
R E S E A R CH AR T I C L E

Precipitation trends in the island of Ireland using a dense,
homogenized, observational dataset

Peter Domonkos1 | John Coll2 | José Guijarro3 | Mary Curley4 |

Elke Rustemeier5 | Enric Aguilar6 | Séamus Walsh4 | John Sweeney4

1Tortosa, Spain
2Irish Climate Analysis and Research
Units, Department of Geography,
Maynooth University, Maynooth, Ireland
3State Meteorological Agency, Territorial
Delegation of Balearic Islands, Spain
4Climatology and Observations Division,
Met Éireann, Dublin, Ireland
5Frankfurt, Germany
6Centre for Climate Change (C3),
Universitat Rovira i Virgili, Vila-Seca,
Spain

Correspondence
Peter Domonkos, Tortosa, Spain.
Email: dpeterfree@gmail.com

Funding information
Irish Environmental Protection Agency,
Grant/Award Number: 2012-CCRP-FS.11;
Science Foundation Ireland, Grant/Award
Number: Proposal ID 16/CW/3801

Abstract

A dense monthly precipitation dataset of Ireland and Northern Ireland was

homogenized with several modern homogenization methods. The efficiency of

these homogenizations was tested by examining the similarity of homogeniza-

tion results both in the real data homogenization and in the homogenization

of a simulated dataset. The analysis of homogenization results shows that the

real dataset is characterized by a large number of, but mostly small, non-

climatic biases, and a moderate reduction of such biases can be achieved with

homogenization. Finally, a combination of the ACMANT and Climatol

homogenization results was applied to improve the data accuracy before the

trend calculations. These two methods were selected for their proven high

accuracy, missing data tolerance and ability to complete time series via the

infilling of missing values before the trend calculations. Metadata were used

within the Climatol method. To facilitate this analysis the study area was split

into smaller climatic regions by using the Ward clustering method. Five cli-

matic zones consistent with the known spatial patterns of precipitation in Ire-

land were established. Linear regression fitting and the Mann-Kendall test

were applied. Low frequency fluctuations were also examined by applying a

Gaussian filter. The results show that the precipitation amount generally

increases in the study area, particularly in the northwestern region. The most

significant increasing trends for the whole study period (1941–2010) are found

for late winter and spring precipitation, as well as for the annual totals. In the

period from the early 1970s the increase of precipitation is general in all sea-

sons of the year except in winter, but the statistical significance of this increase

is weak.
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1 | INTRODUCTION

The quantity of precipitation is of high importance for
theoretical and applied research and also directly impacts
the lifestyle of people. Long series of precipitation

observations have been produced in many parts of the
world to monitor both the spatial and temporal variation
of this essential climate variable. Trend and temporal var-
iability of observed precipitation have been examined
recently for various European countries, for example, for
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Ireland (Murphy et al., 2018), England (de Leeuw
et al., 2016), Germany (Duan et al., 2019) and Switzerland
(Isotta et al., 2019), and also for countries outside of
Europe (Vincent et al., 2015; Hu et al., 2017; Abahous
et al., 2018, etc.). Precipitation trends are also examined
on continental and global scales (Allan and
Zveryaev, 2011; Li et al., 2016). Station rain gauge series
are used most frequently, followed by gridded data
(González-Hidalgo et al., 2011; Wang et al., 2014; Jones
et al., 2016; Iqbal et al., 2019). By contrast, for data sparse
land regions and overseas and oceans satellite data are
frequently used (e.g., Hatzianastassiou et al., 2016; Zhang
et al., 2017; Qin et al., 2019). However, it should be noted
that rain gauge data are generally more accurate (Tong
et al., 2014), therefore their use is preferred where they
are available with sufficient temporal coverage and spa-
tial density. The analysis of the temporal variability of
observed precipitation data is often accompanied by
(a) careful quality control (QC) procedures and time
series homogenization, that is, filtering of non-climatic
impacts from the observed data (e.g., González-Hidalgo et
al., 2011; Irannezhad et al., 2014; Pérez-Zanón
et al., 2017); (b) analysis of the relationship with large
scale circulation patterns (Gutiérrez-Ruacho et al., 2010;
Romano and Preziosi, 2013; Duan et al., 2017), and with
other climatic elements (Yasunaga and Tomochika, 2017;
Beranová and Kyselý, 2018); (c) analysis of extreme pre-
cipitation indices based on data of daily resolution
(Murawski et al., 2016; Valdes-Abellan, 2017; Maheras
et al., 2018).

In this study the trend and variability of precipitation
in the island of Ireland will be examined for the period
1941–2010 with a QC-ed and homogenized rain gauge
observation dataset of monthly resolution. It is a high
density dataset including 703 station series for Ireland
and further 207 station series for Northern Ireland. Note,
however, that in most of the analysis a subset of 299 series
including long and complete series of observed data will
be used. Henceforth the whole dataset of 910 series will
be referred to as whole IENet and the subset of 299 series
as sub-IENet, respectively, while the study area is
referred to either as the island of Ireland or the
IENet area.

The study has two main aims: Firstly, the calculation
of accurate precipitation trends for the IENet area, and
secondly, examining the usefulness of some up-to-date
statistical homogenization methods used for the homoge-
nization of the IENet dataset.

The homogenization is based on the use of four
homogenization methods: HOMER (Mestre et al., 2013),
ACMANT (Domonkos and Coll, 2017), AHOPS
(Rustemeier et al., 2017) and Climatol (Guijarro, 2018).
In a previous study, the operation and the break

detection statistics of these methods have been studied
(Coll et al., 2020, hereafter: C2020) with the same precipi-
tation dataset. Here, and as an extension of the previous
study, the similarities and differences of the homogeniza-
tion results will be analysed further before the final
homogenization method for application to the climate
variability analyses will be selected. The similarity of
homogenization results will be evaluated with the calcu-
lation of root mean square differences between synchro-
nous monthly and annual values, as well as with the
mean absolute difference between the linear trends for
the whole study period (1941–2010). A section of the
MULTITEST experiments (Guijarro et al., 2017) will be
incorporated, since as part of this the Irish precipitation
dataset was used for building a homogeneous bench-
mark. The comparison of the similarities of homogeniza-
tion results using the real observational dataset on the
one hand, and using an artificially developed benchmark
dataset on the other side will serve to elucidate more
clearly the role of real datasets and benchmark datasets
in the assessment of homogenization efficiency.

Trend and variability analyses are often performed for
regions with little spatial variability of climate within a
region. Such regionalization can be done by principal
component analysis (e.g., Brienen et al., 2013), cluster
analysis (e.g., Scherrer et al., 2016) or with subjective
analysis of varied geographical factors (e.g., Daniels
et al., 2014). In this study, the Ward clustering algorithm
will be used, and the trend and variability of precipitation
will be evaluated for five climatic regions of the island of
Ireland. The linear trend of precipitation will be exam-
ined for both annual and 3-month seasonal values across
the whole study period and for some selected shorter
periods.

The organization of the paper is as follows. The data
and methods are described in the next section. In Sec-
tion 3, the similarity of the homogenization results is
shown and the results are discussed. In Section 4 the
trend and variability of the Irish precipitation data are
shown and discussed. The study ends with a discussion
and conclusions presented in Section 5.

2 | DATA AND METHODS

2.1 | Observed data

Time series of monthly precipitation totals are collected
from stations with rain gauge observations across the
island of Ireland. The whole dataset (whole IENet)
includes 703 time series of Ireland and 207 time series of
Northern Ireland (Figure 1). The datasets have already
been subjected to rigorous QC as part of Met Éireann and
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the UK Met Office data screening protocols and further
QC procedures (C2020). The study period is of 1941–2010,
but most of the series do not have fully intact data for this
period. In most calculations only the 299 time series with
greater than 30 years intact observational records are used,
and this subset is referred to as sub-IENet. The mean miss-
ing data ratio of the sub-IENet is 24.2%.

The relatively small extent of the IENet area
(84,421 km2), the high station density and the relatively
small geographical variation, that is, all station heights
are between 5–701 m above sea level, provide high spatial
correlations between the precipitation totals. The mean
spatial correlation for each of the 10 best neighbours of a
candidate series is above 0.9 even in the sub-IENet (not
shown).

2.2 | Surrogate data

Within the framework of the MULTITEST project
(Guijarro et al., 2017) a surrogate dataset of the IENet

precipitation dataset was constructed. The first step was to
homogenize and complete the real series with Climatol 3.0
and use these series to calculate variograms, gamma prob-
ability distribution coefficients and frequencies of zeros.
These parameters were then used to generate 100 homoge-
neous series of 60 years length by means of the R package
“gstat”, which allowed the preservation of a realistic spa-
tial correlation structure (López et al., 2016).

Breaks (i.e., sudden shifts in the means) were then
inserted into the inhomogeneous part of the dataset to
randomly selected positions with 1 per 20 years mean fre-
quency. The values of inhomogeneous periods are biased
by multiplying the unbiased values by a factor drawn
from a Gaussian distribution of 1.0 mean and 0.2 stan-
dard deviation (equivalent to a 20% variation in
precipitation).

2.3 | Homogenization methods

Four homogenization methods are applied in this study,
although finally one method will be selected to prepare
the analysis of precipitation trends on homogenized
IENet data. Three from the four methods, that is,
HOMER (Mestre et al., 2013), ACMANT (Domonkos and
Coll, 2017) and AHOPS (Rustemeier et al., 2017) are
developed from the method PRODIGE (Caussinus and
Mestre, 2004). PRODIGE is known to be one of the best
homogenization methods of the 00s, this evaluation has
both theoretical reasoning (Domonkos, 2017; Lindau and
Venema, 2018) and justification by tests (Venema
et al., 2012). All of HOMER, ACMANT and AHOPS
preserve the best theoretical properties of PRODIGE,
while also including added favourable features. By con-
trast, Climatol (Guijarro, 2018) is a more conservative
homogenization method based on a stepwise approxima-
tion with the single break detection method of
Alexandersson (1986), cutting algorithm (Easterling and
Peterson, 1995) and spatial interpolation for adjusting
inhomogeneities. However, efficiency tests
(Guijarro, 2018) prove that the accuracy of Climatol
homogenization results is close to that of the modern
multiple break methods. See more details about these
homogenization methods and their break detection skills
in C2020. Note that in this study a newer version of
ACMANT is used, that is, the ACMANTv4 (https://
github.com/dpeterfree/ACMANT). In this version, the
adjustments for inhomogeneities are derived from
ensemble scenarios of break populations, and the adjust-
ments are calculated with the weighted ANOVA model
of spatially changing climate (Domonkos, 2017).

In applying HOMER and AHOPS only the data of the
sub-IENet network are used due to the limited missing

FIGURE 1 Annotated map of the island of Ireland showing

the selected met Éireann and met Office, United Kingdom station

locations for the network of: (a) 299 stations (sub-IENet) denoted

by squares; (b) 910 stations (whole-IENet) denoted by circles.

Station details marks are overlain on a regular 10 × 10 km grid to

give an indication of density [Colour figure can be viewed at

wileyonlinelibrary.com]
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data tolerance of these methods. ACMANT and Climatol
are used both for the whole IENet and sub-IENet,
although it should be noted that only the sub-IENet data
are used in the calculation of climatic trends. Addition-
ally, Climatol is used in a third way, that is, with the con-
sideration of metadata confirmed by two different
homogenization methods, from which at least one
method is Climatol or HOMER. Note that in the valida-
tion of metadata a larger role is given to Climatol and
HOMER, since both ACMANT and AHOPS are charac-
terized by relatively high false alarm rates (C2020). The
validation of metadata with statistical break detection
methods is presented in C2020. We have found 50 cases
in which Climatol or HOMER detected a break close to
the timing of a validated metadata. From 45 of these
50 cases Climatol detected the event within 2 years dis-
tance from the date of the metadata. In the preparation
of the Climatol homogenization with metadata use, the
break position of Climatol detection was shifted to the
timing of the nearby metadata if the time lapse was
shorter than 2 years, while new breaks were added in the
remaining five cases.

Before the calculation of climatic trends, a combina-
tion of two methods, namely the results of Climatol with
metadata use and the results of ACMANTv4 were aver-
aged. Both these participating methods used the data of
the whole IENet in this final homogenization, and the
use of this denser network improved their accuracy.
Within the homogenization procedure, all the time series
are completed to extend across the entire study period. In
the data completion, spatial interpolation is applied to
infilling gaps of the observed series with the help of the
intrinsic routines of ACMANT and Climatol. It has been
found in previous work that the infilling of data gaps
with spatial interpolation does not have adverse effects
on the accuracy of climatic trends (Domonkos and
Coll, 2019).

2.4 | Similarity of homogenization
results

Precipitation amounts are expressed in mm / monthly
total unit in the analysis of similarities and differences.
Root mean square difference (Dr) and mean absolute dif-
ference of linear trends (Dt) are used to characterize the
similarities of and differences between homogenization
products of different homogenization methods. Mean
absolute trend differences are expressed by the 70-year
mean changes of monthly totals. Beyond the use of Dr

and Dt, similarity indices are constructed whose values
do not depend on the frequency and magnitude of the
adjustments applied in the homogenization methods. For

these indices (Sr and St), products with random adjust-
ments are generated (Dr0 and Dt0), in which the signs and
magnitudes of adjustments randomly vary, but the mean
adjustments are the same as in the real homogenization
products. The purpose of these random adjustments is to
set S = 0 for the case of random adjustments, set S = 1 for
the case of whole similarity (identity), and create with the
use of these two fixed points a scale of similarity indices.

Let two homogenization products of the same precipi-
tation series be denoted by A and B.

A=a1,a2,…,an

B=b1,b2,…,bn ð1Þ

Where n is the number of the elements in the time
series. Then their root mean square difference (Dr[A,B])
is defined by (2).

Dr=
1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i=1

ai−bið Þ2
s

ð2Þ

Equation (2) can be applied with any time unit, and
in the study it is used for the calculation of monthly and
annual root mean square differences.

The mean absolute trend difference is shown by (3).

Dt= t Að Þ− t Bð Þj j ð3Þ

In (3), t stands for the linear trends of the study
period (1941–2010).

The root mean square difference with random adjust-
ments (Dr0) is defined by the help of raw time series (Q)
and random variable x (4), (5).

Dr0=
1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i=1

xa ai−qið Þ−xb bi−qið Þð Þ2
s

ð4Þ

xa,xbf g∈U −
ffiffiffi
2

p
,

ffiffiffi
2

ph i
ð5Þ

In (5), U represents uniform probability distribution.
With the same logic, the mean absolute trend bias with
random adjustments (Dt0) is defined by (6) and (7), with
the help of random variable y.

Dt0= ya t Að Þ− t Qð Þð Þ−yb t Bð Þ− t Qð Þð Þj j ð6Þ

ya,ybf g∈U −2,2½ � ð7Þ
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The similarity indices for root mean square differ-
ences (Sr) and mean absolute trend differences (Sr) are
described by (8) and (9).

Sr=
Dr0−Dr

Dr0
�100% ð8Þ

St=
Dt0−Dt

Dt0
�100% ð9Þ

To reduce random effects from Dr0 and Dt0, the means
of 1,000 repetitions of Equations (4)–(7) are applied in
Equations (8) and (9).

A working hypothesis: Higher similarity of homogeni-
zation results tends to indicate higher accuracy of the
results.

2.5 | Division to regions

The Ward clustering algorithm (Ward, 1963) was applied
to the stations of sub-IENet by means of the hclust R
function with method “ward.D2”, which follows the orig-
inal description by Ward. Before this step, time series
were homogenized by the finally selected homogeniza-
tion method (Section 2.3).

The Ward method has been widely used and general-
ized in various ways since Ward's first description
(e.g., Murtagh and Legendre, 2014). At the beginning, the
number of clusters (K) equals the number of stations.
Then, one-by-one, a pair of clusters are merged, whereby
K decreases with 1 at each step. The criterion of selecting
a pair of clusters at a particular step is based on the mini-
mization of overall within cluster variance (Murtagh and
Legendre, 2014). This procedure generates an optimal
clustering for all possible K. Finally a K is selected, for
which all the clusters represent regions with common cli-
matic – geographic properties. In our case K = 5. The
clustering results of seven stations (2.3%) were modified
manually based on geographic – climatic knowledge.
Figure 2 shows the spatial distribution of the finally
selected clusters.

This choice of K and the subsequent regional split
obtained is in accordance with earlier knowledge regard-
ing the spatial variation of precipitation in Ireland.
Ireland's northeast Atlantic location in the path of the
main depression tracks results in a strong west to east
decline in precipitation totals. To illustrate the magnitude
of this variation, isolated mountain locations in the west
and southwest receive over 3,000 mm annually, while
areas around Dublin receive less than 750 mm
(Sweeney, 1985). Superimposed on this are local spatial
contrasts due to the interaction between relief and the

prevailing Atlantic air streams; orographic effects can be
particularly marked since all the land above 750 m lies
within 56 km of the coastline (Sweeney, 1985). Conse-
quently, there are significant rain-shadow effects to the
east of the mountains, and there are also cyclonic and
convective processes active in introducing further tempo-
ral and spatial variability in the mix (Sweeney, 2014).

Due to the surrounding coastal mountains a coast-
versus-interior geography is also a principal characteristic
of the Irish climate (Sweeney, 2014), and the Central
Plain pattern of the precipitation climate is well captured
in Cluster 2 of our analysis. Other features of the spatial
variation of the precipitation climate are also well cap-
tured in the clusters, although there are small overlaps
between some of the cluster groups in places. Cluster 1 is
capturing the drier south-east and east in the lee of the
Cork-Kerry mountains and some of the other eastern
hills; while Cluster 3 is capturing the somewhat drier
again central eastern and north-eastern pattern. By con-
trast, Cluster 4 is capturing the wetter western pattern,
and Cluster 5 is able to distinguish some of the wettest
parts of the country in the north-west.

FIGURE 2 Regional classification of sub-IENet stations

[Colour figure can be viewed at wileyonlinelibrary.com]
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2.6 | Linear trends and their statistical
significance

Linear trend slopes are determined by the calculation of
linear regression. The statistical significance is controlled
by the Mann – Kendall test (Mann, 1945; Kendall, 1948).
The linear trends often strongly depend on the period
examined (e.g., de Leeuw et al., 2016), therefore we apply
a variety of starting and ending dates as has been done
similarly in other studies (e.g., Turco and Llasat, 2011;
Murphy et al., 2020).

The trends are calculated for annual values and for
12 overlapping 3-month seasons (JFM, FMA, etc.). Series
of 3-month seasons are examined instead of series of
fixed individual calendar months in order to improve the
signal-to-noise ratio.

3 | SIMILARITIES AND
DIFFERENCES OF
HOMOGENIZATION RESULTS

Table 1 presents the root mean square differences and
mean absolute trend differences of homogenization
methods both for the real sub-IENet and for the surrogate

dataset. All the homogenization exercises performed for
the real data homogenization and presented in Table 1
are using only the data of sub-IENet. The differences by
comparison with the raw dataset are also presented.
AHOPS is omitted from Table 1, as AHOPS has not been
tested by MULTITEST.

Table 1 shows that the differences between the
homogenized and raw time series are much larger in the
surrogate dataset than in the real dataset. This finding
allows a number of conclusions: (a) In spite of the large
number of breaks detected in the real IENet (C2020), the
number of large inhomogeneities is much lower there
than in the surrogate dataset. (b) Comparing the Dr and
Dt values of Table 1 with the climatic mean monthly
totals in IENet (~100 mm, Walsh, 2012), this shows that
the inaccuracy for inhomogeneities is generally low in
the sub-IENet, both for the raw and homogenized data.
(c) The results obtained with the use of the surrogate
dataset must be treated with caution due to the big differ-
ence in the frequency and magnitude of
inhomogeneieties between the real and surrogate
datasets.

The differences between homogenization results are
very similar for the real dataset to those of the surrogate
dataset. However, while such differences are much

TABLE 1 Mean differences between the homogenization results in the real sub-IENet dataset and in its surrogate dataset

Monthly root mean square difference (mm/month)

Observed data Surrogated data

Raw HOMER ACMANT Climatol Raw HOMER ACMANT Climatol

Raw — 3.72 6.24 4.96 — 15.29 15.10 14.81

HOMER 3.72 — 6.48 5.97 15.29 — 6.26 5.88

ACMANT 6.24 6.48 — 5.41 15.10 6.26 — 5.45

Climatol 4.96 5.97 5.41 — 14.81 5.88 5.45 —

Annual root mean square difference (mm/month)

Observed data Surrogated data

Raw HOMER ACMANT Climatol Raw HOMER ACMANT Climatol

Raw — 2.34 5.38 4.25 — 13.54 13.24 12.96

HOMER 2.34 — 4.83 4.43 13.54 — 5.08 4.79

ACMANT 5.38 4.83 — 4.49 13.24 5.08 — 4.37

Climatol 4.25 4.43 4.49 — 12.96 4.79 4.37 —

Mean absolute trend difference (mm/month for 1941–2010)

Observed data Surrogated data

Raw HOMER ACMANT Climatol Raw HOMER ACMANT Climatol

Raw — 3.14 7.17 5.55 — 19.73 19.62 19.71

HOMER 3.14 — 5.40 5.01 19.73 — 5.86 5.08

ACMANT 7.17 5.40 — 4.26 19.62 5.86 — 5.14

Climatol 5.55 5.01 4.26 — 19.71 5.08 5.14 —
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smaller than the differences from the raw data in the sur-
rogate dataset, these are of the same order as the differ-
ences from the raw data in the real dataset. This finding
might give the impression that the homogenization of
real IENet was unsuccessful or unnecessary. However,
the similarity indices will be used subsequently to exam-
ine in more detail the similarity of the homogenization
results (Table 2).

In Table 2, the similarity indexes are presented for all the
executed homogenizations of the real dataset. The similarity

between different versions of the same method applications
is generally much higher than the similarity between differ-
ent methods, as might be expected. Comparisons with the
raw data are not shown in Table 2, as the similarity with the
raw data is 0, it follows from the definitions.

The similarity of the homogenized monthly values is
generally low at mostly 9–18%, except between ACMANT
and Climatol where it is 35–40%. The similarity of the
homogenized annual values is slightly higher, although
the improvement relative to the monthly index is not

TABLE 2 Similarity indices of the homogenization results

Similarity index (%) for monthly root mean square differences

HOMER AC-299 AC-910 AHOPS Cl-299 Cl-910 Cl-meta Final

HOMER — 16 17 9 16 12 13 16

AC-299 16 — 57 18 40+ 35+ 35+ 50

AC-910 17 57 — 17 40+ 37+ 37+ 66

AHOPS 9 18 17 — 15 13 14 17

Cl-299 16 40+ 40+ 15 — 66 65 56

Cl-910 12 35+ 37+ 13 66 — 95 64

Cl-meta 13 35+ 37+ 14 65 95 — 65

Final 16 50 66 17 56 64 65 —

Similarity index (%) for annual root mean square differences

HOMER AC-299 AC-910 AHOPS Cl-299 Cl-910 Cl-meta Final

HOMER — 19 20 13 19 15 15 19

AC-299 19 — 58 24 41+ 36+ 36+ 51

AC-910 20 58 — 22 42+ 39+ 39+ 67

AHOPS 13 24 22 — 19 17 17 23

Cl-299 19 41+ 42+ 19 — 67 66 57

Cl-910 15 36+ 39+ 17 67 — 95 65

Cl-meta 15 36+ 39+ 17 66 95 — 66

Final 19 51 67 23 57 65 66 —

Similarity index (%) for mean absolute trend differences

HOMER AC-299 AC-910 AHOPS Cl-299 Cl-910 Cl-meta Final

HOMER — 30 31 28 31 28 29 31

AC-299 30 — 68 57* 52* 50+ 50+ 62

AC-910 31 68 — 54* 53* 50+ 51* 74

AHOPS 28 57* 54* — 47+ 48+ 48+ 56*

Cl-299 31 52* 53* 47+ — 73 72 64

Cl-910 28 50+ 50+ 48+ 73 — 96 71

Cl-meta 29 50+ 51* 48+ 72 96 — 72

Final 31 62 74 56* 64 71 72 —

Note: AC-299, ACMANT with the use of the sub-IENet; AC-910, ACMANT with the use of the whole IENet; Cl-299, Climatol with the use of
the sub-IENet; Cl-910, Climatol with the use of the whole IENet; Cl-meta, Climatol with the use of the whole IENet + metadata; Final, the
finally selected homogenization method (Section 2.4). “*” indicates higher than 50% similarity (S) of independent methods, “+” indicates
33% < S < 51% similarity of independent methods.
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significant. The similarity of annual values is mostly
between 13–24%, and for the pair of ACMANT and
Climatol it is 36–42%. The similarity of homogenized
trends is much higher than the similarity of individual
annual or monthly values. The similarity between any
two of ACMANT, AHOPS and Climatol trend results is
between 47–57%, while the similarity between HOMER
trends and the trends of any other method is only 28–31%.

The relatively high similarity between ACMANT and
Climatol (for linear trends between any two of ACMANT,
AHOPS and Climatol) suggests that these methods, in
spite of their underlying different methodologies, provide
the most accurate results among the methods examined
here. It is interesting to note that the 47–57% similarity of
trend results is only slightly lower than the 57–73% simi-
larity for the different versions of the same methods, from
which only the similarity between homogenizing with
metadata or without metadata is higher. On the other
hand, it must be noted that high similarity does not nec-
essarily assure high accuracy or high efficiency. Relying
only on the similarity results, it could not be excluded
that the HOMER homogenized trends are the most accu-
rate and all the other methods fail partly in the same
way. However, we can add that HOMER failed to detect
15 breaks which were concordantly detected with the
other 3 homogenization methods and were justified also
with metadata (C2020), and also, that in MULTITEST
experiments ACMANT and Climatol gave better results
than some automated versions of HOMER.

Another observation is that the Climatol version
using the whole IENet has lower similarity with the other
methods (except the trend results with AHOPS) than the
version using only the sub-IENet, while the opposite
should be expected in line with the denser data in the
whole IENet. Note that the capacity of Climatol to incor-
porate short and fragmented time series has been tested
on large benchmark datasets (Guijarro, 2011), hence we
assess that the slight decrease of similarity observed here
is accidental.

The use of metadata made very little difference in the
Climatol homogenization results. The likely reasons for
this are that (a) only metadata confirmed by statistical
break detection methods were involved, which were in
40 time series (13% of the series in sub-IENet); (b) 85% of
the confirmed breaks are detected with Climatol also
without the help of metadata and at the same or nearby
position as the metadata date; (c) the metadata are used
only in the last phase of the Climatol procedure, and this
excludes any impact of metadata on the detection of
other, non-documented breaks of the dataset. The first
two factors show that the incorporation of metadata use
in automated homogenization methods tends to be
redundant when the station density and spatial

correlations are high, as in our case. Note, however, that
in certain coincidences of data quality and inhomogene-
ity issues, metadata can help a lot in clarifying such
issues, even in dense datasets (not demonstrated). Factor
(c) is related to the restricted use of metadata in Climatol,
and it is due to the ambiguity of the incorporation of gen-
erally incomplete and non-quantitative pieces of informa-
tion in an automated statistical procedure. Undesired
effects of pre-setting metadata based break positions in
time series before statistical homogenization were also
reported by Gubler et al. (2017).

Considering the low differences between the raw and
homogenized data, and the likely minor improvement of
accuracy by homogenization, the question remains as to
whether it is necessary or not to homogenize precipita-
tion total time series. In contemporary studies of precipi-
tation climate, data are often subjected only to quality
control, but not to homogenization (e.g., Anderson
et al., 2015), or only inhomogeneities known from meta-
data are considered (Mekis and Vincent, 2011). In studies
related to precipitation observations, low frequency of
significant inhomogeneities were found in several other
studies (Domonkos, 2015 and references therein).
Spinoni et al. (2015) reported that series of precipitation
amount are less affected by inhomogeneities than the
time series of several other climatic elements. However,
the situation can be very different when early observa-
tions or series of mixed forms of precipitation (i.e., rain
and snow) are examined (Auer et al., 2005).

In spite of the doubts discussed here, we recommend
the statistical homogenization of precipitation datasets
when the station density is sufficient for doing that.
Firstly, in spite of most time series not having important
non-climatic biases, a few of them may have large and
non-documented inhomogeneities, as those were found
also in the IENet series (C2020). Secondly, because the
non-climatic impacts on observed data depend both on
the history of instrumentation and the strictness of fol-
lowing observation rules, and these vary according to
countries and the period of data record analysed. Thirdly,
because some modern and thoroughly tested homogeni-
zation methods, particularly ACMANT and Climatol,
almost always improve the mean accuracy of the data
(Guijarro et al., 2017), and when large inhomogeneities
occur in the raw data, there is a substantial improvement
in the affected time series.

4 | TRENDS AND VARIABILITY

Precipitation trends have been calculated using the
homogenized sub-IENet dataset (1941–2010). Table 3
summaries the trends for the whole study period,
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obtained with averaging slightly varying starting and
ending years near to the endpoints of the study period.
The trends show large seasonal variation, but relatively
little spatial variation. The most significant trends are
found for the late winter and spring seasons where signif-
icant increasing trends are detected across the entire
IENet area. By contrast, somewhat smaller, but still sta-
tistically significant decreasing trends appear in late sum-
mer. The annual totals are generally increasing, but the
increasing trend is significant only in the NW part of the
island of Ireland (Cluster 4 and Cluster 5), while the
increase is the smallest near to the east coast (Cluster 3).
The regional data reveal that the largest seasonal increas-
ing trend slopes occur also in the NW regions (Cluster
4 and Cluster 5).

Figure 3 and Figure 4 help to analyse in more detail
the area-average trends by presenting moving-window
Mann-Kendall statistics. These figures show the Mann-
Kendall statistics for all possible starting year – ending
year pair combinations for periods of at least 10-years.

Figure 3 shows the results for the 4 main seasons
(MAM, JJA, SON and DJF). The long-term trends are sig-
nificant only for spring, and even for this season, only
when the starting date is earlier than 1950. Note, how-
ever, that the precipitation increases also in autumn, and
although with a mild slope, this trend is consistently pre-
sent with any starting date before 1990.

Figure 4 shows that even in early spring (FMA),
which is the season with the largest increasing trends,
the trends are significant only for periods starting near to
the earliest date of the study period, and this feature only
differs slightly for the NW region relative to the average

of the whole island of Ireland. Moreover, a significant
decreasing trend appears for the last 15 years (from
around 1995 to 2010) both for the NW region and for the
IENet area. Regarding the annual totals, their increase is
slightly significant for the IENet area and more highly
significant for the NW region when any starting date
before 1970 is chosen.

Figure 5. shows the low frequency changes for the
4 main seasons of the year and for the annual totals, for
the IENet area. It can be seen that irregular fluctuations
are more characteristic of precipitation changes in the
island of Ireland than long-standing systematic trends.

A general increase of precipitation appears from the
early 1970s in spring, summer and autumn, as well as in
the annual totals, but the statistical significance of the
increasing trend in the annual totals is weak (Figure 4c).

5 | DISCUSSION AND
CONCLUSIONS

The comparative analysis of homogenization results of
various homogenization methods, as well as the compari-
son between the results of real data homogenization and
the homogenization of simulated data proved the high
quality of the IENet precipitation dataset, with a large
number of, but mostly small, non-climatic biases.

The comparison of differences between the results of
the real data homogenization and those of the simulated
data homogenization indicates that the magnitude of
residual non-climatic biases is partly independent from
that of the non-climatic biases in the raw data. Our

TABLE 3 Mean seasonal trends of

five 66-year periods of 1941–45 to

2006–10, in percentage per decade

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Whole area

DJF 0.6 1.0 −0.4 2.2 2.0 0.9

JFM 1.8 3.5*** 0.9 4.6*** 5.1*** 2.8**

FMA 2.9** 4.3*** 2.4** 5.1*** 5.4*** 3.7***

MAM 2.1*** 3.5*** 2.4*** 4.2*** 4.4*** 3.0***

AMJ 2.2 1.7 1.7 1.2 0.7 1.7

MJJ 0.7 −0.4 −0.7 −0.8 −1.1 −0.2

JJA 0.2 −1.3 −1.8* −1.6* −1.3 −0.9*

JAS −1.6 −3.2** −3.5** −2.6** −2.1* −2.5*

ASO 0.6 −0.8 −0.4 −0.1 0.2 0.0

SON 1.8 0.6 1.3* 1.3** 1.1* 1.3

OND 2.1 1.5 2.0 2.3** 1.7 1.9*

NDJ 0.8 0.8 0.3 1.8* 1.4 0.9

Annual 1.2 0.9 0.3 1.5*** 1.4*** 1.0*

Note: Asterisks indicate statistical significance, 1 (2) [3] asterisks indicate that at least 1 tenth (1 third) [2 thirds] of the station series have sig-
nificant trends.
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results indicate that a moderate reduction of non-climatic
biases can be achieved in dense precipitation datasets
with small magnitude non-climatic biases like the IENet
dataset. We have applied a combination of ACMANT and
Climatol homogenization results to further improve data
quality. We selected these two methods for their proven
high accuracy, missing data tolerance and ability to com-
plete time series by infilling data gaps before the trend
calculations. The Climatol homogenization included
metadata use.

Precipitation totals have a general increasing trend
over the island of Ireland, but the trends vary substan-
tially according to the season of the year and the period
selected for analysis, in addition they also show more
moderate, but still substantial variation according to geo-
graphical regions. If the entire study period (1941–2010)
is considered, the most sharply increasing trends occur in
late winter and spring, while for the period from the early
1970s the increasing trends are general in all seasons

except in winter. When the seasonal differences of trends
for the entire study period are examined (Figure 6), sym-
metric (opposite) trends are found for the late summer
and late winter – early spring seasons, although with
milder slopes and weaker statistical significance in late
summer than in late winter.

In Figure 6 the same pieces of the results appear as in
Table 3. However, this illustration makes for an easier
comparison with the results of Daniels et al. (2014) about
the seasonal curve of precipitation trends in the Nether-
lands over the period 1951–2009. In the Netherlands, the
highest positive trend was found for February and a sec-
ondary peak for November, while the smallest (although
still non-negative) trends are for July, August and
September, so the similarity with Figure 6 of this study is
striking. A further similarity to the precipitation trends of
the Netherlands is, that the largest positive trends were
found in regions close to north-western coasts, in both of
the island of Ireland and the Netherlands.

FIGURE 3 Moving window Mann-Kendall statistics in the four main seasons of the year, for the entire island of Ireland. (a) MAM,

(b) JJA, (c) SON, (d) DJF
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The increase of late winter – early spring precipitation
over the IENet area is likely linked to the intensification
of westerlies in the region in that season. The increase of
winter precipitation over the British Islands in the last
decades of the 20th century in connection with the inten-
sification of westerlies, was reported first in the 90's
(Wilby et al., 1997). More recently, an in-depth analysis
of the winter precipitation – macro-circulation relation-
ship for the entire Euro-Atlantic region (Ummenhofer
et al., 2017) found that the domination of a circulation
pattern characterized by stronger than average meridio-
nal sea level pressure gradients over most part of the
Euro-Atlantic region has become more frequent
after 1980.

The North Atlantic Oscillation (NAO) is a primary
mode of seasonal variability in the North Atlantic region,
affecting numerous climate parameters. For example, the
NAO is related to the severity and track of storms and

depressions across the North Atlantic region and into
Europe, and also influences the strengths of the preva-
iling westerly winds (Osborn, 2006; Vallis and
Gerber, 2008). However, while the winter North Atlantic
Oscillation Index (NAOI, https://climatedataguide.ucar.
edu/climate-data/hurrell-north-atlantic-oscillation-nao-
index-station-based) has also shown a tendency towards
a more positive phase in recent decades, its correlation
with the intensity of westerlies is moderated and depends
upon how the NAOI is defined (Allan et al., 2009; Coll
et al., 2013). A study by Matthews et al. (2016) reported
that regional cyclone frequency over and around the Brit-
ish Isles does not have significant connection with the
winter – spring precipitation anomalies of that region,
rather it suggests that the lifting air in fronts of remote
northern cyclones and orographic uplifting are responsi-
ble for the positive precipitation anomalies over Scotland
and the NW part of the island of Ireland.

FIGURE 4 Moving window Mann-Kendall statistics for the early spring season and for the annual totals. (a) FMA, whole IENet area,

(b) FMA, NW region (Cluster 4 and Cluster 5), (c) annual total, whole IENet area, (d) annual total, NW region
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In this study we used a large and dense dataset whose
quality and homogeneity have been meticulously devel-
oped, hence there is a reasonable expectation that the

calculated trends will be highly accurate. This improved
accuracy of the description of the observed climatic
trends aims to better serve the overall understanding of

FIGURE 5 Low frequency

changes of precipitation totals in the

island of Ireland for the four main

seasons of the year and for the

annual values. The curves are

smoothed with a 15-point Gaussian

filter [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 6 Seasonal curve of

precipitation trends for the island of

Ireland. Averages of the trends for

five 66-year long periods (1941–2006,
1942–2007…1945–2010) [Colour
figure can be viewed at

wileyonlinelibrary.com]
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large-scale climatic processes in the era of global
warming.
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