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a b s t r a c t 

In this paper, we study the existence of a steady-state distribution and its tail behaviour for the estima- 

tion error arising from Kalman filtering for unstable linear dynamical systems. Although a large body of 

literature has studied the problem of Kalman filtering with packet losses in terms of analysis of the sec- 

ond moment, no study has addressed the actual distribution of the estimation error. First we show that 

if the system is strictly unstable and packet loss probability is strictly less than unity, then the steady- 

state distribution (if it exists) must be heavy tail, i.e. its absolute moments beyond a certain order do 

not exist. Then, by drawing results from Renewal Theory, we further provide sufficient conditions for the 

existence of such stationary distribution. Moreover, we show that under additional technical assumptions 

and in the scalar scenario, the steady-state distribution of the Kalman prediction error has an asymptotic 

power-law tail, i.e. P[ | e | > s ] ∼ s −α, as s → ∞ , where α can be explicitly computed. We further explore 

how to optimally select the sampling period assuming an exponential decay of packet loss probability 

with respect to the sampling period. In order to minimize the expected value of the second moment or 

the confidence bounds, we illustrate that in general a larger sampling period will need to be chosen in 

the latter case as a result of the heavy tail behaviour. 

© 2019 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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1. Introduction 

The proliferation of wireless communication in the past decades

is now been penetrating also the industrial automation sectors,

thus drawing the interest of a large body of research which has

started to analyze the impact of unreliable communication in

control and estimation performance [10,33] . In particular, much

attention has been placed on the problem of optimal estimation

in the presence of packet losses via Kalman Filtering since [30] .

However stability and performance have always been evaluated

in terms of the error covariance conditioned on the packet loss

sequence, i.e. in terms of the second moment of the estimation

error. The first major result was to show the existence of a critical

packet loss probability for the boundedness of the expected second

moment (averaged over the packet loss process) under an i.i.d.

packet loss scenario [30] . Later this analysis has been extended to

Markov packet losses [12,31,32] , to the computations of upper and

lower bounds for such critical packet loss probability [24,28,31] ,

to the existence and type of distribution for the error covariance

[4,13] . Specific effort s have been directed to the analysis of the
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ultivariable scenario by determining connections between the

ritical loss probability for mean square stability and algebraic

onditions in terms of detectability [21] , eigenvalue cycles [20] and

on-degeneracy [18] . 

In this work we concentrate on a continuous-time stochastic

trictly unstable linear system , i.e. systems which have at least one

ositive eigenvalue, which is sampled with a sampling period T .

lthough most of the recent results have rightfully concentrated

n the analysis of the error covariance matrix and functions

f its trace, we believe that not enough attention has been

irected towards understanding the actual distribution of the

rediction/estimation error. In fact, if the error distribution is not

aussian, the steady-state distribution may exist even if the second

oment is unbounded. Indeed, this is the case for the estimation

rror in Kalman filtering with packet losses as shown later. 

This work aims to extend our previous work [5] . The major

ontribution is twofold. The first is to show that under mild

onditions, if the original system is strictly unstable, then any

teady-state distribution (if it exists) must be heavy-tail. This

esult implies that large error deviations are more likely to appear

han in the standard Gaussian distribution or in thin-tail distri-

utions in general. The second is that a steady-state distribution

xists under much milder conditions on the packet loss probability

han second moment stability. Indeed for the special case of a

calar unstable system, if the filtering gain is optimally chosen, a
rved. 

https://doi.org/10.1016/j.ejcon.2019.05.003
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E[ ‖ X + Y ‖ ] ≥ E[ ‖ X ‖ ] , ∀ r ≥ 1 . (6) 
istribution exists as soon as the packet loss probability is strictly

ess than unity, which is not the case for second moment stability.

n other words, there are scenarios in which the second moment

oes not exist, but the probability that the estimation error is

utside a specified interval decreases to zero as the interval size

ncreases, i.e. the error is bounded in probability. Moreover, by

xploiting results developed by the stochastic systems community

n the area of Renewal Theory and Random Difference Equations

2,3,6,9,14] since the 70’s, it is possible to explicitly characterize

he tail distribution of the estimation error of the Kalman filter in

he scalar case. More specifically, such a distribution, under some

echnical conditions such as a non-arithmetic support of a param-

ter involving the Random Difference Equation, can be shown to

ossess a power-law tail with an explicit characterization of the

ower exponent α as well as its coefficient c , i.e. 

lim 

 →∞ 

P [ | e | > s ] 

s −α
= c 

imilar results were also observed in the context of limited-rate

ontrol systems [25] , which however uses a somewhat different

ramework than Kalman Filtering with packet losses. As a simple

orollary of these results is that also the distribution of the second

oment, i.e. P [ e 2 < E ], must be heavy-tailed itself under the same

onditions mentioned above for the power-law tail for the estima-

ion error distribution, i.e. we recover the same results observed

reviously in [18] . This also implies that the moments of error

ovariance are unbounded beyond a certain order, i.e. ∃ m c > 0 such

hat E [(e 2 ) m ] = ∞ for m > m c , as previously observed in [12] . An-

ther corollary of our work is that, since the error distribution is

eavy-tailed even when the system is second-moment stable, the

onfidence bounds can be rather different from what one would

btain by (incorrectly) assuming the steady-state distribution is

aussian with variance obtained from the modified Riccati Equa-

ion which arises in the context of Kalman filtering with packet

osses [30] . In other words, the 3 
√ 

trace (P ) estimation of the

onfidence bounds, where P is the second order moment of the

teady-state error distribution, can be more optimistic than what

ccurs in reality, i.e. large error values are not rare, and can lead

o a very negative impact in safety-critical applications. The later

art of the paper explores the optimal sampling of two stochastic

ontinuous-time unstable systems both in terms of minimizing the

xpected second moment p̄ and in terms of the confidence bound

or the steady-state error with an approximately 99% confidence

robability. We observe, that the optimal sampling period in the

atter case is larger that the one dictated by the former. This

s indeed another consequence of the heavy-tailed behaviour of

he distribution, since it implies that it is better to incur in a

arger delay using a larger sampling period than having a more

eavy-tailed distribution from a confidence bound perspective. 

. Modeling and definitions 

We start with a continuous-time multivariable state space sys-

em given by the following stochastic differential equation: 

x (t) = Ax (t ) dt + Bu (t ) d t + d w̄ (t) (1) 

here x (t) ∈ R 

n is the state, u (t) ∈ R 

m is the control and w̄ (t) is

he process noise described by a Wiener process with indepen-

ent Gaussian distributed increments such that w̄ (t + t ′ ) − w̄ (t) ∼
 (0 , t ′ Q ) , and x 0 ∼ N (0 , P 0 ) . This process is sampled uniformly

ith a sampling period of T and zero-order hold to produce the

ollowing discrete-time system: 

 k +1 = Ā (T ) x k + B̄ (T ) u k + w k (2) 

here Ā (T ) = e AT , B̄ (T ) = 

∫ T 
0 e Aτ Bdτ and w k is independent and

dentically Gaussian distributed with zero mean and variance
 (T ) = 

∫ T 
0 e Aτ Qe A 

T τ dτ, i.e. w k ∼ N (0 , Q (T )) . We denote the multi-

ariable discrete-time measurements of this system as y ∈ R 

p , and

iven by a linear equation: 

 k = Cx k + v k (3) 

here v k ∈ R 

p is the measurement noise, independent and iden-

ically Gaussian distributed with zero mean and variance R , i.e.

 k ∼ N (0 , R ) , independent of w k , and x 0 . These measurements

re transmitted to a remote estimator over a lossy channel such

hat each measurement is either received or lost according to a

ernoulli process γ k ∈ {0, 1}, independent of v k , w k , x 0 , such that

he P [ γk = 0] = γ̄ (T ) is the packet loss probability, hence E [ γk ] =
 − γ̄ (T ) . Naturally, the packet loss probability is a function of the

ampling period T , since a high sampling rate results in a higher

acket transmission rate and a higher packet loss probability, as-

uming that all other channel conditions remain unchanged. We

ssume that γ̄ (T ) is a continuous decreasing function of T . Specific

orms of γ̄ (T ) depend on the underlying modulation and coding

chemes of the associated communication system. 

Based on the information set Z k � { y 0 , y 1 , . . . y k , γ0 , γ1 , . . . , γk } ,
he remote Kalman predictor ˆ x k +1 | k := E [ x k +1 | Z k ] is: 

ˆ 
 k +1 | k = Ā (T ) ̂  x k | k −1 + B̄ (T ) u k + K k γk (y k − C ̂  x k | k −1 ) (4) 

here K k is the time-varying Kalman prediction gain given by: 

 k = AP k C 
T (CP k C 

T + R ) −1 

 k +1 = AP k A 

T + Q (T ) − γk AP k C 
T (C P k C 

T + R ) −1 C P k A 

T 

nd P 0 = E [ x 0 x 
T 
0 ] as shown in [30] . We then define the prediction

rror e k := x k − ˆ x k | k −1 whose dynamics is given by: 

 k +1 = ( ̄A − γk K k C) e k + (w k − γk K k v k ) . (5)

In the following dissertation, some results are obtained and

utlined for the special case of the scalar systems. To highlight this

articular case, the involved quantities will be denoted in lower-

ase: the system will be indicated by a , b and by ā , b̄ , c , for the

ontinuous-time and for the discrete-time case, respectively; the

ariance of the Gaussian increments of the Wiener process will be

 , while the variance of the process noise and of the measurement

oise of the discrete-time system will be σ 2 and σ 2 
v , respectively;

nally, the prediction gain will be denoted by k̄ and the error vari-

nce by p̄ (T ) . 

In the next sections we will study the probability distribution of

he random vector e k and in particular its steady-state distribution.

o characterize such a distribution we first need to introduce a few

efinitions. 

To this end, we denote the set of integers by Z , and the set of

eal numbers by R . For a random variable X , X + , X − denote the pos-

tive and negative part of the random variable, respectively. More-

ver log 
+ 

x = log x for x ≥ 1 and 0 for x ∈ (0, 1). In what follows,

 · ‖ indicates the 2-norm for vectors or the induced 2-norm for

atrices. 

efinition 1. Let us consider the multivariate random variable X ∈
 

� . We say that its distribution is heavy-tailed if there exists a r > 0

uch that E [ ‖ X‖ r ] = + ∞ . 

efinition 2. Let us consider the multivariate random variable X ∈
 

� . We say that its distribution is power-law if there exists α > 0,

 > 0 such that lim L →∞ 

P [ ‖ X‖ > L ] ∼ cL −α . 

We will also exploit the following moment inequality (see

15] p. 263 for a proof): 

heorem 1. Let us consider the multivariate random variables X, Y ∈
 

� If E [ ‖ X ‖ r ] < ∞ , E [ ‖ Y ‖ r ] < ∞ and E[ Y | X] = 0 almost sure, then: 

r r 



64 M. Pezzutto, L. Schenato and S. Dey / European Journal of Control 50 (2019) 62–71 

 

 

 

 

 

 

 

 

 

 

 

 

˜

 

 

 

 

 

 

 

 

 

 

 

k

R  

t  

i  

t  

I  

s  

I  

m  

l  

o

4

fi

 

d  

e  

t  

w  

w

e  

w  

t

i  

t  

g  

m  

v

K

w  

e

P  

W  

s  

o  

c  

o  

L

L

E

 

(  

a

J

a

λ

T
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k 
3. Heavy tail properties of prediction error 

We now show that if the original system is strictly unstable and

if the process noise excites the unstable modes, then the steady-

state distribution, if it exists, must be heavy-tail. Sufficient condi-

tions for the existence of such a steady-state distribution are ad-

dressed in the next section since they require additional conditions

on the error dynamics. 

Theorem 2. Consider the error dynamics given by (5) . Assume that

E [ ‖ x 0 ‖ r ] < ∞ , E [ ‖ w k ‖ r ] < ∞ , E [ ‖ v k ‖ r ] < ∞ , ∀ r ≥ 1 , and that the

pair ( ̄A (T ) , Q (T )) is reachable. If Ā (T ) is strictly unstable, 0 <

γ̄ (T ) < 1 , and there exists a steady-state distribution for e k , then it

must be heavy-tail. 

Proof. For readability purposes, we drop the dependence in T of

the various parameters, i.e. Ā (T ) = Ā , γ̄ (T ) = γ̄ , Q (T ) = Q . Con-

sider the error dynamics given by (5) and the following dynamics

without noise: 

 e k +1 = ( ̄A − γk K k C) ̃  e k , ˜ e 1 = e 1 , ∀ k > 1 . 

Let X = ( ̄A − γk K k C) e k and Y = (w k − γk K k v k ) . Now 

E [ Y | X ] = γ E [ w k | Ā e k ] + (1 − γ ) E [ w k − K k v k | ( ̄A − K k C) e k ] = 0 

since w k , v k are zero mean and independent of γk −1 , . . . γ0 and e k .

We can use this observation to apply Lemma 1 inductively to get: 

E [ ‖ e k ‖ 

r ] ≥ E [ ‖ ̃

 e k ‖ 

r ] , ∀ r ≥ 1 , ∀ k ≥ 1 

therefore we can restrict our analysis to ˜ e k . We now compute the

expectation of ̃  e k with respect to γ k assuming all the other random

variables fixed: 

E [ ‖ ̃

 e k +1 ‖ 

r ] = E [( ̃  e T k +1 ̃
 e k +1 ) 

r 
2 ] = γ̄ E [( ̃  e T k Ā 

T Ā ̃

 e k ) 
r 
2 ] + 

+(1 − γ̄ ) E [( ̃  e T k ( ̄A − K k C) T ( ̄A − K k C) ̃  e k ) 
r 
2 ] 

≥ γ̄ E [( ̃  e T k Ā 

T Ā ̃

 e k ) 
r 
2 ] . 

By induction, using the same argument, we have: 

E [ ‖ ̃

 e k +1 ‖ 

r ] ≥ γ̄ k 
E [( ̃  e T 1 ( ̄A 

T ) k Ā 

k ˜ e 1 ) 
r 
2 ] 

= γ̄ k 
E [( trace (( ̄A 

T ) k Ā 

k ˜ e 1 ̃  e T 1 )) 
r 
2 ] 

≥ γ̄ k ( trace ( ̄A 

k 
E [ ̃  e 1 ̃  e T 1 ]( ̄A 

T ) k )) 
r 
2 , r ≥ 2 

where the last step has been obtained using Jensen inequality

which holds for r ≥ 2. Now, by construction E [ ̃  e 1 ̃  e T 1 ] = E [ e 1 e 
T 
1 ] . Us-

ing this notation we have: 

e 1 = ( ̄A − γ0 K 0 C) e 0 + w 0 − γ0 K 0 v 0 . 

If we define X = w 0 and Y = ( ̄A − γ0 K 0 C) e 0 − γ0 K 0 v 0 , these random

variables satisfy Lemma 1 , therefore we have 

E [ e 1 e 
T 
1 ] ≥ E [ w 0 w 

T 
0 ] = Q 

and consequently 

E [ ‖ ̃

 e k +1 ‖ 

r ] ≥ γ̄ k ( trace ( ̄A 

k Q ̄A 

k )) 
r 
2 . 

Now note that Ā 

k Q ̄A 

k = L 

k (Q ) , where L ( ̄A X X̄ T Ā 

T ) is the Lyapunov

operator whose eigenvalues are λi λ
∗
j 

where λi , λj are the eigenval-

ues of Ā . Since the pair ( ̄A , Q ) is reachable, then Q surely excites

the largest eigenvalue | λmax | 
2 , where | λmax | > 1. Therefore there ex-

ists a k̄ ∈ N and c > 0 such that: 

trace ( ̄A 

k Q ̄A 

k ) ≥ c| λmax | 2 k , k ≥ k̄ . 

This in turns implies that: 

E [ ‖ ̃

 e k +1 ‖ 

r ] ≥ c 
r 
2 γ̄ k | λmax | rk = c 

r 
2 ( ̄γ | λmax | r ) k . 

Now if we choose r̄ := max { 2 , − log ̄γ
log | λmax | } < ∞ for γ̄ � = 1 , then for

each r > r̄ 
lim 

 →∞ 

E [ ‖ ̃

 e k ‖ 

r ] = + ∞ . 

�

emark 1. Note that the previous proof does not require K k to be

he optimal Kalman gains, but holds for any choice of such gains,

.e. there is no linear estimation strategy that can avoid the heavy-

ail property of the distribution if the system is strictly unstable.

f the system is strictly stable, i.e. | λmax | < 1, then it is possible to

how that if a steady-state distribution exists, it must be thin-tail.

f the system is only marginally stable, i.e. | λmax | = 1 , then deter-

ining the behaviour of the tail distribution is much more chal-

enging even for scalar systems (see for example [11] ) and it is

utside the scope of this work. 

. Existence of a steady-state distribution in constant-gain 

ltering 

The optimal Kalman filter requires time-varying gains which

epends on the packet loss sequence [30] , therefore determining

ven the existence of a steady-state distribution is challenging in

his scenario. Differently, we will make use of constant gain filter

hich will make the subsequent analysis simpler. More specifically

e will consider the following error dynamics: 

 k +1 = ( ̄A − γk ̄K C) e k + (w k − γk ̄K v k ) (7)

here K̄ does not depend on time k and to simplify the nota-

ion we drop the dependency on T of Ā . A possible choice of K̄ 

s discussed in [27] for example, where it was shown that under

he condition that lim k →∞ 

E (e k e 
T 
k 
) < ∞ , K̄ can be chosen to be the

ain that minimizes lim k →∞ 

E(e k e 
T 
k 
) , and this choice results in a

arginal performance loss in terms of expected estimation error

ariance. Indeed, 

¯
 = Ā P C T (CP C T + R ) −1 

here P � lim k →∞ 

E (e k e 
T 
k 
) satisfies the modified algebraic Riccati

quation: 

 = Ā P Ā 

T + Q − (1 − γ̄ ) ̄A P C T (CP C T + R ) −1 CP Ā 

T . (8)

e will now provide sufficient conditions for the existence of the

teady-state distribution. The following theorems are mostly based

n the theory of linear difference equations with stochastic coeffi-

ients [14] and on the theory of Lyapunov exponent for products

f random matrices [8] which are summarized in the following

emma: 

emma 3. Let us consider the following stochastic dynamic system 

 k = F k E k −1 + Z k 

where E k , Z k ∈ R 

n , F k ∈ R 

n ×n are random variables and the pairs

 E k , Z k ), k ≥ 1, are independent and identically distributed (i.i.d). Let us

lso define the following random variables 

 k := 

k ∑ 

n =1 

F 1 . . . F n −1 Z n , J := 

∞ ∑ 

n =1 

F 1 . . . F n −1 Z n 

nd the so called Lyapunov exponent: 

¯ = lim 

k → + ∞ 

1 

k 
log ( || F 1 . . . F k || ) 

hen the following properties hold true: 

(i) The random variable E k has the same distribution as J k +
F k F k −1 . . . F 1 E 0 , for a given E 0 . 

(ii) If E 

(
log 

+ || F 1 || 
)

< ∞ , then λ̄ exists with probability 1 (w.p.1)

(not necessarily finite) and it is equal to 

λ̄ = lim 

1 

E [ log ( || F 1 . . . F k || ) ] ≤ μ := E [ log ‖ F 1 ‖ ] 
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(iii) If there exists r > 0 such that E ( ‖ Z 1 ‖ r ) < ∞ , and if λ̄ < 0 w.p.1,

then the distribution of J k converges w.p.1 to the distribution J. 

(iv) If λ̄ < 0 w.p.1, then F n F n −1 . . . F 1 E 0 converges to zero exponen-

tially. 

The previous results can be combined to obtain the following

emma: 

emma 4. Assume that ( F k , Z k ), k ≥ 1, are i.i.d and ∃ r > 0 such that

 ( ‖ Z 1 ‖ r ) < ∞ . If λ̄ < 0 w.p.1, then the distribution of E k converges

.p.1 to the distribution J independently on E 0 . 

We are now ready to prove the main theorem in this section: 

heorem 5. Let us consider the stochastic dynamical system (7) . Let

 k ∼ N (0 , Q̄ ) , v k ∼ N (0 , R ) , x 0 ∼ N (0 , P 0 ) to be mutually indepen-

ent, and i.i.d. white. Let γ k be an i.i.d. Bernoulli random variable

ith γ̄ := P [ γk = 0] . If 

:= γ̄ log (|| A || ) + (1 − γ̄ ) log (|| ̄A − K̄ C|| ) < 0 (9)

hen e k converges in probability to a steady-state distribution. 

roof. The proof is obtained by verifying the hypotheses of

emma 4 where F k = ( ̄A − γk ̄K C) and Z k = (w k − γk ̄K v k ) . Clearly ( F k ,

 k ) are i.i.d. random vectors. Under hypothesis (9) , the Lyapunov

xponent λ̄ is negative, in fact 

¯ ≤ μ = E [ log ‖ F 1 ‖ ] = γ log (|| ̄A || ) + (1 − γ ) log (|| ( ̄A − KC|| ) 
t this point we just need to show that ∃ r > 0 such that

 ( ‖ Z 1 ‖ r ) < ∞ . Let us pick r = 2 , therefore 

E 

(‖ Z 1 ‖ 

2 
)

= E 

[
Z T 1 Z 1 

]
= E 

[
trace (Z 1 Z 

T 
1 ) 

]
= trace 

(
E 

[
Z 1 Z 

T 
1 

])
= trace 

(
E 

[
w k w 

T 
k + γ 2 

k Kv k v T k K 

T + γk w k v T k K 

T + γk Kv k w 

T 
k 

])
= trace ( Q̄ + (1 − γ ) ̄K R ̄K 

T ) < ∞ 

hich concludes the proof. �

The previous theorem provides only a sufficient condition for

he existence of a steady-state distribution which is basically based

n the observation that the scalar μ = E [ log ‖ F 1 ‖ ] is an upper

ound for the exact Lyapunov exponent λ̄. Such a condition is not

ery tight in general, and in the past fifty years a large body of

orks has addressed the problem of finding exact or tight lower

nd upper bounds for the Lyapunov exponent for certain classes of

roduct of random matrices [8,23] . It has been shown that even

n the case of products of 2 × 2 random matrices, explicit com-

utation of the Lyapunov exponent is only possible in some very

pecial cases where the random matrices have specific structural

roperties and distributions [16] . It is also important to observe

hat the Lyapunov exponent does not depend on the specific norm

dopted, therefore the 2-norm adopted in inequality (9) can be

ubstituted with any other norm in order to find tighter bounds

n the Lyapunov exponent. As expected, the Lyapunov exponent

an be computed explicitly for scalar systems as reported in the

ollowing corollary. 

orollary 6. Let us consider the conditions in Theorem 5 . If the sys-

em is scalar, then the Lyapunov exponent is given by 

¯ = μ := γ̄ log (| ̄a | ) + (1 − γ̄ ) log (| ̄a − k̄ c| ) . 
In the scalar scenario, the previous corollary suggests some fur-

her considerations. First, in the case without measurement noise,

f k̄ is optimally chosen, i.e. k̄ = a/c according to (4) , we have that
¯ → −∞ < 0 , i.e. the steady-state distribution exists, as long as

¯ < 1 . Moreover, it allows us also to compare the stability region

or which the error dynamics has a steady-state distribution, i.e.

he error is bounded in probability, and when the error dynamics

s mean square stable, i.e. when its second moment is bounded. In
he latter case, the mean square stability condition can be found in

27] and is given by: 

ā 2 + (1 − γ )( ̄a − k̄ c) 2 < 1 . (10)

bviously second moment stability is a sufficient condition for sta-

ility in probability. If the error distribution were Gaussian, then

econd moment stability and stability in probability would coin-

ide, however, this is not the case in the problem at hand since,

ccording to the results of the previous section, if such a steady-

tate distribution exists, it is heavy-tailed and therefore not Gaus-

ian. It follows that even when the packet loss is above the thresh-

ld for the second moment stability, the error can be bounded in

robability. This is indeed confirmed by the observation that condi-

ion (9) is less stringent that the condition (10) . Just as an example

ig. 1 illustrates the stability region as a function of packet loss γ̄
nd filter gain k̄ for the two aforementioned conditions. 

omputation of the stationary distribution 

For simplicity, we still consider the scalar case, and we de-

ote with δ2 = σ 2 + ̄k 2 σ 2 
v the variance of w k − k̄ v k . Note however,

hat the expression for the steady-state distribution of the predic-

ion error e k presented below can be easily extended to the mul-

ivariable case. Under the assumptions of Theorem 5 such that the

teady-state distribution exists, let us denote the stationary distri-

ution of e k in (7) as g ∞ 

( e ). Then g ∞ 

( e ) satisfies the following in-

egral equation: 

 ∞ 

(z) = γ̄

∫ ∞ 

−∞ 

1 √ 

2 πσ 2 
e −

(z−ā e ) 2 

2 σ2 g ∞ 

(e ) de 

+(1 − γ̄ ) 

∫ ∞ 

−∞ 

1 √ 

2 πδ2 
e −

( z−( ̄a −k̄ ) e ) 
2 

2 δ2 g ∞ 

(e ) de. (11) 

The above result follows easily from basic probability theory by

eriving the cumulative distribution function of the stationary dis-

ribution conditioning on the two values of γ k and then taking the

erivative to obtain g ∞ 

( e ). Details are omitted as this derivation is

lementary. 

While there is no exact closed form solution to the above equa-

ion to the best of the authors’ knowledge, the easiest way to find

n approximate solution to (11) is to discretize the real line for z

o denote g ∞ 

( z ) by a finite length vector ḡ , and replace the inte-

rals on the right hand side by matrix vector products. This then
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Fig. 2. Plot comparing the stationary distribution of the prediction error obtained via approximate solution to the integral equation (blue) and an empirical method (red). 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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1 F is non-arithmetic if it is not supported in any of the sets h Z , h ≥ 0 and Z 

denotes the set of integers. 
leads to a linear equation involving ḡ , which can be solved itera-

tively until the solution converges within a given tolerance. As al-

ways, the larger the number of discretization points (the longer the

vector ḡ ), the better the approximation. Fig. 2 below compares the

stationary distribution of the prediction error for a system with

ā = 1 . 9251 , k̄ = 1 . 4164 , σ 2 
v = 0 . 25 , σ 2 = 0 . 6960 , corresponding to

a sampling period of T = 6 . 55 ms. The blue graph shows the den-

sity obtained using the discretized approximation to the integral

equation (11) with 500 discretization points, whereas the red plot

shows the corresponding density obtained by using the MATLAB

kernel smoothing function “ksdensity” using 10 0 0 points of the

prediction error generated by Monte Carlo simulations. As can be

seen, the approximation to the integral equation is quite close to

the empirical density. 

5. Asymptotic power-law tails of the prediction error: scalar 

case 

For the purpose of this section, we consider the scalar case

with the constant gain Kalman filter, where e k ∈ R , and we rewrite

(7) as e k +1 = f k e k + z k , noting that f k = ( ̄a − γk k̄ c) , and z k = (w k −
γk k̄ v k ) . Without loss of generality, we take c = 1 . We note that

since γ k is i.i.d. Bernoulli, and z k is i.i.d. Gaussian noise, the ran-

dom process pair ( f k , z k ) is i.i.d. These types of random difference

equations have been studied extensively because of their applica-

tions in a number of fields such as economics, finance, evolution

modelling, and in general for studying random walks in random

environments [14] . 

For the purpose of explaining the existing mathematical the-

ory behind this random equation, we will rewrite it as a general
quation in terms of its stationary state (when the stationary dis-

ribution exists) as E 
d = F E + Z, where 

d = denotes equality in distri-

ution, similar to [3,6] . We now assume that ( F , Z ) is a general

.i.d. random process. Depending on the ranges of values the ran-

om process F can take, the stationary distribution of E , when it

xists, has different asym ptotic tail distributions. In particular, for

he case where F ≥ 0 almost sure (a.s.), it has been shown in a va-

iety of works that under mild conditions on the distribution of

 , one can show that as s → ∞ , P (E > s ) ∼ Cs −α for some α > 0. In

ther words, the stationary distribution of E has an asymptotically

ower-law tail. This result was first shown in [14] , with a number

ariations appearing thereafter. However, it is the paper [6] , that is

rimarily cited as the one which generalized this result, gave a pre-

ise description of tail exponent and the constant factors involved,

nd provided a less complicated proof using Renewal theory (see

emma 2.2, Theorem 2.3 and Theorem 4.1). In order to keep the

resentation simple, we will quote a version of this Theorem that

s available in [3] , as Theorem 2.4.4., using the notations of our

aper. 

heorem 7 [3] . Assume (i) F ≥ 0 a.s. and (ii) the law of log F condi-

ioned on F > 0 is non-arithmetic. 1 Assume also that (iii) there exists

> 0 such that E [ F α] = 1 , E [ | Z| α] < ∞ , and E [ F α log 
+ 

F ] < ∞ . Fi-

ally, assume that (iv) P (F s + Z = s ) < 1 for all s ∈ R . 

Then the equation E 
d = F E + Z has a solution E which is indepen-

ent of ( F , Z ) and there exist constants c + , c − such that c + + c − > 0 ,

nd 
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2 This value is chosen such that the non-arithmetic condition on the distribution 

of log ̄a is satisfied. 
 (E > s ) ∼ c + s −α, P (E < −s ) ∼ c −s −α, s → ∞ , 

 + = 

E 

[
(F E + Z) α+ − (F E) α+ 

]
αm α

 − = 

E 

[
(F E + Z) α− − (F E) α−

]
αm α

(12) 

here 0 < m α = E [ F α log (F )] < ∞ . 

Before we discuss the implications of this result in our specific

ase of (7) , we note that under the assumptions (i), (ii) and (iii) of

heorem 7 above, it automatically follows that (i) −∞ ≤ E[ log F ] <

 (thus guaranteeing stationarity) and (ii) 0 < m α < ∞ - see Lemma

.2 of [6] . A proof of the above theorem using Renewal theory is

rovided also in [3] . 

Now let us apply Theorem 7 to (7) rewritten as e k +1 = f k e k + z k .

t is clear that f k ∈ { ̄a , ā − k̄ } where ā > 1 , and therefore f k ≥ 0 can

e guaranteed as long as k̄ ≤ ā . The non-arithmetic requirement

n the distribution of log ( f k ) essentially means that log ( ̄a ) 

log ( ̄a −k̄ ) 

annot be a rational number, which requires also that k̄ < ā . In

rder to guarantee the existence of the stationary solution as

ndicated in the previous section, we also need ā − k̄ < 1 . Thus we

eed ā − 1 < k̄ < ā : note that, if one chooses k̄ the Kalman gain

ccording to (4) with p satisfying (8) , it is satisfied. For any γ̄ < 1 ,

ne can show (since 0 < ( ̄a − k̄ ) < 1 , and ā > 1 ) that there exists

n α > 0 such that the condition E [ f α
k 

] = 1 is satisfied. It is easy

o check that E [ f α
k 

log 
+ 

f k ] = ā α log ( ̄a ) ̄γ < ∞ . We note also that

ll absolute moments of z k are finite. Finally, we have that, since

he stationary distribution of e k is continuous, assumption (iv) of

he above theorem is also satisfied. Therefore all the assumptions

f the previous theorem apply and we can conclude that the

tationary distribution of e k satisfies the asymptotic power-law tail

ehaviour as described in Theorem 7 . Since the distribution of e k 
s symmetric around the origin for all k , so is g ∞ 

( e ), and therefore

he two constants c + , c − in (12) are equal and positive, leading to

he result P (| e | > s ) ∼ 2 c + s −α, as s → ∞ . 

The case where the distribution of log f k conditioned on f k � = 0 is

rithmetic , the analysis of the tail probability is more complex and

as carried out in [7,9] . The basic result is that in this case one

an prove [3] that there are constants c a > c b > 0 such that 

 a ≤ lim inf 
s →∞ 

s αP (| e | > s ) ≤ lim sup 

s →∞ 

s αP (| e | > s ) ≤ c b (13) 

emark 2. If one considers the no measurement noise case (with

he optimal Kalman filtering gain minimizing the expected predic-

ion error variance, k̄ = ā ), the prediction error recursion follows

 k +1 = ā (1 − γk ) e k + w k . Then it is seen that in this case, f k = ā

ith probability γ̄ and 0 with probability (1 − γ̄ ) . This is a spe-

ial case of the arithmetic distribution scenario, and it is possible

hat one can obtain the asymptotic power-law tail properties us-

ng simpler arguments that the Renewal theory arguments used in

7,9] . Currently, the authors are pursuing a simple proof of this re-

ult and only partial progress has been made. While the exponent

f the power-law tail is easy to derive using some basic results

rom [14] , it is the calculation of the coefficients c a , c b in (13) that

as proved to be difficult. 

emark 3. The power-law exponent α in this case is the solution

o the equation: 

¯
 

αγ̄ + (1 − γ̄ )( ̄a − k̄ ) α = 1 . 

he previous expression shows that such an α exists as long as

¯ < 1 , which implies that such a distribution exists even when

he estimator is not mean square stable, i.e. γ̄ > 

1 
ā 2 

, and that it

s heavy-tailed (power-law) even if the estimator is mean square

table, i.e. γ̄ < 

1 
2 . Clearly, the less unstable the system is and the
ā 
ower the packet loss probability is, the faster the tail goes to zero,

ut still remains heavy-tailed. 

emark 4. Another interesting observation is that if k̄ is to be cho-

en to maximize α, so that the asymptotic decay rate of the power-

aw tail is the fastest, then one can easily check that k̄ must be

hosen as ā , such that: 

= 

log 
(

1 
γ̄

)
log ā 

. 

his illustrates that the gain k̄ that maximizes the asymptotic

ower-law decay rate of the tail of the prediction error is not the

ame as the one that minimizes the second moment. 

Fig. 3 illustrates a plot of the log ( P ( e > s )) versus log ( s ) for the

ollowing parameters: ā = e 

√ 

1 
17 , 2 k̄ = 0 . 7 , σ 2 = 0 . 01 , σ 2 

v = 0 . 1 , and

¯ = 0 . 4 . From this plot one can calculate an estimated value of

he power-law exponent α as 3.4692, whereas its theoretically ob-

ained value is 3.3792. Similarly the constant c + is estimated to be

.0223, whereas its theoretically obtained value from (12) is given

y 0.0270. 

Similarly, Fig. 4 illustrates a plot of log ( P ( e > s )) versus log ( s ) in

he no measurement noise case, with ā = 1 . 3 , σ 2 = 0 . 01 and γ̄ =
 . 4 . In this case, the theoretically calculated value of the power-

aw exponent is α = 3 . 4924 , whereas the one estimated from this

lot is 3.3846. 

emark 5. It should be noted that the asymptotic power-law tail

esults hold also for random difference equations involving vector

rocesses as well as where the coefficients are Markovian rather

han i.i.d. - see for example [26] , and Theorem 6 in [14] . However,

he technical conditions under which these results hold are signif-

cantly more complicated, especially the conditions involving the

on-arithmetic distributions. Extension of the asymptotic power-

aw tail results to the multivariable case is therefore left for future

ork. 

. Implications of heavy tail properties: choice of sampling rate

n confidence bounds versus second moment stability 

As discussed earlier, majority of the literature on Kalman filter-

ng with packet loss has focused on analysing the estimation er-

or covariance, its expected value [30] or tail bounds such as in

29] . In [18] , a power-law tail behaviour for the solution to the

andom Riccati equation was established. Different to these works,

ere we focus on the estimation/prediction error itself and its tail

ehaviour. We consider the constant gain Kalman filter based er-

or dynamics (7) , and investigate how the choice of the sample

eriod affects the asymptotic prediction error covariance trace( P ),

here P satisfies (8) , under the assumption that it is bounded. It is

nown since [30] that there exists a critical loss probability γ̄c that

ules the asymptotic behaviour of the error covariance: if γ̄ < γ̄c ,

 k is bounded for all initial conditions and for each k , while it can

iverge if γ̄ ≥ γ̄c . In general, in the multidimensional case, it is

ot possible to compute γ̄c analytically, but it admits upper and

ower bounds. Many works, see e.g. [17,18,21] , address the closed-

orm computation of γ̄c in some particular case, for example when

 is invertible. In the scalar case, γ̄c = 1 / ̄a 2 . We also investigate

ow the sampling period affects the tail probability of the pre-

iction error P (| e | > β( T )). Clearly, from a design perspective, it is

easonable to identify the confidence interval to which the error

elongs with very high probability similar to the benchmark 3 σ
n the Gaussian scalar case (where σ is the standard deviation),
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hich gives a tail probability equal to 0.0027. Based on this ob-

ervation, β( T ) is defined as the threshold for which the tail prob-

bility is P (| e | > β(T )) = 0 . 0027 . We compare how the threshold

( T ) behaves with T , as compared to the threshold 3 
√ 

trace (P ) ,

hich would be the equivalent choice if the prediction error was

trictly Gaussian. Since the prediction error stationary distribution

as an asymptotic power-law tail behaviour, it is clear that β( T )

s expected to be larger than 3 
√ 

trace (P ) . It is also of interest to

bserve the sampling period for which both β( T ) attains a mini-

um (say at T ∗1 ), and 3 
√ 

trace (P ) attains a minimum (say at T ∗2 ).
t is in general difficult to obtain closed form expressions for T ∗

1 
nalytically. We therefore investigate this behaviour numerically

hrough Monte Carlo simulations. This is also true for finding T ∗2 
n the general multivariable case. In the scalar, one can carry out

 simple analysis to obtain the optimal sampling period T ∗
2 

that

inimizes p̄ (T ) , which we discuss next. In order to proceed, one

lso needs to consider a specific form of γ̄ . To this end, we use

 particular choice of dependence on T . We assume that every

acket contains M number of bits, and the packet is lost even if

 single bit is in error. This allows to write γ̄ = 1 − (1 − BER (T )) M ,

here BER ( T ) denotes the bit error probability. In general, bit error

robability depends on the underlying modulation schemes, and

ften takes the form of Q( 
√ 

ρ · SNR · T /M ) , where Q ( · ) denotes

he tail probability of a standard Gaussian random variable, i.e.,

(x ) = 

1 √ 

2 π

∫ ∞ 

x exp 

(
− u 2 

2 

)
du . Here SNR denotes the channel signal

o noise ratio and ρ denotes a constant depending on the modu-

ation scheme. For simplicity however, we choose BER (T ) = e −νT ,

here ν depends on SNR and the modulation scheme. Note that

uch an exponentially decaying bit error rate represents an up-

er bound on most BER ( T ) of the form given by the Q ( · ) function

bove. In particular, for the case of noncoherent Binary Frequency

hift Keying (BFSK) modulation, the bit error rate is given by ex-

ctly an exponentially decaying function as above [22] . 

.1. Optimal sampling period for minimizing p̄ (T ) (scalar case) 

We recall that the prediction error follows (7) with ā =
xp (aT ) , σ 2 = 

exp (2 aT ) −1 
2 a . We take c = 1 and q = 1 . We start with

8) . Differentiating both sides of this equation with respect to T ,

nd setting the first derivative d ̄p (T ) 
dT 

= 0 , we obtain: 

p̄ 2 (T ) 

(
2 a ̄γ + 

d ̄γ

dT 

)
+ p̄ (T )(1 + 2 aσ 2 

v ) + σ 2 
v = 0 , 

omparing this with Eq. (8) , one can obtain, after some simplifica-

ion: 

2 a 

e 2 aT − 1 

(
1 − e 2 aT γ̄

)
= −

(
2 a ̄γ + 

d ̄γ

dT 

)
. 

earranging the above equation, we get: 

 a 

[
1 − γ̄

e 2 aT − 1 

]
= −d ̄γ

dT 
. (14) 

eplacing γ̄ = 1 − (1 − BER (T )) M in (14) , we obtain: 

M 

dBER (T ) 
dT 

1 − BER (T ) 
= − 2 a 

e 2 aT − 1 

. 

ubstituting BER (T ) = e −νT , after some algebraic manipulations,

e obtain the following optimality equation for T ∗2 that minimizes

p̄ (T ) : 

 = 

1 

ν
log 

(
1 + 

Mν

2 a 

(
e 2 aT − 1 

))
. (15) 

Since we require γ̄ < e −2 aT for p̄ (T ) to be finite, we can show

hat this implies log (1 − e −νT ) M > log (1 − e −2 aT ) . Since M ≥ 1, we
btain a necessary condition on ν as ν > 2 a for second moment

tability. 

It is clear that as T → 0, the packet loss probability increases,

riving p̄ (T ) to infinity, whereas when T → ∞ , p̄ (T ) also increases

s the system becomes more unstable and the process noise vari-

nce σ 2 also increases. Therefore, p̄ (T ) must attain a minimum be-

ween 0 < T < ∞ . Clearly, the minimizing sampling period T ∗2 must

lso satisfy the first order optimality condition (15) . Ignoring the

rivial solution T = 0 to (15) , it is easy to show that there is only

ne solution T ∗
2 

> 0 to (15) , thus proving the uniqueness of the

inimum. This follows from the fact that the function h (T ) = T −
1 
ν log 

(
1 + 

Mν
2 a 

(
e 2 aT − 1 

))
has a negative derivative at T = 0 , but its

erivative becomes positive after T = 

1 
2 a log 

(
1 − 2 a 

Mν

1 − 2 a 
ν

)
, and remains

ositive, meaning that there is only one point where h (T ) = 0 for

 > 

1 
2 a log 

(
1 − 2 a 

Mν

1 − 2 a 
ν

)
. 

.2. Numerical example: scalar case 

The following Fig. 5 compares the two thresholds β( T ) and

 

√ 

p̄ (T ) , with a = 100 , σ 2 
v = 0 . 25 , where the bit error probability

ER ( T ) is given by Q( 
√ 

ρ · SNR · T /M ) , with ρ = 2 (binary-phase-

hift-keying modulation scheme). For our calculations, we assume

hat M = 16 and SNR = 4.3 dB. The sampling time is varied within

 range such that the minimum sampling time guarantees the

acket loss probability stability threshold γ̄ (T ) < 1 / ̄a 2 (T ) . It is

een clearly that β( T ), the threshold based on the heavy tail distri-

ution, is always greater than 3 
√ 

p̄ (T ) which is based on a Gaus-

ian approximation. It is also seen that T ∗1 ≈ 1 . 9369 ms where as

 

∗
2 

≈ 1 . 6354 ms. This implies that due to the heavy-tail behaviour

f the prediction error stationary distribution, one needs to use a

igher sampling period (lower sampling rate) than would be rec-

mmended by a Gaussian assumption on the same distribution,

f one is interested in ensuring a tail probability bound below a

ertain threshold. It is also noteworthy that as T decreases be-

ow or increases above T ∗
1 

( T ∗
2 

), the threshold β( T ) ( 3 
√ 

p̄ (T ) ) in-

reases as well, and the two thresholds almost approach each other

hen the sampling period becomes quite large. This is due to the

act that when the sampling period is approaching its lower limit

beyond which the stability threshold is violated), the packet loss

robability is increasing - leading to a heavier tail dominated by
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Fig. 6. Comparison of β( T ) and 3 
√ 

trace (P) as a function of T , where β( T ) is such 

that P(| e | > β(T )) = 0 . 0027 . 
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i  
the packet loss probability and increasing β( T ), at a higher rate

than 3 
√ 

p̄ (T ) . Similarly, when the sampling period T → ∞ , γ̄ → 0 ,

whereas the system becomes more unstable, along with increasing

process noise variance σ 2 . In this case the Gaussian approximation

becomes a better fit with increasing sampling period. Since an as-

sociated LQ control cost can be computed in terms of the expected

estimation error variance p̄ (T ) , a similar behaviour (as 3 
√ 

p̄ (T ) in

Fig. 5 ) with respect to the sampling period for an LQ control cost

for a sampled data system controlled over an IEEE 802.15.4 based

wireless local area network was observed in [19] . However, the be-

haviour of the estimation error tail probability was not analyzed

either numerically or theoretically in [19] . 

6.3. Numerical example: multivariable case 

In this section we consider a two-wheeled balancing robot,

commonly referred to as segway , consisting of two wheels and

a rigid body that must be kept upright. The rigid body contains

two dc motors, the battery, and the electronic board. For simplic-

ity, only longitudinal movements are allowed. The physical system

is non-linear and so we decide to linearize it about the origin (in

particular where the tilt angle is null). For the complete derivation

of the model see [1] . The matrices of the continuous-time model

are: 

A = 

⎡ 

⎢ ⎣ 

0 0 1 0 

0 0 0 1 

0 43 . 57 −3 . 81 3 . 41 

0 55 . 22 1 . 97 −2 . 25 

⎤ 

⎥ ⎦ 

B = 

⎡ 

⎢ ⎣ 

0 

0 

4 . 92 

−3 . 25 

⎤ 

⎥ ⎦ 

 = 

[
1 0 0 0 

]
. 

The input is the supply voltage of the dc motors, the state con-

sists of the wheel angle, the tilt angle, and their derivatives,

while the output is the wheel angle, that can be easily related to

the linear position of the robot. The continuous eigenvalues are

{ 0 , 7 . 1184 , −8 . 1501 , −5 . 1372 } . For what concerns the (continu-

ous) process noise and the (discrete) measurement noise, the co-

variance matrices are: 

√ 

Q = 

⎡ 

⎢ ⎣ 

10 

−2 

10 

−3 

0 

0 

⎤ 

⎥ ⎦ 

Q = 

√ 

Q 

√ 

Q 

T 

R = 10 

−5 . 

For this simulation, the the bit error probability BER ( T ) is given

by BER (T ) = e −νT with ν = 750 and the packet length is fixed to

M = 64 . With this choice of the parameters, for the same sampling

period, the packet loss probability is greater than the one of the

previous example. As before, the sampling periods are such that

the corresponding packet loss probability is below the critical

value γ̄c that guarantees the boundedness of the second order mo-

ment. As stated in [17] , if ( ̄A , C) is detectable, Ā is diagonalizable,

and the unstable eigenvalues of Ā have distinct magnitudes, the

critical loss probability is γ̄c = 1 / max (| λi | 2 ) , where λi , i = 1 , . . . , n,

are the eigenvalues of Ā . It is easy to prove that the discrete-

time linearized model of the segway satisfies these hypotheses,

so it is possible to find the critical loss probability for each T .

It follows that the limit sampling period can be found from

γ̄ (T ) < 1 /e 2 ·7 . 1184 ·T . In Fig. 6 we can see that the behaviour of the

two thresholds is similar to the scalar case. 

As expected, the threshold β( T ) such that | e | > β( T ) has a prob-

ability equal to 0.0027 is always greater than 3 
√ 

trace (P ) , which

would be the value of the threshold β( T ) if e was Gaussian.

This fact confirms that the tail probability of the prediction error

with packet loss is larger than the tail probability of the Gaus-

sian case, i.e. confirms the heavy-tail behaviour of the prediction

error for multivariable strictly unstable systems. Differently from
he scalar example, the two thresholds are closer, i.e. the heavy-

ail behaviour for the segway is less evident, due to the fact that

he unstable eigenvalues of the two systems differ by a order of

agnitude. This confirms that the unstable eigenvalues indicate

ow much the error distribution is heavy-tailed. The difference be-

ween the two thresholds is clearer when the packet loss is greater,

hat corresponds to the case when the sampling period is smaller.

hen packet loss probability decreases, i.e. when the sampling pe-

iod increases, Gaussian distribution becomes a good approxima-

ion, since the curves are very close. These considerations validate

he thesis that the packet loss is responsible for the heavy-tail dis-

ribution of the prediction error, in contrast with the case of no

acket loss, where it has a Gaussian distribution. It is possible to

nd the optimal sampling periods, which are T ∗1 ≈ 8 ms for the

eavy-tail case and T ∗2 ≈ 7 . 5 ms for the Gaussian case. These sam-

ling periods minimize the thresholds, i.e. they ensure that the

rediction error belongs (with the high probability 1 − 0 . 0027 ) to

he smallest confidence interval. This means that they are the most

obust choice in order to avoid high deviations. Since T ∗
1 

> T ∗
2 
, in

he case with packet loss one should use a higher sampling period

han the one recommended by a Gaussian assumption, in order to

ave a tail probability bounded below a certain threshold. As ex-

ected, approaching the limit sampling period, both thresholds in-

rease and tend to diverge, because the packet loss probability is

loser to the critical value. In the same way, when the sampling

eriod increases above the optimal points, the thresholds increase

ecause the system becomes more unstable and the noise covari-

nce Q̄ becomes larger. These simulations suggest that, due to the

eavy-tail behaviour, even when the condition for bounded error

ovariance is satisfied, high packet loss probability could return

arge deviations of the prediction error. If the prediction is used for

ontrol purpose, these not so rare large errors (with respect to the

aussian case) can affect the control performance, resulting in un-

xpected practical consequences if only the error covariance matrix

as considered as a performance metric in the design procedure.

n particular, with unstable systems, the second order moment sta-

ility may not be sufficient to achieve the reliability required in the

ontrol applications. 

. Conclusions 

In this work we have studied sufficient conditions for the ex-

stence of a steady-state distribution for the prediction/estimation
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rror in Kalman filtering with constant gains in the presence of

acket losses. We have shown that such conditions are milder

han the conditions for bounded error covariance. Moreover, we

roved that for any linear filter, (i.e. not only in Kalman filtering),

he steady-state distribution must be heavy-tailed if the system

ynamics is strictly unstable, and if additional conditions exist

uch a distribution has a power-law tail whose exponent depends

n the packet loss probability. This implies that confidence bounds

btained by computing error covariance and assuming a Gaussian

istribution are in general optimistic, i.e. the probability of having

arge deviations in estimation errors are larger than expected.

onetheless, we numerically illustrated that for realistic unstable

ystems, such a difference can be very small in the range of

ptimal operating conditions in terms of transmission rate. Future

orks will explore the extension of these results to Markovian

acket dropouts and optimal rate selection using more realistic

ommunication protocols. 
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