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a b s t r a c t

This work studies the problem of LQG control when the link between the sensor and the controller
relies on a Wi-Fi network. Unfortunately, the communication on a wireless medium is sensitive to noise
in the transmission band, which is characterized by the Signal-to-Noise Ratio (SNR). Wi-Fi allows to
switch among different bit-rates in real-time thus permitting to trade-off lower loss probabilities for
larger latency or vice-versa to achieve better closed-loop performance. To exploit this feature, under
a constant SNR scenario, we propose a cross-layer approach where the bit-rate is optimally selected
based on a control performance metric (i.e. minimum LQG cost) and a model-based controller is used to
compensate for the packet losses. Under time-varying SNR, we additionally propose a (sub-optimal) on-
line rate adaptation strategy and we guarantee the closed-loop stability under some mild conditions.
Numerical comparisons with emulation-based approaches using TrueTime, a realistic Matlab-based
Wi-Fi simulator, are included to show the benefits of the adaptive approach under time-varying SNR
scenarios.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Motivated by the flexibility required by multi-agent or dis-
tributed systems, as well as the reduction of installation and
maintenance costs, wireless Networked Control Systems (NCSs)
have attracted the interest of the control community in the past
two decades. As surveyed in e.g (Park, Ergen, Fischione, Lu, &
Johansson, 2018), many ad-hoc algorithms and strategies have
been proposed to overcome the stochastic delays and random
packet loss typically affecting wireless NCSs. As for the communi-
cation protocol, from an industrial perspective, wireless standards
such as WirelessHART (FieldComm Group, 2019) and ISA100.11a
(International Society of Automation (ISA), 2019) have been
specifically designed for control applications aiming to enforce
deterministic delays, while minimizing both the packet loss prob-
ability and the energy consumption of the devices. The available
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data-rate is nevertheless very low, i.e. 250 kbit/s over a time-
slotted channel with a minimum time slot duration of 10 ms. Due
to such low data-rate and communication overheads, they do not
allow sampling periods smaller than approximately 50 ms (Pe-
tersen & Carlsen, 2011). In order to control systems with higher
control rate, but also to share the network among several sys-
tems, the required higher data-rates can be provided by the
IEEE 802.11 standards, usually known as Wi-Fi. Under very good
channel conditions, rates up to 150 Mbit/s (excluding multiple
spatial streams) are provided by IEEE 802.11n standard, and
more recent releases allow even higher rates. Motivated by this
attractive feature, a preliminary attempt to investigate the use
of Wi-Fi for industrial automation application is provided in Tra-
marin, Vitturi, Luvisotto, and Zanella (2016), where the effects of
different parameters such as retransmission number and back-off
delay are examined in terms of losses and latencies, while (Wei
et al., 2013) proposes the custom RT-WiFi protocol to enhance the
timing performance by changing the medium access mechanism.
On the other hand, the main drawback of Wi-Fi is that, as well as
other wireless standards, the channel can be affected by external
disturbances and suffers from interference from other networks
operating on the same band. How much the external disturbance
level, quantified by the Signal-to-Noise Ratio (SNR), affects the
communication is related to the adopted modulation. Indeed,
higher data-rates exploit noise-sensitive high-order modulations,
hence allowing to send the same amount of data in a smaller
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period at the price of a greater number of corrupted (i.e. lost)
packets. On the other hand, lower data-rates ensure lower loss
probabilities in bad channel conditions thanks to their robust
modulations. Wi-Fi standard allows to choose the data-rate in
real-time but which rate should be chosen is not obvious since
it depends on the desired applications and whether these are
time-critical or not. The first possible approach, adopted by most
off-the-shelf devices, prescribes to choose the data-rate in view
of the overall throughput of the network at the cost of unpre-
dictable and possibly long delays. In this sense, well-known algo-
rithms are the Automatic Rate Fallback (Kamerman & Monteban,
1997), the Adaptive Automatic Rate Fallback (Lacage, Manshaei, &
Turletti, 2004), and the SNR-based Receiver Based Auto Rate (Hol-
land, Vaidya, & Bahl, 2001). An exhaustive overview is presented
in Biaz and Wu (2008). However, they are not suitable for control
and safety-critical applications, where the lack of information for
a certain period can be dangerous and it is generally deprecated.
This has motivated rate selection algorithms tailored for control
applications, and also in this particular case different approaches
exist. First, there exist algorithms that choose the data-rate ac-
cording to a communication metric that is supposed to affect the
control. In industrial scenario, a good example is the Minstrel
algorithm (Xia, Hart, & Fu, 2013), that prescribes to follow a
sequence of data-rates from a set of four chosen according to
the throughput and the estimated packet loss probability. The
authors of Vitturi, Seno, Tramarin, and Bertocco (2013) propose
two algorithms, which increase and decrease the data-rate after
a series of successful or failed transmissions, while always re-
transmitting at the lowest data-rate. The work (Tramarin, Vitturi,
& Luvisotto, 2017) proposes to find a sequence of data-rates
in order to minimize the residual packet loss probability based
on the current estimated SNR. However, all these algorithms
admit multiple retransmissions of the same measurement that,
while decreasing the loss probability, entail the transmission of
already outdated information. In the same line, another example
is (Colandairaj, Irwin, & Scanlon, 2007), where authors investigate
how to change on-line the sampling rate (which often coincides
with the transmission packet-rate) as a function of the round-
trip delay. A second field of research (see Nair, Fagnani, Zampieri,
and Evans (2007, and the reference therein)) has handled the
minimum bit-rate required to stabilize a system. Finally, instead
of considering a communication metric that affects the control
or only the closed-loop stability, the third approach directly
addresses the performance of the control. The resulting design is
said to be cross-layer, since the data-rate, that is a communication
parameter, is selected based on control performance. An approach
along this line is proposed for IEEE 802.15.4 standard (which is
at the core of Zigbee and WirelessHART) in Park, Araújo, and
Johansson (2011), that studies how to choose the sampling rate
and other communication parameters based on aspects of the
control. In Saifullah et al. (2014), the authors discuss optimal
sampling rate strategies from a control perspective in a multi-hop
sensor network. In our specific case, we devise an algorithm that
selects the data-rate according to the LQG cost.

An important aspect of our work is the adoption of a update
rate of the control input higher than the rate at which the output
is communicated. This type of systems, usually named dual-rate
or multi-rate systems, has been studied since the 50 s and several
contributions have appeared since then: for example, parameter
identification and the output estimation are treated in Ding and
Chen (2004), Lu and Fisher (1988), the LQG problem is addressed
in Lee and Morari (1992), while Li, Shah, and Chen (2002) studies
disturbance rejection and modeling imperfections. Recent works
e.g. Garcia and Antsaklis (2013) have applied multi-rate control
systems to NCSs for their ability of decreasing the traffic load
on the network. In our framework, the multi-rate configuration

allows us to compute the optimal estimator/controller also with
time-varying output sampling rate, while this is not possible with
time-varying control rates.

The main contribution of this work is the simultaneous op-
timization of the control policy and transmission rate in a LQG
framework. We assume that the packet loss and the delay are a
function of the SNR level and of the transmission rate. First, under
a constant SNR scenario, we find the joint optimal rate and LQG
controller as a function of the SNR level. We find an explicit (tight)
upper bound of the optimal LQG cost and we show the optimal
loss probability for each SNR level. Then, we consider a more
challenging scenario with a time-varying SNR, in which the joint
optimization of the rate and the controller gain is computation-
ally infeasible, and we propose to select the rate on a packet basis
as if the current SNR would be constant. A preliminary version
of this approach has been presented in Pezzutto, Tramarin, Dey,
and Schenato (2018), but this strategy was only numerically
evaluated on a linear system. Here, we move forward: under the
proposed (possibly sub-optimal) dynamic rate selection strategy,
we show that the optimal LQG controller can still be computed
in closed form. Moreover, we devise novel mathematical tools
and determine sufficient conditions to prove stability for this
dynamic multi-rate scenario with lossy communication. In fact,
the time-varying nature of the SNR requires us to find bounds on
the estimator error covariance that hold true simultaneously for
possibly different values of the SNR, which is quite challenging
in the presence of packet loss. Finally, we show the benefits
of this approach with respect to alternative control strategies
referred to as emulation-based (Dačić & Nešić, 2007; Nešić & Teel,
2004), using a realistic Wi-Fi environment based on the TrueTime
simulator (Cervin, Henriksson, Lincoln, Eker, & Arzen, 2003).

The paper is organized as follows: in Section 2 we intro-
duce our main assumptions, the network and the plant models;
Section 3 shows the solution of the estimation problem and the
jointly optimal rate and optimal control problem under constant
SNR, while Section 4 outlines our rate selection algorithm; in
Section 5 we address the time-varying SNR case and we prove
the stability in this general case. The paper ends with simulations
and the conclusions.

2. Problem formulation

The following two definitions are widely used in the rest of
the paper.

Definition 1. The control rate Rctr is the inverse of the sam-
pling period to which the system is discretized. It corresponds to
the rate at which the input and the estimate are updated. The
transmission rate Rtx is the inverse of the period between two
consecutive transmitted measurements. It corresponds to the rate
at which the output is sampled and communicated.

We consider the set of periods Ti i ∈ {1, 2, . . . ,M}, which
represent both the sampling periods and the periods between
two transmissions. For sake of simplicity, we assume that Ti = i·T1.
The smallest period is simply indicated by T , so the set of given
periods is {T , 2T , . . . ,MT }. From the relation Ri = 1/Ti, it is
possible to derive the set of rates Ri i ∈ {1, 2, . . . ,M}; it holds
that Ri = R1/i. The transmission period and the control period
can be the same (top panel in Fig. 1), but in general the former is
a multiple of the latter if the bit-rate is reduced (bottom panel in
Fig. 1).

To avoid confusion it is important to remark that transmission
rates in this work are defined in terms of packets/s and should
not be confused with data-rates which are in bits/s. Although
they are not exactly proportional, we associate different trans-
mission rates to different data-rates in such a way that a higher
transmission rate is associated to a higher data-rate, and a lower
transmission rate to a lower data-rate.
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Fig. 1. Control instants and transmission instants with R1 (above) and R3
(below). When sent, a packet can arrive on time (A), be outdated and discarded
(B), or lost (C). Out-of-order delivers are detected (D). A measure is used to
update the estimate and the control input as soon as possible: e.g. after 3T (E)
or after T (F). Transmitter and receiver are assumed to be synchronized, and
packets are time-stamped.

2.1. Communication

We consider to connect the sensor and the estimator through
a Wi-Fi network. Our work does not employ a detailed network
model, but it relies on a simplified formulation whose main
assumptions are introduced in the following.

Assumption 2. Each packet is delivered within the following
transmission instant with a certain packet arrival probability λ
which depends on the transmission rate and on the SNR level:

λ(Rtx, SNR). (1)

The transmission delay for successfully delivered packets is as-
sumed to be uniformly distributed across the transmission period.
Additionally, assume that receiver and transmitter are synchro-
nized, and that packets are time-stamped.

The previous assumption requires that the arrival probability
is only a function of the SNR and of the transmission rate. In
the context of NCSs, similar ideas have been previously proposed
based on the Gilbert–Elliott model or Markov chains, for example,
to represent the relation between the quality of the channel and
arrival probability. A more sophisticated framework has been
considered in Park, Di Marco, Fischione, and Johansson (2012),
where also network parameters are taken into account. In this
work, based on known communication principles (Sklar & Harris,
1988), we consider that for a given Rtx, the function λ(Rtx, SNR)
is monotonically non decreasing with respect to the SNR. On the
other hand, for a given SNR level, a lower transmission rate Rtx

achieves higher arrival probability λ because the associated data-
rate adopts a more robust modulation. Accordingly, we refer to
the packet loss probability 1−λ as the probability with which the
packet does not arrive before the following transmission instant.
In that case, the packet is discarded. Uniform delays across the
transmission period are assumed for sake of simplicity, but the
subsequent analysis can be easily generalized to any other de-
lay distribution. Out-of-order and outdated packets are detected
since receiver and transmitter are synchronized and packets are
time-stamped. An illustrative scheme is reported in Fig. 1. Note
that the period between two consecutive transmission instants,
and hence the allowed delay, is different for each transmission
rate.

Curves of packet loss probability vs SNR can be inferred ana-
lytically or empirically, see for example (Karhima, Silvennoinen,
Hall, & Haggman, 2004; Vitturi et al., 2013), and depend on
the number of retransmissions, the payload, and the traffic load,
i.e. on the particular application. In this work we consider that

Fig. 2. Curves of loss probability vs SNR.

packets have a fixed length, we disable retransmissions, and we
consider load condition such to have the curves shown in Fig. 2,
derived from Vitturi et al. (2013) for IEEE 802.11g. Nevertheless,
our theoretical procedure can be applied regardless to the specific
curve, i.e. for different network configurations and for different
IEEE 802.11 or other standards that allow the selection of the
transmission rate in real-time.

2.2. System dynamics

Consider the stochastic continuous-time linear system:{
dx(t) = Acx(t)dt + Bcu(t)dt + dw(t)
y(t) = Ccx(t)

(2)

where x(t) ∈ Rn, y(t) ∈ Rp, u(t) ∈ Rm, and w(t) ∈ Rn is a Wiener
process such that w(t + τ ) − w(t) ∼ N (0, Qcτ ), Qc ≥ 0, where
N () indicates a Gaussian distribution.

Consider to control the system with a NCS. The controller
and the estimator are implemented on the same device. At each
transmission instant, the sensor transmits a packet containing the
current output to the estimator through a Wi-Fi network, while,
at each sampling instant, the controller updates and transmits
the input to the actuator through an ideal link. This configuration
corresponds to the very common situation in which the controller
and the actuator are co-located. The sensor, the estimator, the
controller, and the actuator need to be synchronized and the
packets have to be time-stamped as stated in Assumption 2. The
scheme is reported in Fig. 3.

To deal with this set-up, we consider piecewise constant in-
puts within a sampling period Ti i ∈ {1, 2, . . . ,M}, i.e. u(t) = uk,
t ∈ [kTi, (k+1)Ti). Under this scenario, the continuous system (2)
can be discretized following (Lewis, Xie, & Popa, 2017) as:{
xk+1 = Aixk + Biuk + wk

yk = Cixk + vk

where xk := x(kTi), yk := y(kTi), wk ∼ N (0, Q (Ti)), vk ∼ N (0, R)
with R > 0, and Ai =A(Ti), Bi =B(Ti), Ci =Cc where:

A(τ ) = eAcτ B(τ ) =

∫ τ

0
eAc tBcdt Q (τ ) =

∫ τ

0
eAc tQceA

′
c tdt.

We assume that the process noise wk is independent of the
measurement noise vk. The measurement noise covariance matrix
R is assumed to be independent of the sampling period. We
finally assume that the initial state is a Gaussian random vector
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Fig. 3. Control and rate selection architecture.

with mean x̂0 and covariance matrix P0. Define the measurement
model at the estimator as:

ykh = γ k
h yh = γ k

h (Cixh + vh)

where the arrival process γ k
h ∈ {0, 1} indicates if the measure-

ment yh sampled at time hTi has been present at the estimator
location at time kTi > hTi. In the following, to simplify the
notation, if i = 1 we omit it, so: A := A1, B := B1, C := C1,
and Q := Q1.

2.3. LQG cost

Consider the following quadratic cost measure:

JM (u(t)) = E
[
1
M

∫ M

0

(
x′(t)Wcx(t)

+ u′(t)Ucu(t)
)
dt
⏐⏐⏐⏐ u(t), t ∈ [0,M]

]
with Wc ≥ 0 and Uc > 0. Under the assumption of piecewise
constant inputs over T , similarly to Colaneri and De Nicolao
(1995), the previous integral can be converted into the sum:

JK (uk) = c + E

[
1
K

K−1∑
k=0

x′

kWxk + 2x′

kNuk + u′

kUuk

⏐⏐⏐⏐⏐ {uk}
K−1
k=0

]
where JM (u(t)) = JK (uk) with K :=

M
T and

W =
1
T

∫ T

0
A′(τ )WcA(τ )dτ N =

1
T

∫ T

0
A′(τ )WcB(τ )dτ

U = Uc +
1
T

∫ T

0
B′(τ )WcB(τ )dτ c =

1
T

∫ T

0
tr(Q (τ )Wc)dτ .

In the following sections, we will need the operator:

gTi
λ (X) := AiXA′

i + Qi − λAiXC ′

i (CiXC ′

i + R)−1CiXA′

i

with Ti the sampling period of the system. We also define the
critical arrival probability λi similarly to Sinopoli et al. (2004):

λi = arg inf
{
λ : ∃X ≥ 0 s.t. gTi

λ (X) = X
}

.

3. LQG control under constant SNR

In this section, we introduce the LQG control in a scenario
where the control rate is fixed to the highest rate, i.e. Rctr

= R1,
while the transmission rate Rtx is fixed but is chosen in the set
Rtx

∈ {R1,
R1
2 , . . . ,

R1
M }, with outputs randomly lost according to an

i.i.d. process with arrival probability λ defined in (1). The resulting
control strategy is therefore named Single-Rate Controller (SRC).

This choice arises from the different nature of the two links: while
a high control rate is supported by the ideal link between the con-
troller and the actuator, a high transmission rate requires good
channel conditions in the wireless connection between the sensor
and the controller. We further assume that the SNR is constant,
from which it follows that the arrival probability depends only on
Rtx according to (1).

Consider u(t) = uk, t ∈ [kT , (k + 1)T ), where T = 1/R1. We
define the information set Ik, that is the information available at
the controller/estimator at time instant k:

Ik =
{
{ykh}

k−1
h=0, {γ k

h }
k−1
h=0, {uh}

k−1
h=0

}
.

Note that at time instant k the measurement yk is not available,
since we assume a non-zero transmission delay to send it over
the network (see Fig. 1). The information set implicitly depends
on the SNR and on Rtx since the arrival process is highly affected
by them. We define the following variables:

x̂kt|t−1 := E[xt | Ik]

Pk
t|t−1 := E[(xt − x̂kt|t−1)(xt − x̂kt|t−1)

′
| Ik].

Since initial state, process noise, and measurement noise are
independent and Gaussian, x̂kt|t−1 is the optimal estimator given
the available information Ik (Anderson & Moore, 1979), and the
matrix Pk

t|t−1 denotes the corresponding estimation error covari-
ance matrix. With delayed packets, the optimal estimator can be
found following (Schenato, 2008):

x̂kt|t−1 = Âxkt−1|t−2 + But−1 + γ k
t−1K

k
t−1(y

k
t−1 − Cx̂kt−1|t−2) (3)

K k
t−1 = APk

t−1|t−2C
′(CPk

t−1|t−2C
′
+ R)−1 (4)

Pk
t|t−1 = APk

t−1|t−2A
′
+ Q − γ k

t−1K
k
t−1CP

k
t−1|t−2A

′ (5)

for each t in [0, k]. The optimal estimator is time-varying and
depends on the particular realization of the packet arrival process
γ k
t−1, which in turn depends on Rtx. The estimate is updated

according to an open-loop estimation if γ k
t−1 = 0 and to a

Kalman (closed-loop) update if γ k
t−1 = 1. In our framework we

have assumed that a measurement arrives within the following
transmission instant or it never arrives. Since the period between
two consecutive transmissions contains Rctr/Rtx sampling periods,
a measurement can arrive with a delay up to Rctr/Rtx control peri-
ods. This requires to store the estimate and the error covariance
of the previous transmission instant and at each step to repeat
the estimate procedure from that instant to the current instant.
This allows to improve the performance of the estimation in the
interval between two transmission instants: instead of using the
previous transmitted output at the following transmission in-
stant, it can be used on the intermediate instants, if it is available
(see bottom panel of Fig. 1).
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Consider the following finite-horizon optimization problem:

J∗K ({γ
k
t }) := argmin

{uk}
K−1
k=0

JK (uk), s.t. uk = fk(Ik) (6)

where we made explicit that the optimal cost depends on the spe-
cific packet arrival sequence {γ k

t }. The following theorem solves
this problem.

Theorem 3. Consider the continuous system (2) with control rate
Rctr

= R1. Consider the finite-horizon LQG problem (6). Then, the
optimal solution is given by:

J∗K ({γ
k
t }) = c +

1
K

(
x̂′

0S0x̂0 + tr(S0P0)+

+

K−1∑
k=0

tr(Sk+1Q ) + tr
(
(A′Sk+1A + W − Sk)Pk

k|k−1

))
with

uk = Lkx̂kk|k−1

Lk = −(U + B′Sk+1B)−1(B′Sk+1A + N ′)
Sk = A′Sk+1A + W − (A′Sk+1B + N)Lk, SK = 0

while the optimal estimator is given in (3)–(5).

The proof of the previous theorem is omitted since it follows
from a straightforward readjustment of the proof of Lemma 5.1
in Schenato, Sinopoli, Franceschetti, Poolla, and Sastry (2007)
by including the cross cost term N in the cost. In this way it
is possible to show that the separation principle holds and the
optimal estimator can be solved separately. Moreover since the
optimal control gains Lk are independent of the transmission
arrival sequence {γ k

t }, then it means that they are independent
of the specific transmission rate Rtx and of the SNR, thus can be
computed off-line. This is a specific feature of the SRC approach.
In fact, if the control rate would be chosen to be equal to the
transmission rate, i.e. Rctr

= Rtx, then the control gains Lk would
be different for different rates. While under the constant SNR
scenario this is not critical since stability can still be guaranteed,
in the time-varying scenario where transmission rate is changed
on-line, this would require the switching of control gains thus
leading to a possible unstable switching dynamics.

4. Optimal rate for constant SNR

Since the error covariance depends on the arrival process that
is not known in advance, we consider the expected value of the
cost with respect to the arrival process. We focus our attention on
the infinite-horizon LQG problem. Under standard stabilizability
of the pair (A, B) and detectability of the pair (A,

√
W ), with√

W ′
√
W = W , then limk→∞ Sk = S∞ exists, the control gain

Lk converges to:

L∞ = −(U + B′S∞B)−1(B′S∞A + N ′) (7)

and the cost evaluated on the optimal input is:

J∗
∞
(Rtx, SNR) := lim

K→∞

supE
[
J∗K ({γ

k
t })
]

= c + tr(S∞Q )

+ lim
K→∞

sup
1
K

K−1∑
k=0

tr
(
(A′S∞A−S∞+W )E[Pk

k|k−1]
)

(8)

To find the optimal rate, we have to compute J∗
∞

on each Rtx

for the given SNR. Unfortunately, this is not possible because
limk→∞ E[Pk

k|k−1] cannot be computed in closed-form (Sinopoli
et al., 2004). We therefore propose to consider computable upper

bounds for it, which in turns allow us to compute upper bounds
of the cost J∗

∞
(Rtx, SNR) for each transmission rate Rtx and SNR.

First, we consider the scenario Rtx
= Rctr

= R1 and P[γ k
k−1 =

1]=λ(R1, SNR). As stated in Sinopoli et al. (2004), it holds that:

lim
k→∞

E[Pk
k|k−1] ≤ P

where P exists if λ(R1, SNR) > λ1 and it can be found from:

P = gT
λ(R1,SNR)(P).

Then we can bound the optimal LQG cost as:

J∗
∞
(R1, SNR) ≤ J

∗

∞
(R1, SNR)

J
∗

∞
(R1, SNR) = c + tr (S∞Q ) + tr

(
(A′S∞A + W − S∞)P

)
The analysis becomes more involved when Rtx

= Ri = iR1
with i > 1. In this case it is not possible to find a single
upper bound E[Pk

k|k−1] ≤ P for all k, but it is more meaningful
to look for periodic upper bounds. In fact, measurements are
transmitted only every i intervals, and therefore we expect to
find an i-periodic sequence of bounds. More specifically, we will
show that it is possible to find a set of i matrices {P

i
j}
i−1
j=0 such

that limh→∞ E[P ih+j
ih+j|ih+j−1] ≤ P

i
j. We will also show that P

i
0

can be computed as the fixed point of a Riccati-like operator
that depends on the period Ti = iT and λ(Ri, SNR), while P

i
j

can be computed from P
i
0 applying a suitable operator. This is

summarized in the following theorem:

Theorem 4. If λ(Ri, SNR) > λi, then the optimal LQG cost can be
upper-bounded by

J
∗

∞
(Ri, SNR) = c + tr(S∞Q ) +

1
i
tr

⎛⎝(A′S∞A + W − S∞)
i−1∑
j=0

P
i
j

⎞⎠
where

P
i
0 = g iT

λ(Ri, SNR)

(
P
i
0

)
P
i
j = g jT

j
i λ(Ri, SNR)

(
P
i
0

)
, j = 1, . . . , i − 1

Proof. See Appendix A.

Finally, the optimal rate is chosen according to:

R∗(SNR) = argmin
Rtx

J
∗

∞
(Rtx, SNR).

5. Sub-optimal solution for time-varying SNR

In the time-varying case, in order to optimally and simultane-
ously design the controller and the transmission rate, statistical
information about the SNR dynamics is needed. However, even if
this is available, the LQG framework would require the solution
of a complex dynamic programming problem which might not
be feasible. Moreover, due to the typical channel coherence time,
SNR is not likely to change very rapidly as compared to the
control period T , and therefore a quasi-static approach for the
control rate could be effective. For this reason, we decide to fix
the rate policy based on the static scenario. More specifically, at
each transmission instant, the rate R(k) to transmit yk is selected
to minimize the infinite-horizon LQG cost as if the SNR would
remain constant and equal to the value of time instant k, denoted
SNRk:

R(k) = argmin
Rtx

J
∗

∞
(Rtx, SNRk). (9)
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The solution is a static map that associates a transmission rate to
each SNR, thus it can be implemented through a look-up table.
From a practical point of view, a SNR measure can be provided
by the Wi-Fi board while a specific user’s routine can set the
data-rate of the communication. It is worth mentioning that the
possibility to set the data-rate is ensured by the Wi-Fi standard,
and several off-the-shelf boards provide the SNR measure to the
user. Alternatively it can be estimated e.g. from the RSSI. Practical
considerations and execution times of the mentioned routine
can be found in Branz, Antonello, Tramarin, Fedullo, Vitturi, and
Schenato (2019), while a similar implementation has be done
in Tramarin et al. (2017). Note that R(k) determines also the
period until the following sent packet. Once the rate selection
algorithm is chosen, we solve the LQG problem for the control
and the estimate with time-varying SNR. From Theorem 3, the
optimal control gain is not affected by SNR and Rtx, so it is the
same with time-varying and constant SNR. Likewise, the optimal
estimate procedure is the same given the information set, because
a missing packet due to the adoption of a lower transmission rate
is treated as a packet lost. It follows that the SRC under constant
SNR can work in a time-varying SNR fashion just adding the time-
varying on-line rate selection (see Fig. 3). It is interesting to note
that, if the SNR is constant for a long period, the proposed solution
coincides with the optimal solution for the constant SNR scenario
without any modification.

Since the transmission rate can change, it is not more guar-
anteed that the closed-loop system is still stable since we are in
the presence of a switching system, which is known to possibly
be unstable even if the switching is performed between stable
dynamics. In the following we prove the stability of the SRC with
time-varying SNR. We consider that the SNR can be measured
instantaneously by the sensor and it is able to select the optimal
rate from the set {R1, . . . , RM}.

Assumption 5. The sequence SNRk is constant over each period
[Nh,Nh+N), with N the least common multiple of the firstM pos-
itive integers, and lower-bounded by a given SNRmin. Moreover,
the first transmission is scheduled at k = 0.

Piece-wise constant SNRk with changes at multiples of N im-
plies that the chosen rate is constant in the period [Nh,Nh + N).
Since N is multiple of any i ∈ {1, . . . ,M}, Nh+N is a transmission
instant independently of which rate Ri ∈ {R1, . . . , RM} has been
chosen in [Nh,Nh+N). This hypothesis is a technical assumption
to simplify the subsequent analysis but it is reasonable if the
SNR changes slowly, e.g. under slow fading scenario or with slow
user mobility. Moreover, the lower bound SNRmin excludes loss
probabilities that would compromise stability even with a single
rate approach. We consider the subsequence:{
E
[
PNh
Nh|Nh−1

]}+∞

h=0
.

A first issue is due to the fact that the evolution of the se-
quence above depends on the rate chosen in each period. The
problem is even more difficult because, even for periods char-
acterized by the same transmission rate, the arrival probabil-
ity can vary within a certain range according to the SNR. Each
transmission rate is so characterized by a worst case, that is in
correspondence of the lowest SNR for which it is adopted:

SNRi,L := inf
{
SNR ≥ SNRmin : R∗(SNR) = Ri

}
.

The corresponding limit arrival probability λi,L for the transmis-
sion rate Ri is the arrival probability associated to SNRi,L:

λi,L := λ(Ri, SNRi,L)

that is, under the mild hypothesis that the arrival probability
is monotonically non-decreasing with respect to the SNR, the

smallest arrival probability for which Ri is optimal. A graphical
representation of these values is shown in Fig. 5 for a specific
case.

Consider the linear operator:

LTi (K , X) = (Ai + λi,LKC)X(Ai + λi,LKC)′

and its compositions1:

Li(K , X) = LiT
◦ LiT

◦ · · · LiT  
N/i times

(K , X)

Now we can state the stability theorem.

Theorem 6. Consider that (A, B) is stabilizable and (A,
√
W ) is

detectable, while (Ai, Ci) is detectable and (Ai,
√
Qi) is stabilizable

∀i ∈ {1, . . . , M}. Assume that Ass. 5 holds true with SNRmin such
that λi,L > λi ∀i. Under rate adaptation law (9), SRC given in (7),
and estimator given in (3)–(5), if there exist a K and a Y > 0 such
that Li(K , Y ) < Y ∀i, then the closed-loop system is mean square
stable.

Proof. See Appendix B.

It is clear that a necessary condition for the stability of the
time-varying case is the stability under constant SNR, which is
guaranteed if λi,L > λi: this motivates the condition on SNRmin.
The existence of K and Y > 0 is only a sufficient condition and
possibly tighter conditions could exist. However, following the
idea proposed in Sinopoli et al. (2004), the previous conditions
can be cast into a semi-definite programming (SDP) problem,
which can be numerically solved. In the interest of space, the SDP
derivation is omitted.

6. Simulations

The results presented in the previous sections are now as-
sessed within a specific simulation setup. First, we show the
outcome of the rate selection algorithm for a particular case of
study. Then, through the widely used Simulink-based TrueTime
simulator (Cervin et al., 2003), we implement the simplified but
realistic network model introduced in Section 2 to show the
benefits of the proposed scheme.

The system used for our simulation tests is a two-wheeled
balancing robot, usually referred to as segway, consisting of a
rigid body equipped with two wheels. Two DC motors provide
the torque to the wheels aiming to keep the rigid body upright
while moving on the plane. For sake of simplicity, we assume
that the segway can move only along a straight line (i.e. the
two DC motors are always supplied by the same voltage input).
An inertial measurement sensor estimating the tilt angle and an
encoder on a wheel constitute the on-board sensing and encoding
device. The dynamics can be described by a continuous-time non-
linear model: for the case of this work, we consider the dynamical
model studied in Antonello and Schenato (2019). Our approach
is oriented to linear continuous-time plants, so we consider the
state–space system linearized in the neighborhood of the origin:

Ac =

⎡⎢⎣0 0 1 0
0 0 0 1
0 43.57 −3.81 3.41
0 55.22 1.97 −2.25

⎤⎥⎦ Bc =

⎡⎢⎣ 0
0

4.92
−3.25

⎤⎥⎦ Cc =

⎡⎢⎣1 0
0 1
0 0
0 0

⎤⎥⎦
′

where the state consists of the wheel angle, the tilt angle, and
their derivatives. The input is the voltage of the DC motors and
the output is the measurements given by the encoder and the

1 with a little misuse of notation: f ◦ f (a, b) = f (a, f (a, b)).
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Fig. 4. LQG cost vs SNR.

Fig. 5. Optimal loss probability.

inertial measurement sensor. The other matrices presented in
Section 2 are:√
Wc =

[
1 100 0 0

]
Wc =

√
Wc

′√
Wc Uc = 1

√
Qc =

[
0 10−4 0 0

]′ Qc =
√
Qc

√
Qc

′

R=

[
10−9 0
0 10−6

]
For the simulations we have adopted the set of sampling periods
{T , 2T , 3T }, where T = 0.01s, that are used to discretize the linear
continuous system. From the sampling periods, it is possible
to compute the transmission rates and the control rates. We
associate R1, R2, R3 to the data-rates 54, 36, 18 Mbit/s, respec-
tively. For each transmission rate and for each SNR level we have
adopted the arrival probabilities in Fig. 2.

6.1. Numerical results under constant SNR

In Fig. 4 we report the asymptotic costs for the case of the
segway as given by the formulas of Theorem 4 with constant
SNR. The plot reports the cost on the y-axis and the inverse of
the SNR, denoted by SNR−1, on the x-axis. Note that, with this
notation, it holds that SNR|dB= −SNR−1

|dB. For each transmission
rate, the asymptotic cost is computed over only a finite number

Fig. 6. TrueTime model (simplified).

of quantized levels (with step of 1 dB) and as long as it admits
a steady-state value, i.e. λ(Ri, SNR) > λi. We can see that the
highest transmission rate achieves the minimum cost for good
channel condition, corresponding to left part of the plot, thanks to
the largest available information set. Decreasing the SNR, i.e. for
larger values on the x-axis, communications with the highest
transmission rate start to be affected by packet loss, while the
other rates are still reliable. Accordingly, while the cost with R2
is still constant, the cost with R1 increases and eventually R2
achieves the lowest cost. The same happens for lower SNR with R2
and R3, that eventually becomes the optimal rate. For even worse
channel conditions, also communications with R3 are not reliable
and the sufficient condition for the stability is not satisfied. In
Fig. 5 we highlight the loss probability corresponding to the
optimal rate. We see that the optimal rate is not always the one
for which the loss probability is the lowest, but it is a trade-off
between the arrival probability and the control performances.

6.2. Truetime implementation

TrueTime is a simulator for networked and real-time control
systems compatible with the well-known Simulink environment.
It provides a custom block library containing a Kernel block and
a Network block that can interact with other blocks in a unique
Simulink model. The Kernel block models a computing processor
with limited computational resources shared among multiple
tasks, while the Network block models several widespread local
networks like Ethernet, CAN, PROFINET, and ZigBee.

Our Simulink model comprises a block in which the dynamical
non-linear system is implemented by a Matlab S-function, two
Kernel blocks, and an IEEE 802.11b Network block that simulates
the Wi-Fi communications between the two Kernel blocks. The
input of the non-linear system is fed by the output of the first
Kernel, which represents the control unit. It is the receiver in our
setup. At each sampling time, it checks if new packets are arrived,
then it elaborates the control input and provides it to the plant.
The continuous-time output of the system is instead connected
to the input of the second Kernel block, which represents the
sensor. It is the transmitter in our setup. At the transmission
instants indicated by the chosen rate, it packetizes and transmits
the system output. The IEEE 802.11b Network block manages the
communication from the sensor to the control unit and simulates
the access to the medium, the transmission intervals, and the
packet losses. Fig. 6 is an intuitive sketch of the implemented
Simulink model. A set of Kernel blocks are used to simulate dif-
ferent levels of noise. Since TrueTime assumes a rather simplistic
model of the bit error rate, it does not capture the behavior of
the packet loss probability due to the changing data-rate, so we
decide to modify the source files of the simulator in order to
include the behavior of Fig. 2.
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Fig. 7. Comparison on the square wave response between SRC and emulation-based LQG controller (Nešić & Teel, 2004).

6.3. Numerical results under time-varying SNR

It is interesting to compare our control strategy to existing
controllers for NCSs. One popular approach (Dačić & Nešić, 2007;
Nešić & Teel, 2004), sometimes referred to as emulation-based,
considers to design the regulator as if the network is not present,
while, in the implementation, a lost packet is replaced by the last
received one. This approach is attractive because it allows to re-
use the standard well-known control schemes. Since any possible
control algorithm can be adopted according to this strategy, we
decide to consider a standard Kalman filter followed by the opti-
mal control gain. We will referred to it as emulation-based LQG
controller. We aim to compare the proposed cross-layer approach
to the independent design of network and control, e.g. when the
future channel condition is optimistically considered or when the
chosen rate is conservative.

The SRC can switch Rtx among R1, R2, and R3, while Rctr is fixed
to R1 accordingly. The emulation-based controller is not designed
to support a control rate different from the transmission rate, so
Rtx

= Rctr. We decide to consider a first controller with R1 and
a second one with R3. In particular, rate R1 should provide high
performances when the communication channel is good, while
R3 would provide lower performances but a greater robustness
when the channel quality degrades. In every controller we add
integral action for tracking of step reference on the wheel angle.
In our simulations, we consider a square wave with period 12s
and duty cycle 50%. We consider a piece-wise constant SNR:

SNR(t) =

⎧⎨⎩
18 dB t ∈ [0s, 12s)
12 dB t ∈ [12s, 24s)
6 dB t ∈ [24s, 36s)

that represents the case in which the channel is ideal in the
first period (R∗

= R1), then it deteriorates in the second period
(R∗

= R2), and finally it is affected by high noise (R∗
= R3).

The results are plotted in Fig. 7. In the first period, with high
SNR, the SRC and the emulation-based LQG controller with R1
coincide. They outperform the emulation-based LQG controller
with R3 that exhibits a longer settling time due to the longer
sampling period. Note that, in this period, emulation-based step
response with R3 would coincide to the output with a model-
based controller identical to SRC but with Rctr

= Rtx
= R3, so it is

possible to infer the improvement achieved by the adoption of a
higher rate also with respect to the same control algorithm. In the
second period, the SNR decreases and the emulation-based LQG

controller with R1 is not able to stabilize the system due to the
high packet loss incurred (λ(R1, 12 dB) = 0.95). The emulation-
based LQG controller with R3 obtains exactly the same result of
the previous period, because the changing of SNR from 18dB
to 12dB is invisible for R3 since the corresponding packet loss
probabilities are both zero (see Fig. 5). The SRC switches from R1
and R2 but its performance is barely affected by this change. In
the third period, where the noise is high, the emulation-based
LQG controller with R3 becomes unstable. Also the performances
of the SRC deteriorate due to the severe packet loss (settling time
0.5 s worse). However, the degradation is mild if we take into
account that the SRC with Rtx

= R1 or with Rtx
= R2 would

work without feedback due to the very high loss probabilities
for such a SNR (see Fig. 5) and would not be able to stabilize
the system. It is possible to see the benefits of the proposed
rate adaptation mechanism: under good channel conditions, a
high Rtx is adopted ensuring better performance than a lower
one, while, in bad channel conditions, a low Rtx guarantees good
performances when a higher one may led to instability. These
simulations clearly show the benefit of a model-based control
design to take into account packet losses with respect to the
emulation-based approach.

7. Conclusions and future works

This work analyses the LQG control for a NCS where the link
between the sensor and the controller is implemented through
a Wi-Fi network. Based on the relationship between the packet
error probability and the SNR, we study the rate selection al-
gorithm that minimizes the LQG cost under constant SNR. We
show that the optimal rate increases with the SNR, as expected,
however under some specific values of SNR, the rate selection
algorithm dictates to pick a fast rate with non-negligible packet
loss probability (up to 50%) rather then a lower rate with min-
imal packet loss. Adopting a higher update rate of the input
with respect to the sampling rate of the output, we provide
the control strategies named SRC that is optimal with constant
rate (i.e. constant SNR) and is guaranteed, under mild conditions,
to stabilize the system also in time-varying channel conditions
(i.e. time-varying SNR). Numerical simulations involving True-
Time simulator show the benefits of the adaptive approach under
a time-varying SNR condition with respect to standard constant-
rate controller. The proposed algorithm can be further general-
ized to include multi-agent systems, and possible applications
are collaborative robotics, building maintenance, and formation
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control of swarm of autonomous systems. The next step, starting
from the implementation presented in Branz, Pezzutto, Antonello,
Tramarin and Schenato (2019), is to experimentally validate the
proposed algorithm.

Appendix A. Proofs for constant SNR

First we introduce the following lemma.

Lemma 7. The following properties hold:

(1) gτ ′
+τ ′′

λ (P) = gτ ′

0 ◦ gτ ′′

λ (P) ∀τ ′, τ ′′ > 0.
(2) Consider X ≤ Y . Then gτ

λ (X) ≤ gτ
λ (Y ).

(3) Consider λ′
≤ λ′′. Then gτ

λ′ (P) ≥ gτ
λ′′ (P).

(4) Consider X, Y ≥ 0 and α ∈ [0, 1]. Then gτ
λ (αX+(1−α)Y ) ≥

αgτ
λ (X) + (1 − α)gτ

λ (Y )
(5) Consider λ′, λ′′ and α ∈ [0, 1]. Then gτ

αλ′+(1−α)λ′′ (X) =

αgτ
λ′ (X) + (1 − α)gτ

λ′′ (X)
(6) Let X ≥ 0 be a random matrix. Then

E[gτ
λ (X)] ≤ gτ

λ (E[X])

Proof. (1) can be proved by computing gτ ′

0 ◦gτ ′′

λ (P) and using the
definitions given in Section 2, under the key assumption that R is
independent of the sampling period. Properties (2)-(4) are given
in Sinopoli et al. (2004), while (5) is trivial. They state that gτ

λ (X) is
monotonically increasing w.r.t. X , monotonically decreasing w.r.t.
λ, concave w.r.t. X , and affine w.r.t. λ, respectively. (6) follows
immediately from (4) employing Jensen’s inequality.

Consider Rctr
= R1 and Rtx

= Ri. Without loss of generality, we
assume that only the output at time instants ih, h ∈ N is sent,
while the output at other instants is never sent. Recalling that the
measurement yih arrives in the time interval (ih, ih+i) or it never
arrives, we can summarize:

γ ih+i+n
ih = γ ih+i

ih ∀n ∈ N

γ
ih+j+n
ih+j = 0 j ∈ {1, . . . , i − 1}, ∀n ∈ N.

Lemma 8. The error covariance on the transmission instants with
Rctr

= R1 and Rtx
= Ri has the same evolution of the case with

Rtx
= Rctr

= Ri, i.e.:

P ih
ih|ih−1 = g iT

γ ih
ih−i

(
P ih−i
ih−i|ih−i−1

)
.

Proof. For sake of simplicity, we prove the Lemma with Rtx
= R2

and even time instants as transmission instants. By Eq. (5), it
holds that:

P2h
2h|2h−1 = gT

γ 2h
2h−1

(
P2h
2h−1|2h−2

)
P2h
2h−1|2h−2 = gT

γ 2h
2h−2

(
P2h
2h−2|2h−3

)
and so

P2h
2h|2h−1 = gT

γ 2h
2h−1

◦ gT
γ 2h
2h−2

(
P2h
2h−2|2h−3

)
.

Moreover, P2h
2h−2|2h−3 = P2h−2

2h−2|2h−3 because I2h does not have more
information than I2h−2 that is useful for computing {̂x2hk|k−1}

2h−2
k=0 ,

since if the measurement does not arrive until the next trans-
mission instant it is discarded. By hypothesis γ 2h

2h−1 = 0. We
obtain:

P2h
2h|2h−1 = gT

0 ◦ gT
γ 2h
2h−2

(
P2h−2
2h−2|2h−3

)
,

= g2T
γ 2h
2h−2

(
P2h−2
2h−2|2h−3

)
using Lemma 7(1).

Lemma 9. Consider the arrival instant of yih is uniformly dis-
tributed across the period (ih, ih + i). The arrival process is then
described by:

P
[
γ

ih+j
ih = 1

]
=

j
i
λ(Ri, SNR) =

j
i
λi j ∈ {1, . . . , i}

It is schematically depicted in Fig. A.1. Then, the expected error
covariance can be upper-bounded by:

E
[
Pk
k|k−1

]
≤ P

k
k|k−1 ∀k ∈ N

where for k = ih:

P
ih
ih|ih−1 = g iT

λi

(
P
ih−i
ih−i|ih−i−1

)
P
0
0|−1 = E

[
P0
0|−1

]
while for k = ih + j, j ∈ {1, . . . , i − 1}:

P
ih+j
ih+j|ih+j−1 = g jT

j
i λi

(
P
ih
ih|ih−1

)
Proof. We prove the lemma for the case Rtx

= R2. The upper
bound on even instants follows from Sinopoli et al. (2004) taking
into account that on even instants the error covariance has the
same evolution of the case with Rtx

= Rctr
= R2, as shown in

Lemma 8. For odd instants:

E
[
P2h+1
2h+1|2h

]
= E

[
gT
γ 2h+1
2h

(
P2h
2h|2h−1

)]
= E

[
gT

λ2
2

(
P2h
2h|2h−1

)]
≤ gT

λ2
2

(
E
[
P2h
2h|2h−1

])
≤ gT

λ2
2

(
P
2h
2h|2h−1

)
= P

2h+1
2h+1|h

where we have employed the fact gT
γ (X) is affine w.r.t γ , it is con-

cave w.r.t. X and Jensen’s inequality, and that it is monotonically
increasing w.r.t. X , as stated in Lemma 7(2)-(6).

Proof (Theorem 4). For sake of simplicity we restrict to the case
Rtx

= R2. If λ2 > λ2, it has been proved in Sinopoli et al. (2004)
that the sequence of upper bounds given in Lemma 9 on even
instants converges:

lim
h→∞

P
2h
2h|2h−1 = P

2
0 with P

2
0 = g2T

λ2

(
P
2
0

)
.

It follows that the upper bound on odd instants at steady-state
is:

P
2
1 = gT

λ2
2
(P

2
0).

We can divide the cost (8) in two parts:

J∗
∞
(R2, SNR) = c + tr(S∞Q )

+ lim
K→∞

sup
1
K

K−1∑
k=0,
even

tr
(
(A′S∞A − S∞ + W )E[Pk

k|k−1]
)

+ lim
K→∞

sup
1
K

K−1∑
k=0,
odd

tr
(
(A′S∞A − S∞ + W )E[Pk

k|k−1]
)
.

Since A′S∞A− S∞ +W ≥ 0, the cost is upper-bounded by substi-
tuting the lim sup of the expected error covariance on even and
odd instants with the corresponding steady-state upper bounds.
Then, the statement of the theorem follows immediately.
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Fig. A.1. Arrival probability within two transmission instants.

Appendix B. Proofs for time-varying SNR

In this section, to simplify the notation, the one-step predic-
tion error covariance matrix at the time instant k is denoted by
Pk, i.e.: Pk := Pk

k|k−1.
Based on the operator gτ

λ (X), we define following nonlinear
operators:

gi(X) = g iT
λi,L

◦ g iT
λi,L

◦ · · · ◦ g iT
λi,L  

N/i times

(X)

Note that the subscript indicates both the sampling period and
the limit arrival probability.

Define the operator:

Φ
Ti
λ (K , X) = λ(FiXF ′

i + Vi) + (1 − λ)(AiXA′

i + Qi)

with Fi = Ai +KC , Vi = Qi +KRK ′, where Ti is the sampling period
with which Ai and Qi are discretized. It is affine with respect to
the second argument. Define the following operators:

Φi(K , X) = Φ iT
λi,L

◦ Φ iT
λi,L

◦ . . . ◦ Φ iT
λi,L  

N/i times

(K , X)

Note that K is always the same from the inner to the outer
application of the operator and, as for gi(·), the subscript denotes
both the sampling period and the limit arrival probability. They
are still affine because the composition of affine operators is
an affine operator. For each affine operator there exists a linear
operator such that the affine operator can be obtained by the
sum of the linear operator and a constant. Hence, it is possible
to define:

Li(K , X) : Φi(K , X) = Li(K , X) + Ui

Note that these operators correspond to the ones given in Eq. 5.
Finally, consider:

Φ i(K , X) = Li(K , X) + U

where U ≥ 0 is such that U ≥ Ui ∀i ∈ {1, . . . , M}. It is easy
to prove that it always exists. Now we recall some important
properties that hold for the previous operators.

Lemma 10. The following properties hold:

(1) Consider X ≥ 0. Then gTi
λ (X) ≤ Φ

Ti
λ (K , X) ∀K ∀i.

(2) Consider X ≥ 0. Then gi(X) ≤ Φi(K , X) ∀K ∀i.

Proof. (1) is given in Sinopoli et al. (2004), while (2) is a conse-
quence of (1) and Lemma 7(2).

Lemma 11. Consider a generic sequence {ik} with ik ∈ {1, . . . , M}.
If there exist a K and a Y > 0 such that Li(K , Y ) < Y ∀i ∈

{1, . . . , M}, then the sequence Yk+1 = Φ ik (K , Yk) is bounded
∀Y0 ≥ 0.

Proof. The following properties hold:

(1) ∀Y0 ≥ 0 ∃mY0 : Y0 ≤ mY0Y ,
(2) ∃mU : U ≤ mUY ,
(3) ∀i ∃ri ∈ (0, 1) : Li(K , Y ) < riY ,
(4) r = max(ri) ⇒ r ∈ (0, 1), Li(K , Y ) < rY ∀i.

Choose a generic initial condition Y0 ≥ 0. It holds that:

Yk+1 = Φ ik ◦ Φ ik−1 ◦ . . . ◦ Φ i0 (K , Y0)

= Lik ◦ Lik−1 ◦ . . . ◦ Li0 (K , Y0)

+

k∑
t=1

Lik ◦ Lik−1 ◦ . . . ◦ Lit (K ,U) + U

≤ mY0Lik ◦ Lik−1 ◦ . . . ◦ Li0 (K , Y )

+ mU

(
k∑

t=1

Lik ◦ Lik−1 ◦ . . . ◦ Lit (K , Y ) + Y

)

≤ mY0 r
kY + mU

k∑
t=0

r tY ≤

(
mY0 +

mU

1 − r

)
Y

where we exploit Lemma 10 and the linearity of L.

Consider the following sequence of matrices:

PNh+N = giNh (PNh) P0 = P0.

Lemma 12. Consider a generic sequence of SNRNh ≥ SNRmin
and the corresponding sequence of indexes of optimal rates {iNh}
according to the rate selection algorithm (9). If there exist a K and
an Y > 0 such that Li(K , Y ) < Y ∀i, then:

(1) ∃M ≥ 0 : PNh < M ∀h
(2) E[PNh] ≤ PNh ∀h
(3) ∃M ≥ 0 : E[Pk] < M ∀k.

Proof. Consider the sequence of the upper-upper-bounds:

PNh+N = giNh (PNh)

≤ ΦiNh (K , PNh)

= LiNh (K , PNh) + UiNh

≤ LiNh (K , PNh) + U

= Φ iNh (K , PNh)

where we have exploited the definitions of P , L, Φ and Lemma 10.
Now consider the sequence P̂Nh = Φ iNh (P̂Nh−N ) starting from P0.
This sequence is bounded according to Lemma 11 and it limits
the sequence of upper-upper-bounds: this proves the first claim.

The second claim can be proved by induction. It holds for
h = 0 since P0 = P0 = E[P0]. Now assume that E[PNh−N ] ≤ PNh−N .
If SNRNh is such that the optimal transmission rate is Ri and the
arrival probability is λi, we have:

E[PNh] ≤ g iT
λi

◦ g iT
λi

◦ · · · ◦ g iT
λi  

N/i times

(E[PNh−N ])

≤ g iT
λi,L

◦ g iT
λi,L

◦ · · · ◦ g iT
λi,L  

N/i times

(E[PNh−N ]) ≤ PNh

where the first inequality holds for Lemma 7(6) and the second
holds for Lemma 7(3), as long as λi ≥ λi,L, true by definition of
λi,L if SNR ≥ SNRmin.

The third claim follows immediately from the first two claims
(for k = Nh) and the fact that the error covariance cannot diverge
in a finite number of steps (for k ∈ {Nh + 1, . . . , Nh + N − 1}).
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Proof (Theorem 6). Under the hypothesis of (A, B) stabilizable and
(A,

√
W ) detectable, the system is mean square stable if the cost

is bounded. Consider the asymptotic cost:

J∗
∞

= c + tr(S∞Q )

+ lim
K→∞

sup
1
K

K−1∑
k=0

tr
(
(A′S∞A − S∞ + W )E[Pk

k|k−1]
)

where the steady-state value S∞ exists under the hypothesis of
(A, B) stabilizable and (A,

√
W ) detectable. Since there exist a K

and a Y > 0 such that Li(K , Y ) < Y ∀i and SNRk ≥ SNRmin, the
sequence of expected error covariance is bounded E[Pk

k|k−1] ≤ M
according to Lemma 12 . It immediately follows that:

J∗
∞

≤ c + tr(S∞Q ) + lim
K→∞

sup
1
K

K−1∑
k=0

tr
(
(A′S∞A − S∞ + W )M

)
= c + tr(S∞Q ) + tr

(
(A′S∞A − S∞ + W )M

)
.

The right hand side is bounded, that implies that also the left
hand side is bounded, which concludes the proof.
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