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ABSTRACT
Survival models have been extensively used to analyse time-until-
event data. There is a range of extendedmodels that incorporate dif-
ferent aspects, such as overdispersion/frailty, mixtures, and flexible
response functions through semi-parametric models. In this work,
we show how a useful tool to assess goodness-of-fit, the half-normal
plot of residuals with a simulated envelope, implemented in the hnp
package in R, can be used on a location-scale modelling context. We
fitted a range of survival models to time-until-event data, where the
event was an insect predator attacking a larva in a biological control
experiment. We started with the Weibull model and then fitted the
exponentiated-Weibull location-scalemodelwith regressors both for
the location and scale parameters. We performed variable selection
for each model and, by producing half-normal plots with simulated
envelopes for the deviance residuals of themodel fits, we found that
the exponentiated-Weibull fitted the data better.We then included a
randomeffect in the exponentiated-Weibullmodel to accommodate
correlated observations. Finally, we discuss possible implications of
the results found in the case study.
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1. Introduction

In insect studies, outcomes of interest vary widely and hence a broad range of data types
are obtained, such as discrete or continuous data, that can be either univariate ormultivari-
ate [6]. When studying the ecology of insect species, the interest lies in describing several
ecological processes, such as predation, competition, prey-preference, amongst others.

These ecological data can be used for decision making, especially regarding pest man-
agement. Integrated pest management (IPM) consists of a series of activities with the
purpose of reducing damage from insect pests in agroecosystems [7]. IPM involves (i) the
choice of an economic damage threshold; (ii) pest identification and monitoring; (iii) pre-
vention through several techniques; and (iv) control, which is done when steps (i) and (ii)
indicate that it should be applied and preventive techniques are no longer available. One
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of the types of control is biological control, which involves the promotion of pest suppres-
sion using other species of insects and fungi, referred to as natural enemies. Hence, no
chemical pesticides are used, assuring better crop quality and disease risk prevention for
humans [7].

One common type of ecological data is the time until the occurrence of an event, e.g.
death of a predator, time taken for a parasitoid to parasitise its prey, time until a competi-
tor attacked another competitor, time until a predator attacked its prey. These data may
yield relevant information for biological control strategies. Because this type of variable
is continuous and strictly positive, it may be analysed through survival analysis models
or non-parametric tests [1]. Many parametric models have been proposed in the litera-
ture and a common objective is to use a well-fitting but not overly complex model to make
inferences from. It is very important to assess goodness-of-fit of survivalmodels so that any
inference is not misleading. However, this may become a difficult task. A good alternative
is to use appropriate diagnostic plots, such as half-normal plots with simulation envelopes
[2,10].

Themain goals of this work are to build and assess goodness-of-fit for different location-
scale models, fitted to data from an experiment on prey preference. Predators were given a
choice between parasitised and non-parasitised prey and the time until a predator attacked
a prey was observed. We propose three location-scale models, starting with the Weibull
model, turning to the exponentiated-Weibull model and, finally fitting the exponentiated-
Weibull model including random effects. Usually, only the location parameter is modelled
with covariates. However, here we model the location and scale parameters with covari-
ates, simultaneously. Moreover, we develop functions for the statistical software R [12] to
produce half-normal plots with simulation envelopes for these models to assess goodness-
of-fit, using the framework from the hnp package [10]. In the following sections, we
describe the experiment, present the models and estimation methods, as well as the
goodness-of-fit assessment techniques, present a simulation study, and finally discuss the
results.

2. Case study

A major pest of maize worldwide is the larva of Spodoptera frugiperda. Three important
natural enemies of this pest are the stinkbug Podisus nigrispinus and the earwig Euborellia
annulipes, both predators, and the parasitoid waspCampoletis flavicincta [9]. The latter lays
eggs inside S. frugiperda larvae that hatch and develop inside them, killing the larva upon
reaching the adult stage. This process causes substantial metabolic changes in the larvae
which may be perceived by potential predators.

In a biological control context, it is important that predators act synergistically to pro-
mote pest suppression [5]. In this sense, a desirable outcomewhen controlling S. frugiperda
with multiple natural enemies, such as the three species mentioned above, would be weak
competition between predators and preference for non-parasitised larvae so that the para-
sitoid’s population is also maintained in the system [see 9]. Information on the time taken
by different predator species to attack prey and on prey preference are particularly relevant
in this context.

To study the predatory behaviour of the stinkbug and the earwig when given the choice
between parasitised and non-parasitised prey, [9] conducted an experiment in a completely
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randomised block design with 33 blocks and 4 treatments in a 2 × 2 (species and gender)
factorial design, i.e. male and female stinkbugs and earwigs, which were fasted for 24 hours
prior to the experiment set up. Each block consisted of four Petri dishes with one predator
and two S. frugiperda larvae, one of which had previously been parasitised byC. flavicincta
and another which had not. Each experimental unit was observed for 1 hour and the time
(in seconds) taken until the predator first attacked a larva was recorded, as well as which
larva the predator chose to effectively consume first (predator preference), see Supporting
Information for the complete data set. The experiment took 3 days to complete and on each
day 11 blocks were installed and observed, so there is reason to believe that the day effect
is random, reflecting different batches of insects used. However, the block within day effect
should be treated as fixed because only up to three blocks could be observed at the same
time. In that sense, predators which were used in the first blocks were fasted for 24 hours
prior to experiment installation but predators used in the last blocks had a longer fasting
time which could systematically influence their behaviour. The data consist of time until
an event and in some replicates there was not an attack within 1 hour of observation, hence
some observations are censored.

3. Modelling

Over the following sections, we will describe how to build location-scale models to anal-
yse these data, starting with a simple model and then adding flexibility with increasing
complexity. We then show how random effects may be included to incorporate correlation
among observations taken on the same day of experiment.

3.1. Exponentiated family of distributions

A highly flexible family of distributions that can be used to model time-until-event data
is the exponentiated family [11]. It allows for the modelling of different hazard function
behaviours: constant, increasing, decreasing, bathtub, and unimodal.

Let T1, . . . ,Tn be n independent random variables, where each Ti follows a distribution
from the family of exponentiated distributions. Their probability density function (pdf)
may be written as

fTi(ti; θ i, a) = a[G(ti; θ i)]a−1g(ti; θ i), ti > 0,

with a>0 a shape parameter, g(·) a pdf and G(·) its respective distribution function, and
θ i the vector of parameters of the distribution. Taking the base distribution asWeibull with

g(ti;αi, γi) = γi t
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is the pdf of the exponentiated-Weibull distribution [11]. When γi = 1, this is the pdf of
the exponentiated-exponential distribution and when a = 1, it is the pdf of the Weibull
distribution. Consequently, when a = 1 and γi = 1, this is the pdf of the exponential dis-
tribution. Constructing a location-scale model from (1) is straightforward and can be
done by finding the pdf of Yi = log(Ti) and reparameterising fYi(yi;αi, γi, a) in terms
of μi = log(αi), a location parameter, and σi = 1

γi
, a scale parameter, which yields the

following result:

fYi(yi;μi, σi, a)= a
σi

{
1 − exp

[
− exp

(
yi − μi

σi

)]}a−1
exp
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yi − μi

σi
− exp

(
yi − μi

σi

)]
,

(2)
where −∞ < μi < ∞, σi > 0 and −∞ < yi < ∞. The survival function for model (2) is

SYi(yi;μi, σi, a) = 1 −
{
1 − exp

[
− exp

(
yi − μi

σi

)]}a
.

Based on the density (2), we obtain a linear location-scale regression model linking the
response variable yi to the location and scale parameters as

yi = μi + σizi, i = 1, . . . , n,

where the pdf of the random error Zi is given by

fZi(zi; a) = a
{
1 − exp

[− exp (zi)
]}a−1 exp

[
zi − exp (zi)

]
.

The parameter a makes the left tail of the distribution heavier as it approaches zero, and
the distribution becomes more symmetric as a increases. Together with the parameter σi,
it provides additional flexibility to the distribution. Under its location-scale formulation,
the exponentiated-Weibull model can be useful to analyse time-until-event data, given the
natural interpretation of the location and scale parameters, in addition to the extra flex-
ibility introduced by the parameter a. This improves goodness-of-fit for highly skewed
distributions, as well as accommodates different shapes of the hazard rate function.

Random samples for the exponentiated-Weibull distribution may be generated using
the following expression:

yi = μi + σi log
{
− log

(
1 − u

1
a
i

)}
,

where ui is sampled from the Uniform(0, 1) distribution.

3.2. Maximum likelihood estimation

Here, there is a type I censoring scheme taking place, i.e. the Petri dishes were observed for
1 hour and for those in which the predators did not attack any larva, the time until attack
was not observed – it is only known that it is larger than 60 minutes. Let Ti represent the
survival times and Ci represent censoring times. We observe a realisation of the response
timesYi = min(log(Ti), log(Ci)), together with a censoring indicator δi = 1 ifTi ≤ Ci and
δi = 0 if Ti > Ci. To incorporate explanatory variables, let μi = x�

1iβ1 and log σi = x�
2iβ2,



1780 R. A. MORAL ET AL.

with x1i and x2i 1 × p1 and 1 × p2 covariate vectors and β1 and β2 p1 × 1 and p2 × 1
parameter vectors, respectively. Then, the log-likelihood function under non-informative
censoring and considering the vector of parameters θ = (βT

1 ,β
T
2 , a)T can be written as
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. (3)

The estimation of the p1 + p2 + 1 parameters can be done bymaximising l(·). Here, we use
the BFGS [3] method implemented in the optim function in software R [12] to maximise
the log-likelihood (3) and fit the models.

3.3. Estimation including random effects

Because the experiment took 3 days with 11 blocks installed and observed on each day, the
day effect may be treated as random, as there were three different batches of insects, com-
ing from the same population. When including random effects in the linear predictor, the
likelihood functionmust be integrated over the random effects so that only the parameters
to be estimated are left in the function. In a sample divided inm groups, let Tij be the time
until attack of the ith predator in the jth group, with i = 1, . . . , nj and j = 1, . . . ,m (here,
m = 3 days). Let Cij represent the censoring times. We again observe realisations of the
response times Yij = min(log(Tij), log(Cij)), together with a censoring indicator δij = 1
if Tij ≤ Cij and δij = 0 if Tij > Cij. To incorporate explanatory variables, let μij = x�

1ijβ1

and log σij = x�
2ijβ2, with x1ij and x2ij 1 × p1 and 1 × p2 covariate vectors,β1 andβ2 p1 × 1

and p2 × 1 parameter vectors, respectively.
Assuming that all the individuals from the same group have a common random effect,

denoted by bj, and further supposing that the random effects are unobserved random
variables, the regression model for correlated data is expressed in the following form:

yij = μij + bj + σijzij, i = 1, . . . , nj, j = 1, . . . ,m,

with Bj a normal unobserved random variable, that is, Bj ∼ N(0, σ 2
d ), with pdf fBj(bj; σ 2

d ).
Under non-informative censoring, the conditional likelihood function for the nj indi-
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Assuming independence among groups, to obtain the marginal likelihood function, the
product between the conditional likelihood function and the pdf of the random effectmust
be integrated over the random effect, which yields

L(β1,β2, a, σ
2
d ) =

m∏
j=1
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1

σ 2
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.

Therefore, the log-likelihood function to be maximised considering the vector of parame-
ters θ = (βT
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There is no analytical solution for the integral in (4), so numericalmethodsmust be used to
compute an approximation. Here we use the adaptive Gauss–Hermite quadrature method
[13], described in detail in the Appendix.

Under conditions that are fulfilled for the parameter vector θ in the interior of the
parameter space but not on the boundary, the asymptotic distribution of

√
n(̂θ − θ) is

multivariate normal Np1+p2+2(0,K(θ)−1), where K(θ) is the information matrix. The
asymptotic covariance matrix K(θ)−1 of θ̂ can be approximated by the inverse of the
(p1 + p2 + 2) × (p1 + p2 + 2) observed information matrix −L̈(θ). The elements of this
matrix can be determined by simple double differentiation of l(θ)with respect to themodel
parameters and then evaluated numerically. Then, an asymptotic confidence interval with
significance level ν for each parameter θr is given by

ICr =
(

θ̂r − zν/2
√

−L̂r,r, θ̂r + zν/2
√

−L̂r,r
)
,

where−L̂r,r is the rth diagonal of −L̈(̂θ)−1 estimated at θ̂ , for r = 1, . . . , p1 + p2 + 2, and
zν/2 is the 1 − ν/2 quantile of the standard normal distribution.

Predictions for the random effects may be computed through

b̂j = E(Bj|Yij = yij) =
∫ ∞

−∞
bjfBj(bj|yij)dbj,

where

fBj(bj|yij) = Lj(β1,β2, a|bj)fBj(bj; σ 2
d )∫∞

−∞ Lj(β1,β2, a|bj)fBj(bj; σ 2
d )dbj

is the pdf of the posterior distribution Bj|Yij. Numerical integration techniques, such as the
adaptive Gauss–Hermite quadrature described above, may be used to compute b̂j.
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3.4. Model selection

In order to study the effects of the covariates species, gender and type of consumed larva,
the following linear predictors were used initially:

μijkl = β0 + δl + si + gj + (sg)ij + ck, (5a)

log(σijkl) = β∗
0 + s∗i + g∗

j + (s∗g∗)ij + ck, (5b)

where, for the location parameterμijkl,β0 is the intercept, δl is the effect of the lth block, l =
1, . . . , 33, si is the effect of the ith species (i = 1 for the earwig and i = 2 for the stinkbug), gj
is the effect of the jth gender (j = 1 for females and j = 2 formales), (sg)ij is the effect of the
interaction between the ith species and the jth gender, and ck is the effect of prey preference
(k = 1 when no prey was effectively consumed, k = 2 when the non-parasitised larva was
preferred and k = 3 when the parasitised larva was preferred). It is noteworthy to mention
that attack and consumption are measured differently in the case study: there may be an
attack, but no effective consumption (when the predator eats the prey in its entirety). For
a multiplicity of reasons, predators may opt to attack prey only once and not effectively
consume it. Therefore, the consumption variable may be included in the linear predictor,
as it is not perfectly collinear with the censoring indicator δi.

Analogously, for the scale parameter σijkl, the effects included initially are the same, with
a (∗) included in the notation to differentiate from the estimates for the location parameter.
We then performed backward selection using likelihood ratio (LR) tests. We also studied
the combination of ck levels to reduce the number of parameters. After model selection,
we then added the day effects as random in the linear predictor for the location parameter
of the exponentiated-Weibull model. These were assumed to be independent and to follow
a normal distribution with mean zero and variance σ 2

d .

3.5. Goodness-of-fit assessment

It is important to carry out diagnostic analyses to verify goodness-of-fit because when the
model does not fit the data well, statistical inference may lead to incorrect conclusions
about the process under study. Several graphical techniques may be used such as plotting
different types of residuals or influence measures (e.g. leverage and Cook’s distance). A
useful tool to assess model goodness-of-fit is the half-normal plot of deviance residuals
with a model-based simulation envelope [2,10]. The envelope is such that under the cor-
rect model most of the deviance residuals for the fitted model should lie within it. This
conceptually simple technique consists in plotting the ordered absolute values of a model
diagnostic versus the expected order statistics of a half-normal distribution


−1

(
i + n − 1

8

2n + 1
2

)
,

where i is the ith order statistic, 1 ≤ i ≤ n and n is the sample size.
Then, a simulated envelope can be obtained by (1) fitting a model; (2) extracting model

diagnostics and calculating ordered absolute values; (3) simulating 99 (or more) response
variables using the same model matrix, error distribution and fitted parameters; (4) fitting
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the same model to each simulated response variable and obtaining the same model diag-
nostics, again as ordered absolute values; and (5) computing the desired percentiles (e.g.
2.5 and 97.5) at each value of the expected order statistic to form the envelope.

Here, we used the deviance residuals as the diagnostic measures, defined as

r̂Di = sign(r̂mi){−2[r̂mi + δi log(δi − r̂mi)]}
1
2 ,

where r̂mi = δi + log Ŝ(yi) are the Martingale residuals [14].
Half-normal plots with simulated envelopes are implemented in the hnp package for

many standardmodels [10] in R [12]. It is also possible to use the hnp function to produce
these plots for models that are not already coded within the function by providing three
helper functions, one to extract the model diagnostics, another to simulate response vari-
ables, and finally a function to refit the model to the simulated samples. All R code used to
obtain the results in this paper is uploaded as Supporting Information.

4. Simulation study

We carried out a simulation study to help understand the behaviour of the proposed
exponentiated-Weibull mixed model under different circumstances. Three values for the
variance of the random effect σ 2

d were used (0, 1, and 3). Moreover, the location parameter
was modelled without covariates and only a random intercept per day of experiment, and
the scale parameter was modelled with two dummy covariates, species and whether the
predator consumed prey in one hour of observation, that is,

μijk = β0 + bj,

log(σijk) = β∗
0 + s∗i + c∗k ,

where β0 and β∗
0 are intercepts, bj is the random effect associated with the jth group of

correlated observations, Bj ∼ N(0, σ 2
d ), s∗i is the effect of the ith species and c∗k is the com-

bined effect of consumption (k = 1 when no prey was effectively consumed and k = 2
when there was consumption).

Weused the same sample size (132) as for the original data set and here, for simplicity, no
censoring. True parameter values were fixed as log(a) = 2.17,β0 = 2.78,β∗

0 = 1.10, s∗2 =
0.47 (σ – Species: Stinkbug) and c∗2 = −0.51 (σ – Consumption: Yes) in all simulated sce-
narios. For each scenario in each study, 1000 simulations were performed and the averages
of the estimates were computed, as well as the mean squared errors.

It is possible to see that the model performs reasonably well and estimates σ 2
d with good

precision, see Table 1. As expected, when the variance of the random effects is larger, the
precision is lower. See the Appendix for full results of additional simulation studies car-
ried out under other scenarios, including different levels of censoring. In summary, model
performance is poorer as the censoring proportion increases and for smaller sample sizes,
which is expected. Moreover, when there are more random effects, σ 2

d is estimated with
better precision.
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Table 1. Meanofparameter estimates andassociatedmean squarederrors (MSE) for the exponentiated-
Weibull mixed model fitted to 1000 simulated data sets. True parameter values: log(a) = 2.17,β0 =
2.78,β∗

0 = 1.10, s∗2 = 0.47 (σ – Species: Stinkbug) and c∗2 = −0.51 (σ – Consumption: Yes) and varying
σ 2
d , as indicated.

σ 2
d = 0 σ 2

d = 1 σ 2
d = 3

Parameter Mean MSE Mean MSE Mean MSE

log(a) 2.46 0.27 2.48 0.32 2.44 0.72
β0 (μ – Intercept) 2.36 0.77 2.36 0.83 2.45 1.81
β∗
0 (σ – Intercept) 1.09 0.02 1.08 0.02 0.99 0.07

s∗2 (σ – Species: Stinkbug) 0.41 0.01 0.40 0.01 0.39 0.02
c∗2 (σ – Consumption: Yes) –0.40 0.02 –0.40 0.02 –0.39 0.04
σ 2
d 0.07 0.59 0.86 0.71 2.33 0.73

5. Application

5.1. Exploratory analysis

Turning to the analysis of the data set described in Section 2, the Kaplan–Meier estima-
tor for the logarithm of the time until attack data suggests that there is a clear difference
between species, with earwigs taking less time to attack prey than stinkbugs. It also suggests
that the interaction between gender and species may not be significant, see Figure 1(a).

5.2. Weibull model fit

We now fit the Weibull model, modelling both the location and the scale parameters with
regressors, see linear predictors (5a) and (5b). There is evidence that the blocks within day
effects are not significant (LR = 37.61, d.f. = 32, p = 0.2276). Removing the interaction
term from both linear predictors is not significant according to the likelihood-ratio test
(LR = 3.25, d.f. = 2, p = 0.1969). Removing the gender main effect from both linear pre-
dictors was also not significant (LR = 0.31, d.f. = 2, p = 0.8552). Combining levels 2 (con-
sumption of the non-parasitised larva) and 3 (consumption of the parasitised larva) of the
consumption effect in both linear predictors also yielded a non-significant likelihood-ratio
test statistic (LR = 2.25, d.f. = 2, p = 0.3238). The inclusion of a species×consumption
interaction effect was not significant (LR = 2.39, d.f. = 2, p = 0.3025). Any further reduc-
tions yielded significant likelihood-ratio test statistics. Therefore, the selected model was

μik = β0 + si + ck, (6a)

log(σik) = β∗
0 + s∗i + c∗k , (6b)

where β0 and β∗
0 are intercepts, si and s∗i are effects of the ith species and ck and c∗k are

the combined effects of consumption, (k = 1 when no prey was effectively consumed and
k = 2 when there was consumption), see Table 2 for parameter estimates. A global test
between the maximal model (5a and 5b) and the selected model (6a and 6b) was also not
significant (LR = 43.43, d.f. = 38, p = 0.2510).

The fitted survival curves fail to capture well the curvature of the Kaplan–Meier esti-
mates, see Figure 1(a, b), and the lack-of-fit is confirmed by the half-normal plot with
simulation envelope, with half of the points lying outside of the simulated envelope, see
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Figure 1. Fitted survival curves for the Weibull model using linear predictors (6a) and (6b) for (a) each
treatment combination and (b) combination between species and consumption levels; and fitted sur-
vival curves for the exponentiated-Weibull model using linear predictors (7a) and (7b) for (c) each
treatment combination and (d) combination between species and consumption levels.

Figure 2(a). This suggests that the Weibull model is not flexible enough to capture the
distribution of the data.

The estimated parameters for the location part of the Weibull model suggest that there
is no significant interaction between species and gender at 5% level, as well as no significant
gender main effect at 5% level, but there is a significant negative consumption effect (see
Table 2). In addition, the estimated parameters for the scale part of the model suggest that
the failure rate function accelerates for earwigs and for individuals which have effectively
consumed prey. This parameter also models variance heterogeneity.

Here, the estimated survival curves for earwigs that did not effectively consume prey in
1 hour and for stinkbugs that did are similar (see Figure 1 b). Fitting a model that merged
these two curves yielded the same number of parameters than the previous model (linear
predictors (6a) and (6b), see Table 2), but the fitted curves do not seem to capture well
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Table 2. Parameter estimates (standard errors), t values and p-
values for the Weibull models fitted to the time until attack data
using linear predictors (6a) and (6b).

Parameter Estimate (s.e.) t value p-value

β0 (μ – Intercept) 6.16 (0.34) 17.93 < 0.0001
s2 (μ – Species: Stinkbug) 1.33 (0.18) 7.40 < 0.0001
c2 (μ – Consumption: Yes) −1.32 (0.36) −3.70 0.0002
β∗
0 (σ – Intercept) 0.20 (0.22) 0.93 0.3525

s∗2 (σ – Species: Stinkbug) 0.26 (0.13) 1.99 0.0462
c∗2 (σ – Consumption: Yes) −0.43 (0.23) −1.88 0.0604

s.e. = standard error

Figure 2. Half-normal plot with simulation envelope for the deviance residuals of the (a) Weibull model
and (b) exponentiated-Weibull model, both fitted using the maximal linear predictors (5a) and (5b)
without the block effects.

the behaviour of the Kaplan–Meier estimates (see Figure 1 a and b). Again, because the
Weibull model does not fit the data well, a more adequate model should be used to draw
conclusion from this study.

5.3. Exponentiated-Weibull model fit

We now fit the exponentiated-Weibull model, modelling both the location and scale
parameters with regressors, see linear predictors (5a) and (5b). This model has one addi-
tional parameter, a, which is a shape parameter. There is evidence that the blocks within
day effects are not significant (LR = 42.21, d.f. = 32, p = 0.1071). Removing the interac-
tion term from both linear predictors is not significant according to the likelihood-ratio
test (LR = 2.62, d.f. = 2, p = 0.2697). Removing the gender main effect from both linear
predictors was also not significant (LR = 0.24, d.f. = 2, p = 0.8850). Removing all effects
for the location parameter linear predictor, leaving only the intercept was also not sig-
nificant (LR = 3.52, d.f. = 3, p = 0.3182). Combining levels 2 (consumption of the non-
parasitised larva) and 3 (consumption of the parasitised larva) of the consumption effect
in the linear predictor for the scale parameter yielded a non-significant likelihood-ratio
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Table 3. Parameter estimates (standard errors), t values and p-
values for the exponentiated-Weibull model fitted to the time until
attack data using linear predictors (7a and 7b).

Parameter Estimate (s.e.) t value p-value

log(a) 2.17 (0.35) 6.15 < 0.0001
β0 (μ – Intercept) 2.78 (0.57) 4.87 < 0.0001
β∗
0 (σ – Intercept) 1.10 (0.13) 8.65 < 0.0001

s∗2 (σ – Species: Stinkbug) 0.47 (0.10) 4.64 < 0.0001
c∗2 (σ – Consumption: Yes) −0.51 (0.14) −3.58 0.0003

s.e. = standard error.

test statistic (LR = 1.32, d.f. = 1, p = 0.2501). The inclusion of a species×consumption
interaction effect in the linear predictor for the scale parameter was not significant (LR =
0.43, d.f. = 2, p = 0.5109). Any further reductions yielded significant likelihood-ratio test
statistics. Therefore, the selected model was

μik = β0, (7a)

log(σik) = β∗
0 + s∗i + c∗k , (7b)

where β0 and β∗
0 are intercepts, s∗i is the effect of the ith species and c∗k is the combined

effect of consumption (k = 1 when no prey was effectively consumed and k = 2 when
there was consumption), see Table 3 for parameter estimates. A global test between the
maximal model (5a and 5b) and the selected model (7a and 7b) was also not significant
(LR = 49.91, d.f. = 40, p = 0.1354).

The fitted survival curves now seem to follow the Kaplan–Meier estimates quite well,
see Figure 1(c, d), and the half-normal plot with simulation envelope confirms that the
model fits the data reasonably well, see Figure 2(b). Also, there is no significant effect
whatsoever for the location part of the model and the only significant effects (which are
the same ones for the Weibull models) are now for the scale part of the model. While
both models account for heterogeneity of variances, the additional shape parameter of
the exponentiated-Weibull model brings extra flexibility to the survival curves. It is also
related to the acceleration of the curves and especially governs the shape of the top of
the survival curve, determining when the decay starts. For this case study, the value of
a = exp(2.17) = 8.76 means that the decay of the survival curve is delayed if compared to
a Weibull model (a = 1), and this is why location parameters are needed in the simpler
Weibull fit.

Again, the estimated survival curves for earwigs that did not effectively consume prey in
1 hour and for stinkbugs that did are fairly similar (see Figure 1 b). The survival curve for
earwigs which effectively consumed prey in 1 hour is more accelerated, the survival curve
for earwigs that did not and stinkbugs that did so is less accelerated and the survival curve
for stinkbugs that did not consume prey effectively in 1 hour is the least accelerated one
(see Figure 1 c and d). This is reflected by the estimated coefficients for the scale parameter
(see Table 3), which is equal to exp(0.59) = 1.80 for earwigs that consume prey effectively
within 1 hour of observation, and exp(1.10) = 3.00 for those who do not; while it is equal
to exp(1.06) = 2.89 for stinkbugs who consume and exp(1.57) = 4.81 for those who do
not. Hence, since stinkbugs that do not eat present a higher degree of censoring, this is
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reflected by a larger scale parameter, associated to a heavier tail in the distribution, as well
as more variability.

5.4. Including day effects as random in the exponentiated-Weibull model

Now we turn to including the day effects in the location linear predictor for the
exponentiated-Weibull model. These should be included as random, because three differ-
ent batches of insects from the same population were used and there is random variation
in the conditions of the 3 days when the experiment was conducted.

The maximum likelihood estimates for the fixed effects are exactly the same as shown
in Table 3. The estimate for σ 2

d = 0.0005 suggests that there is no significant day effect in
the experiment. The hypothesis test H0 : σ 2

d versus H1 : σ 2
d > 0 is on the boundary of the

parameter space andhence the asymptotic reference distribution of the likelihood-ratio test
statistic here is a mixture of χ2 distributions: one with 0 degrees of freedom and another
with 1 degree of freedom, with a mixing proportion of 1

2 . For this case LR = 1.54, with
p = 0.1073, and this was not unexpected since the blocks within day effects were also not
significant. Moreover, 3 days is a small number of levels of the grouping factor and hence
model estimates may be biased, since it has been shown that in general a high reliability is
attained for cases with more than ten levels of the grouping factor [see 8].

6. Discussion

In this work, we began by fitting the Weibull model, which is a reasonable starting point
when analysing time-until-event data. However, here we used the location-scale formula-
tion and included covariates in both the location and the scale parameters, which provided
more flexibility to the survival and hazard functions. However, for this case study the inclu-
sion of an additional shape parameter was essential to appropriately model the data, whilst
accounting for variance heterogeneity by also including regressors for the scale parameter.
It is worth noting that this is different from the approach of [4] in the sense that the param-
eters simultaneously modelled here have, for both models, a practical interpretation in the
sense of mean and variance regarding the location and scale parameters, respectively.

The scale parameter translates directly into the acceleration of the survival curves. This
brings a natural and straightforward interpretation for the parameter estimates and pro-
vides a much more complete summary of the data, with direct implications regarding the
research questions of the case study. Furthermore, it is noteworthy to mention that even
though in this case study the inclusion of a random intercept did not significantly con-
tribute to a better model fit, this approach can be useful when analysing other types of
correlated data, given the multiplicity of settings from which correlation may arise.

Assessing goodness-of-fit for thesemodels is not an easy task and the use of half-normal
plots with simulation envelopes was a good alternative, especially through the hnp pack-
age in R, which allows for relatively easy implementation, even for more complex models.
In practice, the hnp package allows for the specification of any model for which it is possi-
ble to write code to simulate new samples, and obtain model diagnostics. It was clear that
a combination of the use of half-normal plots with simulation envelopes and the superpo-
sition of the fitted survival curves on their respective Kaplan–Meier estimates was crucial
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on deciding which model to use. Hence, we advocate the use of half-normal plots with
simulation envelopes to aid in goodness-of-fit assessment.

Regarding the case study, it was clear that the earwig usually attacks earlier than the
stinkbug and this is important information from a biological control viewpoint. Previ-
ous experiments have shown that this earwig species presents more aggressive behaviour
than the stinkbug [9]. Also, the fact that prey consumption affected the survival curves in
the same way for both the parasitised and non-parasitised prey shows that there is a clear
distinction of two groups: specimens that effectively consumed prey in 1 hour and speci-
mens that did not. This separation between ‘fast’ and ‘slow’ specimens suggests that there
is individual variability that must be taken into account when planning biological control
strategies. Therefore, further studies on mechanisms of recognition of parasitised prey are
particularly relevant in this context.

If the interest lies in modelling prey preference, this can be achieved by using, for exam-
ple, competing risks models. Here, however, we are looking at whether the predators attack
any prey.Whenweused combined levels of the consumption effect (c∗k), that is equivalent to
an additional predator-related variable, since the use of the original levels does not have any
impact on the time until first attack (as made evident by the likelihood-ratio test). More-
over, we have shown in previous work [9] that these predators may identify parasitised
prey after they have attacked them, opting to switch which type of prey they consume. But
this is not the case before they attack a larva, and hence that is a separate question, which
has been addressed before. Here, however, the used methodology was sufficient to answer
the research question, which aimed to assess whether individuals of different species and
genders opted to attack prey faster or slower in comparison.

Finally, experiments assessing the competition behaviour of these two predators would
also enrich the understanding of the ecological relations among these three species. The
modelling strategy adopted here makes it possible to determine the variables related to a
faster response time.Moreover, by including specific random effects in the linear predictor,
it is possible to incorporate the individual variability that may arise for different reasons,
such as different insect populations.
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Appendix 1. Gauss–Hermite quadrature

The Gauss–Hermite quadrature of order q for integrals of the form
∫ +∞
−∞ exp(−x2)f (x)dx which is

written as ∫ +∞

−∞
exp(−x2)f (x)dx ≈

q∑
k=1

vkf (sk),

with sk, k = 1, 2, . . . , q, the q roots of the Hermite polynomial of degree q, written as

Hq(x) = (−1)qexp(x2)
dq

dxq
exp(−x2)

and weights

vk = 2(q+1)n!
√

π

H′
q(sk)

.

In a general form, as
g(x) = exp(−x2)f (x) ⇔ f (x) = g(x)exp(x2),

the approximation of
∫ +∞
−∞ g(x)dx = ∫ +∞

−∞ exp(−x2)f (x)dx may be obtained by
∑q

k=1 vkf (sk) =∑q
k=1 vkg(sk) exp(s

2
k). Therefore, the Gauss–Hermite quadrature approximation of the integral of

any function g(x) may be written as∫ +∞

−∞
g(x)dx ≈

q∑
k=1

vkg(sk)exp(s2k).

http://www.R-project.org
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As the number of integration points q is increased, the better the approximation becomes. This
method is implemented in many R packages, such as npmlreg [3] and glmmML [1].

One variation of this method is the adaptive Gauss–Hermite quadrature, which centres the inte-
gration points around the maximum s∗ = arg max

x
{exp(−x2)f (x)} of the objective function. In this

case we have

s+k = s∗ + sk
[
− d2

dx2
log{exp(−x2)f (x)}|x=s∗

]− 1
2

as scaled roots of the Hermite polynomial of degree q and scaled weights

v+
k = vk exp(−s+

2

k + s2k)
[
− d2

dx2
log{exp(−x2)f (x)}|x=s∗

]− 1
2

.

Hence, the adaptive Gauss–Hermite quadrature of order q approximation may be written as∫ +∞

−∞
exp(−x2)f (x)dx ≈

q∑
k=1

v+
k f (s

+
k ).

This method is more precise than the Gauss–Hermite quadrature for functions whose mode is far
from zero, however, at a computational cost which is maximising exp(−x2)f (x). It is implemented
in R packages and in SAS’s procedure NLMIXED; a variation is readily available from the R base
installation through function integrate. For more details see [2, 4, 5].
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Appendix 2. Further simulation study

Here, we present a second simulation study, which used three different sample sizes (36, 132, and
480), three proportions of censoring (0%, 15%, and 30% of censored observations), and two num-
bers of groups of correlated observations (simulating 4 or 12 days of experiment), with the same
number of replicates for each combination between the levels of the covariates, i.e. the designs
were balanced. True parameter values were fixed as in the study presented previously, i.e. log(a) =
2.17,β0 = 2.78,β∗

0 = 1.10, s∗2 = 0.47 (σ – Species: Stinkbug) and c∗2 = −0.51 (σ – Consumption:
Yes), in all simulated scenarios. We performed 1000 simulations and the averages of the estimates
were computed, as well as the mean squared errors.

The results indicate that themodel performed lesswell as the proportion of censored observations
increased and for smaller sample sizes, as expected. As the variance of the random effects increased,
for sample size 36 the precision of the estimates of the location (μ) and shape (a) parameters was
very low. When there were more random effects (or groups) the model seemed to estimate σ 2

d with
better precision, see Tables A1, A2, and A3.

https://CRAN.R-project.org/package=glmmML
https://CRAN.R-project.org/package=npmlreg
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Table A1. Mean squared errors (MSE) for each parameter of the exponentiated-Weibull mixed model
fitted to 1000 simulated data sets, with σ 2

d = 0.

4 random effects 12 random effects

Censoring Parameter n = 36 n = 132 n = 480 n = 36 n = 132 n = 480

0% log(a) 2.47 0.30 0.12 3.36 0.34 0.11
β0 (μ – Intercept) 10.96 0.89 0.26 12.30 0.96 0.28
β∗
0 (σ – Intercept) 0.09 0.01 0.00 0.11 0.01 0.00

s∗2 (σ – Sp.: Stinkbug) 0.04 0.02 0.01 0.05 0.02 0.01
c∗2 (σ – Cons.: Yes) 0.04 0.02 0.02 0.05 0.02 0.02

σ 2
d 0.03 0.01 0.06 0.13 0.03 0.01

15% log(a) 3.48 0.40 0.17 3.73 0.43 0.17
β0 (μ – Intercept) 19.07 1.33 0.40 16.13 1.34 0.44
β∗
0 (σ – Intercept) 0.12 0.03 0.01 0.12 0.02 0.01

s∗2 (σ – Sp.: Stinkbug) 0.04 0.02 0.02 0.05 0.02 0.02
c∗2 (σ – Cons.: Yes) 0.05 0.03 0.02 0.05 0.03 0.02

σ 2
d 0.04 0.02 0.05 0.16 0.04 0.01

30% log(a) 4.73 0.55 0.22 4.98 0.53 0.22
β0 (μ – Intercept) 28.47 2.17 0.59 23.78 1.94 0.66
β∗
0 (σ – Intercept) 0.18 0.05 0.03 0.17 0.05 0.03

s∗2 (σ – Sp.: Stinkbug) 0.06 0.03 0.02 0.06 0.03 0.02
c∗2 (σ – Cons.: Yes) 0.06 0.03 0.02 0.08 0.03 0.02

σ 2
d 0.05 0.02 0.03 0.22 0.05 0.02

Table A2. Mean squared errors (MSE) for each parameter of the exponentiated-Weibull mixed model
fitted to 1000 simulated data sets, with σ 2

d = 1.

4 random effects 12 random effects

Censoring Parameter n = 36 n = 132 n = 480 n = 36 n = 132 n = 480

0% log(a) 4.78 0.31 0.11 5.12 0.35 0.11
β0 (μ – Intercept) 23.57 0.89 0.25 21.18 1.08 0.27
β∗
0 (σ – Intercept) 0.13 0.02 0.00 0.15 0.02 0.00

s∗2 (σ – Sp.: Stinkbug) 0.05 0.02 0.02 0.06 0.02 0.02
c∗2 (σ – Cons.: Yes) 0.05 0.02 0.02 0.07 0.03 0.02

σ 2
d 0.23 0.18 0.12 0.10 0.06 0.05

15% log(a) 4.57 0.47 0.15 8.60 0.42 0.15
β0 (μ – Intercept) 27.06 1.66 0.47 45.39 1.53 0.37
β∗
0 (σ – Intercept) 0.16 0.03 0.01 0.24 0.03 0.01

s∗2 (σ – Sp.: Stinkbug) 0.05 0.03 0.02 0.07 0.03 0.02
c∗2 (σ – Cons.: Yes) 0.06 0.03 0.02 0.08 0.03 0.02

σ 2
d 0.23 0.19 0.14 0.12 0.06 0.05

30% log(a) 7.35 0.63 0.20 10.66 0.59 0.20
β0 (μ – Intercept) 53.48 2.52 0.74 72.75 2.58 0.57
β∗
0 (σ – Intercept) 0.25 0.05 0.02 0.36 0.05 0.02

s∗2 (σ – Sp.: Stinkbug) 0.07 0.03 0.02 0.09 0.03 0.02
c∗2 (σ – Cons.: Yes) 0.07 0.03 0.02 0.10 0.04 0.02

σ 2
d 0.26 0.19 0.15 0.17 0.07 0.06
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Table A3. Mean squared errors (MSE) for each parameter of the exponentiated-Weibull mixed model
fitted to 1000 simulated data sets, with σ 2

d = 3.

4 random effects 12 random effects

Censoring Parameter n = 36 n = 132 n = 480 n = 36 n = 132 n = 480

0% log(a) 6.88 0.66 0.06 8.40 0.50 0.06
β0 (μ – Intercept) 37.04 2.38 0.23 43.63 1.94 0.27
β∗
0 (σ – Intercept) 0.20 0.05 0.02 0.24 0.03 0.02

s∗2 (σ – Sp.: Stinkbug) 0.06 0.02 0.01 0.08 0.03 0.02
c∗2 (σ – Cons.: Yes) 0.06 0.03 0.02 0.09 0.03 0.02

σ 2
d 1.76 1.23 1.24 0.76 0.70 0.56

15% log(a) 8.53 0.84 0.09 13.26 0.59 0.08
β0 (μ – Intercept) 53.41 3.96 0.34 80.24 2.85 0.28
β∗
0 (σ – Intercept) 0.23 0.05 0.02 0.36 0.04 0.01

s∗2 (σ – Sp.: Stinkbug) 0.07 0.03 0.02 0.11 0.03 0.02
c∗2 (σ – Cons.: Yes) 0.07 0.03 0.02 0.11 0.04 0.02

σ 2
d 1.78 1.23 1.12 0.84 0.69 0.56

30% log(a) 10.99 1.49 0.26 13.17 0.76 0.12
β0 (μ – Intercept) 83.99 8.21 1.21 106.37 5.00 0.52
β∗
0 (σ – Intercept) 0.31 0.06 0.03 0.49 0.05 0.01

s∗2 (σ – Sp.: Stinkbug) 0.08 0.03 0.03 0.13 0.04 0.02
c∗2 (σ – Cons.: Yes) 0.09 0.04 0.02 0.15 0.04 0.02

σ 2
d 1.75 1.23 1.08 0.89 0.71 0.52
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