction
potential φD and a radiation potential φR:

φp = φD + φR. (19)

Hence, the total potential reduces to the sum of an incident
potential, a diffraction potential and a radiation potential:

φ = φ0 + φD + φR. (20)

The incident anddiffraction potentials correspond, respec-
tively, to the potential created by the incident wave and the
resultingwave, when the body is considered fixed. The radia-
tion potential corresponds to the waves created by themotion
of the body itself in the absence of the incoming waves.

4.2 Free-surface boundary conditions

Considering a linearized free-surface elevation of small
steepness ε simplifies the free-surface boundary conditions:

– linearized kinematic free-surface boundary condition
(z = 0):

∂η

∂t
= ∂φ

∂z
, (21)

– linearized dynamic free-surface boundary condition (z =
0):

η = −1

g

∂φ

∂t
, (22)

which, by including (21) in (22), leads to

∂2φ

∂t2
+ g

∂φ

∂z
= 0. (23)

4.3 Body boundary conditions

On the linearized body boundary condition, forces are com-
puted on the mean body wetted surface Sw:

∂φ

∂n
(M, t) = ∂φ

∂n0
(M, t) = V0.n0(M, t), (24)

with V0 velocity vector of the body, and n0 normal of the
body, at mean body position. Using the decomposition of the
velocity potential, its derivative can be written as

∂φ

∂n
= ∂φ0

∂n
+ ∂φD

∂n
+ ∂φR

∂n
. (25)

Considering the structure of the body boundary condition, a
new decomposition of the radiation potential is introduced
(see Newman 2018)
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φR =
6

∑

i=1

ViφRi , (26)

with i representing one of the 6 degrees of freedom of the
body, while the Vi are components of the generalized body
velocity. The body boundary conditions can be written in a
different way on the wetted surface Sw for the radiation and
diffraction potentials, respectively (see Newman 2018),

∂φ

∂n
= ∂φR

∂n
=

6
∑

i=1

Vini , (27)

with

∂φRi

∂n
= ni , (28)

and

∂φD

∂n
= −∂φ0

∂n
. (29)

A feature of this decomposition is that the potentials φ0 and
φD do not depend on the body motion.

4.4 Integral equations

Using Eq. (16) and the new linearized body boundary con-
ditions (28) and (29), we obtain, respectively, the integral
equations satisfied by the radiation and the diffraction veloc-
ity potential

2πφRi (M) +
∫∫

S
φRi (P)

∂G(M, P)

∂n
dS

=
∫∫

S
niG(M, P)dS. (30)

2πφD(M) +
∫∫

S
φD(P)

∂G(M, P)

∂n
dS

= −
∫∫

S

∂φ0(P)

∂n
G(M, P)dS. (31)

The diffraction potential, given in (31), can also be written
as follows:

2π [φ0(M) + φD(M)]

+
∫∫

S
(φ0(P) + φD(P))

∂G(M, P)

∂n
dS = 4πφ0(M).

(32)

From the computational point of view, (32) has some advan-
tages over (31) in terms of computational time and storage
space requirements.

4.5 Discretization

In the low-order potential formulation, the geometry is dis-
cretised with a number N of flat panels, where the velocity
potential is assumed constant on each panel, and computed
at a collocation point located at the center of the panel. The
continuous integral equations, established in (30) and (32),
can be reduced to a set of linear simultaneous equations for
the values of the velocity potential over the panels. For the
radiation potential, we obtain

2πφRi (Mj ) +
N

∑

k=1

D jkφRi,k =
N

∑

k=1

S jkni,k, (33)

with j and k = 1, . . . , N . We obtain, for the diffraction
potential,

2πφD(Mj ) +
N

∑

k=1

D jkφD,k = 4πφ0(Mj ), (34)

where the influence matrices D jk and S jk are defined by

D jk =
∫∫

Sk

∂G(P, Mj )

∂n
dSk, (35)

S jk =
∫∫

Sk
G(P, Mj )dSk, (36)

where Sk denotes the surface of the kth panel.
In the source formulation given in (17), the potential is

expressed by a distribution of sources only. In the low-order
method, after discretization of the body surface with flat pan-
els, with constant source strength on each panel, the potential
is expressed by

φ(Mj ) =
N

∑

k=1

σ(Mk)

∫∫

Sk
G(Mj , P)dSk . (37)

The linear system is composed of ordinary differential equa-
tions (33) and (34). A variety of algorithms exist to set the
matrices and solve this resulting linear system of equations,
but these algorithms do not have the same computational
complexity, and have to be chosen depending on the size of
the system.

4.6 Euler’s integral

Euler’s integral, established in (8), is linearized by neglecting
quadratic terms, which leads to (on Sw)

p = ps + pd = −ρgz − ρ
∂φ

∂t
(M, t), (38)
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where ps and pd are the static and dynamic pressure, respec-
tively, and gives the linearized expression for hydrostatic and
hydrodynamic loads, FH and Fi as

FHi = −
∫∫

Sw

ρgzn0ids, (39)

Fi = −
∫∫

Sw

pdn0ids, (40)

with n0i the i th component of the unit normal vector of the
body, at themean body position. The hydrostatic loads can be
written as the product of a hydrostatic restoring load matrix
KH and the body motion X

FHi = KHi j X j , (41)

with the load exerted in direction i , due to a motion X in the
j degree of freedom, and KHi j > 0. The different methods
to compute the hydrodynamic forces are given in Section 7.
Further details on the computation of hydrostatic and hydro-
dynamic loads can be found in Aubault and Ertekin (2016)
(Section 34.4.9).

5 The Green function

The determination of the Green function is a key to solve
free-surface potential flow problems with linearized free-
surface boundary conditions. Kellog expressed the general-
izedGreen function for anypotential flowproblem inKellogg
(1954) (p. 236):

G(M, P) = 1

r
+ W (M, P), (42)

whereW is a harmonic function and r is the distance between
the two points M and P . The theory of the Green function
for free-surface flow problems can be found in the books of
Stoker (1957) and Wehausen and Laitone (1960), as well as
John (1950) for the frequency-domain Green function, and
Finkelstein (1957) in the case of the transient Green function.

5.1 Determination of the Green function in the
frequency domain

Let g be a potential, g1 = �(g) its real part, and g2 = �(g)
its imaginary part

g(x, y, z) = g1(x, y, z) + ig2(x, y, z). (43)

We consider a source of pulsating strength (see Wehausen
and Laitone 1960, Section 13) in three dimensions, at the
position (a, b, c) defined for z ≤ 0 by

G(x, y, z, t) = g1(x, y, z) cos(ωt) + g2(x, y, z) sin(ωt)

= �
[

g(x, y, z)e−iωt
]

. (44)

Laplace equation The potential g satisfies the Laplace
equation

Δg = ∂2g
∂x2

+ ∂2g
∂ y2

+ ∂2g
∂z2

= 0. (45)

Linearized free-surface condition g is a harmonic function of
the time; therefore, the linearized free-surface condition (21)
and the equation of the free-surface elevation (22) become

∂gi
∂z

(x, y, 0) − ω2

g
gi (x, y, 0) = 0, (46)

and

η(x, y, t) = ω

g

[

g1(x, y, 0) sin(ωt) − g2(x, y, 0) cos(ωt)
]

,

(47)

for i = 1, 2.

Condition at infinite depth (z → ∞) We assume the separa-
tion of the variable z from g(x, y, z)

g(x, y, z) = Z(z)g(x, y), (48)

with Z a function depending on the variable z only. The
Laplace equation can then be written as

Δg(x, y) + m2g(x, y) = 0, Z ′′ − m2Z = 0. (49)

Three cases lead to different solutions:m2 > 0,m2 < 0, and
m2 = 0. We assume that the potential of outgoing waves is
periodic in space along (x, y). Hence, only the case m2 > 0
is treated, and Z(z) is given by

Z = Aemz + Be−mz, (50)

with A and B constants. If the fluid is infinitely deep,
∂g
∂z (x, y, z) must remain bounded as z → ∞; hence, the
term B must be 0. Moreover, the free-surface condition (46)
requires the dispersion relation

m = k0 = ω2

g
, (51)

with k0 being the wave number. g(x, y, z) is of the form

g(x, y, z) = ek0zg(x, y), (52)
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which implies, for a fluid of infinite depth, the following
condition:

lim
z→∞

∂gi
∂z

= 0, (53)

for i = 1, 2.

Condition at the sea-bottom in finite depth (z = −h) When
the fluid is of finite depth h, the sea-bottom is assumed flat
and the no flux condition is given by

∂G

∂z
(x, y,−h) = 0. (54)

Considering the sea-bottom condition, and the separation of
variables made in (48), Eq. (50) becomes

Z = A cosh[m(z + h)], (55)

and the free-surface boundary condition (46) becomes

m tanh(mh) = k0, (56)

with two real solutions ±m0 (the solution m0 < 0 is, how-
ever, meaningless in the present set of problems). g then takes
the form

g(x, y, z) = cosh[m0(z + h)]g(x, y). (57)

Radiation condition at infinite distance (r → ∞) As the
potential behaves like outgoing waves in the far field, a radi-
ation condition is imposed using a condition of the type of
the Sommerfeld radiation condition, given by

lim
r→∞

√
r

(
∂g
∂r

− ik0g
)

= 0, (58)

with r2 = (x − a)2 + (y − b)2 + (z − c)2.

Determination of theGreen function in infinite depthWewish
to find a function satisfying conditions (45), (46), (58), and
particularly for the case of infinite depth case equation (53).
We assume the Green function G to be

G(x, y, z, t) =
[
1

r
+ g0(x, y, z)

]

cos(ωt)

+g2(x, y, z) sin(ωt). (59)

The term 1
r is the fundamental free-space Green function,

and g0 is the free-surface term. g2 will be determined at the
end to satisfy the radiation condition (58). Using the double
Fourier transform in polar coordinates (k, θ , z,) 1

r and g0 can
be written

1

r
= 1

2π

∫ ∞

0

∫ π

−π

e−k|z−c|

eik[(x−a) cos θ+(y−b) sin θ]dθdk, (60)

g0(x, y, z) = 1

2π

∫ ∞

0

∫ π

−π

ĝ0(k, θ, z)

eik(x cos θ+y sin θ)dθdk. (61)

Applying theLaplace equation (45) and the doubleFourier
transform, we have

∂2ĝ0
∂z2

− kĝ0 = 0. (62)

In infinite depth, using the approach leading to (52) we
find

ĝ0(k, θ, z) = A0(k, θ)ekz . (63)

Considering the Fourier transforms (60) and (61), one can
compute the term A0 with equation (46)

A0(k, θ) = k + k0
k − k0

ekce−ik[a cos θ+b sin θ]dθdk. (64)

Hence, we have

g0(x, y, z) = 1

2π

×
∫ ∞

0

∫ π

−π

k + k0
k − k0

ek(z+c)eik[(x−a) cos θ+(y−b) sin θ]dθdk.

(65)

A singularity appears at k = k0, so the potential is
expressed as Cauchy principal value integral

g1(x, y, z) = 1

r
+ 1

2π
PV

∫ ∞

0

×
∫ π

−π

k + k0
k − k0

ek(z+c)eik[(x−a) cos θ+(y−b) sin θ]dθdk.

(66)

Introducing the zero-order Bessel function of the first kind

J0(kR) = 1

2π

∫ π

−π

e−ikR sin αdα, (67)

and considering the polar coordinates

x − a = R cosα, y − b = R sin α,

R2 = (x − a)2 + (y − b)2 (68)

one can write

g1(R, α, θ) = 1

r
+ 1

r1

123



Journal of Ocean Engineering and Marine Energy (2020) 6:303–337 315

+2k0PV
∫ ∞

0

1

k − k0
ek(z+c) J0(kR)dk, (69)

with r21 = (x−a)2+(y−b)2+(z+c)2. Regarding the behav-
ior of g1 at infinite distance, we can obtain an asymptotic
expression modifying the order of integration and making a
change of variable (θ → Ω) in (66)

g1(x, y, z) = 1

r
+ 1

r1

+k0
π

PV
∫ ∞

0

∫ π

−π

1

k − k0
ek(z+c)eikR cos(θ−α)dθdk,

= 1

r
+ 1

r1

+4k0
π

PV
∫ ∞

0

∫ π
2

0

1

k − k0
ek(z+c) cos(kR cos θ)dθdk,

= 1

r
+ 1

r1

+4k0
π

PV
∫ ∞

0

∫ 1

0

1√
1 − Ω2

× 1

k − k0
ek(z+c) cos(kRΩ)dΩdk.

(70)

Considering the following relation

cos(kRΩ) = cos(k0RΩ) cos[(k − k0)RΩ]
− sin(k0RΩ) sin[(k − k0)RΩ], (71)

and using the theorem from Fourier integrals (discussed in
Bochner 1948)

∫ ∞

a
f (x)

sin[R(x − x0)]
x − x0

dx = π f (x0) + o

(
1

R

)

,

PV
∫ ∞

a
f (x)

cos[R(x − x0)]
x − x0

dx = o

(
1

R

)

, (72)

we can then write

g1(x, y, z) = −4k0e
(z+c)

∫ 1

0

1√
1 − Ω2

sin(k0RΩ)

+o

(
1

R

)

. (73)

This asymptotic expansion is known and can be found in
Erdélyi (1956). It is given by

g1(x, y, z) = −2πk0e
k0(z+c)

√

2

πk0R
sin

(

k0R − π

4

)

+o

(
1

R

)

. (74)

To take into account the radiation condition (58), g2 must
have the asymptotic behavior

g2(x, y, z) = 2πk0e
k0(z+c)

√

2

πk0R
cos

(

k0R − π

4

)

+o

(
1

R

)

. (75)

The zero-order Bessel function of the first kind has the
following asymptotic expansion (can be found in Watson
(1924))

J0(k0R) =
√

2

πk0R
sin

(

k0R − π

4

)

+ o

(
1

R

)

, (76)

when R → ∞, and also satisfies (45), (46), and (53). We can
then write g2 as

g2(x, y, z) = 2πk0e
k0(z+c) J0(k0R). (77)

Therefore, we can express the complete potential, similar
to Wehausen and Laitone (1960), (Eq. 13.17)

G(x, y, z, t) =
[
1

r
+ 1

r1
+ 2k0PV

∫ ∞

0

1

k − k0
ek(z+c) J0(kR)dk

]

cos(ωt) + 2πk0e
k0(z+c) J0(k0R) sin(ωt). (78)

The first term 1/r is called a Rankine source and 1/r1 is
its image, reflected in the plane z = 0. These two terms
correspond to the free-space part of the Green function. One
can also write the potential as

G(x, y, z, t) =
[
1

r
+ PV

∫ ∞

0

k + k0
k − k0

ek(z+c) J0(kR)dk

]

× cos(ωt) + 2πk0e
k0(z+c) J0(k0R) sin(ωt), (79)

or, in its complex form, as

g(x, y, z) = 1

r
+ PV

∫ ∞

0

k + k0
k − k0

ek(z+c) J0(kR)dk

+i2πk0e
k0(z+c) J0(k0R). (80)

Another way to express the potential is to change the path of
integration, using contour integration, to remove the singu-
larity at k = k0, as Havelock (1955) did

g(x, y, z) = 1

r
+ 1

r1
+ 4k0

π

∫ ∞

0
[k0 cos[k(z + c)]

−k sin[k(z + c)]] K0(kR)

k2 + k20
dk

−2πk0e
k0(z+c)Y0(k0R)

+i2πk0e
k0(z+c) J0(k0R), (81)
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whereY0 is the zero-order Bessel function of the second kind,
and K0 the zero-order modified Bessel function of the sec-
ond kind. Another representation is proposed byKim (1965),
using the Struve function of order zero H0:

g(x, y, z) = 1

r
+ 1

r1
− πk0e

k0(z+c)

×
(

H0(k0R) + Y0(k0R) − 2i J0(k0R)

+ 2

π

∫ 0

z+c

e−k0k

√
R2 + k2

dk

)

.

(82)

Determination of the Green function in finite depth We
now consider a fluid of finite depth h. The potential satisfies
conditions (45), (46), (58), and particularly for the case of
finite depth case Eq. (54). We assume the given potential to
be

G(x, y, z, t) =
[
1

r
+ 1

r2
+ g0(x, y, z)

]

cos(ωt)

+g2(x, y, z) sin(ωt), (83)

with

r22 = (x − a)2 + (y − b)2 + (z + 2h + c)2. (84)

Equation (63) becomes

ĝ0(k, θ, z) = A0(k, θ) cosh[k(z + h)], (85)

with

A0(k, θ) = 2(k + k0)e−kh cosh[k(c + h)]
k sinh(kh) − k0 cosh(kh)

e−ik(a cos θ+b sin θ), (86)

which gives the final expression for the potential, in finite
depth, as

G(x, y, z) =
[
1

r
+ 1

r2
+ PV

∫ ∞
0

×2(k + k0)e−kh cosh[k(c + h)] cosh[k(z + h)]
k sinh(kh) − k0 cosh(kh)

J0(kR)dk

]

cos(ωt)

+ 2π(m0 + k0)e−m0h sinh(m0h) cosh[m0(c + h)] cosh[m0(z + h)]
k0h + sinh2(m0h)

×J0(m0R) sin(ωt). (87)

with

m0 tanh(m0h) = k0, (88)

and

e−m0h sinh(m0h)

k0h + sinh2(m0h)
= m0 − k0

m2
0h − k20h + k0

. (89)

John (1950) first derived a variety of representations of
both infinite and finite water depth, and proposed an eigen-
function expansion in finite depth,

G(x, y, z) = 2π
k20 − m2

0

hm2
0 − hk20 + k0

cosh[m0(z + h)]
× cosh[m0(c + h)] [Y0(m0R) cos(ωt)

−J0(m0R) sin(ωt)]

+4
∞
∑

k=1

m2
k + k20

hm2
k + hk20 − k0

cos[mk(z + h)]

× cos[mk(c + h)]K0(mk R) cos(ωt) (90)

with mk , k > 0 as the positive real roots of the equation
mk tanh(mk) = −k0. Newman (1985) considered the expan-
sion of (90) to be numerically efficient when R/h > 0.5
but, when the ratio R/h gets smaller, it becomes useless
since each summand contains a logarithmic singularity when
R/h = 0.

5.2 Determination of the Green function in the time
domain

In this section, we determine, for both finite and infinite
depth, the transient (or time-domain) Green function for
the diffraction–radiation problem. The approach used here
for the infinite depth case is that employed by Wehausen
and Laitone (1960). Finkelstein (1957) describes accurately
the construction of the time-domain Green function. We
consider a source of variable strength ζ(t) at a position
P(a(t), b(t), c(t)), starting from rest (ζ = 0 for t < 0),
in three dimensions (see Wehausen and Laitone (1960), Sec-
tion 13.), defined for z ≤ 0, and satisfying the following
conditions:

ΔG = 0, (91)

∂2G

∂t2
(x, y, 0, t) + g

∂G

∂z
(x, y, 0, t) = 0, (92)

∂G

∂z
(x, y,−h) = 0 if z = −h, or lim

z→∞
∂G

∂z
= 0, (93)

lim
R→∞

∂G

∂R
= 0, (94)

G(x, y, 0, 0) = ∂G

∂t
(x, y, 0, 0) = 0. (95)

In infinite depth We assume the given potential (see Finkel-
stein 1957, Appendix, and Wehausen and Laitone (1960), p.
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491) to be of the form

G = ζ

r
− ζ

r1
+ G1, (96)

with r21 = (x − a)2 + (y − b)2 + (z + c)2, and G1 harmonic
in z < 0 satisfying conditions (93), (94), (95), and

∂2G1

∂t2
(x, y, 0, t) + g

∂G1

∂z
(x, y, 0, t)

= −2gζc
3/2
√

(x − a)2 + (y − b)2 + c2
, t ≥ 0. (97)

Taking the Laplace transform of G1

Ḡ1(x, y, z, s) =
∫ ∞

0
e−stG1(x, y, z, t)dt, (98)

we can then write (97) in the Laplace domain

s2Ḡ1(x, y, 0, s) + g
∂Ḡ1

∂z
(x, y, 0, s)

= −2g
∫ ∞

0
e−st ζc

3/2
√

(x − a)2 + (y − b)2 + c2
dt . (99)

We can extend (99) over the complete (∀z) domain, as

s2Ḡ1(x, y, z, s) + g
∂Ḡ1

∂z
(x, y, z, s)

= −2g
∫ ∞

0
e−st ζ(z + c)

3/2
√

(x − a)2 + (y − b)2 + (z + c)2
dt,

(100)

as the equation is harmonic for z < 0 and satisfies conditions
(94) and (95). Using the transform (60), we obtain

s2Ḡ1(x, y, z, s) + g
∂Ḡ1

∂z
(x, y, z, s)

= g

π

∫ ∞

0
k

∫ ∞

0
e−stζ(t)ek(z+c)

×
∫ π

−π

eik[(x−a) cos θ+(y−b) sin θ]dθdtdk,

= 2g
∫ ∞

0
k

∫ ∞

0
e−stζ(t)ek(z+c) J0(kR)dtdk, (101)

which leads to the solution

Ḡ1(x, y, z, s)

= 2g
∫ ∞

0

k

s2 + gk

∫ ∞

0
e−stζ(t)ek(z+c) J0(kR)dtdk.

(102)

Using the convolution theorem, and the fact that 1
s2+gk

is

the transform of sin(
√
gkt)√
gk

, we can find

G1(x, y, z, t) = 2
∫ ∞

0

√

gk
∫ t

0

sin
[√

gk(t − τ)
]

ζ(τ )ek(z+c(τ )) J0(kR(τ ))dτdk. (103)

For fixed t , and using properties of the Fourier–Bessel trans-
form defined in Watson (1924), we can find that G1 is
O(R− 1

2 ), and therefore, satisfies condition (95).One can now
write the complete expression for the potential G, similar to
Wehausen and Laitone (1960) (Eq. 13.49)

G(x, y, z, t) = ζ(t)

r(t)
− ζ(t)

r1(t)
+ 2

∫ ∞

0

√

gk

×
∫ t

0
sin

[√

gk(t − τ)
]

ζ(τ )ek(z+c(τ )) J0(kR(τ ))dτdk.

(104)

In their theses, Liapis (1986) and later King (1987) do not
use the integrated form obtained in (104), but the impulse
response function form of the Green function

G(x, y, z, t) =
(
1

r
− 1

r1

)

δ(t − τ) + 2H(t − τ)

∫ ∞

0

√

gk sin(
√

gk(t − τ))ek(z+c) J0(kR)dk. (105)

As obtained in the frequency-domain (78), the first two
terms are the free-space part of the Green function. The inte-
gral term,which includes a convolution product, corresponds
to thememory part of theGreen function. δ(t−τ) is theDirac
delta function, and H the Heaviside step function given by

H(t − τ) =
∫ t

−∞
δ(t − τ)dτ. (106)

The potential expressed in (105) represents the potential
at a point (x, y, z) and time t due to an impulsive disturbance
at the point (a, b, c) suddenly created and annihilated at time
τ . The time is integrated later in the calculation, with respect
to τ , from 0 to t .

In finite depthFor thefinite depth case,Wehausen andLaitone
(1960) (Eq. 13.53) give the expression for the transient Green
function, for a potential of strength ζ(t) in a fluid of depth h

G(x, y, z, t) = ζ(t)

r
+ ζ(t)

r2

−2ζ(t)
∫ ∞

0
e−kh cosh[k(c(t) + h)] cosh[k(z + h)]

cosh kh
J0(kR(t))dk
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+2
∫ ∞

0

∫ t

0
ζ(τ )

cosh[k(c(τ ) + h)] cosh[k(z + h)]
cosh2(kh)

√
tanh(kh)

×√

gk sin
[

(t − τ)
√

gk tanh(kh)
]

J0(kR(τ ))dτdk, (107)

with

r22 = (x − a)2 + (y − b)2 + (z + 2h + c)2. (108)

The approach to calculate expression (107) is explained
further in detail in theworks of Finkelstein (1957), andLunde
(1951). In his work, to approximate the transient Green
function in finite depth, Newman (1992) uses the impulse
response form of the Green function

G(x, y, z, t) =
(
1

r
+ 1

r2

−2
∫ ∞

0
e−kh cosh[k(c + h)] cosh[k(z + h)]

cosh kh
J0(kR)dk

)

×δ(t − τ) + 2H(t − τ)

∫ ∞

0

cosh[k(c + h)] cosh[k(z + h)]
cosh2(kh)

√
tanh(kh)

×√

gk sin[(t − τ)
√

gk tanh(kh)]J0(kR)dk. (109)

5.3 Approximation of the Green function and its
derivatives

Many studies have considered the approximation of the free-
surface Green function for zero-forward speed diffraction–
radiation problems, in both the time and frequency domains,
for both finite and infinite water depth. Here, we discuss
the different models developed in the literature, and their
relative efficiency. As the Green function is evaluated for
each panel, for each body geometry, and at each frequency
(in the frequency domain), the development of algorithms
which provide good accuracy and short computation cost is
crucial.

5.3.1 Approximation in the frequency domain

Infinite depth approximation Newman (1985) first proposed
an algorithm to compute the Green function and its deriva-
tives in the frequency domain for both finite and infinite depth
cases, giving accurate results. The domain is separated into
different sub-domains and approximated by rational polyno-
mials and Chebyshev polynomials. The Green function and
its first derivative are evaluated simultaneouslywith accuracy
to six decimal places. The computation for the finite depth
case is around six times slower than for infinite depth, due
to its greater complexity. Newman’s algorithm is used in the
boundary integral method (BIM) code WAMIT Version 7-0
(2013).

Later, Telste and Noblesse (1986) published a numerical
method based on Noblesse’s (1982) previous study to evalu-
ate the Green function (and its derivatives) in deepwater. The
method consists of dividing the single integral obtained in
(78) into ‘near-field’ and ‘far-field’ integrals. Similar toNew-
man’s method, the domain is divided into five sub-domains
for the approximation.

Delhommeau (1989) proposed a fast method to compute
the Green function and its derivatives, using numerical inter-
polation across files of four tabulated functions. A tabulation
method is used for near andmoderate fields,while asymptotic
expressions are used for the far field. Delhommeau’s algo-
rithm is used in the code (Babarit and Delhommeau 2015).

Linton and McIver (2001), and later Peter and Meylan
(2004), proposed a derivation of John’s eigenfunction rep-
resentation (90) for the infinite depth Green function. The
eigenfuncion expansion is more numerically efficient than
other approaches, but works on the assumption of axial sym-
metry. Linton’s method can be useful when using hybrid
methods which employ both Rankine and Green functions,
discussed in Sect. 6.4.2.

Clément (2013) proposed a second-order ordinary differ-
ential equation (ODE) to solve infinite depth water problems.
A study led by Xie et al. (2018a), Xie (2019) showed that
solving the ODE is more practical, more efficient and faster
than evaluating integrals in the frequency domain. Clement’s
approach is very efficient compared to the classical New-
man’s approach showing that the ODEmethod is around 200
times faster for similar accuracy.

Wu et al. (2017) proposed a global approximation for deep
water problems, decomposing the Green function and its
gradient using a free-space singularity, specifically a non-
oscillatory local-flow component, for which simple global
approximations using elementary function are valid within
the entire flow region, and wave components involving the
Bessel function. These global analytical approximations are
particularly simple and well suited for parallel computations,
since they avoid the ‘if’ statements that are required where
different approximations are used for different sub-domains.

A complete overview of the different analytical expres-
sions for the Green function used in the literature, and a
comparison of different approximations between the meth-
ods of Newman, Telste–Noblesse, Delhommeau, and Wu et
al. has been reported by Xie et al. (2018b), for infinite depth
problems. A conclusion of this article is that the most accu-
rate approach is Newman’s algorithm with 6 decimal place
accuracy (DA), but it is also the slowest (10−7 s average
computation time (ACT)). The fastest method is that imple-
mented byWu, with 10−9 s ACT, but less accurate with only
3 DA. The Telste–Noblesse algorithm is a good compromise
(compared to Delhommeau’s) between Wu and Newman,
with 5 DA and 10−8 s ACT.
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Recently, Wu et al. (2018) updated their method by mod-
ifying the evaluation of the wave component term of the
Green function. A new comparison of this model would be
interesting to see, concerning relative accuracy, and should
also include Clément ODE method (Clément 2013), which
showed promising results, with 6 DA and 10−9 s ACT.

Finite depth approximation In the case of finite depth prob-
lems, the evaluation of the Green function and its derivative
is more complicated, due to the complexity of the Green
function. Newman (1985) implemented the finite depth case
using the eigenfunction expansion proposed by John (1950),
and a Chebyshev polynomial expansion.

In Delhommeau (1989), the algorithm proposed uses an
exponential series approximation introduced by Daubisse
(1981).

Recently, Liu et al. (2015) presented a modification of
Newman’s algorithm in which the computational domain
is divided into four sub-domains, in which different series
expansion schemes are used. When the ratio R/h is small,
the author employs Wynn’s epsilon algorithm (Wynn 1956)
and, when R/h is close to 0, an expansion proposed by Pid-
cock (1985) is used. The method seems to be as accurate as
Newman’s method (6 DA), but faster.

A different approach was suggested by Chen (1993), and
more recently in Chen (2018). The Rankine part of the Green
function is modified, considering five images of the Rank-
ine source instead of one, using the free-surface mirror and
the water-bed mirror in relation to the image method, which
modifies and simplifies the complexity of the Green func-
tion, approximated by smooth and rapidly decay functions.
The approximation is different to earlier investigations, con-
cerning the modifications of John’s series (90), since direct
integration is used. Chen’smethod (Chen 2018) showed good
results, but the derivative of the Green function is still highly
oscillatory.No comparison between thosemodels is available
yet, for the case of finite depth.

5.3.2 Approximation of the transient Green function

For the time-domain case, Newman (1992) proposed an
algorithm to compute the transient Green function and its
derivative, in both infinite and finite depth, based on a
rational polynomial approximation and Chebyshev polyno-
mial expansion. Bratland and Newman (1997) subsequently
updated the finite depth algorithm to overcome the difficul-
ties encountered by Newman (1992).

Some years later, Clément (1999b) found that the Green
function is the solution of a fourth-order ordinary differential
equation for infinite depth problems. The ODE is integrated
by a standard fourth order Runge–Kutta (RK4) procedure.
Chuang et al. (2007) and, more recently, Li et al. (2015)
continued the development based on Clément’s ODE using,

instead of RK4, a semi-analytical precise integrationmethod,
and an analytical method based on Taylor series expansion,
respectively.

Bingham (2016) compared those three ODE-based meth-
ods to the method developed by Newman, for an infinite
depth fluid. He found that Newman’s algorithm was more
efficient than any of the ODE-based methods. Moreover, all
of the ODE-based methods can only handle infinite depth
problems.

5.4 Irregularities in the frequency domain

John (1950) showed that irregularities can appear in the
results for certain values of frequencies, where the problem
possesses no solution or has a non-unique solution due to
ill-conditioning of the linear system. This phenomenon can
be an issue, in particular for multi-body interaction prob-
lems, where the physical resonance can be confusingwith the
non-physical irregular value. Two different ways to remove
such so-called ‘irregular frequencies’ are used in the liter-
ature; the modified Green function (or modified integral)
method, and the extended boundary condition method. Both
approaches can be found in the comprehensive reviews of
Liu and Falzarano (2017b), and Lee and Newman (2005)
(Section 2.7).

The modified Green function method consists of adding
singular points onto the interior of the surface, leading to an
overdetermined system which guarantees a unique solution.
This approach is relatively simple to implement and works
well for simple geometries. However, special care needs to
be given to the positioning of the singularities, for arbitrary
shapes. Lee and Sclavounos (1989) improved this method
to adapt it well for arbitrary shapes; nonetheless, the results
converge more slowly than the extended boundary condition
approach (Lee and Newman 2005).

Since irregular frequencies typically correspond to slosh-
ing modes of the interior space, the extended boundary
condition applies a fixed lid condition on the interior free-
surface condition. The overdetermined linear system is
converted into a square matrix, which is easier to handle.
More details on the extended boundary condition approach
can be found in Zhu (1994), Liu and Falzarano (2017a) and
the user manual (WAMIT Version 7-0, 2013).

6 Rankine sources

Bai and Yeung (1974) were the first to discretise the
free-surface using Rankine sources for fixed bodies and bod-
ies undergoing prescribed motions in a three-dimensional
unbounded domain, and introduced the concept of mixed
Rankine andGreen function approach. Later, Dawson (1977)
introduced the use of Rankine singularities to solve problems
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for bodies moving with forward speed, with low Froude-
number theory. In addition to the wetted surface of the body,
the line of the undisturbed free-surface is discretised and
sources are distributed on it, with numerical approxima-
tion used to satisfy the free-surface conditions. A variety
of authors have continued Dawson’s approach for ships with
forward-speed: Raven (1988) highlighted some inconsisten-
cies ofDawson (1977) and showed good results for resistance
wave computation, (Sclavounos and Nakos 1988; Nakos and
Sclavounos 1990; Kring 1994) made good progress in sta-
bility analysis for free-surfaces discretised in both time and
space, and (Kim et al. 1997) studied Rankine singularities for
zero forward speed problems in the time domain, for fixed
bodies and bodies undergoing prescribed motion.

No assumptions are made on the free-surface equations
when using Rankine sources, which implies that nonlinear
waves can be considered. The development of nonlinear
models has been possible, thanks to the pioneering work
of Longuet-Higgins and Cokelet (1976), who introduced
the mixed Eulerian Lagrangian (MEL) method. The MEL
permits to compute fully nonlinear free-surface motions in
time-domain, by solving Eulerian field equations to obtain
fluid velocity, which allows then to follow fluid particles on
the free surface in a Lagrangian way. The MEL approach
was first applied for the simulation of steep and overturning
waves in two dimensions, without bodies. Faltinsen (1977)
used the MEL method for floating bodies, followed by Vinje
and Brevig (1981), who considered freely moving floating
bodies in two dimensions and introduced the mode decom-
positionmethod.Ma et al. (2001) were the first to attempt 3D
fully nonlinear simulations for freely moving bodies, thanks
to an iterative method.

The use of Rankine sources implies that the radiation
condition is not satisfied; hence, an additional treatment
of the radiation condition needs to be implemented. Lin
et al. (1985), Dommermuth and Yue (1987), and later Scragg
and Talcott (1991), used the mixed Rankine–Green function
method, whereas Kim et al. (1997) implemented a damping
beach to satisfy the radiation condition.

From the general equations obtained in Sect. 2, the inte-
gral equation for the potential formulation can be written
on the wetted surface of the body Sw and the undisturbed
free-surface Sf

2πφ(M) +
∫∫

Sw∪Sf
φ(P)

∂GR

∂n
(M, P)dS

−
∫∫

Sw∪Sf

∂φ(P)

∂n
GR(M, P)dS = 0. (110)

In the case of the source formulation, the velocity potential
is written as

φ(M) =
∫∫

Sw∪Sf
σ(P)GR(M, P)dP, (111)

GR is the Rankine source defined by

GR = 1

r
. (112)

The domain is discretised over the free-surface elevation and
the wetted surface of the body. In case of finite depth prob-
lems, additional panels are distributed on the bottom surface,
and the normal flux is set to zero.

6.1 Linear waves

In this subsection, we treat the linear case, considering linear
free-surface conditions and linear body boundary conditions,
only first-order terms are considered, for computational sim-
plicity.

6.1.1 In the time domain

The linearized free-surface condition is satisfied by the
addition of Rankine sources over the z = 0 plane. After
discretization, in time and space, Eq. (110) leads to

2πφn+1(Mi ) +
∫∫

Sw∪Sf
φn+1(P)

∂GR

∂n
(Mi , P)dS

−
∫∫

Sw∪Sf

(
∂φ

∂n

)n+1

(P)GR(Mi , P)dS = 0. (113)

The following equation is a linear system which relates
the velocity potential to its normal derivative at a collocation
point Mi over the domain boundaries, at the (n + 1)th time
step. Using a mixed explicit–implicit Euler scheme for the
time discretization of time step Δt , the free-surface condi-
tions (at z = 0) become

φn+1(Mi ) − φn(Mi )

Δt
= −gηn+1(Mi ), (114)

and

ηn+1(Mi ) − ηn(Mi )

Δt
=

(
∂φ

∂z

)n

(Mi ). (115)

The elimination of the term ηn+1 in Eq. (114), using (115),
leads to

φn+1(Mi ) − φn(Mi )

Δt
= −g

(
∂φ

∂z

)n

(Mi )Δt − gηn(Mi ).

(116)
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Determination of φn+1 and ηn+1 on the free surface The
potential of the next (n + 1)th time step can be determined
from knowledge of the potential, its derivative, and the free-
surface elevation from the previous nth time step, via Eq.
(116). ηn+1 can also be computed from the previous val-
ues ηn and (∂φ/∂z)n , using Eq. (115). Then the derivative
(∂φ/∂z)n+1 follows from Eq. (113).

6.1.2 Conversion to the frequency domain

Studies using Rankine sources in the frequency domain have
been led by authors like Bai and Yeung (1974), Sclavounos
and Nakos (1988) or Kim (1999). In the frequency domain,
the linearized free-surface condition becomes

∂φ

∂z
(Mi ) − ω2

g
φ(Mi ) = 0. (117)

Kim (1999) converts the time-domain solution to the fre-
quency domain thanks to the Fourier transform. If we can
write a time-dependent function f (t) as the following expres-
sion

f (t) = C0 +
N

∑

n=1

Cne
iωn t , (118)

then the Fourier transform is given by

∫ t1

t2
f (t)eiωmtdt=C0

N
∑

n=1

eiωmt+
N

∑

n=1

Cn

∫ t1

t2
eiωn teiωmtdt,

(119)

where ωn is a basis frequency of f (t) with a complex ampli-
tude C , and ωm is a test frequency. Since the equation is
valid for arbitrary test frequencies, there is no restriction on
the selection of the basis and test frequencies. The substitu-
tion of N+1 test frequencies, including a steady component,
leads to a linear system of equations which determines Cn .
The left-hand side can be evaluated by numerical integration.
This provides an efficient Fourier transform for the given time
record.

6.2 Nonlinear waves

To deal with a nonlinear free-surface, the MEL method
defined by Longuet-Higgins and Cokelet (1976) employs the
Lagrangianmaterial derivative,whichdenotes differentiation
following a given particle

D

Dt
= ∂

∂t
+ ∇φ.∇. (120)

The kinematic and the dynamic free-surface conditions can
then be written, respectively, as

DΓ

Dt
= u = ∇φ, (121)

Dφ

Dt
= −gz + 1

2
∇φ, (122)

with Γ (x, y, z) the vector position on the free surface.
To the best of the authors’ knowledge, all the existing

potential flow codes dealing with a nonlinear free surface
use theMEL approach (examples can be found in Kashiwagi
2000; Tanizawa and Minami 2001; Koo and Kim 2004; Ma
and Yan 2009; Letournel et al. 2018).

6.3 Stability analysis

Discretising (meshing) the free-surface creates numerical
errors, and numerical results can also be polluted by the
aliasing phenomenon. Nakos and Sclavounos (1990) and
Sclavounos andNakos (1988) first performed a stability anal-
ysis of the free-surface grid in the frequency-domain, for a
body with forward speed. The stability analysis is carried out
by comparing the continuous and discrete dispersion rela-
tions. They concluded that, for a rectangular panel of size
(hx , hy), the wavelength has to be at least twice as long as
the panel in the x and y directions, while the terms (u, v)

of the wave number space k(u, v) = √
u2 + v2 cannot be

greater than |u| = π/hx and |v| = π/hy . Moreover, when
the panel ratio αxy = hx/hy becomes too large, it can lead
to instabilities.

For the case of zero-forward speed in the time domain,
Kim et al. (1997) studied the stability by comparing the
continuous frequency domain and the discrete (in time and
space) dispersion relation for a free surface, in the absence
of the body. When the panel ratio αxy is around 1, the great-
est source of error comes from the temporal discretisation,
for a fixed wavelength, with the error increasing with larger
time steps. Kim et al. (1997) established, in Eq. 32 of their
publication, a criterion for numerical stability.

6.4 Treatment of the radiation condition

Rankine sources do not satisfy the radiation condition at infi-
nite distance, and the domain has, so far, been assumed to be
infinite. Numerical discretization of the free surface of an
infinite domain is computationally impractical; therefore, a
finite domain is considered. However, the fact is that, in a
finite domain, outgoing waves can distort the results by their
reflection on the walls of the domain. For problems with for-
ward speed, the technique used by Dawson (1977) is based
on a numerical differentiation scheme that numerically guar-
antees the radiation condition. In the case of zero-forward
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speed problems, two principal ways are reported in the lit-
erature to treat the radiation condition and avoid reflection.
The first method, originally introduced by Israeli and Orszag
(1981), includes a wave absorbing zone (usually called a
damping beach or sponge layer) between the body and the
walls, which satisfies the radiation condition, using numeri-
cal damping.The secondmethod, termed the ’hybridmethod’
or ’mixed source formulation’ includes the use of the Green
function on the edges of the domain, which automatically
satisfies the radiation condition by construction (see Sect.
5). Shin et al. (2003) compared the damping beach and the
hybrid method. Themixed source formulation works best for
zero and low speeds, while the damping beach is used in the
case of higher speeds.

6.4.1 Damping beach

In the case of finite domains, it can be convenient to add an
artificial damping term in the boundary integral equations
to avoid wave reflections. Such an approach was originally
studied by Israeli and Orszag (1981), for different types of
waves in two dimensions. Baker et al. (1989) and Cointe
(1989) applied numerical damping to water waves for the
two-dimensional case, the latter considering a nonlinear
free-surface elevation. Kim et al. (1997), Shao (2010), and
Letournel et al. (2018) employ the same method for the
three-dimensional water wave case. However, the appropri-
ate choice of the optimum damping parameter is not clear,
and the work of Israeli and Orszag (1981) did not deal with
water waves. For this reason, Kim (2003) published studies
on the influence of the damping coefficient for linear and
nonlinear water waves. The main advantage of this method
is its simplicity to set up. However, the size of the damp-
ing zone is usually large, which significantly increases the
number of unknowns, and therefore, the computation time.

A cylindrical damping beach is considered in the region
[r0, re], with 0 ≤ r0 ≤ re. The general representation
includes two damping terms in the kinematic free-surface
conditions

∂η

∂t
− ∂φ

∂z
+ ∇φ.∇η = −μ1η − μ2φ. (123)

The coefficientsμ1 andμ2 are, respectively,Newtonian cool-
ing and viscous damping terms. Baker et al. (1989), and later
Kim (2003), showed that the condition for wave propagation,
without phase distortion, is

μ2 = μ2
1

4
. (124)

A similar route is used by other authors Baker et al. (1989),
Cointe (1989), Letournel et al. (2018) in applying a damping
coefficient ν on the free-surface elevation η, and potential

φ, in the (linear or nonlinear) free-surface conditions. In the
case of linearized free-surface conditions, we have

∂η

∂t
= ∂φ

∂z
− νη, (125)

−1

g

∂φ

∂t
= η − νφ, (126)

where ν can be interpreted as the Rayleigh viscosity. Israeli
and Orszag (1981) studied the effect of variations in the
damping coefficient, and observed good resultswhen ν varies
quadratically with the radius R = √

x2 + y2, suggesting a
form

ν(R) = αdω

(
R − re

λw

− βd

)2

, (127)

where λw is the wavelength. The following damping coeffi-
cient is used by Cointe (1989) and Letournel et al. (2018),
with αd and βd of order 1. Kim et al. (1997) employ a slightly
different approach from the other authors, but with similar
results.

In the frequency domain, Eqs. (125) and (126) lead to

∂φ

∂z
− 1

g
(ω2 + 2iνω − ν2)φ = 0. (128)

The problem on the free surface S f is then solved by includ-
ing Eq. (128) in (110).

The choice of the damping strength plays an important
role in the computation, as too small a damping requires a
larger part of the free-surface to be meshed, increasing the
computational cost. On the other hand, if too much damping
is suddenly applied, reflections from within the sponge layer
can become significant. Hence, the damping strength has to
vanish at the beginning of the damping beach and increase
smoothly towards the outer edge.

6.4.2 Hybrid method

The hybrid method was originally introduced by Bai and
Yeung (1974), for two-dimensional and simple three-
dimensional cases in the frequency domain. Later, Lin et al.
(1985), Dommermuth and Yue (1987), Drimer and Agnon
(1994) and Gören and Calisal (1998) dealt with the case of
nonlinear flows for heaving axisymmetric bodies in the time-
domain. Some authors have integrated the hybrid method
into their potential flow code (as in, for example, Shin et al.
2003; Liu and Papanikolaou 2011; Li et al. 2017). The idea
is to introduce an imaginary cylindrical control surface S0
around the body. The domain is then divided in an inner
domain I, where simple Rankine sources are distributed on
SI, and an outer domain II, where singularities (which use
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Fig. 3 Inner and outer domains, original figure taken from Liu and
Papanikolaou (2011)

the Green function G, and hence linear free-surface condi-
tions) are distributed on SII (see Fig. 3). The hybrid method
uses the advantages of the Rankine sources in the near field,
while taking advantage of the Green function in the far field.
Lin shows, for the hybrid method in (Lin et al. 1999), good
agreement with experimental data, compared to the exclusive
use of theGreen function, which presents some instability for
flared bodies, as highlighted byWenvang and Yishan (1999).

The use of Rankine sources for potential flow problems
does not require any special assumptions, and linear as well
as nonlinear free-surface conditions can be considered. Since
the outer domain uses linear free-surface conditions, special
care should be taken when dealing with nonlinear waves.
In three-dimensions, the energy density of a radiated wave
decreases inversely with the radial distance. One can then
assume that, at a sufficient distance from the body, the radi-
ated wave is sufficiently attenuated to match with the linear
boundary conditions of the outer domain (see Lin et al. 1985).
In principle, for waves with small steepness, the edges of
the control surface S0 can be located anywhere around the
body. This method, though more complex to implement than
a damping beach, has the advantage of reducing the number
of unknowns on the free surface. Moreover, if the under-
water part of the matching surface is constant during time
stepping, the time-consuming convolution term of the tran-
sient Green function does not have to be re-evaluated (see
Lin et al. (1999)).

The inner domain I is closed by the wetted surface of the
body Sw, the free surface Sf , and the control surface S0. On
these surfaces, the integral equation takes the form of

2πφI(M) +
∫∫

Sw∪Sf∪S0
φI(P)

∂GR

∂n
(M, P)dS

−
∫∫

Sw∪Sf∪S0

∂φI

∂n
(P)GR(M, P)dS = 0. (129)

In the outer domain II, the integral equation on the surface
S0 is expressed as

2πφII(M) +
∫∫

S0
φII(P)

∂G

∂n
(M, P)dS

−
∫∫

S0

∂φII

∂n
(P)G(M, P)dS = 0. (130)

On the matching surface S0, the potential and its normal
derivative are continuous leading to the matching conditions

⎧

⎨

⎩

φI = φII, on S0

∂φI
∂n = ∂φII

∂n .
(131)

In the time domain, the transientGreen functionG is given
by

G = G0 + G f , (132)

where G0 is the Rankine source and its image source in the
case of infinite depth (105)

G0 = 1

r
− 1

r1
, (133)

and G0 is the Rankine source, its image source and the time-
invariant integral in the case of finite depth (109)

G0 = 1

r
+ 1

r2

−2
∫ ∞

0
e−kh cosh[k(c + h)] cosh[k(z + h)]

cosh kh
J0(kR)dk,

(134)

and G f is the time-dependent memory part of the Green
function of (105) and (109), for infinite and finite depth,
respectively. Therefore, the integral equation of the outer
domain (130) can be re-written (Lin et al. 1999) as follows:

2πφII(M) +
∫∫

S0

(

φII(P)
∂G0

∂n
(M, P)dS

−∂φII

∂n
(P)G0(M, P)

)

dS

=
∫ t

0
dτ

∫∫

S0

(

φII(P)
∂G f

∂n
(M, P)dS

−∂φII

∂n
(P)G f (M, P)

)

dS. (135)

The matching conditions (131), along with the integral
equations forφI, (129),φII (135) and their normal derivatives,
form a coupled equation system for the potential φI on Sw,
∂φI/∂n on S f , and φI and ∂φI/∂n on S0.
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The approach to time discretization is the same as that
developed in Sect. 6.1.1; at a given time step, the potential
φI on Sf is known, so is its normal derivative on Sw. Using
the free-surface conditions, one can, therefore, compute the
free-surface elevation, and the problem can then be solved
on Sw, Sf and S0.

In the frequency-domain case (see Bai and Yeung 1974),
the Green functions obtained in (78) and (87) are used to
compute the potential in the outer domain for infinite and
finite depth, respectively. They satisfy, by construction, the
Sommerfeld radiation condition mentioned in (58).

7 Hydrodynamic loads and equations of
motion

When dealingwithmoving bodies, it is necessary to compute
the hydrodynamic forces which are acting on the body sur-
face. Newton’s second law leads to the equation of motion,
linking the acceleration of the body to the hydrodynamic
forces (11). However, hydrodynamic forces depend on the
time derivative of the potential (9), and the time derivative of
the potential itself depends on the body acceleration through
the body boundary condition (6), which makes the problem
strongly coupled between the body motion and the potential.

In the case of fixed bodies, or bodies undergoing pre-
scribed motion, the acceleration is already known and the
problemcanbe solved, but in the case of freelymovingbodies
the acceleration is not known a priori. Differentmethods have
been implemented to deal with this strong coupling, and are
separated into two families of methods: the approaches more
suitable for the Green function, and the methods more appro-
priated for Rankine sources. Technically, the methods more
suitable for Green function could be chosen using Rankine
singularities (and vice versa), but, to the best of the authors’
knowledge, no studies have considered those cases.

7.1 Hydrodynamic forces using the Green function
formulation

The hypothesis of small wave steepness and small body
motion enable to consider linearity in the equations. When
we consider a body undergoing prescribed or free motion
with or without regular waves, or fixed bodies in presence
of regular incident waves, a frequency-domain approach can
be used. In the case of a moving body (freely or undergo-
ing prescribed motion) or fixed bodies submitted to irregular
incident waves, a time-domain approach is considered.

7.1.1 Frequency-domain formulation

If we consider waves of an angular frequency ω, we can then
extend the complex notation originally introduced in (44) by

considering the total complex velocity potential ϕ

φ = �(ϕe−iωt ). (136)

The decomposition of the total velocity potential expressed in
(20) can then be applied in the frequency domain as follows:

ϕ = ϕ0 + ϕD + ϕR, (137)

with ϕ0, ϕD and ϕR the complex incident, diffraction and
radiation velocity potential, respectively. The complex inci-
dent velocity potential can be retrieved from (57) and is given
by

ϕ0 = −awg

ω

cosh(k0(z + h))

cosh(k0h)
eik0x , (138)

with aw the wave amplitude, h the water depth, k0 = 2π/λw

the wave number, ω = 2π/Tw the angular frequency, where
λw and Tw are the wavelength and wave period, respectively.
The complex generalized hydrodynamic forces are expressed
as

Fi =
∫∫

Sw
�(iρωϕi e

−iωt )n0ids = �(Fie
−iωt ),

(139)

with

Fi = iρω

∫∫

Sw
(ϕ0 + ϕD)nids

+
6

∑

j=1

iρωVj

∫∫

Sw
ϕRjnids. (140)

We can then separate the terms on the right-hand side of (140)
into excitation forces Fex

i and radiation forces FR
i as

Fi = Fex
i + FR

i , (141)

where Fex
i are the forces exerted on the stationary body, and

FR
i corresponds to the forces exerted on the body in motion,

without incident waves present.

Excitation forces The excitation forces are divided into
Froude–Krylov forces FFK

i , which are the forces exerted by
the pressure of the incident wave, and diffraction forces FD

i

Fex
i =FFK

i + FD
i = iρω

∫∫

Sw
ϕ0nids + iρω

∫∫

Sw
ϕDnids,

(142)

which gives

Fex i (t) = �
(

(FFK
i + FD

i )e−iωt
)

. (143)
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Radiation forces The radiation forces FR
i can be written as

FR
i =

6
∑

j=1

iρωVj

∫∫

Sw
ϕRjnids =

6
∑

j=1

fi j V j , (144)

where fi j is the load exerted in direction i , due to a unit veloc-
ity motion in the j th degree of freedom. The total radiation
load can be detailed as

FRi (t) = �(fi j V j e
−iωt ) = �[(�fi j + �fi j )Vje

−iωt ],
(145)

or

FRi (t) = �
([

ρω

∫∫

Sw
�(ϕRj )nids

+iρω

∫∫

Sw
�(ϕRj )nids

]

[Vje
−iωt ]

)

. (146)

Then writing the body velocity Ẋ , and its acceleration Ẍ , as

Ẋ = V , (147)

Ẍ = −iωV , (148)

we obtain

FRi (t) = −
(

ρ

∫∫

Sw
�(ϕRj )nids

)

Ẍ j

−
(

ρω

∫∫

Sw
�(ϕRj )nids

)

Ẋ j . (149)

The radiation forces are composed of a term proportional
to the body acceleration, with a further term proportional to
the body velocity. The first term behaves like an added mass.
This part of the radiation forces is thus formalized using the
added mass term

μi j = ρ

∫∫

Sw
�(ϕRj )nids = 1

ω
�(fi j ). (150)

The second term is a damping term, expressed as

λi j = ρω

∫∫

Sw
�(ϕRj )nids = −�(fi j ). (151)

According to these definitions, the radiation forces can now
be written as

FRi (t) = −
6

∑

j=1

μi j Ẍ j (t) −
6

∑

j=1

λi j Ẋ j (t). (152)

Equation of motion The linearized equation of motion
derived from (11) can be expressed in the frequency domain,
obtaining the following linear hydrodynamic formulation:

M j i Ẍi (t) = (

FH j + Fex j + FRj
)

e−iωt , (153)

withM the mass matrix. Equation (153) can be developed as
follows:

(M j i + μ j i )Ẍi (t) + λ j i Ẋi (t) + KH ji Xi (t) = Fex
j e

−iωt ,

(154)

or, if we write X(t) = �(Xe−iωt )

[−ω2(M j i + μ j i ) − iωλ j i + KH ji ]Xi = Fex
j . (155)

7.1.2 Time-domain formulation

The time-domain problem is solved using the impulse
response function in different, but somewhat similar ways,
for the radiation and the diffraction problems.We assume the
impulse happening at t = τ and the potential to be at rest at
t < τ .

Radiation problem Cummins (1962) proposed a new decom-
position of the potential based on the impulse response
function. If we consider an impulse velocity imposed on a
body, in one of its degree of freedom i , we can write

Ẋi (t) = δ(t), (156)

where δ(t) is the Dirac delta function. We consider the fol-
lowing decomposition of the impulse potential φΔ

Ri (t)

φΔ
Ri (t) = δ(t)φδ

Ri + H(t)φH
Ri (t), (157)

where H is theHeaviside function.Assuming thatwe canfind
a solution satisfying the Laplace equation (2), the sea-bottom
(5) and radiation conditions, and the linearized free-surface
(23) and body (24) boundary conditions, we can build the
response to an arbitrary velocity potential by convolution
with the impulse potential, exploiting the linearity of the
problem

φR(t) =
6

∑

i=1

∫ ∞
−∞

Ẋi (t)φ
Δ
Ri (t − τ)dτ,

=
6

∑

i=1

(

Ẋi (t)φ
δ
Ri +

∫ ∞
−∞

H(t − τ)Ẋi (t)φ
H
Ri (t − τ)dτ

)

.

(158)
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Equation (158) can then be written as

φR(t) =
6

∑

i=1

(

Ẋi (t)φ
δ
Ri +

∫ ∞

0
Ẋi (t − τ)φH

Ri (τ )dτ

)

,

(159)

or

φR(t) =
6

∑

i=1

(

Ẋi (t)φ
δ
Ri +

∫ t

−∞
Ẋi (τ )φH

Ri (t − τ)dτ

)

.

(160)

Using Eq. (157), the body boundary conditions (24) can be
re-written as

∂φΔ
Ri

∂n
(t) = δ(t).ni , on Sw, (161)

which implies

∂φδ
Ri

∂n
= ni ,

∂φH
Ri

∂n
(t) = 0, on Sw. (162)

By developing the terms included in the linearized free-
surface condition (23), we have

∂φΔ
Ri

∂t
= δ̇(t)φδ

Ri + H(t)φ̇H
Ri (t) + δ(t)φH

Ri (t), (163)

∂2φΔ
Ri

∂t2
= δ̈(t)φδ

Ri + H(t)φ̈H
Ri (t) + 2δ(t)φ̇H

Ri (t)

+δ̇(t)φH
Ri (t = 0), (164)

and

g
∂φΔ

Ri

∂z
= g

[

δ(t)
∂φδ

Ri

∂z
+ H(t)

∂φH
Ri

∂z
(t)

]

. (165)

The free-surface condition becomes

H(t)

[

∂2φH
Ri

∂t2
(t) + g

∂φH
Ri

∂z
(t)

]

+δ

[

2δ(t)φ̇H
Ri (t) + g

∂φδ
Ri

∂z

]

+δ̇(t)φH
Ri (t = 0) + δ̈(t)φδ

Ri = 0, on z = 0. (166)

Hence, new conditions appear as

φδ
Ri = 0,

∂2φH
Ri

∂t2
+ g

∂φH
Ri

∂z
= 0, on z = 0, t > 0, (167)

and

φH
Ri = 0, 2

∂φH
Ri

∂t
+ g

∂φδ
Ri

∂z
, on z = 0, t = 0. (168)

To obtain the radiation forces, the pressure on the body
needs to be known (40), which implies to compute the time
derivative of the potential (38). The time derivative of (160)
is given by

∂φR

∂t
(M, t) =

6
∑

i=1

(

Ẍi (t)φ
δ
Ri (M)

+
∫ t

−∞
Ẍi (τ )φH

Ri (M, t − τ)dτ

)

, (169)

which gives the radiation force as

FRj =
6

∑

i=1

(

−Ẍi (t)

[

ρ

∫

Sw
φδ
Ri (M)n jdS

]

−
∫ t

−∞

∫

Sw
ρ Ẍi (τ )φH

Ri (M, t − τ)n jdSdτ

)

. (170)

If we write the added mass at infinite frequency μ(∞) and
the radiation kernel L(t) as follows:

μ j i (∞) = ρ

∫

Sw
φδ
Ri (M)n jdS, (171)

L ji (t) = ρ

∫

Sw
φH
Ri (M, t − τ)n jdS, (172)

with i, j = 1 . . . 6 we then have the radiation forces

FRj =
6

∑

i=1

(

−Ẍi (t)μ j i (∞) −
∫ t

−∞
Ẍi (τ )L ji (t − τ)dτ

)

.

(173)

It can be shown, with the linearized free-surface condition in
frequency domain

−ω2φRi + g
∂φRi

∂z
= 0, on z = 0, (174)

that when ω → +∞, Eq. (174) becomes φRi (z = 0) = 0,
and

limω→+∞ φRi = φδ
Ri ,

limω→+∞ μ j i = μ j i (∞).
(175)

Diffraction problem In the diffraction problem, the body is
assumed fixed and impinged upon by an impulse incident
wave elevation ηΔ

0 (t) at t = τ

ηΔ
0 (t) = δ(t). (176)
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The resulting impulse diffraction potential φΔ
D satisfies

the Laplace equation (2), the sea-bottom (5) and radiation
conditions, and the linearized free-surface (23) and body (24)
boundary condition. The body boundary condition is given
by

∂φΔ
D

∂n
= −∂φΔ

0

∂n
, on Sw, (177)

φΔ
0 being the impulse incident potential. Assuming that the

problem has a solution, we can build the response to an
arbitrary wave by convolution with the impulse diffraction
potential,

φD(t) =
∫ +∞

−∞
η j (t − τ)φΔ

D(τ )dτ, (178)

or

φD(t) =
∫ +∞

−∞
η j (τ )φΔ

D(t − τ)dτ. (179)

We then have the diffraction forces

FDj (t) = −ρ

∫ +∞

−∞

∫

Sw
η j (τ )

∂φΔ
D

∂t
(t − τ)dSdτ, (180)

and the Froude–Krylov forces

FFK j (t) = −ρ

∫ +∞

−∞

∫

Sw
η j (τ )

∂φΔ
0

∂t
(t − τ)dSdτ. (181)

Equation of motion The linearized equation of motion
derived from (11) can be expressed in the time domain

(M j i + μ j i (∞))Ẍi (t) + L ji (t) ∗ Ẋi (t)

+KH ji Xi (t) = Fex j (t), (182)

where L ji (t) ∗ Ẋi (t) represents the convolution product
between L(t) and body velocity Ẋ(t).

7.1.3 Time–frequency equivalence

Ogilvie (1966) established a direct relationship between the
time-domain and frequency-domain models, as a function of
the added-mass μ j i (ω), radiation damping λ j i (ω), and the
radiation kernel L ji (t), using the definition of the Fourier
transform. If we assume time periodicity

Vi = �(Vi e
−iωt ), (183)

and that the motion has lasted for t → +∞, Eq. (159) can
be written

φR(t) =
6

∑

i=1

�(Vie
−iωt )φδ

Ri +
∫ ∞

0
�(Vie

−iω(t−τ))φH
Ri (τ )dτ,

=
6

∑

i=1

�
([

φδ
Ri +

∫ ∞

0
φH
Ri (τ )eiω(τ)dτ

]

Vie
−iωt

)

.

(184)

Equation (136) then gives

ϕRi (M, ω) = φδ
Ri +

∫ ∞

0
φH
Ri (τ )eiω(τ)dτ. (185)

Hence, the radiation forces are given by

FRj (t) = �
(

6
∑

i=1

[

ρ

∫

Sw
φδ
Ri n jdS

+ρ

∫ ∞

0
eiω(τ)dτ

∫

Sw
φH
Ri (τ )n jdS

]

iωVie
−iωt

)

,

= �
(

6
∑

i=1

[

μ j i (∞) +
∫ ∞

0
L ji (τ )eiω(τ)dτ

]

iωVi e
−iωt

)

.

(186)

The definition of the radiation forces in the frequency
domain, given in Eq. (152), can now be written

FRj (t) = �
(

6
∑

i=1

[

μ j i (ω) + i
λ j i

ω
(ω)

]

iωVie
−iωt

)

. (187)

Hence, we have, by equivalence, we obtain the following
relation:

μ j i (ω) + i
λ j i

ω
(ω) = μ j i (∞) +

∫ ∞

0
L ji (τ )eiω(τ)dτ. (188)

By separating the real and imaginary parts, we obtain

μ j i (ω) − μ j i (∞) =
∫ ∞

0
L ji (τ ) cos(ωτ)dτ, (189)

λ j i (ω) = ω

∫ ∞

0
L ji (τ ) sin(ωτ)dτ. (190)

It follows that the impulse response L ji (t) can be written as
a mapping involving the frequency-dependent parameters as

L ji (t) = 2

π

∫ +∞

0

λ j i (ω)

ω
sin(ωt)dω. (191)
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Equation (191) facilitates a frequency-domain analysis of
L(t), where a direct application of the Fourier transform
yields

L ji ( jω) = [μ j i (ω) − μ j i (∞)] + i
λ j i (ω)

ω
, (192)

which, considering the real and imaginary parts,�(L ji ( jω))

and�(L ji ( jω)), leads to a frequency-domain description for
μ j i (ω) and λ j i (ω) as

λ(ω) = ω�(L ji ( jω)),

μ j i (ω) = �(L ji )( jω) + μ j i (∞).

(193)

7.2 Hydrodynamic forces using Rankine sources

The methods reviewed in this section to evaluate the hydro-
dynamic forces do not make any assumption on the wave
steepness and the body motion. To compute the hydrody-
namic loads, the time derivative of the potential on the wetted
surface of the body has to be computed

∂2φ

∂n∂t
= ẌT .n + q on Sw, (194)

with

q = (Θ.s1)

(
∂φ

∂s2
− 2(ẊT .s2)

)

− (Θ.s2)

(
∂φ

∂s1
− 2(ẊT .s1)

)

+ (ẊT .s1)

c1

(
∂φ

∂s1
− (ẊT .s1)

)

+ (ẊT .s2)

c2

(
∂φ

∂s2
− (ẊT .s2)

)

+(ẊT .n)

(

∂2φ

∂s21
+ ∂2φ

∂s22
+

(
1

c1
+ 1

c2

)
∂φ

∂n

)

, (195)

where ẌT is the acceleration vector of the body in translation,
and q corresponds to the the advection term, due to the body
motion.Θ represents the body rotational vector according to
the Euler angles ψ̇E , θ̇E , and ϕ̇E (see Fig. 4)

Θ = ψ̇E + θ̇E + ϕ̇E , (196)

s1 and s2 are the local coordinates vectors, and c1 and c2 are
the local curvature along the respective local vectors. More
details on the method to compute the time derivative of the
potential are given in Letournel et al. (2017) and Letournel
et al. (2018).

The timederivative of the potential is not knownandcanbe
determined in two different ways. When the body is fixed or

undergoing prescribed motion, it is not necessary to compute
hydrodynamic loads. The potential on the body is known at
each time step, and a finite difference scheme can be used, as
a post-processing step, to estimate its time derivative, which
leads to the hydrodynamic loads.

In the case of a body undergoing free motion, the finite
difference method is not appropriate for computation of the
time derivative of the potential and can lead to instabilities
(an example can be found in Cointe 1991), due to strong
coupling between the body motion dynamics and the hydro-
dynamic loads. The potential and the body acceleration must
be computed by solving a coupled fluid–structure interaction
problem, inwhich equations for the fluid and bodymotion are
simultaneously solved. Four methods have been developed
in the literature (reviewed in Koo and Kim 2004) to compute
the time derivative of the potential for freely floating bodies:
the mode decomposition, the indirect method, the iterative
method and the implicit methods.

7.2.1 The mode decomposition

Originally proposed byVinje and Brevig (1981), and used by
Koo and Kim (2004) and Cointe (1991), the mode decom-
position was the first method introduced to compute fully
nonlinear problems with floating bodies. The mode decom-
position consists in a linear decomposition of the time
derivative of the potential, into six modes corresponding to
the unit accelerations for the six degrees of freedom (three
modes for 2D problems), and one mode corresponding to
the acceleration due to the velocity field (see Koo and Kim
2004 for further details). Each mode is obtained by solving
the respective boundary integral equation. The seven modes
are computed at each iteration and lead to a value of the time
derivative of the potential ∂φ/∂t . The body displacement is
then calculated with the equation of motion (11), and yields
to the body acceleration, which permits to the body displace-
ment and velocity to be time integrated for the next time step.
The main drawback of the mode decomposition, originally
developed for 2D problems, is that the method is very time-
consuming, as seven boundary value problems (BVP) have
to be solved to compute ∂φ/∂t , which considerably increases
the computation time.

7.2.2 The indirect method

The indirectmethod, suggested byWuandTaylor (1996), and
followed by other authors like Bai and Taylor (2009), Wang
et al. (2007), is based on the fact that it is not necessary to
compute explicitly the time derivative of the potential ∂φ/∂t
to access the body acceleration. Indeed, the term ∂φ/∂t needs
to be computed only if the hydrodynamic forces (9) exerted
on the body are of interest. Six auxiliary functions are intro-
duced, one for each degree of freedom, where each of them
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Fig. 4 Euler angles ψ̇E , ˙θE , ϕ̇E with their corresponding vector. (xb, yb, zb) is the right-handed coordinate system linked to the body

is a solution of the Laplace equation with specific bound-
ary conditions. The forces are then expressed as a function
of coefficients, that depend on these auxiliary functions. By
use of Green’s second identity the coefficients can be linked
to the acceleration of the body. The equation of motion is
then solved by substituting in the latter relation the obtained
potential and the auxiliary functions. In case that the hydro-
dynamic forces are required, an additional BVP for ∂φ/∂t
has to be solved. The mode-decomposition method and the
indirect method are mathematically identical, and only vary
by an integral term that can be replaced by other equivalent
terms in the indirect method.

7.2.3 The iterative method

Proposed by Cao et al. (1994) and used by Sen (1993) or Ma
and Yan (2009), the iterative method lies in the estimation of
the body acceleration at the current time step, based on the
values of the body acceleration at the previous time steps. The
prediction of the acceleration is made by curve fitting, and
the velocity is then estimated thanks to an Adam–Basforth
implicit scheme. Using equation (194), ∂φ/∂t can then be
computed as a solution of a Laplace equation with explicit
boundary conditions, leading to the hydrodynamic forces.
The body acceleration is computed through the equation of
motion (11), and a correction is applied on the forces or the
acceleration, which are compared to their initially estimated
values. The method is repeated until convergence is reached.
The body displacement and velocity are then time integrated
to the next time step.

In the iterative method developed by Cao et al. (1994),
as well as the mode decomposition or the indirect method,
the body velocity is estimated from the acceleration at pre-
vious time steps, which makes the time marching procedure
explicit, which may degrade the accuracy and can lead to
instabilities, unless sufficient small time steps are used,which
makes the computation time-consuming. An extension of the
iterative method, called iterative semi-implicit time integra-
tion method for floating bodies procedure (ISITIMFB-M),
has been suggested by Ma and Yan (2009), where the body

velocity is computed implicitly,which allows to consider big-
ger time steps. The iterative method may be time-consuming
if convergence is not quickly reached.

7.2.4 The implicit method

The implicit method has been introduced by van Daalen
(1993), and Tanizawa (1995) under the name ’acceleration
potential method’, and recently used by Guerber (2011) and
Letournel et al. (2018). The principle lies in the fact that
the time derivative of the body boundary condition links the
acceleration of the body and the normal derivative of the
potential ∂φ/∂n to its time derivative ∂2φ/∂t∂n. Then the
equation of motion is substituted to the time derivative of the
body boundary condition, allowing to remove the accelera-
tion of the body. An extra boundary value problem (BVP)
for the time derivative of the potential is added (including
the time derivative of the body boundary condition). It is,
therefore, possible to solve implicitly the velocity potential
and its time derivative before an explicit calculation of the
acceleration of the body (see Letournel et al. 2018 for fur-
ther details). The implicitmethod seems less time-consuming
than the othermethods, since only twoBVPneed to be solved
at each time step to access the hydrodynamic forces and the
acceleration of the body. The BVP on the time derivative of
the potential is similar to the one for the potential, and is
given by

Δφ = 0 ⇒ Δ
∂φ

∂t
= 0, (197)

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Δ
∂φ
∂t = 0 in the fluid domain D,

∂φ
∂t = D0zφ

Dt − ∂φ0
∂z

∂φ
∂z on S f ,

∂2φ
∂n∂t = ẌT .n + q on Sw,

∂2φ
∂n∂t = 0 on the boundaries.

(198)
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8 Nonlinear potential flowmodels

Linear potential flow theory has been largely used in free-
surface potential flow problems. Results based on this theory
have shown, in general, good agreement with experiments
forwave–structure interaction problems likewave resistance,
hydrodynamic forces or body motion calculations. However,
the fully linear approach has its limitations, in particular
for wave energy converters (WEC), where the assumptions
of small motion cannot be made, especially when control
is applied to maximize power absorption (and amplify the
WECmotion), as well as with severe sea states, where waves
with small steepness can no longer be considered. Moreover,
when dealing with long and thin-shaped bodies (like ships),
assumptions of small radiation or diffraction forces are rea-
sonable, which might not be the case for bodies of arbitrary
shapes. Some physical phenomena, such as parametric roll
shown by Babarit et al. (2009) also cannot be predicted by
the linear potential flow theory.

The need of including nonlinearities led to different mod-
els with different degrees of assumptions: the linear theory
extended to second-order effects, the body-exact, weak-
scatterer and fully nonlinear models. The body-exact is a
partially nonlinear model which takes into account the body
motion with a free-surface linearized around the plane z = 0.
The weak scatterer is a weakly nonlinear model which goes
one step further in taking into account nonlinearities, by deal-
ing with a linearized free surface around the incident wave
elevation η0. The fully nonlinear method does not make any
additional assumptions. These models are presented next.

8.1 Extension of linear model to second order

The extension of the linear model to second order was the
first model to consider nonlinearities, with comprehensive
review presented by Ogilvie (1983). Some phenomena that
cannot be predicted by first-order linear theory appear when
looking at second-order effects, such as mean drift forces
acting on a body. Moreover, a moored body usually has nat-
ural frequencies of oscillation far below the frequencies of
incident waves which, when considering second-order exci-
tation, leads to resonance of the system at low frequency.

The extension to the secondorder is obtainedby applying a
perturbation method on the total potential φ and free-surface
elevation η as follows:

φ = εφ1 + ε2φ2, (199)

η = εη1 + ε2η2, (200)

where ε is the wave steepness parameter, φ1 and η1 are,
respectively, the potential and free-surface elevation of the
first order discussed in Sect. 4,φ2 and η2 are, respectively, the
second-order potential and free-surface elevation. This leads

to a second-order boundary value problem (BVP), similar to
the first-order problem, with

– the Laplace equation

Δφ2 = 0, (201)

– second-order free-surface boundary conditions (on z =
0)

η2 = −1

g

(
∂φ2

∂t
+ ∂2φ1

∂t∂z
η1 + 1

2
∇φ1.∇φ1

)

, (202)

∂2φ2

∂t2
+ g

∂φ2

∂z
= −2∇φ1.∇ ∂φ1

∂t

+∂φ1

∂t

(
∂2φ1

∂z2
+ 1

g

∂3φ1

∂t2∂z

)

, (203)

– the impermeability condition on the seabed

∂φ2

∂n
= 0, (204)

– the radiation condition, where the radiation and diffrac-
tion second-order potentials tends to 0moving away from
the body, and

– the body boundary condition.

Further details about the body boundary condition and
the method to compute the second-order forces can be found
in Ogilvie (1983). An example of a floating axisymmetric
body, in 2D, using the second-order formulation, is given in
Drimer and Agnon (1994). Faltinsen (1975) and Pinkster and
Van Oortmerssen (1978) computed a 3D numerical solution
for barge-like bodies, including the drift force; some years
later Papanikolaou (1985) extended the method for arbitrar-
ily shaped floating bodies. Regarding axisymmetric bodies,
Molin (1979) solved the second-order diffraction problem for
fixed bodies in 3D, and Gören and Calisal (1998) dealt with
the radiation problem; Kim and Yue (1987) computed the
complete second-order radiation–diffraction problem, while
Mavrakos (1988) found a numerical solution for the vertical
drift force and pitch moment on axisymmetric floating bod-
ies. Papanikolaou and Zaraphonitis (1987) worked on the
second-order problem for shiplike bodies and, some years
after, formalised the exact second-order theory and numerical
solution for the wave–body interaction problem of arbitrar-
ily shaped bodies (Zaraphonitis and Papanikolaou 1993), as
well as Berkvens and Zandbergen (1998) and Ditzel et al.
(1998).
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8.2 Body-exact method

There exists two levels of complexity in the addiction of
nonlinearities in the body-exactmethod.Thefirst is by adding
nonlinearities in the Froude–Krylov and hydrostatic forces,
while the second involves the inclusionof the latter two forces
and additional nonlinear radiation–diffraction forces.

8.2.1 Nonlinear Froude–Krylov/hydrostatic forces

The body-exact method extends linear potential flow models
by adding nonlinearities in Froude–Krylov and hydrostatic
forces, computing both on the exact instantaneous wetted
surface Sw(t) of the body

FNLFK i (t) =
∫∫

Sw(t)

∂φ0

∂t
(t)nids, (205)

FHi (t) = −
∫∫

Sw(t)
ρgz(t)nids, (206)

while radiation and diffraction forces remain linear and are
computed using a fully linear code with linearized free-
surface conditions at z = 0. The position of the body relative
to the free-surface is updated at each time step to compute
the new NLFK and hydrostatic forces.

Taking into accountNLFKforces can significantly improve
the results, without undue addition in computation time. The
biggest challenge, in this method, is to calculate the exact
surface between the body and the free surface, by modifying
the mesh at each time step, or using a very refined mesh.
To compute NLFK forces, a frequency-domain solution is
usually no longer available and recourse is made to the time
domain, as the body motion becomes non-sinusoidal. Taking
into account FK nonlinearities allows nonlinear phenomena
and instabilities to be demonstrated, such as parametric roll,
that cannot be predicted using a fully linear code (see exam-
ples in Babarit et al. 2009; Giorgi and Ringwood 2018).

The body-exact code, developed by Gilloteaux (2010) at
the LHEEA, uses a Green function approach. However, the
code LAMP-2 (Treakle et al. 2000; Shin et al. 2003) sup-
ported by the USNavy, SWAN-2 (Grigoropoulos et al. 2011)
developed by the group of Prof. Sclavounos at MIT, and
WISH-2 (Kim et al. 2011) developed in Korea, use Rank-
ine singularities. As Rankine singularities do not satisfy the
radiation condition, a damping zone or a mixed-source for-
mulation must be added to the domain to avoid reflection
problems. Gilloteaux (2010) added second-order effects for
linear radiation and diffraction forces, but it has been shown
by Merigaud et al. (2012) that this leads to a significant
increase in computation time for no commensurate improve-
ment in accuracy.

8.2.2 Nonlinear radiation–diffraction

An improvedversion of the body-exact approach additionally
takes into account nonlinearities in radiation and diffraction
forces. In the literature, most of the potential flow codes are
developed for ships and consider linear radiation and diffrac-
tion forces computed on the mean body position. However,
when dealing with arbitrary shaped bodies, assumptions of
linear forces may not be suitable. Some authors, like Bandyk
(2009), Beck and Reed (2001), or Stern et al. (2014), briefly
describe the complete (nonlinear hydrostatic, FK, diffraction
and radiation force) body-exact nonlinear approach. Similar
to the treatment ofNLFKandhydrostatic forces, the radiation
and diffraction forces are now computed on the exact instan-
taneous wetted surface, keeping the free-surface conditions
linearized around z = 0. Some codes compute the nonlinear
radiation–diffraction forces by linearising, around z = 0, the
free-surface equations of the weak-scatterer approach (dis-
cussed in Sect. 8.3), such as LAMP-4 (Beck and Reed 2001),
or the code WS_Cn, developed by the LHEEA in Nantes
(Letournel 2015). Using the body-exact nonlinear radiation–
diffraction option ofWS_Cn is around three times faster than
the weak-scatterer approach. In his thesis, Ferrant (1988)
employs a body-exact nonlinear approach to compute the
radiation problem only, using the Green function formula-
tion.

In the case of the Green function formulation, the govern-
ing integral equations are given by

2πφ(M) +
∫∫

Sw(t)

(

φ(P)
∂G0

∂n
(M, P)dS

−∂φ(P)

∂n
G0(M, P)

)

dS

=
∫ t

0
dτ

∫∫

Sw(t)

(

φ(P)
∂G f

∂n
(M, P)dS

−∂φ(P)

∂n
G f (M, P)

)

dS, (207)

where G0 is the Rankine source term of the Green function,
and G f its time-dependent memory part, both defined in
(132). After discretization in time, Eq. (207) becomes

2πφ(M)n+1 +
∫∫

Sn+1
w

(

φ(P)n+1 ∂G0

∂n

n+1

(M, P)dS

−∂φ

∂n

n+1

(P)G0 n+1(M, P)

)

dS

=
∫ n+1

0
dτ

∫∫

Sw(t)

(

φ(P)
∂G f

∂n
(M, P)dS

−∂φ

∂n
(P)G f (M, P)

)

dS, (208)
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at the (n+1)th time step. For theRankine source formulation,
the integral equation is

2πφ(M)n+1 +
∫∫

Sw∪Sn+1
f

φ(P)n+1 ∂GR

∂n
(M, P)dS

−
∫∫

Sw∪Sn+1
f

(
∂φ

∂n

)n+1

(P)GR(M, P)dS = 0. (209)

The body-exact method, including nonlinear radiation–
diffraction forces, needs significantlymore computation time
since the full Green function, or Rankine source, has to be
re-computed at each time-step, due to changes in the relative
positions of the body and the free-surface at each time step,
considerably increasing the computation time.

Subramanian et al. (2018) proposed another kind of
improved body-exact method, computing linear diffraction–
radiation forces, but specifying the mean body position at
each time step. Rajendran et al. (2016) uses Cummin’s work
in the time domain for radiation forces, a linear formulation
derived following application of linear radiation boundary
condition.

8.3 Weak-scatterer approach

The weak-scatterer approximation, originally introduced by
Pawlowski (1994), is achieved by linearising the free-surface
boundary condition around the instantaneous incident wave
elevation, assuming that the perturbation potential is small
compared to the incident one. The total velocity potential,
and the free-surface elevation, can, therefore, be separated
into incident and perturbation terms as

{

φ = φ0 + φp,

η = η0 + ηp.
(210)

The mixed Euler–Lagrange (MEL) approach, developed
by Longuet-Higgins and Cokelet (1976), is employed to
describe the nonlinear unsteady free-surface elevation,where
Eulerian field equations are solved to obtain the fluid veloc-
ity, and the obtained velocity is used to track fluid particles
on the free surface in a Lagrangian way. To simplify theMEL
method, the free surface can be single-valued (as in Letournel
et al. (2018)), assuming that the free-surface nodes can only
move vertically (x, y, z = η0(x, y, t)). Hence, overturning
waves are not considered.

The mesh of the free surface is located at the position
of the incident free-surface deformation. Thus, to update the
perturbation component of the potential or elevation from the
free-surface equations, it is necessary to follow the particles
present on the incident free-surface. The differential operator,

for a given particle, is given by

D0z

Dt
= ∂

∂t
+ ∂η0

∂t

∂

∂z
. (211)

The free-surface elevation η(x, y, t) is independent of the z
coordinate, which leads to

D0zη

Dt
= ∂η

∂t
. (212)

The kinematic free-surface condition (3) can be rewritten
as the decomposition of incident and perturbation terms as

∂ηp

∂t
= −∂η0

∂t
+ ∂

∂z

(

φ0 + φp
)

−∇ (

φ0 + φp
)

.∇ (

η0 + ηp
)

on z = η(x, y).

(213)

Equation (213) is expressed on the exact free-surface position
z = η(x, y). In the case of the weak-scatterer approach, the
equation is moved on the incident free-surface elevation, by
applying a Taylor expansion on the perturbation terms ηp,
assumed small compared to the incident terms. Second-order
perturbation terms, assumed negligible, are then removed.
The kinematic free-surface condition becomes

∂ηp

∂t
= −∂η0

∂t
+ ∂

∂z

(

φ0 + φp
)

−∇φ0.∇η0 − ∇φp.∇η0 − ∇φ0.∇ηp

+ηp

(
∂2φ0

∂z2
− ∂∇φ0

∂z
.∇η0

)

on z = η0(x, y).

(214)

The dynamic free-surface boundary condition (3) can be
expressed, using the differentiation operator (211), as

D0zφ

Dt
= ∂φ

∂t
+ ∂η0

∂t

∂φ

∂z

= −gη − 1

2
∇φ.∇φ + ∂η0

∂t

∂φ

∂z
on z = η(x, y).

(215)

Using the decomposition between incident and perturbation
components, we obtain

D0zφp

Dt
= −D0zφ0

Dt
− g(η0 + ηp)

−1

2
∇ (

φ0 + φp
)

.∇ (

φ0 + φp
)

+∂η0

∂t

∂

∂z

(

φ0 + φp
)

= −∂φ0

∂t
− g(η0 + ηp)
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−1

2
∇ (

φ0 + φp
)

.∇ (

φ0 + φp
)

+∂η0

∂t

∂φp

∂z
on z = η(x, y). (216)

Similar to the kinematic free-surface condition (214), the
dynamic free-surface condition is expressed on the incident
free-surface elevation using a Taylor expansion of the pertur-
bation term ηp, removing all the second-order perturbation
terms as

D0zφp

Dt
= −∂φ0

∂t
− g(η0 + ηp)

−1

2
∇φ0.∇φ0 − ∇φ0.∇φp + ∂η0

∂t

∂φp

∂z

−ηp

(
∂2φ0

∂z∂t
+ ∂∇φ0

∂z
.∇φ0

)

on z = η0(x, y).

(217)

The body boundary condition is computed on the wetted
surface of the body, by taking into account the instantaneous
incident wave elevation. In Letournel et al. (2018), the prob-
lem is solved thanks to the implicit method (reviewed in Sect.
7.2.4).

The weak-scatterer assumption requires the problem to
be solved with Rankine singularities since the free-surface
equations are no longer linear. The codes SWAN-4 (Grig-
oropoulos et al. 2011), WISH-3 (Kim et al. 2011), and the
code WS_Cn (Letournel et al. 2018) use a damping beach to
remove the radiation condition problems of the the Rank-
ine source, whereas LAMP-4 (Shin et al. 2003) uses the
hybrid method. Letournel et al. (2014) compared the weak-
scatterer approach with a fully nonlinear model for a heaving
point absorber (HPA), and an oscillating wave surge con-
verter (OWSC) in Letournel et al. (2018). Although it is not
straightforward to compare two codes, Letournel et al. (2018)
show good agreement between the two methods, the weak-
scatterer approach being an order of magnitude faster than
the fully nonlinear method, and CPU time being roughly
two orders of magnitude greater than the real time simu-
lated. However, the weak-scatterer code can still yield the
response amplitude operator (RAO) for a set of 70 frequen-
cies in a reasonable CPU time. The free-surface mesh size
is around 10–20 times bigger than the characteristic length
of the body, in the vicinity of the body. By simplifying the
assumption of the free-surface boundary condition, and con-
sidering linearized free-surface elevation around the z = 0
plane, the problem becomes the body nonlinear approach
developed in Sect. 8.2.2.

8.4 Fully nonlinear models

The development of fully nonlinear wave models, also called
numerical wave tanks (NWTs), has mainly been developed
for 2D problems in the 1990s, and in 3D since the 2000s.
Since no assumptions are made on the body motion and
wave steepness, large amplitude motion and extreme sea
states can be considered. The development of fully nonlinear
models has been possible thanks to the pioneering work of
Longuet-Higgins andCokelet (1976), who introduced the so-
calledmixedEulerian–Lagrangian (MEL)method. TheMEL
method can compute fully nonlinear free-surface motion in
time domain, by solving Eulerian field equations to obtain
the fluid velocity, which then follows fluid particles on the
free-surface in a Lagrangian way. Unlike the models pre-
sented previously (linear, body exact and weak scatterer in
Sects. 4, 8.2 and 8.3, respectively), neither the incident free-
surface elevation nor the incident potential are known, and
form part of the unknowns of the problem. The incident wave
is then produced by flap type or piston-like wavemakers,
as for real wave tanks. The first 2D NWT dealing with a
freelymoving bodywas that of Vinje andBrevig (1981), who
introduced the mode decomposition method. Koo and Kim
(2004) analysed a freely floating-body simulation using a 2D
fully nonlinear numerical wave tank, comparing fully nonlin-
ear and body-exact nonlinear approaches. Their conclusion
was that body nonlinearities are much more important than
free-surface nonlinearities, when the body motion is near
its resonance area. However, free-surface nonlinearities have
a greater impact than body nonlinearities when drift forces
are concerned. The so-called QALE-FEM method (once-off
meshing) was detailed by Yan and Ma (2007), analysing the
nonlinear interaction between steep waves and 2D floating
bodies.

Ma et al. (2001) were the first to attempt 3DNWT simula-
tions, using an iterativemethod.Relatively fewdevelopments
have been undertaken in 3D for free motions of floating bod-
ies, with some notable exception (e.g. Bai and Taylor 2009),
and the 2D QALE-FEM in Yan andMa (2007) was extended
to 3D in Ma and Yan (2009).

9 Conclusions

Boundary element methods have become popular in a variety
of application areas, providing a computationally attractive
means of calculating hydrodynamic forces on floating, and
fixed, objects. However, boundary element method comprise
a large family of methods which are still under develop-
ment. They can be classified into time domain and frequency
domain, linear and several nonlinear variations progressively
from weakly to fully nonlinear, and methods which can
employ either (or both of) Green or Rankine sources. In addi-
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tion, they can be applied to both objects which have non-zero
or zero mean forward velocity, but not all methods or algo-
rithms can be applied to both of these classes.

Consideration of the methods reviewed in terms of mod-
eling fidelity and computational complexity leads us to the
following reflections with respect to future methods that
might emerge to satisfy the needs of wave energy:

Green function vs Rankine singularity: The Green func-
tion is attractive because it automatically satisfies both the
free surface boundary condition and the far field radiation
condition, therefore, avoiding meshing of the free surface
and special treatment of radiated waves (e.g. hybrid method).
However, this approach limits the method to linearised free
surface conditions and introduces irregular frequencies that
must thenbe removed.Hybridmethods candealwith the radi-
ation condition effectively but at some computational cost.

Body exact methods: The review did not discover any
method that combines body exact methods with close to
the computational efficiency of linearised boundary element
methods. Non-linear Froude–Krylov methods do not sat-
isfy the Fidelity requirement introduced in Sect. 1.1 since
some geometries (for example thin plates) are dominated by
scattering and radiation forces with minimal Froude–Krylov
forces. A body-exact method with the computational effi-
ciency close to that of the linear methods is desirable as the
minimally non-linear method that might satisfy all of the
requirements introduced in Sect. 1.1.

Fully non-linear potential flow (NWT): NWT is unlikely
to be a useful tool for large-scale calculations due to compu-
tational complexity and long run times. However, a general
purpose implementation of a NWT might be useful for the
validation of other methods and assessment of the impacts of
assumptions made. A general purpose NWTwould probably
only be useful for as part of a hybrid method since far field
radiation effects are important and pure NWT implementa-
tions are subject to reflections at the tank walls.

In wave energy application, the focus is on devices with
mean zero forward velocity, both fixed and floating. A wide
variety of commercial and non-commercial tools for bound-
ary element hydrodynamic calculations exist and this review
attempts to articulate the historical development of boundary
elementmethods, aswell as detailing the differences between
various implementations, to facilitate judicious selection for
future modelling of wave energy devices. This review is
also indented to provide a useful platform for the further
development of boundary element methods, particular with
application to wave energy systems.
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