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Abstract

1. Intertidal macroalgal communities are economically and ecologically important

and, with a likely increase in anthropogenic pressures, there is need to evaluate

and monitor these diverse habitats. Efforts to conserve and sustainably manage

these habitats must be underpinned by accurate, cost-effective, and efficient data

collection methods. The high spatial and temporal resolution of unmanned aerial

vehicles (UAVs), compared with satellites and aircraft, combined with the devel-

opment of lightweight sensors, provides researchers with a valuable set of tools

to research intertidal macroalgal communities.

2. The ability of multispectral sensors, mounted on a satellite, an aircraft, and a UAV,

to identify and accurately map the intertidal brown fucoid Ascophyllum nodosum

(Fucales, Ochrophyta) at a site with a low species diversity of macroalgae were

compared.

3. Visual analysis confirmed that the spatial resolution of satellite imagery was too

coarse to map intertidal macroalgae as it could not capture the fine spatial pat-

terns of the macroalgal community. High-resolution RGB (colour) imagery, taken

during the aircraft and UAV surveys, was used to collect training and reference

data through the visual identification and digital delineation of species. Classes

were determined based on the level of taxonomic detail that could be observed,

with higher levels of taxonomic detail observed in the UAV imagery over the air-

craft imagery. Data from both were used to train a maximum-likelihood classifier

(MLC).

4. The UAV imagery was able to more accurately classify a distinct A. nodosum class,

along with other macroalgal and substratum classes (overall accuracy, OA, 92%),

than the aerial imagery, which could only identify a lower taxonomic resolution of

mixed A. nodosum and fucoid class, achieving a lower OA (78.9%). This study has

demonstrated that in a coastal site with low macroalgal species diversity, and

despite the spectral similarity of macroalgal species, UAV-mounted multispectral

sensors proved the most accurate for focused assessments of individual canopy-

forming species.
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1 | INTRODUCTION

Temperate rocky shorelines are typically dominated by dense commu-

nities of macroalgal (seaweed) primary producers, providing habitat

for a diverse range of other biota (Bruno & Bertness, 2000; Davies,

Johnson, & Maggs, 2007; Vadas, Wright, & Beal, 2004). With increas-

ing anthropogenic pressures on intertidal communities (Mineur

et al., 2015), an understanding of their distribution and the develop-

ment of baseline data collection methods is important for their effec-

tive conservation and management (Dekker, Byrne, Brando, &

Anstee, 2003). Traditional field surveys, although collecting highly

detailed and accurate information, are time consuming and restricted

in scale (Hennig, Cogan, & Bartsch, 2007; Kerr & Ostrovsky, 2003;

Oppelt, Schulze, Bartsch, Doernhoefer, & Eisenhardt, 2012). On the

other hand, remote sensing can capture comparatively larger areas,

often allowing for standardized, repeat surveys of the same site

(Casal, Sánchez-Carnero, Domínguez-Gómez, Kutser, & Freire, 2012),

and potentially offering alternative survey methodologies for intertidal

data collection.

Traditionally, aircraft have been the dominant remote-sensing

platform for macroalgal mapping studies (Bajjouk, Guillaumont, &

Populus, 1996; Casal et al., 2012; Dekker et al., 2003; Garono,

Simenstad, Robinson, & Ripley, 2004; Oppelt et al., 2012; Stekoll,

Deysher, & Hess, 2006), primarily owing to their greater operational

flexibility and spatial resolution when compared with satellites

(Brodie, Ash, Tittley, & Yesson, 2018). Satellite-based technologies

have also been useful for assessing the extent of broad-scale canopy-

forming species (Casal, Sánchez-Carnero, Sánchez-Rodríguez, &

Freire, 2011; Cavanaugh, Siegel, Kinlan, & Reed, 2010), but for inter-

tidal mapping, the acquisition of satellite images that coincide with

suitable tidal and atmospheric conditions (e.g. cloud cover) is challeng-

ing (Bell, Cavanaugh, & Siegel, 2015). For temporal monitoring it is

important to consider the impact of the variation in tide state during

image acquisition. Bell, Allen, Cavanaugh, and Siegel (2020) observed

differences in the area of visible kelp canopy at different tidal states,

which if not accounted for could lead to erroneous estimates of kelp

canopy biomass. The relatively coarse spatial resolution of aircraft has

made identification to species level difficult (Cruzan et al., 2016;

Oppelt et al., 2012), although success has been achieved with discrim-

inating between spectrally distinct red, green, and brown macroalgal

groups (Casal et al., 2012; Hennig et al., 2007) and when mapping

homogenous cover species (Dierssen, Chlus, & Russell, 2015; Pe'eri

et al., 2008).

The recent and rapid proliferation of affordable unmanned aerial

vehicles (UAVs) (Colefax, Butcher, & Kelaher, 2018) has created a

promising remote-sensing alternative to aircraft and satellites. UAVs

can capture the highest spatial resolution imagery and have the

greatest levels of operational flexibility, making them well suited to

operating in dynamic environments (Jensen, Hardy, McKee, &

Chen, 2011), including the intertidal zone. They are currently the most

cost-effective solution over small areas (Matese et al., 2015), with

continued technological development and improvements in battery

life and payload capacity (Colefax et al., 2018) likely to increase their

application for larger areas: for example, some fixed-wing models

(Quantum Tron F90+, https://www.quantum-systems.com/project/

tron-f90/) can cover up to 7,500 ha (at a flight altitude of 1000 m).

UAVs have been successfully used in a wide range of environments

including riparian wetlands (Jensen et al., 2011), intertidal seagrass

meadows (Duffy, Pratt, Anderson, Land, & Shutler, 2017), intertidal

reefs (Murfitt et al., 2017), coastal habitats (Ventura, Bonifazi, Gravina,

Belluscio, & Ardizzone, 2018) and wetlands (Doughty &

Cavanaugh, 2019). There are now a range of lightweight sensors that

can be UAV-mounted (Colomina & Molina, 2014), further increasing

their potential applications.

Intertidal macroalgal communities can be spatially and spectrally

complex, with species occurring in mixtures over fine scales, requiring

high spatial and spectral resolutions to accurately identify the species

present. Although hyperspectral sensors have both high spatial and

spectral resolutions, they are currently prohibitively expensive

(Manfreda et al., 2018), which can act as a barrier to research groups

and organizations. It is therefore important to develop remote-sensing

methodologies that cover different technologies and budgets. Multi-

spectral sensors typically contain three or more spectral bands (Burns,

Berns, & York, 1996), with many current models ranging from five to

12 (Ad�ao et al., 2017). This lower spectral resolution makes them less

suited to spectrally complex environments, but they are significantly

cheaper and less complex to operate, process and analyse than hyper-

spectral sensors (Marshall & Thenkabail, 2015). To date, for UAVs,

multispectral sensors have primarily been used for precision agricul-

ture, where different band combinations allow for the identification of

weeds (Barrero & Perdomo, 2018), the measurement of grass crop

quality (Askari, McCarthy, Magee, & Murphy, 2019), and the monitor-

ing of vegetation health, in order to improve yields and harvest effi-

ciency (Candiago, Remondino, De Giglio, Dubbini, & Gattelli, 2015;

Kazantsev et al., 2018). Decreasing costs are now seeing them applied

to broader environmental questions, with recent uses including the

mapping of malaria vector larval habitat (Carrasco-Escobar

et al., 2019) and for use in forestry management (Dash, Pearse, &

Watt, 2018). Two very recent studies successfully applied UAV-

mounted multispectral remote sensing to macroalgal habitats. Taddia,

Russo, Lovo, and Pellegrinelli (2019) characterized the presence of

submerged green macroalgae, but did not identify the species, and

Tait et al. (2019) managed to discriminate between spectrally distinct

intertidal species.

Here, the spectral discriminatory ability of multispectral sensors,

mounted on a satellite, an airplane, and a UAV, to accurately map the

intertidal fucoid Ascophyllum nodosum (Ochropyta, Phaeophyceae), a

commercially and ecologically important brown macroalgal species

common on moderately exposed to sheltered rocky coasts (Stengel &

Dring, 1997), was evaluated. An accurate, affordable methodology

was developed to support resource management decision making,

addressing the following specific challenges:

• How accurately can multispectral sensors map the distribution of

A. nodosum within a spatially and spectrally complex intertidal

environment?
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• Which platform(s) achieve the most accurate mapping of

A. nodosum?

• Can high-resolution RGB imagery be used for the collection of

training and validation spectral information?

We provide a novel methodology, presenting details of data collec-

tion, processing, and analysis workflows used, and compare the ability

of the three remote-sensing platforms to accurately quantify

A. nodosum distribution.

2 | METHODS

2.1 | Study site

This study was carried out near Béal an Daingin (53�19019.700N,

9�37016.800W), which lies within the inner reaches of Kilkieran Bay in

County Galway, Ireland (Figure 1). The bay itself is characterized by a

range of habitats, including, mudflats, coastal lagoons, shallow inlets

and bays, reefs, saltmarshes and machair (National Parks and Wildlife

Service (NPWS), 2014). The primary underlying bedrock is granite

(Könnecker & Keegan, 1983) and the shoreline is dominated by rocky

substrate, giving way to muddy sediment in shallow waters (Sides,

Picton, Emblow, Morrow, & Costello, 1994). The site is characterized

by a relatively narrow intertidal zone, which drops abruptly into

muddy sediments, and abuts onto steep granite cliffs, and was chosen

for the high abundance of A. nodosum and the relatively low species

diversity of the canopy-forming macroalgae. Vertical zonation is, in

part, controlled by the gentle sloping nature of the intertidal zone,

Pelvetia canaliculata and Fucus spiralis dominate the upper littoral,

followed by pure or mixed beds of A. nodosum and Fucus vesiculosus

and, finally, Fucus serratus and patchy Himanthalia elongata (all

Phaeophyceae). There are areas dominated by boulders in the south

of the site that support dense, homogeneous patches of A. nodosum.

Access to the site was provided by a narrow track.

2.2 | Multispectral acquisition

We sought to collect remote-sensing data from the same time of year

(June–July), endeavouring to ensure that the three datasets covered

the same site (Figure 2). The datasets were collected over a 3-year

period, from 2016 to 2018.

2.2.1 | Satellite imagery

The Sentinel-2 satellite mission comprises two polar-orbiting satel-

lites, each mounted with a high-resolution multispectral instrument

(MSI). Each MSI can capture 13 bands over a wavelength range of

440–2,200 nm. Four bands had a spatial resolution of 10 m, six had a

spatial resolution of 20 m, and three had a spatial resolution of 60 m

(Clevers & Gitelson, 2013). Bandwidths range from 15 to 180 nm and

are listed in Table S1. A cloud-free Sentinel-2 multispectral image

taken on June 16, 2018 at 11:43 GMT was acquired over the

Kilkieran Bay area (Figure 2). The timestamp shows that the image

was taken approximately 1 hr before low tide (0.7 m), which was at

13:49 GMT, indicating a tide height of approximately 1 m.

2.2.2 | Aerial imagery

An aerial survey was conducted by AirSurvey in July 2016 during clear

weather conditions to coincide with low tide at 12:00 GMT (0.8 m),

and the survey was planned so that the plane was over Kilkieran Bay

approximately 30 min before this time.

F IGURE 1 Location of the study site
at Béal an Daingin in relation to Kilkieran
Bay and Ireland. The dotted blue line
marks the flight path of the aerial survey.
Coordinates are in IrishTransverse
Mercator (ITM)
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A Cessna-172 (Cessna, Wichita, KS) mounted with an AIRINOV

AgroSensor (Parrot SA, Paris, France) was used to collect multispectral

data for the intertidal zone in Kilkieran Bay. The sensor, operating as a

global shutter, contained four bands: green (550 nm), red (660 nm),

red-edge (735 nm), and near-infrared (NIR, 790 nm). The green, red,

and NIR bands have a bandwidth of 20 nm and the red-edge is

narrower, at 10 nm. There was no integrated light sensor (ILS), so cali-

bration targets were recorded before take-off. Atmospheric condi-

tions were likely to differ over the study area compared with those at

the airfield (approximately 135 km away), however, meaning that the

radiometric calibration may not be accurate for localized atmospheric

conditions. The flight lasted approximately 90 min (not including tran-

sit) at an average altitude of 600 m and, providing a ground sampling

distance (GSD) of 60 cm/pixel, was tasked with covering as much of

the intertidal zone in Kilkieran Bay as possible. A Nikon D800E

(Nikon, Tokyo, Japan) camera was mounted on the plane to collect

high-resolution RGB imagery (6 cm/pixel). No GPS data were collected

for the multispectral imagery and only photo-centre coordinates were

available for the RGB (which were not stored in the image tile

metadata). The scale of the aircraft survey meant that it was not prac-

tical to deploy ground control points (GCPs).

2.2.3 | UAV imagery

A UAV survey was conducted in July 2017 by GeoAeroSpace.

Weather conditions were moderately calm and there was significant

passing cloud cover. The survey was planned to coincide with the low

tide at 12:45 GMT (1 m).

A DJI Inspire V1 (DJI, Shenzhen, China) was used to conduct a

multispectral and RGB survey and had a maximum flight time of

approximately 18 min, depending on wind speed. RGB imagery was

captured using the inbuilt 12 MP X3 camera and a Parrot Sequoia

(Parrot SA, Paris, France) sensor was used to collect multispectral

data. This four-band sensor records in the green (530 nm), red

(660 nm), red-edge (735 nm) and NIR (790 nm) bands, with a 20-nm

bandwidth. The Parrot Sequoia operated a global shutter for the mul-

tispectral bands allowing the entire scene to be captured simulta-

neously. There was a separate four-band integrated light sensor (ILS)

with an inbuilt GPS sensor. AIRINOV calibration targets were used to

calibrate the sensor pre-flight. MAP PILOT 2.7.0 (Drones Made Easy, San

Diego, CA) was used to plan the flight. The sensor was not connected

to the controller and was set to take an image every 2 s based on an

average flight speed of 3 m/s. The UAV flew at an altitude of 50 m,

for approximately 12 min, achieving a GSD of 2.2 cm/pixel (RGB) and

approximately 5 cm/pixel (multispectral) (Figure 2), and covered a

total area of 2.09 ha. Image overlap was set at 70% for RGB and 65%

for multispectral (side and frontal) data.

Nine GCPs were deployed to accurately georeference the data.

Each GCP consisted of a 50 cm × 50 cm black board with a white cross

and a centre point easily visible from the air, the coordinates of the

centre point were recorded using a Trimble R8 post-processing

kinematic (PPK) global navigation satellite system (GNSS) unit (Trimble,

Sunnyvale, CA). GCPs were spaced evenly throughout the site, with

one in each corner of the survey area, and the others were spaced to

reflect topographical (i.e. vertical) variation. GCPs were post-processed

using TRIMBLE BUSINESS CENTRE 5.00 (Trimble, Sunnyvale, CA).

2.3 | Image processing

2.3.1 | Aerial image processing

Aerial RGB imagery was processed using IMAGE COMPOSITE EDITOR (ICE)

(Microsoft, Redmond, WA) and ArcGIS 10.3.1 (ESRI, Redlands, CA).

The lack of associated GPS data required a more ‘manual’ approach to

data processing. Suitable RGB tiles were mosaicked together in ICE

and then manually georeferenced to an ESRI World Imagery basemap

in ArcGIS before being re-projected into the IrishTransverse Mercator

(ITM) projection. Key identifying features of fixed position, such as

wall corners and distinctive rocks, were used to improve accuracy. A

single multispectral tile provided sufficient coverage of Béal an

F IGURE 2 Comparison of the multispectral ground sampling
distance (GSD) from each of the three platforms: (a) unmanned aerial
vehicle (UAV), 5 cm/pixel; (b) aircraft, 60 cm/pixel; and (c) satellite,
10 m/pixel. Layers were clipped to the extent of the UAV imagery
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Daingin. After initially being cropped to remove noise, bands were

aligned using the AUTO-GEOREFERENCE tool (ArcGIS Pro) and then stacked

using the COMPOSITE BANDS tool. The final composite image was then

manually georeferenced to the RGB extent and projection.

2.3.2 | UAV image processing

The UAV RGB imagery and multispectral data were processed using

PIX4D MAPPER (Pix4D, Lausanne, Switzerland), GCPs were imported, pri-

marily to avoid layer co-registration errors (Bentoutou, Taleb,

Kpalma, & Ronsin, 2005), and the calibration targets were imported to

calculate reflectance through the empirical line approach (Smith &

Milton, 1999). To focus solely on intertidal spectral signatures, the

land and water were masked out. The land mask was created manually

to remove any terrestrial features and the water mask was created

using the normalized difference water index (NDWI), which enhances

water features (Xu, 2006) and, using the appropriate threshold

(> −0.2), removed most of the water. These were then used to crop

the aerial multispectral imagery to the same extent. NDWI is

expressed as follows (McFeeters, 1996):

NDWI=
Green−NIR
Green+NIR

:

The satellite imagery was already georeferenced and as a result of

the coarse pixel size no additional processing steps were undertaken

for the satellite imagery aside from cropping it to the extent of the

aerial and UAV layers.

2.4 | Multispectral classification

2.4.1 | Image-derived training spectra

For the aerial and UAV data, image-derived endmember training spec-

tra were identified using the RGB imagery, as a guiding dataset, with

ENVI 5.4 (Harris Geospatial Solutions, Boulder, CO). The usefulness of

this approach has been noted by van Iersel, Straatsma, Middelkoop,

and Addink (2018) and involves the visual identification of target fea-

tures (i.e. macroalgal species), using RGB imagery, and then the crea-

tion of training polygons around them prior to their spectral

information being extracted from the aligned multispectral imagery.

Training polygons were created, using the REGION OF INTEREST (ROI) tool,

for areas where individual classes were easily observable, and this was

easier for the UAV imagery compared with the aerial imagery. The

number of training areas per class was dependent upon the observ-

able area of that class, and the area of each polygon depended on the

extent of homogenous class cover. Larger classes with more

TABLE 1 Species and features present at sites and the class codes used to represent each for the unmanned aerial vehicle (UAV) and aerial
imagery. Ascophyllum nodosum was identified as its own class in the UAV imagery (‘Asco’), but only a class representing a fucoid mix dominated by
A. nodosum (‘Asco_Fucus spp.’) was identified in the aerial imagery along with a mixed fucoid class (‘Fucus spp.’), in which A. nodosum was not
present. Himanthalia elongata was present but not assigned a class owing to low coverage and Ulva spp. (‘Green’) were not classified in the aerial
imagery

Species UAV imagery code Aerial imagery code Description

Ascophyllum nodosum ‘Asco’ ‘Asco_Fucus spp.’ The ‘Asco’ class is a pure A. nodosum class and

‘Asco_Fucus spp.’ represents a mixed fucoid class

dominated by A. nodosum

Fucus vesiculosus ‘Fucus spp.’ ‘Fucus spp./Asco_Fucus spp.’ ‘Fucus spp.’ is a mixed fucoid class and

‘Asco_Fucus spp.’ represents a mixed fucoid class

dominated by A. nodosum

Fucus spiralis ‘Fucus spp.’ ‘Fucus spp./Asco_Fucus spp.’ ‘Fucus spp.’ is a mixed fucoid class and

‘Asco_Fucus spp.’ represents a mixed fucoid class

dominated by A. nodosum

Fucus serratus ‘Fucus spp.’ ‘Fucus spp./Asco_Fucus spp.’ ‘Fucus spp.’ is a mixed fucoid class and

‘Asco_Fucus spp.’ represents a mixed fucoid class

dominated by A. nodosum

Pelvetia canaliculata ‘Fucus spp.’ ‘Fucus spp./Asco_Fucus spp.’ ‘Fucus spp.’ is a mixed fucoid class and

‘Asco_Fucus spp.’ represents a mixed fucoid class

dominated by A. nodosum

Ulva spp. ‘Green’ – ‘Green’ is a class comprised of unidentified green

macroalgal species

Himanthalia elongata – – –

Decaying macroalgae ‘Wrack’ ‘Wrack’ ‘Wrack’ is a mixture of unidentified decaying

macroalgal species in varying stages of

decomposition

Substratum ‘Substratum’ ‘Substratum’ ‘Substratum’ represents a mixture of non-vegetated

surfaces, such as rock and sediment
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homogenous cover required larger, more numerous training polygons.

Species present at the site and the class codes used to represent them

are highlighted in Table 1. Ascophyllum nodosum was easily identifiable

in the UAV imagery owing to its distinctive bright coloration and mor-

phology (Figure 3). Where A. nodosum was a distinct class for the UAV

data, for the aerial data it was not possible to distinguish homogenous

A. nodosum stands from those mixed with other fucoids, so a com-

bined class was created (Figure 4). For both UAV-derived and aerial

datasets, F. vesiculosus, F. serratus, and F. spiralis were combined into a

single category (‘Fucus spp.’). The shrubby nature of the three species

leads to a mottled, darker appearance and it was difficult to confi-

dently differentiate them (Figures 3 and 4). Pelvetia canaliculata was

also incorporated into this class as it occurred infrequently in small

patches, making it very difficult to observe in the RGB imagery, and

its inclusion as a separate class could have increased classification

error as a result of the spectral similarity between brown macroalgal

species (Kotta, Remm, Vahtmäe, Kutser, & Orav-Kotta, 2014). Macro-

algae wrack (decaying seaweed) was observable in both sets of

imagery, but the coarse resolution of the aerial imagery made it diffi-

cult to create an accurate training area and, when its inclusion was

tested, wrack was extensively overclassified (Figure S1). Small patches

of unidentified green macroalgal (‘Green’) species were present in

both datasets yet, again, the coarse resolution of the aerial imagery

made it difficult to accurately create training polygons. ‘Green’ was

overclassified when included in the initial UAV imagery classification

workflow (Figure S2), and it was decided to exclude it from the final

output. Red macroalgae, although present, were also not included as

they were almost exclusively situated subcanopy and remote sensing

would not have been able to accurately determine their true extent.

The spectral properties of rock, mixed sediment, and sand are rela-

tively similar to one another, and sufficiently distinct from macroalgae,

that they are combined into their own class.

The spectral separability of endmember classes was determined

prior to running a supervised classification algorithm. The mathemati-

cal separability of the classes is performed to assess whether suffi-

cient and representative training data have been selected (Richards &

F IGURE 3 Classification classes (highlighted

in red) identifiable using high-resolution RGB
imagery obtained with an unmanned aerial
vehicle (UAV): (a) Ascophyllum nodosum;
(b) Fucus spp.; (c) decaying macroalgae;
(d) substratum; and (e) unidentified green species.
The distinctive morphological properties of each
species were used for the identification
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Jia, 2006). Training data were checked for class separability using the

Jeffries–Matusita distance (Jacobsen, Nielsen, Ejrnaes, &

Groom, 1999). The values of the resulting output between each pair

of classes range from 0 to 2, with 2 indicating perfect separability

between them (Richards & Jia, 2006). Good class separability would

indicate that sufficient training areas had been selected, whereas

lower values would indicate either the need for more training areas or

that two classes were inherently similar in their spectral properties.

This could then indicate that the two classes could potentially be com-

bined (Petropoulos, Vadrevu, Xanthopoulos, Karantounias, &

Scholze, 2010). Despite excluding ‘Green’ from the final classification,

it was included in the spectral separability workflow (UAV imagery) in

order to better understand its poor classification performance.

2.4.2 | Supervised classification workflow

For both UAV and aerial multispectral datasets, the supervised classi-

fication method of maximum-likelihood classification (MLC) was used

in ENVI 5.4. MLC is a popular classifier (Paola & Schowengerdt, 1995)

calculating the probability that an individual pixel belongs to a specific

class and is based on an estimated probability density function

derived from the defined reference classes (Foody, Campbell, Trodd, &

Wood, 1992). The MLC classifier assumes a Gaussian distribution for

each of the inputted training classes (Jia & Richards, 1994) and can be

expressed by the following equation:

gi xð Þ= lnp ωið Þ– 1
2
ln Σi

�
�

�
�–

1
2

x−mið ÞtΣ–1
i x–mið Þ

Where i is the class, x represents n-dimensional data, p(ωi) is the prob-

ability that class ωi occurs in the image, and is assumed to be the same

for all classes, jPi| is the determinant of the covariance matrix of the

data in class ωi, Σ–1
i is the inverse matrix, and mi is the mean vector.

Maximum-likelihood classification (MLC) was used to classify the

training area spectra. No thresholds were selected so that all pixels

would be classified, and the spectral separability results were used to

determine whether sufficient training areas had been selected so as to

be representative of the features present at the site (Richards &

Jia, 2006).

2.4.3 | Accuracy assessment

Ground-truth, or reference, data were derived from the high-

resolution RGB imagery using the same rationale as for the training

data collection. The accuracy of this approach was highlighted by

Lechner, Fletcher, Johansen, and Erskine (2012) and it was also found

to be more reliable and accurate than GPS-based validation methods

(Laliberte & Rango, 2011). Reference data collected from in-situ field

observations are considered the most accurate, but this can be time

consuming, meaning that data derived from imagery are more com-

mon (McDermid, Franklin, & LeDrew, 2005; McRoberts et al., 2018).

F IGURE 4 Classification classes identifiable
using aerial RGB imagery (highlighted in red):
(a) mixed Ascophyllum nodosum and Fucus spp.;
(b) Fucus spp.; (c) decaying macroalgae; and
(d) substratum. Variations in canopy pattern and
colour were used for the identification
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Polygons were selected for each of the four UAV and three aerial clas-

ses, and this was carried out independently of those used to create

the training areas in ENVI 5.4. Polygons were created so that they cov-

ered as much of each class as possible and only in areas where homo-

geneous class coverage could be confidently identified. The accuracy

assessment tool was used to create the confusion matrix and derive

quantitative measures of accuracy (kappa, user/producer accuracy

(UA/PA), and errors of commission/omission).

3 | RESULTS

3.1 | UAV classification results

Classification results for the UAV imagery showed the mid-intertidal

zone to be dominated by dense beds of A. nodosum, with narrow

bands of mixed fucoid assemblages dominating in the upper

(F. vesiculosus, F. spiralis, and P. canaliculata) and lower (F. vesiculosus

and F. serratus) zones. Decaying macroalgae was present in patches in

the extreme upper intertidal zone, and this was most notable in the

north-east corner of the site (Figure 5).

Spectral separability results show good separation between all

classes with all pairs, apart from ‘Asco’ and ‘Fucus spp.’ (1.7) and

‘Green’ and Fucus spp.’ (1.86), having values greater than 1.9, indicat-

ing an almost perfect class separation (Richards & Jia, 2006). The

slightly lower value for ‘Asco’ and ‘Fucus spp.’ separability highlights

their spectral similarities. MLC resulted in an overall classification

accuracy of 92% and a kappa coefficient of 0.8733. All four classes

showed high user/producer accuracies although, predictably, there is

a small amount of misclassification between ‘Fucus spp.’ and ‘Asco’,

and also of ‘Wrack’ as ‘Fucus spp.’ (Tables 2 and 3). The mis-

classification of ‘Asco’ as ‘Fucus spp.’ is spread throughout the site in

small patches, whereas the opposite occurs almost entirely in one area

(Figure 6). A small area of grass not removed by the land mask was

F IGURE 5 Maximum-likelihood classification
(MLC) result from the multispectral survey carried
out by unmanned aerial vehicle (UAV). Three

macroalgal cover classes are displayed over Bing
satellite imagery. ‘Substratum’ was not included.
Class codes represent the following species:
‘Asco’, Ascophyllum nodosum; 'Fucus spp.', mixed
fucoids; 'Wrack', decaying macroalgae.
Coordinates are in IrishTransverse Mercator
(ITM)
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classified as ‘Fucus spp.’ in the northern section of the site. ‘Asco’ cov-

ered a total area of approximately 4,127 m2, out of a total classified

area of approximately 12,400 m2.

3.2 | Aerial classification results

Aerial multispectral classification results revealed a dense covering of

mixed fucoid assemblage (A. nodosum, F. serratus, and F. vesiculosus ),

dominated by A. nodosum, in the mid-intertidal zone. Mixed fucoids

dominate the upper (F. spiralis, F. vesiculosus, and P. canaliculata) and

mid-to-lower (F. serratus and F. vesiculosus, respectively) intertidal

zones (Figure 7).

There was poor spectral separability between ‘Asco_Fucus spp.’

and ‘Fucus spp.’ (1.11), but both classes achieved good separation

from ‘Substratum’ (>1.9). These two classes were retained and not

combined as their poor spectral separability reflects their inherent

spectral similarity. For the aerial imagery there was an overall classi-

fication accuracy of 78.9% and a kappa coefficient of 0.6373. ‘Sub-

stratum’ had a high user/producer accuracy, but there was

significant misclassification of ‘Fucus spp.’ as ‘Asco_Fucus spp.’,

resulting in a low producer/user accuracy for ‘Fucus spp.’ and a low

user accuracy for ‘Asco_Fucus spp.’ (Tables 4 and 5). This mis-

classification was spread throughout the entire zone dominated by

‘Fucus spp.’ (Figure 8). ‘Asco_Fucus spp.’ covered a total area of

approximately 5,342 m2 out of a total classified area of approxi-

mately 12,000 m2.

3.3 | Satellite imagery

The coarse spatial resolution of the Sentinel-2 satellite imagery

meant that it was not possible to identify any intertidal macroalgal

species to use as training data for a supervised classification

workflow. It was, however, possible to visually identify and sepa-

rate the macroalgae-dominated intertidal zone, covering approxi-

mately 8,000 m2, from terrestrial vegetation and rock/manmade

features.

4 | DISCUSSION

The increasing affordability of remote sensing technologies (Colefax

et al., 2018) will support their application for a diverse range of eco-

logical monitoring initiatives. The high spatial and spectral resolutions

required for the accurate classification of intertidal macroalgal com-

munities (Dekker et al., 2003) can often be expensive

(i.e. hyperspectral imaging), acting as a barrier to organizations and

research groups. Here, the effectiveness of relatively low-cost multi-

spectral sensors and their platform-dependent spatial resolutions for

mapping the distribution of A. nodosum was explored. Of the three

platforms used, UAV-mounted multispectral remote sensing provided

the most accurate results.

The UAV imagery accurately identified and classified a homoge-

nous A. nodosum class (‘Asco’), distinguishing it from surrounding

mixed fucoid assemblages and from base substratum. The high spatial

TABLE 2 Unmanned aerial vehicle (UAV) multispectral maximum-likelihood classification (MLC) confusion matrix, calculated using ENVI 5.4,
by comparing pixels of known class locations with those predicted by the classification workflow, for each of the four cover classes. Results are
recorded as percentage of pixels assigned, correctly or incorrectly, to each class

Class ‘Substratum’ ‘Wrack’ ‘Fucus spp.’ ‘Asco’ Total

‘Unclassified’ 6.54 0.65 0.03 0.00 1.16

‘Substratum’ 91.96 2.25 0.82 0.01 16.22

‘Wrack’ 0.08 91.48 0.05 0.00 2.48

‘Fucus spp.’ 1.33 5.34 93.63 8.83 31.52

‘Asco’ 0.08 0.00 5.47 91.16 48.63

Total 100 100 100 100 100

TABLE 3 Unmanned aerial vehicle (UAV) multispectral maximum-likelihood classifier (MLC) user accuracy (UA, probability of correct class
assignment, calculated by dividing the number of correctly classified pixels by the total number of pixels in a class) and producer accuracy (PA,
correctly classified reference pixels, calculated by dividing the number of correctly classified pixels by the total number of pixels that should be in
a class) accuracies for each of the four cover classes, computed using ENVI 5.4

Class PA (%) UA (%) PA (pixels) UA (pixels)

‘Substratum’ 91.96 98.12 202,760/220,482 202,760/206,655

‘Wrack’ 91.48 98.86 31,193/34,100 31,193/31,552

‘Fucus spp.’ 93.63 84.35 338,811/361,862 338,811/401,660

‘Asco’ 91.16 96.78 599,732/657,877 599,732/619,692
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resolution of concurrently collected RGB data allowed for the visual

identification of A. nodosum, which was characterized by its distinctive

morphology and coloration. Despite their inherent spectral similarities

(Kotta et al., 2014) and the low spectral resolution of the sensor, clear

separation between the macroalgal classes could be achieved.

Coarser-resolution aerial imagery was able to classify a lower taxo-

nomic resolution of mixed A. nodosum and Fucus spp. (‘Asco_Fucus

spp.’). By contrast, freely available Sentinel-2 imagery was found to be

too coarse for mapping intertidal macroalgal communities, as it was

not possible to observe the fine-scale assemblages, but it was possible

to identify the macroalgal-dominated intertidal zone. Higher spatial

resolutions (UAV RGB = 2.2 cm/pixel; aerial RGB = 6 cm/pixel)

enhanced not only our ability to visually identify species for training

and reference data (Meddens, Hicke, & Vierling, 2011), but also the

ability of MLC to assign pixels to classes as because of their smaller

size there was less within-pixel spectral mixing (Doughty &

Cavanaugh, 2019). In areas with a relatively low diversity of intertidal

macroalgal species but with dense, homogenous stands, our results

demonstrate that multispectral sensors provided an effective tool for

species mapping and a lower cost alternative to hyperspectral

sensors.

4.1 | UAV multispectral imagery

Ascophyllum nodosum (‘Asco’) was accurately identified using the UAV

platform (PA = 91%, UA = 96.8%), and the spectral differences

F IGURE 6 (a) Instances of
misclassification between ‘Asco’ and
‘Fucus spp.’ displayed above the
respective ground-truth (GT) polygons for
each class. Insets focus on notable
misclassified areas where, in green, ‘Asco’
has been misclassified as ‘Fucus spp.’ (b),
and where, in red, the opposite occurs (c).
Coordinates are in IrishTransverse

Mercator (ITM)
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between A. nodosum and the other classes became more apparent at

the canopy (Meddens et al., 2011), over individual frond scales (Kotta

et al., 2014). The spectral similarity between ‘Asco’ and ‘Fucus spp.’

Probably explains the small amount of misclassification between

them. This was most evident towards the southern section of the site

where a large area of ‘Fucus spp.’ has been misclassified as ‘Asco’.

Visually this patch appeared significantly yellower and brighter than

other ‘Fucus spp.’ Areas, which may have led to confusion with the

bright ‘Asco’ class. The remainder of the misclassification was spread

throughout the site, highlighting some of the challenges when collect-

ing training and reference data in spatially heterogeneous environ-

ments whereby polygons cannot necessarily account for small patches

F IGURE 7 Maximum-likelihood classification
(MLC) result from the multispectral aerial survey.
Two macroalgal cover classes are displayed over
Bing satellite imagery. ‘Substratum’ was not
included. Class codes represent the following
species: fucoid mix dominated by Ascophyllum
nodosum (abbreviated here to AN_FS and referred
to in the text as ‘Asco_Fucus spp.’) and mixed
fucoids ('Fucus spp.'). Coordinates are in Irish

Transverse Mercator (ITM)

TABLE 4 Aerial multispectral maximum-likelihood classification (MLC) confusion matrix, calculated, using ENVI 5.4, by comparing pixels of
known class locations with those predicted by the classification workflow, for each of the three cover classes. Results are recorded as the
percentage of pixels assigned, correctly or incorrectly, to each class

Class ‘Substratum’ ‘Fucus spp.’ ‘Asco_Fucus spp.’ Total

‘Unclassified’ 6.13 0.00 0.00 1.10

‘Substratum’ 89.10 5.79 0.97 18.20

‘Fucus spp.’ 4.02 46.53 5.82 17.31

‘Asco_Fucus spp.’ 0.74 47.68 93.22 63.38

Total 100 100 100 100
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of different classes within their boundaries (Foody, 2002). Spatial

complexity could not be fully accounted for in the collection of train-

ing and reference data and this includes intraspecific variation, for

example many of the ‘Asco’ pixels misclassified as ‘Fucus spp.’

appeared to be in shaded areas behind, or between, boulders, which

may have darkened their spectral response leading to misclassification

(Wigmore, Mark, McKenzie, Baraer, & Lautz, 2019). The creation of

specific shaded classes may help to resolve this in the future (Ishida

et al., 2018) but given the present low classification error, it was not

deemed necessary here.

As a result of the bands used by the Parrot Sequoia, the spectral

similarity observed between ‘Green’ and ‘Fucus spp.’ was to be

TABLE 5 Aerial multispectral maximum-likelihood classifier
(MLC) user accuracy (UA, probability of correct class assignment,
calculated by dividing the number of correctly classified pixels by the
total number of pixels in a class) and producer accuracy (PA, correctly
classified reference pixels, calculated by dividing the number of
correctly classified pixels by the total number of pixels that should be
in a class) for each of the three cover classes computed using ENVI 5.4

Class
PA
(%)

UA
(%) PA (pixels) UA (pixels)

‘Substratum’ 89.10 87.96 1,439/1,615 1,439/1,636

‘Fucus spp.’ 46.53 78.02 1,214/2,609 1,214/1,556

‘Asco_Fucus spp.’ 93.22 77.95 4,440/4,763 4,440/5,696

F IGURE 8 (a) Instances of
misclassification between
‘Asco_Fucus spp.’ (labelled here as
AN_FS) and ‘Fucus spp.’ displayed above
the respective ground-truth

(GT) polygons for each class. Insets focus
on notable misclassified areas where, in
green, ‘Asco_Fucus spp.’ has been
misclassified as ‘Fucus spp.’ (c) and where,
in red, the opposite occurs (b).
Coordinates are in IrishTransverse
Mercator (ITM)
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expected. Previous research using spectral radiometers has

highlighted the strong spectral separability between macroalgal

groups (Casal, Kutser, Domínguez-Gómez, Sánchez-Carnero, &

Freire, 2013; Kotta et al., 2014). Figure S3 shows that the spectrum of

‘Green’ was similar to that of both brown macroalgal classes, and with

this sensor not having any bands below 550 nm, or between 550 and

660 nm, key distinguishing features of green macroalgae (single peak

at 550 nm) and brown macroalgae (three peaks and troughs between

550 and 660 nm) (Kutser, Vahtmäe, & Metsamaa, 2006) were not

recorded, potentially explaining the poor spectral separation. Ulti-

mately, because of the small area covered by green macroalgal spe-

cies, in comparison with other classes, its exclusion might not

significantly alter the accuracy of the final classification.

4.2 | Aerial multispectral imagery

Although the classification results from the aerial multispectral imag-

ery broadly agreed with the UAV imagery, managing to identify a belt

dominated by A. nodosum (‘Asco_Fucus spp.’), it was not able to iden-

tify a pure A. nodosum class. The resulting lower taxonomic resolution

meant that it was not possible to determine an accurate area estima-

tion for A. nodosum at the site. Coarser pixel sizes led to increased

subpixel mixing of spectra, with one or more classes potentially being

present within a single pixel (Lyons, Phinn, & Roelfsema, 2011; Su

et al., 2006). The coarser resolution meant that it was difficult to accu-

rately select enough training data for classes that cover a small area,

such as ‘Wrack’, leading to its exclusion from the final classification.

Such exclusions highlight the need for higher levels of spatial resolu-

tion, but also show that the decision of whether or not to include a

class also depends on research objectives, and we chose to prioritize

the classification accuracy for dominant cover classes over minor clas-

ses. Coarse pixel size was also responsible for the low spectral separa-

bility between ‘Asco_Fucus spp.’ and ‘Fucus spp.’, where many pixels

were spectrally heterogeneous (Belluco et al., 2006), containing mix-

tures of fucoid species that were not necessarily observable through

visual analysis of the RGB imagery. The significant misclassification of

‘Fucus spp.’ pixels as ‘Asco_Fucus spp.’ appears most prevalent across

the boundary between the mid and lower intertidal zone, where there

was a transition from an assemblage dominated by A. nodosum to an

assemblage dominated by Fucus spp. (Figure 8). This highlights the dif-

ficulties in trying to distinguish between two spectrally similar classes.

4.3 | Satellite multispectral imagery

The spatial resolution of Sentinel-2 data was too coarse to allow for

macroalgal species identification as the highest band resolutions

(10 m) were still larger than the footprint covered by species present

within the intertidal. The relatively coarse spatial resolution of some

satellite imagery does not preclude its application for macroalgal mon-

itoring, however. For species that form homogenous, monospecific

stands, such as Macrocystis pyrifera off the coast of Santa Barbara,

satellite imagery with 10-m resolution was able to provide accurate

canopy cover estimations (Cavanaugh et al., 2010). If well supported

by in-situ sampling (i.e. abundance and percentage cover), the ability

of the satellite to identify the intertidal zone could allow for the broad

extrapolation of localized in-situ biological data to regional-scale esti-

mates of macroalgal extent. Yet, the time involved in conducting such

detailed in-situ surveys would negate the efficiency provided by satel-

lite remote sensing, and the resulting extent estimates will be signifi-

cantly less accurate than those achieved through direct quantification

of species extent using UAVs and aircraft.

4.4 | Effectiveness of high-resolution RGB data for
training and reference data collection

The collection of accurate reference and training data directly

impacts upon classification accuracy. When considering the future

potential for large-scale intertidal macroalgal surveys it would be

impractical (time and cost) to conduct extensive field campaigns.

The potential for GPS (Laliberte & Rango, 2011) and image geo-

referencing errors (Jaud et al., 2018) would still create a bias

towards selecting training and reference data from large homoge-

nous stands of macroalgae (Foody, 2002), as observed when col-

lecting data through the visual assessment of RGB imagery. UAVs

can be used to efficiently collect training data over much larger

areas than using field-based methods (Gray et al., 2018) and the

accuracy of this method relies on achieving a high enough spatial

resolution to enable complex patterns to be observed. The resolu-

tions achieved by UAVs allow for the accurate and efficient collec-

tion of training and reference data through being able to accurately

identify intertidal macroalgal species. The applicability may depend

on the target species, however, but the distinctive morphological

and colour properties of A. nodosum at the study site enhanced the

accuracy of its identification.

4.5 | Operational considerations

From a spatial resolution perspective, this study has demonstrated

how UAVs allow for the accurate classification and quantification of

the distribution of A. nodosum. At present, such results are only likely

to be achievable over small geographic areas because of current

national UAV regulatory policies (Baena et al., 2018), despite battery

technology allowing many UAVs to fly between 60 and 180 min.

Although aircraft can cover much larger areas, they tend to have

coarser spatial resolutions (Anderson & Gaston, 2013) that, depending

on the research objectives, could reduce the classification accuracy,

thereby limiting their usefulness for intertidal macroalgal resource

assessment. The development and granting of ‘beyond visual line of

sight’ (BVLOS) permission to companies and individuals who meet

specified national aviation authority guidelines will allow the scaling

up of UAV surveys to the point where they may offer a true mapping

alternative to aircraft.
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The cost-effectiveness of using remote sensing to map intertidal

macroalgae will vary depending on the project requirements, with fac-

tors such as geographic scale potentially informing on the most suit-

able platform to use. Both the UAV and aerial surveys required similar

work hours for data collection and processing, with the aerial survey

able to collect data over a far larger geographic area. Hiring a com-

pany to conduct remote sensing surveys is the only feasible option for

aerial surveys, yet for UAV surveys it may end up being more cost-

effective, in the long term, to bring data collection and processing

capabilities ‘in-house’, especially if temporal studies are planned. The

only caveat of this approach is the initial set-up cost (i.e. UAV, GPS,

sensor, software, and pilot training), the requirement for specialized

technical knowledge, computing capabilities, and compliance with

local regulations. Furthermore, the use of satellites may still prove a

useful option depending on the research question. Higher spatial reso-

lution satellites, such as RapidEye (5 m/pixel), may be applicable for

studies looking at identifying and mapping broader taxonomic classifi-

cation classes, such as macroalgal groups, over large areas (Brodie

et al., 2018).

4.6 | Management implications of UAVs

At present, UAV technologies are well suited for the rapid, flexible,

and cost-effective mapping of relatively small geographic areas and

are well suited for the unique challenges of mapping the intertidal

zone. Their capability to conduct multiple, repeat measurements

(Manfreda et al., 2018) will also enhance their application in monitor-

ing dynamic ecosystems, short-term events (algal blooms etc.), mobile

fauna, and invasive species. Straightforward integration of multispec-

tral sensors (e.g. DJI SkyPort) will further enhance applications for

UAV technology, and technological and regulatory developments will

only improve the ability of UAVs to contribute towards the establish-

ment of accurate environmental baseline monitoring and will, in turn,

inform resource conservation and management decisions (Connell

et al., 2008). The world is changing and developments in drone regula-

tory policy, such as common EU regulations (https://www.easa.

europa.eu/easa-and-you/civil-drones-rpas) together with a global

move towards BVLOS operations, will present the possibility of long-

range coastal macroalgal surveys in the not too distant future. This

will improve the ability of interested stakeholders to efficiently man-

age and conserve intertidal macroalgal communities over large geo-

graphic areas. In addition to this, decreasing the costs of UAVs and

sensors will make such technology accessible to a broader range of

interested stakeholders, enabling a wide range of novel applications

(Johnston, 2019).

Although the use of UAVs for monitoring macroalgal habitats is

growing (Taddia et al., 2019; Tait et al., 2019), a range of different

studies have incorporated UAVs into management and conservation

research objectives. The monitoring of orangutans has been con-

ducted using both RGB (Wich, Dellatore, Houghton, Ardi, &

Koh, 2016) and thermal sensors (Burke et al., 2019), with the small

size of UAVs making them ideal for operating in remote environments.

UAVs have also proven capable of operating in challenging conditions,

helping researchers to monitor the health (Pirotta et al., 2017) and

physiology (Christiansen, Dujon, Sprogis, Arnould, & Bejder, 2016) of

whales. Yet there remains a need for standardization in UAV monitor-

ing protocols to account for variations caused by solar conditions, sur-

vey accuracy, and flight planning, to allow for direct comparisons of

data between study sites and time (Assmann, Kerby, Cunliffe, &

Myers-Smith, 2019).

5 | CONCLUSIONS

The probable increase of anthropogenic pressures upon intertidal

macroalgal communities requires the development of accurate and

efficient mapping methodologies to complement traditional field sur-

vey techniques and must also consider a range of different budgets.

Different remote-sensing platforms each offer unique advantages and

disadvantages, and their suitability for the mapping of intertidal mac-

roalgal communities was compared. This study has demonstrated how

UAV-mounted multispectral remote sensing was the most accurate of

the three methods for assessing the distribution of A. nodosum, where

having a high spatial resolution allowed complex spatial patterns to be

observed. High-resolution RGB imagery facilitated the accurate col-

lection of training and reference data, and this method is likely to

complement the scaling up of UAV-based surveys in the future (Gray

et al., 2018). The creation of sustainable resource management plans

can now be underpinned by highly accurate, relatively low cost, and

spatially comprehensive remote sensing data collection methodolo-

gies. The development of machine learning techniques is likely to yield

improved classification results and has already proven useful for the

automated identification of weeds within crop fields (de Castro

et al., 2018; Gao, Nuyttens, Lootens, He, & Pieters, 2018).

Relatively inexpensive multispectral sensors, when mounted on a

UAV, provide an effective macroalgal resource assessment tool when

used in environments with low species diversity and homogenous

cover of canopy-forming species. For repeat surveys, the most cost-

effective solution is to bring data collection, processing, and analysis

‘in-house’, where decreasing technology costs, such as the 3dr Solo

UAV (Johansen, Raharjo, & McCabe, 2018), are reducing financial bar-

riers for those wishing to employ remote-sensing technology in their

research: for example, enabling those in remote but biodiverse regions

of the globe to better monitor and conserve their ecological resources

(Vargas-Ramírez & Paneque-Gálvez, 2019). Lower costs and an

increase in turnkey multispectral sensors may also facilitate the use of

UAVs and multispectral sensors by local conservation charities and

citizen science groups that, with the development of standardized

mapping methodologies, could facilitate the accurate, high-resolution,

monitoring of macroalgal resources over much wider spatial and tem-

poral scales than is currently possible. Future work should explore

potential seasonal and spatial trends in the accuracy of image capture

and the implications for data processing. The likely variation in intra-

and inter-specific spectral responses and relationships of intertidal

macroalgae, often through seasonal variation in localized light regimes
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(Stengel & Dring, 1998), may influence the ability of multispectral sen-

sors to accurately discriminate between them.
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