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Abstract—We consider a single server discrete-time system
with K users where the server picks operating points from a
compact, convex and co-ordinate convex set in <K+ . For this
system we analyse the performance of a stablising policy that
at any given time picks operating points from the allowed
rate region that maximise a weighted sum of rate, where the
weights depend upon the workloads of the users. Assuming a
Large Deviations Principle (LDP) for the arrival processes in
the Skorohod space of functions that are right-continuous with
left-hand limits we establish an LDP for the workload process
using a generalised version of the contraction principle to derive
the corresponding rate function. With the LDP result available
we then analyse the tail probabilities of the workloads under
different buffering scenarios.

I. INTRODUCTION

In this paper we consider a multi-class discrete-time queue-
ing system where the server is allowed to pick operating points
from within a compact convex set. Our motivation for con-
sidering compact convex rate-regions arises from information
theoretic analysis of multi-user channels [1, Chapter 14] such
as the multiple-access channel (MAC) or the broadcast chan-
nel (BC). Such models are particularly useful for modelling
wireless systems. To operate near the capacity boundary of
these channels sufficiently long code-words need to be used,
which naturally leads to a discrete-time operation: pick a time
long enough such that at all operating points one can choose
long enough code-words such that the probability of error of
decoding the code-words is small enough, and then schedule at
the granularity of the chosen time-interval. For a simple class
of such systems, where the rate regions are simplexes, a class
of policies called the maximum weighted queue-length first
policies were proposed in the context of wireless networks [2]
and switches [3]. Under fairly general conditions it has been
shown [2], [4], [3] that these policies are stabilising, i.e., if
the average arrival rate vectors are strictly within the capacity
region (in a manner to be defined later on), then the underlying
Markov processes are positive recurrent [5], [6]. For a network
of nodes with fixed routes for each flow, a generalisation [7]
of the maximum weighted queue-length first policy where
the flow with the largest weighted sum queue-length is given
service over its entire route was again shown to be stabilising.
A related class of policies that use the age of the head-
of-the-line packet instead of queue-length have been shown
to exhibit optimal performance in a Large Deviations sense

over a general class of work-conserving stationary scheduling
policies for a single node [8] and for a network of nodes [9]
with fixed routes for each flow, in all cases the rate regions for
the nodes were simplexes. In [8], [9] the queueing processes
are embedded into the space of right continuous functions with
left hand limits on the real line endowed with the topology
of uniform convergence on compact sets. The authors then
analyse the behaviour of the (stationary) maximum weighted
end-to-end delay. They provide a large deviations upper-bound
for the largest weighted delay first scheduling policy but only
a large deviations like lower bound using inner measures
over a general class of work-conserving stationary scheduling
policies since the (stationary) maximum weighted delay need
not be measurable for all the policies considered. For the
largest weighted delay first scheduling policy the lower bound
is exactly a large deviations lower bound.

The work in this paper is along the lines of the buffer over-
flow problem described in [10] where we consider a specific
(parametric) policy and analyse its performance. Instead of
just considering simplex rate-regions and two-users as in [10]
we analyse a larger class of compact convex rate-regions. For
these rate-regions the maximum weighted queue-length first
policies can be generalised to choosing an operating point that
maximises (over the rate-region) the weighted sum of rates.
In keeping with the original policy we term these policies as
Max-Weight policies. We prove a Large Deviations Principle
(LDP) result [11] in the Skorohod space [12], [13], [14] of
functions that are right-continuous with left-hand limits. Our
method of proof follows the steps laid out in [15], [16], [17].
With the LDP result available we can then analyse the tail
behaviour of the workloads under different buffering scenarios
by an application of the contraction principle [11].

The paper is organised as follows. In Section II we briefly
describe the theory that is needed to prove our result. Our main
results, the LDP result and applications of it, are presented in
Section III. The analysis proceeds by proving (in Section IV)
certain properties of a deterministic problem that emerges
from the limiting procedure used to prove the LDP result.
We conclude in Section V with an application of the results
to three two-user rate-regions: an elliptical rate-region, a
Gaussian broadcast channel, a symmetrical multiple-access
channel. In the interest of brevity we omit the proofs and an
extensive bibliography by pointing to [18] for all the details.



II. BACKGROUND MATERIAL

Here we attempt to collect together, in brief, the mathemati-
cal background material necessary to understand and prove our
result. Since our paraphrasing of the material will necessarily
be restrictive, for details the reader is referred to [15] (and
[11, Chapter 4]), to [16], [17] for other worked examples of
the method of proof, and to other references in this section.
For the sake of consistency as much as possible we will use
notation similar to [15], [16], [17].

Let E be a metric space with metric ρE(·, ·). A function Π
from P(E) the power set of E to [0, 1] is called an idempotent
probability [15, Definition 1.1.1, pp. 5-6] if Π(∅) = 0,
Π(E) = supe∈E Π({e}), E ⊆ E and Π(E) = 1, and the pair
(E,Π) is called an idempotent probability space. For ease of
notation we will denote Π(e) = Π({e}) for e ∈ E. A property
P(e), e ∈ E about the elements of E is defined to hold Π−a.e.
if Π({e : P(e) does not hold}) = 0. A function f from a
set E equipped with idempotent probability Π to a set E′

is called an idempotent variable. The idempotent distribution
of an idempotent variable f is defined as the set function
Π(f−1(E′)) = Π(f ∈ E′), E′ ∈ E′. Let F be a collection
of subsets of E that contains the null set ∅. Then Π is termed
an F-idempotent probability measure [15, Definition 1.1.1,
pp. 5-6] if Π(infn Fn) = infn Π(Fn) for every decreasing
sequence of elements of F . From now onwards unless stated
otherwise we will take FC to be the set of all closed sets of
E. Define an idempotent probability measure Π to be tight
if for every ε > 0, there exists a compact Γ ⊆ E such that
Π(E \ Γ ) ≤ ε. A tight FC-idempotent probability measure
is called a deviability. Using [15, Lemma 1.7.4, pp. 51-52]
an alternate characterisation of a deviability is a function Π
such that the sets {e ∈ E : Π(e) ≥ γ} are compact for all
γ ∈ (0, 1]. One defines another function I from E to [0,+∞]
that is deemed an action functional (or good rate function) if
the sets {e ∈ E : I(e) ≤ x} are compact for x ∈ <+ and
infe∈E I(e) = 0 (termed lower compact). It is immediate that
Π is a deviability if and only if I(e) = − log Π(e) is an action
functional. If f a mapping from E to another metric space E′

is continuous on the sets {e ∈ E : Π(e) ≥ γ} for γ ∈ (0, 1],
then Π(f−1(·)) is a deviability on E′. We define f to be a
Luzin idempotent variable if Π(f−1(·)) is a deviability on E′.

Let {Pn, n ∈ N} be a sequence of probability measures on
E endowed with the Borel σ-algebra, and let Π be a deviability
on E. Let {mn, n ∈ N} be a sequence with mn → +∞
as n → +∞. The sequence {Pn, n ∈ N} large deviation
converges (LD converges, in short) at rate mn to Π as n →
+∞ if the inequalities lim supn→+∞ Pn(F )1/mn ≤ Π(F )
and lim infn→+∞ Pn(G)1/mn ≥ Π(G) hold for all closed
sets F and open sets G, respectively. Note that this is an
equivalent means of describing a large deviations principle for
scale mn with good rate function I(e) = − log Π(e), e ∈ E,
given the close association of deviabilities and action func-
tionals. Equivalent definitions that make an association with
convergence of measures in the traditional sense can be found
in [15, Theorem 3.1.3, pp.254-255]. As with the traditional

convergence of measures the LD convergence result is shown
in two steps: first, by claiming the existence of limit points
by proving relative (sequential) compactness of the set of
measures using some notion of tightness; and second, by
demonstrating uniqueness of the limit point. A deviability Π
is said to be an LD limit point of the sequence {Pn, n ∈ N}
for rate mn if each subsequence {Pnt

, t ∈ N} contains
a further subsequence {Pntu

, u ∈ N} that LD converges
to Π at rate mntu

as u → +∞. The notion of tightness
translates to the notion of exponential tightness that holds as
follows: the sequence {Pn, n ∈ N} is exponentially tight on
order mn, if for arbitrary ε > 0 there exists a compact set
Γ ⊆ E such that lim supn→+∞ Pn(E\Γ )1/mn < ε. From [15,
Theorem 3.1.19, pp.262-263] exponential tightness implies LD
relative compactness of a sequence of measures, and therefore
existence of limit points; furthermore, the limit points are all
deviabilities. The LD convergence of probability measures can
also be stated as the LD convergence in distribution of the
associated random variables. A sequence of random variables
{Xn, n ∈ N} defined on probability spaces (Ωn,Fn,Pn),
respectively, and assuming values in E LD converges at
rate mn as n → +∞ to a Luzin idempotent variable X
defined on idempotent probability space (Υ,Π) and assuming
values in E if the sequence of probability laws of Xn LD
converges to the idempotent distribution of X at rate mn. If
the convergence of probability measures is to a deviability,
then we get LD convergence in the canonical setting. The role
of the continuous mapping principle in preserving convergence
is played by the contraction principle [11, Theorem 4.2.1, pp.
126–127] and [15, Theorem 3.1.14 and Corollary 3.1.15 pp.
261–262] whereby if a sequence of random variables Xn LD
converge in distribution to X, and f is a (Π−a.e.) continuous
function from E to another metric space E′, then the sequence
f(Xn) LD converges in distribution to f(X) in E′.

In many cases of interest the LD limit points belong to a
subset E0 of E. Equip E0 with the relative topology. Then
we say that an idempotent probability is supported by E0 if
Π(E \ E0) = 0. From [15, Corollary 3.1.9, pp.257-258] LD
convergence of sequence {Pn, n ∈ N} to Π that is supported
by E0 only needs to be checked for all E0-open and E0-closed
Borel measurable subsets of E. The sequence {Pn, n ∈ N} is
termed E0-exponentially tight if it is exponentially tight and
every LD accumulation point Π is supported by E0. Then the
contraction principle [19] and [15, Corollary 3.1.22, pg. 264]
applies to Borel-measurable but E0 continuous functions.

For the results of this paper the space E will be D(X) :=
D([0, 1]; X) the space of X-valued, right-continuous with left-
hand limits functions x = (x(t), t ∈ [0, 1]) where X is
a complete separable metric space. Our results carry over
if the setting was, instead, D([0, T ]; X) for fixed T with
0 < T < +∞. Equipping D(X) with the Skorohod J1-
topology [12], [13], [14] and metrising it with the Skorohod-
Prohorov-Lindvall metric [12], [13], [14] we get a complete
separable metric space; specific details can be found in [12,
Chapter 3, Section 12] and [13, Sections 3.5 and 3.6].

The (closed) subset E0 of D(X) that we will be dealing with



in this paper is the set of all continuous functions C(X) :=
C([0, 1]; X) with the induced topology, which is the uniform
topology.For x ∈ X define Cx(X) := {a ∈ C(X) : a(0) =
x}, a closed subset of C(X). We could prove our results for
D(X) with the uniform topology. However, we prefer using the
Skorohod J1-topology since D(X) is then a complete separable
metric space where by using [15, Theorem 3.1.28, pg. 268],
exponential tightness is equivalent to LD relative (sequential)
compactness.

Since C(X) is a closed subset of D(X) using [15, Corollaries
1.7.12 and 1.8.7] we do not distinguish between deviabilities
on C(X) and deviabilities on D(X) that are supported by C(X).
From [15, Remark 3.2.4 and Theorem 3.2.3, pg. 278] and [13,
Sections 3.5 and 3.6] we note that a sequence of processes XN

with trajectories in D(X) is C(X)-exponentially tight on order
N if and only if the two statements below hold.
(Exponential tightness of random variables) For every t ∈
[0, 1], XN (t) is exponentially tight, i.e.,

inf
Γ∈Γ

lim sup
N→+∞

P
(
XN (t) ∈ X \ Γ

)1/N = 0, (1)

where Γ is the set of compact subsets of X.
(Continuous limit points) For every T ∈ (0, 1], ε > 0 the
following holds

lim
δ→0

lim sup
N→+∞

P

 sup
s,t∈[0,T ]:
|s−t|≤δ

ρX
(
XN (t),XN (s)

)
> ε


1/N

= 0.

(2)

If XN have trajectories in D(<K), then by [15, Theorem 3.2.3,
pg. 278] slightly simpler conditions hold to verify C(<K)-
exponential tightness on order N .

For some results we will use X = <K+ , K ∈ N and for
others we will use X = <K+ ×M(R(L)), K, L ∈ N where
M(R(L)) is the set of all finite (non-negative) Borel measures
on R(L) a convex compact set in <L+. The set of all finite
(non-negative) Borel measuresM(E) on a complete separable
metric space E, is a complete separable metric space with the
Lévy-Prohorov metric [12], [13] (and [11, Theorem D.8, pp.
355-356]) and the topology of weak convergence [12], [13].
For t ≥ 0 define Mt(E) := {ν ∈ M(E) : ν(E) ≤ t} to be
the set of (non-negative) finite measures assigning a measure
at most t to E, and Mt(E) := {ν ∈ M(E) : ν(E) = t}
to be the set of (non-negative) finite measures assigning a
measure exactly t to E. ThenMt(E) andMt(E) are compact
if and only if E is compact [20, Section VIII.5, pg. 132]
and [11, Theorem D.8, pp. 355–356]. The topology of weak
convergence also results by using the Kantorovich-Wasserstein
metric [21, Lemma A.1, pg. 222], [11, Theorem D.8, pp. 355-
356] and [22]. Let Cb(E) denote the set of bounded continuous
functions on E that take values in <.

Finally if a sequence of random variables {XN , N ∈ N}
defined on a complete probability space (Ω,F ,P) and assum-
ing values in <K converges in probability to x ∈ <K such
that limN→+∞ P(‖XN − x‖ > ε)1/N = 0 for all ε > 0, then

we deem the sequence as converging super-exponentially in

probability at rate N and write XN
P1/N

−−−→ x.

III. MODEL AND A FLUID LIMIT

We consider a discrete-time queueing system with one
server that can pick operating points from a set R(K) that
is a compact, with non-empty interior int(R(K)), and convex
subset of <K+ that includes the origin. We also assume that
R(K) is coordinate-convex, i.e., if r ∈ R(K), then r̂ ∈ R(K)
for all 0 ≤ r̂ ≤ r where the inequalities hold coordinate-
wise 1. Since R(K) is compact there exists a rmax < +∞
such that for every r ∈ R(K) we have rk ≤ rmax for all
k = 1, 2, . . . ,K. For user k we assume an arrival process of
work brought into the system given by a sequence {Akm}+∞m=0

where Akm ∈ <+ is the work brought in at time m into
the queue of user k. For −1 ≤ m1 ≤ m2 integers define
Ak(m1,m2] :=

∑m2
m=m1+1A

k
m which is the total amount of

work to arrive for user k after time slot m1 and until time-slot
m2. Let the unfinished work in user k’s queue at time m ≥ 0
be W k

m. Then work at time m+ 1 in the kth user’s queue is
given by Lindley’s recursion

W k
m+1 = max

(
0,W k

m − rkm
)

+Akm

:=
(
W k
m − rkm

)
+

+Ak(m− 1,m].

where rm ∈ R(K) is the operating point chosen at time m.
Our scheduling policy will be to choose a rate vector that

maximises a (dynamic) weighted sum of rates over this rate
region, i.e.,

∀ m ≥ 1 rm = arg max
r∈R(K)

〈αm, r〉

with components rkm where αm is given by

αkm = βkW k
m s.t.

K∑
k=1

βk = 1, βk > 0 ∀k.

and where < ·, · > is the standard inner product in <K . Note
that αm is the Hadamard/Schur product of β and Wm and
we will write this as αm = β ◦Wm. Define the following
(set-valued) functions for x ∈ <K+

H(x) := arg max
r∈R(K)

〈x, r〉 , (3)

H̃(x) := H(β ◦ x). (4)

We will fix on a specific solution in case there is more than
one maximiser. For a closed convex set S ⊆ <K define the
projection of element x ∈ <K to be the unique element x∗ ∈
S that solves

min
y∈S
‖x− y‖2,

where ‖·‖ is the Euclidean norm given by
√
< x,x > for x ∈

<K+ . We define the function from x to x∗ for a given S to be
ProjS(x). For every x ∈ <K is clear that H̃(x) is a closed and

1Henceforth, unless specified otherwise, we assume that all vector inequal-
ities hold coordinate-wise.



convex set. Then the specific operating point that we choose
at time m is given by

rm = ProjH̃(Wm)(0).

Based upon the above definition we call operating point rm
the minimum norm solution.

Using the operating point rm at time m we get

W k
m+1 =

(
W k
m − rkm

)
+

+Ak(m− 1,m]

= W k
m −min(W k

m, r
k
m) +Ak(m− 1,m]

= W k
0 −

m∑
l=0

Skl +Ak(−1,m]

= W k
0 − Sk(−1,m] +Ak(−1,m], (5)

where for m ≥ 1 we define Skm := min(W k
m, r

k
m) ≤ rmax,

which is the amount of work from the queue of user k served at
time m. Coordinate convexity ensures that for every r ∈ R(K)
every point min(x, r) belongs toR(K) as x is allowed to vary
in <K+ .

Assume that we are given a sequence {WN
0 }N∈N tak-

ing values in <K+ that accounts for the vector of ini-
tial work in the system. We then embed the sequences
{Ak(−1,m]}, {Sk(−1,m]} and {W k

m} into functions in
D(<K) by defining (scaling both space and time) for t ∈
[0, 1] the following: Ãk,N (t) := Ak(−1,bNtc]

N , S̃k,N (t) :=
Sk,N (−1,bNtc]

N and W̃ k,N (t) :=
Wk,N
bNtc
N for N ∈ N where btc is

the largest integer less than or equal to t. The index N in Sk,N

and W k,N takes into account the different initial workload
vector given by WN

0 . Denote the vector quantities by ÃN (t),
S̃N (t) and W̃N (t), respectively. Also define the processes
AN := (ÃN (t), t ∈ [0, 1]), SN := (S̃N (t), t ∈ [0, 1]),
and WN := (W̃N (t), t ∈ [0, 1]). The workload arrivals
sequence {Am}m∈N and the initial workload vector sequence
{WN

0 }N∈N are assumed to be defined on a common complete
probability space (Ω,F ,P).

Construct the random empirical measure Ψ̃(−1,m](·) :=∑m
l=0 δrm

(·) where δx(·) is the Dirac measure. Define the
scaled empirical measure process ΨN (t) := Ψ̃N (−1,bNtc]

N for
t ∈ [0, 1]. Again the index N accounts for the different
initial workload vector. Let M(R(K)) be the set of finite
(non-negative) Borel measures on R(K); when endowed with
the topology of weak convergence of measures generated by
the Kantorovich-Wasserstein metric,M(R(K)) is a complete
separable metric space. Then the processes ΨN take values in
D(M(R(K))) again with the Skorohod J1 topology [13]. In
fact for every t ∈ [0, 1] we have ΨN (t) ∈ Mt+1(R(K)) =
{ν ∈ M(R(K)) : ν(R(K)) ≤ t+ 1} where Mt+1(R(K))
is a compact subset of M(R(K)). For a Borel measurable
function f from R(K) to < denote the integral (if it exists)
with respect to a measure ν ∈M(R(K)) by

∫
R(K)

fdν; this
is a random variable taking values in < that we denote as
< ν, f >.

For our convergence proofs we will be considering pro-
cesses (AN ,SN ,ΨN ,WN ) taking values in the Skorohod

space D(<K × <K × M(R(K)) × <K); we denote the
complete separable metric space <K×<K×M(R(K))×<K
by X. Denote the Euclidean metric on <K by ρE and the
Kantorovich-Wasserstein metric on M(R(K)) by ρKL. Then
for two elements (a1, s1,Φ1,w1), (a2, s2,Φ2,w2) ∈ X the
distance between the two elements is given by the following
metric

ρX
(
(a1, s1,Φ1,w1), (a2, s2,Φ2,w2)

)
:=

max(ρE(a1,a2), ρE(s1, s2), ρKL(Φ1,Φ2), ρE(w1,w2)).

The topology that results from this metric is the product
topology.

To prove the required large deviations result we will follow
the programme outlined in [15], [16], [17]. Loosely speaking,
we first show in Theorem 3.1 that the sequence of measures
on a metric space E is large deviations relatively compact
using exponential tightness. In proving relatively compactness
we will prove that all the limit points are supported on E0 a
closed subset of E. The limit points are determined by weak
solutions to idempotent equations the properties of which are
characterised by taking large deviation limits of the stochastic
equations that determine the behaviour of the original system.
Compactness of the rate-regions plays an important role in
proving exponential tightness and characterising the large
deviations limit points. Using all the characterised properties
of the idempotent equations we show the existence of unique
solutions to the idempotent equations in Theorem 4.1 leading
to an LDP result in Theorem 3.2. The convexity of the rate-
regions and the nature of the scheduling policy (maximising
a linear functional over a convex set) play an important part
in not only proving the existence and uniqueness of solutions
to the idempotent equations but also in providing a simple
expression for the solution. The LDP result then follows
directly from Theorem 4.1 by appealing to a generalised
version of the contraction principle [19] and [15, Corollary
3.1.22, pg. 264].

Assume we are given a function χA : <K+ → [0,+∞] that
attains zero at some µ ∈ <K+ such that µ < λ∗ with λ∗ ∈
R(K) where the inequality holds coordinate-wise. This is used
to define function IA : D(<K+ )→ <+ by

IA(a) =
∫ 1

0

χA (ȧ(t)) dt

if the function a =
(
a(t), t ∈ [0, 1]

)
∈ D(<K+ ) is absolutely

continuous such that a(0) = 0, and where ȧ ∈ L1
(
[0, 1];<K

)
is the (Lebesgue) a.e. derivative of a taking values in <K+ ;
IA(a) is defined to be equal to +∞ if the function a ∈ D(<K+ )
does not have the above properties. For x ∈ <K+ we define
by ACx the set of absolutely continuous functions in D(<K+ )
such that for a ∈ ACx we have a(0) = x, and where ȧ ∈
L1([0, 1];<K) takes values in <K+ . It is assumed that IA(·)
is an action functional on D(<K+ ) which in turn implies that
χA(·) is an action functional on <K+ . The function χA(·) being
convex and lower compact is sufficient [21, Lemma 8, pg. 203]
for IA(·) to be an action functional.



We assume that the arrival process of workloads is such that
{AN , N ∈ N} satisfies an LDP at rate N as N → +∞ in
the space D(<K+ ) with action functional IA(·). If the arrival
process of workloads is such that {Am}m≥0 is a sequence of
i.i.d. <K+ valued random variables with E

(
e<x,A0>

)
< +∞

for all x ∈ <K where < ·, · > is the inner product on <K ,
then by Mogulskii’s theorem [23, Theorem 2.15, pg. 25] and
[24], [25] we have {AN , N ∈ N} satisfying an LDP at rate
N as N → +∞ in the space D(<K+ ) with action functional
IA(·) with

χA(x) = sup
y∈<K

(〈
y,x

〉
− log E

(
e

〈
y,A0

〉))
∀ x ∈ <K+ .

(6)

See [21, Theorem 5, pg. 216] for general mixing conditions on
a stationary sequence {Am} so that {AN , N ∈ N} satisfies
an LDP at rate N as N → +∞ in the space D(<K+ ) with
action functional IA(·).

Under the above assumptions about the arrival processes
we now prove the C(X)-exponential tightness of the sequence
(AN ,SN ,ΨN ,WN ).

Theorem 3.1: Assume that the arrival process is such that
the sequence {AN , N ∈ N} satisfies an LDP at rate N
as N → +∞ in the space D(<K+ ) with action functional

IA(·). Also assume2 that WN
0
N

P1/N

−−−→ w(0). Then the sequence
(AN ,SN ,ΨN ,WN ) is C(X)-exponentially tight on order N
in D(X).

If an idempotent process (a, s,Φ,w) defined on an in-
dempotent probability space (Υ,Π) and having trajectories
in C(X) is a limit point of (AN ,SN ,ΨN ,WN ) for LD
convergence in distribution at rate N , then the following
properties hold Π−a.e. for any limit point (a, s,Φ,w) :

(i) the function a is component-wise non-negative and non-
decreasing, and absolutely continuous with a(0) = 0;

(ii) the function s is component-wise non-negative and non-
decreasing, and Lipschitz continuous with s(0) = 0.

(iii) the measure-valued function Φ is such that Φ(t) ∈
Mt(R(K)) for all t ∈ [0, 1], absolutely continuous with
respect to the total variation norm [26, pg. 35-38, 118-
119] such that Φ(t) − Φ(u) ∈ Mt−u(R(K)) for all
1 ≥ t > u ≥ 0 with Φ(0)(R(K)) = 0, and possesses
a weak derivative3 Φ̇(t) for almost every t ∈ [0, 1]. The
following inequality holds for all t, u ∈ [0, 1] with t ≥ u

sk(t)− sk(u) ≤
〈
Φ(t)− Φ(u), ek

〉
, (7)

where ek : R(K)→ <+ is the kth-coordinate projection
operator such that ek(r) = rk;

2This can be relaxed with a suitable LDP assumption - LDP with good rate
function, for example.

3Following [21] by weak derivative we mean the (weak) convergence of
Φ(t+ε)−Φ(t)

ε
∈ M(R(K)) as ε → 0 with the limit denoted as Φ̇(t). For

absolutely continuous Φ(t) we have Φ(t) − Φ(u) =
R t
u Φ̇(τ)dτ where the

integral is interpreted set-wise, i.e., for C ∈ B(R(K)) we have
`
Φ(t) −

Φ(u)
´“
C
”

=
R t
u Φ̇(τ)

`
C
´
dτ .

(iv) the function w is component-wise non-negative, and
absolutely continuous with w(0) given such that

ẇ(t) = ȧ(t)− ṡ(t) for (Lebesgue) a.e. t ∈ [0, 1]; (8)

(v) if wk(t) > 0 for t ∈ [t1, t2] for t1, t2 ∈ [0, 1], then it
follows that

sk(t)− sk(u) =
〈
Φ(t)− Φ(s), ek

〉
(9)

for all t ≥ u with t, u ∈ [t1, t2]; and
(vi) for (Lebesgue) almost every t ∈ [0, 1],

Φ̇(t)
(
R(K) \ H̃(w(t))

)
= 0. (10)

Thus Π−a.e. every limit point is an absolutely continuous
solution of the following differential inclusion for all t ∈ [0, 1]:

ẇ(t) ∈ ȧ(t)− H̃(w(t)) (11)

with w(0) the initial condition.
Proof: Refer to [18].

We will show the existence of solutions of (11), and show
uniqueness of the solution and other properties as a conse-
quence of Theorem 4.1 in Section IV.

Remark: If we make the additional assumption that
χA(ν) > 0 for all ν ∈ <K+ \ {µ} and {Am}m≥0 being
stationary, then we can construct a (regular) fluid limit (a
functional strong law of large numbers result) that will obey
an relationship similar to (11) given by absolutely continuous
solutions to

ẇ(t) ∈ µ− H̃(w(t)) (12)

with w(0) the initial condition such that
∑K
k=1 w

k(0) = 1.
Now one can easily argue for stability [4], [5], [6] (existence
of stationary regime and stationary distribution) by using a
quadratic Lyapunov function V (t) := ‖

√
β◦w(t)‖2

2 under the
conditions of [21, Theorem 5, pg. 216]. The details are very
similar to those in [4] and are skipped for brevity.

Now we state our main result
Theorem 3.2: Assume that the sequence of arrival processes

{AN , N ∈ N} satisfy an LDP at rate N as N → +∞ in the
space D(<K+ ) with action functional IA(·). Also assume that
WN (0)
N

P1/N

−−−→ w(0). Then the sequence WN obeys an LDP for
scale N in the Skorohod space D(<K+ ) with action functional
IW
w(0)(·).

We defer the proof and the identification of the action func-
tional to Section IV. We can immediately write down a
corollary to Theorem 3.2 that considers many applications of
the result.

Corollary 1: Under the conditions of Theorem 3.2 with
w(0) = 0, for x ∈ <K+ , x ∈ <+ and t ∈ [0, 1] we have

lim sup
N→+∞

log
(
P(W(bNtc) ≥ Nx)

)
N

≤ − inf
y∈<K

+ :y≥x
J(y, t),

(13)

lim inf
N→+∞

log
(
P(W(bNtc) > Nx)

)
N

≥ − inf
y∈<K

+ :y>x
J(y, t), ,

(14)



where

J(x, t) := inf
w∈C0(<K

+ ):w(t)=x
IW
0 (w). (15)

Furthermore, we also have

lim sup
N→+∞

log
(
P(maxk=1,2,...,KW

k(bNtc) ≥ Nx)
)

N

≤ − min
k=1,2,...,K

inf
y∈<K

+ :yk≥x
J(y, t), (16)

lim inf
N→+∞

log
(
P(maxk=1,2,...,KW

k(bNtc) > Nx)
)

N

≥ − min
k=1,2,...,K

inf
y∈<K

+ :yk>x
J(y, t). (17)

lim sup
N→+∞

log
(
P(
∑
k=1,2,...,KW

k(bNtc) ≥ Nx)
)

N

≤ − inf
y∈<K

+ :
PK

k=1 y
k≥x

J(y, t), (18)

lim inf
N→+∞

log
(
P(
∑
k=1,2,...,KW

k(bNtc) > Nx)
)

N

≥ − inf
y∈<K

+ :
PK

k=1 y
k>x

J(y, t). (19)

lim sup
N→+∞

log
(
P(maxk=1,2,...,K supt∈[0,1]W

k(bNtc) ≥ Nx)
)

N

≤ − min
k=1,2,...,K

inf
y∈<K

+ :yk≥x
inf

t∈[0,1]
J(y, t), (20)

lim inf
N→+∞

log
(
P(maxk=1,2,...,K supt∈[0,1]W

k(bNtc) > Nx)
)

N

≥ − min
k=1,2,...,K

inf
y∈<K

+ :yk>x
inf

t∈[0,1]
J(y, t). (21)

lim sup
N→+∞

log
(
P(supt∈[0,1]

∑
k=1,2,...,KW

k(bNtc) ≥ Nx)
)

N

≤ − inf
y∈<K

+ :
PK

k=1 y
k≥x

inf
t∈[0,1]

J(y, t), (22)

lim inf
N→+∞

log
(
P(supt∈[0,1]

∑
k=1,2,...,KW

k(bNtc) > Nx)
)

N

≥ − inf
y∈<K

+ :
PK

k=1 y
k>x

inf
t∈[0,1]

J(y, t). (23)

Proof: Refer to [18].
The restriction w(0) = 0 is only to simplify our further
characterisation of J(x, t). Note that (20) and (21) are useful
in calculating the tail probabilities of the workload when each
user has a buffer to itself and (22) and (23) are useful when
there is a shared buffer.

IV. ANALYSIS OF FLUID LIMIT

Before addressing the main result of this section we state
and prove a few preliminary results that will be key for
the analysis of the fluid limit. We are interested in the
properties of H(x) = arg maxr∈R(K) 〈x, r〉 and H̃(x) =
arg maxr∈R(K) 〈β ◦ x, r〉 for x ∈ <K .

Let X be a Hilbert space. A set-valued map H from X to
P(X) (the power set of X) with domain Dom(H) is monotone

([27, Definition 2.1, pg. 20] and [28, Chapter 12]) if and only
if

∀x1, x2 ∈ Dom(F ), ∀vi ∈ H(xi), i = 1, 2,
〈v1 − v2, x1 − x2〉 ≥ 0, (24)

where < ·, · > is the inner-product on X. A monotone
set-valued map H is maximal ([27, Definition 2.2, pg. 22]
and [28, Chapter 12]) if there is no other monotone set-
valued map H̃ whose graph strictly contains the graph of
H. The reader is referred to [27], [29], [30], [28] for the
properties of monotone maps, maximal monotone maps and
their connections to convex analysis, functional analysis and
semigroups of non-expansive maps.

Lemma 1: H(x) = arg maxr∈R(K) 〈x, r〉 and H̃(x) =
arg maxr∈R(K) 〈β ◦ x, r〉 for x ∈ <K are maximal monotone
maps from <K to R(K) ⊂ <K .

Proof: Refer to [18].
As described in Section III each policy in the class of Max-

Weight scheduling policies can be associated with a unique
vector β̃ ∈ <K+ such that β̃ > 0 and

∑K
k=1 β̃

k = 1. We can
demonstrate [18] that the performance of a Max-Weight policy
with a given β̃ can be quantified by analysing the performance

of a Max-Weight policy with weights β =
( 1
K
,

1
K
, . . . ,

1
K︸ ︷︷ ︸

K times

)
but with a new rate-region that is a scaled version of the
original rate region. Thus, without loss of generality, from now

onwards we assume that β =
( 1
K
,

1
K
, . . . ,

1
K︸ ︷︷ ︸

K times

)
and analyse

the solutions of the following differential inclusion

∀t ∈ [0, 1] ẇ(t) ∈ ȧ(t)−H(w(t)), (25)

where a ∈ AC0, w(0) ∈ <K is given, and H(·) : <K →
P
(
<K
)

is a maximal monotone set-valued map.
Instead of just seeking a solution to (25) when a ∈ AC0,

in [31] (weak) solutions for a ∈ Cx(0)(<K+ ) were analysed.
Using the results of [31] we then have the following theorem
where we define cl(S) to be the closure of set S and the (a.e.)
right derivative at time t ∈ [0, 1] of an absolutely continuous
function w ∈ AC to be d+w

dt (t).
Theorem 4.1: Let H be a maximal monotone map such that

its domain Dom(H) has a non-empty interior int(Dom(H)).
If w(0) ∈ cl(Dom(H)), then for a ∈ C0(<K+ ) there exists a
unique (weak) solution of

ẇ(t) ∈ ȧ(t)−H(w(t)) ∀t ∈ [0, 1], (26)

with w ∈ Cw(0)(<K+ ) taking values in cl(Dom(H)). The map
from w(0) + a to w is continuous with the uniform topology
on C(<K+ ). If, in addition, a ∈ AC0, then w ∈ ACw(0) (and
is a strong solution) with right derivative d+w

dt given by

d+w
dt

(t) = ȧ(t)− ProjH(w(t)) (ȧ(t)) . (27)

Proof: Refer to [18].
Now we spell out the details of the proof of Theorem 3.2.



Proof of Theorem 3.2: First note that H(·) is maximal
monotone with Dom(H) = <K . Now if one considers
the function in Cx(0)(<K+ ) given by â = w(0) + a for
a ∈ C0(<K+ ), then using the results of Cépa [31] summarised
in Theorem 4.1 one can show the existence of a unique
continuous (weak) solution to (25) for continuous input â such
that the map from â to w is continuous with the uniform
topology on C(<K+ ). Thus we can directly apply the general
version of the contraction principle [19] and [15, Corollary
3.1.22, pg. 264] to prove the LD convergence result since the
composite map from a ∈ C0(<K+ ) to w through w(0) + a
is, by consequence, continuous with the uniform topology of
C(<K+ ). Define the composite map to be T .

The action functional is also immediate now. Let TA be the
image under T of absolutely continuous functions a ∈ AC0.
Note that TA is a subset of the set of absolutely continuous
functions from [0, 1] with initial value w(0). Then the action
functional for the LDP result IW

w(0)(·) is given as follows: if
w ∈ TA, then

IW
w(0)(w) = IA

(
T −1(w)

)
, (28)

and for every other w ∈ C(<K+ ) we set IW
w(0)(w) to +∞.

Remark: Following [15], [16], [17] it is sufficient to prove the
existence of unique solutions to (25) using results from [27]
for a ∈ AC0 such that IA(a) < +∞ for the LDP result to hold
or to an even smaller set of functions that determine the rate
function. The characterisation in (27) would also still apply.
However, we feel that using the results of [31] provides us
with a complete characterisation.

Now that the underlying rate function IW
w(0)(·) has been

specified we set out to derive an alternate expression for
J(x, t) that converts the calculus of variations problem to a
finite-dimensional optimisation. In the process we will show
that for determining the rate function it suffices to consider
piece-wise linear functions (illustrated in Figure 1) a ∈ AC0

determined by two parameters v ∈ [0, t] for t ∈ (0, 1] and
λ ∈ <K+ \ R(K) such that for u ∈ [0, 1] we have

a(u) =


µu if u ∈ [0, v];
λ(u− v) + µv if u ∈ [v, t];
µ(u− t+ v) + λ(t− v) if u ∈ [t, 1].

(29)

This is proved in the following Lemma.

t-u t
0

λ2

μ1μ1

μ2μ2

λ1

Arri
val 

Rat
e

Fig. 1. Typical element of class of ȧ considered for optimisation.

Lemma 2: If χA(x) : <K+ → <+ is convex with χA(µ) =
0 for some µ ∈ <K+ with µ ∈ R(K) such that there exists

λ∗ ∈ R(K) with µ < λ∗, then for x ∈ <K+ and t ∈ (0, 1] we
have

J(x, t) ={
infu∈(0,t] u infλ∈arg maxr∈R<x,r> χ

A
(

x
u + λ

)
if x 6= 0;

0 otherwise.
(30)

Proof: Refer to [18].
Remarks:

1) The workload trajectories (up to time t) that result from
the considered class of arrivals is illustrated in Figure 2
where for the sake of illustration, for v ∈ [0, t] we take
a(v) = µ min(v, t − u) + λ(v − t + u)+ for some λ ∈
<K+ \ R(K).

t-u t
0

Wo
rklo

ad

x1

x2

0

Fig. 2. Typical workload trajectory until time t for the analysed class of
input functions a.

2) Lemma 2 informs us that for a given R(K) to quantify
the performance one needs to characterise H(x) for all
x ∈ <K+ . Note that this is equivalent to a complete
characterisation of the boundary of R(K).

3) It is also worth noting that J(x, t) is convex in its
arguments.

Using the expression for J(x, t) we can now write down
simpler expressions for (20), (21), (22) and (23). We have one
of the terms of (20) given by

inf
y∈<K

+ :y1≥x
inf

t∈(0,1]
J(y, t) =

x inf
z≥x

infy∈<K
+ :y1≥1 infλ∈H(y) χ

A (yz + λ)

z
.

We have one of the terms of (21) given by

inf
y∈<K

+ :y1>x
inf

t∈(0,1]
J(y, t) =

x inf
z≥x

infy∈<K
+ :y1>1 infλ∈H(y) χ

A (yz + λ)

z
.

Similar logic applied to (22) and (23) yields

inf
y∈<K

+ :
PK

k=1 y
k≥x

inf
t∈(0,1]

J(y, t) =

x inf
z≥x

infy∈<K
+ :

PK
k=1 y

k≥1 infλ∈H(y) χ
A (yz + λ)

z
; and

inf
y∈<K

+ :
PK

k=1 y
k>x

inf
t∈(0,1]

J(y, t) =

x inf
z≥x

infy∈<K
+ :

PK
k=1 y

k>1 infλ∈H(y) χ
A (yz + λ)

z
.



These expressions can be simplified further with additional
assumptions on the arrival processes (such as independence)
and the rate-region R(K).

V. EXAMPLES

We will present three example rate-regions to show how
the analysis developed above applies. The first is a two-user
elliptical rate-region. The last two examples are obtained from
information theory [1]. The first of these considers a two-user
Gaussian broadcast channel and the second a symmetrical two-
user multiple-access channel. For the remainder of this section
we will set the scheduling weight vector β to (1/2, 1/2). Note
from the analysis in Section IV that other values of β can be
analysed by modifying the parameters of R(2).

A. Example I: A Two-User Queue With An Elliptical Rate-
Region

Consider a specific enunciation of our model with two users
such that the rate region R(2) is a quadrant of an ellipse with
parameters rM , rm > 0, i.e.,

R(2) =

{
(r1, r2) ∈ <2

+ :
(
r1

rM

)2

+
(
r2

rm

)2

≤ 1

}
. (31)

Now let us solve the scheduling policy generation problem,
namely, H(x) = arg maxr∈R(2) < x, r > for x ∈ <2

+. We
will only consider the case of at least one coordinate being
positive because H(0) = R(2). The optimal solution is the
unique point (r̃1, r̃2) ∈ R̃(2) that satisfies

r̃1

rM
=

rMx1√
(rMx1)2 + (rmx2)2

and

r̃2

rm
=

rmx2√
(rMx1)2 + (rmx2)2

,

(32)

This can be derived easily using Lagrange multipliers. The
rate-region and the solution of the scheduling problem are
illustrated in Figure 3.

rM

rm
x1r1 + x2r2=c

x1r2 - x2r1=c

Operating
Point

Fig. 3. Illustration of an elliptical rate-region with the solution of the
scheduling problem shown.

The expression for J(x, t) with x 6= 0 for this example is
given by

J(x, t) =

inf
u∈(0,t]

u χA

((
x1

u
+ rM

rMx1√
(rMx1)2 + (rmx2)2

,

x2

u
+ rm

rmx2√
(rMx1)2 + (rmx2)2

))
. (33)

B. Example II: Two-user Gaussian Broadcast Channel

The broadcast channel [1, Section 14.6] models a commu-
nication system where there is one transmitter and multiple
receivers who can all listen to the transmitter. The capacity
region (in natural units, i.e., nats) of a two user Gaussian
broadcast channel [1, Section 14.6] is determined by two
parameters (signal to noise ratios) P1 > P2 > 0 and is given
as follows:

R(2) =
⋃

γ∈[0,1]

{
(r1, r2) ∈ <+2 : r1 ≤ 1

2
log (1 + γP1) ,

r2 ≤ 1
2

log
(

1 + P2

1 + γP2

)}
. (34)

If P1 = P2 > 0, then one gets a simplex.
The scheduling rule H(x1, x2) with at least one coordinate

positive is then given by
(

1
2 log(1 + γ∗P1), 1

2 log
(

1+P2
1+γ∗P2

))
with

γ∗ =


1 if x1

(
1 + 1

P2

)
≥ x2

(
1 + 1

P1

)
;

0 if x1P1 ≤ x2P2;
x1
P2
− x2

P1
x2−x1 otherwise.

(35)

Again H(0, 0) = R(2).
From this exercise we can now write down expressions for

J(x, t) for x 6= 0 as follows. If x1
(

1 + 1
P2

)
≥ x2

(
1 + 1

P1

)
,

then

J(x, t) = inf
u∈(0,t]

u χA

(
x1

u
+

1
2

log(1 + P1),
x2

u

)
; (36)

if x1P1 ≤ x2P2, then

J(x, t) = inf
u∈(0,t]

u χA

(
x1

u
,
x2

u
+

1
2

log(1 + P2)
)

; (37)

and if neither of the above two conditions hold, then

J(x, t) =

inf
u∈(0,t]

u χA

 x1

u + 1
2 log

(
x1(P1−P2)
P2(x2−x1)

)
,

x2

u + 1
2 log

(
(1+P2)P1(x2−x1)

x2(P1−P2)

)  . (38)

C. Example III: Centralised Multiple Access Channel

Consider the rate region R(K) to be the capacity region
of a K-user multiple-access channel [1, Section 14.3] and
[32]. At the beginning of every transmission interval each of
the users communicate their queue-lengths to a centralised
scheduler that then determines the operating point to be
used. It was shown in [32, Lemma 3.4] that R(K) is a
polymatroid [5, Section 11.1] where the rank-function is given
by conditional mutual information terms. This rate region
is also applicable [33] in the asymptotic regime of (very)
high signal-to-noise ratio of the multiple-input, multiple-output
multiple-access channel with fading such that the receiver
has perfect channel information and the transmitters have
no channel information. Such a model [33] exhibits a nice
trade-off between diversity and multiplexing that was used to



provide performance bounds based upon the tails of the queue-
lengths for max-weight type scheduling algorithms in [34].
In [34] the two-user case was analysed completely when the
rate-region is a simplex, and bounds were presented when the
rate-region is a symmetric polymatroid. The analysis presented
here can be used to improve upon the bounds of [34] in the
general case.

Define K = {1, 2, . . . ,K} and suppose that we are given
a function f : P(K) → <+ from the power set of K to the
(non-negative) real line. Then the polytope

Rf (K) :=

{
r ∈ <K+ :

∑
i∈J

ri ≤ f(J ), J ⊆ K

}
(39)

is a polymatroid if the function f satisfies the following
properties:

1) (normalised) f(∅) = 0;
2) (increasing) if J1 ⊆ J2 ⊆ K, then f(J1) ≤ f(J2); and
3) (submodular) if J1,J2 ⊆ K, then f(J1) + f(J2) ≥

f(J1 ∪ J2) + f(J1 ∩ J2).

A function f with these properties is called a rank function.
Let π be a permutation of K, then the vector rπ defined by

rπ(1)
π = f({π(1)})
rπ(2)
π = f({π(1), π(2)})− f({π(1)})

...

rπ(K)
π = f({π(1), . . . , π(K)})− f({π(1), . . . , π(K − 1)})

belongs to Rf (K) for all permutations π. Along with 0 the
points rπ are the extreme points of Rf (K). Also for any pair
of sets J1 ⊂ J2 ⊆ K, there exists a point r ∈ Rf (K) such
that ∑

i∈J1

ri = f(J1) and
∑
i∈J2

ri = f(J2).

Maximising a linear functional (< x, r >) over a polymatroid
is very easy [5, Section 11.1.2] and is given by the following:

1) without loss of generality assume that xk ≥ 0 for all k ∈
K. Otherwise we simply set the corresponding rk = 0
for the optimal solution;

2) let π be a permutation of K such that the weights are in
decreasing order, i.e.,

xπ(1) ≥ xπ(2) ≥ · · · ≥ xπ(K) ≥ 0, (40)

then rπ is an optimal solution; and
3) the set of optimal solutions is the convex hull of rπ for

all permutations of K that yield the ordering in (40).

With Rf (K) as the rate-region for our system, this completely
specifies H(x) for all x ∈ <K+ . To understand this better we
will look at a class of two-user channels.

1) Symmetric Two-User Case: Let K = 2 and given two
parameters rM > rm > 0 define the rank function f as
follows:

f(J ) :=


0 if J = ∅;
rM if J = {1};
rM if J = {2};
rM + rm if J = {1, 2}.

(41)

Then our rate region is Rf (2). The edge cases for the param-
eters rM , rm do not give any new insights: if rM = rm > 0,
then Rf (2) is a square; and if rM > rm = 0, then Rf (2) is a
simplex. An example of this rate-region is show in Figure 4.

rM

rm

rM

rm

Fig. 4. An example of a symmetrical two-user polymatroidal rate-region.

We now solve for H(x) = arg maxr∈Rf (2) < x, r > for
w ∈ <2

+. We need to partition <2
+ into 6 regions; these and

the corresponding sets H(x) are:

1) Region A = {0}. Here it is clear that H(0) = R(2).
2) Region B = {x1 > 0, x2 = 0}. Then H(x) = {r̃1 =

rM , r̃2 ∈ [0, rm]}.
3) Region C = {x1 > x2 > 0}. Then H(x) = {r̃1 =

rM , r̃2 = rm}.
4) Region D = {x1 = x2 > 0}. Then H(x) = {(r̃1, r̃2) ∈

[rm, rM ]2 : r̃1 + r̃2 = rM + rm}.
5) Region E = {x2 > x1 > 0}. Then H(x) = {r̃1 =

rm, r̃2 = rM}.
6) Region F = {x2 > 0, x1 = 0}. Then H(x) = {r̃1 ∈

[0, rm], r̃2 = rM}.
The different scheduling regions are shown in Figure 5.

DF

BA

C

E

Fig. 5. Partitioning of <2
+ into regions where the same scheduling action

results.

Using the above we can write down expressions for J(x, t)
as follows:



1) if x ∈ B, then

J(x, t) = inf
u∈(0,t]

u inf
r2∈[0,rm]

χA

(
x1

u
+ rM , r2

)
; (42)

2) if x ∈ C, then

J(x, t) = inf
u∈(0,t]

u χA

(
x1

u
+ rM ,

x2

u
+ rm

)
; (43)

3) if x ∈ D, then

J(x, t) =

inf
u∈(0,t]

u inf
(r1,r2)∈[rm,rM ]2:

r1+r2=rM +rm

χA

(
x1

u
+ r1,

x2

u
+ r2

)
;

(44)

4) if x ∈ E, then

J(x, t) = inf
u∈(0,t]

u χA

(
x1

u
+ rm,

x2

u
+ rM

)
; (45)

5) if x ∈ F , then

J(x, t) = inf
u∈(0,t]

u inf
r1∈[0,rm]

χA

(
r1,

x2

u
+ rM

)
. (46)
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