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Abstract—We present the Versatile Grasp Quality Convo-
lutional Neural Network (VGQ-CNN), a grasp quality pre-
diction network for 6-DOF grasps. VGQ-CNN can be used
when evaluating grasps for objects seen from a wide range
of camera poses or mobile robots without the need to retrain
the network. By defining the grasp orientation explicitly as an
input to the network, VGQ-CNN can evaluate 6-DOF grasp
poses, moving beyond the 4-DOF grasps used in most image-
based grasp evaluation methods like GQ-CNN. To train VGQ-
CNN, we generate the new Versatile Grasp dataset (VG-dset)
containing 6-DOF grasps observed from a wide range of camera
poses. VGQ-CNN achieves a balanced accuracy of 82.1% on
our test-split while generalising to a variety of camera poses.
Meanwhile, it achieves competitive performance for overhead
cameras and top-grasps with a balanced accuracy of 74.2%
compared to GQ-CNN’s 76.6%. We also propose a modified
network architecture, Fast-VGQ-CNN, that speeds up inference
using a shared encoder architecture and can make 128 grasp
quality predictions in 12ms on a CPU. Code and data are
available at https://aucoroboticsmu.github.io/vgq-cnn/.

Index Terms—grasping, robotics, machine learning, flexible,
mobile robot, grasp quality, CNN, 6-DOF grasps

I. INTRODUCTION

Robotic grasping is a persistent challenge within robotics
research due to its inherent complexity. While robotic grasping
techniques are widely used in industrial setups where the
influence of uncertainties can be reduced, the usage in less
structured environments is still an active field of research.
Multiple different approaches for grasping unknown objects
have been developed, with the camera usually fixed to a pose
above the object and the robot in a stationary pose close to
the camera [1]–[6]. These fixed relationships between camera,
object and robot limit the applicability of the trained networks
in non-lab scenarios. When attempting to apply such networks
to a robot with a different camera pose or when working with
multiple cameras, the networks have to be retrained each time
as they do not generalise to versatile viewpoints. Furthermore,
usage with mobile manipulators (e.g. the PAL TIAGo, Toyota
HSR, etc.), which constantly change their pose in relation to
the object, is not practical if constrained to fixed camera poses.

Another related limitation is the use of 4-DOF grasp repre-
sentations in current image-based approaches. By assuming

This publication has emanated from research supported in part by Grants
from Science Foundation Ireland under Grant numbers 18/CRT/6049 and
16/RI/3399.

alignment between the grasps and the table normal or the
camera principal axis [1], [3]–[8], the grasps can be repre-
sented as a 2-D position and 1-D orientation within the image
frame. In commonly reported configurations that mount the
camera above the object [1], [5], [7], [9] these networks are
limited to top-grasps, where the grasp approach is along the
table normal. Consequently, the variety of grasp orientations
is limited significantly, creating constraints for possible path
planning pipelines downstream.

We base our work on GQ-CNN by Mahler et al. [1], a neural
network for grasp quality evaluation of top-grasps from an
overhead camera. While there have been follow-up networks
for GQ-CNN [10]–[12], these extensions have focused on
objects in clutter and alternative gripper mechanisms. As
such, these networks maintain the 4-DOF grasp representation
and therefore are also limited to top-grasps. While a fully
convolutional version of GQ-CNN improves run-time [7], the
necessary parameterisation to allow for 6-DOF grasps would
lead to a significant increase in the size of the output tensor
as currently formulated.

We move GQ-CNN beyond fixed cameras and top-grasps
with the Versatile Grasp Quality Convolutional Neural Net-
work (VGQ-CNN). The network can evaluate 6-DOF grasp
proposals of objects on a planar surface viewed from a wide
range of camera poses above the object. The position and
viewing angle of the camera can be varied within a space
as large as 2.1m3. We introduce the Versatile Grasp dataset
(VG-dset) to include these variations in camera poses and
grasp orientations, significantly exceeding the range available
in commonly used datasets such as [1], [9], [13]. We further
propose using a shared image encoder with our alternative
network architecture, Fast-VGQ-CNN, to speed up the eval-
uation of multiple grasps during run-time. In summary, the
contributions of this paper are:

• VG-dset: A versatile 6-DOF grasp quality dataset includ-
ing 7.1 million grasps over an extended range of camera
poses.

• VGQ-CNN: A network capable of predicting the quality
of 6-DOF grasps under a wide range of camera poses.

• Fast-VGQ-CNN: An alternative network structure to
VGQ-CNN to speed up inference and predict up to 128
grasps in 8ms on a NVIDIA RTX 2060 GPU and 12ms
on an Intel i7-10750H CPU.



*!

+ *"

(c)

,

!

Ψ #

Θ

*#*$

*%

*&

ω +

Fig. 1. Visualisation of coordinate frames, parameters and relative angles of camera-object-gripper configurations.

II. RELATED WORK

Identifying good grasping poses for unknown objects has
been an active field of research for many years [14], [15].
Grasps can either be directly generated via generative meth-
ods [5], [7], [8], [16] or sampled and subsequently ranked
by discriminative methods like GQ-CNN [1], [2], [17], [18].
Discriminative approaches are typically coupled with a higher
runtime and more flexibility, while the parameterisation in
generative approaches allows for low latency while limiting
flexibility [15]. Independent of the approach, many of the
presented methods have been developed for a camera pose
fixed within a small tolerance in relation to the object [1], [2],
[5], [7].

In addition to restricted camera poses, the methods usually
only allow for 4-DOF grasps. This is especially apparent
when taking into account the grasp representations utilised in
those methods, often projecting the Tool Centre Point (TCP)
and gripper orientation into the image plane and defining it
as an oriented rectangle [5], [8], [9], [13] or pre-processing
the image to align it with the grasp [1], [7]. Due to this
representation the variety of grasps is reduced significantly,
often only allowing for top-grasps [1], [5], [7], [9].

When moving away from those grasp representations and
towards unrestricted 6-DOF grasps, the dimensions and com-
plexity of the problem increase. Methods providing this
functionality usually utilise point clouds and process them
directly [18], in a voxelised grid [16], [17] or as object
meshes through shape completion [19], [20]. One of the
major disadvantages that working with unrestricted 6-DOF
grasps often poses is increased run-time, typically taking sev-
eral seconds [17]–[19]. While generative methods for 6-DOF
grasps can reduce run-time down to 10ms with specialised
hardware [16], [21], the parameterisation limits the number
and flexibility of proposed grasps.

Another way 6-DOF grasps can be facilitated is by attaching
cameras to the wrist of robotic manipulators and then iter-
atively approaching the object [22], [23]. These approaches
might be difficult to incorporate into the overall path planning
and collision checking of a robot, since they produce control
outputs [22] or actions [23] rather than goal poses. Instead,
they could be used for a closed-loop approach of the grasp
pose after a pre-grasp position provided by an overall grasp

planner has been reached.
Robotic grasping for real-world applications has to be fast

and flexible in order to be used efficiently. Approaches need
versatility in the configuration of grasp orientations and cam-
era poses to cater for dynamic setups. Recent approaches have
developed generative 6-DOF grasp proposal methods based
on depth images [24]. While such approaches can compute
grasp proposals within 0.5s, they employ a camera positioned
directly above the object and hence are not applicable to
situations involving a wider variation of camera poses, e.g.
with mobile manipulators. Extending such work to a discrim-
inative grasp sampling method can enhance flexibility in the
number of grasps that can be proposed. This enables not only
iterative refinement of grasps [18], but could also be used
to tailor grasp sampling on specific objects or object areas.
Following this approach, we present VGQ-CNN, a 6-DOF
grasp quality prediction network based on depth images that
is robust to a wide range of camera poses. We furthermore
provide our alternative network architecture Fast-VGQ-CNN,
which speeds up grasp prediction significantly to enhance
usability for real-world applications.

III. PROBLEM FORMULATION

We consider the problem of predicting grasp qualities for
flexible grasp orientations with a parallel jaw gripper as
observed from a wide range of camera perspectives. The envi-
ronment is limited to a single object placed on a planar surface.
The goal is to train a network which can predict grasp qualities
based on depth images and grasp proposals from a wide range
of camera poses without having to retrain the network for
each new camera pose. In addition, the network should be
able to evaluate a variety of 6-DOF grasp orientations where
the gripper approach axis is not necessarily aligned with a
pre-specified fixed axis, e.g. the camera principal ray. Such a
network caters for scenarios that involve changing the pose
of the object or camera between setups, whilst also including
mobile manipulators, where the relationship between camera
and object varies dynamically.

A visualisation of the setup can be seen in Fig. 1. The object
meshes are placed on a planar surface in predefined, stable
resting poses, with their coordinate frame T s being in close
proximity to the origin of world coordinate frame Tw. The
camera position is defined in spherical coordinates in relation



TABLE I
PARAMETER OVERVIEW

Dataset ϕmax dmin dmax βmax

VG-dset 70° 0.4m 1.1m 90°
DexNet2.0 5.7° 0.65m 0.75m 5°

to Tw, with the distance to the origin d, the elevation angle
ϕ and the polar angle θ defining its position. The camera
principal ray is pointing towards the origin of Tw and the
x-axis is parallel to the table surface, orienting the camera
frame, T c, such that the camera views the table and object
horizontal and upright, respectively. The gripper frame, T g , is
defined such that the x-axis lies between the contact points
of the parallel jaw gripper and the z-axis denotes the linear
approach direction.

We define the camera as placed above the planar surface
with d ∈ [0.4m, 1.1m], θ ∈ [0°, 360°] and ϕ ∈ [0°, 70°], which
corresponds to a volume of roughly 2.1m3. The limits were
chosen in reference to the typical accessible range of mobile
manipulators, e.g. PAL TIAGo robot [25], Toyota HSR [26],
grasping objects placed on a table. Configurations where the
camera is below or level with the planar surface, e.g. when
grasping objects from a shelf, and those with objects placed
close to the edge of the surface are excluded.

Since the quality and usability of a grasp is influenced
not only by the gripper pose in relation to the table and the
object, but also by the visibility from the camera, we define
a set of relative angles to parameterise the space of unique
camera-object-gripper configurations. The angle between the
gripper z-axis and the table normal is denoted as β, while
the angle between the gripper z-axis and the camera principal
ray is denoted as Ψ. Rotating the grasp around the grasp
x-axis is denoted by ω and does not alter the position of
the contact points. For viable 6-DOF grasp poses, the angle
between the gripper z-axis and the table normal is constrained
to β ∈ [0°, 90°]. Since β ≥ 90° would likely cause collisions
with the table, we exclude such grasps from our setup.

IV. DATASET

We create a new 6-DOF grasp quality dataset called the
Versatile Grasp dataset (VG-dset) to satisfy the specifications
in our problem formulation in section III. The complete
overview of parameter ranges for VG-dset in comparison to
DexNet2.0 [1] can be seen in Table I. We base VG-dset
on the pre-sampled antipodal grasps g ∈ G(o) included in
DexNet2.0 [1], where the object meshes o ∈ O are taken
from the KIT [27] and 3DNet [28] mesh datasets.

Dataset preparation consists of two stages: dataset rendering
and dataset sampling. Throughout the dataset rendering pro-
cess, datapoints are created by rendering images and storing
grasp poses and grasp quality values. A total of 131 million
grasps are stored in the process, providing a baseline which
can be sampled for different purposes. The dataset sampling
process is necessary since certain minimal ratios, e.g. between
ground-truth negative and ground-truth positive grasps, have
to be satisfied to ensure successful training of VGQ-CNN.

Input: Object mesh o, Grasps G(o), Camera distance {dmin, dmax},
Camera polar angle {θmin, θmax}, Camera elevation angle
{ϕmin, ϕmax}, Camera Intrinsics Matrix K, Number of images
per stable pose n

Output: Depth image I, Grasp image coordinates (u(g), v(g)), Grasp
distance to camera z(g), Grasp quaternion in camera frame
q(gc), Grasp quality ρ(g) and relative angles Ψ(g), β(g)

1 for 1 : n do
// Sample camera poses

2 Sample d, θ and ϕ from uniform distributions;
3 Let Tw

c be based on pwc (d, θ, ϕ);
4 Render depth image I from Tw

c ; save I, d, θ and ϕ;
5 for g ∈ G(o) do

// Apply random gripper rotation around grasp x-axis

6 Rg = Rg ·RX(ω), ω ∼ U(0, 2π);
7 if gw.z is pointing in positive w.z then

// Grasp coming from under the table

8 Rg = Rg ·RX(ω), ω = π;

9 if linear approach of g collides with object or table then
10 Set quality of grasp ρ(g) = 0 ; // Negative grasp

11 (u(g), v(g)) = Project(Tc
g, K) ; // Project grasp into image

12 Calculate z(g) = ‖pcg‖, β(g) = arccos(
Rc

g.z[2]

|Rc
g.z| ) and

Ψ(g) = arccos(
Rw

g .z[2]

|Rw
g .z| );

13 Save (u(g), v(g)), z(g), q(gc), ρ(g), β(g) and Ψ(g);

1

Fig. 2. Algorithm for rendering VG-dset.

The process can also be used to allow for different dataset
compositions, e.g. excluding certain camera or grasp configu-
rations. While the dataset generation process could be adjusted
to generate a single, balanced dataset to be used for training,
the time-consuming process of rendering the data and checking
the grasps would have to be repeated each time a different
dataset composition was desired.

A. Dataset rendering

We base our dataset rendering algorithm on the DexNet2.0
implementation by Mahler et. al. [1] available on github1 with
key changes in the camera poses, grasp alignment and grasp
representation. Each object mesh o ∈ O has an average of 9
stable resting poses s ∈ S(o). When rendering the dataset, we
repeat the algorithm detailed in Fig. 2 for each stable resting
pose of each of the 1494 object meshes.

Moving away from top-grasps and allowing for a variety
of grasp orientations represents a challenge to both the grasp
preparation and representation. For stationary cameras and top-
grasps, some sense of alignment between the grasp orientation
and the camera position is usually assumed. In DexNet2.0 [1],
this is realised by rotating the gripper around ω to minimise β
and discarding grasps with β ≥ 5°. By projecting the gripper
Tool Centre Point (TCP) and gripper x-axis into the image
plane and rotating/cropping the image accordingly, Mahler et
al. [1] reduce the grasp representation to an aligned image and
the distance between the grasp T g and the camera T c. This
is similar to the reduced grasp representations in [3], [4], [8],
all of which are defined as positions and rotations in the 2-D
image plane.

1https://github.com/BerkeleyAutomation/dex-net



Since VG-dset should include 6-DOF grasps, we aim to
include grasps with the same grasp x-axis and varying ap-
proach angles. For example, a top-grasp rotated by 90° around
ω would end up grasping the object parallel to the table.
Ideally, both grasps should be included and proposed to the
path planning system of a robot to choose the best grasp. We
augment the data with a variety of grasp orientations in VG-
dset by applying a random rotation around ω to the grasps
with each new camera pose. We flip grasps approaching from
under the table with β > 90° by rotating them once more for
180° around ω. We use this approach to provide flexibility to
various sampling schemes (see section IV-B) and to simplify
constraining the final grasp orientation. Note that rotating the
gripper around ω does not change the robust Ferrari-Canny
metric [29] of a given grasp, and therefore does not influence
the grasp quality ρ(g) aside from collisions checked after the
final grasp orientation has been decided.

We then, like in DexNet2.0 [1], proceed to collision check-
ing (Fig. 2, lines 9-10), setting the robust Ferrari-Canny value
for grasps colliding with the object or table ρ(g) = 0 and
thereby marking the grasp as ground-truth negative. After
collision checking, the gripper TCP is projected into the image
plane in order to calculate its (u, v) position in the image in
pixel coordinates.

Note that we render n = 100 images for each stable resting
pose s ∈ S(o) of each object mesh o ∈ O, while n = 50 for
the DexNet2.0 dataset generation. Since our data includes a
wider range of camera poses and grasp orientations, sampling
more images per stable pose allows us to subsample the re-
sulting dataset in order to create specific dataset characteristics
as explained in the following section.

B. Dataset sampling

The 130.8 million grasps from the dataset rendering stage
need to be undersampled to generate VG-dset, a dataset for
VGQ-CNN. This undersampling process is not needed in
DexNet2.0 [1] due to their dataset parameters as described in
Table I. To train a network on our new problem formulation,
undersampling the datapoints becomes necessary for three
major reasons:

• Filtering grasp and/or camera configurations for training
VGQ-CNN, e.g. removing grasps with Ψ ≥ 90°.

• Adjusting the positivity rate posr = 100×#positive grasps
#all grasps ,

since it affects the training loss and therefore the network
performance.

• Balancing the number of grasps across the camera and
grasp configurations.

The large size of the rendered dataset enables differing
dataset compositions to be sampled and their effect on the
network performance to be tested.

To generate VG-dset, grasps with Ψ ≥ 90° are removed
from the dataset. This maximum value is set so that grasps
approaching the object from behind relative to the camera
position are excluded, since they are likely to be occluded
by the object. Second, we undersample negative grasps to
ensure a consistent positivity rate posr over beta. Prior to
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Fig. 3. Architecture of VGQ-CNN. The network consists of an image stream
(upper), a pose stream (lower) and a merge stream (down-end) to predict
grasp success. The input image is a 32× 32 pixel depth image and the pose
is given by the distance between the camera and the gripper TCP, z, and
the orientation quaternion, q ∈ R4,where |q| = 1. It outputs a prediction of
grasp success % ∈ [0, 1].

undersampling, posr declines with increasing β, since grasps
with a high β tend to collide with the table more often. The
native, rendered dataset has a varying positivity rate with a
mean of posr = 6%, while the positivity rate for DexNet2.0
is posr = 19%. We adjust posr by undersampling nega-
tive/positive grasps based on the sampling rate sample ratex.
Since posr is dependent on β, we calculate the sampling rate
for undersampling negative grasps as,

sample rateneg(∆β) =
100
19 × posr(∆β)− posr(∆β)

100− posr(∆β)

where, ∆β is varied in steps of 5°. The undersampling rate
for positive grasps is set to sample ratepos = 1

sample rateneg
.

Undersampling rates of sample ratex > 1 are set to 1. We
then skip positive/negative grasps randomly based on their
sampling rate for the given β. As a third step, we undersample
the remaining grasps to have a uniform sample size over ϕ
and β. The resulting dataset, VG-dset, consists of 7.2 million
grasps. As shown in section VII-C, training on datasets with 2
million or more grasps shows a constant performance, while
training on dataset with fewer than 1 million grasps shows
signs of overfitting the dataset on VGQ-CNN.

We divide both DexNet2.0 and VG-dset in an object-wise
training, validation and test split of 80-10-10, using the same
objects for the test sets in DexNet2.0 and VG-dset. This allows
us to compare performance between VGQ-CNN and GQ-CNN
on the same test data in section VII-A.

V. NETWORK ARCHITECTURE

In DexNet2.0 [1], as well as in other image based grasp pre-
dictors [4], [5], [8], [9], [13], the TCP of each grasp proposal
is projected into the image to be represented in the 2-D image
plane, e.g. as an oriented rectangle. In these approaches, the
grasp orientation is constrained to some arbitrary axis that is
not explicitly specified as a network input. To represent grasp
orientations that are not constrained to align with an arbitrary
axis (such as the camera principal ray), requires an alternative
grasp specification for the network.

To represent the varying grasp orientations in VGQ-CNN
we use a grasp representation that defines the full 3-DOF
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Fig. 4. Comparison of pipelines for grasp quality evaluation with VGQ-CNN
and Fast-VGQ-CNN. For VGQ-CNN, k images have to be generated from a
single image and fed to the network with k poses. For Fast-VGQ-CNN, the
image is processed once and fed into the image stream of the network. The
output is then fed to the rest of the network together with k poses.

grasp orientation in the form of a quaternion q. (While we
use quaternions as orientation representations, also used in
VGN [16], this could be exchanged with other representations
like Euler angles.)

Using the approach of GQ-CNN we specify the grasp image
coordinates (u, v) implicitly in the image. This is achieved by
projecting the gripper TCP into the image I, cropping the
image around the grasp coordinates (u, v) and subsequently
resizing it to a 32× 32 pixel image. The remaining variables
of the 6-DOF grasp, the distance of the TCP to the camera,
z, and the grasp quaternion, q, are provided to VGQ-CNN as
an input in the pose stream, see Fig 3.

We keep the general network structure of GQ-CNN, con-
sisting of parallel image- and pose-streams with convolutional
and fully connected layers. The two streams are combined into
a single stream towards the end of the network. Apart from
including the quaternion as an extra input, we add another
fully-connected layer with 1024 nodes before the last layer.
This extra layer adds representational capacity to account
for the additional grasp information and increases network
performance by 4% as shown in section VII-C. VGQ-CNN
has a total of 6.5m and GQ-CNN has a total of 5.4m trainable
parameters. The full architecture of VGQ-CNN can be seen
in Fig. 3.

VI. FAST-VGQ-CNN

While discriminative grasp proposal methods have several
advantages, one of their main disadvantages is that there is
typically a high latency for proposing grasps, as explained
in section II. For time-critical applications, we propose an
alternative network architecture, Fast-VGQ-CNN, that can
decrease latency when evaluating multiple grasps on a given
object.

Instead of cropping the depth images such that the grasp
centre is centred in the image, we decouple the grasp centre
from the image cropping. To do this we make the u- and v-
coordinates of the grasp centre within the image explicit inputs
to the network. We apply random cropping [30] of the image
around the grasp centre and specify the full 6-DOF pose input

with g ∈ (u, v, z, q) as an input to the pose stream of Fast-
VGQ-CNN.

Applying random cropping to the image ensures grasp- and
object placement variety within the image during training,
resulting in a network which can evaluate grasp proposals for
varying grasp locations within the image. The coordinates of
the grasp centre in the cropped and resized image (u, v) are
sampled uniformly. The range over which these coordinates
are uniformly sampled, and therefore the maximum distance
κ = max(|u|, |v|) between the grasp centre and the image
centre, influences the performance of Fast-VGQ-CNN. This is
shown in the ablation studies in section VII-C.

By introducing the new grasp representation, as well as the
randomised grasp image coordinates (u, v) during training,
we can split the image stream with the high-dimensional
convolutional layers from the rest of the network during
inference. The image stream can be used as a shared encoder
for multiple grasps, processing the image once and using
the output for a batch of k grasp poses. Utilising shared
network layers to reduce run-time has been proposed and used
for other network structures, e.g. for various object detection
networks [31].

The new architecture also changes the requirements for
image preprocessing starting from a single 300 × 300 pixel
image and a variable number of grasp poses k, as indicated
in Fig 4. For each of the k grasps in VGQ-CNN, the image
needs to be centred, cropped and resized, resulting in k centred
32 × 32 pixel depth images and k grasp poses g ∈ (z, q). In
contrast, for Fast-VGQ-CNN, the original image needs to be
cropped and resized just once. The grasp centre coordinates
(u, v) of each of the k grasp poses are determined relative
to the single image. Therefore the network input comprises a
single 32× 32 depth image and k grasp poses g ∈ (u, v, z, q).
In both preprocessing pipelines, the image and pose values are
normalised, excluding the quaternion.

For prediction, the resulting images and poses are fed to the
network. For VGQ-CNN, the k depth images I and k grasp
poses go into a single, multi-stream network. For Fast-VGQ-
CNN, the single, depth image I goes into the shared encoder
while the resulting tensor in combination with the k grasp
poses are fed to the remaining fully connected layers of the
network.

VII. EXPERIMENTS

We train both VGQ-CNN and GQ-CNN for 150 million
training iterations on VG-dset and DexNet2.0, respectively.
One training epoch on a DexNet2.0-sized dataset is equivalent
to approximately 6 million training iterations. The training
takes approximately 23 hours to complete on one NVIDIA
RTX 2060 GPU. We use a stochastic gradient decent optimiser
with a momentum rate of 0.9, a base learning rate of 0.001 de-
caying every 4 million iterations by 0.95, a L2-regularisation
of 0.0005 and sparse categorical cross-entropy loss.

In standard fashion, the depth images and z values are nor-
malised before being fed into the network. The values of the
quaternion q are not normalised, since they range within −1, 1



TABLE II
RESULTS

Network Evaluation TPR TNR Balanced
dataset accuracy

GQ-CNN DexNet2.0 70.0% 89.1% 79.5%
VGQ-CNN VG-dset 73.9% 90.2% 82.1%
GQ-CNN TG-Tset 63.6% 89.6% 76.7%

VGQ-CNN TG-Tset 64.6% 85.7% 75.2%

naturally. We check performance on the validation split every
1 million iterations. For evaluating the resulting networks we
use the balanced accuracy metric, which is calculated as the
mean of true positive rate (TPR) and true negative rate (TNR).
We motivate the use of the balanced accuracy metric due to the
high imbalance of positive and negative grasps, with a network
classifying all grasps as negative achieving an accuracy of 81%
due to that imbalance. We choose the best model according to
the balanced accuracy metric of the validation results for all
our evaluations.

We investigate the performance of VGQ-CNN on a test
split of VG-dset and compare performance between GQ-
CNN and VGQ-CNN on a dedicated, DexNet2.0-like test
set. In addition, we show the robustness of VGQ-CNN to
varying camera poses, proving that VGQ-CNN does not need
retraining when moving the camera within the range of the
parameters specified in Table I. In a set of ablation studies,
we show the effects of dataset size and the extra fully-
connected layer on VGQ-CNN, as well as the effects of the
range of randomised grasp image coordinates (u, v) on Fast-
VGQ-CNN. Finally, we demonstrate the speed up that can be
achieved by using a shared image encoder in Fast-VGQ-CNN.

A. Overall performance

For measuring the overall performance, we evaluate VGQ-
CNN on the test split of VG-dset (700K grasps), and GQ-CNN
on the test split of DexNet2.0 (700K grasps). In addition,
to compare performance of VGQ-CNN and GQ-CNN, we
evaluate them on a separate, new dataset with 300K grasps
named Top Grasp Testset (TG-Tset). The objects in TG-Tset
have not been seen by VGQ-CNN or GQ-CNN before, since
they belong to the test split used in DexNet2.0 and VG-dset.
TG-Tset is rendered using the grasp and camera parameters
of DexNet2.0 as detailed in Table I.

Due to the different input requirements in the networks,
images are centred and rotated before being fed to GQ-CNN
and only centred for use in VGQ-CNN. Note that the collision
checking for VG-dset differs slightly from the approach used
for DexNet2.0. In DexNet2.0, grasps are classified as collision
free if any of four linear approaches within ±10° around ω are
collision free. In VG-dset, grasps are classified as collision free
only if a linear approach along the z-axis is collision free. For
the purpose of comparison between GQ-CNN and VGQ-CNN,
we exclude grasps from TG-Tset which differ in outcome of
the collision checking by these two methods, corresponding
to 0.3% of all generated grasps.
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Fig. 5. TPR (left) and TNR (right) for VGQ-CNN, tested on an object-wise
test split of VG-dset.

We calculate the true positive rate (TPR), true negative rate
(TNR) and balanced accuracy. The results can be seen in
Table II. Note that the balanced accuracy results for GQ-CNN
are lower than the accuracy reported in [1], since they used
different training parameters and report accuracy rather than
balanced accuracy.

VGQ-CNN exhibits robust performance on VG-dset with a
balanced accuracy of 82.1%, while being able to generalise to
a wide range of camera poses and 6-DOF grasp orientations.
On the much restricted range of camera poses and grasp
orientations in TG-Tset, VGQ-CNN achieves competitive per-
formance with a balanced accuracy of 75.2% compared to
GQ-CNN’s 76.7%. Note that the performance of Fast-VGQ-
CNN depends on κ, as shown in section VII-C.

B. Performance over the camera parameter space

In addition to VGQ-CNN producing good results in VG-dset
and being comparable to GQ-CNN on TG-Tset, it generalises
well to varying camera positions. We report the TPR and TNR
over the spherical coordinate variables of the camera, d and ϕ,
to show the applicability of VGQ-CNN over varying camera
poses in Fig. 5. Over the full target range of camera poses
with steps of ∆d = 0.05m and ∆ϕ = 5°, VGQ-CNN attains
TNR = 90.2%± 0.9% and TPR = 73.9%± 3.5%.

This robustness of VGQ-CNN in terms of camera poses
shows that it does not require retraining for new camera poses
within its target range. Hence, VGQ-CNN can be used for
grasp quality prediction when moving camera poses and can
even be used with mobile manipulators.

C. Ablation studies

For further insight into the network performance, we con-
duct a set of ablation studies on the effect of the dataset
size on VGQ-CNN, the extra fully-connected layer in VGQ-
CNN and the randomised grasp image coordinates (u, v) used
for training our alternative network architecture, Fast-VGQ-
CNN. Note that all networks are trained from scratch for 10
million training iterations. Each network configuration was
trained 8 times with the shading in Fig. 6 corresponding to
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Fig. 6. Influence of the dataset size (a) and maximum grasp distance κ =
max(|u|, |v|) to image centre (b) on network performance.

the 95% confidence interval over the results. The datasets for
the experiments of the dataset size influence were randomly
undersampled from VG-dset. While the training and validation
data differs for all networks in the dataset size experiments,
they were tested on the same test split of VG-dset to ensure
comparability. The base dataset for the experiments regarding
the grasp image coordinates is VG-dset, with different κ
applied to the same train-validation-test split.

Fig. 6 (a) shows how the number of grasp training samples
affects the trained network performance. The minimum num-
ber of training samples for reasonable network performance is
relevant especially when evaluating different sampling strate-
gies in section IV-B, as some of these result in fewer training
samples being available. When training the network with 1
million or fewer grasps, the network shows signs of overfitting
and accuracy on the test set drops. Training VGQ-CNN with
2 million grasps or more shows relatively stable results with
a mean balanced accuracy of 77%. Note that a balanced
accuracy of 50% can be achieved by classifying all grasps
as positive or negative.

Adding a second fully-connected layer with 1024 nodes
before the last layer, as described in section V, increases
balanced accuracy from 72.5%± 1.8% to 76.7%± 1.1%.

When using Fast-VGQ-CNN, the grasp image coordinates
are given as an explicit input to the network with (u, v) and
κ = max(|u|, |v|) describes the maximum displacement of
the grasp centre within the image. κ = 0px corresponds to
the data used for VGQ-CNN since each grasp is centred in its
image. Fig. 6 (b) exhibits a reduction in balanced accuracy as
the displacement of the grasp centre in the image increases.
For κ = 0px, Fast-VGQ-CNN reaches a balanced accuracy
of 77% which drops to 60% for grasps uniformly distributed
over the full image with κ = 16px.

D. Fast-VGQ-CNN

In section VI we propose speeding up inference by using a
shared encoder with our modified network architecture Fast-
VGQ-CNN. We measure the inference time of VGQ-CNN
and Fast-VGQ-CNN on a machine with a 2.6 GHz Intel

TABLE III
INFERENCE TIME [MS]

Prediction
k 32 64 96 128

CPU VGQ-CNN 41 72 103 138
CPU Fast-VGQ-CNN 11 11 12 12

GPU VGQ-CNN 8 12 17 21
GPU Fast-VGQ-CNN 8 8 8 8

Preprocessing
VGQ-CNN 7 14 21 28

Fast-VGQ-CNN 0.3 0.5 0.6 0.8

Core i7-10750 CPU and a NVIDIA GeForce RTX 2060 GPU.
Tensorflow 1.15 is used for all experiments. We run the tests
with differing numbers of grasps, k ∈ {32, 64, 96, 128}, as
batch sizes and measure inference as the mean over 1000
runs. All image preprocessing steps are implemented with
the pillow library in python. The resulting inference times for
preprocessing and prediction can be seen in Table III.

The speed up of Fast-VGQ-CNN relative to VGQ-CNN
increases as we increase the number of grasps predicted per
batch, k. The Fast-VGQ-CNN preprocessing pipeline is up to
35 times faster than the preprocessing for VGQ-CNN, taking
just 0.8ms to preprocess 128 grasps.

Of special interest when working with devices without
a specialised GPU, Fast-VGQ-CNN can predict 128 grasps
within 12ms, while VGQ-CNN shows a significant increase
for the prediction of more grasps taking 138ms for predicting
128 grasps on a CPU. In combination with an efficient
grasp sampling strategy, Fast-VGQ-CNN could enable real-
time grasping.

VIII. DISCUSSION & FUTURE WORK

In this work we present VGQ-CNN, a network for predict-
ing the quality of 6-DOF grasps as observed from a wide range
of camera poses. Removing limitations for grasp orientation
and camera pose in previous methods [1]–[6] and available
grasp datasets [1], [9], [13] allows for VGQ-CNN to be used
with 6-DOF grasps and a wide range of camera poses without
the need to retrain the network. This is especially useful when
working with mobile manipulators, which constantly change
the relationship between the camera and object.

VGQ-CNN achieves a balanced accuracy of 82.1% on a
test split of VG-dset while being able to generalise to camera
poses within 2.1m3 above the planar surface. Further, we make
a non-sampled version of our dataset VG-dset available for
public use to train alternative versions of VGQ-CNN, e.g.
focusing on special camera or grasp configurations. By using a
shared encoder with our alternative network architecture Fast-
VGQ-CNN, we can predict 128 grasps within 12ms using
a CPU compared to 138ms with VGQ-CNN. Although our
ablation studies in section VII-C show that there is a trade-
off between network performance and the number of grasps
that can be presented in a single image (which is related to
κ), this speed up could be of particular interest when working
with edge devices without dedicated GPUs.



In common with other approaches described in the literature,
our approach has some limitations. One of these is the position
of the objects on a table below the camera. While this is
suitable for objects placed on normal tables, it does not reflect
situations where the camera is level with or below the object
such as when a mobile manipulator should fetch an object
from a shelf. The current network also excludes objects being
placed very close to the edge where the table edge would be
visible in the depth image.

As VGQ-CNN is a grasp quality predictor, we aim to
incorporate it with a 6-DOF grasp sampling technique to
generate a full grasp proposal pipeline in future work. We
then plan to apply this full pipeline to a mobile manipulator,
e.g. the PAL TIAGo robot [25], and test performance on a
grasping benchmark dataset such as EGAD [32]. Of special
interest here is the comparison to point-cloud based 6-DOF
grasp proposal systems like GPD [17], with differences in run-
time and performance being crucial indicators of their usage
for real-world applications.
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