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Abstract

Ideally, statistical parametric model fitting is followed by various summary tables

which show predictor contributions, visualizations which assess model assump-

tions and goodness of fit, and test statistics which compare models. In contrast,

modern machine-learning fits are usually black box in nature, offer high-

performing predictions but suffer from an interpretability deficit. We examine

how the paradigm of conditional visualization can be used to address this, specifi-

cally to explain predictor contributions, assess goodness of fit, and compare multi-

ple, competing fits. We compare visualizations from techniques including trellis,

condvis, visreg, lime, partial dependence, and ice plots. Our examples use random

forest fits, but all techniques presented are model agnostic.
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1 | INTRODUCTION

Ideally, statistical parametricmodel fitting is followed by various summary tableswhich show predictor contributions, visuali-
zationswhich assessmodel assumptions and goodness of fit, and test statistics which comparemodels.Mostmachine-learning
models fit complex algorithms to arbitrarily large datasets. These algorithms are well known to be high on performance and
low on interpretability. There are no simplemodel summary tables and no assumptions to be assessed.While suchmodels are
primarily used for prediction, it is important for reasons of trust to explain predictor contributions, assess goodness of fit, and
compare competing fits. In this article, we discuss how the technique of conditional visualization can address these issues.

First, we present an overview of conditional visualization techniques for model exploration, including the use of
facets, partial dependence (pd) plots (Friedman, 2001), ice plots (Goldstein, Kapelner, Bleich, & Pitkin, 2015), and visu-
alizing regression functions with visreg (Breheny & Burchett, 2017). Then, we move on to the condvis paradigm
(O'Connell, Hurley, & Domijan, 2017), which incorporates observations local to the conditioning fit and harnesses the
power of interaction. We follow that with a discussion of additive explanations, including nomograms and lime plots.
We conclude with a discussion comparing the techniques presented.
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All of the methods presented can be described as showing models in data space as opposed to more familiar plots of
data in model space such as residual plots (Wickham, Cook, & Hofmann, 2015). The visualization techniques are essen-
tially model agnostic in that they do not assume any particular model structure, just the availability of a predict function.

Throughout this paper, we use the following notation. Consider a dataset of n observations xi,yif g , where
xi = xi,1,…,xi,p

� �
is a vector of predictors and yi is the response. Let f̂ denote a fitted model. One or two predictors of pri-

mary interest are designated as section predictor(s) xS. Remaining predictors are termed conditioning predictor(s) xC .
For comparison purposes, techniques are illustrated using regression random forest fits to the RailTrail dataset

available from the R package mosaic (Pruim, Kaplan, & Horton, 2017), though all methods apply also to classification
problems. The data has observations which are counts of users passing a sensor located on a trail in Massachusetts mea-
sured on 90 days from April to November in 2005. The response is volume of trail users, predictors are daily high and
low temperatures (hightemp and lowtemp), season (fall, spring, summer), cloudcover, and dayType (weekday or
weekend).

2 | CONDITIONAL VISUALIZATION STRATEGIES

In this section, we present an overview of various conditional visualization techniques for model exploration, namely
the use of facets, pd plots (Friedman, 2001), ice plots (Goldstein et al., 2015), and visreg (Breheny & Burchett, 2017). We
use random forest fits for the RailTrail dataset to illustrate the concepts, though techniques are model agnostic.

2.1 | Faceting and trellis

Consider a random forest relating volume to hightemp, season, and dayType. As there is one continuous predictor and
two factors, a trellis display (Becker, Cleveland, & Shyu, 1996) or faceting plot (Wickham, 2016; Wilkinson, 2005) will
show how the fit varies with hightemp, for each level of season and dayType. Figure 1 shows the random forest fit dis-
played using facets. Spring and summer volume levels are higher than in fall, weekend volumes are higher than week-
day. Except in summer, volume increases with hightemp, but volume decreases with hightemp for summer weekends,
indicating a three-way interaction.

This is an example of conditional visualization. Figure 1 shows the fit versus hightemp conditional on season and
dayType. Here, hightemp is the section predictor and season and dayType are the conditioning predictors.

The fitted curves show predictor contributions. As the panels show the observed values of hightemp and volume for
each combination of season and dayType, we can see that broadly speaking, the fit captures the patterns evident in the
raw data, though the spring fits in particular could be improved. By overlaying a second fit, we could compare its per-
formance to the random forest fit. The trellis concept has also been used to construct displays where each panel is a
heatmap visualizing the dependence of a fit on two quantitative predictors, conditional on two further categorical pre-
dictors (Nason, Emerson, & LeBlanc, 2004).

Trellis visualizations generalize the faceting concept to the setting where the conditioning variables are quantitative
which are binned into overlapping intervals called shingles. Trellis and its R implementation Lattice (Sarkar, 2008)
focus on displaying data rather than fits. In principle, the fits could be displayed by conditioning on the shingle mid-
point or mode. As the dimension of the conditioning space increases, faceting layouts become cumbersome and most of
the facets or shingles will be empty.

2.2 | Partial dependence and ice plots

Partial dependence (Friedman, 2001) and ice plots (Goldstein et al., 2015) both use a single plot to visualize how f̂
depends on a chosen section predictor xS. Strictly speaking, partial dependence (pd) plots are not conditional visualiza-
tions in the sense that the effects of other predictors, those in xC , are averaged out.

Ice plots are closely related to pd plots, omitting the averaging step. In the case of a single section predictor, an ice
plot displays the curves f̂ xS,xC

i

� �
versus xS , letting xS vary over its range, for each observation i. Observations xS

i ,yi
� �

for i = 1, 2, …, n are also plotted.
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Partial dependence plots show the average ice plot curve, displaying 1
n

Pn
i=1 f̂ xS,xC

i

� �
versus xS . Both pd and ice

plots are implemented in the R package ICEbox (Goldstein et al., 2015).
As an example, we fit a random forest to the RailTrail dataset, relating volume to three quantitative predictors

hightemp, lowtemp, and precip. Figure 2 displays an ice plot with hightemp as the section variable. Here, each of the
n curves is conditional on observed values of lowtemp and precip. The pd curve is shown with a yellow outline. The pd
curve captures the increasing volume up to temperatures of 75�F and shows a gentle decrease after that. There is a lack
of homogeneity among the ice curves: for example, some flatten out at temperatures of about 65�F. The benefit of ice
curves over the summarizing pd curve is apparent here, illustrating the value of conditional methods.

Discovering the explanation for varying patterns of ice curves is more challenging. Does the effect of hightemp on
volume vary with lowtemp, precip, or both? Embedding ice plots in an interactive, multiplot display with brushing
would help. In fact, in the next section, we discuss how interactive exploration indicates a three-way interaction (see
Figure 4).

It is not apparent from the ice plot whether or not the fit is an adequate summary of the data. Also, many of the ice
curves involve extrapolation over unrealistic or even impossible values of hightemp. For example, the maximum
hightemp value for this dataset is 97�F, and this observation has a lowtemp value of 71�F. The ice curve for this obser-
vation is calculated by varying hightemp from 40 to 97�F; clearly values below 71�F are impossible. Generally, corre-
lated predictors cause pd plots to be biased.

Apley (2016) suggested accumulated local effects (ale) plots as a correction for this bias, where local effects are aver-
aged over the conditional distribution of xC given a value for xS . Like pd plots, ale plots summarize the overall pattern
of dependence between f̂ and xS, but there are no individual curves to show variation in this pattern.

2.3 | Visreg

The visreg package (Breheny & Burchett, 2017) is primarily for displaying regression functions which are additive
models, though it is also useful for random forests and support vector machines. Visreg plots display how f̂ varies with
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FIGURE 1 Random forest fit relating volume to hightemp, season, and dayType for the RailTrail dataset
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xS , for fixed values of xC =u. Specifically, the plot shows f̂ xS,xC =uð Þ versus xS , where xS varies over its range. The
default setting of u is the median for quantitative and mode for factors, though there may be no observations at or near
this location. Overlaid point coordinates are partial residuals, which for non-additive fits are defined as
f̂ xS

i ,x
C =u

� �
+ ei, where ei = yi− ŷi are residuals, i = 1, 2, …, n.

Figure 3 shows visreg plots relating the fit to hightemp, for three different values for the conditioning predictors
lowtemp and precip. The plotted partial residuals do not relate to the conditioning values of lowtemp and precip and
are the same in all three plots, which gives a misleading picture of goodness of fit. For instance, the plots suggest the
fitted curves are biased for hightemp below 60�F, but this is incorrect as we will see later in Figure 4.

Visreg also offers a faceting option, using just one conditioning predictor.

3 | INTERACTIVE CONDITIONAL VISUALIZATION

In O'Connell et al. (2017), the authors described a paradigm for interactive conditional visualization of statistical
models. The condvis paradigm is a generalization of the faceting plots in Figure 1 to quantitative as well as categorical
conditioning predictors and is appropriate for any fitting algorithm offering predictions. These ideas are implemented
for a broad range of supervised and unsupervised learning fits in the shiny-based R package condvis2 (Hurley, O'Con-
nell, & Domijan, 2019). (There is also an earlier, non-shiny-based implementation O'Connell, Hurley, and Domijan
(2016)). Here, we give an overview of the basic concept.

3.1 | Condvis concepts

A fixed value of the conditioning predictors xC =u specifies a section. A section plot then visualizes how the fit f̂ varies
with xS, for xC =u. For a single section predictor, the plot shows f̂ xS,xC =uð Þ versus xS, where xS varies over its range.
(Two section predictors are also permitted). The plot also shows observations xS

i ,yi
� �

whose conditioning values xC
i are

FIGURE 2 An ice plot with partial dependence curve outlined in yellow for

hightemp, for the random forest fit to the RailTrail dataset, relating volume to

hightemp, lowtemp, and precip
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near u. This is done by calculating a distance di between xC
i and u, using a Euclidean or maxnorm distance for stan-

dardized quantitative predictors. This is transformed into a similarity score

si =max 0,1−
di
σ

� �

where σ > 0 is a threshold parameter set by the user. For categorical predictors, similarity is set to zero when the factor
levels of xC

i and u do not match. Alternatively, a Gower-type distance (Gower, 1971) is available which combines dis-
tances for quantitative and categorical predictors into a single value. The color of points is faded in proportion to the
similarity score, where points with a zero score are not shown.

In the interactive implementations in O'Connell et al. (2016) and Hurley et al. (2019), the section points u are cho-
sen by clicking on one- or two-dimensional displays of the conditioning predictors.

3.2 | One section predictor

Figure 4 shows how the fit relates to hightemp, for three different values for the conditioning predictors lowtemp and
precip, shown in Figure 5.

The plots in Figure 4 show that volume increases for hightemp from 60�F. In each panel, the volume drops off
or flattens for higher temperatures. The third panel has only a few points because it represents the fit for days
where the weather conditions are unusually hot and wet. The predicted fit is lower than in Figure 4a,b, though as
there is very little data, the fit is largely based on extrapolation. There appears to be evidence of lack of fit in the
first panel for hightemp <60�F, as points lie predominantly below the curve. However, the light point color indi-
cates these points are not that close to the section point shown as the red cross in Figure 5. Interactive exploration
verifies that these points correspond to days with some rain. Generally, moving the section point by clicking on a
plot of precip and lowtemp will show predicted volume reduces as rain increases. Comparing Figure 4a,b, the differ-
ing curve shapes indicate an interaction between hightemp and lowtemp, while a comparison of b and c suggest a
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hightemp, precip interaction. Interactive exploration suggests three-way interaction, but there may not be enough
data so support this conclusion.

We note that the curves displayed in Figure 4 are the same as those in Figure 3, but the latter shows (misleading)
partial residuals instead of observations near the section point xC =u. The ice plots of Figure 2 are also closely related
to condvis displays, in that ice plots show fits where the section points are the n observations, overlayed in a single
display.

3.3 | Two section predictors

There can be two section variables, which if both are numerical are displayed as a heatmap or surface plot. If one of the
section predictors is a factor, the curves can be overlaid.

Again for the RailTrail dataset, we fit a random forest relating volume to hightemp, lowtemp, precip, cloudcover,
dayType, and season. Figure 6 shows how the fit relates to two section predictors hightemp and dayType for three dif-
ferent values for the conditioning predictors lowtemp, precip cloudcover, and season. The conditioning predictors (not
shown) could be plotted as a parallel coordinate plot or two pairwise plots.

The most interesting pattern here is that the volumes are higher at weekends (purple) for the first panel only, where
the condition is low lowtemp, low cloudcover, and spring. This weekend bonus reduces as either lowtemp or precip
increase.

The condvis strategy also permits multiple fits which can be overlaid or positioned on a grid. Confidence and predic-
tion intervals can be shown if offered by the fitting algorithm.

As the dimension of the conditioning space increases, interactively selecting section points avoiding near-empty sec-
tions is tricky. One strategy limits interactive exploration to predictors identified as important by some measure of vari-
able importance. Another strategy as proposed in O'Connell (2017) designs tours of conditioning space to present
interesting section plots. These tours consist of visualizing the fit for a prechosen sequence of sections
xC = u1,u2,…,utf g where t is the length of the tour. Tours are implemented in Hurley et al. (2019), where tours on offer
include uj randomly chosen from observed values of the conditioning predictors, formed as centroids (or medoids) from
k-means (or k-medoids) of the conditioning predictors. Alternatively, tours may be chosen to highlight lack of fit, or dif-
ferences between two or more fits.

3.4 | Core plots

Cook (1995) proposed an idea related to condvis which he called CORE (for conditional regression plots). These plots
display xS

i ,yi
� �

for points i such that xC
i ∈N uð Þ, though did not include plots of f̂ . Regions N were to be formed by brus-

hing plots of at most two predictors, which limited the utility of CORE methods to low-dimensional settings. To over-
come this limitation, he proposed using sufficient dimension reduction methods to reduce the dimension of the
conditioning space. These concepts are further developed in Zhang (2013). This would seem to be an alternative to tours
for exploring interesting areas of predictor space.
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4 | ADDITIVE EXPLANATIONS

4.1 | Nomograms

In linear regression problems, nomograms have been used as a chart to assist in hand calculation of predictions, assig-
ning a score to each predictor setting, and then obtaining the prediction by manually totaling the scores. See for exam-
ple the nomogram function in the R package rms (Harrell Jr, 2019). Also, Jakulin, Možina, Demšar, Bratko, and Zupan
(2005) give a nomogram construction for support vector machines.

The R package DynNom (Jalali, Alvarez-Iglesias, Roshan, & Newell, 2019; Jalali, Roshan, Alvarez-Iglesias, &
Newell, 2019) offers dynamic nomograms for a range of additive regression models. Using the terminology from the ear-
lier section, all predictors are designated as conditioning predictors whose values xC =u are interactively set by the
user, causing a plot to show the corresponding prediction and confidence interval. As DynNom does not show individ-
ual predictor contributions to the overall prediction as in a standard nomogram, there is no reason why these dynamic
nomograms could not be extended to (nonadditive) arbitrary black-box models. This would be useful for calculating
and comparing predictions for different values of xC =u. But, such nomograms would not show how a fit depends on
section variables, as was shown by condvis in Figure 4 and visreg in Figure 3, so they do not assist in explaining or
understanding a fitted model.

4.2 | Additive approximations with lime

Some authors (Nugent and Cunningham (2005) and Ribeiro, Singh, and Guestrin (2016)) have proposed using locally
linear fits to derive explanations for fits from machine-learning models. In their setup, all predictors are designated as
conditioning predictors. The lime algorithm of Ribeiro et al. (2016) fits a local ridge regression ^̂f at xC =u relating f̂ to
predictors using nearby sampled data weighted by a similarity score. In R, this algorithm is provided by package lime
(Pedersen & Benesty, 2019).

In Figure 7 we show explanations given by lime for the fit to three observations. As before, our fit is a random forest
relating volume to hightemp, lowtemp, and precip, for the RailTrail dataset. Each panel of the plot shows the local fit ^̂f
in a nomogram-type display. The bars represent β̂juj , the local contribution of each predictor, and the local R2 is also
reported.

Case: 26
Prediction: 314.20855952381
Explanation fit: 0.68

Case: 4
Prediction: 420.66561819964
Explanation fit: 0.69

Case: 16
Prediction: 327.43411923493
Explanation fit: 0.71
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FIGURE 7 A lime explainer plot for the RailTrail random forest fit relating

volume to hightemp, lowtemp, and precip. Cases 16, 4, and 26 have predictor

values (hightemp, lowtemp, and precip) of (a) (54, 32,0), (b) (96, 61,0), and

(c) (81, 65,1.4)

HURLEY 7 of 10



Note that the predictor settings chosen have identical lowtemp and precip values to those used for Figures 4 and 3.
For the three conditions, the lime explainer shows the positive effect of hightemp on predicted volume. The bar length
for hightemp represents how much the explainer fit changes if hightemp is dropped from its current value to zero,
keeping lowtemp and precip unchanged. But from the three panels of Figure 4, we see that the chosen values for
hightemp occur in locations where the predicted hightemp is fairly flat, so the lime explainer is misleading. Further-
more, a superficial interpretation of Figure 7 might suggest that precip is important only for case 26, but the apparent
noncontribution for cases 16 and 4 in Figure 7 occurs because they both have precip values of zero. Again, exploration
of the fit with condvis shows that increasing precip generally reduces predicted volume.

The lime algorithm has quite a few parameters whose settings affect the given explanations, including a choice of
feature selection algorithms. The methodology is not concerned with validation of the fitted model f̂ or with uncovering
its deficiencies. Lime sets out to give simple explanations, but these may be based on poor approximations ^̂f as in
Figure 8a, and the explanations themselves may be unstable, as in Figure 8b.

Lime explanations also do not allow for local interactions. A recently proposed alternative (Ribeiro, Singh, &
Guestrin, 2018) uses rule-based instead of linear fits which have the benefit of incorporating feature interactions.

4.3 | Shapley methods

Like lime, Shapley methods construct an explainer ^̂f that is a sum of feature contributions. But these are not based on
regression, rather equations from competitive game theory. Shapley values use a contribution for feature j that mea-
sures the effect on prediction of adding feature j to all 2p− 1 subsets of other features, combining these in a weighted
sum. Štrumbelj and Kononenko (2014) give details and describe a sampling algorithm which reduces the exponential
time complexity. Visualizations of Shapley values are similar to those for lime. Lundberg and Lee (2017) and Lundberg
et al. (2020) propose other approximations and some interesting new model visualizations which are beyond the scope
of the current paper.

5 | DISCUSSION

All of the methods presented here apply to any black-box fitting algorithm, in the classification and regression setting.
All methods attempt to show how f̂ relates to predictors. Additive explainer methods do not at present use a designated
section predictor or predictors, and so cannot show directly how a fit varies as a predictor changes. However, lime visu-
alizations such as that in Figure 8 could be constructed varying hightemp say, and keeping other predictors fixed.

Only condvis and DynNom use the power of interaction to facilitate model exploration, but interactive control of
section points could be added to other methods.

Condvis visualizations facilitate goodness-of-fit assessments using overlaid nearby weighted observations. Other
methods do not support goodness-of-fit assessments. Condvis also supports the comparison of multiple fits, either via
overlaid or side-by-side curves or surfaces which is not available in implementations of other methods discussed,
though this feature could be added. Confidence and prediction intervals for the response are available for condvis and
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visreg displays and also for nomograms. Lime displays could be enhanced with an uncertainty measure, but these are
for the approximate fit rather than the fit itself.

In principle, all of the methods presented here are suitable for big n datasets. Condvis section plots show just high-
similarity observations, plots of conditioning predictors can use subsets of n 0 < < n observations. Similarly, visreg
could just use subsets, and ice plots could show a selection of n0 curves.

Large p datasets present a bigger challenge for conditional visualization techniques. A partial solution is to use vari-
able importance measures to identify features that drive predictions. The most important predictor is the natural choice
of section predictor for condvis, visreg, and pdp/ice plots, though in condvis the choice is under interactive control. For
condvis, interactive exploration can be focused on the important predictor subset, while the conditioning values for pre-
dictors deemed to be of little importance could be fixed at the median for numeric predictors and mode for factors. Lime
offers built-in feature selection algorithms, based on standard linear regression techniques. As observations are sparse
in high dimensions, unless section points are carefully selected sections will be empty. Condvis software includes tours
of conditioning space to locate interesting section plots. As these tours simply identify a set of relevant section points,
these could also be used to construct visreg or ice plot displays.
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