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MAYNOOTH UNIVERSITY

Abstract
Faculty of Science and Engineering

Department of Experimental Physics

Master of Science

Quasi-optical and Electromagnetic Modelling at Gigahertz and Terahertz
Frequencies

by Jack GRAHAM

This thesis describes electromagnetic and optical modelling for three tele-
scopes operating at GHz and THz frequencies: the Pickmere telescope, QUBIC
and ALMA. Optical modelling was carried out using TICRA’s GRASP phys-
ical optics software and also using a Gaussian beam mode model developed
in Python. The electromagnetic modelling of corrugated horn antennas was
carried out using Maynooth University’s existing mode-matching software
‘PyScatter’ and new code developed for this thesis called ‘NumCross’.

The Pickmere radio telescope was simulated using Gaussian beam modes
and also using GRASP physical optics. The two methods agreed to a high level
of accuracy. This verified the accuracy of Gaussian beam mode analysis as a
rapid, simplistic model of sequential mirrors in telescopes.

A series of horns were developed for a potential ALMA combined band
4 and 5, and in particular the effects of different manufacturing constraints
on horn performance were shown. A comparison was made between the in-
house PyScatter routine and the industry standard HFSS software used by col-
laborators in Manchester University. The programs largely agreed, with one
difference caused by differing sensitivity to back-propagation of radiation.

The QUBIC telescope makes use of an array of corrugated horn antennas
manufactured using a platelet technique. The plates can incur lateral offsets
due to alignment tolerances during manufacturing. These offsets cannot be
modelled in PyScatter as it assumes cylindrical symmetry at platelet junctions.
The NumCross routine was created, building on PyScatter, to allow the mod-
elling of corrugated horns with laterally offset corrugations. The QUBIC horns
were modelled as an example.
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Chapter 1

Introduction

1.1 Introduction to the GHz/THz spectrum

The domain of GHz and THz radiation covers a vast swathe of the electro-
magnetic spectrum, from UHF radio with a frequency on the order of 1 GHz,
to visible light with a frequency on the order of hundreds of THz. These six
decades of frequency support the vast majority of human communications,
from optical fiber pulses, to computer clock frequencies, to high frequency ra-
dio transmission.

The work presented herein pertains both to the THz region and occasion-
ally to lower GHz frequencies, especially with GRASP software modelling, as
described in Chapter 2. By convention, the THz region is considered to be be-
tween 100 GHz and 10 THz (Gallerano 2004). This band of electromagnetic
radiation (EMR) has traditionally been neglected by scientific inquiry, despite
its ubiquity on Earth; we are constantly swathed in THz radiation, as the peak
frequency of thermal emission from most terrestrial sources, as described by
Wiens Law, ( λmax = b

T , where b is Wiens constant, and T is temperature)
falls in the upper range of this band. Correspondingly, peak thermal emis-
sion from a body at 0◦C lies at 16 THz. This lack of research is primarily due
to the difficulty in creating suitable sources and detectors to function at these
frequencies (Wilmink and Grundt 2011). In recent years, with the advent of
better sources and feeds, much research has been undertaken at these frequen-
cies, across multiple fields of science. Some of the fields and applications are
explained below.

1.2 THz medical applications

THz radiation holds great promise in the field of noninvasive diagnostic medicine,
due to its innate properties of non-ionising interaction, preferential interaction
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with water over other compounds, and ample penetration of clothing, medical
dressings and skin. Several specific fields where such imaging may be used are
discussed below.

1.2.1 Oncological uses

Beams in the THz region may be used, either pulsed or continuous wave, to
detect subtle changes in the water content of cells in a refined target region.
This registers as a change in the absorptive character of the tissue, and thus
the intensity of radiation received at the detector after exposure. These cellu-
lar changes may be indicative of malignancy in the target cells, as shown in
Fig. 1.1 from Kun, Tu-nan et al. (2014). This could allow for efficient diagno-
sis in sensitive regions of the body, where biopsy could be harmful or even
impracticable. Additional diagnostic information may be derived from the
refractive index of the affected tissue, as the refractive power of abnormally
oedematous tissue will differ from that of healthy tissue. This is demonstrated
for different grades of tumour progression in Fig. 1.2

FIGURE 1.1: Comparison of THz radiation absorption levels of
both malignant and normal glial tissue in the brain (Kun, Tu-nan

et al. 2014).

In addition to the benefits of diagnosing cancer non-invasively, THz beams
also show promise in other in-vivo oncological procedures. As described by
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FIGURE 1.2: Comparison of THz radiation refractive index and
absorption levels for different grades of glioma progression in

human brain tissue (Gavdush et al. 2019).

Yngvesson and Bardin, (2021), compacted nanotechnological THz sources may
be used intraoperatively to distinguish malignant tissue on a cellular level in
real time, allowing the precise excision of tumours. This would render obso-
lete the traditional removal of a buffer margin of healthy tissue, which causes
further damage and slows recovery, particularly for large masses.

1.2.2 Dental THz scanning

Research is underway into the future use of 3D spatial THz scanning to de-
termine the enamel thickness and quality of teeth, without drilling or simi-
lar detrimental procedures. This would allow reinforcement of enamel before
dentine or nerve exposure, as opposed to locating fully fledged cavities by di-
rect visual inspection. Crawley and Longbottom (2003) explain an early imple-
mentation of this technology, using femtosecond laser pulse pumping. A later
demonstration of a functioning THz dental analyser is shown in Fig. 1.3. The
variable being measured is the intensity of the radiation returning to the detec-
tor, thus a lower dB value (blue) indicates greater absorption, whereas a higher
dB value (red) indicates substantial penetration. The absorption is observably
different in the healthy region H, compared to the carious (eroded) region C,
particularly for the higher frequency images which show greater absorption in
the damaged region.
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FIGURE 1.3: Comparison of healthy and damaged sections of a
tooth slice, imaging using visible light (top left), X-Ray, (bottom
left) and various frequencies of THz radiation (centre to right).

(Karagoz, Kamburoglu and Altan, 2017.)

1.2.3 Pharmaceutical quality control

Submillimetre waves are critical to modern methods of controlling the quality
of the delay coating on various orally administered pharmaceutical products.
Delay coatings on tablets serve one of two purposes. Firstly, they may resist
the acid of the stomach, instead breaking down in the more moderate pH en-
vironment of the intestines. Coatings may be employed either to protect the
stomach from the active ingredient, or vice versa. Secondly, delayed release
of medications with short biological half lives may allow fewer daily doses of
the medication, reducing the burden on patients and increasing efficacy. These
coatings must have a uniform and tightly toleranced thickness to perform their
designated role in the body. This is difficult to measure conventionally, how-
ever the reflection of THz radiation from the outer and inner boundary sur-
faces of the coating gives an accurate thickness reading without damaging the
product.

May and Evans (2010) showed the results of a sub-millimetre wave proce-
dure for evaluating coating thickness in the 0.04 mm - 1 mm range. This tech-
nique employs a femtosecond THz pulse, partially reflected at the boundaries
of coatings with different refractive indices. Differing angles and path lengths
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may then be converted to thicknesses by RADAR style timing of sections of
the returning pulse. A complete scan of a tablet is shown in Fig. 1.4

FIGURE 1.4: 3D rendered scan of coating thickness of a pharma-
ceutical product. (May, R. Evans, M. 2010)

1.3 THz security applications

1.3.1 Passenger and visitor scanning

Due to the ability of millimetre and submillimetre waves to pass through cloth-
ing with ease, and their harmless nature at low intensities, they are ideal for
detecting people smuggling items through security checkpoints. The scan-
ners can be visible or covert, and detect both metallic and non-metallic ob-
jects, unlike many previous detectors. This is a valuable advantage in the era
of PLA printed and minimum metal firearms and munitions. Additionally,
THz sources could yield characteristic signatures pointing toward certain spe-
cific substances being present, such as plastic explosives or chemical weapons
(Kemp and Taday, 2003). One downside is that, in contrast to X-rays, the size
and diffraction quality of the waves can make images quite poorly resolved
when taken from several metres, showing an "area of interest" as opposed to
an identifiable object. This, however, also has benefits from a privacy perspec-
tive, as these poorly defined images do not suffer from ethical restrictions due
to clothing penetration.

1.3.2 Package interception

THz and high GHz screening are commonly employed in mail delivery centres
to detect hazardous or illicit substances being sent by mail. Due to their shorter
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wavelength, the beams can make out more detail than microwave beams; un-
like X-ray and γ scanners they are harmless to all parcel content, such as sensi-
tive electronics. Passive detection can mostly negate the requirement for costly
and sometimes dangerous manual inspection and the damage to packaging
that this entails. Furthermore, such scanners can operate at amazing speeds,
with some achieving 5 mm resolution on scanned goods at conveyor speeds
of up to 15 m/s. This requires a scanning rate of 5000 passes per second for
the diode beam (Shchepetilnikov et al. 2020). An example of scanned items
revealing hidden contraband is shown in Fig. 1.5

FIGURE 1.5: A variety of suspicious parcel contents imaged us-
ing a high speed automated THz mail scanner, with THz images
on the left, and visible images for reference on the right (Shchep-

etilnikov, A. Gusikhin, P. et al. 2020).

1.4 THz communications applications

Communications development in the THz gap is extremely favourable for
some applications, and all but impracticable for others. The primary limitation
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on the speed of wireless communications is the bandwidth and frequency of
the transfer medium, the EMR signalling. Thus, each successive generation of
wireless communication technology adapts to a higher frequency band of the
EM spectrum and/or a larger bandwidth than the one before. Furthermore,
larger bandwidths make massive communications in densely populated areas
more easily managed, without overloading the spectrum. The relative data
speeds and frequencies may be seen in Fig. 1.6 (table extract from Benisha,
Thandaiah and Bai, 2019).

FIGURE 1.6: Comparison of data transmission speeds and oper-
ating frequencies for successive generations of mobile networks.

5G technology broke into the millimetre wave region of the spectrum (3-
30 GHz), one order of magnitude below the THz gap in frequency. This af-
forded substantial improvements in latency, carrying capacity and data trans-
fer speed. However, it also incurred a heavy penalty in transmission distance,
as shorter waves are much more easily attenuated in air in addition to their
substantial vulnerability to absorption by rain, fog, leaves and other small ob-
stacles. This resulted in many tiny, localized 5G boosters in urban centres,
where 3G networks had used a few large towers. To create a subsequent large
scale rollout of THz-based technology (6/7/8G?) would be to amplify both the
advantages and drawbacks of 5G. Therefore, until our consumption of data as
a society eclipses even that which 5G can support, research into large scale THz
communications will be limited and theoretical. THz radiation is immensely
sensitive to water vapour, fog and rain, propagating only a few metres in wet
air. Thus, boosting coverage of such a short range signal source would be
costly and technologically intensive. However, with the inexorable advance in
data transfer and storage predicted by Moore’s law, we may in the future have
to contend with these difficulties to achieve the information transfer speeds
required for smart buildings, or even entire cities.
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1.5 THz military applications

Similarly to the security applications mentioned earlier, THz sensing could be
employed to identify a vast array of threats and contraband in a military set-
ting. The ability to virtually penetrate skin, fabric and other dielectrics covertly
could give early warning of weapons transport, suicide bombing or chemical
attacks. Additionally, THz and millimetre wave imaging provides a safer al-
ternative for minefield clearance, especially when minimum metal mines have
been used. These charges are designed to avoid traditional metal detectors,
making removal painstaking and dangerous. Their dielectric plastic composi-
tion and close proximity to the surface makes them vulnerable to identification
at these frequencies, as described by (Du Bosq, T. Lopez-Alonso, J. and Bore-
man, G. 2014).

Due to the lower traffic requirements and the prioritization of other factors
over cost, THz communication could be more rapidly feasible for military use
than for general rollout. The highly directional beaming could improve secu-
rity, while the large, high frequency bandwidth optimizes data transfer. THz
beams also interact differently to centimetre RADAR upon reflection from ob-
stacles, thus potentially unmasking stealth aircraft, if sufficient range can be
achieved. THz range in space is practically infinite due to negligible attenua-
tion and lack of water, so its future in space based RADAR and communica-
tions could also be promising.

THz technology is increasingly deployed in electromagnetothermal active
defence systems (ADS), minimal harm directed energy weapons (DEWs) which
use strong radiative fields at 95-100 GHz to heat the outer layer of the skin of
anyone in their vicinity to around 60 degrees Celsius. This produces a highly
discomforting yet relatively harmless burning sensation. These systems are
much less damaging than conventional kinetic/chemical less lethal munitions,
and can be mounted on vehicles to manage crowds, disperse riots, or clear
paths for speeding emergency service convoys. Additionally, static units can
be used at checkpoints and compound entrances, providing protection from
bombers and storming. Given that ADS does not blind, maim or kill, it does
not contravene Geneva Convention restrictions on DEWs, as such it is legal
to deploy in combat. A discussion of this and similar technologies from both
physical and ethical viewpoints is provided by (Altmann, 2008).



Chapter 1. Introduction 9

1.6 THz radiation in Astrophysics

1.6.1 Sources and observation

The THz part of the spectrum in astronomy is primarily relevant to "cold" ob-
servations. Matter emitting at these frequencies is typically sparse, molecular
and non-ionised, far from any stellar winds or accretion zones. Interstellar gas
and dust at 1-170 K will have a blackbody peak in the THz region according
to Wien’s law, as discussed previously. Cold, dense gas in nebulae will also
have strong molecular transition lines in the THz region. The low tempera-
tures and densities make observation difficult at higher energies, as emission
of energetic photons is minimal. Studying these sources at THz wavebands
can give insights into the potential conditions of the protosolar nebula prior to
the initiation of gravitational collapse 5 Gy ago (Walker, 2020).

THz observations are broadly split into space-based, balloon-based and
ground-based. As shown in Fig 1.7, atmospheric water vapour vastly dimin-
ishes the power of extraterrestrial THz emission at terrestrial altitudes. The
main window for ground-based observation is near the millimetre wave-THz
boundary, which is a region of particular importance due to the presence of
the thermal peak of cosmic microwave background (CMB) emission within
this range. With its 2.7 K temperature, the relic radiation easily passes through
the upper layers of the atmosphere. This allows for ground- and space-based
observing missions to compete for discoveries. Due to the low luminal flux of
THz sources and their position on the EM spectrum, observations are easily
affected by thermal sources, typically blackbody emission, within the appa-
ratus itself. Minimizing thermal noise usually involves employing cryogenic
techniques to reduce the ambient temperature of the environment containing
the equipment. Moderate cryogenic temperatures can reduce the total flux of
photons substantially. Additionally, high performance cooling (T < 1 K) can
shift the thermal emission peak below the THz spectrum, further decreasing
noise.

1.6.2 Interferometry with THz radiation

THz radiation is situated at the boundary between the traditional optical and
radio bands. As such, the higher spatial resolution of visible light meets the
suitability for interferometry of radio at this interface. Radio observations have
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FIGURE 1.7: The transmission coefficient of radiation across the
THz spectrum for three sample altitudes (Walker, 2020).

long used Very Long Baseline Interferometry (VLBI) as a means of improving
resolution; a single large ∼10 m reflector has an aperture of just 30 λ at 1 GHz.
The VLBI technique involves the interference of signals from telescopes at long
distances from one another, to achieve an angular resolution equivalent to that
of an aperture of diameter equal to the distance separating them. At radio
frequencies, VLBI is used to achieve resolutions comparable to those possible
with single aperture systems in the visible. However, in the THz region, VLBI
can reach effective angular resolutions much greater than those permitted by
basic optical observation.

A spectacular example of the power of THz VLBI was unveiled to the world
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FIGURE 1.8: THz interferometric image of Pōwehi, the cen-
tral SMBH of Messier 87, with surrounding jets and shadow

(Akiyama et al. 2017).

in 2019, when a global team of scientists published a series of papers concern-
ing the direct imaging of the core of the Messier 87 giant elliptical galaxy. This
central mass is a black hole 6.5 billion times the mass of our Sun, with an event
horizon diameter of approximately 240 AU (Smith 2021). The Event Horizon
Telescope (EHT) collaboration used eight telescopes around the Earth to create
an effective aperture of over 10,000 km, and a corresponding resolution (at the
observing frequency of 230 GHz) of 25 microarcseconds. This is equivalent to
resolving individual pebbles on the lunar surface from Earth, over a thousand
times the angular resolving power of the Hubble Space Telescope. This marvel
of imaging capability was used to probe the region around the supermassive
black hole (SMBH) event horizon at the centre of Messier 87. The event horizon
itself, despite its massive size, subtends just 15 microarcseconds at the Earth,
however its shadow, and the brilliantly glowing gas surrounding it, are within
the resolving limit of the EHT. A prolonged data reduction effort was required
to deconvolve the interferometric data, with many terabytes coming from each
of the telescopes. The result was the first ever true photograph of a black hole,
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shown in Fig. 1.8. The asymmetric disc shows a Doppler shift from spin, while
the diameter of the dark ring yields information regarding the evolution of jets
around accreting black holes.

1.7 Summary

This thesis is concerned with the optical and electromagnetic modelling of as-
tronomical instrumentation operating at GHz and THz frequencies. The tech-
niques and software developed could also be applied in other fields of science
and technology. In this chapter I have discussed some of these applications
in detail, namely, those pertaining to medicine, security and communications.
Astrophysical applications were also briefy mentioned, and will be discussed
in further detail in subsequent chapters.

1.8 Layout of the thesis

This chapter has given a brief introduction to research in the GHz and THz
region of the electromagnetic spectrum, as background and to give context to
what follows. In Chapter 2 I describe optical analysis techniques at these fre-
quencies, in particular with the commercial software GRASP. These techniques
are used to propagate beam patterns from feeds through astronomical optical
systems and on to the sky. I use as an example modelling work I carried out
on the Pickmere telescope. For the remainder of the thesis I concentrate on
the feeds themselves by describing work carried out on corrugated horn de-
signs for the QUBIC and ALMA telescopes. In Chapter 3 I give a description of
these two telescopes. In Chapter 4 I describe the technique of electromagnetic
mode matching and use our in-house software PyScatter to mode the corru-
gated horns in QUBIC. I investigate whether their operating frequency band
could be increased. Chapter 5 discusses work done on the design of corru-
gated horn antennas for a possible future combined ALMA observing band.
In Chapter 6 I describe an extension to PyScatter that I developed to allow it
to model offsets in corrugated horns, something that is useful for the platelet
horn array design of QUBIC. Finally, an overall summary and suggestions for
future work are given in Chapter 7.



13

Chapter 2

Optical Analysis

2.1 Introduction to Physical Optics

2.1.1 Introduction

In this chapter I will briefly describe Physical optics (PO) and Gaussian beam
modes, two methods commonly employed at GHz and THz frequencies to
propagate beams virtually through models of astronomical telescopes. I will
use the Pickmere telescope as an example as our colleagues in Manchester Uni-
versity are developing feed arrays for a possible upgrade to this instrument.

2.1.2 Description of physical optics and the physical theory of

diffraction

PO is a method of modelling the propagation of electromagnetic radiation
through optical systems. It contrasts with ray optics in that it considers the
wave nature of light, as opposed to treating the light as a stream of particles
or rays travelling through space. The beginnings of PO lay with the demon-
stration of the wave nature of light by Thomas Young, with the famous double
slit experiment. Previously, light had been assumed to have a solely corpus-
cular character. Another great step forward was made almost simultaneously
by William Herschel, when he used a prism to measure the temperature of dif-
ferent colours of the visible spectrum. Contrary to expectation, a considerable
temperature rise was observed beyond the red of the visible spectrum. This
constituted the first experimental detection of sub-optical frequencies, where-
upon the wave nature of light becomes more apparent.

Augustin Jean Fresnel began the study of light as a wave in earnest. He
characterised the circular elliptical and linear polarizations of light, as well as
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investigating the physics of light diffracting around thin wires and similar ob-
stacles. This was published in his 1818 work “Memoir on the Diffraction of
Light” (Crew et al. 1900). Additionally, Fresnel correctly predicted the ex-
istence of the Poisson spot, a bright central peak in the shadow cast by an
opaque object illuminated by parallel light rays. This is caused by diffraction
around the edges of the obstacle and subsequent constructive interference, as
described in (Gaal, 2016).

The initial theory of physical optics was pioneered by the German physicist
Gustav Kirchhoff in the late 19th century. He produced an integral relation to
describe diffraction mathematically (Kirchhoff, Hentschel and Zhu, 2017). For
a far field monochromatic source of electromagnetic radiation, the integral is
shown below, Eqn 2.1 (Buchwald, J.Z, Yeang, C.P, 2016):

Up =
1

4π

∮
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[
U

δ

δn̂

(
eiks

s

)
− eiks

s
δU
δn̂

]
dS (2.1)

This equation calculates UP, the complex amplitude of an electromagnetic wave
at P, a point displaced from a surface S by a distance s, while n̂ represents a
unit vector normal to S. U represents the spatial part of the relevant solution to
the scalar wave equation, while k is the wavevector, and i the imaginary unit.

Ray optical approaches are sufficient when the size of the optical compo-
nents are very large with respect to the wavelength of the incoming light. This
is usually the case with visible spectrum lenses and mirrors. For a typical vis-
ible setup, the optical elements have physical size De ≈ 10 -1 m, compared to
λ ≈ 10-6 m. Thus, De ≈ 105 λ, a ratio so high as to render diffractive and po-
larising effects negligible for most purposes. All interactions in such systems
consider solely the particle nature of light and deal primarily with classical
reflection and refraction, as defined by Euclid and Snell, respectively.

In the case of microwave and radio optics, it is sometimes the case that De ≈
10-1 λ or 10-2λ. In these cases, PO is required to correctly calculate the interac-
tion of incident light with the element, including the polarization and diffrac-
tion effects which cannot be computed by ray optics. In essence, PO analy-
sis acts as an intermediary, between the simplistic views associated with ray
optics and the complex mathematical rigour of an analytical electromagnetic
solution. Two modified equations were developed to approximate the exact
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approach used by Kirchhoff, as is required in systems with any level of geo-
metric complexity. These are the Fraunhofer and Fresnel integrals. Fraunhofer
diffraction is used to model systems having an aperture size much smaller than
the optical length of the system. Fresnel diffraction is used when this assump-
tion does not hold true. In the case of Gaussian beam optics, expanded on later
in this chapter, Fresnel diffraction would assume a finite radius of curvature
of the Gaussian beam upon reaching a diffracting surface, while Fraunhofer
would assume the radius of curvature to be infinite – a flat phase beam.

Some PO software evaluates the Fresnel and Fraunhofer integrals to deter-
mine the shape of beams propagated through optical systems. The accuracy
of the estimate depends on the complexity allowed for in the integration; as
is common when modelling physical systems numerically, a better estimate of
reality incurs a sharp increase in computational power requirements. By con-
trast, other platforms use approximated solutions of Maxwell’s equations to
gain more accurate simulations, with further computational cost. An example
is GRASP, which is described in more detail later in this chapter. This tech-
nique may also be described as physical optics; hereafter the term shall refer
to the technique used by GRASP to evaluate surface currents.

The theory of PO is designed to model sources illuminating smooth geo-
metric surfaces without discontinuity or superposing rays. The analysis breaks
down at the edges and focii of real reflectors. For finite reflectors with physical
boundaries and focal properties, another approach is required to supplement
this method, the physical theory of diffraction (PTD). This theory is a method
for approximating the scattering of electromagnetic radiation from the edges
and corners of real surfaces. It is also frequently required in the vicinity of
caustics, regions where light rays cross, such as at a real focal point. (Ufimtsev.
P, 2014).

PTD was first developed by Pyotr Y. Ufimtsev in the 1960s; it was subse-
quently instrumental in the development of RADAR evading stealth aircraft
(Ufimtsev. P, 1980). This theory extended the nineteenth and twentieth cen-
tury work done in the field of mathematical diffraction. Few perfect solutions
existed for diffraction at a boundary, all required very simple geometry as well
as being computationally demanding to perform when the object was large
compared to the wavelength of the incident light. As in the case of PO, PTD
bridged the gap between oversimplified approaches and precise mathemat-
ical solution (Weinmann, 2006). The most basic unit element of PTD is the
perfectly conducting infinite half plane (Jones. D.S, 1896). By considering the
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profile of the edge of this plane, approximations can be drawn for more com-
plex structures numerically. PO and PTD are combined in GRASP to render a
full representation of the behaviour of EM radiation as it interacts with reflec-
tor surfaces, by evaluating surface currents and edge contributions. The light
striking a conducting reflector induces as a surface current. This is due to the
negligible skin depth of conducting materials, preventing penetration of the
light into the surface.

2.1.3 TICRA GRASP software description

GRASP 1 is an industry standard software suite (Sudhakar, Rao et al. 2013)
aimed at the sub-infrared research and development market. It is one of the
signature products of the Danish computational optics firm TICRA, along with
other microwave analysis platforms such as CHAMP and POS. The function
of GRASP is to determine the currents generated by light passing through an
arbitrarily complex optical system composed of individually instantiated com-
ponents, using PO and PTD.

GRASP analysis centres on a few broad classes of geometrical and electrical
objects, which can be combined sequentially in command routines. Geomet-
rical objects include rims, struts, surfaces and backstops, amongst other ele-
ments. These are the items which will interact with microwave radiation in
the simulated environment. Each one possesses several degrees of freedom,
which may be chosen at will to specify the shape and properties of the object.
Surfaces are infinite geometric continua, usually planar, parabolic, hyperbolic,
quadratic or spherical, which can be simulated using a variety of materials.
Each surface shape has a set of specific constants which are set to define it
uniquely. For example, in the case of a hyperbolic surface, the focal and vertex
distances are required. Rims are two-dimensional boundaries imposed on sur-
faces when creating reflectors. Rims may be placed symmetrically onto the sur-
face, creating an on-axis reflector, or asymmetrically, creating an off-axis reflec-
tor. Struts are included as a separate category, they may be constructed polyg-
onally or canonically; the latter is more computationally demanding, required
principally when the strut diameter approaches the shortest wavelength input
into the system.

Electrical objects are objects which are not instantiated into the simula-
tion, they do not interact with incident EM radiation. This category includes

1ticra.com/software/all-software/
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sources, PO analyses and outputs. Sources are emitters of EM radiation. The
most prominent types are Gaussian beams and plane waves. The physical size
of the source can be specified, as can the wavelength, initial amplitude and
polarization of the signal. Additionally, provision is made for the inclusion
of radiation at a series of different frequencies, which are propagated simulta-
neously. PO analyses are the PO/PTD routines associated with reflectors and
other geometric entities. They represent the diffractive and reflective effects
that the associated entity will have on incoming radiation. When building a
sequential series of commands, the PO analysis of each reflector is called into
the routine each time light passes it. By altering the amount of detail included
in the analysis, the balance of accuracy and computational effort may be ad-
justed. In GRASP, this is modulated somewhat indirectly by the number of PO
points and number of ‘passes’ commands.

Outputs are the user interface with simulation results. They consist of two
categories, cuts and grids. Cuts are one-dimensional slices across the field am-
plitude in a region. Grids are two dimensional gridded shapes which show a
heatmap or contour plot of the electric field across the region being mapped.
The sampling rate of both cuts and grids can be chosen at will. Cuts can pro-
duce very high resolution while requiring little computational effort, with pre-
cise intensities along a line across a field. Additionally, multiple cuts can be
taken at varying angles around a central point. This is useful for isolating ef-
fects due to polarization, which often possess angular dependence. Grids are
critical to providing a visual representation of the propagation of light through
a region. They may be represented as coloured intensity maps, known as
heatmaps. These show results quickly and efficiently, and can be plotted lin-
early or logarithmically. However, due to the two-dimensional nature of the
grid structure, the plotting time is considerably greater than for a cut or small
series of cuts at a given resolution.

2.2 PO modelling using GRASP

2.2.1 Introduction

The work described in this section was carried out as part of a collaboration
with Manchester University. As part of this collaboration, focal plane patterns
from corrugated horns and phased arrays are propagated through telescope
optics and out onto the sky. Chapter 5 describes the design of corrugated
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FIGURE 2.1: The Pickmere telescope (© Benjamin Shaw (cc-by-
sa/2.0))

horns. Here the Pickmere telescope is analysed as an example of how tele-
scopes are modelled. In the future, phased arrays will be designed in Manch-
ester to be used with this telescope.

2.2.2 The Pickmere telescope

Pickmere is a 25-m diameter Cassegrain radio telescope, located near Knutsford
in Cheshire. It forms part of the seven element array, stretching for 200 km
across England. Pickmere was built in 1980, and is curated by the Jodrell Bank
astronomy collective. The telescope is designed to detect a wide range of fre-
quencies, from 150 MHz to 24 GHz. The lower bands require interferometry
with other telescopes to produce meaningful data, as the telescope diameter is
only about 12λ at the lowest frequency (CRAF, 2022). A photo of the telescope
is shown as Fig. 2.1

The model of Pickmere telescope components was based on schematic di-
agrams of the reflector and support structure. As can be seen in Appendix A,
these diagrams showed the relative sizes and positions of the primary and sec-
ondary reflectors and associated instrumentation and armature. As the source
document was compiled in 1970’s Britain, all units were imperial and had
to be converted for calculations. The following dimensions for the telescope
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components were obtained by direct inspection of the schematics given in Ap-
pendix A, or where the measurement was not explicitly given, by trigonometry
using the available information.

Primary reflector Profile: Parabolic

Diameter: 28.04 m

Bowl depth: 4.34 m

Focal length: 8.99 m

Secondary reflector

Profile: Hyperbolic

Diameter: 2.512 m

Depth: 0.5842 m

Focal length -0.6353 m

Armature

Four struts supporting secondary

Strut profile: cylindrical

Strut length: 10.9 m

Strut thickness (diameter) 0.356 m

Cylindrical structure above secondary, aligned and centred on optical axis

Cylinder dimensions, radius 2.512 m, depth 0.914 m

General information

Height of the prime focus above the bowl: 1.476 m

Radial distance between strut bases and prime axis: 7.86 m
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Separation of secondary mirror from cylinder: 0.63 m

A few pieces of information that are not easily obtained from the graphics
are the profile of the conical strut heads and the focal and vertex distances of
the secondary mirror. The strut heads, where the strut connects to the arma-
ture of the secondary mirror, are a very small component of the whole and
are assumed to be insignificant in this initial analysis. The focal and vertex
distances are calculated as described below.

The system set-up and optical simulation were performed with the GRASP
radio astronomy package. To set up the system, the secondary vertex and focal
distances were first calculated by fitting a hyperbolic surface to the physical pa-
rameters given in the schematic as follows: two planes were placed where the
upper and lower edges of the secondary mirror are positioned in the schemat-
ics shown in Appendix A. These were just ghost markers, not included in the
GRASP commands. The focal and vertex distances of the mirror could then be
adjusted such that the mirror fits correctly inside the cylindrical volume speci-
fied by the given mirror radius and the two planes. There were two variables,
the focal length and the vertex distance. These could be derived from the po-
sition of the marker planes, together with the radius and depth of the mirror.
The vertex distance was found to be 6.35 metres, and the focal distance 7.385
metres. The antenna profile in GRASP is shown as Fig 2.2.

2.2.3 Modelling technique

When the model had been constructed in GRASP, an on-axis plane wave source
was input at the aperture of the telescope. A grid at the focal point recorded
the shape of the focused beam of radiation. For quicker testing of mirror prop-
erties, a copy of the model was made, excluding the struts and cuboid. Ad-
ditionally, another copy had its commands reversed, to check the collimation
of the beam output by the main reflector from a source at the focus. In ef-
fect, they test the system in both transmitting and receiving mode, which can
be assumed equivalent by the reciprocity theorem applied to antennae, as de-
scribed in (Balanis, 2016). It was found that the focussed beam had an Airy
type pattern, as shown by Fig. 2.3. The cut across this beam, shown as Fig. 2.4,
more clearly shows the profile of the beam. A 20 dB reduction from boresight
intensity was observed at just under 40 cm from the main lobe peak. Inclu-
sion of struts in the full simulation proved too computationally intensive to
be undertaken in reasonable time, however the effect of the struts, armature
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FIGURE 2.2: Pickmere optics as viewed in the GRASP antenna
pane.

and secondary mirror on a free Gaussian beam is shown as Fig. 2.5. The effect
of the four struts and the secondary mirror shadow are clearly defined. The
outer fringes of the pattern are highly comminuted, potentially explaining the
substantial simulation time. The strut calculation was done by propagating a
Gaussian beam from a distant point, past the struts, armature and secondary
mirror, and onto a grid where the primary mirror lies. It is essentially a map of
the incident power pattern on the primary from the distant Gaussian source.

For the reverse simulation, a Gaussian beam of a size similar to the focussed
beam found above, was propagated from the focus through the telescope and
out on to the sky. The Gaussian beam was defined in GRASP using taper and
taper angle by assigning a -10 dB power reduction at an angle 10◦ from bore-
sight. To verify that the beam had been defined correctly, a 20 m × 20 m grid
was placed 100 m from the focus, centred on axis. The mirrors were not in-
cluded, so as to test solely the dispersion of the freely propagating beam. A
cut was also placed across the horizontal axis of the grid. The angle subtended
by the edge of the grid at the source (100 m away) was tan−1 1

5 = 11.3◦. Thus,
from the beam taper specified, an intensity reduction of approximately 11 dB
would be expected across the test cut, which was verified by the simulation.
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FIGURE 2.3: Beam pattern on the Pickmere focal plane from a
plane wave source. The two mirrors were included in the simu-

lation.

FIGURE 2.4: A cut of the focal plane beam pattern in Fig. 2.3
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FIGURE 2.5: Effect of the struts, armature and secondary mirror
shadow on a beam from a distant Gaussian source.

The cut and grid outputs are supplied as Fig. 2.6 and Fig. 2.7, respectively. The
peak of the focussed beam from Fig. 2.3 is 30 dB higher than the peak of the
unfocussed beam, implying a gain of 103 on the propagation axis from using
the mirrors.

Upon verification that the beam had been defined correctly the hyperbolic
mirror was reintroduced into the GRASP simulation. This produced an ellip-
tical beam, although the input beam and mirror were both radially symmetric
about their principal axis of propagation. The only physical explanation for
this was polarization effects, so four separate polarisations of the input beam
were run through the same simulation. This allowed observation of the effect
of polarization on the transverse beam profile. When linear polarization was
used, elliptical co- and cross-polarised beams were found, the orientation of
which changed with the axis of polarization. When circular polarization was
used, the co-polarised beam was elliptical and oriented along the y-axis and
the cross-polarised was elliptical and oriented along the x-axis. These then
swapped when the direction of circular polarization was reversed. This ef-
fect was corrected when the primary was introduced, yielding a circular beam
once more at the telescope aperture. The beam was then propagated 50 m from
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FIGURE 2.6: Grid showing profile of the input beam pattern,
without mirrors

FIGURE 2.7: Cut across input beam pattern, without mirrors.

the telescope to yield a beam of radius 7.8 m and flat phase. The beam radius
changed little beyond this, even after propagation of several km.
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2.3 Gaussian beam mode analysis

2.3.1 Initial Gaussian beam

It was decided to carry out a Gaussian beam mode analysis of a simplified
model of the Pickmere telescope to use as a comparison for the full PO/PTD
model. This analysis models the telescope beam as a Gaussian beam which is
a solution to the paraxial wave equation. Off-axis mirrors are approximated
by their on-axis lens equivalent. This analysis does not have the rigour of PO,
but nevertheless provides a good approximation for simple systems, and is
much quicker to perform. A program was required that would firstly produce
a Gaussian beam, and then propagate the beam through a series of optical
components via an ABCD ray matrix analysis. Additionally, it was useful to
plot the profile of the beam as it passed each component.

To start, a routine was constructed to display a cut of a Gaussian beam,
propagating in free space, along the transverse and longitudinal axes. The
program was based on Eqn. 2.2, the Gaussian intensity profile equation:

I(z, r) = I0

(
w0

w(z)

)2

exp
(
−2r2

w(z)2

)
. (2.2)

I0 is the initial boresight intensity of the Gaussian beam, while I(z, r) is the
intensity in the transverse plane after propagating a distance z from the origin.
r2 = x2 + y2. Likewise, w0 denotes the initial width of the beam, and w(z)
the width at a propagation distance z. w(z) can be calculated using 2.3, from
Goldsmith (1998)

w(z) = w0

√
1 + (

λz
πw0

2
). (2.3)

By evaluating I(z, r) at every point on an xy grid, for a particular value
of w(z), the entire transverse profile of a beam of initial width w0 could be
evaluated at any specific z. To obtain a cut along the longitudinal plot, a set of
points were chosen on the xz plane with y = 0. Fig. 2.8 shows such a transverse
and longitudinal plot of a propagating Gaussian beam.

The curvature of the Gaussian beam wavefront is described by a phase term
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FIGURE 2.8: Transverse (left) and longditudinal (right) beam in-
tensities for free space propagation using the Matplotlib heatmap
function. The direction of longditudinal propagation is vertically

downward.

exp
(

i
kr2

2R(z)

)
, (2.4)

where k is 2π/λ. In addition to the width or waist radius w(z), it is useful to
keep track of the phase radius of curvature R(z) of the beam. This can be done
using (Goldsmith, 1998)

R(z) = z + z

(
πw2

0
λz

)2

. (2.5)

2.3.2 ABCD matrices for Gaussian beams

The next program aimed to pass the Gaussian beam through two lenses de-
signed to mimic the action of the Pickmere mirrors, and through the associated
free spaces.

ABCD ray matrices are a tool for describing optical elements using a matrix,
and combining the effects of multiple elements using matrix multiplication
(Mansell et al. 2007). In ray optics the ABCD matrix describes the effect of an
optical element on an input ray’s position and slope. In the case of Gaussian
beams, the same matrices can be used to describe the effect of the element on
its Gaussian beam parameter q(z). This complex number combines R(z) and
w(z) into a single descriptor of the beam properties
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1
q(z)

=
1

R(z)
− i

λ

πw2(z)
. (2.6)

The real component of q pertains to the radius of curvature R, and the imagi-
nary to the beam width w.

A single matrix is typically used for each optical component in a system, in-
cluding free spaces. For any complex optical system, the overall ABCD matrix
can be constructed from the individual element matrices by matrix multiplica-
tion in reverse order i.e. the matrix for the last optical element first. The ABCD
matrix is then used to transform the complex q value of the beam across the
optical element, according to Eqn. 2.7

qout =
Aqin + B
Cqin + D

. (2.7)

Once qout is known, w(z) and R(z) are easily obtained from Eqn. 2.6. Lens
matrices leave w unchanged but modify R, while free space matrices modify
both R and w. The form of free space and lens matrices are shown below as
Eqns. 2.8 and 2.9, respectively, where D represents the distance propagated
through free space, and f the focal length of the lens. The set of ray ma-
trices used to propagate radiation through the Pickmere system is shown in
Eqn. 2.10. The matrices represent the system elements as follows, beginning
from the rightmost matrix, due to the reverse order of the matrix multiplica-
tion. The first propagation matrix takes the ray from 100 m away (arbitrary
long distance to yield a reasonably flat beam) to the surface of the primary.
The first lens matrix represents the primary mirror, with 0.111 being the in-
verse of its focal length in meters. The third matrix is the propagation from
the surface of the primary to the surface of the secondary. This is smaller than
the focal length of the primary, thus, the beam still has substantial width upon
striking the secondary. The second lens matrix represents the second mirror,
with -1.574 as its inverse focal length. Finally the last propagation takes the
ray from the surface of the secondary to the system focus, at a distance of ap-
proximately 1.5 m above the centre of the primary, on axis.(

1 D
0 1

)
(2.8)
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FIGURE 2.9: Hyperbola, showing vertex distance a, asymptote
distance b and focal distance c.

(
1 0
−1

f 1

)
(2.9)

(
1 6.94
0 1

)(
1 0

−1.574 1

)(
1 8.4
0 1

)(
1 0

−0.111 1

)(
1 100
0 1

)
(2.10)

In the case of the Pickmere parabolic mirror, the focal length could be ob-
tained easily from the original diagram. For the hyperbolic mirror, however,
the conversion was less obvious. The geometric parameters of the hyperbolic
mirror were required to determine the effective focal length of the equivalent
lens, these are displayed on a diagram in Fig 2.9. The radius of curvature of
the effective mirror is R = b2

a , and the focal distance as f = R
2 . The interfocal and

intervertex distances were known from the schematic diagram. These gave a,
c and b2 = c2 − a2. A value of -0.6353 m was obtained for the effective focal
distance. The negative sign is due to the focus being virtual, as the hyperbolic
secondary is divergent in nature.
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FIGURE 2.10: Gaussian propagation through two lenses repre-
senting the optics of the Pickmere telescope.

The R and w for the beam were found for various propagation distances
through the telescope, and w(z) is plotted for those points in Fig. 2.10. This
plot uses a logarithmic scaling to better show the edges of the beam on the
heatmap. The secondary and primary mirrors lie at z = 15.34 m and z = 6.94
m, respectively.

Fig 2.10 shows a flat phase Gaussian beam emanating from the telescope.
This is ideal, as a telescope tends to look at objects which are at effectively in-
finite optical distance. Therefore, it must focus light with a flat phase front,
which by the reciprocity theorem is equivalent to conversion of a source at the
focus to a flat phase output beam. The lower plot in Fig. 2.10 shows the Gaus-
sian beam width, w, the diameter outside which the intensity falls to I0/e2,
where I0 represents the boresight intensity. I0/e2 is a width parameter which
can be substituted for FWHM when greater beam inclusion is desired.

2.3.3 Comparing PO with Gaussian beam modes

The most basic case of a beam propagating in free space, with no other optical
components, is defined in Gaussian beam mode analysis using the starting
waist radius w0. In GRASP far field optics, it is defined in terms of beam taper
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(power relative to that on-axis) at a given angle, the taper angle. The equation
to relate the waist radius to the far-field angle subtended by w(z) (where the
taper corresponding to 1/e2 is -8.7 dB) is given below as Eqn. 2.11, in degrees
and in radians, as shown by Al Azzawi (2007).

θrad =
λ

w0π
θdeg =

180λ

w0π2 (2.11)

To predict what linear beam radius should be observed at a given distance
of propagation, basic trigonometry suffices on a beam which is assumed to be
in the farfield; thus r = zsin(θ). This calculation was performed for several
values of z and w0. The GRASP Gaussian beam was then set to model a near
field source instead of a far field source. Near field sources are defined in
GRASP in terms of their initial waist and radius of curvature, as opposed to
the far field taper and taper angle. Radius of curvature 0 is included as a special
case to yield infinite curvature radius, or a flat phase beam. When the near and
far field sources were compared, the results of both analyses matched to within
<0.1%, as shown below.

w0=1 m, z=20 m.

Near field beam width=1.04951 m

Far field beam width= 1.0488 m

Difference =0.06%

The GRASP results for free-space propagation were then compared with
the ideal paraxial Gaussian beams as modelled using Python. This was done
by propagating Gaussian beams with waist radii of different sizes out to a fixed
plane in space, 100 m from the waist location. Narrower waists suffer more
diffraction and a wider beam at 100 m, while wider waists give a narrower
beam. The GRASP results agreed very well with the Python Gaussian beam
mode simulation - to an accuracy of < 0.2% for all tested values of w0. These
tiny deviations are easily accounted for by the different resolutions employed
by the two routines; Gaussian beam modes in Python and PO/PTD analysis
in the GRASP environment.

A comparison of the beam radius predicted by PO and the Gaussian beam
mode model of the two-mirror Pickmere telescope was also made, starting
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TABLE 2.1: A comparison of beam radius calculated using Gaus-
sian beam modes (GBM) and GRASP PO.

waist radius GRASP radius (m) GBM radius (m) percentage difference
at 100 m at 100 m

25 cm 6.3603 6.3712 0.17
50 cm 3.2192 3.2222 0.093
75 cm 2.2504 2.2507 0.013

100 cm 1.87926 1.87963 0.02

with the same Gaussian beam at the telescope focus and propagating 50 m
from the primary mirror. Gaussian beam modes gave a width of 7.729 m, while
GRASP gave 7.800 m. Thus, the discrepancy between the routines was below
1%.

2.4 Mirror blockage

Once the two programs were found to agree, the GRASP model was inves-
tigated in more detail. The models are sequential, so that the beam first in-
tercepts the secondary mirror, then it propagates back to the primary mirror,
and after reflecting a second time, it propagates out to free space, past the
secondary. No dark region was observed behind the secondary, which is un-
physical, as one would expect a shadow zone directly behind the mirror where
the light from the primary could not reach. This zone would have a roughly
conical shape and depend on the ratio of the secondary diameter and the wave-
length of the light. To model this, a copy of the secondary mirror was instanti-
ated in the same spatial position as the original so the beam propagated from
the focus to the secondary and from the secondary to the primary and then
to the secondary again as it exited the telescope. When this change was im-
plemented, it was observed that considerable radiation was back-propagating
from the secondary, before passing directly through the primary, creating a
bright region behind it. This is logical, as if the secondary is instantiated for a
second pass, to model diffraction effects on the beam, it will reflect light back
along the optical axis. This light then propagates unobstructed into space be-
hind the primary, as this reflector has not been instantiated for a second pass.

As more simulations were run, it became evident that there would always
be a final surface which was not instantiated for the final pass of the light.
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Thus, to approximate the true system to considerable accuracy, one would
have to pass the beam many times between the two reflectors. This would
result in an asymptotically increasing accuracy, as more light hit the grid with
each reflection. Computing time, however, increases rapidly with the number
of passes, as the wave patterns become more distorted and thus more diffi-
cult for the PO/PTD to calculate. For this reason, taking too many passes was
impractical.

To investigate this, two separate GRASP images were taken, one with a
single reflection off the secondary and primary, and the other with a final ad-
ditional reflection off the secondary. In Fig. 2.11, the shadow of the secondary
is clearly defined. Additionally, the lobes of the power pattern of radiation
propagating back from the secondary can be seen. In Fig. 2.12, the reverse is
observed; the primary is perfectly defined, and the secondary shadow is not
present. Instead, there is a higher intensity region propagating out to infinity
along the optical axis.

The GRASP technical description (TICRA, 2013) discusses the modelling of
subreflector blockage in dual reflector systems such as this. In their example
they deliberately exaggerate the telescope design (small main reflector and rel-
atively high edge taper from the feed at the subreflector) to make the effects of
subreflector blockage and feed spillover easy to perceive. It suggests two ways
of modelling the blockage. In the first, the part of the primary that is blocked
by the secondary (subreflector) is removed i.e. replaced by a hole, so the cur-
rents produced in this area do not contribute to the field. The second method
suggested is more rigorous and calculates the currents on the secondary that
are generated from the illumination by the primary mirror. The field from
these currents are then added to the output field and can make a significant
contribution to the sidelobe level.

As discussed above, the currents induced on the secondary will illuminate
the primary mirror once more and generate a second set of induced currents
which, like the first set, will radiate in the far-field and be blocked by the subre-
flector. This process will continue in an ever-decaying fashion until the remain-
ing contribution due to further scattering become negligible. For the example
in the GRASP manual, five iterations were required before a stable result was
obtained. If an accurate sidelobe pattern for Pickmere were required, then a
similar process should be carried out.
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FIGURE 2.11: Beam propagation with surface of last scattering
as secondary. The primary and secondary are marked 1 and 2,
respectively. The x axis of the cut corresponds to the propagation

axis

FIGURE 2.12: Beam propagation with surface of last scattering
as primary. The primary and secondary are marked 1 and 2, re-
spectively. The x axis of the cut corresponds to the propagation

axis



Chapter 2. Optical Analysis 34

2.5 Summary

The purpose of the work outlined in this chapter was to model the optical
properties of the Pickmere telescope, a Cassegrain radio telescope operating
in the low GHz band. The analysis was carried out using the TICRA GRASP
integrated PO package. The component parts of Pickmere were introduced
into the simulation using data from the design schematics of the telescope. A
number of data collection elements were placed into the simulation to return
intensity plots as both cuts and grids. The radiation was viewed on the axis
of the telescope, showing the focussing effect of the primary and secondary
surfaces. This gives confidence that the telescope parameters were calculated
correctly from old documents.

The representation of the system yielded by GRASP was somewhat incom-
plete, as to account for all of the scattered radiation, the program would have
to make a very large number of passes between the surfaces. To simulate this
would require excessive computational effort, as the system complexity in-
creases rapidly with the number of reflections of the radiation. The difference
caused by modelling one more internal reflection was investigated.

As a comparison, a more approximate model of the telescope was devel-
oped using Gaussian beam mode optics with ABCD matrices. This was shown
to be quick to execute, and provided congruent estimates of beam radii when
compared to GRASP. Both models gave a flat phase beam on the sky when
radiation was input at the focus and propagated through the system.

The optical model of the Pickmere telescope will prove useful to our collab-
orators in Manchester University, as they develop focal plane phased arrays.
The remainder of this thesis will look at work on feeds used in two other tele-
scopes, QUBIC and ALMA, which are described in the next chapter. Fields
from these can be propagated through their respective instruments in a man-
ner similar to that described here for Pickmere.
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Chapter 3

QUBIC and ALMA

3.1 Introduction

In this chapter, I will describe two telescopes, QUBIC and ALMA. Both operate
primarily at mid GHz frequencies, and make use of corrugated horn antennas.
The analysis of horns developed for these projects represents the majority of
the work presented in this thesis, and will be explained in detail throughout
the subsequent three chapters. This chapter, however, will focus on the back-
ground to the telescopes. A description will be provided of the general optical
design of the telescopes and the sources that they can be used to investigate.
Finally, the observing goals for the telescopes, each at the forefront of modern
microwave astrophysics, will be briefly outlined.

3.2 QUBIC

3.2.1 Origins of the cosmic microwave background

The cosmic microwave background (CMB) is one of the most interesting and
consequential astrophysical sources on the millimetre wave-THz boundary. It
is an ever present sea of near uniform radiation at first seemingly without di-
rectionality or structure. The radiation originates from the surface of last scat-
tering, the point at which the Universe cooled sufficiently to allow light to
travel. Before this, the early Universe contained protons and free electrons in
a sea of photons. Light cannot travel substantial distances in a medium con-
taining many unbound electrons, as it is constantly absorbed and scattered,
making the medium opaque. A proton and an electron can combine to make
a hydrogen atom, a process known as recombination. However, the atom is
likely to be reionised by absorbing a photon, if the energy of this photon ex-
ceeds the binding energy of their mutual electrical potential, denoted ionisa-
tion energy. This is 13.598 eV in the case of monoprotic hydrogen. Once the
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temperature drops sufficiently that such photon collisions are rare, light can
propagate almost infinitely in the rarefied neutral gas.

By Wien’s law, as discussed in the previous chapter, the temperature at
which photons of energy 13.598 eV are the most prevalent is approximately
5.6× 104 K. However, this simplistic calculation must be adjusted for the dom-
inance of photons over baryons in the early universe. If many more photons
than baryons are present, each baryonic particle is very likely to remain ionised
well into the tail of the thermal distribution of the photon gas surrounding
it. This corresponds to a lower temperature at recombination for a Universe
with an elevated photon to baryon ratio. The actual ratio is approximately
1 : 2× 109 as quoted by Liddle and Loveday (2008). When this is taken into
account, the temperature at which recombination occurs proper (defined as
N(H0) = N(H+) = 0.5Ntotal) is approximately 3000 K. From cosmological
modelling, this is estimated to have occurred about 380,000 years after the Big
Bang. The photon flux from a 3000 K blackbody would have peaked in the near
infra-red, but as the Universe expanded, the radiation was redshifted, and the
blackbody spectrum shifted to longer wavelengths. The current estimated red-
shift of the CMB surface of last scattering is approximately 1100, so dividing
3000 K by this figure, we arrive at the current blackbody temperature of the
CMB, 2.7 K.

By looking at the tiny variations in this radiative field, we can piece to-
gether a picture of the Universe in its infancy, long before matter condensed
to form the structures we see today. These variances are broadly divided into
temperature and polarization anisotropies. Observation of these requires sub-
traction of a dipole fluctuation ( ∆T

T = 10−3 ) due to the Earth’s peculiar velocity
with respect to the distant universe. At (∆T

T = 10−5), temperature anisotropies
are seen, while polarization anisotropies require sensitivity at least an order
of magnitude greater to discern. Performing these immensely accurate obser-
vations over vast areas of the sky is technologically very challenging, and has
been at the forefront of cosmological experimental advancement for decades.

3.2.2 Polarization Anisotropies

In astronomy, the polarization of electromagnetic radiation is typically repre-
sented by Stokes parameters which are defined by a set of parametric equa-
tions in spherical coordinates; a thorough mathematical derivation of these is
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provided by Collett (2005). The parameters are often assimilated as a four-

element column vector, the Stokes vector S̄ =

[
I
Q
U
V

]
. The I parameter rep-

resents the intensity of the radiation, while Q represents the preponderance
of horizontal over vertical linear polarization and U represents the prepon-
derance of +45◦ over −45◦ linear polarization. The final parameter concerns
circularly polarised radiation, and can be neglected in this case, as it is not an
inherent polarisation of the CMB, and will thus have a value of zero. For Q and
U, values between positive and negative unity are permitted, with the magni-
tude of the parameters quantifying the relative strength of polarisation, and
their signs determining orientation. The Stokes parameters often correspond
to how polarization is measured (hence the Q and U in QUBIC) but because
they are coordinate-dependent are less convenient for describing the polariza-
tion anisotropies of the CMB. For this a decomposition into E amd B modes
(derived from the combinations Q ± iU) is used. E modes are curl-free, pos-
sessing a finite gradient and zero curl. B modes are polarized at 45 degrees
to the principal axes and have finite curl and zero gradient. This is shown in
Fig. 3.1. This decomposition is also physically useful because the origins of E
mode and B mode anisotropies in the CMB are different.

FIGURE 3.1: E and B mode polarization com-
ponents (APS/Michael Schirber, taken from

https://physics.aps.org/articles/v13/164).

Both types of polarization anisotropies represent a tiny fraction of the in-
cident radiation from the CMB. Of the two, E modes are dominant and were
primarily generated by scalar density perturbations in the early Universe. B
modes are extremely weak, on the order of 10 µK, and can be generated as the
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result of conversion of E modes to B modes during their 13 billion year jour-
ney toward Earth. This conversion is initiated by the passage of the radiation
through strong gravitational fields over long periods of time. This gravita-
tional lensing effect may be caused by galaxy clusters, and also the dark mat-
ter halos which surround galactic structures, contributing substantially to their
gravitational influence (Fidler, 2014). The first statistically confirmed observa-
tion of these lensed B modes was made by the POLARBEAR collaboration,
detecting the modes to a significance of 4.7σ (Ade et al. 2014).

It has been predicted that B modes are also generated by gravitational in-
teractions in the early universe. Primordial gravitational waves, a signature of
the inflation of space, could have imprinted evidence of their existence onto
the nascent CMB at the surface of last scattering, a time when these gravita-
tional waves were of sufficient magnitude to have detectable effects. These
relic perturbations are termed primordial B modes. To date, despite its pop-
ularity as a theory, the primary evidence for inflationary cosmology is solely
circumstantial, in that it can explain many otherwise difficult to explain cos-
mological observations. As such, the detection of these gravitational wave
signatures in the CMB would lend strong and much-needed experimental ev-
idence to inflation, the smoking gun for the violent birth of the Universe. One
notable claim was made to their purported discovery by (Ade et al. 2014). This
work appeared to represent confirmation of primordial B-modes, but upon re-
view, the signal could not be differentiated from that caused by galactic dust
lensing. The graphic showing B-mode "twists" in the CMB signal is included
as Fig. 3.2.

3.2.3 QUBIC technical overview

The Q and U Bolometer Interferometer for Cosmology, QUBIC, is a ground-
based array which primarily aims to detect the primordial B modes discussed
earlier. It is a cryogenic instrument, encased in a large pulse tube cooled cryo-
stat with optics cooled to 4 K. This reduces the effects of thermal and electrical
noise on the instrumentation. The observing window is a 40 cm sheet of high
density plastic, which, as a good electrical insulator with few free charge car-
riers, is optimally transparent to radiation at the observing frequencies. After
entering the cryogenic environment, incident radiation then passes through
a rotating half-wave plate (HWP) and a polarizer. This beam is received by
a 20×20 array of back-to-back corrugated horns. The light is then reradiated
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FIGURE 3.2: B mode signal, initially thought to be primordial in
nature, captured by the BICEP2 instrument (Ade et al. 2014a).

into an optical beam combiner (two off axis mirrors) and the 400 beams are
combined on a focal plane. The focal plane is tiled with the detectors: four
sub arrays of 248 pixels apiece, cooled further to 300 mK. The QUBIC array is
designed to trasmit radiation in two observing bands, centred at 150 GHz and
220 GHz. A basic schematic of the optical components is shown in Fig. 3.3

The QUBIC apparatus uses a novel combination of two established phys-
ical techniques, interferometry and bolometry. By combining the advantages
of these two techniques, the instrument strives to achieve the immense sensi-
tivity and signal purity required to separate the ultra faint B mode signal from
the much stronger background and foreground noise. One of the primary ad-
vantages of interferometry is its low systematic errors, while bolometry results
in superior sensitivity over other techniques.

Interferometry concerns the combination of wave based information from
multiple sources. In astrophysics, it is typically used as a workaround to the
restrictive limitations on angular resolution placed by the Rayleigh criterion

θ = 1.22
λ

D
(3.1)

on observations, particularly at longer wavelengths. An interferometric aper-
ture system may be considered to have a baseline D equivalent to the separa-
tion of the centres of the individual interfering apertures, as discussed in the
introductory section concerning VLBI. In the case of QUBIC, it allows the 400
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FIGURE 3.3: Cutaway schematic diagram of the QUBIC appara-
tus (May et al. 2014.)

horns to behave as a single large detector, with an aperture of 40 cm. This
corresponds to 120 λ at 90 GHz, and therefore a physical resolving limit of
0.01 rad ≈ 0.5 degrees. or the apparent size of the solar/lunar disc in the night
sky. In the case of QUBIC, interferometry is not used for its ability to create
an equivalent large aperture, but rather to exploit its control of systemic er-
rors in calibration. By opening and closing switches between the horns in a
back-to-back pair, equivalent baselines can be selected, which should, if cal-
ibrated correctly, produce identical patterns on the focal plane. The rotating
HWP and polarizer modulate the pattern on the focal plane, and this, along
with a knowledge of the corrugated horn beam pattern, allows recovery of an
image on the sky in terms of Q and U Stokes parameters (Burke, D. 2021).

Bolometry constitutes the irradiation of a resistor with known thermal in-
ertia with the intention of measuring the total spectral power of the incident
radiation. It differs from other detection methods in that it is sensitive to all
frequencies, and exhibits a linear response across the spectrum. In the case of
QUBIC, filters and the horn waveguides are used to define the frequency bands
which reach the bolometer and are absorbed. Additionally, the enclosed cryo-
genic system minimizes input from the environment. The bolometers used
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are transition edge sensors (TES), ultra cold superconducting detectors. The
name refers to the edge of the transition between typical and super conductiv-
ity, which occurs at a specific temperature, usually in the 0-10 K range. These
sensors can thus use the high temperature dependence of their resistance at the
edge of the superconducting state to very accurately detect the power absorbed
from the incident photon flux (Bennett, D 2014). Fig. 3.4 shows the structure
of a TES pixel. Such detectors can register the change in energy resulting from
the absorption of even a single photon.

FIGURE 3.4: Schematic diagrams of the functionality of an indi-
vidual TES bolometric pixel, with its associated amplifier (Na-

gler, Sadleir and Wollack, 2021).

The signals from the TES pixels are then multiplexed and amplified by su-
perconducting quantum interference devices (SQUIDs). These devices detect
tiny changes in magnetic field strength by measuring the variation in a cur-
rent around a loop of superconducting wire. Superconducting wire is chosen
due to the expulsion of magnetic flux from the inside of the wire, and thus its
total lack of electrical resistance. The outputs of the individual SQUIDs are
combined to generate the total interference pattern output for the array, repre-
senting the signal on the sky convolved with the interferometer beam pattern.
This detection system takes advantage of the cryogenic environment already
required for a good signal-to-noise ratio, and boosts it further to maintain a su-
perconductive state in the TES. A further detailed technical outline of QUBIC
is given by Hamilton et al. (2021).

Knowledge of the beam patterns from the QUBIC corrugated horn array
is important for the success of the project. In Chapter 6 I extend the mod-
elling capability of Maynooth’s in-house software ’PyScatter’ to take account
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of manufacturing tolerances on the horn array. In Chapter 4 I investigate the
possibility of re-designing the QUBIC horns to also operate at 90 GHz.

3.3 ALMA

3.3.1 Technical overview

The Atacama Large Millimetre Array (ALMA) resulted from a collaborative ef-
fort by European, North American and Japanese astronomical organizations,
all seeking an array of linked ground based telescopes to operate in the mil-
limetre wave spectral band. The location selected for the array lies on a large
raised plain, deep in the Atacama Desert of Chile. This area was chosen for
its altitude of over 5,000 metres, its stable, dry climate, and its considerable
separation from substantially populated areas and the ensuing radio noise.
These factors result in a highly stable and rarefied column density, combined
with a lack of absorption and scattering from dust and water vapour; as such
this area boasts some of the most reliably superior astronomical seeing from
ground level anywhere on the globe (Bustos, 2014).

FIGURE 3.5: ALMA array in extended configuration (artist’s im-
pression, Britannica 2018).

The array consists of 66 telescopes, most of which are 12 m in diameter,
with some 7 m in diameter. The array can form many unique configurations,
enabling a massive variety of baseline lengths and spatial orientations. 192
telescope slabs lie in a radial pattern extending from the centre of the site.



Chapter 3. QUBIC and ALMA 43

Connecting roads allow two purpose built crawlers to move the telescopes
between the slabs, changing the array shape. This allows for a resolution be-
low one hundredth of an arcsecond when the array is in its widest configu-
ration, while also permitting compact patterns to examine extended sources.
In general, wide configurations are used for angular resolution limited obser-
vation, such as with the EHT, as mentioned earlier. Close configurations are
conversely used for photometric intensity limited observations, typically faint
objects subtending large angular scales, such as nebulae. Fig. 3.5 shows an
artist’s rendition of the final ALMA array moving to the extended configura-
tion.

The individual ALMA component telescopes have a Cassegrain design,
with the majority having a 12 m primary and a 0.75 m secondary suspended on
struts. Tolerance on the surface of the dishes is 20-25 µm, similar to coarse copy
paper. This is sufficient for the minimum wavelength of radiation received,
approx 350 µm, being below 0.1λ. Rigidity is a more restrictive concern, with
a tolerance of just 13 fs of delay over a 5-minute period, corresponding to a
maximal flexion tolerance of 3.9 µm in the dish. The telescopes must thus be
sufficiently rugged to withstand the harsh environment, including high winds,
40 degree diurnal temperature shifts, and frequent earthquakes, without suf-
fering even minor deformation. Additionally, they must be robust enough to
be moved between sites without loss of performance due to distortion under
their own 100 ton weight (ALMA, 2021).

At the heart of ALMA is the correlator, one of the most powerful supercom-
puters in the world, housed in the highest altitude facility of its kind. Whereas
a basic interferometer has just two elements, the correlator allows ALMA to
include 64 antennas, giving up to 2000 baseline lengths between the pad in-
stallations, in addition to countless radial orientations. Accomplishing this
task in real time, with more information constantly streaming in, is a mam-
moth computing task. To this end, the four quadrants of the correlator use
over 100 million individual processors to parallelise and complete tasks at a
rate of 1.7× 1016 operations per second.
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TABLE 3.1: Spectral observing bands of the ALMA array (Iguchi
et al. 2009).

Band Frequency range Type
(GHz)

1 31–45 SSB
2 67–90 SSB
3 84–116 2SB
4 125–163 2SB
5 163–211 2SB
6 211–275 2SB
7 275–373 2SB
8 385–500 2SB
9 602–720 DSB

10 787–950 DSB

3.3.2 Observational bands

The ALMA functional range covers 1.5 decades of frequency in the low GHz
and THz regions of the electromagnetic spectrum. The frequency band struc-
ture is shown as Tab. 3.1, however the exact boundaries vary slightly depend-
ing on the source quoted. The individual bands each have a fractional band-
width of 0.25-0.3, making them suitable for use with a single detector. A wide-
band detector could also combine two adjacent bands, as will be discussed
later. Bands 3 through 10 are fully active, with Band 1 also being implemented
in late 2021. Band 2 is still under development. In Chapter 5 I investigate horn
designs to facilitate possible combined band detectors in the future.

3.3.3 ALMA science

With each new band, new atomic and molecular transition lines are opened
up to science, at interferometry-aided resolutions that were not possible with
simple single dish designs. These allow for the detection of biomolecules in
various settings, from the clouds of gas giants in the Solar System to the in-
terior of giant molecular clouds. Many of the regions observed by ALMA are
totally opaque in the visible due to vapour and dust. Of particular interest
are Bands 4-5; various carbon-based molecular transitions have been detected
in the Band 4 region of the spectrum. Furthermore, water vapour has a faint
transition in the Band 5 range, allowing its detection in protostellar disks and
molecular clouds. These capabilities hold particular interest due to the status
of water and carbon as the most fundamental prerequisites for the develop-
ment of recognisable life (ESO, 2021). The dust penetrating power of radiation
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at ALMA frequencies also allows imaging of the internal structure of nascent
stellar systems. This is important as in the initial planet forming era, such
systems are without substantial stellar winds, their parent star having only
recently initiated core fusion. As such, the larger planetary bodies are still
sheathed in their formative cloud, and thus are not detectable by visible-light
instrumentation. As ALMA grows, it can begin to search for signature den-
sity structures within these systems, potentially showing the sweeping voids
in protostellar disks thought to be indicative of planet formation.

3.4 Summary

The purpose of this chapter is to serve as a supplementary reference for Chap-
ters 4, 5 and 6, explaining the QUBIC and ALMA projects, upon which those
chapters are based. The design, operation and objectives of the observing
projects were discussed, along with possible outcomes and future develop-
ment. This provides context to the corrugated horn design and simulation
which forms the bulk of this thesis.
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Chapter 4

Corrugated horn design and mod-
elling

4.1 Introduction to corrugated horns

This section concerns the use of waveguides and corrugated horns for the
transmission of radiation at GHz and THz frequencies. A waveguide is a hol-
low channel of conducting material, filled with a dielectric, commonly air. It
acts to transmit microwave energy, without significant losses, by total inter-
nal reflection between the internal walls. Analogues for other parts of the EM
spectrum include fiber optics for visible light and coaxial cables for RF.

A waveguide allows the propagation of radiation in a series of distinct
forms called modes. Each mode is a specific solution of the wave equation as-
sociated with the vibrational cavity formed by the waveguide. Specifically, the
waveguide imposes a boundary condition, converting the wave into a mode
by requiring that the field at the conductive boundary be reduced to zero. Each
mode has a characteristic frequency range throughout which it will propagate.
The modes of smooth-walled waveguides, known as TE and TM modes, will
be described in detail in Chapter 6. The limiting frequencies beyond which a
particular mode will not propagate are termed cutoffs. The mode with the low-
est cutoff is the waveguide cutoff, as below this no radiation propagates. There
are separate solutions for the modes propagating in the conducting "cladding"
and for those propagating in the dielectric "core" (Snitzer, 1961), but the latter
is of primary interest.

Waveguides come in a variety of geometries, tailored to their specific pur-
pose. A long cylindrical waveguide can be used to transmit signals, whereas a
horn, or flared waveguide, is generally used to radiate them. The fundamen-
tal requirement for a horn is that the geometry provides a smooth transition
between the impedance of the transmission medium and the impedance of
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FIGURE 4.1: Horn cross section, showing the waveguide, throat
and mouth sections of a horn. The transition section is also

marked, where the corrugation depth reduces to 0.25 λ

free space. The mathematically ideal geometry for this is an exponential horn,
as these provide the fewest possible reflections between source and aperture
(Ascama et al. 2013), minimising reflective distortion and losses. In practice,
simpler conical and square conical (pyramidal) horns are often used, due to
ease of manufacture and modelling. Intermediary designs such as polynomial
profiles may also be employed. A horn can be designed to perform multiple
functions simultaneously, in addition to impedance matching. These include
restricting the modes in which radiation can propagate, applying polarisation
effects and increasing the directional gain of a signal. These functions are mod-
ulated by the specific geometry of the horn and highly dependent on the wave-
length of incoming light. As such a particular horn is designed to operate over
a relatively narrow waveband, typically in the region of ±20% centred on the
quoted frequency of the horn (Del Torto, 2012). Fig. 4.1 shows a cross section
of a horn design which will be discussed further in the next chapter. It is la-
belled to show the different regions of a typical design, the waveguide, throat
and mouth.

Many horns used to propagate microwaves in astronomy and communica-
tions are corrugated, having crenellations or slots of a specific depth placed ra-
dially around the interior of the horn. This performs a number of functions. In
addition to improving the directional gain, it allows for the propagation of hy-
brid modes within the cavity. These modes have both TE and TM components.
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FIGURE 4.2: Closeup of the throat of a horn, showing r0, the ra-
dial distance from the horn boresight to the bottom of a slot, and
r1, the distance to the corrugation peak. Also marked is a, the

waveguide width.

The most commonly employed mode is the TEM11 mode, which typically ap-
proximates a Gaussian beam within the operational waveband (Granet and
James, 2005). These hybrid modes allow corrugated horns to function with
lower attenuation then their smooth-walled counterparts. Fig. 4.2 shows a
close-up diagram of the throat section of a corrugated horn, defining some of
the parameters used in the remainder of the thesis.

4.1.1 Glossary of further relevant terms

The performance of horn antennas will be discussed throughout the remainder
of this thesis, here some common terms used to describe various aspects of
performance are explained.

Aperture efficiency is the ratio of the effective area to the total area of an
antenna. Effective area is the area from which EMR can radiate. Aperture
efficiency may be reduced from unity by physical constraints such as armature
and equipment partially blocking the optical cavity. It may also be reduced in
the case of an aperture which is not designed to capture light across its entire
surface, for example, a mesh gridded dish with a solid non-reflecting rim.
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Insertion loss is the decrease in signal intensity caused by inserting a com-
ponent into a transmission line. It may also be termed attenuation. This is
typically calculated as the power leaving divided by the power entering, and
expressed as a negative dB value (a positive value would signify gain or am-
plification). This quantity is usually minimised to optimise optical systems,
particularly across passive components such as lenses, mirrors, etc.

Polarisation efficiency represents the degree to which the polarisation of the
incoming radiation matches the polarisation of the antenna detecting it. In
the case of a linear polariser it may be calculated as the square cosine of the
angle between the polarisation direction of the antenna with respect to that of
the incoming radiation. Thus, for an angle of π/2, the efficiency will be zero,
perfect obstruction, and for an angle of zero, the efficiency will be unity, perfect
transmission (Mandeep and Hilary, 2011).

Reflection loss is a reduction in power due to the reflection of electromag-
netic energy off a sharp boundary between media of differing impedance.
For example, horns are used to minimise the reflection of power back down
a transmission line due to the impedance mismatch between the transmission
line and free space. It may also be referred to as return loss. It is usually quoted
as the ratio of the transmitted power to the returning power and is typically
expressed in dB. Thus, a minimal return loss is preferable, as it implies that the
component impedances are well matched.

Scattering parameters are a method of analysing the interaction between
ports in an electrical system. The scattering parameters of a system of N ports
may be represented as an N × N matrix, wherein each term refers to an inter-
action (transmission or reflection) between the associated two ports. In partic-
ular, the S11 parameter can be used to express the return/reflection loss of an
antenna, as defined above.

Evanescent modes and fields are a feature integral to wavelike phenomena.
Continuity is the cornerstone of wave mechanics, thus waves tend not be dis-
continuous at a boundary. For example, the continuity of matter waves at the
boundary of a quantum potential well results in the finite probability of tun-
nelling through the well boundary. In the case of electromagnetic waves, this
is observed as exponentially decaying fields penetrating into a cavity which is
too small to support transmission of the associated mode. Such fields are also
observed upon exceeding the critical angle at an optical refractive boundary.
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These fields do not transmit power, their Poynting vectors averaged over a cy-
cle sum to zero (Ramakrishna and Armour, 2003), however they can interfere
with desirable modes, as such measures are often taken to ensure that they do
not affect the performance of components.

4.1.2 Modelling corrugated horns with PyScatter

Whilst there are rules-of-thumb for the design of corrugated waveguides and
horn antennas, a rigorous analysis requires a technique such as finite-element
analysis (using for example Ansys HFSS1), or electromagnetic mode-matching
(Clarricoats, 1984). In this thesis I have made extensive use of the in-house soft-
ware PyScatter (Gradziel, 2007) (Kalinauskaite, 2018) that uses electromagnetic
mode-matching. This technique regards the corrugated structure as a sequence
of smooth walled cylindrical waveguide sections, each of which can support a
set of propagating TE and TM modes. At each corrugation the sudden change
in the radius results in a scattering of power into backward propagating re-
flected modes in the left-hand side guide segment and forward propagating
transmitted modes in the right-hand segment. The power coupling between
modes is given by the overlap integral

∫
en,lh∗m,rdA (4.1)

where en,l is the transverse electric field of mode n on the left-hand side of
the junction, hm,r is the magnetic field of mode m on the right-hand side of
the junction and dA is a surface element on the transverse plane. The modes
are then propagated through the length of waveguide section to the next scat-
tering junction where the overlap integral between the modal components is
performed again.

If [A] and [C] are column vectors of the mode coefficients of the fields inci-
dent from the left and the right, and [B] and [D] are the mode coefficients of the
resulting reflected fields (Fig. 4.3), then their relationship is described using a
scattering matrix [S][

[B]
[D]

]
= [S]

[
[A]

[C]

]
= [S]

[
[S11] [S12]

[S21] [S12]

] [
[A]

[C]

]
(4.2)

1https://www.ansys.com/products/electronics/ansys-hfss
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FIGURE 4.3: Scattering at a horn corrugation.

whose elements are calculated using overlap integrals as described in (Olver,
1994). These overlap integrals are the subject of Chapter 6 and will be dis-
cussed further then. The columns of the scattering matrix describe the am-
plitude of each output mode generated by a unit-amplitude input mode. The
scattering matrix for the horn as a whole is computed by cascading the matri-
ces for each uniform section and junction. The field at a corrugation step in a
corrugated horn is determined from Eq. 4.2. The components approaching the
junction, A and C are related to the components leaving the junction B and D,
through multiplication by the S matrix. The transmitted and reflected power
are found by multiplying the complex elements of the relevant column vector
by their complex conjugate and summing them.

The PyScatter code takes as input a text file, known as the geometry file,
that specifies the operating frequency and corrugation geometry of the horn.
An example is shown in 4.4. The frequency and the number of corrugation
sections are given in the header, followed by a list of all the section lengths,
followed by the section radii (ro and r1).

Fig. 4.5 shows a typical plot of the beam pattern from a corrugated horn
calculated using PyScatter. This particular example is for the corrugated horn
used in the QUBIC telescope. It was computed by calculating the coupling
between 30 TE and 30 TM modes at 173 GHz (the central design frequency of
this horn was 150 GHz). The plot shows many of the advantages of corrugated
horns and why they are used extensively at GHz frequencies. The beam is
directional (the gain on the main lobe is greater than 20 dB and the sidelobe
level is low) and highly symmetric as can be seen by comparing the 0, 45 and
90 degree cuts. The cross-polarisation is low, falling below -50 dB at boresight,
and peaking at -36dB near the first nulls.
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FIGURE 4.4: Example geometry file input to PyScatter. The first
three lines are the header (the pattern is calculated at 168 GHz,
line 2 is not used, and there are ten sections in the horn), the fol-
lowing ten lines are the section lengths and the final ten lines are

the section widths.

FIGURE 4.5: Sample pattern plot of transmitted power as a func-
tion of angle for a corrugated horn. This example shows the 173-

GHz beam pattern of a QUBIC horn.
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4.2 The QUBIC horn design

4.2.1 QUBIC at 90 GHz

The QUBIC instrument (see Chapter 3) uses an array of back-to-back corru-
gated horns to collect electromagnetic radiation from the sky and transmit it
to an optical combiner. The horns in each back-to-back pair are corrugated as
a low sidelobe level and low cross-polarisation were considered important in
the original design described in (Cavaliere et al. 2020). QUBIC operates in two
frequency bands, the lower one centred at 150 GHz, the higher at 220 GHz. The
horns were designed to transmit radiation in both frequency bands simultane-
ously (approximately 130–240 GHz) and so are very wide-band. Observing the
CMB in multiple frequency bands is crucial to the subtraction of contaminating
foreground sources.

One possibility being considered by the QUBIC collaboration is to design a
QUBIC-like instrument that could be placed at the focal plane of the LLAMA
telesope, also under construction at La Salta province in Argentina (Romero,
2020). One question arose as to whether it would be possible to modify the
QUBIC horns so that they could also transmit radiation in a third, lower, band
at 90 GHz. Although it was suspected that 76–240 GHz would be too wide,
electromagnetic mode-matching with PyScatter was used to find the full band
of the current QUBIC horn design and to see whether any straightforward
modifications to that design could allow operation at 90 GHz.

4.2.2 The existing QUBIC horn design

To begin with, the existing horn geometry was analysed using PyScatter. The
code was modified to plot the normalised far-field beam pattern at frequencies
from 90 to 220 GHz, in steps of 1 GHz. Cuts of each pattern were taken at 0, 45
and 90 degrees (an example was shown in Fig. 4.5).

As a measure of the correct operation of the horn, the first sidelobe level,
relative to the on-axis gain, was calculated in dB at each frequency step in the
90 to 220 GHz range encompassing the higher band at 220 GHz, the band at 150
GHz, and the newly introduced lower band at 90 GHz. The results are shown
by the orange trace in Fig. 4.6. If no beam is produced the level defaults to
20 dB. It can be seen that the horn fails to propagate radiation below 126 GHz,
and has a sharp mode cutoff. The frequency at which cutoff occurs can be pre-
dicted using the propagation characteristic of the hybrid modes that propagate
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FIGURE 4.6: Comparison of original and wider horn, showing
sidelobe level at 1 GHz intervals throughout the bands.

in corrugated horns. As it is the narrowest part of a back-to-back horn pair,
the throat width of the horns (Fig. 4.8) is what determines the modes that can
propagate. The cutoff, for a given corrugation ratio (r1/ro) in the guide, can be
read from plots such as as Fig. 4.9. For QUBIC, the narrowest part of the throat
section has r1 = 0.684 cm and r0 = 1.394 cm giving r1/ro = 0.491. The QUBIC
horn was designed to propagate the single HE11 mode and from Fig. 4.9 the
y value corresponding to HE11 at corrugation ratio 0.491 is approximately 1.8.
The units are ωr1/c ≈ 1.86, solving for frequency

fmin =
1.8c
2πr1

= 129 GHz. (4.3)

For comparison, the general cutoff frequency for a smooth-walled cylindrical
guide of radius a is

fmin =
1.8412c

2πa
= 128.5GHz. (4.4)
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FIGURE 4.7: Cross polarisation plot for QUBIC horn with deeper
corrugations. The cutoff section at low frequencies is visible,

along with generally poor cross polarisation.

FIGURE 4.8: Plot of the QUBIC horn design. The corrugation
sections are 0.3 mm in length, for scale reference. The waveguide

and throat sections discussed earlier are clearly visible.

4.2.3 Modification to the QUBIC horn design

In order to increase the functional waveband of the QUBIC horn down towards
the 90 GHz target, the first thing to consider is the width of the waveguide
and throat of the horn, as a wider guide permits mode transmission at lower
frequencies. To widen the horn, the input geometry file was altered by adding
a fixed value to each of the r0 and r1 values along the full length of the horn.
The plot in Fig. 4.6, shows an example when a test value of 0.3 mm was added.
It can be seen that an increase in the overall horn width causes a decrease in the
functional waveband of the horn towards the desired lower frequency band. In
this case the cutoff shifted to 108 GHz but there was, however, a corresponding
decrease in performance at the upper end of the band.
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FIGURE 4.9: Lower limit mode cutoff graph for various HE and
EH modes of corrugated horns (Clarricoats, P. Olver, A, 1984).
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A second method was tried where r0 was increased but not r1 i.e. deeper
slots in a wider horn. This reduces r1/r0 and moves the horn to the left along
the HE11 cutoff line in Fig. 4.9 to lower values of ωr1/c. Since r1 was not
changed this has the effect of lowering the cutoff frequency ω. The corrugation
slots were deepened by 0.5 mm along the length of the horn, and the data was
again analysed in PyScatter. This simulation returned no data for most points
below 106 GHz, implying full mode cutoff. A few frequencies appeared to
propagate, below 106GHz, but this is unlikely to be a physically valid result.
Additionally, the cross polarisation began to spike in the centre of the band, as
shown in Fig. 4.7

A final geometry file was created to investigate performance across the
three bands of a smooth walled horn. A Python script was used to flatten out
the corrugations to a smooth, rolling mean along the length of the horn. This
retained the curvature and slope of the horn, while removing the corrugations.
Because there are no corrugations, there is no high-frequency mode cutoff in
the system. Fig. 4.10 and Fig. 4.11 show beam patterns calculated for the horn
at 155 and 220 GHz. The improvements afforded by corrugating the horn are
made abundantly clear by comparison with Fig. 4.6. In the case of the smooth-
walled horn the main lobe is not symmetric and the sidelobe level (-9 dB) and
cross-polarisation level (-10 dB) are much higher than for the corrugated horn.
Since the current design of QUBIC has a HWP and polarizer (see Chapter 3)
and its calibration scheme should be able to deal with an asymmetric beam,
future versions of the instrument may not have such tight requirements for
beam symmetry and cross-polarization and smooth-walled designs could be
considered.

4.3 Summary

The aim of the research outlined in this chapter was to investigate an existing
horn design for the QUBIC instrument. QUBIC currently operates over two
bands, centred at 150 and 220 GHz, and the possibility of extending that to a
third 90-GHz band was considered. The horn was varied by changing individ-
ual parameters such as waveguide diameter and slot depth, with the intention
of extending its lower operational limit. This was partially successful, as the
lower frequency limit at which the horn remained well-behaved was brought
from ∼ 126 GHz to ∼108 GHz. However, a corresponding reduction in per-
formance at the higher band nullified this benefit. Finally, a smooth-walled
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FIGURE 4.10: Sample pattern plot of transmitted angular power
at 155GHz for a smooth walled horn at 0, 45 and 90 degrees to the

polarisation axis. Cross polarisation is included as a red trace.

FIGURE 4.11: Sample pattern plot of transmitted angular power
at 220GHz for a smooth walled horn at 0, 45 and 90 degrees to the

polarisation axis. Cross polarisation is included as a red trace.

version of the QUBIC horn was designed to illustrate the advantageous effect
of corrugation. The smooth-walled horn had much poorer performance, with
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very high cross-polarisation and sidelobes at -10 dB, compared to -25dB for the
corrugated horn at the same frequency.

The work described here showed that a simple solution for extending the
QUBIC observing band is unlikely to be found and a more bespoke re-design
of the corrugated horns should be done.
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Chapter 5

ALMA Collaboration

5.1 Introduction

5.1.1 The Maynooth-Manchester collaboration

The research outlined in this chapter was completed in collaboration with col-
leagues from the Advanced Instrumentation Group (AIG) of Manchester Uni-
versity. The AIG won funding from ESO for the design, development and
production of extremely sensitive, broadband low-noise amplifiers (LNAs) in
order to upgrade the capabilities of the ALMA telescope. In the future they
plan to dramatically enhance the field-of-view of the ALMA telescope by de-
ploying focal plane arrays or phased array feeds (PAFs). The increase in sen-
sitivity promised by these LNAs can only be realised if they are well coupled
to the sky and critical to achieving this is the design of the passive optical ele-
ments, primarily the feed-horn and ortho-mode transducer (OMT). The design
of these components is especially challenging due to the large fractional band-
width of operation desired. The OMTs were designed by Mark McCulloch in
Manchester and the aim of the work presented in this chapter was to design
suitable corrugated horns to feed them.

This work aimed to construct and then simulate corrugated horns to meet
the requirements set out for receivers operating within various bands of the
EM spectrum. Two particular regions were identified for consideration. The
primary design would be for a wideband horn covering combined ALMA
bands 4 and 5, with a secondary project to cover the Ka band, a much lower
frequency, with less bandwidth. The lower frequency design is one that could
be manufactured and tested in Manchester, spanning 26.5-40GHz.

Three horn designs were analysed. An initial 84 corrugation horn was sim-
ulated but was deemed too costly to manufacture due to the large number of
sections. A smaller, 35 corrugation, horn was made to satisfy this requirement.
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FIGURE 5.1: Longitudinal profile of prototype horn for use in
ALMA bands 4 and 5.

This horn was then modified slightly to produce a third design (30 corruga-
tions), to comply with the thickness of aluminium plate available from the
supplier. The three designs will be detailed and compared below. A tolerance
analysis is also provided for the second and third designs.

5.1.2 Design and modelling

Conical corrugated horns were designed following principles given in the lit-
erature, as will be described. A routine was developed in Python to construct
a longitudinal cross-sectional horn profile (PyScatter geometry file) from the
resulting series of input design parameters; such a profile for the final ALMA
prototype horn is shown in Fig. 5.1. The horn was then modelled using the
electromagnetic mode-matching technique with the in-house software PyScat-
ter as has been described in Chapter 4.

Scatter produces the scatter matrix for the profile from which the sub-matrices
[S11] and [S21] are extracted. The transmitted and reflected mode coefficients
are calculated using Eqns. 4.2 with [A] = [1, 0, 0, ...], i.e. exciting the one input
mode, TE11, that can propagate through an input circular waveguide. Fields
are calculated by summing modal fields, weighted by the relevant mode coef-
ficients.

The number of waveguide modes included determines the accuracy of the
scattering analysis. For initial testing, 40 waveguide modes were used, rising



Chapter 5. ALMA Collaboration 62

to 60 (30 TE and 30 TM) for the final analysis and plotting. Including the addi-
tional modes did not alter the farfield patterns out to the relevant angles from
boresight. The TE and TM modes with power at the aperture have a coherent
phase relationship and in this case correspond to the single hybrid HE11 mode
(a singular value decomposition (SVD) of the [S] matrix results in one singular
value). The PyScatter software is computationally less intensive than a finite
element approach and can be used to investigate the performance of the horn
over a range of frequencies. Once designed, the beam patterns were verified
by comparison with those produced by the commercial software HFSS.

5.1.3 Analysis

The transmitted field at the horn aperture is propagated into the far field to
yield the beam profile at a given frequency. The FHWM and peak cross-polarisation
level are recorded. Return loss is calculated by summing the power (sum of the
squared mode coefficients) in each column of the [S11] matrix. The return loss,
FWHM and cross-polarisation were computed for each frequency of interest,
and plotted to show the performance of the horn across the band. For initial
testing a frequency resolution of 1 GHz was used, increasing to 0.05 GHz for
the final results.

5.2 ALMA band 4-5 horn designs

5.2.1 Constraints and the horn design

The specifications to be met by the horn designed in this project were based on
those given by Yagoubov et al. (2018) and are listed in Tab. 5.1. This published
work was developed for the lower frequency ALMA bands 2 and 3, as opposed
to 4 and 5, but was of particular relevance as it spanned two bands, while most
receivers are designed for a single band.

The central frequency for the ALMA bands 4-5 horn was chosen as 168.5 GHz,
the midpoint between the 125 GHz lower edge of ALMA band 4, and the
216 GHz upper edge of ALMA band 5. This gives a required bandwidth about
the central frequency of ± 26%. This is quite a wide range, incurring a likeli-
hood of reduced performance at the edges of the band.
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TABLE 5.1: Horn requirements

Parameter Requirement
Centre frequency [GHz] . . 168.5
Frequency range [GHz] . . [125-216]
FWHM at band centre [de-
grees] . . . . . . . . . . . . . . . . . . . .

[14-16]

Cross-polarisation [dB] . . . [<-30 ideal]
Return loss (S11) [dB] . . . . . [<-15, <-20 goal]

A circular conical corrugated horn was designed as a base to which further
modifications could be made. This type of horn is widely used for its high
beam symmetry and low cross-polarisation.

The width of the waveguide and throat of a horn is of paramount impor-
tance in determining which modes will be allowed through at a given fre-
quency. Typically, it is desirable to allow only the TE11 fundamental mode
to propagate from an input circular guide to the throat of the horn. The fun-
damental mode cutoff frequency for a circular waveguide of radius a is given
by 4.4, as discussed earlier. The constant in this equation is the first root of
the derivative of the Bessel function of the first kind. A narrow waveguide
diameter, approaching cutoff at the lower end of the desired frequency band,
will lower cross polarisation across the band. It also reduces the likelihood
of multimodal transmission at higher frequencies; however, these benefits are
tempered by the return loss requirements for the system. If the waveguide di-
ameter is extremely close to cutoff at a given frequency, a significant amount
of power at that frequency will be reflected back down the waveguide upon
striking the first corrugation. A suitable balance between cross-polarisation
and return loss was achieved at a diameter of 1.2 times the theoretical cutoff
for the largest wavelength of the band for the initial model (1.688 mm in diam-
eter for ALMA band 4-5). The final models refined this to 1.17.

The hybridisation section is a junction between the waveguide section and
the body of the horn. Its purpose is to hybridise the TE and TM modes into
one or multiple HE/EH modes (in this case the single HE11 mode). Typically
this is achieved by varying the corrugation depth from an initial λcentral/2 to
the λcentral/4 standard used for the remainder of the horn to improve modal
purity, where λcentral is the central wavelength of the operating band. This rea-
son for this choice of corrugation depth is outlined in detail in Clarricoats and
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Olver (1984), and applied in e.g. Zaman, Matin and Gaffar (2011). The corru-
gation depth is varied linearly across a specified number of corrugations to be
included in the section. It was found that increasing the depth of the initial
transition corrugations reduced the return loss, but increased cross polarisa-
tion at higher frequencies. Thus, simulations were run varying the depth at
which the linear variation began. The optimal compromise was found to be
0.48 λ in this instance. A 20 corrugation transition section was used for both
models. Slot depth reduced linearly from 0.48λcentral to 0.25λcentral for the ini-
tial design, and 0.42λcentral to 0.25λcentral for the final designs, as shown in Fig
5.1.

The aperture dimension is the size of the mouth of the horn, where the
final impedance matching takes place, and is largely determined by the re-
quired FWHM. A wider mouth brings the impedance of the widest corruga-
tions closer to that of free space, thus smoothing the transition and reducing
the return loss. However, increasing the aperture diameter for a given horn
flare angle also increases the horn length, and this is not desirable for real in-
struments which often must fit into a limited volume. For small flare angles,
the beamwidth depends on λ/D, as expected (Fig. 5.2). However, as flare
angle is increased, the beamwidth no longer decreases indefinitely with D.
For widths above 20-30 degrees, the minimum possible beamwidth increases
rapidly. The flare angle of the horn may be chosen quite freely, but a very wide-
angled horn will be short, with relatively few corrugations. These factors may
result in poor directionality and high return loss. For the ALMA band 4-5 ini-
tial horn, a flare angle of 7.5 degrees was chosen. This was extended to 10.8
degrees for the final design, to aid in reducing the number of sections.

The aperture diameter of the initial design was 5.9 λcentral, 10.47 mm for
ALMA 4-5. The corrugation height affects the exact final radius. From Fig. 5.2,
we see that the predicted half beamwidth for D = 5.9λcentral and flare an-
gle θ = 7.5◦ is approximately 6.5 degrees. This corresponds to a FWHM of
13 degrees, somewhat more directional than the requirement of 15 degrees.
However, upon computing the FWHM across the band, the mean FWHM was
closer to the target than suggested by the graph, as discussed in the analysis
section. Additionally, the return loss was improved somewhat by the low an-
gle and large size of the design. The aperture diameter of the final designs
was reduced to 5.4 λcentral, or 9.6 mm. This is chosen to reduce the number of
sections further, while minimising impact on the FWHM.
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FIGURE 5.2: The dependence of FWHM on flare angle and
wavelength-normalised horn diameter for circular conical corru-
gated horns. (Clarricoats, 1984). The position of the initial design
for the ALMA band 4-5 and Ka band horns are indicated by a
black dot on this plot. The final designs are indicated by a red
dot. The frequencies of the ALMA bands are shown in Table 3.1.
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For the initial horn, a slot to corrugation width ratio of 1:1 was chosen
as a starting point, making the grooves of equal width to the corrugations.
The length of the corrugation cycle was varied for optimal balance between
cross polarisation and return loss, returning a value of 0.4 mm as the opti-
mal compromise. This cycle width was chosen for the initial ALMA band 4-5
horn. Each section in the geometry file corresponds to either a corrugation or
a groove and so has a width of half of this, 0.2 mm. This gives more than four
corrugations per wavelength. The second design had a corrugation cycle of
0.6 mm to reduce corrugation number for economical manufacture. This was
subsequently extended to 0.7 mm for the third design, as the sheets of alu-
minium available for machining suited this thickness. The initial ALMA band
4-5 initial design is shown in Fig. 5.1, for reference.

5.2.2 Results

The results of the PyScatter analysis of the ALMA 4-5 design are summarised
in Figs. 5.3-5.5 which show the changing performance of the 84-corrugation
horn with frequency. The frequency resolution of the plots is 0.05 GHz, giving
1820 datapoints across the band. The high resolution was used to more accu-
rately probe variations in the lower part of the frequency band, which were
not well defined using lower resolution frequency scans.

FIGURE 5.3: FHWM dependence on frequency, as computed by
PyScatter. (Design 1: 84-corrugation horn.)
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FIGURE 5.4: Cross polarisation dependence on frequency, as
computed by PyScatter. (Design 1: 84-corrugation horn.)

FIGURE 5.5: Return loss (S11) dependence on frequency, as com-
puted by PyScatter. (Design 1: 84-corrugation horn.)

The FWHM plot shows a beamwidth that changes rapidly with frequency
in the lower part of the band. This settles down to the expected steadily de-
creasing width above 150 GHz. The FWHM graph shows discrete jumps, un-
like the other plots, because of the finite angular resolution of 0.2 degrees.
Adding further resolution wasn’t considered necessary in the case of FWHM,
due to its slow and highly uniform change with frequency. The mean FWHM
across the plot is 14.3 degrees, ensuring that the beam in the central region
of the waveband has a width within the 14-16 degree range. The central fre-
quency FWHM was thus modelled to be slightly wider than the 13 degrees
predicted earlier by Fig. 5.2.

The cross-polarisation also changes with frequency but stays below about
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-20 dB and is less than -40 dB in the centre of the band. The cross-polarisation
of -19 dB at the very lower end of the band is slightly above the desired level
and is one of the compromises made for obtaining very wide bandwidth.

The return loss is more stable at low frequencies than the other measured
characteristics. The value oscillates in the 120-150 GHz region but remains
below -30 dB above 150 GHz. In the 140-145 GHz region, this oscillation takes
the form of a series of expanding asymptotic curves. The predicted structure in
the frequency response at the lower end of the band could be real or potentially
an artefact of the PyScatter algorithm, which involves matrix inversion. In
particular, the matrix arithmetic involved in cascading the sections of the horn
could introduce float division by zero errors, explaining the asymptotes. To
verify the low-frequency results, the Manchester team analysed the radiation
performance of the ALMA band 4-5 horn using HFSS, which uses a finite-
element approach and thus would not likely possess the same artefacts. As
shown by figure 5.6, the artefacts were not present in HFSS. PyScatter shows
smooth asymptotic curves, approaching a bilateral asymptote at a range of
single points. HFSS shows low level fluctuations (∼ ±1 dB ), with no periodic
nature observed. Both software packages agree, however, on the general trend
of the return loss, varying from approximately -26 dB at 140 GHz, to -28 dB
at 145 GHz. This suggests that the observed patterns in the PyScatter data are
indeed an artefact, and will not likely be measured from a real physical horn.

The 84 corrugation horn was deemed too expensive to machine in the near
future. In light of this, the results for the re-designed horn with a smaller
number of corrugations are shown in the next section, together with a full
tolerance analysis performed for potential machining of this horn.

5.3 Tolerance analysis

Tolerancing is required to determine the degree of precision required in ma-
chining horns, as a horn with greater tolerance for error is typically quicker
and/or cheaper to produce, while also allowing for greater choice of produc-
tion methods. These advantages are minor in the case of a single horn, but
are compounded for a large array, making cost and time viability critical to the
design. A series of examples in the literature are presented in Tab. 5.2, which
lists the author and year of publication, the tolerance level achieved, the horn
manufacturing method employed to achieve it, and critically, the frequency at
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FIGURE 5.6: Return loss as a function of frequency for the ALMA
band 4-5 horn (Design 1: 84 corrugations). Comparison of high
frequency scans of a 5 GHz band section using HFSS (red) and
PyScatter (blue), showing anomalous patterns in the PyScatter

data.

which the horn operated. In general, a horn designed to operate at a lower
frequency will have a greater tolerance, as the manufacturing errors incurred
represent a smaller fraction of λ.

To determine the effect of machining tolerances on the horn design with a
reduced number of corrugations (Design 2: 35 corrugations), a Python routine
was written to vary the depths of the corrugations. This was conducted by se-
lecting a pseudorandom number from a uniform distribution, centred on the
true corrugation size, and extending to the relevant tolerance limits. Tolerances
are mostly constant throughout the depth of the horn (with a small nonlinear
component possible for rotating-spindle based methods, due to flexion in the
spindle), however they become an increasingly larger fraction of the overall
diameter as one approaches the throat. This implies that the throat section is
most vulnerable to the detrimental effect of inaccuracies. Two methods were
used to approximate tolerances, a general approach, using uniform random
variations of the first twenty corrugations, and a more complex two step ap-
proach tailored to the machining methods to be used,

5.3.1 Single level throat tolerance

To implement this method, 20 geometry files were prepared for each tolerance
level, each with a unique randomly varied throat section (taken as the first 20
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TABLE 5.2: Machining tolerances in the literature.

Author Tolerance Method Frequency
Villa et al., 2002 10 µm Cu electrodeposition on Al plug

with Au plating
100 GHz

Del Torto et al.,
2011

30 µm Al platelet stacking 100 GHz

Mandelli et al.,
2021

30 µm CNC milled and etched Al
platelet stacking

155 GHz

Britton et al., 2010 10 µm Si micromachining, ion etching,
Cu, Au plating

150 GHz

Francechet, 2021 60 µm Chemically etched Al platelet
stacking

95 GHz

sections in the geometry file). The variation was estimated as a random value
in the range ±∆, where ∆ is the stated tolerance value. The performance was
examined at 5 GHz intervals across the band. An example of the data gener-
ated is shown in Fig 5.7. Plots of beam parameters as a function of frequency
were then prepared, which were compared with the ideal parameter for the
as-designed horn. An approximate range was shaded around the mean curves
in Figs. 5.8 to 5.10, by taking the standard deviation of the dB values for all
data points at a given frequency. This will not constitute a true standard de-
viation due to the logarithmic nature of the data, however it is included as a
guide to compare the variation at different points across the waveband. Plots
of beam width are not included in the results for the tolerance analyses, as the
values obtained were almost identical to those for the nominal section widths.
This can be explained by the fact that beam width depends primarily on the
aperture diameter and flare angle. As such it is not extremely sensitive to slight
changes in corrugation widths, as the other beam parameters are,±0.2 degrees
is typical.

Three tolerance levels were analysed: ±25 µm as a typical tolerance,±50 µm
as an example of crude tolerance, and finally, ±100 µm to show the effect of an
unrealistically poor manufacture, and thus demonstrate the requirement for
the precision levels commonly used in industry.

It is clearly shown by Fig. 5.10 that a tolerance of 100 µm would be wholly
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FIGURE 5.7: Cross polarisation as a function of frequency for 20
realisations of the horn with ±25 µm error. The coloured traces
show the performance of individual iterations, while the thick

black trace represents the nominal horn design.

FIGURE 5.8: Cross polarisation and return loss as functions of
frequency for 20 realisations of the horn with±25 µm error (mean
and standard deviation were calculated as explained in the text).

The single unshaded line denotes the ideal case.

unsuitable for components at this waveband. Mean cross-polarization and re-
turn loss levels are almost 10 dB above the ideal design. Conversely, Fig. 5.9
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FIGURE 5.9: Cross polarisation and return loss as functions of
frequency for 20 realisations of the horn with±50 µm error (mean
and standard deviation were calculated as explained in the text).

The single unshaded line denotes the ideal case.

shows a more modest 4-5 dB average increase in both cross-polarization and
return loss across the band. However, the return loss at the upper end of the
band is still adversely affected. This is to be expected as at higher frequencies,
the errors included represent a larger fraction of λ. The 25 µm dataset, Fig. 5.8,
shows very minor reduction in performance, on the order of 1-2 dB. Addi-
tionally, the deviation of the values is much smaller, indicating that it is very
unlikely that any particular horn would perform poorly. The final conclusion
from these data is that the analytical horn design outperforms the deviated de-
signs in all three cases at all frequencies. The <25 µm tolerance level is thus
adopted as the goal to aim for in considering the machining methods available
for manufacture.
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FIGURE 5.10: Cross polarisation and return loss as functions of
frequency for 20 realisations of the horn with ±100 µm error
(mean and standard deviation were calculated as explained in

the text). The single unshaded line denotes the ideal case.

5.3.2 Two level full-length tolerance

The option arose during the project of machining each horn in two parts which
would subsequently be bolted together into a small array of identical horns.
The first 18-20 sections would be realised in plate aluminium, using a platelet
manufacturing approach, as previously used by Francechet (2021). The circu-
lar section cuts would be performed using laser micromachining. This could
give a better tolerance than more conventional machining approaches, how-
ever its substantial cost makes it unsuitable for fabricating the whole array. An
electroforming process was chosen to create the remaining lengths of the horns
individually. These would then be bolted to the positions on the aluminium
sheet which correspond to the micromachined throats. A schematic of this pro-
cedure in various stages of completion is shown in Fig. 5.11, courtesy of Mark
McCulloch and the Manchester team.

To approximate the inaccuracies in a two-step manufacturing process, each
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FIGURE 5.11: Schematic of laser micromachined plates, (right)
individually, (top-left) stacked, and (bottom-left) with the electro-
formed horn bodies attached. Credit: M. McCulloch, Manchester

University.

tolerance level was split in two, corresponding to the different accuracy inher-
ent in each of the techniques used. A best case scenario was taken as 5 µm
for the lasered section and 10 µm for the electroformed section. Average per-
formance was simulated with 10 µm and 20 µm, while worst case used 20 µm
and 40 µm. The tolerances were applied in the same manner as for the previous
analysis. It is of note that these are in general a tighter set of values than were
produced previously, as the techniques chosen do not typically reach 50 µm or
100 µm error levels. As such, performance closer to the nominal would be ex-
pected. The results for each of the three levels in cross polarisation and return
loss are shown as Figs. 5.12-5.17. The cross polarisation is affected much more
severely than the return loss for these tolerance analyses.

5.3.3 Material constraints

The aluminium for micromachining was difficult to source in bespoke sizes.
A set of 0.7 mm plates were available to the Manchester team to supply to
the laser micromachining firm, who would burn a single corrugation slot into
each plate before stacking them together. The individual sections would thus
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FIGURE 5.12: Cross polarisation for ±5µm toleranced throat sec-
tion and ±10µm toleranced remainder.

FIGURE 5.13: Return loss for±5µm toleranced throat section and
±10µm toleranced remainder.
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FIGURE 5.14: Cross polarisation for ±10µm toleranced throat
section and ±20µm toleranced remainder.

FIGURE 5.15: Return loss for ±10µm toleranced throat section
and ±20µm toleranced remainder.

be 0.35 mm in thickness, rather than the 0.3 mm used in the previous analysis.
To preserve the general shape of the horn, the number of corrugations would
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FIGURE 5.16: Cross polarisation for ±20µm toleranced throat
section and ±40µm toleranced remainder.

FIGURE 5.17: Return loss for ±20µm toleranced throat section
and ±40µm toleranced remainder.

thus have to be reduced from 35 to 30 (Design 3). This required the generation
of a second set of geometry files, with their associated beam parameters and
tolerances, to compare with the nominal 0.3 mm (35 corrugation) case.
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The zero offset beam parameters of all three ALMA horn models are pre-
sented in Figs. 5.18, 5.19 and 5.20. The original 84 corrugation model is plotted
in blue and the 35 corrugation model developed to reduce section number is
plotted in red. Finally the new 30 corrugation model to comply with material
requirements is plotted in green. The cross polarisation stays reasonably low
(>-20 dB) across the whole waveband for all three horns. The horns with a
lower number of corrugations actually function slightly better than the orig-
inal at high frequencies. Return loss however, is much lower for the original
horn, staying under -20 dB for the whole band, and under -30 dB for most
of it. The 35 corrugation model stays under -20 dB return loss for most of the
band, rising slightly above at the upper edge. Finally, the 30 corrugation model
reaches -10 dB at higher frequencies, and also performs slightly worse at low
frequencies. The effect of changing the corrugation thickness by the breadth
of a human hair is surprisingly stark. A FWHM plot is also included, showing
the 35 and 30 corrugation horns with almost identical beamwidths, as expected
given their identical mouth diameter and flare angle. The original horn has a
narrower beamwidth, as it is much more gently flared, with a slightly wider
mouth diameter.

FIGURE 5.18: Cross polarisation as a function of frequency for
the three ALMA horn models.

The cross polarisation is slightly better on the 0.35 mm horn in the centre of
the waveband, however below the -30 dB level this is inconsequential. It then
rises above -20 dB at approximately 210 GHz. As the edge of the band is 211-
215 GHz, this is not ideal but not of great concern. The return loss however, is
higher across the band for this horn. In particular, it is significantly higher for
frequencies above 180 GHz. At the edge of the band it reaches -10 dB, while for
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FIGURE 5.19: Return loss as a function of frequency for the three
ALMA horn models.

FIGURE 5.20: FWHM as a function of frequency for the three
ALMA horn models.

the original it horn peaks at -24 dB. This represents a factor of 25 times more
power lost to the S11 at 210-215 GHz due to the increase in platelet width.

One final consideration for laser cutting techniques is that the cutting beam
is a laser, of presumably optical or near UV frequency, which is emitted as a
Gaussian beam from a very small aperture (to improve accuracy and power ef-
ficiency while minimising loss of substrate). This beam is designed to reach a
narrow Gaussian waist at the point of entry into the substrate to be cut, as
shown in Fig. 5.21. For Gaussian beams, as discussed in Chapter 2, it fol-
lows that a smaller waist creates more divergent beams for a given wavelength
(Eqn. 2.11). The divergence of the laser as it passes its waist location and moves
into the aluminium sheet would thus be expected to impart a small angle to
the cut edge of the metal, cutting a narrower ring at the point of entry than
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the point of exit by several microns. However, modelling this effect in PyScat-
ter would be difficult given that approximating slopes requires the inclusion
of a large number of incremental steps for each corrugation section, multiply-
ing the computation times. As such, this error is neglected in simulation, but
could be a small source of divergence from predictions when the real horn
performance is compared with the simulated case.

FIGURE 5.21: Cutaway schematic of the internal structure of a
laser cutting head, showing real components alongside optical

parameters (Willumson, 2016).

5.3.4 Final tolerance analysis

The parameters for machining specified by the laser micromachining firm are
given in Tab. 5.3. The first three sources of uncertainty listed in the table were
used to construct a final, highly representative set of horn models for a tol-
erance analysis. The conductive sheet thickness and milling depth were as-
sumed to be uncorrelated sources of uncertainty, and therefore summed in
quadrature to yield a total uncertainty of ±72 µm. As stated previously, beam
spread is not a random error and is also not easily computed with PyScatter.
Furthermore, its effect in this case is of the order of 350sin(4◦) = 25 µm, 4◦

being a reasonable upper bound for the angle incurred by the beam spread,
and 350 µm being the section width. This is smaller than the 50 µm cutting
radius error. These errors are larger than was initially expected for the laser
technique, and are likely to be comparable to, or even exceed, the tolerance
on the electroformed section. As such, the final error simulations were con-
ducted for the entire horn, without splitting the tolerance level to account for
the different techniques. The section widths were varied to correspond to cor-
rugation length uncertainty, and the section radii varied for corrugation radius
uncertainty. All section errors were selected from uniform distributions, with
limits at the aforementioned tolerance levels.



Chapter 5. ALMA Collaboration 81

TABLE 5.3: Manufacturing tolerance specifications.

Nature of uncertainty Value Measurement affected

Sheet thickness ± 70µm Corrugation length
Milling depth 15 µm Corrugation length
Milling radius 50 µm Corrugation depth
Beam spread ≈ 2− 4◦ Corrugation depth

The beam parameter results are shown in Figs. 5.22 and 5.23. Return loss is
not too badly affected by the machining tolerance, with the mean following the
nominal horn trace for most of the plot. However, the deep trough at 185 GHz
is notably absent from the return loss plot. One potential explanation for this
is that the randomisation of the tolerance disrupted destructive interference
which had been suppressing returning radiation at these frequencies. Cross-
polarisation suffers significantly by contrast, with increases of up to 10 dB,
although the levels still fall mostly below -25 dB.

5.4 Ka band horn design

A horn was also designed for the Ka band region, 26.5-40 GHz, as mentioned
earlier. This design was not advanced as quickly as the band 4-5 design, as
the machining of the band 4-5 design was to take precedent. The horn was
designed in the same way as the ALMA band 4-5 horn described previously.
A flare angle of 7.5 degrees, an aperture diameter of λcentral (56-57 mm for the
Ka band), and an input waveguide diameter of 1.2 times the theoretical cutoff
for the largest wavelength of the band (7.96 mm for Ka band) were again used.
Corrugation widths of 2 mm were chosen. The profile of the horn designed
is shown in Fig. 5.24, and the beam at the central frequency in Fig. 5.25. The
Ka band horn is approximately five times bigger in all dimensions than an
ALMA band 4-5 horn. As such it would be much easier to machine than the
higher frequency design, and machining errors on it would be a substantially
smaller fraction of λ. For this reason, no tolerance analysis was conducted on
this horn. The FWHM of the Ka horn is the same as that for the original band
4-5 design. The cross polarisation and return loss are shown in Fig. 5.26 and
Fig. 5.27 respectively. In these plots the performance is compared with a later
design which had 61 corrugations rather than 84. It is hoped that the Ka band
horn design will be manufactured and tested in Manchester later this year.
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FIGURE 5.22: Mean and standard deviation of realised cross-
polarisation as a function of frequency for 20 0.35-mm section
horns, including errors of the final tolerancing levels. The nom-
inal 0.35-mm section ALMA horn is included as the solid black

trace.

5.5 Final summary

Corrugated horns were designed for two wavebands, ALMA band 4-5, and
later the Ka band as a scaled test horn. The initial horn designs were mod-
ified several times to meet manufacturing criteria. At each step, errors were
introduced into the models to simulate the inaccuracies of the machining tech-
niques and materials used. This showed how the theoretical best design is
impacted by physical considerations.

To illustrate this, the final beam parameters in Fig 5.22 and Fig 5.23 may be
compared with the initial results in Fig. 5.4 and 5.5. This yields the total change
in performance due to the multiple stages of manufacturing constraints. This
change was shown to be very substantial, with >10 dB increases in both cross-
polarisation and return loss across most of the band.
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FIGURE 5.23: Mean and standard deviation of realised return loss
as a function of frequency for 20 0.35-mm section horns, includ-
ing errors of the final tolerancing levels. The nominal 0.35-mm

section ALMA horn is included as the solid black trace.
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FIGURE 5.24: Ka band horn design plotted using 3D horn plotter,
units in mm.

FIGURE 5.25: Central frequency beam plot of Ka band horn,
showing very low cross polarisation and a low FWHM, with a

relatively high shoulder, but low sidelobes.
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FIGURE 5.26: Comparison of cross polarisation between the 84
corrugation Ka band horn design and a lower corrugation alter-

native horn.

FIGURE 5.27: Comparison of return loss between the 84 corru-
gation Ka band horn design and a lower corrugation alternative

horn.
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Chapter 6

Numerical mode matching

6.1 Background and Introduction

The goal of the research presented in this chapter was to develop in-house
numerical electromagnetic mode matching software for modelling non-ideal
corrugated waveguides and horns. Numerical methods are often much more
versatile than analytical methods, at the cost of greater computational inten-
sity. This is of great importance for microwave modelling, as analytical mod-
els of the behaviour of electromagnetic radiation exist only for very simple
and mathematically perfect components. The ensuing limitations confine cur-
rent analytical routines to the study of perfectly aligned components, which
is physically unreasonable for some realistic manufacturing methods, such as
the simultaneous production of a horn array by platelet milling and align-
ment. The NumCross code developed here was extended from existing mode
matching software (PyScatter) developed by Kalinauskaite (2018) and Burke
(2021), which used analytical solutions for overlap integrals. When these were
replaced with equivalent numerical integrals, a code could be developed to
model corrugations which are offset from each other.

When manufacturing horns, there are two broad approaches for the ma-
chining procedure. Firstly, components can be machined individually; this can
employ a variety of industrial techniques. Typical methods use electrodeposi-
tion to coat a mandrill (3D negative image) of the horn with conductive mate-
rial, and then etch away the mandrill using a corrosive agent. The other gen-
eral method of horn production is batch manufacture. Arrays of holes are cut
into conductive sheets of carefully controlled width (typically equal to one half
or one corrugation) using CNC milling or laser micromachining. The sheets
are then stacked on top of one another to yield an array of identical horns in
their final geometric configuration, embedded in the resultant block of con-
ductive material. The array is typically held in place by mechanical force from
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the fastenings alone, as adhesive thickness and uniformity would be difficult
to control. An example of one such array is shown as Fig. 6.1.

FIGURE 6.1: Micromachined Si platelet array of horns (NIST,
2008)

Batch processes are much more economical for large arrays of horns, but
lack the inherent cylindrical symmetry of single horn techniques. Additionally,
they require high precision overlaying of the individual sheets of conductor to
ensure correct relative positioning of corrugation sections. This tends to incur
large decentered lateral errors, as opposed to the radially symmetric errors
which would be seen for individually fabricated components. By modelling
the effect of small offsets in the waveguide steps, one can examine the impact
of different sheet alignment tolerances on the optical performance of the horn.
Computation of radially symmetric errors (e.g. incorrect radii, ridges or slots
left by milling etc.) is simple analytically; it can be performed by random
variation of the individual section radii composing the horn, as was performed
for the ALMA project in Chapter 5. Conversely, introduction of lateral offsets
is impossible analytically, as it breaks the cylindrical symmetry of the horns,
making the integrals impractically difficult or impossible to solve. However
this task is relatively simple numerically, comprising a relative shift of the horn
sections on a pre-defined Cartesian integration grid, which is overlaid on the
disk representing the internal cavity of a given section.

6.1.1 Power coupling in PyScatter

In Chapter 4, the method of mode matching for electromagnetics was intro-
duced. This calculates power transfer by coupling modes using analytically
solved overlap integrals of the form shown in Eqn 6.1, with the nth mode on
the inner section coupling to the mth mode on the outer section
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∫
Ēn,inner × H̄∗m,outer · dA. (6.1)

It may be shown (Kalinauskaite, 2018) that if the transverse electric field is
continuous at a junction, then the power transfer across the junction may be
represented in matrix form, using the [A] [B] [C] [D] mode coefficient vectors
discussed earlier, as

[P][[A] + [B]] = [Q][[C] + [D]]. (6.2)

The matrix elements of P and Q are defined by Eqns. 6.3 and 6.4, respectively,
where use is made of the fact that the parallel electric field is zero at the con-
ducting wall of the larger guide at the step.

Pmn =
∫

ainner

Ēninner × H̄∗mouter
· dA (6.3)

Qmn =

 ∫
aouter

Ēnouter × H̄∗mouter
· dA

 δnm. (6.4)

ainner and aouter are the cross sectional areas of the inner and outer corrugation
sections. Similarly, the continuity of the magnetic fields at the junction yields
Eqn. 6.5, where [R] is defined by Eqn. 6.6.

[R] = [[A]− [B]] = [P]T[[D]− [C]] (6.5)

Rmn =

 ∫
ainner

Ēninner × H̄∗minner
· dA

 δnm. (6.6)

The terms making up the P, Q and R matrices are computed analytically in
the PyScatter routine. The routine outlined in the following sections of this
chapter computes these matrix values numerically in order to allow for an
offset between the corrugation sections to be modelled. This section of each
code is included as Appendix B for PyScatter and Appendix C for NumCross.

6.1.2 Modes

When passing radiation through a cylindrical waveguide, a source transmits
power in a variety of transverse electric and magnetic modes. These modes
are subject to the boundary condition imposed by the walls of the waveguide,
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namely that the electric field at the wall must be zero. Thus, in free space,
an infinite number of modes are present, and the number which can prop-
agate decreases with confinement of the wave. In essence, this represents a
cylindrical analogue of a standing wave, prevalent throughout physics from
fluid dynamics to the quantum world. Integral to the description of the trans-
verse modes in cylindrical cavities are the Bessel functions, a series of periodic
trancendental functions. These were refined in the 1820s by Friedrich Bessel,
based on earlier work by many renowned classical mathematicians and physi-
cists (Dutka, 1995). Of particular relevance are cylindrical Bessel functions of
the first kind. These are cylindrically symmetrical decaying waveforms which
constitute the solution set of Eqn. 6.7.

FIGURE 6.2: Profile of Bessel functions of the first kind, of varying
order (Tan, C. et al.F 2002).

x2 d2y
dx2 + x

dy
dx

+
(

x2 − a2
)

y = 0 (6.7)

The a term in this equation refers to the order of the function. Higher orders
describe progressively longer, lower amplitude waveforms. The dependence
of these functions on the order is illustrated by Fig 6.2.
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The equations to describe the transverse components of the fundamental
transverse electric (TE) and transverse magnetic (TM) modes of a cylindrical
cavity in Cartesian coordinates are as follows (Kalinauskaite, 2018).

For TE modes

eTE
x = −

√√√√ (2−δn0)

4πa2

(
1−
(

n
p′nm

)2
)

J2
n(p′nm)

×

(
Jn−1

(
p′nm

r
a
) ( cos((n− 1)φ)
− sin((n− 1)φ)

)
+ Jn+1

(
p′nm

r
a
) ( cos((n− 1)φ)
− sin((n− 1)φ)

))
(6.8)

eTE
y = −

√√√√ (2−δn0)

4πa2

(
1−
(

n
p′nm

)2
)

J2
n(p′nm)

×

(
Jn−1

(
p′nm

r
a
) ( sin((n− 1)φ)

cos((n− 1)φ)

)
− Jn+1

(
p′nm

r
a
) ( sin((n + 1)φ)

cos((n + 1)φ)

))
(6.9)

hTE
x =

√√√√ (2−δn0)

4Z2
TEnm πa2

(
1−
(

n
p′nm

)2
)

J2
n(p′nm)

×

(
Jn−1

(
p′nm

r
a
) ( sin((n− 1))φ

cos((n− 1)φ)

)
− Jn+1

(
p′nm

r
a
) ( sin((n + 1)φ)

cos((n + 1)φ)

))
(6.10)

hTE
y =

√
(2−δn0)

4Z2
TEnm πa2

(
1−
(

n
p′nm

)2
)

J2
n(p′nm)

×(
Jn−1

(
p′nm

r
a

) ( cos((n− 1)φ)

− sin((n− 1)φ)

)
+ Jn+1

(
p′nm

r
a

) ( cos((n + 1)φ)

− sin((n + 1)φ)

))
(6.11)
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For TM modes

eTM
x =

√
(2−δn0)

4πa2 J2
n+1(pnm)

×(
Jn−1

(
pnm

r
a
) ( cos((n− 1)φ)
− sin((n− 1)φ)

)
− Jn+1

(
pnm

r
a
) ( cos((n + 1)φ)
− sin((n + 1)φ)

))
(6.12)

eTM
y = −

√
(2−δn0)

4πa2 J2
n+1(pnm)

×(
Jn−1

(
pnm

r
a
) ( sin((n− 1)φ)

cos((n− 1)φ)

)
+ Jn+1

(
pnm

r
a
) ( sin((n + 1)φ)

cos((n + 1)φ)

))
(6.13)

hTM
x =

√
(2− δn0)

4Z2
TMn−1

πa2 J2
n+1 (pnm)

×(
Jn−1

(
pnm

r
a

)( sin((n− 1)φ)
cos((n− 1)φ)

)
+ Jn+1

(
pnm

r
a

)( sin((n + 1)φ)
cos((n + 1)φ)

))
(6.14)

hTM
y =

√
(2− δn0)

4Z2
TMn−1

πa2 J2
n+1 (pnm)

×(
Jn−1

(
pnm

r
a

)( cos((n− 1)φ)
− sin((n− 1)φ)

)
− Jn+1

(
pnm

r
a

)( cos((n + 1)φ)
− sin((n + 1)φ)

))
(6.15)

The terms used in Eqns. 6.8 - 6.15 are defined as follows. r represents an
arbitrary distance along the radius a of a cylindrical waveguide. Jn is a Bessel
function of the first kind, of order n, and J’n its first derivative. pnm denotes the
mth zero of that nth order Bessel function, while p’nm represents the mth zero of
the first derivative of that function. The J’ns are used to calculate the TE fields,
while the Jns calculate the TM.

The oscillatory character of Bessel functions is such that m and n can each
assume any value ∈N, additionally, n may be zero. δn0 is a delta function tak-
ing a value of unity when n=0, and having zero value elsewhere. Finally, the
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matrix notated trigonometric functions calculate the pair of orthogonal elec-
tromagnetic fields for each (m,n) mode combination.

6.2 Development of the numerical PyScatter code

(NumCross)

6.2.1 Generating and plotting transverse modes.

The values for pnm and p’nm are found using the scipy package for Python,
more specifically the routine scipy.special.jn_zeroes and scipy.special.jnp_zeroes,
respectively. jnzeroes(n,m) computes m roots of the nth order Bessel function
of the first kind, while jnpzeroes(n,m) computes m roots of the first derivative
of the same function. By selecting just the m-1th element of the output array in
each case, the desired root could be returned.

An impedance factor (ZTE,ZTM) was computed for both the electric and
magnetic fields, using the pnm and p’nm results. This factor determines the ef-
fect of the size of the waveguide on the propagation of the wave. The equations
for the electric and magnetic impedances are given by Equation 6.16 and 6.17.

ZTE = Z0

(√
1.0− p′nm(n, m)

(ωa
√

µ0ε0)

2
)−1

(6.16)

ZTM = Z0

√
1.0− pnm(n, m)

(ωa
√

µ0ε0)2
(6.17)

Z0 represents the impedance of free space, 377 Ω. However, for simplicity
of analysis, this can be normalised to 1, as the beam power is computed as a
relative rather than an absolute value. This is sufficient when the beam pa-
rameters compare boresight intensity with other measured values, return loss,
cross-polarisation etc. If the waveguide is large compared to the wavelength,
Z approaches unity, and has no effect, whereas if the waveguide is on the order
of the wavelength, Z is of critical importance in determining the power trans-
mitted in the cavity. Depending on the value of the relevant Bessel or Bessel
derivative root, Z may take real or imaginary values. Imaginary values repre-
sent evanescent power dissipated in the system, meaning that the associated
mode is non-propagating at the given waveguide radius. The point at which Z
becomes imaginary may be predicted from Eqn. 4.4, as discussed in Chapter 4.
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The equations for the fields were then calculated across the physical area of
a waveguide. Initially, r and φ coordinates were used on a radial grid. How-
ever, this was later converted to Cartesian coordinates for ease of handling
offsets. The ax.scatter3D function was used to create plots of each mode, with
high power showing as yellow-white, and low power as black-red. TE modes
are observed to fall off to zero at the waveguide edge, whereas TM modes
reach a maximum value at the waveguide edge.

To integrate the total power across the mode, the cross product was taken
of the E and H fields at each point on the Cartesian integration grid. This
was summed across the grid, including only those points which fell within the
circular cross section of the waveguide. The total was then multiplied by the
specific dx and dy used. This gave the average Poynting value over the cross-
section. To express the variables in the field equations in Cartesian coordinates,√

x2 + y2 was substituted for r, and the two-argument arctangent of y/x for φ.

FIGURE 6.3: TM mode plot for radial order 2 and azimuthal order
4.

Fig. 6.3 and Fig. 6.4 show the profile of typical TM and TE modes as plot-
ted using Python code. To preserve the generality of the result, the simulation
was set such that λ � r. A higher order m corresponds to more Bessel ze-
roes, and thus more complete oscillations across the waveguide. Higher order
n increases the order of the Bessel function, this introduces further oscillations
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FIGURE 6.4: TE mode plot for radial order 4 and azimuthal order
2.

along the φ direction, the angular character. It is also observed that, as n in-
creases, the central pattern broadens, and the outer radial oscillations com-
press toward the boundary of the waveguide. In general, for order (n,m), a TE
mode will exhibit m radial crests divided into 2n angular peaks, whereas a TM
mode will possess an extra half crest at the outer edge, to satisfy its boundary
conditions.

FIGURE 6.5: Superimposed TM mode cuts showing effects of
changing n with constant m.
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FIGURE 6.6: Superimposed TM mode cuts showing effects of
changing m with constant n.

To show the distinct effects of the order n and root number m on the pattern,
a set of cuts was computed and superimposed. m was kept fixed at 2 across the
set, and n varied. The process was then repeated for fixed n=2 and variable m.
These plots are shown as Fig. 6.5 and Fig. 6.6, respectively. All cuts were taken
from the TE mode at φ = 0, to ensure continuity and illustrate the general
radial dependence of the power across the waveguide.

The increase in angular mode number reduces power in the centre. For the
increasing radial modes however, higher m modes yield progressively sharper
peaks. In the extreme case of a light pipe, D � λ, the walls would effectively
impose no restriction on the available modes within the cavity.

A final plot was prepared to examine the change of the wave profile across
the waveguide as m increased further. For high m, the profile envelope de-
scribed by the peaks becomes very apparent. This profile is a good approx-
imation for the radial distribution of power across a relatively large cavity.
This profile is shown in Fig. 6.7. For simplicity, n is kept at 0. It is clear that
as m increases, the power is concentrated further into the narrow peaks near
the propagation axis. This observation will be revisited upon studying horn
performance, as the ratio of diameter to wavelength is crucial in determining
beam gain or directionality. As in the case of GRASP, cuts provide a more pre-
cise comparison tool, whereas 2D grid plots allow for easier visualization and
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understanding of the plot. However, it is also illustrated that some features are
difficult to represent with a 2D slice.

FIGURE 6.7: Change of wave peak profile with changing m for
high values of m.

The Poynting sum across the waveguide for each mode is normalized to
unity by the choice of the impedance as unity at the outset, thus all power in
the modes should accordingly sum to unity. By printing the calculated Poynt-
ing sum, it was possible to check that the modes were correctly computed
across the plots. Additionally, the deviation of these values from unity gave
an approximation of the level of numerical error incurred at a given compu-
tational resolution, and thus the sensitivity of the simulation accuracy to an
increase or decrease in resolution.

6.2.2 Generating a P matrix by numerical mode integration

Inside a smooth-walled waveguide of constant radius, modes propagate with-
out transferring power between one another (no scattering). This breaks down
when the radius changes within the guide. When a radial step occurs within
a waveguide, each mode within the cavity scatters power to other modes, the
amount of which is determined by the fractional size and offset of the step, and
the wavelength of the radiation. If the waveguide recieving radiation across
the step is very narrow relative to the incident wavelength, the wave may not
propagate across the step. This is known as a full mode cutoff, and power will
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be reflected and scattered to purely evanescent modes at the boundary. Mathe-
matically, this is represented as a complex valued Poynting vector in the guide
experiencing the cutoff.

The exact intermodal scattering coefficients may be determined analytically
using a cross coupling integration. This is the fundamental technique behind
the PyScatter mode matching process used to design horns previously. The
general mathematical expression for the overlap integral, e.g. the integral to
calculate Pmn in Eq. 6.3, is replaced by a sum across the overlapping area.

Pmn = ∑
i,j

Ēninner(i, j)× H̄∗mouter
(i, j)dxdy. (6.18)

Pmn refers to an element of the P matrix denoting the transfer of power from
mode n to mode m, Ē(i, j) and H̄(i, j) are the electric and magnetic fields evalu-
ated at a point (i, j) on the Cartesian grid and dx and dy are the grid spacings.
As before, inner refers to the origin mode, and outer the destination mode.

Once calculated, the power scattering between all modes is stored as a
square array of values. Each set of mode numbers has a corresponding TE
and TM mode, which in turn each have co- and cross-polar modes. As such,
the square array for N sets of mode numbers will have (4N)2 entries. To organ-
ise these, all excited modes are entered once as labels on each axis of an array,
and the amount of scattering from mode combination A to mode combination
B is given as the unique value at the intersection of the row corresponding
to the first mode, and the column corresponding to the second, as shown in
Table 6.1. Scattering between modes must be non commutative in nature to al-
low for power transfer between modes. Were it commutative, the total power
transferred between mode pairs would always sum to zero, as the scattering
from mode A into B would equal that from mode B into A. The special case of
a zero-length step ( a smooth waveguide) yields a (4N)2 identity matrix. The
self coupling of modes (TE and TM co-polar and cross-polar) in this case, will
be visible as unity entries along the main diagonal of the matrix, as shown for
a TE11 mode by Gentili, Pelosi and Piccoli (2019). This is expected from the
previous assertion that power is not scattered without a step being present. It
is important also to note that in the case of a mode not propagating in a given
cavity, the value of unity for that self coupling entry will be replaced by the
positive or negative imaginary unit, ±i, depending on whether the mode is
TE or TM. These imaginary entries denote evanescent mode couplings, result-
ing from the aforementioned impedance factor becoming complex. This, of
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course, requires that all equations and matrices in the code be complex com-
patible; this is denoted by a cm. before the operator in Python.

Table 6.1 shows a P-matrix as output by the code written; it contains the
scattering coefficients for the n = 1 order. The number preceding ‘te’ or ‘tm’ in
the mode label denotes azimuthal order, and the subsequent qualifiers dictate
if the mode is electric or magnetic, and whether it is polarised in the two or-
thogonal orientations. To reduce the matrix size, only m = 1, 2 are shown. The
step and offset are both set to zero, so this is a pure propagation matrix. Addi-
tionally, the sections are set to have a very large diameter relative to the wave-
length, D > 100λ. The values along the diagonal are very close to unity, while
all other values are negligible. This is what would be expected intuitively from
this case, as there is no sudden change in radius to scatter radiation from one
mode to another, the power is just coupled from each mode to itself. Also of
note are the values of the "zeros". These demonstrate the difference between
analytical and numerical zeros. The entries on the order of 10−4− 10−5 are nu-
merical zeros, they depend on the integration accuracy, and tend to arise in the
decimal place below the inverse of the resolution (1000 points along x and y in
this case). The null values in the table had values of 10−18 − 10−19, which was
rounded down for clarity. These are analytical, or "float" zeros. They arise from
algebraic cancellation of terms in the scattering equations, and their tiny but
non-zero value is a result of Python’s handling of floating point arithmetic.
These analytical zeroes are a consequence of the nature of mode symmetry,
and do not depend on the system analysed. As such, code sections which al-
ways generate them by way of symmetry can be excluded once the routine is
debugged fully, to save on computation time.
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FIGURE 6.8: P-matrix for a single radial mode and including
three angular modes, exhibiting the effect of a radial step.

6.2.3 Modification to include a step

A step in the waveguide requires a change to the P-matrix code to allow for
propagation between waveguide sections of different radii. To accomplish this,
one radius was assigned for the electric field on the incident side of the step,
and another distinct radius for the magnetic field on the transmitted side. The
larger of these radii was used to dictate the size of the Cartesian integration
grid, with mesh size determined by the desired numerical resolution. The
smaller area was then superimposed onto the larger, aligning the centres to
maintain cylindrical symmetry. This is the numerical equivalent of an over-
lap integral, computing the fields for the overlapping area of two waveguide
sections. Changing radii implies different impedance factors for electric and
magnetic fields, as Z depends implicitly on the cavity radius. This is intuitive,
as a step could be designed such that a given mode reaches cut off as it passes
the step to a narrower section of waveguide. Ideally some scattering would
be observed from co-polar to co-polar modes and likewise from cross-polar to
cross-polar. While cylindrical symmetry is maintained, power will not trans-
fer across polarisations. Additionally, due to the symmetry between x and y
axes, the quantity of power in the co-polarised and cross-polarised compo-
nents modes should remain equal.

Fig. 6.8 shows the P-matrix for a radial step, from 1.0 mm to 1.25 mm, at a
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FIGURE 6.9: Effect of 2%, 4% and 6% steps on the self-coupling
of n=1 TE and TM modes in a circular waveguide. Propagation
across the step is calculated from the smaller to the larger guide.

frequency of 200 GHz. This frequency was chosen to allow the radii to be rea-
sonably close to the fundamental mode cutoff radius at 0.44 mm. This allows
us to inspect the handling of both real and imaginary terms. Two thirds of the
terms are imaginary in this case, implying that those couplings did not propa-
gate past the step, instead remaining as reactive, evanescent fields. Only cou-
plings of the first angular mode have real values. It is also of note that in both
cases, the TM to TE coupling has zero value for all orders, as TM modes do not
couple to TE modes when the cylindrical symmetry of the guide is preserved.
Mutually orthogonal polarisation combinations are also universally zero, as
predicted. Finally, the fraction of power in the main diagonal decreases with
increasing mode number. It is also expected from a conservation of energy
standpoint, as to conserve the finite electromagnetic energy from the source,
any scattering to other modes must result in a decrease of the power propa-
gated in the intramodal terms (the main diagonal of the matrix).

To observe the effect of step size on scattering in the horn, the principal
diagonals of P-matrices for various step sizes were plotted as a waterfall plot.
The results are shown in Fig 6.9. The waveguide was set to be very large com-
pared to the incident wavelength, to eliminate the effects of the impedance
factor on results (the magnitude of which depends on the ratio of waveguide
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diameter to λ). All samples were run for 10 m values at n=1. As shown in the
figure, the self coupling drops off slightly more rapidly for TM than TE, and
the larger steps lose power much more rapidly at higher modes. This clearly
illustrates the primary function of horn design; minimising scattering to un-
wanted higher order modes, while smoothing the transition to free space.

6.2.4 Determining the S matrices

The next step in designing the code concerned using the P-matrix to generate
an S matrix (scattering matrix). A scattering matrix describes the effect of an
action on an electromagnetic wave, in this case either propagating through
space or navigating a change in boundary conditions: a step. There are four S
submatrices in a two port S matrix for a single interaction, each representing
a single S parameter, as described by Eqn. 4.2. The S11 matrix denotes the
return loss, power which enters at port 1, and is reflected back through port 1.
The S22 matrix denotes output reflection, while the S12 and S21 describe the
propagation in both directions across the step interface. The antenna theorem
ensures the equivalency of the S11/22 and S12/21 upon reversal of the source
direction in the horn. This is explained at length in Dobrowolski, (2016), from
which Fig 6.10 was obtained, showing a general scattering matrix. The systems
described by scattering matrices in this thesis are solely two-element, with S11
and S12 to the left of the matrix, and S21, S22 to the right (Eqn. 4.2).

FIGURE 6.10: Scattering matrix schematic, showing general scat-
tering parameters for an N-port system. Dobrowolski, (2016)
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To produce the scattering matrix for a step from the P-matrix, the Q and R
matrices must also be calculated. These represent the internal self coupling on
the two sides of the step. The Q and R matrices are diagonal in form, as they
only contain self coupling terms. These have a value of unity where the mode
propagates, and become purely imaginary if the mode becomes evanescent.
Evanescence signals that these modes will not be propagated to the next step.
In the case of a non-zero step size, the Q and R matrices will often change from
real to imaginary at different points along the diagonal, as more modes may
propagate in the larger guide, which would be below cutoff in the smaller.
TE and TM modes may also cut on at different positions. This can be seen
directly by comparing Fig. 6.11 and Fig. 6.12. One of the matrices has just one
mode propagating, the TE11. However, the other shows TE11, TE22 and TE33
propagating. No TM modes have yet cut on, showing that cut-on frequencies
are indeed distinct for TE and TM modes of the same order.

FIGURE 6.11: Q matrix sample, showing cutoff position.

The P, Q and R matrices may now be converted to the S matrix by use of
Eqns. 6.19 - 6.22, (Olver, (1994). These apply a series of matrix algebraic opera-
tions to compute each of the four elements of the S matrix from different com-
binations of the P, Q and R matrices. Q and R exchange places in the equations
for S11, S22 and S12, S21, respectively. This is due to the inherent reciprocity
of the system, the S12 matrix for a receiving horn will correspond to the S21
matrix for a transmitting horn, and vice versa.

[S11] =
[
[R∗] + [P]T[Q]−1[P]

]−1 [
[R]− [P]T[Q]−1[P]

]
(6.19)
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FIGURE 6.12: R matrix sample, showing cutoff position.

[S12] = 2
[
[R∗] + [P]r[Q]−1[P]

]−1
[P]> (6.20)

[S21] = 2
[
[Q] + [P][R∗]−1[P]T

]−1
[P] (6.21)

[S22] = −
[
[Q] + [P][R∗]−1[P]T

]−1 [
[Q]− [P][R∗]−1[P]T

]
(6.22)

The S matrices calculated thus far describe a discontinuous step of zero
longitudinal extent. To construct a realistic optical system, a propagation term
must be included to space the steps apart into corrugations, when multiple
steps are introduced. This is encoded in the V matrix, a diagonal matrix of
phase terms, describing how the phase of the wavefront changes as it passes
along a smooth section of waveguide between steps. As there are by definition
no disruptive features in this section aside from the phase factor, there is no
change in amplitude when a propagation matrix is applied.

The V matrix is computed using the quantity β, which is the guide wavenum-
ber as it appears in the phase evolution form, and serves to determine if a mode
is propagating along a given section of waveguide. Calculating β requires the
Bessel function or Bessel derivative related to the given mode, and the operat-
ing frequency.

βTE =

√
1− (p′nm(n, m)

(ωa
√

µ0ε0
2)

(6.23)
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βTM =

√
1− (pnm(n, m)

(ω
√

µ0ε0)2 . (6.24)

These values of β are then combined into a complex exponential phase relation
to yield the final elements of the V matrix, as shown in Equation 6.25. dL
specifies the distance over which the propagation will occur and upon which
the phase change depends.

Vij = eik0βij·dL (6.25)

A sample propagation matrix for three sets of modes is shown in Fig. 6.13.
Upon examining the P matrix of the same code iteration, it was found that the
TE11 and TM11 alone were propagating. A complex phase term is required to
describe the propagation of the EM waves. The phase terms in the V matrix
are complex for TE11 and TM11, and real thereafter, so both matrices agree,
indicating that only the first TE and TM mode propagate, with the higher order
modes being evanescent.

FIGURE 6.13: V matrix sample, showing the effect of a propaga-
tion of arbitrary length along a single smooth cylindrical waveg-
uide section of diameter approximately λ. Propagation of TE11
and TM11 modes, is seen, with evanescence of higher order

modes.

To propagate the simulation forward along multiple sections, the matri-
ces representing individual elements are cascaded, as with general matrix op-
tics, such as those discussed in Chapter 2. It is desirable to begin a waveg-
uide model with a long propagation, as that serves to filter out any evanescent
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power. If such power were to reach the corrugations, it could scatter to prop-
agating modes in the corrugated section and increase the cross-polarisation.
However, the design of the routine is such that the V matrices are produced
from the β values calculated for the first P matrix, occurring after the initial
propagation; as such they are generated for the first step. A new set of Vijs,
labelled Vijinit, are used to generate the first long propagation. The radius a
used for these matrix calculations corresponds to the radius of the waveguide
section of a horn, which supplies the necessary long propagation.

6.2.5 Introduction of offsets

As discussed previously, corrugations may be offset to simulate the tolerance
on tightness and rigidity of the dowel pins which hold the stacks of platelets
in place for platelet horn arrays. Due to the off-axis nature of such shifts, ra-
dial error techniques (as used in the tolerancing analysis of the micromachined
and electroformed ALMA horns) will not suffice. Here an offset is introduced
to each section, with the values drawn from a uniform or Gaussian random
distribution. A Gaussian distribution is centred on zero, and its standard de-
viation is determined by the level of the manufacturing tolerance to be sim-
ulated. A nonzero offset can then move the section positively or negatively
with respect to boresight in either the x or y direction. Similarly, a uniform
distribution is allowed to vary randomly within the tolerance level, with equal
probability of selecting any point along the interval. A Gaussian distribution
can provide a more realistic picture of random offsets than a uniform distribu-
tion, as it gives more insight into the effects of worst case scenarios. However,
it can also give occasional unphysical results, as there is no true limit to its
potential deviation from the mean.

The offsets are read in from a file containing an ordered list of ∆x values,
drawn from a distribution with a given standard deviation (SD), one for each
section in the horn, followed by a similar list for y. In the case of a typical
dowel toleranced horn, the SD values will be constant throughout, however
the ability to tolerance sections individually imparts considerable additional
flexibility at virtually no cost in computation time; as such it is retained in case
of future requirements.



Chapter 6. Numerical mode matching 107

6.2.6 Numerical computation of ‘offset’ integrals

Obtaining the S matrix for the horn requires evaluation of the overlap integrals
at every step. This must be done numerically if offsets are present, as discussed
previously. A schematic showing the integration process across an offset step is
shown as Fig. 6.14. The smaller circle represents a corrugation, which is offset
with respect to the slot, as this is a separate platelet in the stack. The integration
grid is placed across a square of side length equal to the diameter of the larger
section. As such, the code accurately computes offsets for any case in which
the step is greater than the offset. This is always the case in corrugated horn
design, as corrugations are usually no smaller than λ/4, and offsets approach-
ing that magnitude would render a horn useless for most applications. For a
smooth walled horn it could be more of a concern, but the benefits of platelet
based design are reduced when manufacturing smooth walled horns, as these
are much more straightforward to mill. The resolution variable chosen upon
running the code initially determines the number of points computed across
the square in which the large section is inscribed. A fraction of approximately
π/4 of these fall within the section and are included in the computation.

Fig. 6.15 shows a standard S21 matrix, in this case for n=1,n=2 and m=1,m=2.
The smallest grid boxes represent individual coefficients, of which there are
16 in each mode pairing (all combinations of TE and TM for both orthogonal
cases.). In an uncorrugated waveguide, only the blue boxes on the diagonal
have nonzero values. These are self coupling modes. In a perfect horn with
corrugations, the red boxes are also populated with non-zero values, these are
couplings within the same n order. Finally, in an imperfect horn with lateral
offsets, there are potentially nonzero values everywhere. For small numbers
of included orders, the modes coupled within the same order represent a large
fraction of the total number of mode combinations possible. However, as the
number of orders included grows, the inter-order mode combinations domi-
nate. This makes the matrix for the imperfect horn much more structured and
complex when large numbers of orders are considered.

The function of the waveguide section in ensuring a single moded input
can be seen by looking at the TE11 and TE11-orthogonal columns of the S21
matrix for the initial section. Ideally, this will have non-zero values only in the
TE11 rows, implying that power is scattering from TE11 to TE11 only, and is
not present in other modes. If nonzero values are present in other rows, this
implies that the waveguide section is either too wide, allowing propagation of
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FIGURE 6.14: Diagram of the grid used for the offset step inte-
gration procedure.

higher modes, or too short, implying insufficient distance for evanescent de-
cay. The output for the first section is shown in Fig. 6.16. The first terms in the
n=1 box refer to the TE11 amplitude. Upon taking the magnitude of the com-
plex amplitude terms, it is found that both the TE11 and its orthogonal agree
with the unitary normalisation set at the input to 5 decimal places, even at rea-
sonably low resolution (140 integrations per axis). The physical appearance of
the input section can be seen in Fig. 6.18, further in the chapter.

The output of a perfect horn with all input power in the TE11 mode may
then be contrasted with the output of a horn with offsets included. The perfect
horn would retain most of its power in the TE11 mode, with some scattering
to other n=1 modes, these could be TE or TM, and/or of different azimuthal
orders. However, no power would be present in different n orders (n=0,2,3...)
as these start with zero power at the input, and cannot receive scattered power
from the n=1 order as no radial intermodal scattering is permitted in a radially
symmetric horn. This theory was verified using perfect and offset versions of
the QUBIC horn. As seen in the first section of Fig 6.17, the perfect horn has a
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FIGURE 6.15: Regions of an S21 matrix.

FIGURE 6.16: TE11 coupling coefficients for the initial S21 at the
waveguide
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maximum amplitude on the order of 10−3 in the zeroth n order, corresponding
to power on the order of 10−6 − 10−7. This is an artefact of the numerical rou-
tine. To demonstrate that no power is found in other extraunitary orders, the
power may be summed across the n=1 order, and should sum to unity for both
the TE11 and TE11-orthogonal modes, giving a total of 2. The observed total
upon summation is slightly over 2, however errors on the 10−3 level are neg-
ligible given that the resolution of integration across each mode was 140×140.
This shows, as expected, that power is scattered within the n=1 order only.
Furthermore, it shows that scattering to m < 2 modes is negligible. One last
observsation of note is that every second entry in the n=1 array is zero, these
represent co-polar to cross-polar couplings, and are zero in any cylindrically
symmetric system.

In the subsequent sections of Fig. 6.17, the effects of lateral offsets on the
total power are considered for two levels of offset, both with a Gaussian dis-
tribution. At 0.02 mm SD, symmetry is observed to break down across the
modes. All other modes now receive power, except couplings between or-
thogonal modes of the n=0 order. These stay exactly 0 throughout, as these
mode couplings do not physically exist for n = 0, but are included to maintain
simplicity in dealing with matrices. Coupling between orthogonal modes is
now allowed for higher orders, albeit at a low level. Summation of the n=0
values yields a total of approximately 0.03. This is 1.5% of the total power,
about -18 dB. Total power in the n=1 orders sums to approximately 1.9, or
95%. That indicates that an additional 3.5% has been lost to back propagation
(return loss) or to higher order couplings, leaving n = 1 power at 95%. This
could have subtle effects on the main beam of a farfield pattern and would
substantially affect the cross-polarisation.

The final section shows a scenario which is worse than what is likely real-
istic, with a 0.1 mm standard deviation on errors in both dimensions. The n=0
modes contain almost 10% of the total power and the total power contained in
the n=1 order decreases to 85%. This alone would cause severe distortion of the
main farfield beam. Furthermore, orthogonal couplings have amplitudes ap-
proaching the 10−1 level, meaning their power is on the order of 10−2, -20 dB.
These propagations are completely absent in a perfect horn, and as such are
highly undesirable.
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FIGURE 6.17: TE11 coupling coefficients for the final S21 at the
mouth of the horn, a comparison between a perfect design and

different offset levels.

6.2.7 Farfield pattern generation

To simplify and speed up the generation of farfield plots, only the single moded
case was analysed. This entailed the assumption that all input power from
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the waveguide section was in the TE11 mode. The TE11 column and TE11-
orthogonal column are extracted from the final S21 matrix at the mouth of
the horn, and used in the farfield generation routines. Single moded analysis
is valid for most systems, however some wideband horns, such as QUBIC, be-
come multimoded at the upper edge of their bandwidth, allowing more modes
in at the input. As such, more input columns would need to be analysed to ac-
count for this in an analysis of QUBIC at 220 GHz. The column matrices store
all data about the system, as such a separate but similar program was designed
to run a plotting sequence directly from these relatively small matrices instead
of from geometry files. This means that further plots can be generated at a
later date from saved arrays without requiring a repeat of the mode matching
integration.

The system far-field propagation formulas from the original analytical code
were modified to account for the increased matrix size, as the PyScatter code
developed by Burke, (2021) could model only radially symmetric systems, and
thus did not compute scattering between n orders or between co- and cross-
polar modes. The field coefficients are computed for TE and TM modes, and
their orthogonal counterparts, for both x and y components. These coefficients
are then multiplied by the expressions for the fields, and summed to give total
fields at a grid of points (x, y). The x and y field components are converted
to co-polar and cross-polar total power using equations 6.26 and 6.27, where
here x and y represent the x and y field components. These also depend on
θ, the boresight angle, and it is this angle which is varied to derive the an-
gular beam patterns used to determine horn performance. The summation
of x and y polarisation power components gives the main beam total power,
while including only y components yields the cross-polar power. This reaches
maximum at azimuthal angles φ = nπ

4 , thus the cross-polar cut is taken at 45
degrees. The main beam electric field is evaluated at an azimuth of 0 ◦ only; the
45 and 90 degree traces present in PyScatter were removed for clarity and ease
of plotting. The changes applied to convert from the analytical to the numeri-
cal process may be observed by the excerpts from PyScatter and NumCross in
Appendix B and Appendix C, respectively.

Pco = (1 + cos(θ))2 ∗ (|Px|2 + |Py|2) (6.26)

Pcross = (1 + cos(θ))2 ∗ (|y|2) (6.27)
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6.3 Application to QUBIC

6.3.1 3D plotting software

A Python routine was constructed to represent the QUBIC horn as a 3D ren-
dered model, as opposed to a 2D cutaway slice. The code was also capable
of showing the profile of linear offsets as they would appear on a real horn.
This requires the use of a different centre point for each stacked section in the
simulation. The entire horn with offsets included is shown as Fig. 6.18 below.
Although the offsets were set at a relatively large ±50 µm, they are not imme-
diately apparent in the plot.

FIGURE 6.18: 3D scatter plotted rendition of the QUBIC horn,
with ±50 µm offsets included.

To show the offsets between sections, it was necessary to magnify the throat
section, as that is where offsets will represent the largest fraction of the total
radius, and thus have the greatest impact on mode scattering. Fig. 6.19 shows
the throat section of the horn, with the x and y axes magnified by a factor of
5 compared to the z axis. The offsets are clearly visible here, especially in the
narrowest section.

6.3.2 Computational constraints

The core numerical routine in NumCross is the evaluation of the cross product
representing the Poynting vector at each point on the xy integration grid. The
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FIGURE 6.19: 3D scatter plotted rendition of the throat section of
the QUBIC horn, with ±50 µm offsets included. All axes are in

millimetres.

function takes seven input variables: x, y, nvar1, nvar2, mvar1, mvar2 and N.
x and y represent the position on the grid of the evaluation. nvar1 and nvar2
are the mode indices that the power is scattered from, while mvar1 and mvar2
denote the indices of the mode to which power is scattered. Finally, N is the
section number along the horn at which the step takes place. This is included
in the code appendices, Appendix B and Appendix C. mvar1 and mvar2 have
no analogues in the analytical software, as it requires cylindrical symmetry at
steps, and thus has no radial mode scattering. As all variables are incorporated
in nested for loops, the number of iterations of the point evaluation functions
required combine multiplicatively. Eqn. 6.28 shows the expression for the total
number of cross product computations required to analyse a horn. The nmodes
term comprises the number of modes to be analysed, which is 4 times the prod-
uct of the number of radial and azimuthal orders included in the simulation.
The factor of 4 accounts for the pairs of orthogonal TE and TM modes. R de-
notes the xy resolution used. Finally N − 1 is the number of steps in the horn,
which is one less than the number of sections N.

Σi = (nmodes)2 × R2 × (N − 1) (6.28)

For PyScatter, as mentioned elsewhere, the benchmark mode number used
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is 30 modes in TE and 30 in TM for each n order. This yields an S matrix of
size 60 × 60 for the combined TE and TM. To obtain the same modal inclu-
sivity numerically, with the potential for offsets, larger matrices are required.
Orthogonal mode coupling is allowed, increasing the matrix size to 120× 120
for each n. Furthermore, coupling between n orders is now permitted, increas-
ing the size further to 120N × 120N, N being the number of n orders included
in the simulation. Using Eqn. 6.28, we can compute Σi, the total number of
iterations required to model a horn. Using the 176 section QUBIC horn as an
example, the computational requirements of performing this integration may
be investigated. At a reasonably high xy resolution N of 250×250, and includ-
ing 10 n orders, this amounts to 12002 × 2502 × 175 ≈ 1013 iterations of the
point evaluation functions. As propagation matrices are diagonal, their com-
putation time is irrelevant for large mode numbers. A standard desktop PC
can compute ∼ 105 iterations per second, taking years to complete 1013. Ev-
idently, to analyse an entire horn to analytical precision in a reasonable time-
frame, a supercomputer or cluster core module would be required. However,
in the case of small offsets and a fairly well-behaved horn, many modes can be
excluded at little cost. When combined with a modest decrease in resolution,
this brings the simulation time into the realm of days, making proof of concept
for an entire horn reachable for a standard desktop machine.

To check what resolution level was required for computing the offset horn
parameters, the perfect horn was simulated at five resolutions, and compared
with the analytical horn profile computed by PyScatter. The result is shown as
Fig. 6.20. The 10× 10 point simulation is completely unphysical, with the beam
depressed on axis, and reaching maxima several degrees off axis. The cross-
polar level lies just 5 dB below the co-polar. The 20×20 simulation matches
the co-polar beam almost perfectly, deviating only at the -30 dB level. This is
a remarkable change for only a fourfold increase in array size. However, the
cross-polar is uneven and much lower than analytically calculated. The 30×30
simulation raises the cross-polar power to within 5 dB of the predicted peaks.
The 40×40 resolution tightens this discrepancy to 4 dB, and 50×50 to ∼ 2 dB.
A variation of±2 dB at the -30 dB level is quite negligible, whereas a change of
±4 dB is much more significant. In light of this, 50×50 resolution was chosen
for use in all subsequent NumCross simulations of the QUBIC horn. This sim-
ulation shows that the NumCross routine converges to the analytically com-
puted beam pattern with increasing resolution, as is expected for a numerical
approximation.
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FIGURE 6.20: Variation of farfield beam patterns with numerical
resolution level for the perfect QUBIC horn.

Simulations were run at the 50×50 resolution level to test the modelling of
a 176 section QUBIC horn when offsets were included. A plot was then made
of the S21 coefficient transmission through the horn for 10 iterations of an off-
set horn, to check which radial and azimuthal orders contained a meaningful
amount of power (and thus have to be calculated). A uniform distribution was
chosen over the Gaussian alternative, to remove the possibility of unphysical
extreme events (2-3σ). The limits for the uniform random distribution were set
at ±50 µm, a reasonably coarse but possible tolerance. The maximum inter-
sectional offset was thus 2×

√
502 + 502 ≈ 141 µm. For comparison, the corru-

gation depth at the mouth of the horn was approx 600 µm. This was performed
for five radial modes and eight angular modes. The 10 simulations were per-
formed in parallel, each taking one core of a 12 core high performance PC. This
circumvented the extra coding which would be required to parallelise individ-
ual simulations across multiple cores. The simulations required 36 hours to
complete on a single core each. The additional 2 cores were left idle, to avoid
strain on the cooling system.
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6.3.3 Results

A plot of coupling coefficients for the trial simulation is shown in Fig. 6.21.
This plot contains a large amount of information regarding the requirements
of NumCross. The 1600 points are colour coded to determine which of the 10
Monte Carlo iterations they pertain to. In turn, there are 160 available positions
on the x-axis corresponding to all possible scattering modes allowed within the
bounds of the simulation. The assignment of modes to positions is explained in
the axis label comment. The points are plotted logarithmically to highlight the
exponential decline in power for higher modes. To allow the logarithmic scale
to plot all points without undefined results, the aforementioned analytically
zero-valued mode couplings in the n=0 order have been set to an arbitrary
value of -70 dB. The black crosses on the plot represent the values obtained
for zero offset. In the limit of perfect resolution, these would be zero outside
the n=1, they are included for completeness and to show that the high power
scattered to other n orders is not simply an artefact of the numerical nature of
the routine.

Most of the input power is still contained in the TE11 mode for the offset
simulations (∼ 55-70%, as the n=1 value falls in the -1.5/-2.5 dB region for all
simulations) and more generally in n=1, implying that the horns are still func-
tional at a basic level. The power in radial and azimuthal orders is seen to
decrease approximately exponentially with increasing order from the n=1 and
m=1 orders (appearing as linear on a log graph). The decrease is more rapid
for radial than for azimuthal orders. The n=4 order and the m=7,8 orders all
have peak power in the <-35 dB region. This implies that they are the limit-
ing orders past which the relevance to the cross-polarisation level is minimal,
as cross-polarisation beneath -30 dB is considered to be excellent. It follows
that, for tolerances up to and including ± 50 µm, 5 radial and 8 azimuthal or-
ders are sufficiently inclusive for the calculation. Additionally, the maximal
power seen outside the n=1 for zero offset is well below -40 dB, reiterating the
assertion that the resolution used is adequate for these simulations. The total
power contained in each simulation varied, with the lowest being 0.851 and
the highest 0.983. This implies non-negligible return loss in the system, which
is expected for significant tolerancing errors. It also shows the variety in out-
put from the randomness of the tolerancing, from a -9 dB loss factor for the
worst horn to a -17 dB loss factor for the best horn. The sum for the zero offset
simulation was 0.993, implying return loss below -20 dB for the perfect horn,
as expected.
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The dominance of co-polar over cross-polar power is visible in the n=1 az-
imuthal order, with the TE11 and TM11 co-polar modes both showing large
power >-7 dB, and their cross-polar components lying at <-25 dB. However,
this high performance is not seen in the m=1 column of any of the other n
orders, the power is much more uniformly distributed between the co- and
cross-polar components. This can be seen most clearly with the TE21 values,
as they are tightly bunched, with most falling between -17 and -27 dB. This
loss of polarisation at relatively high power levels (>-20 dB) would imply a de-
terioration in cross-polarisation for the offset error horns due to the scattering
between n orders, a phenomenon which is further demonstrated by 6.22. It is
observed that the disparity between TE11 and TM11 agrees roughly with the
theoretical result described by Cahill (2015), that the optimal cross-polarisation
is achieved with a TE11-TM11 mixing ratio of 85%-15%, or a linear factor of
5.67. The TM11 co-polar power lies at the -7 dB level, ∼ 5 dB below the TE11
co-polar power, or a factor of

√
10 ≈ 3.2. A similar level was also observed in

the perfect horn, as expected, given the very low variation in the co-polar main
beam. This shows that there is a greater TM11 component in the horns than
would be ideal in the presence of only the HE11 mode (ideal case). In reality,
the other angular modes of the n=1 order also contribute to the extinction of
the cross-polar power in the ideal case, which could account for this discrep-
ancy. Finally, the low level of power in the m > 2 azimuthal orders of the n=1
for the perfect horn is seen to be almost negligible, ∼-30 dB. This agrees with
the the initial testing of limited modes shown in Fig. 6.17.

The mode amplitudes plotted in Fig. 6.21 were then input into the farfield
generation and plotting algorithm adapted from PyScatter. An additional ex-
ample was included for the perfect horn, using the analytical code to generate
the farfield pattern. The results are shown in Fig. 6.22. The co-polar beams
are seen to vary minimally above -20 dB. This is expected, as the copolar beam
shape is mostly determined by the flare and mouth diameter of the horn, and
will not be so easily affected by small perturbations. Nevertheless, the posi-
tion of peak intensity does shift from boresight, lying within the range ±1.8◦

for the ten iterations performed. The cross-polar power is affected very signifi-
cantly, with main lobe cross-polar peaks ranging from−16 dB to−25 dB, com-
pared to −29 dB for the ideal horn. Additionally, the asymmetry in the cross-
polarisation between the left and right (φ=45, 225) primary peaks is observed
to be large (>5 dB in some cases). This shows that the effects of lateral dis-
placements of stacked plates at the ±50 µm level are extremely significant, es-
pecially in the throat of the horn, to the point of rendering most manufactured
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horns unfit for purpose (cross-polarisation >-25 dB in the case of QUBIC). A
similar computation could be performed for the orthogonal cross-polar peaks
(φ=135, 315), but this would be expected to return the same result. This sug-
gests that a tolerance� ±50µm is required for good performance.

6.3.4 Final summary

This chapter has described work that was carried out to convert analytical ex-
pressions for overlap integrals in the in-house PyScatter code into numerical
evaluations of the integrals. This was done so that lateral offsets between sub-
sequent corrugations could be accommodated. The work to develop this code,
called NumCross, was carried out in several stages. Firstly the power cou-
pling integrals were represented in a form compatible with a numerical solu-
tion, with provision for lateral shifts. Upon addition of an offset, the number of
cross-coupling integrals required to solve for the power scattered across a step
increased significantly. The expected power levels in modes of different radial
and azimuthal orders was discussed, the code was then tested against those
expectations. Finally, the 176-section QUBIC horn was analysed in its entirety.
This was conducted for the perfectly aligned case, and for a version includ-
ing random alignment offsets at the ±50 µm level. Machining tolerances for
platelet arrays would introduce such alignment errors. The effect of the offsets
was tested by comparison with the nominal horn. The results indicated that
alignment of platelet sections for corrugated horns at millimetre wavelengths
must be substantially better than ± 50 µm to ensure acceptable horn perfor-
mance. This analysis could be performed for any waveband at which platelet
stacked horns are used, and could yield much more accurate results if greater
computational power were allocated to simulations
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FIGURE 6.21: TE11 coupling coefficients for the full S21 at the
mouth of the horn, a comparison between a perfect design and
different offset levels. On the horizontal axis, for example, a value

of 203 means TM20 co-polar.
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FIGURE 6.22: Comparison of the farfield pattern of the perfect
QUBIC horn with patterns generated for the 10 Monte Carlo trials

of the linearly offset QUBIC horn.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this chapter I briefly summarise the work carried out in this thesis, and
suggest potential future extensions of the work presented.

7.1.1 Pickmere

A Gaussian beam mode analysis was performed using Python on a simplified
rendition of the Pickmere radio telescope’s optical parameters. The model was
tested independently using a physical optics analysis on the GRASP platform.

The beam properties evaluated using ABCD matrices and Gaussian beam
mode analysis consistently agreed with the GRASP equivalent, both in the case
of a free Gaussian beam and for a beam inside the telescope. The real apparatus
was modelled by reflection between instantiated surfaces in GRASP, and by
passage through multiple equivalent lenses in the Gaussian mode analysis.

The independent verification of beam parameters between two vastly dif-
ferent approaches confirms the efficacy of both methods and paves the way for
further research into the use of phased arrays as proposed by our collaborators
in Manchester University.

7.1.2 ALMA

A series of three wideband horns were developed for a proposed combined
ALMA band 4 and 5, as well as initial prototypes for a Ka band horn which
could be manufactured and tested in-house.

The beam parameter goals for the horns were challenged by manufacturing
constraints and limits of the customisation of raw materials (AL plates). This
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allowed for more in-depth development of modelling techniques to balance
these requirements.

Tolerance analysis was conducted by introducing random variations to the
corrugation depths of the horn. This allowed an estimation of the expected
deterioration of beam parameters for a given tolerance level, and also the
spread in quality which could be expected across an array of horns. The results
show that this type of analysis can be performed in a reasonable timeframe on
PyScatter, and produces usable results.

7.1.3 QUBIC

The design for the QUBIC horn was used as a test for the PyScatter code. Sim-
ple alterations were made to the horn geometryto determine if the observing
band could be widened to include frequencies between 90 and 150 GHz. The
designs tested experienced full mode cutoff at 105 GHz, coupled with reduced
performance at the upper end of the band. The QUBIC horn is manufactured
using a platelet technique, any misalignment of these plates would likely re-
sult in a reduction in performance. Simulation based analysis of such offsets
was not feasible using the analytical approach of PyScatter, so a new code was
written using a numerical approach.

7.1.4 Numerical modelling

Proof of concept was achieved for NumCross, a numerical version of the ex-
isting analytical PyScatter routine in Python, which evaluates cross coupling
integrals by summation of power over a grid of points covering the area of
interest, with variable resolution. It has been demonstrated that such a routine
can perform useful simulations to acceptable accuracy (<-40 dB) in a reason-
able time on a standard PC (hours to several days, depending on the horn size
and resolution required). The accuracy of numerical simulations of perfect
horns was shown to converge incrementally toward the analytical solution as
numerical resolution was increased.

NumCross was used to carry out the tolerance analysis of the QUBIC horn,
by examining lateral offsets due to misalignment of platelets in plate assembly
horn manufacturing. The main conclusion of this analysis was that such offsets
can have a measurable effect on horn performance, specifically cross polarisa-
tion. The level of tolerancing effects on the QUBIC horn were determined to
be of significance when considering horn designs.
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A better knowledge of the theoretical cross polarisation and return loss
from offset systems could avoid over or underengineering when the accuracy
of aligning platelets for horn arrays is considered. If the level of deteriora-
tion caused by a particular fractional offset in the throat is known, then the
alignment method can be tailored to the parameters needed before the horn
is built. Otherwise, such effects could only be achieved by measuring the
beam parameters directly from a physical horn. This is costly, both in terms
of machining prototypes, and the requirement to take delicate measurements
of cross-polarisation etc. It is also likely to incur higher uncertainty compared
to simulation.

Numerical methods of horn analysis can constitute a valuable tool in the
design of horns for array use, where individual manufacturing is impractical
or prohibitively expensive. NumCross is a viable alternative to finite element
techniques, which can be difficult to perform for large volume horns.

7.2 Future work

7.2.1 Overview

The research outlined in this thesis could serve as a foundation for further
work in the field of THz element design and analysis, in particular for the
three main projects undertaken. These are the modelling of the Pickmere ra-
dio telescope, covered in Chapter 2 the ALMA collaboration with Manchester
University, as detailed in Chapter 5, and the numerical modelling undertaken
in Maynooth, described in Chapter 6.

7.2.2 Pickmere

Greater computing power could be used for the GRASP analysis, allowing for
inclusion of struts and other components in the full scale model, as opposed to
just the main mirrors.

The Gaussian beam mode analysis code could be generalised to include an
arbitrary number of simple components, with a user interface to select compo-
nent parameters and positions.
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7.2.3 ALMA

The design of the ALMA horns, both for bands 4-5 and for Ka band, could be
extended to find the best conical horn possible, without limitations from ma-
terials and machining techniques currently available. Simulated models of the
higher frequency horn indicated an ideal section width of 0.65 mm, which did
not coincide with the plate thicknesses available from the supplier in the UK
(0.6, 0.7 mm). Furthermore, the tolerancing on the sheets was quite poor, at
±70µm, although this is a guaranteed maximum, as opposed to a true uncer-
tainty. Laser micromachining was also not as promising in terms of tolerancing
as was initially hoped. Finally, the number of corrugations in horn prototypes
had to be reduced considerably to meet budgeting, time and material con-
straints for machining. This restricted the beam parameters which could be
achieved. Further research into solving these issues could yield a better proto-
type design.

The codes to generate geometry files and three-dimensional horn plots could
be expanded to model more complex geometries of horns, for example, expo-
nential and sine squared profiles. Combinations of these could improve cross
polarisation and return loss over the linear conical designs considered for the
ALMA horns.

7.2.4 Numerical modelling

The generation of the NumCross code opens up a wide variety of opportuni-
ties for straightforward and versatile analysis of horns and waveguides. Con-
quering the limitation of cylindrical symmetry could allow for the simulation
of any system which can be broken down into circular sections along the prop-
agation axis. The routine could also be tested at a higher accuracy and modal
inclusivity, with the use of a supercomputer or cluster core processor. This
would give a clearer picture of the performance and limitations of the numeri-
cal integration method used. Faster computation times could also allow analy-
sis at many frequencies, as was conducted for ALMA using PyScatter. Finally,
additional functionalities could be added, for example three-dimensional plot-
ting of far-field patterns, and the inclusion of other sectional geometries, for
example rectangular waveguides and horns.
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Appendix A

Pickmere Schematics

These schematics formed the basis of the dimensions used in the GRASP model
of Pickmere. They were obtained by personal correspondence from the Manch-
ester team.
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FIGURE A.1: Initial design of the Pickmere radio telescope, with
mount
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FIGURE A.2: Dimensions of the reflectors, struts and armature
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Appendix B

PyScatter excerpt, calculating P, Q
and R matrices

This appendix contains an example section of the PyScatter code described in
Chapters 4, 5 and 6, specifically the part which performs the mode matching
integrations and generates the P, Q nd R matrices.

This code was developed from the cross-coupling integration. This routine
written by David Burke as part of his doctoral degree, (Burke, 2021), based
on mode matching mathematics compiled by Eimante Kalinauskaite as part of
her doctoral degree (Kalinauskaite, 2017).

B.1 Cell 1

from datetime import datetime
start_time = datetime.now()

def frange(start,stop, step):
while start <= stop:

yield start
start +=step

logcrossset=[]

for freq in frange (FStart,FEnd,FStep):
#Setting up constants
c=299792458
L=(c/(freq * pow(10,9)))*pow(10,3)

# Wavenumber
def k0(L):

return (2 * pi)/L
# Propagation function
def beta(z):

return conjugate(sqrt(1 - pow((z / k0(L)),2)))

#Creating a table of Bessel derivative roots
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pnlds =[]
for n in range(var1,var2 + 1):

for l in range(1,var3 + 1):
pnld = jnp_zeros(n,l)

pnlds.append(pnld)

#Creating a table of Bessel roots
pnls = []
for n in range(var1,var2 + 1):

for l in range(1,var3 + 1):
pnl = jn_zeros(n,l)

pnls.append(pnl)

index1=[]
index2=[]

LLinit = sections_lengths[0]
a0 = sections_radii[0]
#Defining the initial propagation matrices
def VijTEInit(n,x):

return exp(complex(0,-1)*k0(L)*beta((pnlds[n][x-1])/a0)*LLinit)
def VijTMInit(n,x):

return exp(complex(0,-1)*k0(L)*beta((pnls[n][x-1])/a0)*LLinit)
k00 = k0(L)
import numpy as np
VIJTEINIT = [[exp(complex(0,-1)*k00*beta((pnlds[n][x-1])/a0)*LLinit)
for x in range(1,var3+1)] for n in range (var1,var2+1)]
VIJTMINIT = [[exp(complex(0,-1)*k00*beta((pnls[n][x-1])/a0)*LLinit)
for x in range(1,var3+1)] for n in range (var1,var2+1)]
VijTEMatInit = np.array(list(VIJTEINIT))
VijTMMatInit = np.array(list(VIJTMINIT))
VijTETMINIT = [np.vstack((VijTEMatInit[n],VijTMMatInit[n]))
for n in range (var1, var2+1)]
VINIT = [np.diag(VijTETMINIT[n].flatten()) for n in range (var1,var2+1)]

b = a0
LL=LLinit
IdentityMatrix = np.identity(2*var3)
S21a = [(np.dot(VINIT[n],IdentityMatrix)) for n in range (var1, var2+1)]
S12a = S21a
S11a = (np.zeros(shape=(2*var3,2*var3)))
S22a = S11a

for index in range (0,len(sections_radii)-1):
a = b
b = sections_radii[index+1]
delLL=sections_lengths[index+1]
LL = delLL + LL
if a > b:

rbig = a
rsmall = b

if b > a:
rbig = b
rsmall = a
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# Populating arrays of dimensions "n x i x j" with analytical solutions to cross-coupling integrals
PTETE = [[[(-1 * sqrt(1 / (pow(rsmall,2) * (1 - (pow(n / pnlds[n][i-1],2)))

* pow(jv(n,pnlds[n][i-1]),2)))) * sqrt(1 / (pow(rbig,2) * (1 - (pow(n / pnlds[n][j-1],2)))
*pow(jv(n,pnlds[n][j-1]),2))) * conjugate(beta(pnlds[n][j-1] / rbig)) * (2 *
pnlds[n][i-1] * jv(n,pnlds[n][i-1]) * jvp(n,(pnlds[n][j-1] * rsmall) / rbig)) / (
pow((pnlds[n][j-1] / rbig),2) - (pow((pnlds[n][i-1] / rsmall),2))) *
((1 / (sqrt(abs(beta(pnlds[n][j-1] / rbig)))))
* (1 / (sqrt(abs(beta(pnlds[n][i-1] / rsmall)))))) for j in range(1,var3+1)]
for i in range(1,var3+1)] for n in range(var1,var2+1)]

PTMTM = [[[(1 * sqrt(1 / (pow(rsmall,2) * pow(rbig,2) * (pow(jv((n+1),pnls[n][i-1]),2)
) * pow(jv((n+1),pnls[n][j-1]),2)))) * (2 * ((rsmall * pnls[n][j-1]) / rbig) * (
jvp(n,pnls[n][i-1])) * jv(n,(pnls[n][j-1] * rsmall) / rbig)) / (
pow((pnls[n][j-1]) / rbig,2) - pow((pnls[n][i-1]) / rsmall,2)) * 1 / (
conjugate(beta(pnls[n][j-1] / rbig))) * ((sqrt(abs(beta(pnls[n][j-1] / rbig)))) * (
sqrt(abs(beta(pnls[n][i-1] / rsmall))))) for j in range(1,var3+1)]
for i in range(1,var3+1)] for n in range(var1,var2+1)]

PTETM = [[[ (1 * sqrt(1 / ((1 - (pow(n / pnlds[n][i-1],2))) * pow(jv(n,pnlds[n][i-1]),2))
)) * sqrt(1 / (((pow(jv((n+1) , pnls[n][j-1]),2))))) * (2 * n) * jv(n,pnlds[n][i-1]
) * (jv(n,(pnls[n][j-1] * rsmall) / rbig) / (pnlds[n][i-1] * pnls[n][j-1])) * (
1/(conjugate(beta((pnls[n][j-1]) / rbig)))) * (sqrt(abs(beta(pnls[n][j-1] / rbig)) / abs(
beta(pnlds[n][i-1] / rsmall))))
for j in range(1,var3+1)]for i in range(1,var3+1)] for n in range(var1,var2+1)]

PTMTE = [[[0 for j in range(1,var3+1)]for i in range(1,var3+1)] for n in range(var1,var2+1)]

QijTETE = [[conjugate(beta(pnlds[n][i-1] / rbig))*(1 / abs(beta(pnlds[n][i-1] / rbig)))
for i in range(1,var3+1)] for n in range(var1,var2+1)]

QijTMTM = [[1 / (conjugate(beta(pnls[n][i-1] / rbig))) * abs(beta(pnls[n][i-1] / rbig))
for i in range(1,var3+1)] for n in range(var1, var2+1)]

RijTETE = [[conjugate(beta(pnlds[n][i-1] / rsmall))*(1 / abs(beta(pnlds[n][i-1] / rsmall)))
for i in range(1,var3+1)] for n in range(var1,var2+1)]

RijTMTM = [[1 / (conjugate(beta(pnls[n][i-1] / rsmall))) * abs(beta(pnls[n][i-1] / rsmall))
for i in range(1,var3+1)] for n in range(var1, var2+1)]

#generating propagation matrices
def VijTE(n,x):

return exp(complex(0,-1)*k0(L)*beta((pnlds[n][x-1])/b)*delLL)
def VijTM(n,x):

return exp(complex(0,-1)*k0(L)*beta((pnls[n][x-1])/b)*delLL)
k00 = k0(L)
VIJTE = [[exp(complex(0,-1)*k00*beta((pnlds[n][x-1])/b)*delLL)
for x in range(1,var3+1)] for n in range (var1,var2+1)]
VIJTM = [[exp(complex(0,-1)*k00*beta((pnls[n][x-1])/b)*delLL)
for x in range(1,var3+1)] for n in range (var1,var2+1)]

PteteMat = np.array(list(PTETE))
PtetmMat = np.array(list(PTETM))
PtmteMat = np.array(list(PTMTE))
PtmtmMat = np.array(list(PTMTM))

QteteMat = np.array(list(QijTETE))
QtmtmMat = np.array(list(QijTMTM))
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RteteMat = np.array(list(RijTETE))
RtmtmMat = np.array(list(RijTMTM))
Qtetetmtm = [np.vstack((QteteMat[n],QtmtmMat[n])) for n in range (var1, var2+1)]
Rtetetmtm = [np.vstack((RteteMat[n],RtmtmMat[n])) for n in range (var1, var2+1)]
#producing finished P, Q and R matrices
QQij = [np.diag(Qtetetmtm[n].flatten()) for n in range (var1, var2+1)]
RRij = [np.diag(Rtetetmtm[n].flatten()) for n in range (var1,var2+1)]
PPij = [np.vstack((np.hstack((np.transpose(PteteMat[n]),np.transpose(PtmteMat[n])))
,np.hstack((np.transpose(PtetmMat[n]),np.transpose(PtmtmMat[n])))))

PPij = [np.vstack((np.hstack((np.transpose(PteteMat[n]),np.transpose(PtmteMat[n])))\\
,np.hstack((np.transpose(PtetmMat[n]),np.transpose(PtmtmMat[n]))))) for n in range (var1, var2+1)]

VijTEMat = np.array(list(VIJTE))
VijTMMat = np.array(list(VIJTM))
VijTETM = [np.hstack((VijTEMat[n],VijTMMat[n])) for n in range (var1, var2+1)]
Vij = [np.diag(VijTETM[n].flatten()) for n in range (var1,var2+1)] #propagation phase matrix
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Appendix C

NumCross excerpt, calculating P, Q
and R matrices

This appendix contains an example section of the NumCross code described
in Chapter 6, specifically the part which performs the mode matching integra-
tions and generates the P, Q nd R matrices

C.1 Cell 1

import numpy as np
import matplotlib.pyplot as plt
import scipy.special
import math as mth
from mpl_toolkits.mplot3d import Axes3D
import cmath as cm
import time
import datetime
from datetime import datetime
import random as rnd

#shorthand for trig functions

pi=np.pi
sin=np.sin
cos=np.cos
sqrt=np.sqrt
tan=np.tan
tan2=mth.atan2

#timer
start=datetime.now()

#inputting and reading geometry files
lines = np.loadtxt("QUBICtest.txt", comments="#", delimiter=",", unpack=False)
section_number = lines[2];
sections_lengths = lines[3:(len(lines)-(len(lines)/2)+1)]
sections_radii = lines[(len(lines)-(len(lines)/2)+1):len(lines)];
print section_number, sections_lengths, sections_radii

lines2=np.loadtxt("QUBICtestoffset0.1.txt", comments="#", delimiter=",", unpack=False)

rawoffsetx=lines2[0:len(lines2)/2]
rawoffsety=lines2[len(lines2)/2:len(lines2)]

offsetx=[]
offsety=[]
deloffsetx=[]
deloffsety=[]
#Setting up offsets
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for i in range (int(section_number)):
offsetx.append(rnd.gauss(sections_radii[i], rawoffsetx[i]))
offsety.append(rnd.gauss(sections_radii[i], rawoffsety[i]))

for i in range (int(section_number)):
deloffsetx.append (offsetx[i]-sections_radii[i])
deloffsety.append (offsety[i]-sections_radii[i])

print "offsetx", deloffsetx

print "offsety", deloffsety

print np.max(deloffsetx)
print np.max(deloffsety)
#unit conversion
for i in range (int(section_number)):

offsetx[i]=offsetx[i]/1000
offsety[i]=offsety[i]/1000
deloffsetx[i]=deloffsetx[i]/1000
deloffsety[i]=deloffsety[i]/1000

C.2 Cell 2
#number of modes to be analysed
m=10
n=1
#side length of resultant matrices
x1=2*int(2*m*(n+1))

#Initial propagation matrices
Vij11initmatrix=np.zeros((x1, x1),dtype=complex)
Vij22initmatrix=np.zeros((x1, x1),dtype=complex)
Vij12initmatrix=np.zeros((x1, x1),dtype=complex)
Vij21initmatrix=np.zeros((x1, x1),dtype=complex)
Vijinitlist=[]
Vij11finalmatrix=np.zeros((x1, x1),dtype=complex)
Vij22finalmatrix=np.zeros((x1, x1),dtype=complex)
Vij12finalmatrix=np.zeros((x1, x1),dtype=complex)
Vij21finalmatrix=np.zeros((x1, x1),dtype=complex)
Vijfinallist=[]

#Constants
omega=2*pi*2*10**11
lamb=(2*pi*300000000)/omega
k0=2*pi/lamb
#Plotting resolution
res=100
r= 9 #rounding factor

#intrinsic impedance of free space
Z0=1.0
mu0=1.2567*10**-6
ep0=8.854*10**-12

asmalllist=[]
abiglist=[]
aproplist=[]

for sect in range (int(section_number-1)):
#creating radii and length sections for integration
dL=sections_lengths[sect]/1000
dLinit=sections_lengths[0]/1000
dLfinal=sections_lengths[-1]/1000
ae=sections_radii[sect] #radius of the cavity
am=sections_radii[sect+1]

ae=ae/1000
am=am/1000
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#determining the sizes of the waveguide sections across the step.

if am>=ae:
xe=np.linspace(-ae+deloffsetx[sect],ae+deloffsetx[sect],res+1) #offsetae
ye=np.linspace(-ae+deloffsety[sect],ae+deloffsety[sect],res+1) #offsetae
xm=np.linspace(-ae+deloffsetx[sect+1],ae+deloffsetx[sect+1],res+1) #+offsetam
ym=np.linspace(-ae+deloffsety[sect+1],ae+deloffsety[sect],res+1) #offsetam#

asmall=ae
abig=am
asmalllist.append(asmall)
abiglist.append(abig)

if am<ae:
xe=np.linspace(-am+deloffsetx[sect+1],am+deloffsetx[sect+1],res+1) #offsetam
ye=np.linspace(-am+deloffsetx[sect+1],am+deloffsetx[sect+1],res+1) #offsetam
xm=np.linspace(-am+deloffsetx[sect],am+deloffsetx[sect],res+1) #+offsetae
ym=np.linspace(-am+deloffsety[sect],am+deloffsety[sect],res+1) #offsetae

asmall=am
abig=ae
asmalllist.append(asmall)
abiglist.append(abig)

stepe=(2*asmall)/res
stepm=(2*asmall)/res
aprop=sections_radii[sect]/1000

#initial and final sections
apropinit=sections_radii[0]/1000
apropfinal=sections_radii[-1]/1000
aproplist.append(aprop)

#function to calculate Bessel roots
def pnm(n,m):

return scipy.special.jn_zeros(n,m)[m-1]
#roots of first derivatives of Bessel fucntions
def pnmd(n,m):

return scipy.special.jnp_zeros(n,m)[m-1]

#this function calculates the impedance values for the horn
def impedance(n,m,a):

ztenm=Z0/(cm.sqrt(1.0-(pnmd(n,m)/(omega*a*sqrt(mu0*ep0)))**2))
ztmnm=Z0*cm.sqrt(1.0-(pnm(n,m)/(omega*a*sqrt(mu0*ep0)))**2)

return ztmnm, ztenm
#Computing bets

def beta(n,m,a):
betatmnm=1.0*np.conj(cm.sqrt(1.0-(pnm(n,m)/(k0*a))**2))
betatenm=1.0*np.conj(cm.sqrt(1.0-(pnmd(n,m)/(k0*a))**2))

return betatmnm, betatenm

#this function integrates the Poynting vector over offset pairs of waveguide sections.
def mode(nnumber, mnumber):

starttime=datetime.now()
dummy=0
timer1=0.0
timer2=0.0
counter=0.0
totalpower=0.0
m1=np.linspace(1, mnumber, mnumber)
n1=np.linspace(0, nnumber, nnumber+1)

#Cresting empty lists and matrices to fill durng the routine.
Qlist=[]
Rlist=[]
betalist=[]
Vijlist=[]
Qmatrix=np.zeros((x1, x1),dtype=complex)
Rmatrix=np.zeros((x1, x1),dtype=complex)
Vij11matrix=np.zeros((x1, x1),dtype=complex)
Vij22matrix=np.zeros((x1, x1),dtype=complex)
Vij12matrix=np.zeros((x1, x1),dtype=complex)
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Vij21matrix=np.zeros((x1, x1),dtype=complex)
Identitymatrix=np.identity(x1)
#cycling through all included radial and angular modes.
for nvar1 in range(0,len(n1)):

for mvar1 in range(len(m1)):

for nvar2 in range(0,len(n1)):
for mvar2 in range(len(m1)):

pline=[]
pline2=[]
pline3=[]
pline4=[]

if ae<=am:
asmall=ae
abig=am

if ae>am:

asmall=am
abig=ae

pnmvalE=pnm(int(n1[nvar1]),int(m1[mvar1]))
pnmdvalE=pnmd(int(n1[nvar1]),int(m1[mvar1]))
pnmvalH=pnm(int(n1[nvar2]),int(m1[mvar2]))
pnmdvalH=pnmd(int(n1[nvar2]),int(m1[mvar2]))
#calculating impedances
ztmnmE, ztenmE =impedance(int(n1[nvar1]),int(m1[mvar1]),asmall)
ztmnmH, ztenmH =impedance(int(n1[nvar2]),int(m1[mvar2]),abig)

betatmnmH, betatenmH=beta(int(n1[nvar2]),int(m1[mvar2]),abig)

betatmprop, betateprop=beta(int(n1[nvar1]),int(m1[mvar1]),aprop)

betatmpropinit, betatepropinit=beta(int(n1[nvar1]),int(m1[mvar1]),apropinit)

betatmpropfinal, betatepropfinal=beta(int(n1[nvar1]),int(m1[mvar1]),apropfinal)

if mvar2==0 and nvar2==0 and sect !=0:
Vije=np.exp(complex(0,-1)*k0*betateprop*dL)
Vijm=np.exp(complex(0,-1)*k0*betatmprop*dL)

Vijlist.append(Vije)
Vijlist.append(Vije)
Vijlist.append(Vijm)
Vijlist.append(Vijm)

if sect==0 and mvar2==0 and nvar2==0:
#Generating the initial and final propagation matrices
Vijeinit=np.exp(complex(0,-1)*k0*betatepropinit*dLinit)
Vijminit=np.exp(complex(0,-1)*k0*betatmpropinit*dLinit)
Vijefinal=np.exp(complex(0,-1)*k0*betatepropfinal*dLfinal)
Vijmfinal=np.exp(complex(0,-1)*k0*betatmpropfinal*dLfinal)

Vijinitlist.append(Vijeinit)
Vijinitlist.append(Vijeinit)
Vijinitlist.append(Vijminit)
Vijinitlist.append(Vijminit)

Vijfinallist.append(Vijefinal)
Vijfinallist.append(Vijefinal)
Vijfinallist.append(Vijmfinal)
Vijfinallist.append(Vijmfinal)

deltan0e=0
deltan0m=0
if int(n1[nvar1])==0:

deltan0e=1
if int(n1[nvar2])==0:

deltan0m=1
exhtot=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
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for i in range(len(xe)):

for j in range(len(ye)):

#Performing the numerical integration
n=int(n1[nvar1])
#coordinate conversion

#Coordinate convrsion
r1=(sqrt((xe[i]/asmall)**2+(ye[j]/asmall)**2))
phi1=(tan2(ye[j],xe[i]))

#these functions are separated out to neaten the equations
const=(2-deltan0e)/(4.0*pi*asmall**2)
J1E=scipy.special.jv(n-1,(pnmvalE*r1))
J2E=scipy.special.jv(n+1,(pnmvalE*r1))
J3E=scipy.special.jv(n-1,pnmvalE)**2
J4E=1-(n/pnmdvalE)**2
J5E=scipy.special.jv(n+1,(pnmdvalE*r1))
J6E=scipy.special.jv(n-1,(pnmdvalE*r1))
J7E=scipy.special.jv(n,pnmdvalE)**2
#Fully written out equation, as an example
#exteco=cm.sqrt((2-deltan0)/(4.0*pi*a**2)/(1-(n/pnmdval)**2*scipy.special.jv(n,pnmdval)**2)) *
#(scipy.special.jv(n+1,(pnmdval*(sqrt((i/a)**2+(j/a)**2))))*cos((n-1)*(tan2(i,j)))
# +scipy.special.jv(n+1,(pnmdval*(sqrt((i/a)**2+(j/a)**2))))*cos((n+1)*(tan2(i,j))))*sqrt(abs(ztenmE))

#Electric cross coupling equations
exteco=cm.sqrt(const/(J4E*J7E)) * (J6E*cos((n-1)*phi1)+J5E*cos((n+1)*phi1))*sqrt(abs(ztenmE))
extecross=cm.sqrt(const/(J4E*J7E)) * (J6E*-sin((n-1)*phi1)+J5E*-sin((n+1)*phi1))*sqrt(abs(ztenmE))
eyteco=-cm.sqrt(const/(J4E*J7E)) * (J6E*sin((n-1)*phi1)-J5E*sin((n+1)*phi1))*sqrt(abs(ztenmE))
eytecross=-cm.sqrt(const/(J4E*J7E)) * (J6E*cos((n-1)*phi1)-J5E*cos((n+1)*phi1))*sqrt(abs(ztenmE))
extmco=cm.sqrt(const/(J3E)) * (J1E*cos((n-1)*phi1)-J2E*cos((n+1)*phi1))*sqrt(abs(ztmnmE))
extmcross=cm.sqrt(const/(J3E)) * (J1E*-sin((n-1)*phi1)-J2E*-sin((n+1)*phi1))*sqrt(abs(ztmnmE))
eytmco=-cm.sqrt(const/J3E) * (J1E*sin((n-1)*phi1)+J2E*sin((n+1)*phi1))*sqrt(abs(ztmnmE))
eytmcross=-cm.sqrt(const/J3E) * (J1E*cos((n-1)*phi1)+J2E*cos((n+1)*phi1))*sqrt(abs(ztmnmE))

n=int(n1[nvar2])
r2=(sqrt((xm[i]/abig)**2+(ym[j]/abig)**2))
phi2=(tan2(ym[j],xm[i]))

#these functions are separated out to neaten the equations
const=(2-deltan0m)/(4.0*pi*abig**2)
J1H=scipy.special.jv(n-1,(pnmvalH*r2))
J2H=scipy.special.jv(n+1,(pnmvalH*r2))
J3H=scipy.special.jv(n-1,pnmvalH)**2
J4H=1-(n/pnmdvalH)**2
J5H=scipy.special.jv(n+1,(pnmdvalH*r2))
J6H=scipy.special.jv(n-1,(pnmdvalH*r2))
J7H=scipy.special.jv(n,pnmdvalH)**2

#Magnetic cross coupling equations
hxteco=(1/ztenmH)*cm.sqrt(const/(J4H*J7H)) * (J6H*sin((n-1)*phi2)-J5H*sin((n+1)*phi2))*sqrt(abs(ztenmH))
hxtecross=(1/ztenmH)*cm.sqrt(const/(J4H*J7H)) * (J6H*cos((n-1)*phi2)-J5H*cos((n+1)*phi2))*sqrt(abs(ztenmH))
hyteco=(1/ztenmH)*cm.sqrt(const/(J4H*J7H)) * (J6H*cos((n-1)*phi2)+J5H*cos((n+1)*phi2))*sqrt(abs(ztenmH))
hytecross=(1/ztenmH)*cm.sqrt(const/(J4H*J7H)) * (J6H*-sin((n-1)*phi2)+J5H*-sin((n+1)*phi2))*sqrt(abs(ztenmH))
hxtmco=(1/ztmnmH)*cm.sqrt(const/(J3H)) * (J1H*sin((n-1)*phi2)+J2H*sin((n+1)*phi2))*sqrt(abs(ztmnmH))
hxtmcross=(1/ztmnmH)*cm.sqrt(const/(J3H)) * (J1H*cos((n-1)*phi2)+J2H*cos((n+1)*phi2))*sqrt(abs(ztmnmH))
hytmco=(1/ztmnmH)*cm.sqrt(const/(J3H)) * (J1H*cos((n-1)*phi2)-J2H*cos((n+1)*phi2))*sqrt(abs(ztmnmH))
hytmcross=(1/ztmnmH)*cm.sqrt(const/(J3H)) * (J1H*-sin((n-1)*phi2)-J2H*-sin((n+1)*phi2))*sqrt(abs(ztmnmH))

#calculating Poynting from cross product of components
exhtetecoco=((exteco*hyteco)-(eyteco*hxteco))
exhtetecocross=((exteco*hytecross)-(eyteco*hxtecross)) #abs(z)/z
exhtetecrossco=((extecross*hyteco)-(eytecross*hxteco))
exhtetecrosscross=((extecross*hytecross)-(eytecross*hxtecross))
exhtetmcoco=((exteco*hytmco)-(eyteco*hxtmco))
exhtetmcocross=((exteco*hytmcross)-(eyteco*hxtmcross))
exhtetmcrossco=((extecross*hytmco)-(eytecross*hxtmco))
exhtetmcrosscross=((extecross*hytmcross)-(eytecross*hxtmcross))
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exhtmtecoco=((extmco*hyteco)-(eytmco*hxteco))
exhtmtecocross=((extmco*hytecross)-(eytmco*hxtecross))
exhtmtecrossco=((extmcross*hyteco)-(eytmcross*hxteco))
exhtmtecrosscross=((extmcross*hytecross)-(eytmcross*hxtecross))
exhtmtmcoco=((extmco*hytmco)-(eytmco*hxtmco))
exhtmtmcocross=((extmco*hytmcross)-(eytmco*hxtmcross))
exhtmtmcrossco=((extmcross*hytmco)-(eytmcross*hxtmco))
exhtmtmcrosscross=((extmcross*hytmcross)-(eytmcross*hxtmcross))

#creating coordinate points for plotting
D=sqrt(xe[i]**2+ye[j]**2)

#creating unit cell to store values pertaining to the interaction of a single pair of modes
basiccell=np.zeros((4,4), dtype=complex)

if D<asmall:

exhtot[0]+=exhtetecoco
exhtot[1]+=exhtetecocross
exhtot[2]+=exhtetmcoco
exhtot[3]+=exhtetmcocross
exhtot[4]+=exhtetecrossco
exhtot[5]+=exhtetecrosscross
exhtot[6]+=exhtetmcrossco
exhtot[7]+=exhtetmcrosscross
exhtot[8]+=exhtmtecoco
exhtot[9]+=exhtmtecocross
exhtot[10]+=exhtmtmcoco
exhtot[11]+=exhtmtmcocross
exhtot[12]+=exhtmtecrossco
exhtot[13]+=exhtmtecrosscross
exhtot[14]+=exhtmtmcrossco
exhtot[15]+=exhtmtmcrosscross

pixnum=stepe**2
exhnorm=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
#dividing the total pixel value for the mode by the number of pixels computed.

for q in range(len(exhtot)):
im=0.0
re=0.0
exhnorm[q]=exhtot[q]*pixnum
re=0.0+np.round(np.real(exhnorm[q]), r)
if abs(np.round(np.imag(exhnorm[q]), r))>1/10**r:

im=np.round(np.imag(exhnorm[q]), r)
exhnorm[q]=re+(im*1j)

else:
exhnorm[q]=re

totalpower+=exhnorm[q]

Appending values to the unit cell
for b1 in range (4):

for b2 in range (4):
basiccell[b1, b2]= exhnorm[4*b1+b2]

#Appending the 4x4 unit cell to the larger matrix
if nvar2==0 and mvar2==0:

Pmatrix1=basiccell

else:
Pmatrix1= np.concatenate((Pmatrix1, basiccell), axis=1)

if nvar1==nvar2 and mvar1==mvar2:

Rlist.append(abs(ztenmE)/ztenmE)
Rlist.append(abs(ztenmE)/ztenmE)
Rlist.append(abs(ztmnmE)/ztmnmE)
Rlist.append(abs(ztmnmE)/ztmnmE)
Qlist.append(abs(ztenmH)/ztenmH)
Qlist.append(abs(ztenmH)/ztenmH)
Qlist.append(abs(ztmnmH)/ztmnmH)
Qlist.append(abs(ztmnmH)/ztmnmH)

if mvar1==0 and nvar1==0:
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Pmatrix=Pmatrix1

else:
Pmatrix=np.concatenate((Pmatrix, Pmatrix1), axis=0)

#Filling Q, R and propagation matrices
np.fill_diagonal(Qmatrix, Qlist)
np.fill_diagonal(Rmatrix, Rlist)

np.fill_diagonal(Vij21matrix, Vijlist)
np.fill_diagonal(Vij12matrix, Vijlist)

if sect==0:
np.fill_diagonal(Vij21initmatrix, Vijinitlist)
np.fill_diagonal(Vij12initmatrix, Vijinitlist)

if sect==(section_number -1):
np.fill_diagonal(Vij21finalmatrix, Vijfinallist)
np.fill_diagonal(Vij12finalmatrix, Vijfinallist)

return Pmatrix, Qmatrix, Rmatrix, totalpower, Vij11matrix, Vij12matrix, Vij21matrix,
Vij22matrix, Vij12initmatrix, Vij21initmatrix, Vij12finalmatrix, Vij21finalmatrix, Identitymatrix

Pmatrix ,Qmatrix, Rmatrix, totalpower, Vij11matrix, Vij12matrix, Vij21matrix, Vij22matrix,
Vij12initmatrix, Vij21initmatrix, Vij12finalmatrix, Vij21finalmatrix, Identitymatrix = mode(n,m)

Pmatrix= np.transpose (Pmatrix)
#organising matrices

s = [[str(e) for e in row] for row in Pmatrix]
lens = [max(map(len, col)) for col in zip(*s)]
fmt = ’\t’.join(’{{:{}}}’.format(x) for x in lens)
table = [fmt.format(*row) for row in s]

s = [[str(e) for e in row] for row in Qmatrix]
lens = [max(map(len, col)) for col in zip(*s)]
fmt = ’\t’.join(’{{:{}}}’.format(x) for x in lens)
table1 = [fmt.format(*row) for row in s]

s = [[str(e) for e in row] for row in Rmatrix]
lens = [max(map(len, col)) for col in zip(*s)]
fmt = ’\t’.join(’{{:{}}}’.format(x) for x in lens)
table2 = [fmt.format(*row) for row in s]
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