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A B S T R A C T

The energy transition towards resilient and sustainable power plants requires moving from periodic health
assessment to condition-based lifetime planning, which in turn, creates new challenges and opportunities
for health estimation and prediction. Probabilistic forecasting models are being widely employed to predict
the likely evolution of power grid parameters, such as weather prediction models and probabilistic load
forecasting models, that precisely impact on the health state of power and energy components. These
models synthesize forecasting knowledge and associated uncertainty information, and their integration within
asset management practice would improve lifetime estimation under uncertainty through uncertainty-aware
probabilistic predictions. Accordingly, this paper presents a probabilistic prognostics method for lifetime
planning under uncertainty integrating data-driven probabilistic forecasting models with expert-knowledge
based Bayesian filtering methods. The proposed concepts are applied and validated with power transformers
operated in two different power generation systems and obtained results confirm that the proposed probabilistic
transformer lifetime estimate aids in the decision-making process with informative lifetime distributions and
associated confidence intervals.
1. Introduction

Prognostics & Health Management (PHM) is a health management
paradigm which encompasses different predictive applications for an
improved reliability management of engineering components and sys-
tems [1]. PHM is at the hearth of condition monitoring technology,
where different monitored datasets cooperate, along with engineering
knowledge, to develop anomaly detection, diagnostics, prognostics and
maintenance planning applications. For recent reviews see e.g. [2,3].

The main focus of this research is on the development of failure
prognostics models, centred on the prediction of the likely future degra-
dation of the asset under study, and the estimation of the associated
remaining useful life (RUL). The RUL denotes the time distance from
the current prediction time, 𝑡𝑝, to the end of the useful life of the asset
(denoted EOL) [4]:

𝑅𝑈𝐿 = 𝐸𝑂𝐿 − 𝑡𝑝|𝐸𝑂𝐿 > 𝑡𝑝 (1)

∗ Corresponding author at: Mondragon University, Electronics & Computer Science Department - Signal Theory & Communications, Arrasate, Spain.
E-mail address: jiaizpurua@mondragon.edu (J.I. Aizpurua).

The remaining time after 𝑡𝑝 until 𝐸𝑂𝐿 is random, and therefore,
uncertainty modelling is crucial for accurate RUL predictions [5]. Fig. 1
shows the RUL prediction concept, where 𝑌 = {𝑦1,… , 𝑦𝑛} denotes the
gathered data samples up to the prediction point 𝑡𝑝.

In order to design accurate prognostics applications, it is necessary
to capture complex and stochastic interactions including the asset
degradation and operation conditions. To this end, the prognostics
model development covers multiple stages, including data collection,
model development and validation, which are surrounded by different
sources of uncertainty, such as measurement, model development and
parameter estimation uncertainty. The different sources of uncertainty
are generally grouped into epistemic and aleatory uncertainty [6].
Epistemic uncertainties cover the lack of complete knowledge, while
aleatory or inherent uncertainty models uncertainties which cannot
be measured. Generally, it is assumed that epistemic uncertainty is
reducible and aleatory uncertainty is irreducible, e.g. see [7].
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Fig. 1. Remaining useful life prediction [4].

RUL prediction uncertainty is specific to the component or system
under study. However, there are key transversal activities which are
common to prognostic modelling processes, such as data-measurement,
initial state-estimation, degradation process modelling, future oper-
ational usage, and failure threshold definition. In Fig. 1, it can be
observed that the initial health-state estimate at 𝑡𝑝 is uncertain, which is
represented by a probability density function (PDF). The progression of
this PDF and the distance to EOL depends on the degradation process,
the model that is used to describe this trajectory, and the failure
threshold. Accordingly, different methodologies have been proposed for
the uncertainty quantification associated with RUL estimation.

Specifically, data-measurement uncertainties, along with
state-estimation uncertainties, have been widely addressed through
different filtering strategies such as extended and unscented Kalman
filtering and Bayesian particle filtering [8]. Filtering models iterate
through measurement and degradation functions based on observa-
tions, physics-based models and sampling strategies. If the degradation
process is specified with an analytical model, degradation model un-
certainty can be quantified by obtaining the same PDF for every
repetition of the algorithm, e.g. using first-order reliability methods [9],
Wiener processes [10] or Gamma processes [11]. Different strategies
to include uncertainty in the failure threshold criteria have been also
analysed [12,13]. For a comprehensive set of examples on uncertainty
associated with RUL quantification, the reader is referred to [14].

The different sources of uncertainty, along with complex and some-
times unforeseen scenarios, can lead to discrepancies between observa-
tions and predictions, and thereby impact on the RUL estimates and the
associated health management decision-making process. In this context,
there are different challenges that emerge from the development of
accurate prognostics applications [15].

In particular, in the area of power and energy systems, owing
to the increasing advent of dynamic and stochastic energy applica-
tions, monitoring and reliability applications are rapidly departing
from deterministic operation contexts [16,17]. This application context,
including renewable energy systems [18] and electric vehicles [19],
along with the inherent PHM modelling uncertainties, invalidates the
use of deterministic lifetime models owing to the generated dynamics
and sources of uncertainty that affect the operation conditions and
lifetime management practices [20,21].

Accordingly, it is of utmost importance to properly integrate and
propagate uncertainties. If the different sources of uncertainty are not
considered from the lowest level up to the system level [22], their effect
is lost on the system scale. This may lead difficult asset-management
decisions due to the lack of knowledge and control of variables implied
in the lifetime prediction. For example, renewable energy forecasting
solutions use weather prediction models of natural resources, e.g. wind
2

speed, wave height, and solar irradiance. Individual component-level
predictions are then integrated at the system level, e.g. for wind, wave
and solar park level energy predictions. The escalation from component
to system level predictions involves uncertainties at different levels,
and in the case of renewable energy generation, the generated power
directly affects the RUL of different power assets, such as transformers,
cables and converters, through the generated power that flows through
them.

1.1. State-of-the-art

Recent developments in the prognostics area include the use of
novel accurate data-driven methods, which can capture complex non-
linear relationships, possibly with memory capabilities, for an improved
RUL prediction, such as deep-learning based fusion of prognostics
models for turbofan engines [23] — see [24] for an exhaustive review
of deep-learning applications for PHM. Data-driven models can gen-
erate accurate RUL predictions, however, their ability to account for
uncertainties is limited [2,3,15]. Accordingly, recent efforts have been
focused on the development of hybrid prognostics models, that combine
physics-based models with data-driven models to develop an accurate
prognostics model that is able to obtain explainable results, and ideally,
also deal with multiple sources of uncertainty [25].

In this direction, Arias et al. presented the combination of physics-
based and data-driven deep-learning models for prognostics predic-
tions of a turbofan engine, where the uncertain parameters of the
physics-based model are calibrated with observations using a Un-
scented Kalman Filter (UKF), which is then used as input to a deep-
learning based prognostics model [26]. The comprehensive approach
deals with uncertainties through the UKF approach using Gaussian
distributions. However, the deep-learning model predictions are point-
estimates without probabilistic uncertainty information.

Nascimiento et al. embedded the physics-based model within the
data-driven learning process through a physics-informed neural net-
work approach for prognostics prediction of batteries. Recurrent neural
network (RNN) cells are used to capture model uncertainty, which are
embedded within the physics-based degradation model of the battery,
and an ensemble strategy is used to perform a weighted average of age-
ing curves of older batteries [27]. RNN model parameters are modelled
with Gaussian distribution and processed with variational inference,
which enables partially capturing the model development uncertainties.
However, measurement uncertainties are not fully captured and the re-
sulting RUL predictions do not include the complete probability density
function. Zhang et al. integrated artificial neural network based and
physics-based RUL prediction models through weighted RUL predic-
tions for prognostics of railway cables [28]. As with previous models,
physics-based models can integrate model uncertainties, but ANN based
formulations do not capture uncertainties.

These approaches provide systematic methods to incorporate phys-
ics-based models within the degradation formulation, either as input
parameter of data-driven prognostics models [26], inter-leaved with
the degradation process [27] or through combination of results [28].
The flexibility of the analysed methods comes with a cost, which is
the inability to cover the whole range of uncertainties and provide a
complete distribution function of uncertainty estimates. This, generally,
requires the development of a model, which explicitly captures uncer-
tainties along with the degradation process and propagates them with
the degradation model and RUL prediction.

As for the probabilistic prognostics methods, there is an increas-
ing interest on modelling the degradation of complex systems and
estimating their RUL [15]. Chiachio et al. presented a Markov-chain
based prognostics framework, where Markov-chain models are con-
nected with Particle filter (PF) based state-estimation methods [29].
The measurement equation is comprised of condition data, which is
used to update the predictions. The Markov-chain approach can model
multi-state degradation processes of complex systems, however, due

to the nature of the Markov-chains, the degradation model is limited
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by a predefined set of states, with constant exponential transitions
and governed by the Markov property, and this limits the uncertainty
modelling capabilities.

Si et al. proposed a data-driven prognostics modelling approach for
non-linear degradation processes, based on the Box–Cox transform and
Wiener process [30]. It is an elegant prognostics framework that, under
the adopted assumptions, operates with high precision. However, input
signals are assumed deterministic and therefore relevant sources of un-
certainty, such as measurement uncertainties, are not integrated. Chen
et al. presented a mixture proposal PF for the integration of dynamic
crack evolution of multi-crack scenarios [31]. It is an comprehensive
framework that can incorporate multiple cracks, model uncertainty
is modelled with Gaussian distribution with fixed mean value and
variance, and it also integrates prediction results, but still, they are
formulated as deterministic estimates of prediction models.

Each of these models pose advantages, such as improved accuracy of
deep-learning models, enhanced explicability of physics-based models,
and capability to capture complex non-linear degradation processes.
However, they also imply other assumptions, e.g. Kalman filter assumes
Gaussian noise, RNN models require large amount of data, Markov-
chains rely on predefined states and exponential distribution, and more
importantly for the purpose of this research, they do not capture
uncertainties from other model predictions with a complete PDF.

If the prognostics model is informed by external models that convey
degradation-influencing information, e.g. [31], it is crucial to fully
propagate predictive information from previous stages. However, using
the reviewed methods, this information is partially propagated, or even
lost, because they cannot capture and integrate the full probability
density function of the modelled process. In order to properly propagate
uncertainty, it is generally necessary to model and propagate predic-
tions as full probability distribution functions of plausible values of the
estimated parameter consistent with the underlying modelled process.

1.2. Research opportunity

One possibility to model and capture uncertainties is to use proba-
bilistic forecasting models [32]. These models estimate the probability
density function (PDF) associated with each prediction instead of a de-
terministic point estimate. Probabilistic forecasting models are gaining
momentum for accurate wind energy [22], solar energy [33] and load
estimation models [34]. Most of the forecasting models address the
probabilistic prediction task including the integration of uncertainty.
However, the interactions between different sources of uncertainty are
difficult to capture systematically [15], and the use of these models
in PHM applications, requires propagating uncertainties without losing
information.

The aggregation and post-processing of the uncertainty informa-
tion synthesized as PDFs for an enhanced decision-making has been
addressed for degradation modelling [35], diagnostics [36], damage
modelling frameworks to propagate and evaluate the influence of
storms [37], post-contingency power-flow analysis [38] and other ap-
plication areas [39]. However, in the area of probabilistic forecasting,
generally, the probabilistic prediction stage finishes with the predicted
probabilistic information and this is not further post-processed for an
enhanced decision-making in subsequent modelling stages.

Aligned with methodologies that propagate uncertainty information
obtained from probabilistic forecasting methods in the form of PDFs,
the main hypothesis of this work is that it is more beneficial to build
distributions directly from data, and then post-process this informa-
tion to perform better informed predictions based on this empirical
distribution. To this end, it is necessary to replace measurements with
forecasting PDF estimates that integrate different sources of uncertainty
through the underlying forecasting technique. This would result in
the integration of probabilistic forecasting models within a lifetime
estimation framework and it may lead to an improved health state
3

estimation under uncertainty. i
1.3. Contribution

Accordingly, this paper introduces a lifetime prediction approach
that integrates probabilistic forecasting strategies with experimental
lifetime methods, and this is the main contribution with respect to
the state-of-the-art. The integration and propagation of uncertainties
enables the adaptation of uncertainty-aware lifetime predictions, ex-
pressed with the complete PDF of the RUL predictions which represent
plausible values of the RUL estimate, consistent with the underlying
probabilistic framework. This has a direct impact and applicability for
the integration of probabilistic forecasting methods into the proposed
approach. The proposed framework is implemented for a transformer
lifetime prediction case study and is validated with two different case
studies.

The proposed approach extends previous work [40] through the
integration of probabilistic forecasting estimates. This is achieved thro-
ugh the replacement of parametrized distributions with data-driven
probabilistic forecasting models and their integration with expert-based
experimental models in a Bayesian state-estimation framework. It also
extends preliminary work in [41] through formalizing the approach and
testing with two relevant industrial case studies.

1.4. Organization

The remainder of this paper is organized as follows. Section 2
presents the proposed probabilistic framework for lifetime prediction
under uncertainty. Section 3 implements the framework for the specific
case of power transformer lifetime estimation, enhancing the tradi-
tional thermal and lifetime modelling equations defined by the IEEE
standard C57.91. Section 4 applies the methodology to two different
power transformer case studies. Finally, Section 5 draws conclusions.

2. Proposed framework for probabilistic forecasting informed fail-
ure prognostics

Lifetime evaluation methods estimate the remaining lifetime thro-
ugh experimental equations or data-driven models. These models, gen-
erally, make use of monitored datasets and parameters that model the
usage and stress profiles along with asset-specific parameters of the
lifetime model.

Given the fast and prominent advance of probabilistic forecasting
techniques, and their ability to estimate parameters under uncertainty,
it is likely that lifetime parameters may be calculated using probabilis-
tic models, so as to anticipate to potential degradation scenarios and
assist in decision-making under uncertainty.

Compared with point prediction estimates, with complete proba-
bilistic distribution functions associated with each prediction, error
modelling variables are no longer constant and they vary for each
prediction.

Accordingly, a probabilistic lifetime estimation approach has been
developed which predicts the lifetime using inspection data and prob-
abilistic forecasting estimates. Fig. 2 shows the developed probabilistic
lifetime estimation approach.

The probabilistic forecasting approach models the probabilistic evo-
lution of lifetime-influencing variables, i.e. stressors, where each in-
dividual forecasting model integrates different sources of uncertainty
present in the modelled process.

Each individual probabilistic forecasting results are modelled with
a complete probability density function, ̂𝑝𝑑𝑓 (𝑡), and this PDF includes
ncertainty information associated with the prediction of the lifetime-
nfluencing parameter.

The probabilistic forecasting model inputs the probabilistic lifetime
odel along with other sources of uncertainty, including the initial
ealth state, and the process degradation uncertainty. The outcome of
he probabilistic lifetime model is a set of PDFs of the RUL estimate,

nferred at different prediction time instants, 𝑅𝑈𝐿𝑡.
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Fig. 2. Probabilistic remaining useful lifetime estimation framework.
The proposed probabilistic lifetime estimation approach is based
on the integration of probabilistic forecasting techniques and life-
time modelling formulations through adapted Bayesian state-estimation
methods. The rest of this section presents probabilistic forecasting and
probabilistic lifetime estimation basics that have been implemented to
develop the proposed approach.

2.1. Probabilistic forecasting models

A range of different methods can be employed for the probabilistic
forecasting modelling stage [32]. Among existing probabilistic fore-
casting models, that are able to integrate uncertainties and produce
a PDF for each prediction estimate, the application of the proposed
probabilistic lifetime methodology focuses on the implementation of
Quantile Regression Forest and Quantile Gradient Boosting models with
the aim to select the model with the best predictive power [42].

These methods have been selected due to their capability to capture
non-linear relationships, including interactions between input features,
integration of quantile loss functions, and previous successful experi-
ence in other studies [43,44]. However, note that this selection does not
limit the proposed framework, and if desired, it is possible to substitute
these applications with other probabilistic forecasting algorithms.

These models can be used to create prediction intervals that contain
information about the uncertainty of observations around the predicted
value. This generates robustness against measurement uncertainties
when using probabilistic forecasting results.

2.1.1. Quantile regression forests (QRF)
QRF are based on Random Forests (RF) and they have shown

excellent results in different forecasting competitions [43,45]. RF grow
a large ensemble of trees using 𝑛 independent observations (𝑦, 𝑥𝑖) ∈
{1,… , 𝑛}.

QRF are an ensemble of different regression trees in which each
leaf draws a distribution for the target variable 𝑦. QRFs obtain pre-
diction intervals from RF predictions, which represent the uncertainty
of the predicted value, i.e. the greater the uncertainty the greater the
prediction interval and vice-versa.

The prediction becomes a conditional distribution function 𝑃 (𝑦|𝑋 =
𝑥𝑖) for 𝑖 ∈ {1,… , 𝑁} for 𝑋 = 𝑥𝑖, 𝑦 < 𝑦𝑖 ∈ R. The corresponding
conditional distribution function 𝐹 (𝑦|𝑋 = 𝑥𝑖) can be also expressed as
𝐸(1𝑦<𝑦𝑖|𝑥=𝑥𝑖 ), which is approximated by the weighted mean of 𝑥𝑖 over
the observations:

𝐹 (𝑦|𝑋 = 𝑥𝑖) =
𝑁
∑

𝑖=1
𝑤𝑖(𝑥𝑖)1{𝑦<𝑦𝑖} (2)

where 𝑤𝑖(𝑥𝑖) = 𝐾−1 ∑𝐾
𝑘=1 𝑤𝑖(𝑥𝑖𝜃𝑘) is the weighted vector and 1{.} is an

indicator function.
The 𝛼-quantile, 𝑄𝛼(𝑥𝑖) = 𝛼, is defined such that the probability of

𝑦<𝑄𝛼(𝑥𝑖)=𝛼. The quantiles give more complete information about the
distribution of 𝑦 as a function of the predictor features 𝑋. For instance,
for a new feature vector, 𝑋𝑤, 95% prediction intervals for the value of
𝑦 are given by:

𝐼(𝑋𝑤) = [𝑄0.025(𝑦|𝑥 = 𝑋𝑤), 𝑄0.975(𝑦|𝑥 = 𝑋𝑤)] (3)

Using quantiles and interpolation methods it is possible to build a
CDF and then extract the corresponding PDF.
4

2.1.2. Quantile Gradient Boosting (QGB)
QGB are based on boosting methods that sequentially combine an

ensemble of weak learners as a weighted sum of base-learner models
in order to reduce the error of the whole ensemble [46]:

𝑦𝑡 = 𝐹𝑁 (𝑥𝑡) + 𝜀𝑡 =
𝑁
∑

𝑛=1
𝑓𝑛(𝑥𝑡) + 𝜀𝑡 (4)

where 𝐹𝑁 (𝑥𝑡) is the ensemble of 𝑁 regression trees, each 𝑓𝑛(𝑥𝑡) is a
regression tree and 𝜀𝑡 is an error term. The new regression tree 𝑓𝑛+1(𝑥𝑡)
for the quantile loss function 𝐿(.) is estimated as follows:

𝑎𝑟𝑔𝑚𝑖𝑛
𝑓𝑛+1

∑

𝑡
𝐿(𝑦𝑡, 𝐹𝑁 (𝑥𝑡) + 𝑓𝑛+1(𝑥𝑡)) (5)

This optimization is solved through the steepest descent algo-
rithm [46], where the base-learners 𝑓𝑛(𝑥𝑡) are constructed to be maxi-
mally correlated with the negative gradient of the loss function associ-
ated with the whole ensemble 𝐹𝑁 (𝑥𝑡).

The implementation of the quantile loss function enables the proba-
bilistic prediction through 𝛼-quantiles also known as Quantile Gradient
Boosting (QGB) [44].

2.2. Probabilistic lifetime modelling

In order to estimate the asset lifetime under uncertainty, probabilis-
tic forecasting modelling results are integrated with the asset-specific
experimental degradation equation.

This integration can be achieved through a modified Particle Filter-
ing (PF) strategy [47]. PF is a state-estimation method that combines
Monte Carlo simulations with Bayesian inference.

PF diagnoses the system health state 𝑥𝑡 through a iterative combi-
nation of the health degradation model 𝑓 (⋅) and its influencing mea-
surements ℎ(⋅):

𝑥k = 𝑓 (𝑥k−1, 𝑤k−1)

𝑧k = ℎ(𝑥k , 𝜑k )
(6)

where 𝑥k denotes the asset RUL at the discrete time instant 𝑘, 𝑓 (⋅) is the
asset-specific experimental degradation function, 𝑤k is the degradation
uncertainty vector, 𝑧𝑘 is the lifetime-influencing parameter at time
instant 𝑘, ℎ(⋅) is the lifetime-influencing parameter estimation func-
tion (also named measurement function), that correlates asset health
measurements with the RUL estimate, and 𝜑k is the measurement
uncertainty vector (see application in Section 3.2.3).

So as to integrate probabilistic forecasting estimates with the system
health state estimation procedure, the prediction intervals of the fore-
casting estimates should be aligned with the discrete time-step 𝑘 of the
state-degradation function. For example, if hourly sampled predictions
are performed for 𝐻 discrete steps, this leads to a prediction horizon
of 𝑘 ×𝐻 hours.

The PDF 𝑝(𝑥k |𝑧0∶k ) defines the asset health state 𝑥k given measure-
ments 𝑧k up to 𝑘. The prior PDF of the asset health state 𝑥k from the
distribution 𝑝(𝑥k−1|𝑧0∶k−1) is determined by:

𝑝(𝑥k |𝑧0∶k−1) = ∫ 𝑝(𝑥k |𝑥k−1)𝑝(𝑥k−1|𝑧0∶k−1)𝑑𝑥k−1 (7)

where the distribution 𝑝(𝑥k |𝑥k−1) is determined from (6). The posterior
PDF reflects the updated prior PDF with new measurements gathered
at 𝑘, 𝑧k , by using the Bayesian inference:

𝑝(𝑥k |𝑧0∶k ) =
𝑝(𝑥k |𝑧0∶k−1)𝑝(𝑧k |𝑥k) (8)
𝑝(𝑧k |𝑧0∶k−1)
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Fig. 3. Inverse transform sampling for probabilistic forecasting results.

The PF method was proposed to solve (8) through iterative appli-
cation of prediction, update and resampling steps at each time instant
𝑘 [47], which has been adapted here to include probabilistic forecasting
estimates of the measurement function.

At time instant 𝑘 = 0, in order to model the initial transformer
health state, 𝑁𝑝 random samples, also known as particles, are drawn
{𝑥𝑖𝑘=0}

𝑁𝑝
𝑖=1 from the initial asset health state conditions.

Prediction: the prediction at time instant 𝑘 > 0 is performed by sam-
pling from the distribution of the asset degradation uncertainty 𝑤k−1
and simulating the asset health degradation dynamics according to (6)
to generate new asset health state samples 𝑥𝑖𝑘 which are realizations of
the predicted distribution 𝑝(𝑥k |𝑧0∶k−1).

In order to draw particles from the probabilistic forecasting pre-
icted PDF, ̂𝑝𝑑𝑓 𝑧𝑘 (𝑡), the inverse sampling method is applied. Let 𝐹𝑧𝑘 (𝑡)
e the cumulative distribution function of the parameter 𝑧 at discrete
ime instant 𝑘, inferred from the probabilistic forecasting model, 𝑟𝑧𝑘 the

random variable drawn from the uniform distribution 𝑟𝑧𝑘 ∼ 𝑈 ([0, 1]),
then the inverse sampling method applies the relation 𝐹−1

𝑧𝑘
(𝑟𝑧𝑘 ) = �̂�𝑘.

Fig. 3 shows the inverse transform sampling process.
Update: each sampled particle is assigned a weight based on the

likelihoods of observations 𝑧k collected at time 𝑘:

𝑤𝑖
𝑘 =

𝑝(𝑧k |𝑥𝑖𝑘)
∑𝑁p

𝑗=1 𝑝(𝑧k |𝑥
𝑗
𝑘)

(9)

An approximation of the posterior PDF, 𝑝(𝑥k |𝑧0∶k ), is then obtained
rom the weighted samples {𝑥𝑖𝑘, 𝑤

𝑖
𝑘}

𝑁𝑝
𝑖=1.

Resampling: so as to avoid the weight degeneracy phenomena [47],
here all but one particle have negligible weights, an effective number
f particle size is defined: 𝑁e = 1∕

∑𝑁p
𝑖=1 𝑤

𝑖
𝑘. If 𝑁e falls below a threshold

𝑁p∕2 in this work), a systematic resampling step is applied [47].

. Case study: Transformer probabilistic lifetime estimation under
ncertainty

Transformers are key integrative components of the power grid.
ealth monitoring and reliability assessment of transformers is cru-
ial for the secure and reliable operation of power and energy sys-
ems [48]. Transformers are constituted of different systems including
ap-changers, bushings and the insulation system.

The solid insulation is a crucial system that can cause the trans-
ormer failure [48,49] and it is the focus of this case study. If trans-
ormers are operated under predictable and periodic thermal and power
onditions deterministic solid insulation lifetime models defined in
EEE standards [49] can be used for health monitoring and reliability
ssessment.

Transformer lifetime estimation approaches have been focused on
he integration of collected measurement into a lifetime estimation
odel [40,50–53]. Bicen et al. implemented a transformer lifetime
onitoring model based on annual load factors [50] and Ariannik

t al. developed a lifetime estimation model for transformers based
n the degree of polymerization and water levels [51]. These models
an convey predictive information based on deterministic experimental
5

p

quations. However, the proposed methods lack modelling mecha-
isms to propagate uncertainty information and their ability to inform
ecision-making strategies in the presence of uncertainties is limited.

Recent contributions focus on the integration of uncertainty infor-
ation in the transformer lifetime estimation model [52,53]. Catterson

irst proposed the integration of uncertainty in the transformer lifetime
stimation process [52] and Li et al. developed a diagnostics approach
ntegrating uncertainty information [53]. These models are valid solu-
ions if the measurement data is directly used in the lifetime estimation
ramework. However, if collected measurements need to be projected
nto the future, e.g. for prognostics tasks, these models need to integrate
nd propagate uncertainties [54,55].

In this direction, the main motivation of this case study is the devel-
pment of a probabilistic lifetime estimation approach through uncer-
ainty management and probabilistic forecasting methods for improved
ransformer lifetime estimation under uncertainty.

.1. Transformer degradation modelling

One of the key life-limiting failure modes for power transformers is
he ageing of the solid insulation paper [48,49]. The degree of polymer-
zation (DP) of the insulation paper represents the tensile strength of
he paper, which is defined as the number of monomeric units, and it is
eakened over time. The insulation end-of-life is reached when the DP
rops below a threshold level and the insulation integrity is lost. In this
ituation the transformer cannot withstand operational stresses. New
nsulation paper has a DP in the interval of 1000–1200 and insulation
nd-of-life is considered when DP is 200 [56].

The insulation end-of-life is governed by the winding temperature,
hich in turn, is determined by the load current that flows through the

ransformer along with ambient temperature and transformer-specific
arameters. The influence of humidity in the DP is a studied phenom-
na [51]. However, this work focuses on the experimental model given
n the standard IEEE C57.91 [49] due to the unavailability of water
evel measurements. There are other indicators, such as the dissolved
asses in oil, that can be used to analyse the insulation health state,
ut their use for trending the degradation trajectory of the insulation
s limited and they are better suited for diagnostics purposes [57].

.1.1. Lifetime model
The IEEE C57.91 standard defines the insulation paper ageing ac-

eleration factor at time 𝑡, 𝐹AA(𝑡), as [49]:

AA(𝑡) = 𝑒
15000
383 − 15000

273+𝛩𝐻 (𝑡) (10)

where 𝛩H(𝑡) is the transformer winding’s hottest-spot temperature
HST) at time 𝑡 in ◦C.

Eq. (10) determines the influence of the HST in the transformer
ageing, and the effect on transformer lifetime can be estimated by
considering the cumulative effect of HST measurements in the solid
insulation over time.

Namely, in order to quantify the transformer remaining useful life
at instant 𝑡, 𝑅𝑈𝐿(𝑡), it is possible to iteratively subtract the fraction
of life consumed in each time instant, 𝐹AA(𝑡), from the initial health
tate 𝑅𝑈𝐿0. Accordingly, Eq. (10) can be converted into a Markovian
ecurrence relation form:

𝑈𝐿(𝑡) =

{

𝑅𝑈𝐿0 𝑡 = 0
𝑅𝑈𝐿(𝑡 − 𝛥𝑡) − 𝐹AA(𝑡) 𝑡 > 0

(11)

here 𝛥𝑡 is the discrete time-step in hours and 𝐹AA(𝑡) is defined in (10).
At the instant 𝑡 = 0, 𝑅𝑈𝐿0 denotes the initial health state esti-

ation. In subsequent iterations, the initial estimate is updated with
he most up-to-date 𝑅𝑈𝐿 estimation. If the insulation paper is new,
he initial health state may be assumed to be of 180 000 h in the
onditions stated IEEE C57.91 [49]. Otherwise, experimental analysis
f the insulation paper would be needed to determine the degree of

olymerization.
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3.1.2. Thermal model
The transformer lifetime is directly influenced by the HST as de-

fined in (10). The measurement of HST is complex and it is generally
calculated using analytic relations [49]:

𝛩H(𝑡) = 𝛩TO(𝑡) + 𝛥𝛩H,TO(𝑡) = 𝛩A(𝑡) + 𝛥𝛩TO,A(𝑡) + 𝛥𝛩H,TO(𝑡) (12)

where 𝛩A(𝑡) and 𝛩TO(𝑡) are the ambient and Top-Oil (TO) temperatures,
respectively, at time instant 𝑡, and 𝛥𝛩TO,A(𝑡) and 𝛥𝛩H,TO(𝑡) are the
top-oil and hottest-spot temperature rise over ambient and top-oil
temperatures, respectively, at time 𝑡.

The steady-state top-oil temperature rise over ambient temperature,
at time 𝑡, is calculated through:

𝛥𝛩TO,A(𝑡) = 𝛥𝛩TO,R.[((𝑖(𝑡)∕𝑖r )2𝛾 + 1)∕(𝛾 + 1)]𝑛 (13)

where 𝛾 is the ratio of load loss, at rated load, to loss at zero load, 𝑖(𝑡)
is the transformer load at time 𝑡, 𝑖r is the rated load current, and 𝑛 is a
transformer cooling-specific parameter [49].

Similarly, the steady-state hottest-spot temperature rise, over top-oil
temperature at time 𝑡, is calculated via [49]:

𝛥𝛩H,TO(𝑡) = 𝛥𝛩H,R.
(

𝑖(𝑡)∕𝑖r
)2𝑚 (14)

where 𝑚 is a transformer parameter determined through a lookup table
according to the transformer cooling system [49].

3.1.3. Sources of uncertainty
The use of measurement data for HST estimation, such as top-

oil temperature and load, may incur sensor data acquisition errors
that affect the HST calculation. The incorporation of measurement
uncertainties into (12) gives:

𝛩H(𝑡) = (𝛩TO(𝑡) + 𝜑TO) + 𝛥𝛩H,R.[(𝑖(𝑡) + 𝜑𝑖)∕𝑖r ]2𝑚 (15)

where 𝜑TO denotes the top-oil measurement error and 𝜑𝑖 designates the
load measurement error.

Similarly, the paper degradation process in (11) is a stochastic pro-
cess, and the integration of the influencing sources of uncertainty [52]
gives:

𝑅𝑈𝐿(𝑡)=

⎧

⎪

⎨

⎪

⎩

𝑅𝑈𝐿0+𝑤RUL0 𝑡=0

𝑅𝑈𝐿(𝑡−𝛥𝑡)+𝑤RULt −𝑒
(15000+𝑤t)(

1
383−

1
273+𝛩H(𝑡)) 𝑡 > 0

(16)

here 𝑤RULt and 𝑤t are the lifetime and degradation process uncertain-
ies at 𝑡 respectively, and 𝛩H(𝑡) is defined in (15). Eq. (16) can be seen
s a non-linear autoregressive exogenous model with an error term,
RULt , and an externally determined variable, 𝛩H(𝑡), that accumulates
easurement errors over subsequent RUL iterations. Note that (15)
odels load and top-oil temperature errors as constants.

Deterministic thermal and lifetime modelling equations [cf. (10),
11)] are widely employed to estimate the lifetime of transformers,
.g. [20,50,51]. However, these formulations do not integrate different
ources of uncertainty. The inclusion of the different sources of un-
ertainty is becoming increasingly important for the accurate lifetime
stimation of transformers operated in emerging power and energy sys-
em applications, because deterministic RUL and reliability estimates
ay lead to sub-optimal health monitoring decisions [58,59].

.2. Probabilistic forecasting informed framework

Transformer lifetime directly depends on the top-oil temperature
nd input load. If the top-oil temperature and load samples are gathered
rom monitoring equipment, the data collection uncertainties can be
odelled as in (15) through their respective constant error variables
𝑇𝑂 and 𝜑𝑖.

However, given the advance of probabilistic forecasting techniques,
nd their ability to estimate parameters under uncertainty, it is likely
6

hat top-oil temperature and load may be calculated using probabilistic
Table 1
Definition of statistical features.

Feat. Definition Feat. Definition

M 𝑥m= 𝛴𝑁
𝑖=1𝑥𝑖
𝑁

IF 𝑥if =
𝑚𝑎𝑥|𝑥𝑖 |
1
𝑁
𝛴𝑁

𝑖=1 |𝑥𝑖 |

K 𝑥kurt =
𝛴𝑁

𝑖=1(𝑥𝑖−𝜇)
4

(𝑁−1)𝜎4 RMS 𝑥rms=
√

𝛴𝑁
𝑖=1𝑥

2
𝑖

𝑁

SK 𝑥sk =
𝛴𝑁

𝑖=1(𝑥𝑖−𝜇)
3

(𝑁−1)𝜎3 CF 𝑥cf =
𝑚𝑎𝑥|𝑥𝑖 |

√

1
𝑁
𝛴𝑁

𝑖=1𝑥
2
𝑖

models, so as to anticipate to potential degradation scenarios and assist
in decision-making under uncertainty. With probabilistic distributions,
error modelling variables are no longer constant and they vary for each
prediction.

In this context, the model in (15) requires modifications to in-
corporate probabilistic predictions. Accordingly, a probabilistic trans-
former lifetime estimation approach has been developed based on
the implementation of the methodology shown in Fig. 2. The pro-
posed framework predicts the transformer lifetime using inspection
data and probabilistic forecasting estimates. Fig. 4 shows the developed
probabilistic transformer lifetime estimation approach.

The probabilistic thermal model extends (15) to integrate and prop-
agate probabilistic prediction results in the HST estimation. The model
predicts the PDF of the HST, ̂𝑝𝑑𝑓 (𝑡)𝛩𝐻

, and inputs the probabilistic
lifetime modelling phase along with other sources of uncertainty, in-
cluding the initial health state, 𝑝𝑑𝑓 (𝑡)𝑅𝑈𝐿0

, and the process degradation
uncertainty, 𝑝𝑑𝑓 (𝑡)𝜔.

Accordingly, in order to estimate the transformer RUL using prob-
abilistic forecasting results, the RUL formulation in (16) needs to
be adapted with the proposed approach in Fig. 4. The outcome of
the probabilistic framework will be the PDF of the transformer RUL,
̂𝑝𝑑𝑓 (𝑡)𝑅𝑈𝐿.

The proposed probabilistic RUL estimation approach is based on
experimental thermal and lifetime modelling formulations along with
probabilistic forecasting techniques and adapted Bayesian state-esti-
mation methods. The next sections cover the main phases of the pro-
posed approach (cf. Fig. 4).

3.2.1. Data preprocessing & feature selection
Driven by previous experience [40], different statistical features

have been extracted to improve the prediction capability of the prob-
abilistic forecasting models including mean (M), kurtosis (K), impulse
factor (IF), root mean square (RMS), skewness (SK), and crest factor
(CF). Apart from well-known RMS and mean values, the crest factor
evaluates changes in the peak values, impulse factor evaluates the
height of a peak, skewness evaluates the asymmetry of a signal distri-
bution and kurtosis evaluates length of the tails of a signal distribution.
Table 1 defines the statistical features for 𝑁 data samples.

A recursive feature elimination (RFE) procedure has been then
applied to select the features that minimize the prediction error. RFE
is a feature selection method that removes correlated variables that
increase the prediction error using a recursive iteration process [60,61].

The main criteria to evaluate the probabilistic forecasts of each
model has been the continuously ranked probability score (CRPS).
Based on the probabilistic forecast PDF, 𝑓 (𝑧), with its cumulative
distribution function (CDF), 𝐹 (𝑧), and observation 𝑦, the 𝐶𝑅𝑃𝑆(𝐹 , 𝑦)
is defined as [62]:

𝐶𝑅𝑃𝑆(𝐹 , 𝑦) = ∫R
(𝐹 (𝑧) − 1{𝑦 ≤ 𝑧})2 𝑑𝑧 (17)

here 1{𝑦 ≤ 𝑧} denotes the indicator function which is one if 𝑦 ≤ 𝑧
nd zero otherwise.

Namely, the CRPS calculates the discrepancy between the forecast
DF 𝐹 and the empirical CDF of the observation 1{𝑦 ≤ 𝑧} which is con-
idered as a step function because the observations 𝑦 are deterministic
oint values.
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Fig. 4. Probabilistic remaining useful lifetime estimation framework.
The CRPS is a better suited metric for categorizing the predictive
ower of probabilistic models that generate a PDF as a prediction
utput because it quantifies the error of each probabilistic predictive
alue with respect to the observation [63]. In contrast, other metrics
uch as the root mean square error (RMSE) are based on deterministic
oint estimate error values and, thus, they have to quantify the RMSE
alue for every quartile so as to have an overall idea of the predictive
ower of the model under study.

.2.2. Probabilistic thermal modelling
The HST of the transformer oil is the most important transformer

nsulation degradation factor [cf. (16)]. The probabilistic thermal mod-
lling phase aims to predict the HST under uncertainty. This is per-
ormed in two connected steps (i) top-oil temperature prediction via
robabilistic forecasting models and (ii) HST estimation via experimen-
al models.

Namely, individual probabilistic top-oil temperature forecasts are
odelled with a probability density function, ̂𝑝𝑑𝑓 (𝑡)𝜃𝑇𝑂 . This PDF

includes uncertainty information associated with the prediction of the
top-oil temperature. In order to estimate the HST using top-oil temper-
ature predictions, (15) is redefined as follows:

̂𝑝𝑑𝑓 (𝑡)𝜃𝐻 = ̂𝑝𝑑𝑓 (𝑡)𝜃𝑇𝑂 + 𝛥𝛩𝐻,𝑅[(𝑖(𝑡) + 𝜑𝑖)∕𝑖𝑅]2𝑚 (18)

where ̂𝑝𝑑𝑓 (𝑡)𝜃𝐻 is the PDF estimate of the hottest-spot temperature at
instant 𝑡, ̂𝑝𝑑𝑓 (𝑡)𝜃𝑇𝑂 denotes the probabilistic TOT forecasting outcome
at instant 𝑡, and 𝑖(𝑡), 𝜑𝑖, 𝑖𝑅, 𝛥𝛩𝐻,𝑅 and 𝑚 are defined immediately above.

3.2.3. Probabilistic lifetime modelling
The goal of this phase is the transformer solid insulation RUL

estimation under uncertainty. To this end, probabilistic forecasting
model results from the thermal modelling phase are connected with
experimental degradation equations. This is achieved through a mod-
ified PF strategy, which integrates prediction, update and resampling
steps as defined in Section 2.2.

PF diagnoses the transformer health state 𝑥𝑘 through a iterative
combination of the health degradation model 𝑓 (⋅) and its influencing
measurements ℎ(⋅), where 𝑥k is the transformer RUL at the discrete
time instant 𝑘, 𝑓 (⋅) is the solid insulation degradation function [defined
in (16)], 𝑤k is the degradation uncertainty vector 𝑤k = ⟨𝑤t , 𝑤RULt ⟩,
𝑧𝑘 is the HST at time instant 𝑘, ℎ(⋅) is the HST estimation function
that correlates transformer health measurements with the RUL estimate
[defined in (18)], and 𝜑k is the measurement uncertainty vector 𝜑k =
⟨𝜑𝑖⟩.

The HST model in (18) integrates load measurements (𝑖), mea-
surement errors (𝜑𝑖), probabilistic distribution of the top-oil temper-
ature forecasting estimate including uncertainties ( ̂𝑝𝑑𝑓 (𝑡)𝛩𝑇𝑂

) along
with transformer design parameters, and it estimates the distribution
function of the HST, ̂𝑝𝑑𝑓 (𝑡)𝛩𝐻

.
The solid insulation degradation function modelled in (16) inte-

grates the process noise 𝑤t and calculates the solid insulation RUL from
the HST and initial health state, which is then iteratively updated with
the actual health state.

At time instant 𝑘 = 0, in order to model the initial transformer
health state, 𝑁𝑝 random samples, also known as particles, are drawn
{𝑥𝑖𝑘=0}

𝑁𝑝
𝑖=1 from the initial transformer insulation health state conditions.

Without loss of generality, throughout this work 𝑁𝑝 = 5000 particles
have been used. See [64] for a extended discussion on the performance
of the PF with respect to accuracy and computational time.
7

At time instant 𝑘 > 0, the predictions are performed by sampling
from the distribution of the transformer degradation uncertainty 𝑤k−1
and simulating the solid insulation degradation dynamics according
to (6) to generate new transformer health state samples 𝑥𝑖𝑘 which are
realizations of the predicted distribution 𝑝(𝑥k |𝑧0∶k−1).

In order to draw particles from the predicted probability distri-
bution function of the HST, ̂𝑝𝑑𝑓𝛩𝐻

(𝑡), the inverse sampling method
is applied as defined in Fig. 3, replacing 𝑧𝑘 with 𝛩𝐻 . This sampling
method uses the cumulative distribution function, 𝐹𝛩𝐻

(𝑡), which is
inferred from the prediction of the probabilistic forecasting model
̂𝑝𝑑𝑓𝛩𝐻

(𝑡), to draw samples from the predicted distribution.
In the developed case studies, hourly sampled top-oil and hottest-

spot temperature predictions are performed which are aligned with the
discrete time-step 𝑘 of the state-degradation function.

4. Experimental results

This section analyses two power transformers operated in different
nuclear power stations through the same probabilistic analysis method-
ology including data processing, probabilistic thermal modelling and
probabilistic lifetime modelling steps.

4.1. Analysis methodology

The data processing stage consists of data cleaning, organization and
feature selection steps. Data cleaning and organization steps preprocess
datasets by filtering out invalid readings such as erroneous and missing
values. The feature selection step is focused on the recursive feature
elimination (RFE) procedure [60,61] and the CRPS is used to rank the
results and select the best model and its features [cf. (17)].

The probabilistic models have been designed based on the set of
explanatory variables that influence analytic relations introduced in
Section 3.1. In order to quantify and generalize the predictive power
of different probabilistic forecasting models a 10 fold cross-validation
(CV) strategy has been used [65].

To this end, available datasets are divided into 10 folds {fold0,… ,
fold9}. First, a probabilistic forecasting model is trained for the first
fold {fold0} and tested with the second fold {fold1}. Next, the same
model is trained with two folds {fold0, fold1} and tested with the third
fold {fold2} and the process continues until the models are trained
with nine folds {fold0,… , fold8} and tested on the tenth fold {fold9}.
This CV strategy enables the generalization of the predictive perfor-
mance results by examining the models under different training and
testing scenarios. The number of folds incurs a bias–variance tradeoff
compromise and 10-fold CV have been shown to yield error estimates
that suffer neither from high bias, nor high variance [66,67]. Vertical
dashed lines in the available datasets indicate the equidistant folds
(Figs. 5, 10).

The power transformer RUL estimation process is based on the PF
algorithm. Based on expert knowledge [49], the initial state of the solid
insulation paper is modelled as a new paper with 180 000 h with an 8%
uncertainty from the initial lifetime. The process noise is modelled with
a variation of 0.01% from the initial lifetime (cf. Table 2). These are
plausible assumptions adopted for experimentation purposes, but note
that they do not limit the applicability of the approach.

The three scenarios displayed in Table 3 have been studied and com-
pared when estimating the RUL. Configuration #1 is the deterministic
model that uses measured top-oil temperature and load data as in the
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Table 2
Probabilistic assumptions of noise and initial state.

Model parameter Symbol Distribution

Initial state 𝑅𝑈𝐿0 𝑁(180000, 150)
Process noise 𝑤𝑘 𝑁(0, 20)

Table 3
Transformer RUL evaluation configurations.

ID RUL HST Top-oil temperature Load

#1 Eq. (11) Eq. (12) �̂�𝑇𝑂 = 𝛩𝑇𝑂(𝑡) 𝑖 = 𝑖(𝑡)

#2 Eq. (16) Eq. (15) �̂�𝑇𝑂=𝑁(𝛩𝑇𝑂 , 𝜑𝑇𝑂),
𝜑𝑇𝑂=5%

𝑖=𝑁(𝑖, 𝜑𝑖), 𝜑𝑖=5%

#3 Eq. (16) Eq. (18) �̂�𝑇𝑂= ̂𝑝𝑑𝑓𝛩𝑇𝑂
(𝑡) 𝑖 = 𝑁(𝑖, 𝜑𝑖), 𝜑𝑖 = 5%

Table 4
Parameters of the analysed EDF power transformer.

Param. Value Param. Value Param. Value

Cooling
/m,n

Oil Forced
Water Forced
/0.8,0.9

Rating 735
MVA

𝛥𝐻,𝑅/
𝛥𝑇𝑂,𝑅

30 ◦C/
24.3 ◦C

V1/ V2 23 kV/
400

√

3 kV
𝑤core,coil
+ 𝑤tank

265000
kg

𝑖𝑟/𝛾 18.45
kA/0.25

Fig. 5. Monitored load and top-oil temperature (10/2019–06/2020).

standard IEEE C57.91 [49], and its variations [50,51]. Configuration
#2 draws measurement errors from the Gaussian distribution for top-
oil temperature and load as in [40,52,53]. Configuration #3 is the
application of the framework in Fig. 4 with probabilistic top-oil tem-
perature forecasting results and load-measurement errors drawn from
the Gaussian distribution.

Results are normalized with the maximum RUL value to generate
intuitive metrics and facilitate the decision-making.

4.2. EDF energy power station

The main design and nameplate rating parameters of the power
transformer located at a EDF’s power station in the UK are displayed
in Table 4.

Monitored parameters in the plant include 4-hourly sampled ambi-
ent temperature, load, bottom-oil and top-oil temperature. After pre-
processing the available datasets, Fig. 5 shows the load and top-oil
temperature data of the power transformer.

Fig. 6a shows the mean and standard deviation CRPS values of QRF
and QGB models trained with different number of features through 10
8

Fig. 6. (a) CRPS results for QRF & QGB models with different features; (b) importance
ranking of features for the QRF model.

Fig. 7. QRF-based probabilistic top-oil temperature forecasting results.

fold CV, where each fold is comprised of approximately 22 days (cf.
Fig. 5). Among the tested models it can be seen that the best perfor-
mance is obtained with the QRF model with 12 features
(CRPS = 1.66 ± 2.1). The best QGB model is obtained with 4 features
(CRPS = 1.8 ± 2.17). Fig. 6b shows the importance of the best prob-
abilistic forecasting model features, i.e. QRF model with 12 features.
It can be observed that the load and bottom oil temperature have
the greatest importance, as defined in the analytic relation in (12),
substituting the ambient temperature with the bottom-oil temperature,
which is more informative, but less commonly monitored. The remain-
ing features, including ambient temperature, describe the dynamics
not captured by these features and the model in (12). Accordingly,
subsequent forecasting and lifetime estimation steps will be based on
this QRF configuration.

After selecting the features of the QRF model, the model is trained
using the first 7 folds and tested on the last 3 folds. The QRF model
estimates the conditional quantiles of the top-oil temperature given in-
put features. Fig. 7 shows the top-oil temperature maximum likelihood
estimates, different prediction intervals and the true value for the last
fold.

Fig. 7 shows that the maximum likelihood value persistently follows
the true value. The uncertainty of the QRF model in each prediction
determines the width of different prediction intervals. That is, if the
QRF model is confident in the prediction, the prediction bounds are
narrow (around 06-06-2020). In contrast, if the QRF model is not
confident in the predictions, the prediction bounds are wider (around
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Fig. 8. Absolute top-oil temperature estimation errors from Fig. 7.

18-06-2020). This can be visually checked in Fig. 7, where prediction
bounds increase with the prediction horizon.

The uncertainty area for decision-making depends on the predicted
PDF and the prediction interval. That is, 90% prediction intervals cover
most of the area of the predicted PDF, but if the width of the PDF is
wide, then the decision making area will be also wide. In contrast, if
the width of the PDF is narrow, it may be the case that low prediction
intervals cover most of the area of the PDF. The width of the PDF is
reflected on the prediction intervals shown in Fig. 7.

Fig. 8 shows the absolute top-oil temperature estimation error along
with the 60% prediction intervals for the probabilistic top-oil temper-
ature forecasts shown in Fig. 7.

It can be seen that the width of the prediction interval varies
for different predictions, which informs that the underlying PDF also
changes. These uncertainty-aware predictions assist the engineers in
the decision-making process with temperature forecasts along with
informative prediction intervals.

The three lifetime analysis configurations have been tested for the
datasets shown in Fig. 5 (cf. Table 3). Accordingly, Fig. 9 shows the
normalized transformer lifetime estimates for the analysed scenarios
with the deterministic estimate for the scenario #1, and maximum
likelihood RUL estimates along with 95% confidence intervals for the
scenarios #2 and #3.

Fig. 9 also shows the PDFs of the health state of the transformer
at two different time instants. On the one hand, the diagnostics stage
evaluates the health state at the time instant 20-06-2020 by processing
all the available data. On the other hand, the prognostics stage predicts
the health state in the following 32 months by repeatedly processing the
same load and temperature data trajectories from the diagnostics stage
four times indicated by vertical dashed lines in Fig. 9.

In each iteration over the available datasets (indicated with vertical
lines) it is possible to distinguish two flat periods with almost no
degradation that match with the change of operations in the plant
(cf. Fig. 5) around December (fold2) and March–April (fold4, fold5).
Similarly, the slope of the degradation trajectory towards the summer
is greater due to the increased top-oil temperature (fold8, fold9).

The degradation trajectory of the configuration based on the Gaus-
sian distribution degrades faster compared with the model based on
probabilistic forecasting. The different arises from the underlying PDF
used for modelling the top-oil temperature. While Gaussian PDF is
based on an assumption of a constant noise added through the Gaussian
PDF, the QRF model adapts its prediction bounds according to the con-
fidence in each prediction. In this case the accuracy of the probabilistic
model is high (cf. Fig. 6a), and accordingly, the confidence bounds of
the probabilistic predictions are narrow (cf. Fig. 7).
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Fig. 9. Transformer RUL estimates for the analysed scenarios.

Table 5
Parameters of the analysed Bruce Power transformer.

Param. Value Param. Value Param. Value

Cooling
/m,n

Oil Directed
Water
Forced/1, 1

Rating 267 MVA 𝛥𝐻,𝑅/
𝛥𝑇𝑂,𝑅

30 ◦C/
24.3 ◦C

V1/ V2 17 kV/
230

√

3 kV
𝑤core,coil/
𝑤tank

95254 kg/
30617 kg

𝑖𝑟/𝛾 15.1
kA/0.25

4.3. Bruce power station

The main design and nameplate rating parameters of the power
transformer located at Bruce Nuclear generating station (Canada) are
displayed in Table 5.

Monitored variables include hourly sampled ambient temperature,
cooling water temperature, load and top-oil temperature. Fig. 10 shows
the preprocessed load and top-oil temperature data for the power
transformer.

Fig. 11a shows the mean and standard deviation CRPS values of QRF
and QGB models trained and tested with different number of features
through 10 fold CV, where each fold is comprised of approximately
138 days (cf. Fig. 10). Among the tested models the best performance
is obtained with the QRF model with 13 features (CRPS=4.91 ± 1.5).
The best QGB model is obtained with 13 features (CRPS=5.7 ± 1.5).
Fig. 11b shows the importance of the best probabilistic forecasting
model features, i.e. QRF model with 13 features.

It can be observed that input power and ambient temperature have
the greatest importance, which matches with the initial analytic for-
mulation in (12), where top-oil is estimated from ambient temperature
and input load. The remaining features, as in the previous case study,
describe the dynamics not captured by the model in (12). Accordingly,
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Fig. 10. Monitored load and temperature data (11/2012–10/2016).

Fig. 11. (a) CRPS results for QRF & QGB models with different features; (b) importance
ranking of features for the QRF model.

subsequent forecasting and lifetime estimation steps will be based on
this QRF configuration.

After selecting the input features of the QRF model, the model is
trained using the first 7 folds and tested on the last 3 folds. The QRF
model estimates the conditional quantiles of the top-oil temperature
given input features. Fig. 12 shows the probabilistic top-oil temperature
maximum likelihood estimates along with different prediction intervals
and the true values for the last year of operation, i.e. fold8 and fold9.

Fig. 12 shows that the maximum likelihood follows the true value
and the associated prediction intervals vary according to the adopted
quantiles. That is, the wider the bounds, the wider the area around the
maximum likelihood value. Note again that the prediction intervals are
not symmetric around the maximum likelihood value, which informs
that the estimated PDFs are not Gaussian.

Fig. 13 shows the absolute top-oil temperature estimation errors for
60% prediction intervals along with the maximum likelihood for the
probabilistic forecasts in Fig. 12.

It can be seen that the width of the prediction interval increases
with the prediction horizon. The power outage causing decreased top-
oil temperature between fold8 and fold9 causes an increased prediction
error because this trend is not captured in the training set. Previous
10
Fig. 12. QRF-based probabilistic top-oil temperature forecasting results.

Fig. 13. Absolute top-oil temperature estimation errors from Fig. 12.

power outages in fold3 cause a more abrupt decrease of the top-oil
temperature (cf. Fig. 10).

The three lifetime analysis configurations have been tested for the
datasets shown in Fig. 10 (cf. Table 3). All the configurations have been
tested with the entire dataset processed sequentially twice including
a diagnostics and prognostics stage. Fig. 14 shows the normalized
transformer lifetime estimates for the deterministic estimate modelled
in configuration #1 and maximum likelihood RUL and 95% confidence
intervals for the scenarios #2 and #3. Vertical dashed line indicates the
end of the diagnostics stage, i.e. first pass of the available datasets.

Fig. 14 also shows the PDFs of the health state of the transformer
at two different time instants. On the one hand, the diagnostics stage
evaluates the health state at the time instant 15-10-2016 by processing
all the available data. On the other hand, the prognostics stage predicts
the health state in the following 4 years by processing the same load
and temperature data trajectories from the diagnostics stage.

From the applied load and temperature profiles (cf. Fig. 10) it can
be seen that there are three increasing top-oil temperature trends (fold1
to fold2; fold4; and fold6 to fold7) interspersed with decreased top-oil
temperatures (fold3; fold4; and fold8) that match, respectively, with
accelerated degradation trajectories and negligible degradation stages.

Additionally, Fig. 14 shows that probabilistic configurations result
in different maximum likelihood and confidence interval values. This
is again directly linked with the underlying PDFs used for each config-
uration (cf. Table 3). Accordingly, although the applied datasets are
identical, the underlying distributions of the probabilistic estimates are
different, and this has a direct effect on the lifetime estimate. Namely,
each of the RUL estimates in Fig. 14 for the configurations #2 and
#3 are probabilistic predictions with its corresponding PDF for each
of the evaluated discrete time instants and the lifetime estimate of the
configuration #1 does not include confidence intervals and therefore
there is no criteria for decision-making under uncertainty.

The degradation rate of the configuration #2 is greater compared
with the other configurations, and the degradation rate of the config-
uration #3 is the smallest. This is directly linked with the uncertainty
bounds and the maximum likelihood estimate of the underlying PDF.
That is, the variance of the measurement data integrated in the Gaus-
sian model (configuration #2) is constant in each iteration and the
variance of the PDF of the top oil temperature depends on the uncer-
tainty associated with the prediction of the QRF model (configuration
#3).
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Fig. 14. Transformer RUL estimates for the analysed scenarios.

4.4. Discussion

Among the tested datasets it can be seen that the CRPS values in
Figs. 6 and 11 are different. That is, the accuracy of the probabilis-
tic forecasting model of the QRF configuration in Fig. 6 is greater.
This translates to probabilistic predictions with smaller uncertainty (cf.
Figs. 7 and 12) and lifetime models with smaller uncertainty (cf. Figs. 9
and 14).

Comparing probabilistic models drawn from Gaussian distributions
and the designed QRF models in Figs. 9 and 14, it can be observed
that the shapes of the PDFs of the RUL predictions are different. The
PDF inferred from the QRF model, ̂𝑝𝑑𝑓𝛩𝑇𝑂

, changes for each iteration,
while the PDF inferred from the Gaussian distribution is held constant
throughout the lifetime estimation. This results in different normalized
lifetime estimates including the maximum likelihood and confidence in-
terval values. Note that the different sources of uncertainty of different
configurations are further propagated through the same PF framework
to estimate the transformer RUL.

Additionally, note that the information provided by the determinis-
tic estimate is a single point value without uncertainty information (cf.
Table 3, configuration #1). In these conditions, if the end-user adopts
the deterministic model for decision-making about transformer health,
maintenance judgements will be solely based on a single-point estimate
over the course of the evaluation period. However, the operation of
transformers is influenced by different sources of uncertainty and it is
important to include them in the lifetime model to quantify their effect
on the transformer health and adopt informed decisions accordingly.

Probabilistic thermal and lifetime estimates inform the engineer
about the model’s forecasting confidence with respect to experienced
operational conditions. The greater the forecasting confidence, the nar-
rower the prediction interval of the forecasting estimate as it resembles
an experienced operation context, e.g. see 06/06–12/06 period in Fig. 7
and mid-January–April period in Fig. 12, where the features used to
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predict these intervals (Figs. 6, Fig. 11) match with the features used
to train the forecasting models inferred from training datasets (fold0-
fold7 in Figs. 5 and 10). This is propagated to the lifetime models
along with the constant load error (cf. configuration #3 in Table 3) and
results in the PDF estimates shown in Figs. 9 and 14. The width of the
lifetime PDF estimates is the result of the integration of the considered
sources of uncertainty (initial state, process uncertainty, measurement
uncertainty) through the PF-based state estimation algorithm.

The improved prediction accuracy of the state-of-the-art machine-
learning models, such as deep-learning, comes at a cost related to the
inability to reason about a model’s uncertainty and the inability to
estimate a complete PDF of the predicted values. While these models
may generate accurate prediction estimates, and they may have been
used to estimate measurement information, e.g. transformer top-oil
temperature (cf. Figs. 7 and 12), their integration in the framework
deviates from the proposed approach because they cannot provide a
full PDF estimate, and, accordingly, the proposed probabilistic thermal
model becomes deterministic. Therefore, deep-learning models may not
benefit from the proposed framework due to the missing uncertainty
information.

Nevertheless, inspired by the seminal work in [68], probabilistic
deep-learning models are emerging [69], and early results combining
deep-learning with Bayesian modelling approaches have been pro-
posed, e.g. [70,71]. This suggests that the proposed framework may
have a broader impact with the incorporation of additional probabilis-
tic prediction methods.

5. Conclusions

The design of accurate prognostics models requires modelling com-
plex and stochastic interactions including the asset degradation and
operation conditions. In the context of power and energy systems,
owing to the increasing advent of dynamic and stochastic applica-
tions, such as renewable energy systems and electric vehicles, the
operation conditions and degradation trajectories are influenced by
different sources of uncertainty. This scenario highlights that uncer-
tainty management solutions are needed for accurate asset management
practices.

Probabilistic forecasting applications are emerging as potential data-
driven solutions for uncertainty-aware predictions. Probabilistic models
predict a PDF with a high maximum likelihood and narrow prediction
intervals for those instances when the input features are correlated
with the training data. In contrast, for unseen features, they predict
distributions with low maximum likelihood and wide intervals. The
shape of the distribution, i.e. maximum likelihood and prediction
intervals, inform the decision-making process indicating the confidence
of the probabilistic model on the predictions.

The capability to post-process the probabilistic forecasting model
information and integrate in a lifetime estimation framework pro-
vides the opportunity to accurately model subsequent decision-making
processes. Accordingly, this paper presents a probabilistic forecasting
informed failure prognostics framework for the uncertainty-aware RUL
estimation based on the integration of probabilistic forecasting models
with Bayesian state-estimation methods.

The use of probabilistic models enables the adoption of uncertainty-
aware decisions inferring most likely, worst-case and best-case op-
eration scenarios where the prediction intervals vary depending on
the effect of uncertainties on the lifetime of the analysed asset. The
proposed lifetime prediction framework operates with probabilistic
forecasting models designed through a supervised learning process.
That is, the forecasting model is designed to optimize the estimation
of the expected output prediction with a set of input features. Without
probabilistic models, this would lead to deterministic predictions with
single point estimates without uncertainty information.

The proposed methodology has been validated through two dif-
ferent power transformer case studies with datasets collected in two
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different nuclear power stations. Transformers are key integrative as-
sets of energy systems and their correct operation determines the
reliable operation of the power network. However, in order to leverage
the potential of the probabilistic forecasting methods for transformer
lifetime prediction practices, it is necessary to modify existing trans-
former lifetime estimation models and integrate the information of
probabilistic operation scenarios.

Accordingly, the proposed approach should be useful to evaluate the
transformer lifetime in different contexts given different hypothetical
operational profiles. In this situation, the framework provides a criteria
to evaluate the lifetime reduction of power transformers including
different sources of uncertainty.

The operation condition of nuclear power plants includes power
outages for maintenance purposes. Power outages lead to different
operation states and associated variation of the degradation rates of
the transformer. In the context of renewable energy sources, due to the
dependence on the intermittent weather conditions and the inherent
stochastic nature, the operation states go through more variations. In
this context, future work may focus on the adaptation of the frame-
work for renewable energy source applications and the integration of
probabilistic load forecasting results.
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