
552 IEEE COMMUNICATIONS LETTERS, VOL. 13, NO. 7, JULY 2009

Low-Delay Dynamic Routing Using Fountain Codes
Venkataramana Badarla, Vijay Subramanian, and Douglas J. Leith

Abstract—This paper considers augmenting current maximum
throughput routing algorithms to use fountain coding at senders.
We demonstrate that this joint routing/coding approach is able
to achieve significantly improved delay performance.

Index Terms—Dynamic routing, fountain codes.

I. INTRODUCTION

FOLLOWING the seminal work of Tassiulas [1], in recent
years a body of powerful theoretical results has been

developed for maximum throughput routing (e.g. see [2], [3]
and references therein). Under quite mild conditions this yields
distributed dynamic routing algorithms that are guaranteed
to maximise network throughput. By using dynamic multi-
path routing these algorithms can offer considerable gains in
throughput over conventional single-path routing. Indeed, they
are guaranteed to achieve the network capacity and so their
throughput performance cannot be bettered by any algorithm.
However, despite the appealing simplicity and strong theoreti-
cal basis for these routing algorithms, the literature is confined
to analytic results with almost no simulation or experimental
studies exploring their practical utility (except the recent
work in [4]). In this paper we consider the application of
maximum throughput routing algorithms and highlight some
fundamental difficulties with current algorithms, in particular
a tendency towards extensive routing loops and poor delay
performance. Motivated by these observations, we propose
augmenting current maximum throughput routing algorithms
to use fountain coding at senders. We demonstrate that this
joint routing/coding approach is able to achieve significantly
improved delay performance. To our knowledge this paper is
the first to consider the integrated use of sender-side coding
with maximum throughput routing. We note briefly that we
consider sender-side coding rather than network coding here
– the reason being our focus on improving delay performance
rather than increasing network capacity. Extending the pro-
posed approach to include network coding is feasible but left
as future work.

Before proceeding we look at an illustrative example.
Consider the simple network topology in Fig. 1(a) where
the network capacity between the source and destination
is 1000 packet/s (constrained by the link connecting the
destination node 5 with node 3). For Poisson arrivals, the
delay performance of the maximum throughput routing (see
Algorithm 1 which uses queue length differences between the

Manuscript received November 26, 2008. The associate editor coordinating
the review of this letter and approving it for publication was H. Yousefizadeh.

This work is supported by Science Foundation Ireland grant IN3/03/I346.
The authors are with the Hamilton Institute, National University of

Ireland, Maynooth, Co. Kildare, Ireland (e-mail: {badarla.venkataramana,
vijay.subramanian, doug.leith}@nuim.ie).

Digital Object Identifier 10.1109/LCOMM.2009.081997

1

2

3

5

4

10

8

8

8

1

DEST

SRC

(a) Topology

0 1000 2000 3000 4000 5000 6000
0

20

40

60

80

100

Delay (ms)

Pe
rc

en
ta

ge
 o

f P
ac

ke
ts

joint coding/routing

max−throughput routing

(b) Cumulative distribution of packet delay

Fig. 1. Example illustrating performance issues. Link rates in (a) marked
in ×1000 packets/s. Delay data in (b) is for Poisson arrivals, mean rate 900
packets/s, block size n = 50 packets.

adjacent nodes weighted by their link rates to make routing
decisions) is shown in Fig. 1(b). We measure delay as the
time between a packet being transmitted by the source and
being delivered in-order to upper layers at the destination. It
can be seen that 75% of packets require more than 2000ms to
reach the destination. In general, while the routing algorithm
is guaranteed to maximise network throughput this guarantee
says little about the delay performance and, as can be seen
from this example, in practice delay performance may be poor.

Closer inspection reveals that packets tend to circulate for
long periods in the loop connecting nodes 2-3-4. On average
the number of packets exiting this loop from node 3 to
the destination node 5 matches the arrival rate from source
node 1 into node 2 and so network throughput is indeed
maximised in line with analytic guarantees. Nevertheless, it
is easy to see that up to 7000 packets/s can flow around
the 2-3-4 loop without impacting the capacity between the
source and destination. Consequently, the packet flow arriving
at the destination can suffer from extensive packet re-ordering.
Note that when in-order (or near in-order) packet delivery
is required (as is the case for the vast majority of existing
applications), packet reordering translates into delay as packets
must be held in a reassembly queue (akin to a playout buffer)
at the destination before they can be delivered to the upper
layers.

For comparison, also shown in Fig. 1(b) is the correspond-
ing delay performance when sender-side coding is used along
with maximum throughput routing. The dramatic improvement
in delay performance is evident.

II. ROUTING AND CODING

A. Low-delay fountain coding

Maximum throughput routing maximises the rate at which
packets are delivered to a destination, but provides no guar-
antee of in-order arrival at the destination (quite the opposite

1089-7798/09$25.00 c© 2009 IEEE

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on November 9, 2009 at 07:23 from IEEE Xplore. Restrictions apply.

BADARLA et al.: LOW-DELAY DYNAMIC ROUTING USING FOUNTAIN CODES 553

Algorithm 1 Max-throughput routing at node n, time t

1: For each neighbour m, compute the utility Un,m(t) =∑
m∈Nn

(qn(t) − qm(t)) × Rn,m. Rn,m is the link rate
from n to its neighbour m, qn the number of packets
queued at node n, Nn the set of neighbours of node n.

2: Determine m that maximises Un,m(t). Denote by m∗.
3: Transmit min(qn(t), Rn,m∗) packets to node m∗.

in fact, as the previous example illustrates). An ideal foun-
tain code enables n information packets to be reconstructed
from any n + δ coded packets, with overhead δ small. One
immediate consequence is that a fountain coded packet stream
is insensitive to packet reordering. The use of fountain codes
in combination with maximum throughput routing therefore
offers the potential for significant gains in delay performance
while yielding excellent throughput performance. It is this key
observation that motivates the approach studied in this paper.

We note, however, that current practical (as opposed to
ideal) fountain codes, for example LT codes [5] and Raptor
codes [6], are not suitable for our purpose. One feature of these
practical codes is that large block sizes n are required in order
to obtain reasonably small overhead δ. For example, block
sizes of 10K packets and larger are commonly considered in
the literature. For smaller block sizes, the overhead quickly
becomes large e.g. even highly optimised LT codes can have
overheads of greater than 40% [7]. The reason that block size
matters is that all of the information packets are generally
only recovered once a complete block (i.e. n + δ) of coded
packets has been received. That is, the coding introduces a
decoding delay that is proportional to the block size. For large
block sizes, the decoding delay is large and so the net delay
performance of joint coding/routing may not be any better than
that with routing alone. We therefore begin by considering the
design of low-delay, small block-size fountain codes.

In LT codes a coded packet ei is generated from the sum of
a randomly selected subset of the information packets. That is,
ei = giu where u is the vector of information packets and gi is
a vector with 0 or 1 entries – in modulo 2 arithmetic summing
two packets simply corresponds to xoring the corresponding
bits in each packet and so is computationally cheap. Raptor
codes are similar, except that they make use of intermediate
coded symbols. Stacking n + δ received coded packets into
a vector e, we have that e = Gu where row i of G is the
(0,1) vector gi. The information packets can be recovered (i.e.
decoded) whenever sufficient coded packets are received that
the matrix G is full rank. Decoding involves solving n linear
equations e = Gu which in general is an O(n3) operation
using, for example, Gaussian Elimination (GE).

A key design driver for LT and Raptor codes is the require-
ment for efficient decoding e.g. linear time O(n) decoding.
This is vital when large block sizes n are used and leads to
the use of matrices G which are sparse so as to be decodable
using Belief Propagation (BP). However, our interest is in
small block sizes n in order to ensure small decoding delay.
When n is small, we can afford more expensive decoding
algorithms such as GE decoding. This allows us to make use
of matrices G which are non-sparse.

10 100 1000
10

−2

10
0

10
2

Block sizes (Packets)

P
a
c
k
e
t
d
e
c
o
d
in

g
 d

e
la

y
s
 (

m
s
)

GE on LT codes

BP on LT codes

GE on equiprobable codes, loss rate 10%

GE on equiprobable codes, loss rate 50%

Fig. 2. Decoding delay of LT (using both BP and GE decoding) and
equiprobable codes (using GE decoding).

In particular, we consider generating coded packets as
follows. First the n information packets are transmitted un-
encoded (i.e. we use a systematic code). Subsequent coded
packets are then formed by tossing a coin for each information
packet and xoring the selected packets. That is, each element
in vector gi takes value 1 with probability 0.5 (and so
also takes value 0 with probability 0.5, hence 0 and 1 are
equiprobable). It is shown in [8] that this class of fountain
codes has lower overhead δ (and so decoding delay) than
any sparse code. Use of a systematic code further reduces
decoding delay when the level of packet re-ordering is low.
Fig. 2 illustrates the superior decoding delay of this code in
comparison with LT codes using BP decoding and LT codes
using GE decoding.

B. Pipelining blocks

When using small blocks, transmission of a large file
requires the use of multiple blocks. We take advantage of
pipelining of blocks to reduce the coding overhead further.
Specifically, once the initial uncoded packets of a block
are transmitted, we wait for an ack from the destination
before sending coded packets. While waiting for the ack we
commence sending packets from the next block, if available.
The destination sends an ack for each received packet. The
ack indicates the block j to which the packet belongs, the
block k next in line for decoding, the rank of the currently
received G matrix for block k. On receiving an ack with
j not equal to k, indicating reordering/loss crossing block
boundaries, the sender transmits coded packets from block
k. The number of coded packets sent is determined by the
rank of the already received G matrix. Once these have been
sent, say at time t, to allow for the network round-trip time
no further coded packets are transmitted until a packet sent
after time t is acked.

C. Routing

When block k is finally decoded at the destination, due
to pipelining of transmissions there may still be packets
associated with that block in-flight within the network. Since
forwarding of these packets uses network resources without
yielding benefit it makes sense for forwarders to simply drop
these packets once an ack indicates that a block is decoded.
However, this violates a key assumption in the stability results
for maximum throughput routing: namely, that the set of
available routing actions at time t is independent of previous

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on November 9, 2009 at 07:23 from IEEE Xplore. Restrictions apply.

554 IEEE COMMUNICATIONS LETTERS, VOL. 13, NO. 7, JULY 2009

3500 4000 4500 5000 5500
3000

3500

4000

4500

5000

5500

Destination (node 81)

Source (node 91)

Dotted (red) links: 1Mbps
Dashed (black) links: 2Mbps
Thick (green) links: 6Mbps

(a) Roofnet topology

0 100 200 300 400 500
0

20

40

60

80

100

Number of hops

P
e
r
c
e
n
t
a
g
e

o
f

p
a
c
k
e
t
s

Rate 1.0

Rate 1.6

Rate 2.4

Rate 2.95

(b) Effects of routing loops on maxi-
mum throughput routing

Fig. 3. Roofnet-like topology (91 nodes, node locations derived from Roofnet
GPS data, two-ray ground path propagation model).

routing actions. To preserve stability guarantees we make
routing decisions based on virtual queues that mirror the real
queues except that in-flight packets are not dropped from
the virtual queues. Standard stability results then ensure that
the virtual queues within the network are guaranteed to be
bounded. Since the virtual queues sizes always upper bounds
the real queues sizes, it follows that the real queues are also
guaranteed to be bounded i.e. network stability is ensured.

III. PERFORMANCE

For the simple network topology in Fig. 1(a), the improve-
ment in delay performance when combined coding/routing is
used can be seen in Fig. 1(b). We also consider the more
realistic topology shown in Fig. 3.(a), which is related to the
Roofnet network. To demonstrate the effect of routing loops,
we measured the number of hops traveled by each packet of
a flow running from node 91 to node 81 and plot the hop
count distribution in the Fig. 3.(b). We can observe that, at
high arrival rates 50% of packets travel more than 50 hops,
while at low rates, 50% of packets travel more than 150 hops.
As the packets are traveling significantly higher hops when
compared to the network diameter (10 hops) and the shortest
distance between the nodes 91 and 81 (6 hops), we can infer
that routing loops indeed lead to considerable packet delays.

Figs. 4.(a) and (b) plot the corresponding mean packet delay
and ratio of goodput and throughput, respectively for a range
of offered loads and block sizes. It can be seen that joint
routing/coding consistently achieves significantly improved
delay performance compared with plain maximum throughput
routing; this also shows that performance is insensitive to
the choice of block size over a wide range of arrival rates.
While goodput takes account of the in-order packet delivery to
upper layers at the destination, throughput provides a measure
of maximum achievable network capacity for a given flow
configuration. We can observe that, for joint coding/routing,
in most cases (except at high loads 2.95 and 3.0, the maximum
network capacity), goodput is about 95% of throughput (i.e.,
5% of overhead for in-order delivery), which confirms that the
improved delay performance with coding is not achieved at the
cost of high coding overhead and reduced network capacity.

Fig. 5 shows the delay and goodput distributions taken over
12 different source-destination pairs with the arrival rate fixed
at 90% of network capacity between each pair. Once again, a

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 1 1.4 1.8 2.2 2.6 3

D
e
la

y
 (

m
s
)

Arrival rate at sender (x100 pkts/s)

max-throughput routing

block size: 10 joint coding/routing

block size: 50 joint coding/routing

block size: 100 joint coding/routing

(a) Delay

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 1 1.4 1.8 2.2 2.6 3

R
a
ti
o
 o

f
G

o
o
d
p
u
t
a
n
d
 T

h
ro

u
g
h
p
u
t

Arrival rate at sender (x100 pkts/s)

block size: 10 joint coding/routing
block size: 50 joint coding/routing

block size: 100 joint coding/routing
max-throughput routing

(b) Goodput

Fig. 4. Roofnet topology, flow between nodes 81 and 91.

0 0.5 1 1.5 2
x 10

4

0

0.2

0.4

0.6

0.8

1

Delay (ms)

P
ro

b
a

b
ili

ty

max−throughput routing
joint coding/routing, block size 50

(a) Delay

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Ratio of Goodput and Throughput

P
ro

b
a

b
ili

ty

max−throughput routing
joint coding/routing, block size 50

(b) Goodput Efficiency

Fig. 5. Roofnet topology, average over 12 randomly selected source-
destination pairs. Poisson arrival rate 90% of capacity.

substantial improvement in delay performance is consistently
observed with joint routing/coding.

IV. CONCLUSIONS

In this paper we highlight some fundamental difficulties
with current maximum throughput routing algorithms, in par-
ticular a tendency towards extensive routing loops and poor de-
lay performance. We propose a joint routing/coding approach
and demonstrate that this achieves significantly improved
delay performance while maintaining excellent throughput
performance.

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling for maximum throughput in multihop
radio networks,” IEEE Trans. Automatic Control, vol. 37, no. 12, pp.
1936-1949, 1992.

[2] A. L. Stolyar, “Maximizing queueing network utility subject to stability:
greedy-primal dual algorithm,” Queueing Systems, vol. 50, no.4, pp. 401-
457, 2005.

[3] M. J. Neely et al., “Fairness and optimal stochastic control for hetero-
geneous networks,” in Proc. IEEE Infocom, 2005.

[4] B. Radunovic et al., “An optimization framework for opportunistic
multipath routing in wireless mesh networks,” in Proc. IEEE Infocom
mini symposium, pp. 2252-2260, 2008.

[5] M. Luby, “LT codes,” in Proc. 43rd Annual IEEE Symposium on
Foundations of Computer Science, pp. 271-280, 2002.

[6] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inform. Theory, vol. 52,
no. 6, pp. 2551-2567, 2006.

[7] E. Hyytia et al., “Optimal degree distribution for LT codes with small
message length,” in Proc. IEEE Infocom, 2007.

[8] V. G. Subramanian and D. J. Leith, “On a class of optimal rateless
codes,” in Proc. Allerton Conference, 2008.

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on November 9, 2009 at 07:23 from IEEE Xplore. Restrictions apply.

