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Abstract—In this paper, we consider a problem of decentralized
non-Bayesian quickest change detection using a wireless sensor
network where the sensor nodes are powered by harvested energy
from the environment. The underlying random process being
monitored by the sensors is subject to change in its distribution
at an unknown but deterministic time point, and the sensors
take samples (sensing) periodically, compute the likelihood ratio
based on the distributions before and after the change, quantize
it and send it to a remote fusion centre (FC) over fading chan-
nels for performing a sequential test to detect the change. Due
to the unpredictable and intermittent nature of harvested energy
arrivals, the sensors need to decide whether they want to sense,
and at what rate they want to quantize their information before
sending them to the FC, since higher quantization rates result in
higher accuracy and better detection performance, at the cost of
higher energy consumption. We formulate an optimal sensing and
quantization rate allocation problem (in order to minimize the
expected detection delay subject to false alarm rate constraint)
based on the availability (at the FC) of non-causal and causal
information of sensors’ energy state information, and channel
state information between the sensors and the FC. Motivated
by the asymptotically inverse relationship between the expected
detection delay (under a vanishingly small probability of false
alarm) and the Kullback-Leibler (KL) divergence measure at
the FC, we maximize an expected sum of the KL divergence
measure over a finite horizon to obtain the optimal sensing and
quantization rate allocation policy, subject to energy causality
constraints at each sensor. The optimal solution is obtained using
a typical dynamic programming based technique, and based on
the optimal quantization rate, the optimal quantization thresh-
olds are found by maximizing the KL information measure per
slot. We also provide suboptimal threshold design policies using
uniform quantization and an asymptotically optimal quantiza-
tion policy for higher number of quantization bits. We provide
an asymptotic approximation for the loss due to quantization of
the KL measure, and also consider an alternative optimization
problem with minimizing the expected sum of the inverse the
KL divergence measure as the cost per time slot. Numerical
results are provided comparing the various optimal and sub-
optimal quantization strategies for both optimization problem
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formulations, illustrating the comparative performance of these
strategies at different regimes of quantization rates.

Index Terms—Energy harvesting, sensor networks, decentral-
ized change-point detection, quantization.

I. INTRODUCTION

W IRELESS sensor networks (WSN) has become an
enabling technology in diverse fields of applications

such as industrial process monitoring [1], mobile robots and
autonomous vehicles [2], smart grid monitoring [3] and envi-
ronmental data gathering [4]. In many such applications, the
sensors are placed in remote or hazardous locations. Periodic
replacement of batteries for such sensors can be difficult, and
often expensive in other applications such as smart homes.
In order to mitigate this issue, the possibility of harvesting
renewable energy from the environment in order to power the
sensors has been investigated in the literature. In this paradigm,
the sensors are equipped with a finite sized rechargeable
battery or an energy storage device, and they are capable
of harvesting energy from ambient sources like temperature
gradients, vibrations, wind and solar energy and storing it
in the battery for future use in sensing, processing, com-
munication and decision making. The downside of such an
arrangement is the inherent random and unpredictable nature
of energy harvesting processes. Coupled with the fact that
each sensor has access to limited energy storage, the problem
of finding optimal energy allocation for sensing, processing
and information transmission poses significant challenges in
practice.

Substantial amounts of research have been directed toward
communication systems capable of harvesting energy from
the renewable sources recently [5]. The channel capacity
for such systems has been analyzed for both unlimited and
limited battery scenarios [6], [7]. These results have been fur-
ther extended to multiuser communication systems as well.
The capacity region and optimal power scheduling problems
in multiple access channels [8], interference channels [9]
and relay channels [10] has been studied in the domain
of multiuser networks. Simultaneous Wireless Information
and power transfer in such networks has also been studied
recently [11].

Energy harvesting wireless sensor networks have also
received considerable attention from the research community,
e.g., in the form of optimal energy management policies [12],
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power allocation policies [13], and energy efficient
transmission policies [14]. Significant research has also been
devoted to the domain of wireless powered crowd sensing,
which focuses on joint power transfer, sensing, compression
and transmission process [15]. Furthermore, the problem of
optimal node deployment and energy provisioning has been
studied in [16]. One important task of WSNs deployed in
structural health monitoring or surveillance applications for
example, is to detect changes in the underlying distribution
of the observation signal. In a parametric setting (where
modeling assumptions regarding the distribution before and
after the change can be made), this can be accomplished either
by different classical detection techniques [17] or sequential
detection techniques, e.g., quickest change detection [18].
The quickest change detection method has been applied to
detect anomalies or predicting failures in diverse application
domains, e.g., seismic event detection, health monitoring, and
detecting vacant radio spectrum. This detection technique
can either be applied by the individual sensors locally or
by the fusion centre (FC) after collecting information from
the sensors [19]. In a parallel line of investigation, there
has been recent research works investigating the change
detection problem in a non-parametric and online streaming
settings [20], [21]. In the current paper, however, we focus on
a quickest sequential change detection problem with multiple
energy harvesting sensors in a parametric setting, where
the sensors send quantized log-likelihood information to the
fusion centre for decision making under the assumption that
the distributions before and after the change are known.

The quickest change detection problem focuses on detecting
sudden changes in the distribution of the probability density
function of a stochastic process while minimizing the detec-
tion delay, subject to a constraint on the false alarm rate. Here
detection delay is defined as the amount of time required to
detect the change point after the actual occurrence of such
an event. In classical literature, there exists two ways of ana-
lyzing such events. The first one is the Bayesian formulation,
which assumes the unknown change point to be drawn from
a specific probability distribution [22]. The other formula-
tion is non-Bayesian, which instead typically assumes that the
change point is unknown but deterministic in nature [23], [24].
Assuming that Xk denotes the vector of sensor observations
at the k th time instant, the standard non-Bayesian formulation
consists of a sequence of such observations {Xk , k = 1, 2, . . .}
with a change point λ. This implies that the sequence of
observations before the change point, i.e., X1,X2, . . . ,Xλ−1
is generated from the distribution f0 whereas after the change
the corresponding sequence Xλ,Xλ+1, . . . is generated from
the distribution f1.

In standard settings over a slotted time interval, the sen-
sors in a wireless sensor network are able to observe the
signal of interest during every time slot in the quickest change
detection framework. But this is not guaranteed in the harvest-
ing based scenario under consideration, due to the fact that
each sensor is powered by ambient energy harvested from
its surroundings and the stochastic nature of energy avail-
ability. The quickest change detection problem with energy
constraints has been studied for both the non-Bayesian [25]

and the Bayesian [26] framework in centralized settings.
Decentralized quickest change detection has been studied
without energy constraints in [27], [28]. To the best of our
knowledge, there has not been any research in the domain
of non-Bayesian quickest change detection with energy har-
vesting in a decentralized setting where individual sensors
quantize their observation/likelihood ratio and forward this
information to an FC for making a global decision. The impor-
tance of such a problem lies in the fact that at every time
instant, each sensor has to make a decision regarding sensing
the observation signal and sending its quantized observation
to the FC for performing the quickest change detection based
on the available energy in its battery. In this decentralized set-
ting, finding an optimal quantization strategy (including rate
allocation and selection of quantization thresholds) at each
individual sensor is essential because the performance of the
detection process is sensitive to the accuracy of the information
collated at the FC. Higher number of quantization bits ensures
that the information sent to the FC is more accurate, but also
consumes more energy. Furthermore, each sensor’s participa-
tion in the sensing process is limited by the available energy
in its battery [denoted as the energy state information (ESI)]
at the start of each time slot.

In this paper, we consider the problem of designing an
optimal quantization and sensing policy for a decentralized
quickest change detection setup where the sensors quantize
their log-likelihood ratios corresponding to the distributions
after and before the change, respectively, and transmit this
quantized information to the FC over fading channels. The
corresponding channel state information (CSI) (assumed to be
known at the FC) determines the amount of energy required to
transmit each quantized observation to the FC with a certain
probability of error. Thus, at every time instant all sensors
have to decide whether to sense the observation signal and
how to quantize it, for sending it to the FC based on the
amount of energy the sensors have at their disposal and the
corresponding channel gain. Upon reception of the quantized
measurements, the FC employs a Cumulative Sum (CUSUM)
based change detection algorithm, where the cumulative sum
of the total log-likelihood ratio of the quantized measurements
received at the FC is compared against a threshold to detect a
change. It is well known that when the probability distributions
of the sensed random variables before and after the change
are known (parametric setting), CUSUM based on monotone
likelihood ratio quantizers (MLRQ) at the sensors achieves
asymptotic optimality, in that, it minimizes the worst case aver-
age detection delay subject to a false alarm probability that
approaches zero [19]. In fact, the expected detection delay is
asymptotically (as the false alarm rate goes to zero) inversely
proportional to the Kullback-Leibler (KL) divergence measure
available at the FC, which motivates us to obtain an optimal
sensing and quantization policy at the sensors, by maximizing
the expected sum of an appropriate KL divergence measure
over a finite horizon, subject to energy causality constraints
at all sensors, given either non-causal or causal information
about the available energy state information at the batteries
and the sensors’ channel gains.

The main contributions of our paper are as follows.
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1) The problem of minimizing the average detection delay
is formulated for the non-Bayesian decentralized quick-
est change detection in a fading WSN over a finite
time horizon where each sensor is capable of harvesting
energy from the surroundings, where the energy harvest-
ing model is far more general than a binary model used
in [25]. The strategy is to maximize an expected sum
of the KL divergence measure at the FC over a finite
horizon for both non-causal and causal CSI and ESI.

2) The optimal policies regarding sensing decision and
number of quantization bits are determined using a
dynamic programming (DP) algorithm for both the
non-causal and causal cases.

3) A system of nonlinear equations is formulated for
deriving the optimal quantization thresholds, when the
number of quantization bits are obtained from DP.

4) In the case of a large number of quantization bits, an
asymptotically optimal policy is obtained by simplifying
the above mentioned system of equations using the Mean
Value Theorem (MVT).

5) Using asymptotic quantization theory for non-quadratic
distortion measures, an asymptotic approximation is
obtained for the difference between the quantized and
unquantized KL divergence measure. The performances
of the optimal, a heuristic uniform and the MVT based
asymptotic quantizers are compared with respect to this
theoretically obtained asymptotic expression.

6) The optimal and heuristic uniform quantization strate-
gies are compared by their average detection delay for
both the non-causal and causal scenario via numerical
simulation results. They indicate that the optimal strat-
egy significantly outperforms its uniform counterpart
when the number of quantization bits is low. The uni-
form quantization policy performs closer to the optimal
policy when the number of quantization bits becomes
higher.

7) An alternative optimization problem is proposed for
minimizing the detection delay for the same framework,
by minimizing the average sum of the inverse of the KL
divergence measure over a finite horizon.

8) Finally, the solutions to the two optimization problems
are compared by their performance in terms of detection
delay. The corresponding plots show that the alterna-
tive optimization problem performs better compared to
its original counterpart, but only at the expense of an
unfavourable property regarding the probability of false
alarm rates.

It should be noted that some of these results stated above were
partially presented in our conference paper [29]. The additional
contributions of the current work compared to [29] consist
of the asymptotic analysis for quantization of KL divergence
measure, and the development of the asymptotic quantiza-
tion policy based on MVT, the formulation of the alternative
optimization problem and its performance comparison, along
with additional numerical results.

The rest of the paper is organized as follows. We describe
the System Model in Section II. The expected sum of
KL divergence based optimization problem is formulated

Fig. 1. Quickest change detection with distributed sensors.

in Section III. We derive the system of nonlinear equa-
tions for determining the optimal quantization thresholds in
Section IV. We also introduce the MVT based asymptotic
optimal quantizer and uniform quantizer in the same section.
In Section V, we derive the asymptotic analytic bounds for
the KL divergence measure for the optimal quantization strat-
egy. In Section VI, we focus on finding the optimal sensing
decision and quantization strategy for both non-causal and
causal CSI scenario using DP. An alternative optimization
problem for minimizing the detection delay is also proposed in
same section. Simulation results are presented in Section VII,
followed by conclusions and future extensions in Section VIII.

II. SYSTEM MODEL

As shown in Fig. 1, the system model consists of N wire-
less sensors and a FC for centralized decision making. We
assume that each sensor is equipped with a re-chargeable
battery/energy storage device of finite capacity and they are
capable of harvesting energy from the surroundings. We also
assume that the time is slotted and the observation signal is
monitored by each sensor for M time slots. During the k th

time slot, the i th sensor decides to either sense or abstain
from sensing based on the available energy in its battery. The
corresponding binary sensing decision parameter is denoted
by νi ,k for 1 ≤ i ≤ N, 1 ≤ k ≤ M, where νi ,k ∈ {0, 1}, and
1 (or 0) represents the decision to sense (or not), respectively.

If the i th sensor senses during the k th time slot, i.e.,
νi ,k = 1, it obtains the sample Xi ,k of the observation signal.
For the system model under investigation, it is assumed that
the observation signal is drawn from one of the two probabil-
ity distribution functions f0 or f1, depending on whether it is
received before or after the change point λ, respectively. As
per usual, we assume that the observations signals {Xi ,k} are
independent and identically distributed (i.i.d.) over time and
across all the sensors, both before and after the change. Thus,
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we formulate the following hypothesis testing problem:

H0 : Xi ,k ∼ f0(x ), if k < λ,

H1 : Xi ,k ∼ f1(x ), if k ≥ λ.

After sampling the observation signal Xi ,k , during the k th

time slot, the i th sensor Si calculates the log-likelihood ratio
(LLR) Zi ,k = log f1(Xi,k )

f0(Xi,k )
. The LLR is then quantized to

qi ,k bits, forming a quantized message Ui ,k , which is sent
to the FC. This is accomplished by comparing the LLR with
2qi,k − 1 quantization thresholds. Without loss of generality,
we assume that the quantized message Ui ,k takes values in the
set {0, 1, . . . , 2qi,k − 1}, corresponding to the 2qi,k quantiza-
tion bins. At every time slot, the FC receives these quantized
messages from the sensors which have enough energy for
transmitting them successfully, and performs the cumulative
sum (CUSUM) test for detecting a change in the distribution
of the observation signal using a Cumulative Sum (CUSUM)
based sequential detection algorithm as discussed in [19].

During each time slot, the fading channel gains between the
sensors and the FC, denoted by {hi ,k}, 1 ≤ i ≤ N, 1 ≤ k ≤ M,
are assumed to remain constant, but change from one time
slot to another. We assume that these fading channel gains are
statistically independent and identically distributed across time
slots, as well as across the sensors. In this paper, we consider
the case where each sensor decides to sense the observation
signal, only if it has enough energy in the battery for sensing
and sending its quantized information to the FC. Thus, νi ,k is
determined by the following rule:

νi ,k =
{

1, if Bi ,k ≥ Es + qi ,kE b
i ,k ,

0, otherwise

where Es is the amount of energy required for sensing during
each time slot and the battery state, the energy required for
sending each quantized bits and the number of quantized bits
at the i th sensor during the k th time slot are represented by
Bi ,k ,E b

i ,k and qi ,k , respectively. The amount of energy spent
by the i-th sensor during that time slot, denoted by Ei ,k , is
then:

Ei ,k = νi ,k

(
Es + qi ,kE b

i ,k

)
. (1)

Remark 1: It should be noted that we can also add an
energy cost of processing the sample at the sensor including
the energy required for computing the log-likelihood ratio and
quantizing this ratio, to the sensing energy Es . As long as this
cost is constant across all time slots, the subsequent problem
formulation remains unaltered, and essentially the maximum
battery capacity can be thought of the original battery capacity
minus the energy cost of signal processing at the sensor, or
alternatively, Es can be thought of energy cost due to both
sensing and signal processing.

If the maximum battery capacity of all sensors is assumed to
be Bmax and Hi ,k represents the amount of harvested energy
of the i th sensor during the k th time slot (assuming that it
can be stored and only used in the following time slot), then
the battery dynamics can be expressed as follows:

Bi ,k+1 = min
{
Bmax ,Bi ,k + Hi ,k − Ei ,k

}
. (2)

We also assume that Hi ,k are i.i.d across the sensors and time
slots.

Remark 2: It should be noted that the i.i.d. assumption for
the channel gains and the harvested energies are only for con-
venience, and more general models such as finite state Markov
chain models for both the channel gains and harvested energies
can be considered with spatial correlation across the sensors.
This will only affect the computations of the optimal policy for
the causal case using the dynamic programming methodology,
but not the development of the subsequent analysis.

If either a binary phase shift keying (BPSK) or a quadrature
phase shift keying (QPSK) modulation technique is employed
at the sensors, assuming fixed receiver noise power spectral
density N0 at the FC, the probability of error Pe can be derived
from the following expression [31] as a function of the energy
required for transmitting each quantized bit E b

i ,k :

Pe =
1
2
erfc

⎧⎨
⎩
√

hi ,k

E b
i ,k

N0

⎫⎬
⎭

where erfc denotes the complementary error function.
Thus for a fixed required probability of error Pe , the energy

required for transmitting each quantized bit can be written as:

E b
i ,k =

N0

hi ,k

{
erfc−1(2Pe)

}2
, (3)

We assume that the channel power gain hi ,k and in turn
the transmission energy for each quantized bit E b

i ,k are com-
puted at the FC by sending pilot symbols (from the FC to
the sensors) and assuming channel reciprocity between the
sensors and the FC. Thus, during the k th time slot, the
battery state information Bk = {B1,k ,B2,k . . . ,BN ,k}, and
the channel gains between the sensors and the FC, hk =
{h1,k , h2,k , . . . , hN ,k}, are available to the FC via feedback
from the sensors via control channels.

A. Quickest Change Detection at the FC

In order to simplify the problem under investigation, we
assume that the probability of error Pe for the transmission
of the quantized messages from the sensors to the FC is suf-
ficiently small, so that the data sent by the active sensors are
received at the FC with high probability and we ignore the
effect of erroneous transmissions. As we will see shortly in
the subsequent analysis, this amounts to scaling the received
sum of the quantized LLR at the FC by (1 − Pe) when all
sensors are required to satisfy identical Pe for information
transmission.

As the quantized message Ui ,k is discrete valued, we
assume that g j

i denotes its the probability mass function (pmf),
if the observations are drawn from the hypothesis Hj . In order
to quantize Zi ,k to qi ,k bits, we need to determine 2qi,k − 1
number of thresholds. Denoting the l th quantization threshold
for the i th sensor as t il , the corresponding pmfs can then be
expressed as follows:

g1
i (l) = F1

(
t il+1

)
− F1

(
t il
)
, (4)

g0
i (l) = F0

(
t il+1

)
− F0

(
t il
)
, (5)
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where F1 and F0 are the corresponding cumulative distribution
functions for the probability distribution functions (pdf) f1 and
f0, respectively. They can be determined as follows:

F1(x ) =
∫ x

−∞
f1(x )dx ,

F0(x ) =
∫ x

−∞
f0(x )dx .

Remark 3: For the special case when the pdfs are Gaussian
distributed with varying mean but the same variance, the
hypothesis testing problem becomes:

H0 : Xi ,k ∼ N
(
0, σ2

)
, if k < λ (6)

H1 : Xi ,k ∼ N
(
μ, σ2

)
, if k ≥ λ (7)

where μ is the mean of the observation signal Xi ,k under
the alternative hypothesis H1 and σ2 is the variance of Xi ,k
under both hypothesis H0 and H1. The corresponding LLR,
Zi ,k , can be determined by the following expression [19]:

Zi ,k = log
f1
(
Xi ,k

)
f0
(
Xi ,k

) =
μXi ,k

σ2
− μ2

2σ2
. (8)

The pmfs after quantization become:

g1
i (l) = Φ

{
t il+1 − μ

σ

}
− Φ

{
t il − μ

σ

}
(9)

g0
i (l) = Φ

{
t il+1

σ

}
− Φ

{
t il
σ

}
(10)

where Φ is the cumulative distribution function corresponding
to the standard normal random variable.

After receiving the quantized message Ui ,k from the indi-
vidual sensors, the FC computes the quantized LLR between
hypotheses H1 and H0 as follows:

Z q (k) =
N∑

i=1

log
g1
i

(
Ui ,k

)
g0
i

(
Ui ,k

) . (11)

We should note that this quantized LLR Z q (k) is differ-
ent from Zi ,k which is the LLR computed at the individual
sensors, and is used for computing the CUSUM test statis-
tic at the FC. We denote T as the stopping time, i.e., the
time instant when the quickest change detection algorithm
declares that a change has been detected in the distribution
of the observation signal. We define the sensing strategy as
ν = {νi ,k ; i = 1, . . . ,N ; k = 1, . . . ,M }, and quantization
function as q = {qi ,k ; i = 1, . . . ,N ; k = 1, . . . ,M }. The
stopping time T along with these parameters form the policy
φ = (ν, q,T ).

The non-Bayesian quickest change detection focuses on
detecting the change point as soon as possible after its actual
occurrence. Thus the goal of this algorithm is to find the joint
sensing and quantization policy φ, that minimizes the average
worst case detection delay (SADD) [24], which is defined as
follows:

SADD(φ) = sup
1≤λ≤∞

Eλ(T − λ|T ≥ λ), (12)

where Eλ denotes the expectation if the change occurs at time
instant λ.

The purpose of this paper is to find an optimal sensing
decision by ν� and optimal quantization function by q�, where
we define the corresponding policy tuple as φ̃ = (ν�, q�,T ).
The optimal stopping time is then determined by the minimax
change point detection procedure can be expressed as:

T � = min
T

SADD
(
φ̃
)
,

s.t. E∞[T ] > γ; γ > 1. (13)

In the above optimization problem E∞[T ] denotes the
expected stopping time decided by the algorithm when the
change never occurs, i.e., λ = ∞. This quantity is termed as
average run length to false alarm in the literature, because it
represents the inverse of the rate of false alarm, which is lower
bounded by the inverse of a low constant false alarm rate, i.e.,
the minimum expected duration to false alarm γ > 1, where
typically γ is chosen to be large.

As mentioned earlier, it is well known that it is asymp-
totically (as the false alarm rate goes to zero) optimal [19]
for the sensors to quantize their individual LLR to maximize
their individual Kullback-Leibler divergence measure between
the distributions after and before the change, when the FC
employs a CUSUM based sequential change detection algo-
rithm utilizing the total LLR based on quantized information
received (at the FC) from all sensors. Therefore, the corre-
sponding CUSUM test statistic at the FC is defined by the
following recursion:

W q (k) = max{0,W q (k − 1) + Z q (k)},W q (0) = 0. (14)

Furthermore, the optimal stopping time for the CUSUM test
can be obtained as:

T � = min{k ≥ 1 : W q (k) ≥ r}, r = log γ (15)

For easier readability we have summarized the relevant
parameters for our subsequent problem formulation in Table I
(see top of next page).

III. OPTIMIZATION PROBLEM FORMULATION

The asymptotic performance (as γ → ∞) of the optimal
decentralized detection scheme using a CUSUM test operating
with the total LLR at the FC for a fixed quantization strat-
egy, when the nodes are sensing periodically at each sampling
period [19] is as follows:

SADD(T ) ∼ log γ
Iqtot

as γ → ∞, (16)

where Iqtot is the total Kullback Leibler (KL) information num-
ber between the hypothesis H1 and H0, based on quantized
information obtained from all the sensors. This performance
limit is can be treated as a fundamental limit in decentral-
ized detection in much the same way as the Cramer-Rao
Bound is viewed as a fundamental limit in parameter estima-
tion (see [30, p. 386]). Thus in a model-based setting, no other
change detection algorithm (parametric or non-parametric)
can achieve a smaller SADD subject to a vanishingly small
probability of false alarm.
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TABLE I
SYSTEM PARAMETERS

In the case of energy harvesting sensors, it is clear that for
every given time slot, the number of active sensors depends on
the corresponding battery states of the sensor, and is therefore
random. An expression for I

q
tot can be determined for each

time slot by summing the KL information measures for indi-
vidual sensors over a given number of active sensors, assuming
error-free transmission between the active sensors and the FC.
As remarked earlier, we assume the probability of erroneous
transmission, Pe , is sufficiently small so that we ignore its
effect as essentially once Pe is fixed and identical for all sen-
sors, the total KL divergence measure at the FC is simply
scaled by (1 − Pe) when transmission errors are taken into
account. We denote the number of active users in the k th

time slot by nk , which is a random variable dependent on the
channel state information and harvested energy, for a given
sensing and quantization strategy (which in turn determines
the battery state at the sensors). In that case, Iqtot (for the k-th
time slot) can be expressed as:

I
q
tot =

nk∑
i=1

I
(
g1
i , g

0
i

)
=

nk∑
i=1

2
qi,k −1∑
l=0

g1
i (l) log

g1
i (l)

g0
i (l)

(17)

where I(g1
i , g

0
i ) denotes the KL divergence between the

probability mass functions g1
i and g0

i of i th sensor Si .
Minimizing the asymptotic average worst case detection

delay is equivalent to the problem of maximizing Iqtot , when
the number of active sensors nk , the channel gain hk and
the battery state Bk are deterministic and identical for all
time slots. But the obvious limitation of such an approach
is that it does not work when nk , hk , Bk are varying ran-
domly from one time slot to another. Thus, we are interested
in optimizing the sensing and quantization policy over a finite
time horizon by taking into account the effects of varying
number of active sensors, channel gains and energy harvesting
in different sensors on the quickest change detection process.

Note that this optimization problem formulation also allows a
more general energy harvesting and expenditure model than
the binary model studied in [25]. For a stationary and ergodic
energy harvesting and channel gain process, the correspond-
ing objective function 1

M

∑M
k=1 Iqtot can be interpreted as the

expected KL information measure when the number of time
slots (horizon length) M → ∞. It should be noted that while
the asymptotic upper bound on the average detection delay is
not exactly inversely proportional to the average KL measure,
the inverse of the average KL measure still provides a lower
bound on the asymptotic average detection delay from Jensen’s
inequality. Additionally, the problem of maximizing the aver-
age KL measure can provide further insight into the optimal
sensing and quantization strategies for minimizing the average
detection delay in the asymptotic case when the probability of
false alarm goes to zero. Thus, the optimization problem is
formulated as follows:

max
νi,k ,qi,k

M∑
k=1

Enk

⎧⎨
⎩

nk∑
i=1

⎧⎨
⎩νi ,k

2
qi,k −1∑
l=0

g1
i (l) log

g1
i (l)

g0
i (l)

⎫⎬
⎭
⎫⎬
⎭ (18)

s.t. νi ,k ∈ {0, 1}; ∀i , k , (19)

qi ,k ∈ {1, . . . ,Qmax}; ∀i , k , (20)

Ei ,k ≤ Bi ,k ; ∀i , k . (21)

Remark 4: In the optimization problem mentioned above,
Qmax denotes the maximum number of quantization bits per
sample available to each sensor, whereas equations (19), (20)
and (21) refer to the binary choice of sensing decision νi ,k ,
the feasible set of number of quantization bits qi ,k and the
energy causality constraint, respectively.

For the sake of completeness, we analyze an alternative
optimization problem in Section VII, which focuses on mini-
mizing the average inverse KL measure over a finite horizon
rather than maximizing the average KL measure itself. This
alternative optimization provides a better lower bound on
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the asymptotic detection delay compared to maximizing the
average KL measure.

IV. NON-CAUSAL OPTIMIZATION WITH FINITE BATTERY

In this section, we analyze the optimization problem under
the assumption that the channel gains between the sensors and
the FC and the battery state information are non-causally avail-
able. For most practical applications, this assumption does not
hold. However, this provides a benchmark of performance for
the more practical scenario, when the information is causally
available. It should be noted that in this optimization problem,
both optimization variables νi ,k and qi ,k are discrete valued.
In order to tackle the combinatorial nature of this problem, it
is solved by DP similar to the causal scenario, which will be
discussed in Section VI.

Remark 5: It should be noted that for a fixed sensing and
quantization policy and non-causal knowledge about {Bk ,hk},
where k = 1, . . . ,M , the objective function in the above
optimization problem becomes deterministic and thus the
expectation operator in (18) can be removed.

At the k th time slot, when the CSI and ESI are non-
causally available, the corresponding sensing policy νi ,k , and
number of quantization bits qi ,k for i = 1, 2, . . . ,N , is deter-
mined offline using the DP algorithm. Once νi ,k and qi ,k are
determined, one needs to find the optimal positions of the
quantization thresholds for quantizing the LLR, Z i , k for the
i-th sensor. Lets assume that ψ∗

i ,k represents the quantization
function that optimizes the problem (18)–(21). Hence, we are
interested in finding the 2qi,k −1 thresholds t0, t1, . . . , t2qi,k −1
as follows:

ψ∗
i ,k

(
Xi ,k

)
= bi ,k only if tbi,k < Zi ,k ≤ tbi,k+1.

where bi ,k ∈ {0, 1, . . . , 2qi,k − 1}.
From the optimization problem (18)-(21), it is evident that

the optimal policy entails finding the sensing decision, number
of quantization bits and the corresponding thresholds jointly
using the DP. This is prohibitively complex because of the
exponential computational complexity of the DP algorithm
in the state and action space. In order to keep the compu-
tations tractable, we obtain the thresholds non-adaptively, i.e.,
first finding the optimal sensing decision and the number of
quantization bits by DP, while applying a set of quantiza-
tion thresholds pre-computed corresponding to the number of
quantization bits found by DP. These quantization thresholds
are designed for each value of the number of quantization
bits qi ,k ∈ {1, 2, . . . ,Qmax} by simply maximizing the KL
divergence measure for a given time slot, rather than by
considering all the time slots in the finite horizon. In the
next three subsections, we will describe three policies for
obtaining the thresholds, (i) the optimal threshold quantiza-
tion (which maximized the KL Divergence measure at each
time slot), (ii) a mean value theorem (MVT) based asymp-
totically optimal threshold (when the number of quantization
levels goes to infinity, i.e., Qmax → ∞), and (iii) a simple
uniform quantization policy, respectively.

A. Optimal Threshold Quantization

The KL divergence for the k-th slot based on the quantized
LLR from nk active sensors can be expressed as follows:

F
({

t il : l ∈ {0, . . . , 2qi,k − 1}
})

=
nk∑
i=1

2
qi,k −1∑
l=0

g1
i (l) log

g1
i (l)

g0
i (l)

, (22)

under the constraints that νi ,k and qi ,k satisfy (19), (20)
and (21).

As the KLD contribution from each sensor is only depen-
dent on its own quantization thresholds, we can consider
maximizing the KLD sensor separately with respect to its
own quantization thresholds. Therefore the optimal solution
for the thresholds for the i-th sensor can be found by solv-

ing for ∂Fi

∂t(i)l
= 0, where Fi =

∑2
qi,k −1

l=0 g1
i (l) log g1

i (l)

g0
i (l)

.

Furthermore, in the interest of simplifying notations, we drop
the sensor index i from the threshold notation t il . It should be
noted that only two consecutive summands in the above sum
are functions of tl as mentioned in (9) and (10), i.e., for a
given sensor only g1(l), g0(l), g1(l −1) and g0(l −1) depend
on tl . Hence, the gradient expression can be written as:

∂Fi

∂tl
=

∂

∂tl

{
F1

i + F2
i

}
, (23)

where F1
i = g1(l − 1) log g1(l−1)

g0(l−1)
and F2

i = g1(l) log g1(l)
g0(l)

,
and the individual gradients can be simplified as follows:

∂F1
i

∂tl
=
∂g1(l − 1)

∂tl
log

g1(l − 1)
g0(l − 1)

+ g0(l − 1)
∂

∂tl

{
g1(l − 1)
g0(l − 1)

}
, (24)

∂F2
i

∂tl
=
∂g1(l)
∂tl

log
g1(l)
g0(l)

+ g0(l)
∂

∂tl

{
g1(l)
g0(l)

}
. (25)

Thus the optimal thresholds can be found by solving the
following equations:

∂F1
i

∂tl
+
∂F2

i

∂tl
= 0, l = 0, 1, . . . , 2qi,k − 1. (26)

Remark 6: If the pdfs under the hypothesis testing problem
are Gaussian distributed as mentioned in Remark 1 of
Section II, these two gradients can be further simplified by
replacing the individual gradients of the cumulative distribu-
tion functions as follows:

∂g1(l − 1)
∂tl

= −∂g
1(l)
∂tl

=
1

σ
√

2π
e−

1
2

{
tl−μ

σ

}2

, (27)

∂g0(l − 1)
∂tl

= −∂g
0(l)
∂tl

=
1

σ
√

2π
e−

1
2

{
tl
σ

}2

. (28)

With some algebraic manipulations, (26) reduces to:

∂g1(l − 1)
∂tl

⎧⎨
⎩log

⎧⎨
⎩

g1(l−1)
g0(l−1)

g1(l)
g0(l)

⎫⎬
⎭
⎫⎬
⎭

=
∂g0(l − 1)

∂tl

{
g1(l − 1)
g0(l − 1)

− g1(l)
g0(l)

}
. (29)
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Using the results of (27) and (28) in (29), we obtain the
following set of simultaneous nonlinear equations:

e−
1

2σ2 (μ2−2μtl) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g1(l−1)
g0(l−1)

− g1(l)
g0(l)

log

{
g1(l−1)

g0(l−1)

g1(l)

g0(l)

}

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
, l = 1, 2, . . . , 2qi,k .

(30)

As mentioned earlier, the non-adaptive optimal thresholds
can be obtained by solving the above mentioned equation by a
nonlinear solver once we have determined the optimal number
of quantization bits by DP.

B. MVT Based Asymptotically Optimal Threshold Quantizer

If sufficient bandwidth and harvested energies are available
at the sensors, they may use larger numbers of quantization
bits. In this case, a suitable approximation can be achieved
by assuming qi ,k → ∞, such that tl − tl−1 → 0. In order to
find that approximation, first we apply the mean value theorem
(MVT) as in [32] to both the numerator and the denominator
of (30).

We introduce the function r(tl )
Δ= g1(l)

g0(l)
. Then, the numer-

ator of (30) can be written as:

g1(l − 1)
g0(l − 1)

− g1(l)
g0(l)

= r(tl−1) − r(tl ).

With the assumption of tl − tl−1 → 0 and using the MVT we
can write:

r(tl−1) − r(tl ) ≈ r ′(tl−1)(tl−1 − tl ), (31)

where r ′(tl ) denotes the first order derivative of r(tl ) with
respect to tl .

Similarly, we introduce the function s(tl )
Δ= log r(tl ) =

log g1(l)
g0(l)

. Thus, the denominator of (30) can be written as:

log

⎧⎨
⎩

g1(l−1)
g0(l−1)

g1(l)
g0(l)

⎫⎬
⎭ = s(tl−1) − s(tl ).

Applying the MVT on the above expression gives:

s(tl−1) − s(tl ) ≈ s ′(tl−1)(tl−1 − tl ). (32)

Finally, (30) can be simplified by using (31) and (32) to obtain
the approximate relationship

e−
1

2σ2 (μ2−2μtl) =
r ′(tl−1)
s ′(tl−1)

, l = 1, 2, . . . , 2qi,k . (33)

The set of nonlinear equations (33) can be used for determin-
ing the quantization thresholds for the MVT based asymptot-
ically optimal scenario.

Remark 7: When the pdfs are Gaussian distributed as men-
tioned in Section II, the expression for s ′(tl−1) and r ′(tl−1)
are related as:

s ′(tl−1) = r ′(tl−1)
Φ
{

tl
σ

}
− Φ

{
tl−1
σ

}

Φ
{

tl−μ
σ

}
− Φ

{
tl−1−μ

σ

} . (34)

Replacing s ′(tl−1) from (33) to (34) we obtain the following
set of nonlinear equations:

e−
1

2σ2 (μ2−2μtl) =
Φ
{

tl−μ
σ

}
− Φ

{
tl−1−μ

σ

}

Φ
{

tl
σ

}
− Φ

{
tl−1
σ

} . (35)

The advantage of the above set of equations is that starting
from the largest threshold, one can recursively compute the
entire sequence of thresholds going backwards and thus sim-
plifying the computations involved in obtaining the optimal
thresholds.

C. Uniform Threshold Quantizer

For this quantization policy, we first choose an interval of
significance in the distribution of Xi ,k , where most of the
probability mass is concentrated, and ignore any value of
Xi ,k outside that interval, such as mean plus or minus three
times the standard deviation for a given Gaussian distribution.
Supposing the upper and lower bounds for this interval are
represented by vx and ux , respectively, and the observation
signal is quantized with qi ,k number of bits, then the corre-
sponding number of quantization bins and thresholds are 2qi,k

and 2qi,k −1, respectively. The length of each quantization bin
for this uniform policy in such a scenario is:

Δ =
vx − ux

2qi,k
,

and the corresponding j th threshold is located at:

tj = ux + Δj .

It should be noted that the choice of upper and lower bound for
the interval of significance in this uniform quantization strat-
egy influences the performance of the corresponding detection
policy. Thus, additional performance gains may be obtained
reasonable by optimizing the KLD with respect to these two
aforementioned limits. However, numerical results show that
the performance benefits obtained are marginal and therefore
we use a fixed choice for ux , vx , e.g., mean plus minus 3 times
the standard deviation for a Gaussian distribution.

It should be noted that the optimal, asymptotically optimal
and uniform threshold quantization policies can be used for
the scenario involving both the non-causal and the causal CSI
scenario to be described in Section VI.

V. ASYMPTOTIC QUANTIZATION ANALYSIS

In this section we will provide an asymptotic character-
ization of the difference between the unquantized and the
quantized KL divergence for the optimal quantizer, as the
number of quantization intervals goes to infinity. This anal-
ysis provides us with a lower bound on the gap between the
KLD performance with the optimal threshold quantization pol-
icy and the true unquantized KLD per time slot. This, in turn,
helps provide a benchmark for choosing practical quantiza-
tion policies and the maximum number of quantization bits
that are sufficient in real applications. For the analysis in this
section, since we are only considering the KLD in a given
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time slot, we assume that the number of active sensors partic-
ipating in sequential detection process is fixed. This analysis
is based on asymptotic quantization theory originally pursued
for quadratic distortion measures in [33], and later extended
to non-distortion type measures such as the KL divergence
in [34]. As the following discussion largely mirrors the analy-
sis in [34], we simply provide a summary of the intermediate
steps in arriving at the final lower bound expression.

A. Asymptotic Optimal Threshold Quantization Bound

Note that before quantization, the distribution functions of
the observation signal are f1(x ) and f0(x ) under the hypothesis
H1 and H0, respectively. After quantization, the probability
mass functions are denoted by g1 and g0, respectively. Similar
to the previous section, we drop the index i in t il for read-
ability. For asymptotic quantization, i.e., when the number of
quantization bits qi ,k → ∞, we are interested in finding an
asymptotic expression for the distortion function, i.e., the dif-
ference between the unquantized and the quantized divergence
is given by:

Rqi,k = D(f1||f0) − Dqi,k (g1||g0), (36)

where the unquantized KL divergence D(f1||f0) is defined as:

D(f1||f0) =
∫ ∞

−∞
f1(x ) log

f1(x )
f0(x )

dx , (37)

and the quantized KL divergence DL(g1||g0) is defined as:

Dqi,k =
2
qi,k −1∑
l=0

g1(l) log
g1(l)
g0(l)

. (38)

For the analysis in this section, we divide the observa-
tion region into 2qi,k quantization bins. We denote the scalar
quantization operation by Q = (S ,C ), which consists of
the quantization points C = {c1, . . . , c2

qi,k } and quantization
intervals S = {S1, . . . ,S2qi.k }. The quantization operation can
be expressed as:

Q(x ) = cl , for x ∈ Sl .

For the quantizer Q, let Vl =
∫
Sl

dx denote the volume of the

l th quantization bin. The specific point density [35] of Q is
defined as:

ζ(x ) =
1

2qi,k Vl
, for x ∈ Sl .

The corresponding specific inertial profile function m(x) is
defined as [33]:

m(x ) =

∫
Sl
‖y − cl‖2dy

V 3
l

, for x ∈ Sl ,

whereas, the log-likelihood ratio (LLR) is defined as:

Z (x ) = log
f1(x )
f0(x )

. (39)

Given these details, the asymptotic bound on the distor-
tion measure between the unquantized and the quantized

divergence from the results in [34], can be summarized as
follows:

lim
qi,k→∞ 22qi,k Rqi,k =

1
2

∫
f1(x )F(x )
ζ2(x )

dx , (40)

where

F(x ) = ∇Z (x )Tm(x )∇Z (x ), (41)

which is called the Fisher covariation profile. In order to
find the corresponding bound for Rqi,k corresponding to the
optimal quantizer, we use the discrimination-optimal point
density function [35] as follows:

ζd (x ) =
[f1(x )F(x )]

1
3∫

[f1(y)F(y)]
1
3 dy

. (42)

The asymptotic distortion function with the optimal point
density can be expressed as:

Rqi,k ≈ 1
22qi,k+1

(∫
[f1(x )F(x )]

1
3 dx

)3

. (43)

Remark 8: For the scenario, when the observations are gen-
erated from the Gaussian distribution as mentioned in (6), the
expression for the log-likelihood ratio Z(x) is as follows:

Z (x ) = log
f1(x )
f0(x )

=
(2x − μ)μ

2σ2
. (44)

Thus, the corresponding gradient of the log-likelihood ratio
can be simplified to:

∇Z (x ) =
μ

σ2
. (45)

For the scalar quantizer, when the quantization point cl is rep-
resented by the midpoint of the quantization bin Sl , the value
of the specific inertial profile function [35] is m(x ) = 1

12 .
Thus, the corresponding Fisher covariation profile function
can be simplified to:

F(x ) = {∇Z (x )}2m(x ) =
1
12
μ2

σ4
. (46)

Using the discrimination-optimal point density, we obtain the
following asymptotic distortion function as in (43):

Rqi,k ≈ 1
22qi,k+1

(∫
f

1
3

1 (x )F 1
3 (x )dx

)3

, (47)

which is further simplified to:

Rqi,k ≈ 1
12
μ2

σ4

1
22qi,k+1

(∫ (
1

σ
√

2π

) 1
3

e−
(x−μ)2

6σ2 dx

)3

. (48)

By substitution, the expression can be reduced to:

Rqi,k ≈ 1
12
μ2

σ4

1
22qi,k+1

1
σ
√

2π

(
σ
√

6
∫ ∞

−∞
e−z2

dz
)3

. (49)

Utilizing the standard integral
∫∞
−∞ e−ax2

dx =
√

π
a , for

a > 0, the asymptotic distortion function is evaluated to be:

Rqi,k ≈
√

3πμ2

4σ2

1
22qi,k

. (50)
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VI. CAUSAL OPTIMIZATION WITH FINITE BATTERY

In this section, we consider the scenario involving causal
channel and energy state information. For most practical appli-
cations, this is the more realistic scenario compared to its
non-causal counterpart. The optimization problem in such a
scenario can be formulated as a stochastic control problem
which is usually solved using the dynamic programming (DP)
algorithm.

A. Information Pattern

As described in the System Model section, the causal chan-
nel and energy state information is collected by the FC using
channel estimation involving pilot symbols, and feedback from
the sensors via control channels at the beginning of each slot.
The information during the k th time slot is recursively rep-
resented by Jk = {hk ,Bk , Jk−1}. It should be noted that
for the purpose of simulation, we have ignored the amount
of energy required for the above mentioned channel estima-
tion/feedback process. If the energy required for this process
is non negligible but fixed during each time slot, then the
algorithm presented in the following section can be simply
modified by subtracting that fixed amount of energy from the
available energy in the battery and apply the DP algorithm
with modified energy state information.

B. Dynamic Programming Algorithm

The stochastic control problem with causal information for
optimizing the sensing decision and the number of quantiza-
tion bits is analyzed in this subsection with the assumption
that all sensors are capable of harvesting energy and storing
it in a finite sized battery. The instantaneous KL divergence
measure for the k th time slot can be expressed as follows:

D(νk , qk ) =
N∑

i=1

⎧⎨
⎩νi ,k

2
qi,k −1∑
l=0

g1
i (l) log

g1
i (l)

g0
i (l)

⎫⎬
⎭ (51)

where νk = {ν1,k , ν2,k , . . . , νN ,k}T and qk =
{q1,k , q2,k , . . . , qN ,k}T denote the vector of sensing
parameters νi ,k and number of quantization bits qi ,k , respec-
tively. For the optimization problem under consideration,
we define the feasible set of optimization variables as
S = {(νk , qk ) : νk , qk satisfy (19), (20), (21)}. With the
objective of maximizing the expected sum of the KL diver-
gence measure over a finite horizon, the following theorem
presents the solution to the optimal sequences of decision to
sense and number of quantization bits ({νi ,k}, {qi ,k}) using
a DP algorithm:

Theorem 1: The value function of the finite horizon
optimization problem for the finite battery scenario with ini-
tial causal information J1 = {h1,B1}, V1(h1,B1) can be
computed by the backward Bellman dynamic programming
equation as follows:

Vk (hk, Bk) = max
(νk ,qk )∈S

{D(νk , qk )

+ E{Vk+1(hk+1, Bk+1|hk , Bk , νk , qk )}},
(52)

for 1 ≤ k ≤ M − 1. It should be noted that the expectation is
computed over the random variables h and B and the terminal

Algorithm 1 Dynamic Programming Algorithm for
Calculation of Optimal Parameters

1: Initialization: The initial KL divergence M th time slot
D(νM , qM ) is determined by (51).

2: Feasible Set is defined as S =
{(νk , qk ):νk , qk satisfy (19), (20), (21)}.

3: Value function for the M th time slot VM (hM , BM ) =
maxνM ,qM∈S D(νM , qM ).

4: for k = M − 1 to 0 do
5: Value function for k th time slot:

Vk (hk, Bk) = max
(νk ,qk )∈S

{
D(νk , qk )

+ E
{
Vk+1(hk+1, Bk+1|hk , Bk , νk , qk )

}}
,

(53)

where the inner expectation is computed numerically.
6: Optimal νk and qk can be computed by solving the following

equation:

{
ν
�
k , q�

k

}
= argmax(νk ,qk )∈S

{
D(νk , qk )

+E
{
Vk+1(hk+1, Bk+1|hk , Bk , νk , qk )

}}

7: end for

condition for the algorithm is given by:

VM (hM ,BM ) = max
νM ,qM∈S

D(νM , qM ).

Proof: The proof is standard and follows from the prin-
ciple of optimality for finite horizon stochastic control
problems [36].

The optimal values ν�
k , q

�
k can be computed numerically by

searching over the discretized values of optimization variables
in the feasible set S as follows:

{
ν

�
k , q�

k

}
= argmax

(νk ,qk )∈S
{D(νk , qk )

+ E{Vk+1(hk+1, Bk+1|hk , Bk , νk , qk )}}

It should be noted that the above mentioned procedure is
performed purely offline based on the statistical information
available to the FC about the channel gain and the battery
states at individual sensors. Based on this information, the
FC creates a look up table for the optimal sensing decision
ν�
i ,k and the number of quantization bits q�

i ,k corresponding
to the discretized values of channel gain and battery state.
In practice, the FC receives the causal energy and channel
state information in real time and finds the optimal values of
the above mentioned optimization variables from the look up
table corresponding to the closest discretized level of channel
gain and battery state. Furthermore, these optimal values are
subsequently shared with the individual sensors through an
error free broadcast feedback channel.

We have summarized the above mentioned optimization pro-
cedure in an algorithmic form (see Algorithm 1) for computing
the optimal sequences of sensing decision parameters {νk}
and number of quantization bits {qk}.
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C. Alternative Optimization Problem

In this subsection, we propose an alternative objective func-
tion for minimizing the average detection delay over a finite
horizon of M time slots. As mentioned in Section III, instead
of maximizing 1

M

∑M
k=1 E{I q

tot}, we choose to minimize the
objective function 1

M

∑M
k=1 E{ 1

I q
tot

} in this scenario. We can
justify this choice by using Jensen’s inequality, which says
that for a convex function f (x), the following inequality holds:

E(f (x )) ≥ f (E(x )).

Since f (x ) = x−1, where x > 0, is convex, we can apply
Jensen’s inequality to obtain:

E

{
1
x

}
≥ 1

E(x )

Applying the above to the KL divergence based cost
D(νk , qk ), we have

E

{
1

D(νk , qk )

}
≥ 1

E(D(νk , qk ))
(54)

Finally, applying Jensen’s inequality again, we can show that

1
M

M∑
k=1

E

{
1

D(νk , qk )

}
≥ 1

M

M∑
k=1

1
E(D(νk , qk ))

≥ 1
1
M

∑M
k=1 E(D(νk , qk ))

This illustrates that in the optimization setting of the previous
section (both causal and non-causal), we were minimizing a
lower bound (by maximizing the denominator on the right
hand side of the second inequality above) on the asymptotic
expected detection delay, which is actually given by the left
hand side of the first inequality above. Thus we consider the
following optimization problem, which is expressed as:

min
νi,k ,qi,k

M∑
k=1

Enk

⎧⎪⎨
⎪⎩

1∑nk
i=1 νi ,k

∑2
qi,k −1

l=0 g1
i (l) log g1

i (l)

g0
i (l)

⎫⎪⎬
⎪⎭,

s.t. νi ,k ∈ {0, 1}; ∀i , k , (55)

qi ,k ∈ {1, . . . ,Qmax}; ∀i , k , (56)

Ei ,k ≤ Bi ,k ; ∀i , k . (57)

Similar to the previous optimization problem, the optimal
sensing policy and number of quantization bits for both non-
causal and causal CSI are determined using the dynamic
programming algorithm. Once the optimal number of quan-
tization bits is known, the quantization thresholds are found
using the same set of nonlinear equations as (30). This is due
to the fact that, the threshold computation in Section IV-A,
focuses on each individual sensor during each time slot in
a decentralized fashion. Thus, maximization of I (g1, g0) is
equivalent to the problem of minimizing 1

I (g1,g0)
.

VII. SIMULATION RESULTS

In this section, we present a set of simulation results for
both non-causal and causal information scenarios with finite
battery capacity for both optimal and uniform quantization

Fig. 2. Single slot single user KL information number for optimal, uniform
quantization and unquantized policy as a function of number of quantization
bits qi,k .

policies. The power gain for the channel between the i th sen-
sor Si and the FC for the k th time slot, hi ,k , is modeled as
an exponentially distributed random variable with unity mean.
The amount of harvested energy, Hi ,k , for the sensor Si dur-
ing the k-th time slot is also assumed to be an exponentially
distributed random variable with a mean of 1 μJ. For the fol-
lowing simulations, we have assumed that the observations
are generated from a Gaussian distribution as shown in (6)
and the mean and the variance of the Gaussian distribution
under hypothesis H1 are μ = 1.5 and σ2 = 1, respectively.
The probability of bit error for the quantized observation trans-
mission to the FC is Pe = 0.005. The noise power spectral
density is assumed to be N0 = 0.02μW/Hz. The amount of
energy required for sensing the observation signal is assumed
to be Es = 0.1μJ. The number of sensors are taken to be
N = 2. The maximum number of quantization bits is taken
to be Qmax = 5. The choice of the value of Qmax is moti-
vated by Fig. 2, which clearly shows that the KL divergence
measure corresponding to both the optimal and uniform quan-
tization policies and the unquantized case become virtually
equal when qi ,k ≥ 5. The initial battery level for all sensors
are assumed to be 0.4μJ. For the DP algorithm implementa-
tion, the channel power gain hi ,k and the battery state Bi ,k are
both quantized to 4 discrete levels. The average of detection
delay of change point is computed over 104 of Monte-Carlo
iterations for Fig. 3–Fig. 7.

For the plots in Fig. 3–Fig. 6, two policies of uniform
and optimal quantization are taken into consideration. It is
noteworthy that we have also proposed an MVT based asymp-
totically optimal quantizer in Section VI-B. For the sake of
comparison, we include the one slot KL information num-
ber for all three quantization strategies in Table IIa, where
we only filled the KL information values for the MVT based
asymptotically optimal quantizer, when the number of quan-
tization bits is significantly high. This is due to the fact that
for the above mentioned quantizer, the asymptotic assumption
of tl − tl−1 → 0 does not hold when the number of quanti-
zation bits is small, which results in significant inaccuracy in
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Fig. 3. Probability of false alarm Pfa vs false alarm rate bound γ for non-
causal CSI with optimal quantization policy for Horizon length M = 6, 8, 10.

Fig. 4. Average detection delay (Time slots) vs mean channel gain μh
for non-causal CSI with optimal and uniform quantization policy for horizon
length M = 6, 8, 10.

determining the thresholds. Thus, it performs poorly compared
to its other two counterparts, especially when the number of
quantization bits is small. However, when we increase the
number of quantization bits significantly, then the MVT based
asymptotically optimal quantization strategy performs similar
to the other two policies.

Fig. 2 shows the comparative performance of the KL
information number for the single sensor and one time slot
case. We have plotted the KL information number for the
unquantized observation, optimal, and uniform quantization
policies with respect to varying number of quantization bits.
The KL information number of the unquantized observation
case can be easily shown to be μ2

2σ2 . This signifies an upper
bound for the quantized observation scenarios. As expected,
Fig. 2 shows that the optimal quantization policy is superior
to its uniform counterpart. It is also noticeable that the KL
information number for all three policies become compara-
ble as the number of quantization bits increases. In Table IIa
we illustrate the difference of the KL information number of

Fig. 5. Average detection delay (Time slots) vs Battery capacity Bmax
for non-causal CSI with optimal and uniform quantization policy for horizon
length M = 6, 8, 10.

Fig. 6. Average detection delay (Time slots) vs Battery capacity Bmax for
non-causal and causal CSI with optimal and uniform quantization policy for
horizon length M = 8, and μh = 1.

the unquantized observation scenario and the optimal quan-
tization strategy. In Table IIb, the aforementioned difference
obtained by the simulation is compared with the asymptotic
analytic bound introduced in Section V. Similar to Table IIa,
it is expected that the asymptotic approximation does not hold
when the number of quantization bits is low. Thus, we have
only included the aforementioned difference in the asymp-
totic analytic bound column, when the number of quantization
bits is sufficiently high, which is in clear agreement with the
numerically evaluated results for the optimal quantization case.

Fig. 3 shows the probability of false alarm Pfa with respect
to varying levels of the false alarm rate lower bound param-
eter γ for the non-causal CSI scenario and horizon length
M = 6, 8, 10 for the optimal quantization policy. We notice
that the probability of false alarm increases with increasing
horizon length for small values of γ. This is due to the fact
that average detection delay decreases with increasing hori-
zon length, which in turn effectively decreases the expected
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Fig. 7. Average detection delay (Time slots) vs Battery capacity Bmax
for non-causal and causal CSI for optimal quantization policy two different
objective functions for horizon length M = 8, and μh = 1.

TABLE II
(a) KL INFORMATION NUMBER COMPARISON. (b) KL INFORMATION

NUMBER DIFFERENCE

(a)

(b)

time to false alarm, thus resulting in an increase of the false
alarm probability. For the remaining plots, we have fixed the
probability of false alarm to be Pfa = 0.01. The correspond-
ing values of γ are extracted from Fig. 3 and utilized for
the simulations involving this specific scenario. Although not
explicitly shown here, we have also used similar plots for the
simulations involving uniform quantization for the non-causal
CSI scenario and both optimal and uniform quantization for
the causal CSI scenario.

In Fig. 4, we have plotted the average detection delay
with respect to the average channel power gain parameter
μh , keeping the battery capacity fixed at Bmax = 0.8μJ for
the non-causal CSI scenario. We note that the average detec-
tion delay in the optimal quantization case decays faster than
the corresponding uniform ones. Fig. 5 shows the plot of
average detection delay with respect to the battery capacity
Bmax where the average channel gain μh = 1 for non-causal
information. As for numerical comparison, we notice from

Fig. 5 that for M = 10 and Bmax = 0.7μJ, the average detec-
tion delay corresponding to the uniform quantization policy is
5.9 percent higher as compared to its optimal counterpart. It
should also be noted that the average detection delay decreases
with increasing horizon length. This intuitively makes sense
for the non-causal scenario, where an increase in horizon
length signifies availability of more information before the
transmission process and it helps the sensors to plan its quan-
tization and sensing strategy and in turn their energy usage in
a better way.

Fig. 6 is a comparative plot demonstrating the average
detection delay with respect to the battery capacity Bmax

while keeping the mean channel gain μh = 1 for both the
optimal and the uniform quantization with non-causal and
causal CSI where the horizon length is taken to be M = 8.
As for the numerical comparison, it can be seen that for
Bmax = 0.7μJ, the average detection delay corresponding
to the optimal quantization policy for the causal CSI sce-
nario is 15.3 percent higher as compared to its non-causal
counterpart.

In Fig. 7, we have plotted the average detection delay with
respect to the battery capacity Bmax for horizon length M = 8
and the mean channel gain μh = 1. The figure includes the
plots for both the causal and the non-causal scenario with
the optimal quantizer determined by two different objective
functions corresponding to maximizing average sum of KL
divergence measure and minimizing the average sum of the
inverse of the KL divergence measure. Out of the two objec-
tive functions and corresponding optimization problems, the
simulation shows that minimization of the inverse KL measure
performs better than the maximization of the KL measure. As a
numerical comparison, we see that for Bmax = 0.7μJ, the aver-
age detection delay corresponding to the optimal quantizer,
which maximizes the expected sum KL measure, is 22 percent
higher compared to the optimal quantizer which minimizes the
expected sum of the inverse of KL measure for the causal CSI
scenario. In Fig. 8, we have plotted the average detection delay
with respect to the average channel gain for optimal quanti-
zation policy that minimizes the inverse of KL measure. The
average detection delays are plotted for the horizon length
M = 6, 8, 10 in the non-causal CSI scenario while keeping the
battery capacity fixed at Bmax = 0.8μJ. Similar to Fig. 4, we
notice from Fig. 8, that the average detection delay decreases
with increasing average channel gain and increasing horizon
length.

As mentioned earlier, we notice from Fig. 7 and compar-
ing Fig. 4 with Fig. 8, that the alternate optimal quantization
policy performs better (in terms of the average detection
delay) than the optimal quantization policy which maxi-
mizes the expected sum of the KL measure. However, from
Fig. 9, where we compare the probability of false alarm
rates for the two optimization problems, we notice that the
performance improvement of the alternate optimal quantiza-
tion policy comes at the expense of a higher probability of
false alarm Pfa . We also notice from Fig. 4 and Fig. 8, that
the decrease in the average detection delay due to increase in
horizon length is more prominent for the first optimal quan-
tization policy as compared to its alternate counterpart. As a
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Fig. 8. Average detection delay (Time slots) vs mean channel gain μh for
non-causal CSI for alternative optimal quantization policy with horizon length
M = 6, 8, 10.

Fig. 9. Probability of false alarm Pfa vs false alarm rate bound γ for non-
causal CSI with Optimal (expected KL maximizing) and Alternative optimal
quantization (expected inverse KL minimizing) policy for Horizon length
M = 6, 8, 10.

numerical comparison, for a mean channel gain μh = 1, the
average detection delay for horizon length M = 8 is 6.6 percent
less compared to the scenario involving M = 6, whereas for
the alternative optimal quantization policy the corresponding
decrease in average detection delay is 4 percent.

VIII. CONCLUSION AND FUTURE WORK

This paper investigated the problem of minimizing the aver-
age detection delay of a quickest change detection framework
for the decentralised multi-sensor scenario where each sensor
is capable of harvesting energies from its surroundings. Using
the asymptotic result that expected detection delay is inversely
proportional to the KL divergence measure between the den-
sities of the observations after and before the change, we
derived an optimal sensing and quantization strategy for such
a problem by maximizing the expected sum of the KL diver-
gence measure over a finite horizon, employing DP algorithms
for both non-causal and causal scenarios. The non-causal CSI
scenario provides a benchmark of average detection delay for
the more realistic causal counterpart. We also derived closed
form expression for the optimal thresholds for a fixed number

quantization bits by maximizing the KL divergence measure
for each time slot. This closed form expression is further sim-
plified for the scenario when the number quantization bits is
really high. We have also proposed a uniform quantization
strategy as a heuristic policy. We have provided an analysis
for the difference between the KL information measure for
the unquantized and the quantized observation for the optimal
strategy in the asymptotic case using asymptotic quantization
theory. Simulation results indicate that the optimal quantizer
significantly outperforms its uniform counterpart when the
number of quantization bits is low. This performance ben-
efit becomes marginal as the number of quantization bits
increases. Future extensions of this work include formulation
of optimization problems for the scenario when individual sen-
sors perform the quickest change detection themselves and
send local decisions to the FC, rather than sending quan-
tized log-likelihood ratios. Other possible extensions of the
work could be to the Bayesian framework, where the unknown
change point is assumed to be a random process with a certain
known probability distribution, or to quickest change detec-
tion of Generalized Likelihood Ratio (GLR) test, where the
parameters of the distribution after the change are unknown.
Extensions to change detection in non-parametric settings as
considered in [20], [21] can also be formulated with energy
harvesting sensors with window based sampling techniques,
although there are non-trivial challenges concerning a suit-
able optimization problem formulation due to the absence of
analytical expressions or bounds for the worst case average
detection delay for such algorithms. Such extensions will thus
be considered in future work.
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