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Tight regulation of inflammatory cytokine and interferon (IFN) production in innate immunity
is pivotal for optimal control of pathogens and avoidance of immunopathology. The
human Nod-like receptor (NLR) NLRP11 has been shown to regulate type I IFN and pro-
inflammatory cytokine responses. Here, we identified the ATP-dependent RNA helicase
DDX3X as a novel binding partner of NLRP11, using co-immunoprecipitation and LC-MS/
MS. DDX3X is known to enhance type I IFN responses and NLRP3 inflammasome
activation. We demonstrate that NLRP11 can abolish IKKϵ-mediated phosphorylation of
DDX3X, resulting in lower type I IFN induction upon viral infection. These effects were
dependent on the LRR domain of NLRP11 that we mapped as the interaction domain for
DDX3X. In addition, NLRP11 also suppressed NLRP3-mediated caspase-1 activation in
an LRR domain-dependent manner, suggesting that NLRP11 might sequester DDX3X
and prevent it from promoting NLRP3-induced inflammasome activation. Taken together,
our data revealed DDX3X as a central target of NLRP11, which can mediate the effects of
NLRP11 on type I IFN induction as well as NLRP3 inflammasome activation. This expands
our knowledge of the molecular mechanisms underlying NLRP11 function in innate
immunity and suggests that both NLRP11 and DDX3X might be promising targets for
modulation of innate immune responses.
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INTRODUCTION

In mammals, viral infections are detected by anti-viral pattern-recognition receptors (PRRs),
including RIG-I-like receptors (RLRs), cytosolic DNA receptors, and endosomal Toll-like
receptors (TLRs). Their activation induces antiviral cytokine responses dominated by release of
type I interferons (IFNs), which are crucial for limiting replication of most viruses (1–4). Hence,
failure to initiate an effective IFN response correlates with higher pathogenicity in many viral
infections (5–7). Thus, robust early IFN induction is crucial for controlling viral replication,
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but failure to resolve this response can result in severe
immunopathology in the host (8–10). In particular an altered
balance between type I IFN responses and pro-inflammatory
cytokine release can lead to pathology in the host, as seen for
example in COVID-19 disease (11, 12). It is therefore critical to
understand how type I IFN and pro-inflammatory cytokine
responses are balanced during viral infections.

RLRs, most prominently RIG-I, are essential sensors for
cytosolic viral RNA (13). Following the binding of viral RNAs,
RIG-I oligomerizes and binds to the mitochondrial antiviral
signaling protein (MAVS) via CARD-CARD interactions (14).
MAVS then recruits downstream signaling proteins, such as
TNF-associated factor 2 (TRAF2) (15), TRAF6 (16), and TRAF3
(17), which ultimately lead to induction of pro-inflammatory
cytokines and type I IFNs. IFN induction is dependent on
phosphorylation of the transcription factors interferon
regulatory factor 3 (IRF3) and IRF7 (18–21) mediated by two
related kinases, inhibitor of NF-kB kinase subunit epsilon (IKKϵ)
and TANK binding kinase 1 (TBK1) (22, 23). TBK1 is necessary
for IFN-b induction and ubiquitously expressed in different cell
types, while IKKϵ may not be essential for IFN-b induction and
has been suggested to directly regulate a subset of interferon-
stimulated genes (ISGs) (24).

NOD-like receptors (NLRs) are another important group of
PRRs and a total of 22 human NLR proteins have been
discovered (25), many of which remain to be functionally
characterized. NLRs consist of an N-terminal effector domain,
a central NACHT domain, and a C-terminal leucine-rich repeat
region (LRRs), and can be subcategorized by their effector
domains into pyrin-domain (PYD) containing NLRP proteins,
CARD-domain containing NLRC proteins, baculovirus inhibitor
of apoptosis (BIR)-domain containing NLRB proteins, and
CARD-transcriptional activation-domain (CARD-AD)
containing NLRA proteins (26).

Signaling pathways induced by NLRs are heterogeneous.
While NOD1 and NOD2 induce NF-kB activation upon
recognition of bacterial ligands (27–29), NLRP1, NLRP3 and
NLRC4 activation leads to formation of a large multiprotein
signaling platform called the inflammasome (30–32).
Inflammasome formation starts with recruitment of the
adaptor protein apoptosis-associated speck-like protein (ASC),
which then recruits and activates pro-caspase-1, enabling
maturation and release of IL-1b and IL-18. Other NLRP
proteins including NLRP6, NLRP7, NLRP12, and possibly
NLRC5 might also form inflammasomes (33–36). However,
not all mammalian NLR proteins act as PRRs. For example,
NLRC5 and CIITA are transcriptional enhancers for MHC class
I and class II genes, respectively (37, 38), and some NLRs have
been identified as negative regulators of innate immune
responses. An example is NLRC3 that negatively regulates
DNA sensing-PRRs by interfering with the adaptor molecule
stimulator of interferon genes (STING) (39). Furthermore,
NLRP4 (40–42), NLRP12 (43, 44) and NLRP14 (45), were
reported to modulate IFN responses (for an overview see (46)).

We and others have previously shown that NLRP11 can
negatively regulate both NF-kB activation (47) and type I IFN
Frontiers in Immunology | www.frontiersin.org 2
induction (48, 49). It was shown that NLRP11 interferes with the
MAVS signaling complex (47, 49), but it can also block type I
IFN induction downstream of TBK1 (48), suggesting that
NLRP11 might intervene at multiple levels in the RLR pathway.

A well-established positive regulator of the RLR-pathway is
the human DEAD-box protein 3 (DDX3X). DDX3X physically
interacts with MAVS (50), IKKϵ (51), TBK1 (52), TRAF3 (53)
and IRF3 (54), resulting in enhanced type I IFN production (50,
51, 53, 54). DDX3X might also be directly involved in
recognition of viral RNA (50). Activation of the RIG-I pathway
triggers binding of DDX3X to IKKϵ, which leads to enhanced
IKKϵ activation (51, 54) and IKKe-mediated phosphorylation of
DDX3X in its N-terminal region, which enables recruitment of
IRF3 into the complex, resulting in enhanced activation of IRF3
by IKKϵ phosphorylation (54). TBK1 can also phosphorylate
DDX3X and enhance IFNb production (52). The physiological
importance of DDX3X’s role in anti-viral immune signaling is
underlined by the fact that several viruses, including Vaccinia
virus, Hepatitis B virus and Influenza A virus, evolved immune
evasion mechanisms targeting DDX3X (51, 55–59). Thus
DDX3X is a central regulator of the RIG-I anti-viral signaling
pathway, where it interacts with signaling intermediates in a
complex manner that is still not completely understood.

Recently, a further role for DDX3X as a positive regulator of
NLRP3 inflammasome activation was reported. Sequestration of
DDX3X into cytosolic stress granules during cellular stress
results in reduced NLRP3/caspase-1 activation and suppression
of IL-1b and IL-18 release (60).

A better understanding of the complex molecular circuits
that control innate immune responses will advance our
understanding of host-pathogen interactions and help to
identify novel targets for therapeutic intervention. Here we
provide evidence that NLRP11, via its leucine-rich repeats
(LRRs), interacts with DDX3X. This interaction inhibited
IKKϵ-induced phosphorylation of DDX3X and type I IFN
induction. Using caspase-1 activation assays and ASC speck
formation assays, we revealed that NLRP11 can also counteract
the positive effect of DDX3X on NLRP3 inflammasome
activation. Taken together, our work identified DDX3X as a
novel target of NLRP11 that contributes to the inhibitory effects
on both type I IFN induction and IL-1b release.
MATERIALS AND METHODS

Plasmids and Reagents
Myc-NLRP11 and myc-NLRP11 domain constructs were
previously described (48). The plasmids pcDNA5/FRT/TO-
NLRP11-eGFP and pEGFP-DDX3X were generated by
molecular cloning from myc-NLRP11 or myc-DDX3X
respectively. The Myc-DDX3X construct is described in (51).
piGLuc caspase-1 reporter plasmid, pCI-caspase-1 and pCI-
ASC-HA were kindly provided by Veit Hornung and are
described in (61, 62). FLAG-IKKϵ was kindly provided by
Eliane Meurs (63). Myc-DDX3X mutants were previously
May 2021 | Volume 12 | Article 653883
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described in (54). All plasmids (inserts, tags and flanking
regions) were verified by Sanger sequencing.

Cell Culture
HEK293T cells (ATCC, CRL-3216) were grown in DMEM
supplemented with 10% heat-inactivated FBS. HEK Blue IFN-a/b
(hkb-ifnab, InvivoGen) were maintained in DMEM, supplemented
with 10% heat-inactivated FBS, 30 mg/ml blasticidin and 100 mg/ml
zeocin. THP1 cells with a doxycycline inducible shRNA targeting
DDX3X and non-silencing controls (NSC) are described in (64).
Cells were grown in RPMI 1640 supplemented with 10% heat-
inactivated FBS, gentamycin and puromycin. Knock-down of
DDX3X was induced by 1 µg/ml doxycycline for 48 h.

Stable, inducible cell lines expressing NLRP11-eGFP were
generated by co-transfection of pOG44 and pcDNA5/FRT/TO-
NLRP11-eGFP at 9:1 ratio into Flp-In T-REx HEK293
(Invitrogen/ThermoFischer, R78007) and HeLa FlpIn T-REx
cells (kindly provided by the Hentze Lab, EMBL Heidelberg)
using Lipofectamin 2000 (Thermo Fisher Scientific) and selected
with 10 µg/ml blasticidin and either 100 µg/ml (HEK) or 600 µg/
ml (HeLa) hygromycin. Single clones were selected, and
expression was induced by 1 µg/ml doxycycline for at least
16 h prior to further experiments. All cell culture media
were supplemented with penicillin and streptomycin. Cells
were routinely monitored for absence of mycoplasma infection
by PCR.

For viral infection, cells were incubated with 160
hemagglutination units (HAU)/ml Sendai virus (Cantell Strain
in allantoic fluid, Charles River).

siRNA- and shRNA Mediated Silencing
THP1 and THP1shDDX3X cells were differentiated with 100 nM
PMA for 16 h. Medium was changed and cells were incubated for
24 h prior to siRNA-mediated knock-down with 100 nM siRNA,
transfected using HiPerFect transfection reagent (Qiagen)
according to (65). AllStars negative control siRNA and
siNLRP11_6 CACGACCTTGCAGCTGTCGAA (48) (Qiagen)
were used. Knock-down of NLRP11 was performed for 72 h. For
double knock-down of NLRP11 and DDX3X, 24 h after
transfection of the siRNA, THP1 shDDX3X cells were induced
with 1 µg/ml doxycycline for 48 h.

Knock-down efficiency of NLRP11 was monitored with
endpoint PCR as described in (48). Knock-down of DDX3X
was monitored by end-point PCR using the following
primer pair: fwd: TGCTGGCCTAGACCTGAACT rev:
TTGATCCACTTCCACGATCA.

Co-Immunoprecipitation and Protein
Binding Assays
Co-immunoprecipitation of NLRP11-eGFP, from HEK293 and
HeLa FlpIn eGFP and NLRP11-eGFP cell lines, or of eGFP-
DDX3X from HEK293T cells, transiently transfected with
Lipofectamine 2000 (Thermo Fisher Scientific), was performed
with GFP-Trap Agarose resin (Chromotek). Cells were lysed in
Triton buffer [50 mM Tris/HCl pH 7.4, 150 mM NaCl, 1%
Triton-X100, 1% Na-Deoxycholate, 100 nM b-glycerophosphate,
100 nM sodium orthovanadate, 1 mM NaF and cOmplete Mini
Frontiers in Immunology | www.frontiersin.org 3
Protease inhibitor Cocktail (Roche)]. Lysates were cleared by
centrifugation (15 min, 4°C, 21000 x g) before the supernatants
were loaded onto the matrix. Precipitation was performed at 4°C
for 3 h, before the matrix was washed with washing buffer
(50 mM Tris/HCl pH 7.4, 150 mM NaCl, 1% Na-Deoxycholate).

NanoLC-MS/MS Analysis
Proteins were digested on beads using trypsin (Roche, Germany)
in 6 M urea, 50 mM Tris-HCl pH 8.5. Cysteines were reduced
using 1,4-dithiothreitol (DTT) and then alkylated by
chloroacetamide. Samples were then diluted to a final
concentration of 2 M urea. 750 ng trypsin were added, and
samples were digested overnight at 25°C. The digests were
stopped by adding trifluoroacetic acid (TFA). Next, peptide
mixtures were concentrated and desalted on C18 stage tips and
dried under vacuum. Samples were dissolved in 0.1% TFA and
were subjected to nanoLC-MS/MS analysis on an EASY-nLC
1000 system (Thermo Fisher Scientific, Germany) coupled to a
Q-Exactive Plus mass spectrometer (Thermo Fisher Scientific,
Germany) using an EASY-Spray nanoelectrospray ion source
(Thermo Fisher Scientific, Germany). The system was controlled
by Xcalibur 3.0.63 software. Tryptic peptides were directly
injected to a 25 cm x 75 µm EASY-Spray analytical column
(2 mm, 100 Å, PepMap C18) operated at 35°C. Peptides were
separated at a flow rate of 250 nL/min using a 120 min
gradient with the following profile: 3% - 10% solvent B in
50 min, 10% - 22% solvent B in 40 min, 22% - 45% solvent B
in 30 min, 45% - 90% solvent B in 10 min, 15 min isocratic at
90% solvent B, followed by 90% - 3% solvent B in 10 min and re-
equilibration at 3% solvent B for 15 min. (solvent A: 0.5% acetic
acid; solvent B: acetonitrile/H2O (80/20, v/v), 0.5% acetic acid).

MS spectra (m/z = 300-1600) were detected at a resolution of
70000 (m/z = 200) using a maximum injection time (MIT) of 100
ms and an automatic gain control (AGC) value of 1 × 106. MS/
MS spectra were generated for the 10 most abundant peptide
precursors using high energy collision dissociation (HCD)
fragmentation at a resolution of 17500, normalized collision
energy of 27 and an intensity threshold of 1.3 × 105. Only ions
with charge states from +2 to +5 were selected for fragmentation
using an isolation width of 1.6 Da. For each MS/MS scan, the
AGC was set at 5 × 105 and the MIT was 100 ms. Mascot 2.6
(Matrix Science, UK) was used as search engine for protein
identification. Spectra were searched against the human UniProt
database (66). Scaffold 4.8.6. (Proteome Software, USA) was used
to evaluate peptide identifications. These were accepted with a
peptide probability greater than 80% as specified by the Peptide
Prophet algorithm (67). Proteins had to be identified by at least
one unique peptide and a protein probability of at least 99% to
be accepted.

Reporter Assays
For iGLuc caspase-1 reporter assays, HEK293T cells were seeded
in a 96-well plate (Greiner) at a density of 35,000 cells per well
and transiently transfected using Xtreme Gene 9 transfection
reagent (Sigma Aldrich) with 8.6 ng b-galactosidase plasmid,
42 ng of the iGLuc reporter plasmid (61), and expression
plasmids of NLRP3, NLRP11, ASC, caspase-1 and DDX3X,
May 2021 | Volume 12 | Article 653883
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DDX3X S102A, or DDX3X 4A as indicated. 20 h after transfection,
cells were stimulated with 15 mM nigericin (InvivoGen) for 3 h.
Cells were then lysed in 100 µl passive lysis buffer (Promega) per
well. 50 µl of the cell lysate were transferred into a non-transparent
96-well plate. Luciferase activity was measured in a multiplate
reader (Enspire, PerkinElmer LifeSciences) after addition of
100 ml of 3.33 mM Coelenterazine (Carl Roth) per well. 100 µl of
1 mg/ml O-nitrohpenyl-b-D-galactoryranoside in 60 mM
Na2HPO4, 40 mM NaH2PO4, 10 mM KCl and 1 mM MgSO4

were added to the remaining 50 µl lysate, incubated at 37°C and
absorption was measured at 405 nm (620 nm reference) as
b-galactosidase activity. Luciferase activity was normalized to
b-galactosidase activity.

Ifnb luciferase reporter assays were performed as described in
(48), with 5 ng FLAG-IKKϵ plasmid for activation.

Assays were performed in technical triplicates and repeated
independently three times unless indicated otherwise.

Indirect Immunofluorescence
HeLa FlpIn cells were seeded into 24-well plates at a density of
75,000 cells per well on glass coverslips, HEK FlpIn cells at
100,000 cells per well on poly-L-lysin pretreated glass coverslips
and expression of eGFP or eGFP-NLRP11 was induced with
1 µg/ml doxycycline. After overnight expression, cells were either
infected with 160 hemagglutination units (HAU)/ml Sendai virus
(SeV) for different durations, or directly fixed with 4% PFA in
PBS, permeabilized with 0.5% Triton X-100 and blocked with 5%
FBS in PBS. Cells were then incubated with primary and
secondary antibody sequentially. Antibodies used: Primary:
DDX3X (A300-474A Bethyl Laboratories), AIF (Cell Signalling
# 4642). Secondary: Alexa-546 goat anti-rabbit IgG, Alexa-405
goat anti-mouse (Molecular Probes). DNA was stained with
Hoechst 33258 (Sigma). Images were captured with a Leica DMi8
microscope using a HCX PL FL L 40X/0.60 or a HC PL APO 63X/
1.40-0.60 OIL objective and processed using the Leica LasX software
and ImageJ. For 3D deconvolution, Z-stacks of 4.05 µm depth were
captured, with individual planes every 0.2 µm. Blind 3D-
deconvolution was performed using the Leica LasX software,
performing 10 iterations at a refractive index of 1.52. For
quantitative analysis, sample pictures were blinded and counted
by eye.

Immunoblotting
Immunoblotting was performed as described in (65). Antibodies used:
b-actin (C-4; Santa Cruz sc-47778), GFP (Roche 11 814 460 001),
myc (9E10; Sigma Aldrich M4439), DDX3X (Bethyl Laboratories
A300-474A), FLAG (Sigma Aldrich F7425), GAPDH (Santa Cruz
sc-25778), pIRF3 (Cell Signalling #29047T).
Measurement of Cytokines
IL-1b and IFNb release was measured in cell supernatants by
ELISA (DY201, DY814, R&D Systems) according to the
manufacturer’s instructions. A bioassay for type I interferons
was performed using HEK Blue IFN-a/b cells (Invivogen). HEK
Blue IFN-a/b cells were stimulated for 20 h with supernatant
from SeV infected THP1 cells and SEAP activity in the
Frontiers in Immunology | www.frontiersin.org 4
supernatant was measured by Quantiblue solution (rep-qbs,
InvivoGen) according to the manufacturer’s conditions.

Statistical Analysis
Data were analyzed by unequal variances t-test (Welch test) and
plotted using GraphPad Prism version 7.05. p < 0.05 was
regarded as significant.
RESULTS

NLRP11 Interacts With the ATP-
Dependent RNA Helicase DDX3X
We recently demonstrated that NLRP11 is a negative regulator of
inflammatory cytokine induction (48). In order to study the
underlying molecular mechanism, we generated an eGFP-tagged
NLRP11 (NLRP11-eGFP) expression construct and confirmed
that NLRP11-eGFP retained its negative regulatory effect on
IKKϵ induced ifnb-reporter gene expression in comparison to
our previously used myc-NLRP11 construct (Figure 1A). Stable
cell lines allowing for inducible expression of NLRP11-eGFP
were generated using the doxycycline inducible single site
recombination system Flp-In T-REx. We obtained stable HeLa
and HEK293 lines that showed inducible expression of NLRP11-
eGFP after doxycycline treatment, as well as control cell lines
expressing eGFP only. We selected for cell lines with tight
regulation, uniform expression in all cells, and well detectable
expression upon induction (Figure 1B). We noticed that
NLRP11-eGFP tended to form high molecular weight SDS-
stable aggregates in both HEK293 and HeLa cells (Figure 1B,
upper band), which we also observed for myc-NLRP11 (data not
shown). However, we always also detected monomeric NLRP11
in SDS-PAGE, and fluorescent microscopy also confirmed that
NLRP11-eGFP was distributed in the cytoplasm without
formation of larger aggregates, consistent with earlier reports
(48, 49). Nonetheless, we noticed that NLRP11 was not
completely evenly distributed in the cytosol, suggesting it
might associate with cellular organelles (Figure 1C).

Next, we used these stable cell lines to identify interaction
partners of NLRP11. NLRP11-eGFP protein complexes were
immunoprecipitated from the HeLa-NLRP11-eGFP cells using
anti-GFP antibody. Co-immunoprecipitated proteins were
identified by mass spectrometry. We obtained several putative
NLRP11 interactors that were not detected in two independent
control immunoprecipitation experiments conducted with the
corresponding eGFP-expressing HeLa cell line (Supplementary
Table 1). Due to its well-described functions in anti-viral innate
immune signaling (51, 52, 68), we selected the DEAD-box
protein DDX3X as the most interesting candidate for further
analysis. To validate the interaction, we used a specific antibody
directed against DDX3X. In independent experiments we could
confirm the presence of endogenous DDX3X in co-
immunoprecipitations from HEK293-NLRP11-eGFP cells,
while it was absent in co-immunoprecipitations conducted
with HEK293-eGFP control cells (Figure 1D). Unfortunately,
due to lack of a specific antibody against human NLRP11, we
could not assess the interaction with endogenous NLRP11.
May 2021 | Volume 12 | Article 653883
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To map the interaction domain for DDX3X in NLRP11, we
expressed myc-tagged NLRP11 truncation mutants in HEK293T
cells together with eGFP-DDX3X or empty vector and
performed immunoprecipitations using anti-GFP antibody. We
also confirmed binding of myc-NLRP11 to DDX3X in these
experiments (Figure 1E). Deletion of the NLRP11 PYD did not
influence binding, nor was the PYD sufficient to facilitate
binding to DDX3X. While the LRR domain alone showed a
strong interaction with DDX3X, we only observed limited
binding of the NACHT domain to DDX3X (Figure 1E). This
finding is in line with results obtained in our previous work,
where we showed that the LRR domain of NLRP11 is sufficient
for inhibition of TBK1-induced type I IFN (48).

We next set out to analyze the functional relevance of the
DDX3X-NLRP11 interaction. First, we tested whether the
NLRP11-DDX3X complex formation changed during Sendai
virus (SeV) infection. Starting at 4 h post infection, we observed
increased expression levels and co-immunoprecipitation of
endogenous DDX3X with NLRP11-eGFP in HEK293 cells
that was strongest at 6 h and 16 h post infection (Figure 2A).
We next analyzed the subcellular localization dynamics of
NLRP11 and DDX3X during infection with SeV by indirect
immunofluorescence microscopy. In HEK293-NLRP11-eGFP
cells we confirmed co-localization of NLRP11 and DDX3X in
the cytosol. This co-localization was maintained and appeared
Frontiers in Immunology | www.frontiersin.org 5
slightly enhanced during SeV infection with more pronounced
co-localization at 16 h post infection compared to steady state
levels (Figure 2B). Co-localization of DDX3X and NLRP11-eGFP
was also observed in HeLa-NLRP11-eGFP cells, where NLRP11-
eGFP continued to stably co-localize with DDX3X over the course
of 16 h of infection in the majority of cells (Figure 2C). However,
NLRP11 was not recruited to distinct DDX3X clusters that
appeared at 16 h post infection in a minority of cells (Figure
2D). The formation of these structures was also not influenced by
the presence, or absence of NLRP11-eGFP (Figure 2D). These
structures likely represent stress granules that DDX3X is known
to be recruited into (60, 69, 70) and were only present in a
minority of the cells. In line with data previously published by Qin
et al. (49), HEK293-NLRP11-eGFP cells showed no co-
localization of NLRP11-eGFP with the mitochondrial marker
apoptosis-inducing factor (AIF) at steady state conditions, but
we observed recruitment of NLRP11 to mitochondria at 16 h post
infection (Figure 2E). In HeLa NLRP11-eGFP cells, NLRP11 was
localized in proximity to mitochondria in untreated cells and this
localization pattern persisted during 16 h of SeV infection, with
partial co-localization observed at 16 h post infection (Figure 2F).

Taken together, we identified DDX3X as a novel binding
partner of NLRP11. Mapping of the interaction domain in
NLRP11 identified that the LRR region was sufficient for
DDX3X binding. We further demonstrated that the interaction
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and actin, or GAPDH as loading control is shown. Monomeric NLRP11-eGFP is marked by an arrow and aggregated NLRP11 by an asterisk. (C) Immunofluorescence
micrographs of HeLa-NLRP11-eGFP cells. Cells were induced with doxycycline overnight, fixed and nuclei were stained. 3D-deconvolution of z-stacks of the signal of
DNA (lower images) and eGFP (upper images) are shown. Stack size = 0.2 µm. Scale bar = 10 µm. (D) Immunoblots from anti-GFP immunoprecipitations (IP) from
HEK293T-eGFP and HEK293-NLRP11-eGFP cells induced over night with doxycycline. IPs were probed for DDX3X and GFP, whole cell lysates (WCL) were probed for
DDX3X and GAPDH as loading control. Representative blots for two independent experiments are shown. (E) Immunoblots from anti-GFP IPs from HEK293T cells
expressing empty vector, or eGFP-DDX3X and the indicated myc-NLRP11 construct. IP lysates were probed for myc and GFP, whole cell lysates were probed for myc,
GFP and actin as a loading control. Representative blots of two independent experiments are shown. *, NLRP11 aggregate; Δ, unspecific bands.
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between NLRP11 and DDX3X occurred in the cytosol in
proximity to mitochondria.

NLRP11 Prevents the Post-Translational
Modification of DDX3X by IKKϵ
Gu et al. reported that IKKϵ can phosphorylate DDX3X and that
this is a prerequisite for the interaction of DDX3X with IRF3 and
subsequent activation of the Ifnb promotor (54). We therefore
investigated whether NLRP11 influences this posttranslational
Frontiers in Immunology | www.frontiersin.org 6
modification of DDX3X. As shown before, co-expression of
IKKϵ and DDX3X in HEK293T cells induced a change in the
electrophoretic mobility of DDX3X, which is indicative of
phosphorylation (54). This up-shift of DDX3X was clearly
suppressed by co-expression of NLRP11 (Figure 3A).

We have previously shown that the ability of NLRP11 to
inhibit TBK1-induced IFNb production is dependent on its LRRs
(48). Given that the LRR region also interacted with DDX3
(Figure 1E), we tested whether this domain is required and
A

70

130
35

SeV [h]

IP
 a

nt
i G

FP
W

C
L

DDX3X

NLRP11-eGFP

eGFP

DDX3X
70

0.50

[kDa]

NLRP11-eGFPeGFP
0 16

130 NLRP11-eGFP

35
eGFP

E
eGFP

SeV [h] 00
NLRP11-eGFP

1616

eG
FP

A
IF

m
er

ge
 +

 D
N

A

HEK F eGFP

SeV [h] 0

PF
Ge

FI
A

m
er

ge
 +

 D
N

A

2 0 2

NLRP11-eGFP

16 16

HeLa

0 2

eG
FP

D
D

X
3X

m
er

ge

SeV [h] 0 2 6 616 16

C eGFP NLRP11-eGFP
HeLa D eGFP NLRP11-eGFP

eG
FP

D
D

X
3X

m
er

ge

HeLa
SeV [h] 1616

B
SeV [h] 0 6 16 0 6 16

eGFP NLRP11-eGFP

eG
FP

D
D

X
3X

m
er

ge
 +

 D
N

A

HEK
2 4 6

FIGURE 2 | Interaction and co-localization of NLRP11 and DDX3X upon infection. (A) Co-immunoprecipitation of NLRP11-eGFP from HEK293-eGFP and HEK293-
NLRP11-eGFP cells after induction with doxycycline overnight and infection with SeV for the indicated time. Immunoblots of the IPs and whole cell lysates (WCL) were
probed for DDX3X and GFP. The blots are representative of two independent experiments. (B–F) Indirect immunofluorescence micrographs of HEK293 (B, E), or HeLa-
(C, D, F), eGFP or NLRP11-eGFP cells induced with doxycycline overnight and infected with SeV for the indicated time. 3D deconvolution of DDX3X (B–D), or AIF (E, F)
staining (red), together with the eGFP signal (green) are shown. Nuclei are stained with Hoechst (blue). Scale bars = 10 µm.
May 2021 | Volume 12 | Article 653883

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kienes et al. NLRP11 Regulates DDX3X
sufficient to inhibit IKKϵ-mediated DDX3X phosphorylation
and, consequently, downstream activation of IRF3 (54).
Expression of full-length NLRP11, NLRP11-DPYD and
NLRP11-LRR reduced the IKKϵ-induced upshift of DDX3X,
while this was not observed for the PYD or NACHT domain
of NLRP11. Consistent with this data, activation of IRF3,
assessed by serine 396 phosphorylation, was also strongly
reduced when NLRP11 full length, DPYD or the LRRs were
expressed (Figure 3B).

Next, in order to interrogate the consequences of the DDX3X-
NLRP11 interaction on IFNb induction, we performed siRNA-
mediated knock-down of NLRP11 in macrophage-like
differentiated human THP1 cells in which DDX3X expression
can be suppressed by Tet-inducible expression of a specific short
hairpin RNA (shRNA) (THP1 shDDX3X) (64). THP1 cells were
used for these experiments because they express higher levels of
endogenous NLRP11 and IKKϵ compared to HeLa and
HEK293T cells (48). In accordance with recent data (48, 49),
knock-down of NLRP11 led to significantly increased IFNb
production in response to SeV infection (Figure 3C). As
reported previously (51), shRNA-mediated knock-down of
DDX3X had the opposite effect and reduced SeV-induced
IFNb expression (Figure 3C). However, DDX3X depletion
Frontiers in Immunology | www.frontiersin.org 7
resulted in a similar ratio of IFNb reduction compared to
control (-Dox) in both siCtrl cells and siNLRP11 treated cells
(Figure 3C). Qualitatively similar results were obtained when
measuring IFNb activity in a bioassay (Figure 3C).

Overall, our data suggest that NLRP11 represses type I
interferon responses by affecting IKKϵ-mediated posttranslational
modification of DDX3X.

NLRP11 Counteracts the Effect of DDX3X
on NLRP3 Inflammasome Activation
Considering the recent identification of DDX3X as a positive
regulator of NLRP3 inflammasome formation (60), we next
investigated whether NLRP11 affects DDX3X’s function in this
context. We previously showed that NLRP11 cannot induce
caspase-1 activation itself, nor does NLRP11 recruit the
inflammasome adaptor ASC (48), suggesting that NLRP11
does not form a classical inflammasome when ectopically
expressed in cells. Instead, we observed a trend towards
reduced caspase-1 activation when NLRP11 was overexpressed
(48). We therefore now investigated whether NLRP11 interferes
with NLRP3 inflammasome activation, conceivably via
sequestration of DDX3X. In line with the report from the
Kanneganti lab (60), DDX3X enhanced nigericin-induced
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pro-caspase-1 cleavage, as measured by the iGLuc reporter assay,
where a luciferase protein gets activated by caspase-1 cleavage in
HEK293T cells (61) (Figure 4A). Expression of increasing
amounts of myc-NLRP11 did not significantly affect NLRP3
inflammasome activation in the absence of exogenous DDX3X
expression but led to a dose-dependent reduction of caspase-1
Frontiers in Immunology | www.frontiersin.org 8
activation back to baseline levels in DDX3X overexpressing cells
(Figure 4A).

To determine whether the LRRs of NLRP11 were involved in
the negative regulation of the NLRP3 inflammasome, we
performed caspase-1 activation assays with our different
NLRP11 truncation mutants. Expression of full-length NLRP11
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or the LRRs led to a significant reduction of nigericin-induced
caspase-1 activation. The same trend was observed in cells
expressing only endogenous DDX3X (Figures 4A, B).
NLRP11, NLRP11-DPYD and NLRP11-LRRs also caused a
significant decrease in baseline caspase-1 activity (in the
absence of nigericin) both in the presence and absence of
exogenous DDX3X (Figure 4B). Taken together, this data
shows that the LRRs of NLRP11 are both necessary and
sufficient to dampen NLRP3 inflammasome activation, which
might be a result of DDX3X recruitment and sequestration via
the LRR domain of NLRP11. To provide further evidence we
performed ASC speck-formation assays. When we co-expressed
HA-ASC together with myc-NLRP3 in our HeLa cell lines, we
found fewer ASC specks in NLRP11-eGFP-expressing cells
compared to eGFP-expressing cells that served as control.
Quantitative analysis revealed a reduction from about 51%
speck-containing cells for HeLa-eGFP cells to about 31% for
HeLa-NLRP11-eGFP cells (Figure 4C). Equal transfection
efficiency of both cell lines was confirmed by blinded
counting of HA-ASC positive cells (Figure 4C). This data
strongly suggests that NLRP11 can inhibit assembly of
NLRP3 inflammasomes.

In Figures 3A, B, we showed that NLRP11 suppresses IKKϵ-
mediated phosphorylation of DDX3X. We next asked whether
this phosphorylation plays a role in the regulation of NLRP3
inflammasome activation by DDX3X. To this end, we performed
iGLuc reporter assays with the S102A mutant of DDX3X lacking
the IKKϵ-phosphorylation site shown to be critical for IRF3
recruitment to DDX3X and IFNb induction. We also tested
another DDX3X mutant in which three further IKKϵ-
phosphorylation sites in the N-terminus of DDX3X (S71A,
S82A, S83A) are mutated in addition to S102 (54). We did not
observe any differences in the capacity of these DDX3X mutants
to enhance caspase-1 activation both in presence and absence of
NLRP11 expression (Figure 4D), suggesting that these
DDX3 phosphorylation events do not regulate its effect on
inflammasome formation.

Finally, to corroborate a negative regulatory role for NLRP11
in inflammasome induced caspase-1 activation, we knocked
down endogenous NLRP11 expression in macrophage-like
differentiated THP1 cells using a specific siRNA (48). We first
primed the differentiated THP1 cells with LPS and then induced
NLRP3 inflammasome activation with nigericin. IL-1b secretion,
a well-established read-out for NLRP3 inflammasome activation,
was measured. Knock-down of NLRP11 resulted in increased
IL-1b secretion (Figure 4E), albeit this effect was not
significant (p=0.1086).

Taken together, these data provide evidence that NLRP11 can
negatively regulate NLRP3 inflammasome activation and suggest
that this is mediated via its interaction with DDX3X.
DISCUSSION

Tight control and coordinated resolution of pro-inflammatory
signaling pathways is an essential part of the immune response.
Frontiers in Immunology | www.frontiersin.org 9
While insufficient activation of innate immunity might provide
pathogens the opportunity to thrive, an overshooting immune
response can result in immunopathology. Many control
mechanisms have therefore evolved that meticulously regulate
the activation level of innate immune responses. We and others
previously showed that NLRP11 can act as a negative regulator of
antiviral type I IFN expression (48, 49) and NF-kB-dependent
pro-inflammatory cytokine responses (47). Here we expand the
mechanistical understanding of NLRP11’s regulation of antiviral
responses by showing that it interacts with and inhibits the
DEAD-box protein DDX3X (Figure 5). DDX3X has previously
been shown to enhance the RIG-I-mediated antiviral response at
multiple levels (50–54). Interestingly, other DEAD-box helicases
have also been shown to form complexes with NLR family
members: In mice, Nlrp9b uses the DEAD-box protein Dhx9
as a sensor for double-stranded RNA to induce inflammasome
activation and pyroptosis following infection with dsRNA
viruses (71). Dhx15 has also been shown to sense viral RNA
and to bind to Nlrp6, mediating its interaction with MAVS (72).
Sensing of viral and bacterial RNA by DHX33 has been shown to
induce an interaction with NLRP3, enhancing inflammasome
formation and caspase-1 activation (73). The latter interaction
was shown to be dependent on the NACHT domain of NLRP3.
Similarly, the DDX3X interaction with NLRP3 was also mediated
by the NACHT domain, resulting in enhanced activation of
caspase-1 (60). In contrast, we demonstrated that the interaction
between NLRP11 and DDX3X is mediated by the LRRs of
NLRP11. This difference in binding domains might explain
why some interactions between DExD/H-box proteins and
NLR proteins result in increased activation of immune
signaling pathways, whereas the interaction we describe here
has a negative regulatory effect. The LRR domain of NLRP11 has
already been shown to inhibit type I IFN induction upon viral
challenge (48, 49). Here we show that the LRR domain is also
sufficient to inhibit hyperphosphorylation of DDX3X induced by
IKKϵ (51, 54). This supports our hypothesis that NLRP11’s
repression of IFN induction is at least partially mediated by
targeting DDX3X.

DDX3X is known to positively regulate the RIG-I pathway by
interacting with multiple downstream signaling molecules. RIG-I
signals via its mitochondrial adaptor protein MAVS to induce
type I IFN transcription (50). Previously, NLRP11 was shown to
be recruited to MAVS via its LRRs to modulate TRAF6 function
and stability (49). However, no direct physical interaction
between NLRP11 and MAVS was shown in this study. This
raises the possibility that DDX3X could be involved in mediating
this NLRP11-MAVS interaction. In our HEK293-NLRP11-eGFP
cell line, we confirmed recruitment of NLRP11 to mitochondria
16 h post infection, as visualized by co-staining with AIF,
however, the cellular morphology was heavily disturbed after
16 h of virus infection. The physiological relevance of the change
in subcellular localization of NLRP11 in this cell type thus
remains elusive.

Surprisingly, NLRP11 knock-down still increased IFNb
induction in DDX3X knock-down cells (Figures 3C, D).
However, our DDX3X knock-down was only partial as
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DDX3X is required for cell viability, and therefore residual
DDX3X protein levels might have affected the outcome of this
experiment. It is also possible, that the NLRP11-DDX3X
interaction more strongly perturbs the function of IKKϵ in ISG
induction (74, 75) than IFNb induction which is more TBK1-
mediated (23, 76). This would explain why NLRP11 interferes
with antiviral signaling at multiple steps downstream of RIG-I,
enabling it to negatively regulate expression of both IFN (47–49)
and ISGs that are directly regulated by IKKϵ.

In addition to this role in regulating antiviral gene expression,
we provide evidence that NLRP11 can act as a negative regulator
of the NLRP3 inflammasome. We confirmed that DDX3X is a
positive regulator of the NLRP3 inflammasome, as reported
recently (60) and show that expression of NLRP11 counteracts
this effect of DDX3X. We also observed a trend towards higher
IL-1b secretion upon NLRP11 knock-down in macrophage-like
differentiated THP1 cells, but the rather low NLRP11 expression
levels in THP1 cells (48) might limit the effect of siRNA-
mediated knock-down.

The PYD domain of NLRP11 was not required for blocking
the DDX3X effect on the NLRP3 inflammasome, instead
expression of the NLRP11 LRRs was sufficient. Samir et al.
proposed that recruitment of DDX3X by NLRP3 is critical for
functional inflammasome formation (60). This is in line with our
data, which suggests that NLRP11 binding to DDX3X via its
LRRs reduces caspase-1 activation. It would be interesting
whether this effect results from DDX3X sequestration by
NLRP11 or competition between NLRP3 and NLRP11 for
binding sites on DDX3X. When overexpressing NLRP11-eGFP
in HeLa cells, we did not observe an obvious change in the
subcellular localization of endogenous DDX3X, arguing against
the sequestration mechanism. Another possibility is that
Frontiers in Immunology | www.frontiersin.org 10
NLRP11 inhibits posttranslational modifications of DDX3X
that are important for its involvement in the NLRP3
inflammasome. This hypothesis is based on our finding that
the NLRP11 LRRs inhibited the NLRP3 inflammasome and
prevented IKKϵ-mediated hyperphosphorylation of DDX3X.
Although we were unable to implicate the phosphorylation
sites of DDX3X that are involved in IRF3 activation (54) in its
regulatory effect on the NLRP3 inflammasome, it is likely that
other DDX3X post-translational modifications could also be
affected by NLRP11.

In summary, we show that NLRP11 is an NLR family member
that negatively regulates NLRP3 inflammasome activity and
interferes with the induction of antiviral type I IFN. For both
regulatory effects, we identified a novel role for DDX3X, which
we discovered as a novel binding partner of NLRP11, putting a
further spotlight on this interesting DEAD-box protein.
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