
An Investigation of Feasible Logical
Depth and Complexity Measures via

Automata and Compression Algorithms

LIAM JORDON

A thesis submitted for the degree of

Doctor of Philosophy

Department of Computer Science

Maynooth University

Supervisor: Dr. Philippe Moser

Second Supervisor: Dr. Phil Maguire

Head of Department: Dr. Joseph Timoney

February 2022

Contents

Abstract v

Acknowledgements vii

Declaration ix

List of Publications x

1 Introduction 1

1.1 Background . 1

1.2 Objectives of This Thesis . 8

1.3 Outline of the Thesis . 10

2 Preliminaries and Background 13

2.1 Preliminaries . 13

2.2 Kolmogorov Complexity . 16

2.2.1 Distinguishing Complexity 20

2.3 Bennett’s Depth . 20

2.3.1 Moser’s General Framework for Depth 24

2.4 Descriptional Transducer Based Complexity 27

2.4.1 Compression Algorithms 29

2.5 Normal Sequences . 30

2.6 de Bruijn Strings . 33

i

Contents

2.6.1 Granddaddy de Bruijn Strings 33

3 Finite-State Depth 36

3.1 Introduction . 36

3.2 Finite-State Transducers . 37

3.2.1 k -Finite-State Complexity 39

3.2.2 Normal Sequences and Finite-State Transducers 43

3.3 Finite-State Depth . 45

3.3.1 Basic Properties . 47

3.3.2 Slow Growth Law . 49

3.3.3 Existence of an a.e. FS-Deep Sequence 54

3.3.4 Separation from i.o. FS-depth 61

3.4 Summary . 64

4 Pushdown Depth 66

4.1 Introduction . 66

4.2 Pushdown Compressors . 67

4.2.1 Unary-stack Pushdown Compressors 70

4.3 Pushdown Depth and its Properties 72

4.3.1 Slow Growth Law . 73

4.4 Separation from Finite-State Depth 76

4.5 Summary . 88

5 Lempel-Ziv Depth 89

5.1 Introduction . 89

5.2 The Lempel-Ziv 78 Algorithm . 90

5.3 Lempel-Ziv Depth and its Properties 92

5.4 Separation from Finite-State Depth 94

5.5 Separation from Pushdown Depth 100

ii

Contents

5.6 Summary . 107

6 Pebble Depth 108

6.1 Introduction . 108

6.2 Pebble Transducers . 111

6.2.1 k -Pebble Complexity . 114

6.3 Pebble Depth . 118

6.3.1 Fundamental Properties 119

6.3.2 Separation from Finite-State Depth 127

6.3.3 Separation from Lempel-Ziv Depth 128

6.3.4 Preliminary Comparison with Pushdown Depth 140

6.4 Discussion . 151

6.4.1 Why not Compressors? . 151

6.4.2 Why not Pebble vs Pebble? 154

6.5 Summary . 156

7 Prediction by Partial Matching and Normal Sequences 157

7.1 Introduction . 157

7.2 Description of the PPM Algorithms 158

7.2.1 Bounded PPM . 158

7.2.2 PPM* . 161

7.2.3 Arithmetic Encoding . 162

7.3 A Compressible Champernowne Sequence 163

7.3.1 Pierce and Shields’ Construction 163

7.3.2 A Sequence which satisfies Theorem 7.3.8 165

7.3.3 Main Result . 169

7.3.4 Bounded PPM on Normal Sequences 173

7.4 Bounded versus Unbounded . 174

7.4.1 PPMt’s Performance on St 175

iii

Contents

7.4.2 PPM*’s Performance on St 179

7.4.3 Comparing the Two . 184

7.5 Summary . 186

8 Automatic Complexity of Normal Sequences 188

8.1 Introduction . 188

8.1.1 Motivation . 189

8.1.2 Automatic Complexity Definitions 191

8.2 Normal Sequences with a Low Automatic Complexity Ratio . . . 192

8.3 Automatic Complexity of a Champernowne Sequence 195

8.3.1 Lower Bounds for Champernowne Sequences 202

8.3.2 Remaining Calculations for Theorem 8.3.2 207

8.4 Summary . 210

9 Concluding Remarks 212

9.1 Limitations and Potential Future Work 215

Bibliography 220

iv

Abstract

When presented with a string or sequence of zeros and ones, that is an element of

{0, 1}≤ω, it is often of interest to know how complex the object is. Was it created

from some simple process or was it generated randomly? Kolmogorov Complexity

is a fundamental tool of Algorithmic Information Theory which measures the

complexity of such objects. However, there is one major problem: Kolmogorov

Complexity is uncomputable. As such, the complexity of such objects are often

studied in lower computable settings. This thesis aims to extend the study of

such objects at lower complexity levels via finite-state automata, transducers and

compression algorithms. We pay particular attention to normal sequences.

One measurement which relies on Kolmogorov Complexity is Bennett’s Logical

Depth, which has been described in the past as measuring how useful an object

is. The primary objective of this thesis is to examine feasible notions of Bennett’s

depth. We first extend an already studied infinitely often finite-state notion of

depth to an almost everywhere notion. Secondly, we develop new notions based

on pushdown compressors, the Lempel-Ziv 78 compression algorithm, and pebble

transducers. We demonstrate the existence of deep sequences in each of these

notions, and show which properties of Bennett’s original notion they satisfy. We

also determine the differences between some of the depth notions we examine

as follows: For a pair of depth notions (A,B), we construct a sequence S such

that its A-depth level and B-depth level are unequal, i.e. S is ‘more’ deep in

one notion than the other. This demonstrates that there is not a single unifying

v

Abstract

notion of depth.

Our secondary objective is to examine normal sequences at lower complexity

levels. Normal sequences are of interest to us as they are often considered finite-

state random as they cannot be compressed by any information lossless finite-state

compressor. We do this by, when appropriate, identifying normal sequences which

are deep in the depth notions we develop. Furthermore, we prove the existence of

a normal sequence which can be compressed by the PPM* compression algorithm

which is incompressible by the Lempel-Ziv 78 algorithm. This, to our knowledge,

is the first example of a mathematical proof differentiating the two algorithms

on specific inputs as opposed to experimental results. We conclude by giving

examples of normal sequences which have non-maximal automatic complexity, a

complexity measurement based on finite-state automata.

vi

Acknowledgements

To start with, I would like to sincerely thank my supervisor Dr. Philippe Moser for

his guidance and support during this journey. Your depth of knowledge has been

invaluable. Your dry wit and sense of humour was always thoroughly appreciated,

and very much needed at times. I regret that our time together for in-person

meetings was cut short.

Secondly, I’d like to thank Dr. Phil Maguire for coming aboard on short notice

as supervisor for my final months. From my time in Computational Thinking, to

giving me my first experience as a researcher as part of SPUR, to now, you have

always been full of enthusiasm and encouragement. Thank you for the positivity.

I’m grateful to all the staff of Maynooth University’s Department of Computer

Science for their help during my studies. Thank you for the working atmosphere

you provided, aiding me with my enquiries, and trusting in me to tutor students

over the years. A special thanks goes to Dr. Joseph Timoney for offering to proof

read a near final draft of the thesis. A similar thanks goes to Mr. Joseph Duffin

for being a cheerleader of mine during the final half of my studies during the

pandemic.

I’m similarly indebted to all the staff of the Department of Mathematics and

Statistics for providing me with a home for my first five years in Maynooth. I

wouldn’t be where I am today without my days spent in Logic House.

I would like to acknowledge the Irish Research Council’s Government of Ire-

land Postgraduate Scholarship Programme’s (Grant: GOIPG/2017/1200) role in

vii

Acknowledgements

providing the funding for this research. This thesis would not have been possible

without it.

To all the friends I made along the way during my time in Maynooth, whether

we knew each other for several years or just a semester, I love you all. From Fun

Tuesdays to Cook Tuesdays, from News of the Day to #IFTYBACY, I had an

absolute blast! The CTs, the TPs, the Mathsies, the Eds, the M9s, MUMS

Social Club, the folks in the MSC/CS355/CS370, my fellow CS postgrads, the

regulars from nights out in the Roost/Mantra/Brady’s, the lads who came with

me to Maynooth from secondary school - there are too many of you to name!

A deserving shout-out also goes to the supportive friends from outside of the

university who helped me greatly during tough times. Saying all that, I would

like to specifically name Aisling, Alice, Emmet, and Jack for keeping me somewhat

sane and grounded during the lockdowns. Thanks for putting up with my rants,

raves, and woe is me stories on a weekly basis.

Most importantly, to my parents and to my brother John, thank you for your

love, support, and belief in me for the past many years. You had faith in me when

I often had none. Similar thanks also go towards my two wonderful grandparents,

Raymond and Cella, and to my Aunt Colette for their love and support.

Finally, to Holly, Ivy, and Gabby, thanks for making me smile.

viii

Declaration

I hereby declare that this thesis is my own work. I confirm that this thesis has

not been submitted in any form for another degree or diploma at any university

or other institution of tertiary education. Information derived from the published

or unpublished work of others has been acknowledged in the text and a list of

references is given.

Liam Jordon - February 2022

ix

List of Publications

The following is a list of accepted and submitted papers based on the work of

this thesis:

• International Conferences:

– Liam Jordon and Philippe Moser: On the Difference between Finite-

State and Pushdown Depth. In: 46th International Conference on Cur-

rent Trends in Theory and Practice of Informatics, SOFSEM 2020, Li-

massol, Cyprus, January 20–24, 2020, Proceedings, LNCS, vol. 12011,

pp. 187–198. Springer (2020). doi: 10.1007/978-3-030-38919-2 16

– Liam Jordon and Philippe Moser: A Normal Sequence Compressed by

PPM∗ but not by Lempel-Ziv 78. In: 47th International Conference

on Current Trends in Theory and Practice of Computer Science, SOF-

SEM 2021, Bolzano-Bozen, Italy, January 25–29, 2021, Proceedings,

LNCS, vol. 12607, pp. 389–399. Springer (2021). doi: 10.1007/978-

3-030-67731-2 28

– Liam Jordon and Philippe Moser: Normal Sequences with Non Max-

imal Automatic Complexity. In: 41st IARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Sci-

ence, FSTTCS 2021, Gao, India, December 15-17, 2021, Proceedings.

LIPIcs, vol. 213, pp. 47:1-47:16. Schloss Dagstuhl – Leibniz-Zentrum

für Informatik (2021). doi: 10.4230/LIPIcs.FSTTCS.2021.47

x

https://doi.org/10.1007/978-3-030-38919-2_16
https://doi.org/10.1007/978-3-030-67731-2_28
https://doi.org/10.1007/978-3-030-67731-2_28
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.47

List of Publications

• Journals in Submission / Prepared:

– Liam Jordon and Philippe Moser: Pushdown and Lempel-Ziv Depth,

Under review at Information and Computation, Submitted August

2020. Preprint: arXiv.

– Liam Jordon and Philippe Moser: Pebble Depth, Under review at

Theoretical Computer Science, Submitted December 2020. Preprint:

arXiv.

xi

https://arxiv.org/abs/2009.04821
https://arxiv.org/abs/2009.12225

Chapter 1

Introduction

1.1 Background

When presented with a piece of data, such as a sequence of ones and zeroes, it is

often asked how complex the data is. Are there patterns in the data which can

be easily spotted? Similarly, are there hidden regularities in the data which are

more difficult to notice? Was the data created from some simple quick process

which allows us to recreate the data with relative ease or was it created by some

long complicated process? Does the data simply appear random to the casual

observer or is it truly random?

An intuitive way to quantify how complex a piece of data is by measuring how

difficult it is to describe. Suppose we had a set of descriptions X, some method

to read and comprehend the descriptions R, and some target set of data Y , and

assume each description in X maps to at most one piece of data in Y via R.

Then, for each piece of data y in Y , we can measure the complexity of the data

y by examining the length of the all descriptions from X which are mapped to y

via R. It is therefore reasonable to define the complexity of y as being the length

of the description which is the shortest among all of the descriptions which map

to y. Intuitively, the simpler y is, the shorter the descriptions for it would need

1

1.1. Background

to be. The more complex y is, the longer the descriptions for it need to be. Of

course in such a scenario, the chosen method to translate the descriptions R plays

a role in the complexity of the objects.

Kolmogorov complexity, denoted by K, is a descriptional complexity based on

this idea. Developed by Solmonoff in 1960/64 [137, 138, 139], Kolmogorov in 1965

[93] and Chaitin in 1966/69 [36, 37], and further expanded to a prefix-free notion,

denoted by H, by Levin in 1974 [100] and Chaitin again in 1975 [38], it has acted

as a foundational tool of measurement in computer science and mathematics. It

has a wide number of applications in the field of Algorithmic Information Theory

[61, 104, 118].

One of the drawbacks of Kolmogorov complexity is that it is solely interested

in the length of short descriptions. In a sense it simply measures how difficult a

sequence is to describe, i.e. how random it is. It provides little insight into the

time and effort required to produce the data. In this thesis we focus much of our

attention to its use in Charles Bennett’s measurement called Logical Depth [17]

which attempts to overcome this weakness.

In contrast to Kolmogorov complexity, Bennett’s depth also takes into account

the minimum time taken to produce a piece of data from short descriptions.

Bennett’s goal was to create a notion which could measure physical complexity.

The more complex an object is, the longer it must have taken to be created. Such

objects are called deep while non-deep objects are called shallow. For instance,

human beings may be considered deep structures as our current bodies are the

result of millions of years of evolution.

Intuitively an infinite sequence is deep if its prefixes take a long time to be

produced from their short descriptions. In particular, we are interested in the

minimum length of time taken as one can have a program which runs for a long

time by having it wait an arbitrarily long period before beginning its computation.

From this, it is easy to understand the three fundamental properties Bennett’s

2

1.1. Background

depth satisfies. Firstly, random sequences are not deep. Randomness here means

Martin-Löf-random, (denoted as ML-random) by the equivalent definitions of

Martin-Löf [108], Chaitin [38], Levin [99], and Schnorr [126, 127]. Intuitively, ML-

random sequences are those such that the lengths of the shortest descriptions of its

prefixes are roughly equal to the lengths of the prefixes themselves. Hence a simple

print program can generate prefixes of random sequences quickly from their

shortest description. Secondly, trivial sequences are not deep. This is because

the patterns contained in trivial sequences are easy to identify and thus not

computationally expensive to create. In Bennett’s case, trivial sequences are the

computable ones. Thirdly, Bennett’s depth satisfies a Slow Growth Law. This

means that deep sequences must be difficult to produce, one cannot transform a

shallow structure into a deep structure via a quick and easy process. Bennett’s

depth being invariant under truth-table reductions demonstrates this [17].

Every object which is Bennett deep is intrinsically useful in the sense of

Juedes, Lathrop and Lutz [86]. This is best demonstrated by the diagonal Halting

Problem whose characteristic sequence ∅′ is such that its nth bit is 1 if and only if

the nth Turing Machine Mn (in some enumeration of all Turing Machines) halts

on input n. While it is famously uncomputable [142], it is an extremely useful

problem in computability and complexity theory as it NP-hard. While an n bit

prefix of ∅′ has low Kolmogorov complexity, since by Barzdin’s Lemma [8] the

prefix can be reproduced from a description of O(log n) bits long, Bennett showed

it is deep [17]. In contrast to this, Chaitin’s constant Ω [38] which contains the

exact same information as ∅′ (in fact they are weak truth table equivalent [30]) is

not deep. Ω contains this information in a much more compressed manner which

makes it unfeasible to extract information from, thus it making it useless. In fact,

Ω is ML-random [16, 38].

Kolmogorov complexity is unfortunately uncomputable. In fact, it is not even

partially computable in the sense that no partial computable function with infinite

3

1.1. Background

domain exists which coincides with Kolmogorov complexity on every element of

its domain [158]. A proof deriving the uncomputability of Kolmogorov complexity

via the uncomputability of the Halting Problem can be found in [39]. As a result,

many authors have devised approaches to either estimate Kolmogorov complexity

or have substituted with more computable approaches.

One approach is to estimate Kolmogorov complexity from above via mono-

tonic decreasing functions [158]. Resource Bounded Kolmogorov Complexities

which limit the amount of time Turing Machines are allowed to run and the

amount of space they are allowed to use for memory is another popular approach.

Early examples of this can be found in [50, 91, 101, 134].

In [29] it is shown that regardless of what optimal universal machine is used

as a description method, computable functions exist which map infinitely many

strings to their shortest programs for both the plain and prefix-free version of

Kolmogorov complexity.

List Approximations is a method where for each string x, a list of programs

which can reproduce x are computed such that one of the programs has length

close to the Kolmogorov complexity of x [9, 10, 141, 155].

Using known values of Radó’s Busy Beaver function [122] calculated by Brady

in [27], the Coding Theorem Method has been used to estimate the Kolmogorov

complexity for short strings (up to length 16) in [54, 136, 154]. Briefly, for

a universal prefix-free machine U , the algorithmic probability of x is the sum

m(x) =
∑

p:U(p)=x 2−|p|. Intuitively, this is the probability that the universal

machine U will produce x if fed random bits as input. The Coding Theorem

provides a relationship between prefix-free Kolmogorov complexity, denoted by

H, and m(x) from which it can be deduced that H(x) = − log(m(x)) + O(1)

[38, 100]. Exploiting this relationship, the authors of [54, 136, 154] numerically

estimate m(x) by running simulations on machines of small size to see if they

produce x.

4

1.1. Background

Other approaches such as by Becher and Heiber [13] and Lempel and Ziv [98]

measure the complexity of a finite string x by the number of substrings x contains

under certain parsing conditions.

Many authors have replaced Turing Machines with finite-state transducers to

define descriptional finite-state based complexities [31, 34, 56, 95]. The common

theme in these notions is that the complexity of a string x is measured based on

the shortest input y into some finite-state transducer T such that T (y) = x.

Other finite-state based approaches are more concerned with the number of

states in the finite-state machines examined. In [32], Calude, Salomaa and Roblot

examine the number of states required to output strings based on their minimal

finite-state descriptional complexity as defined in [31]. Similarly, Shallit and

Wang introduced a notion called Automatic Complexity [130] which is a distin-

guishing based complexity analogous to Sipser’s Distinguishing Kolmogorov com-

plexity [134]. Shallit and Wang’s notion differs from Sipser’s in that they replace

Turing Machines with finite-state automata. It measures the minimal number of

states required such that for a string x of length n, x is the only string of length n

that some finite-state automaton accepts. For a function f from strings to strings,

Automaticity is another notion which measures the number of states required by

a finite-state transducer T such that f and T agree on all inputs of length n or

less [73, 120, 129]. Automaticity can be used to define an analogous measurement

to automatic complexity which examines languages of strings instead of a single

string.

The Kolmogorov complexity of a piece of data can be viewed as a lower bound

for how much the data can be compressed such that it is still retrievable from

this compressed form. As such, some authors have used compression algorithms

to approximate Kolmogorov complexity. One place where compressors replaced

Kolmogorov complexity was in the development of the Similarity Metric between

two pieces of data which, as the name suggests, measures how similar two pieces

5

1.1. Background

of data are [43, 103]. This idea has been applied to many areas such as to detect

plagiarism [42], to compare pieces of music [44], and to monitor fetal heartbeats

[48]. Many more examples are reported in [43]. Compression algorithms they used

included gzip which is based on the Lempel-Ziv 77 algorithm [156], the PPMZ

variant [21] of Cleary and Witten’s original PPM algorithm [45], and bzip2 which

is based on the Burrows Wheeler transform [28].

With regards to Bennett’s Logical Depth, various authors have developed

new formulations of depth by replacing Kolmogorov complexity with their own

chosen complexity notions. One of the first was Lathrop and Lutz’s Recursive

Computational Depth which replaced Kolmogorov complexity with computable

time bounded Kolmogorov complexity [96]. While computable, some of the time-

scales are still impractical to work with. Subsequently Antunes et al. introduced

various notions in [5] which avoid impractical time bounds, one of which is based

off polynomial time bounded distinguishers. It is possible that this notion of

depth is redundant, however this is unlikely as it would imply that factorisation

is in the complexity class P .

In an attempt to address this problem, Doty and Moser restricted themselves

to define a depth notion based solely on finite-state transducers in [57]. However,

their notion defines a sequence to be deep if infinitely many of its sequences satisfy

a depth property, which is in contrast to Bennett’s notions which is an ‘all but

finitely many’ prefixes notion.

Moser and Stephan replace prefix-free Kolmogorov complexity with the plain

version in [114], but this has the same uncomputable problem. So too does their

notion called Limit-depth which provides access to ∅′ as an oracle [115]. This idea

of providing access to an oracle has been expanded upon in a recent preprint by

Bienvenu et al. [20].

Other approaches include Doty and Moser replacing Kolmogorov complexity

with polynomial time predictors in [57], and Moser replacing it with polynomial

6

1.1. Background

monotone compressors [112] and with polylog time bounded Kolmogorov com-

plexity [113].

An experimental approach by Zenil, Delahaye and Gaucherel to estimate

the logical depth of images based the run time of decompression algorithms on

compressed images can be found in [153]. Further experimental attempts by

Gaucherel to examine the logical depth of ecosystems can be found in [71].

In light of these examples, it seems reasonable to consider other approaches

of defining depth which avoid impractical time bounds and the uncomputability

of Kolmogorov complexity, and to explore their characteristics.

Borel normal [25] sequences also play a central role in this thesis. These are

sequences such that if they are constructed from an alphabet of size k it holds

that for all n, every string of length n occurs as a substring in the sequence

with asymptotic frequency k−n. With regards to Kolmogorov complexity, every

sequence which is ML-random must be normal. However, the converse is not

true.

An important result regarding normal sequences is that they characterise all

sequences which have a finite-state dimension (Definition 3.2.6) of 1 in the sense

of Dai et al. [49]. This means that normal sequences may be considered finite-

state random as, for instance, they are incompressible by any information lossless

finite-state compressor [13]. As such, the complexity of normal sequences has been

studied in various compression based and finite-state based settings to see whether

they have maximal complexity in these other settings [4, 11, 34, 35, 95, 97].

In particular, Becher, Carton and Heiber [11] have examined the compression

of normal sequences in scenarios such as when finite-state compressors have ac-

cess to one or more counters or a stack, and what happens when the compressor

is not required to run in real-time nor be deterministic. They showed that nor-

mal sequences are either incompressible or that a compressible sequence exists

based on the combination chosen. Carton and Heiber showed that deterministic

7

1.2. Objectives of This Thesis

and non-deterministic two-way finite-state compressors cannot compress normal

sequences [35]. Lathrop and Strauss showed that every sequence incompressible

by the Lempel-Ziv 78 algorithm must be normal and that the converse is not

true in [97]. Pierce and Shields gave examples of normal sequences which are

compressible by a variation of the Lempel-Ziv 77 algorithm in [119].

1.2 Objectives of This Thesis

In this thesis we shall consider complexity notions based on finite automata and

popular compression algorithms and examine the complexity of various sequences

in each notion. Particular attention will be paid to normal sequences. By using

finite automata and compression algorithms, we shall avoid the problems of the

uncomputability of Kolmogorov complexity and of using impractical time bounds.

The first area of investigation of this thesis shall be to focus on variants on

Bennett’s depth. Using Moser’s general framework for logical depth [112], we

shall define new feasible notions of depth based on automata and compressors.

While defining a new approach of depth is simple based on Moser’s framework,

checking whether or not that approach is meaningful is not as straightforward.

The primary goal shall be to demonstrate that each of the depth notions developed

are in a sense sound and worthwhile in that they satisfy all (or a subset) of the

properties of Bennett’s original definition. That is, for each of the notions we

explore:

1. Do deep sequences exist?

2. Are trivial sequences non-deep?

3. Are random sequences non-deep?

4. Does the depth notion satisfy a slow growth type law?

8

1.2. Objectives of This Thesis

Secondly, it is important to demonstrate that each of the depth notions ex-

plored have their own individual properties, i.e. they are not all equivalent. Hence

for each notion, the depth of a sequence shall be defined. Using this, we shall

attempt to differentiate two notions by demonstrating the existence of sequences

which have high depth in one notion and low depth in the other, and vice versa.

The notions we shall examine will be based on finite-state transducers, pushdown

compressors, the Lempel-Ziv 78 compression algorithm, and pebble transducers.

With regards to normal sequences, we aim to show whether or not deep normal

sequences exist in each notion we explore.

As part of this exploration of depth, we shall compare the performance of dif-

ferent compression algorithms against each other on particular sequences. Contin-

uing with this line of study, we follow up studying depth with an investigation into

the Prediction by Partial Matching (PPM) family of compressors. Firstly we shall

attempt to differentiate the PPM* compression algorithm from the Lempel-Ziv 78

algorithm by presenting a sequence which PPM* can compress which Lempel-Ziv

78 cannot. We also simultaneously aim to answer the question as to whether or

not there exists normal sequences which PPM* can compress. A comparison of

PPM* and its original counterpart, Bounded PPM, is also performed.

As part of our investigation into new depth notions, for the finite-state and

pebble based approaches, the complexity of a string x will be defined based on the

length of inputs required to output x. In conjunction with this, an alternative

finite-state based complexity known as automatic complexity is also examined

at the end of this thesis. As a finite-state automata based complexity, one may

assume normal sequences must have maximal automatic complexity since they

have a finite-state dimension of one. We aim to answer the question as to whether

or not normal sequences must have maximal automatic complexity.

9

1.3. Outline of the Thesis

1.3 Outline of the Thesis

The thesis is structured as follows:

• In Chapter 2 we shall outline some relevant background material on Kol-

mogorov complexity and Bennett’s Logical Depth. We shall briefly examine

Moser’s framework for depth and how it can be used to define new depth

notions. We also will explore other topics such as normality which will

appear frequently throughout the thesis.

• Chapters 3 through 6 explore new feasible notions of depth:

– In Chapter 3 we present an almost everywhere notion of finite-state

depth which is inspired by Doty’s and Moser’s infinitely often finite-

state depth notion [57]. We demonstrate the existence of a deep se-

quence and examine which of the fundamental depth properties our

notion satisfies. We also establish a difference between our notion and

Doty and Moser’s original notion by constructing a sequence which is

deep in their notion but not in ours.

– In Chapter 4 we present a new notion of depth based on informa-

tion lossless pushdown compressors. We demonstrate the existence of

a deep sequence and examine which of the fundamental depth prop-

erties our pushdown notion satisfies. We demonstrate its difference

from Doty and Moser’s finite-state depth by constructing a sequence

which is finite-state deep but not pushdown deep. We also construct

sequences which have a pushdown depth level of close to 1/2 and finite-

state depth level of at most 1/2.

– In Chapter 5 we present a notion of depth based on the Lempel-

Ziv 78 compression algorithm [157]. We establish the existence of

10

1.3. Outline of the Thesis

a Lempel-Ziv deep normal sequence and examine which of the fun-

damental depth properties our notion satisfies. We separate it from

finite-state depth by constructing Lempel-Ziv deep sequences which

are not finite-state deep and vice versa. Furthermore we demonstrate

the existence of Lempel-Ziv deep sequences which are not pushdown

deep and sequences which have a pushdown depth level of close to 1/2

and a Lempel-Ziv depth level of at most 1/2.

– In Chapter 6 we derive a depth notion based on pebble transducers.

Such machines were first viewed as acceptors by Globerman and Harel

in [74]. We establish the existence of a pebble deep normal sequence

and examine which of the fundamental depth properties our pebble

notion satisfies. We exhibit pebble depth’s difference from Lempel-Ziv

depth by showing the existence of sequences with a pebble depth level

of close to 1/2 and a Lempel-Ziv depth level of at most 1/2. We also

begin a preliminary investigation to differentiate pebble depth from

pushdown depth.

• In Chapter 7 we examine the Prediction by Partial Matching (PPM) family

of compression algorithms. We demonstrate that the unbounded version

of the algorithm known as PPM* developed by Cleary and Teahan [46]

can fully compress a Champernowne style sequence. This demonstrates a

difference with PPM* and the Lempel-Ziv 78 algorithm as Champernowne

style sequences are worse case inputs for the algorithm. We also show that

the original Bounded PPM algorithm of Cleary and Witten [45] cannot

compress normal sequences.

• In Chapter 8 we shall examine Shallit and Wang’s automatic complexity

[130] to see if normal sequences must have maximal automatic complexity.

We will answer this in the negative by constructing a sequence whose pre-

11

1.3. Outline of the Thesis

fixes have lower and upper automatic complexity ratios bounded between

0 and 1/2. We shall also demonstrate the existence of a normal sequence,

specifically a Champernowne sequence, whose prefixes have an automatic

complexity ratio bounded above by 2/3.

• Concluding remarks are given in Chapter 9.

12

Chapter 2

Preliminaries and Background

In this chapter we cover some relevant notation and ideas used throughout the

thesis. We also provide a more detailed insight into topics mentioned in the

introductory chapter.

2.1 Preliminaries

We work with the binary alphabet {0, 1} in this thesis. A (finite) string is an

element of {0, 1}∗. Strings will generally be denoted by lowercase letters. {0, 1}n

denotes the set of strings of length n. Thus {0, 1}∗ =
⋃∞
n=0{0, 1}n. The set of

(infinite) sequences is denoted by {0, 1}ω. Sequences will generally be denoted by

an uppercase letter. {0, 1}≤ω = {0, 1}∗∪{0, 1}ω denotes the set of all strings and

sequences. |x| denotes the length of the string x. We say |S| =∞ for a sequence

S ∈ {0, 1}ω. We use λ to denote the empty string, that is, the string of length 0.

For x ∈ {0, 1}∗ and y ∈ {0, 1}≤ω, xy (occasionally written as x · y) denotes the

string (or sequence) of x concatenated with y. For x ∈ {0, 1}∗, xn denotes the

string of x concatenated with itself n times, i.e. xn =

n times︷ ︸︸ ︷
x · x · · ·x, and similarly,

xω denotes the sequence composed of x concatenated with itself infinitely many

times. For x ∈ {0, 1}≤ω and 0 ≤ i < |x|, x[i] denotes the ith character of x

13

2.1. Preliminaries

with the leftmost character being x[0]. For x ∈ {0, 1}≤ω and 0 ≤ i ≤ j < |x|,

x[i..j] denotes the substring of x consisting of the ith through jth bits of x. For

x ∈ {0, 1}∗ and y, z ∈ {0, 1}≤ω such that z = xy, we call x a prefix of z and y a

suffix of z. We write x v v if x is a prefix of v and x @ v is x is a prefix of v but

x 6= v. For x ∈ {0, 1}≤ω we write x � n to denote the prefix of length n of x, i.e.

x � n = x[0..n − 1]. For a string x and for 0 ≤ j < |x|, we write x[j..] to denote

the suffix of x beginning with bit x[j].

For a string x ∈ {0, 1}∗, we write d(x) to denote the string formed by doubling

every bit of x, that is, if x = x1 . . . xm, then d(x) = x1x1 . . . xmxm. For a string

x ∈ {0, 1}∗, we write x−1 to denote the reverse of x, that is, if x = x1 . . . xm

where for each i xi ∈ {0, 1}, then x−1 = xm . . . x1.

The lexicographic ordering of strings is defined as follows. Given two strings

x and y, if |x| = |y|, we say that x comes before y if for the least n such that

x[n] 6= y[n], x[n] = 0 and y[n] = 1. Else y comes before x. Similarly suppose

|x| < |y|. If x @ y, then x comes before y. Else, let x′ be the string x0|y|−|x|. Note

that |x′| = |y|. Then, if x′ comes before y we say that x comes before y. Else y

comes before x.

The lexicographic-length ordering of strings is defined as follows. Given two

strings x and y, x comes before y if |x| < |y| or for the least n such that x[n] 6= y[n],

x[n] = 0 and y[n] = 1. The standard enumeration of strings is the enumeration

of strings in lexicographic-length order.

Much of the following is relevant background in computability theory. More

background details can be found in the introductory texts by (but not limited to)

Downey and Hirschfeld [61], Li and Vitányi [104] and Nies [118].

In general, we will consider functions f : A → {0, 1}∗ where A ⊆ {0, 1}∗,

i.e. partial functions on {0, 1}∗. The domain of f , denoted by dom(f), is the

set A. If A = {0, 1}∗, then f is called a total function. Intuitively, a function

being computable means that on a given input, we can calculate the function’s

14

2.1. Preliminaries

output by following a finite number of steps, or in other words, by following a

terminating algorithm. Specifically we define the computable functions to be the

partial functions which can be computed by Turing Machines, as introduced by

Turing in [142]. For more details and a history on the relationship between the

intuitively (partial) computable functions and (partial) functions computed by

Turing Machines, otherwise known as the Church-Turing Thesis, see Soare [135].

Definition 2.1.1. Let A ⊆ {0, 1}∗ and f : A→ {0, 1}∗ be a function. f is partial

computable if there exists a Turing machine M such that for all x ∈ A, f(x) = y

if and only if M on input x halts and outputs y, i.e. M(x) = y. We say f is

computable if it is partial computable and its domain is {0, 1}∗.

We generally refer to Turing machines simply as machines.

Given a machine M , string x and some s ∈ N, M(x)[s] denotes running M

on x for s steps of its computation. Note in this scenario, M ’s computation may

not have halted. To clarify this, M(x)[s] ↓ denotes running M on x and that its

computation halts within s steps. M(x) ↓ means that M eventually halts on x.

Occasionally we examine partial functions from N to N instead of over strings.

In this case, we can simply pair each element of N with an element of {0, 1}∗ by

pairing n with the nth string in lexicographic-length order. For example, λ is

paired with 0 and 000 is paired with 7. Note that if n is paired with sn in the

ordering, then |sn| = blog(n+ 1)c.

Definition 2.1.2. A time bound is a non-decreasing, unbounded, computable

function f : N→ N.

Definition 2.1.3. A machine M has oracle access to the sequence X ∈ {0, 1}ω

if M has an additional oracle tape such that for all n ∈ N, its nth square has X[n]

written on it. M can query the oracle tape anytime during its computation to

correctly answer questions of the form ‘What is X[n]?’. M is referred to as an

15

2.2. Kolmogorov Complexity

oracle (Turing) machine. If M has oracle access to X, MX is written instead of

M .

One can similarly have a finite string x on the oracle tape. That is, for 0 ≤ n < |x|,

the nth square contains x[n] and for n ≥ |x|, the nth square is left blank.

Definition 2.1.4. Let X, Y ∈ {0, 1}ω.

• We say that X is (Turing) reducible to Y , denoted by X ≤T Y , if there

exists an oracle machine MY such that for all n ∈ N, X[n] = MY (n) ↓.

• For a time bound t : N → N we say that X is (Turing) reducible to Y in

time t, denoted by X ≤tT Y , if there exists an oracle machine MY such that

for all n ∈ N, X[n] = MY (n)[t(|sn|)] ↓.

For Y ∈ {0, 1}∗ and time bound t : N→ N, let

DTIMEY (t) = {X ∈ {0, 1}ω : X ≤tT Y }

denote the set of sequences Turing reducible to X in time t.

2.2 Kolmogorov Complexity

In the following subsection we review some of the basics of the descriptional

complexity known as Kolmogorov Complexity.

Given a string x and a machine M , a common question is whether x is a

string that can be outputted by M . That is, does there exist a string p such that

M(p) = x? Such a p is referred to as an M -description of x. Quite often we are

interested in the shortest p that when inputted into M gives x. From this, we

define the M -complexity of x.

16

2.2. Kolmogorov Complexity

Definition 2.2.1. For a machine M , the M -complexity of a string x ∈ {0, 1}∗ is

defined to be the length of a shortest string p such that M(p) = x. The notation

used is

KM(x) = min{|p| : M(p) = x}.

If no such p exists we say KM(x) =∞.

If |p| < |x|, then p can be viewed as a compressed version of x and M as the

decompressor that when given p re-obtains x.

Example 2.2.2. Consider the identity machine I, i.e. the machine such that for

all x ∈ {0, 1}∗, I(x) = x. Then KI(x) = |x| for all x.

Instead of examining the complexity of strings on a machine by machine basis,

it is often useful to examine the complexity of a string via an optimal machine.

Definition 2.2.3. A machine N is called an optimal machine if for each machine

M , there exists a constant cM ∈ N such that for all x ∈ {0, 1}∗

KN(x) ≤ KM(x) + cM .

In his paper [142], Turing shows that each of his machines has a standard descrip-

tion composed of a string of characters which fully describes how the machine

operates. Thus, enumerating all strings and examining which ones correspond to

a standard description of a machine, one can enumerate all machines. This in

turn means the partial computable functions can be enumerated in some order

too. This enumeration gives rise to the existence of an optimal machine.

Theorem 2.2.4. There exists an optimal machine.

Proof. Let M1,M2,M3, . . . be an enumeration of all machines. Consider the ma-

chine N such that N(0e−11σ) = Me(σ) for all e > 0 and strings σ. Consider the

17

2.2. Kolmogorov Complexity

machine Md and x, y ∈ {0, 1}∗ such that Md(y) = x and KMd
(x) = |y|. Hence,

N(0d−11y) = Md(y) = x and so KN(x) ≤ KMd
(x) + d.

In the above proof 0d−11 can be thought of as a pointer to the machine Md. It

should be noted that optimal machines are sometimes referred to as universal

machines.

We can now define the (plain) Kolmogorov complexity of a string. We fix some

optimal machine U .

Definition 2.2.5. The (plain) Kolmogorov complexity of a string x is defined to

be the U -complexity of x.

In other words, the Kolmogorov complexity of x is the value KU(x). As the choice

of U only impacts Kolmogorov complexity up to an additive constant [93], we

write K(x) instead of KU(x).

When concatenating two strings together, one would hope for nice results

such as K(xy) ≤ K(x) + K(y) + d, for some constant d. That is, the shortest

description of the string xy can be found simply from the shortest description of

x and the shortest description of y. Unfortunately, equalities such as this do not

hold for all strings (see Corollary 2.2.2 of [118]). If we simply concatenate the

two shortest descriptions, one cannot tell where the description of x ends and the

description of y begins. This is one of the many reasons why prefix-free machines

are studied.

Definition 2.2.6. A machine M is prefix-free if for all x, y ∈ dom(M), if x v y

then x = y.

When referring to the M -complexity of a string x when M is prefix-free, we

write HM instead of KM . As with the plain version, there exists a prefix-free

optimal machine [38], i.e. there exists a prefix-free machine V such that for each

18

2.2. Kolmogorov Complexity

prefix-free machine M , there exists a constant cM such that for all x ∈ {0, 1}∗,

HV (x) ≤ HM(x)+cM . We can now define the (prefix-free) Kolmogorov complexity

of a string. We fix some optimal prefix-free machine V .

Definition 2.2.7. The (prefix-free) Kolmogorov complexity of a string x is defined

to be the V -complexity of x.

As with the plain version, the choice of V only impacts Kolmogorov complexity

up to an additive constant. Hence we write H(x) instead of HV (x).

We note that other authors, such as in [61, 118], use C to denote the plain

version of Kolmogorov complexity and K to denote the prefix-free version. We

however use K and H instead respectively as we reserve C to denote compressors

later in this thesis. Chaitin, for instance, uses H to denote the prefix-free version

in [38].

Both K and H are not computable. The following theorem strengthens this

result further.

Theorem 2.2.8 ([158]). K is not partial computable. Furthermore, no partial

computable function f exists such that |dom(f)| = ∞ and for all x ∈ dom(f),

f(x) = K(x). This is similarly true for H.

Time Bounded Kolmogorov Complexity

We are also interested in the restricted form of Kolmogorov Complexity known as

Time Bounded Kolmogorov Complexity. Intuitively, we aim to find the shortest

description of a string if we are given a finite number of steps to identify it.

Definition 2.2.9. Given a computable function t : N→ N, for all x ∈ {0, 1}∗ the

(plain) t-time bounded Kolmogorov complexity of x, denoted by Kt(x), is given

by

Kt(x) = min{|p| : U(p)[t(|x|)] ↓= x}.

19

2.3. Bennett’s Depth

If no such p exists we say Kt(x) =∞.

In other words, Kt(x) is the shortest program for which U has halted and out-

putted x within t(|x|) steps. H t(x) for the prefix-free version is similarly defined.

2.2.1 Distinguishing Complexity

In 1983, Sipser introduced a variant of Kolmogorov complexity known as Distin-

guishing complexity [134]. Intuitively, while K(x) is the shortest program which

generates x, its distinguishing complexity KD(x) is the length of the shortest

program which ‘distinguishes’ x from all other strings. In Chapter 8 we will ex-

amine a computable variant of Distinguishing complexity. Sipser’s definition is

as follows.

Definition 2.2.10 ([134]). Let t : N→ N be a time bound and x ∈ {0, 1}∗. The

Distinguishing complexity of x is given by

KDt(x) = min{|p| : ∀y ∈ {0, 1}∗
[
Uy(p)[t(|y|)] ↓ ∧ (Uy(p) = 1 ⇐⇒ y = x)

]
}.

Note if no time bounds are used, distinguishing complexity differs from Kol-

mogorov complexity by an additive constant [134].

2.3 Bennett’s Depth

In his original paper, Bennett devised a notion of depth for both strings and

sequences [17]. We shall briefly examine the notion for strings but our main

focus shall be on the notion for sequences.

Understanding the philosophical idea of simplicity which states that given

multiple plausible explanations for an event, the one with the fewest assumptions

should be the preferred explanation acts as the basis of Bennett’s depth. Ex-

tending this to strings, given a string x, we may prefer to assume that it was

20

2.3. Bennett’s Depth

generated by a string of length equal to H(x). However, as Bennett noted, it is

possible to have programs with length slightly longer than H(x) which generate

x much faster than a program with length H(x). Thus, Bennett examines the

length of time taken to generate x from programs with length close to their mini-

mal descriptions. The longer it takes to generate x from such programs, the more

‘evolved’ or complex x can be thought of as being. More specifically, Bennett says

that for a string x, its depth at significance level c is the minimum time taken to

produce x from a c-incompressible program, i.e. from a string y whose minimal

description is no more than c bits shorter than the y itself.

Definition 2.3.1 ([17]). Let x ∈ {0, 1}∗ and c > 0. The (Bennett) logical depth

of x at significance level c is defined as

depthc(x) = min
p∈{0,1}∗

{t(|x|) : V (p)[t(|x|)] ↓= x ∧ |p| −H(p) < c}.

Note that depthc(x) is decreasing in c.

Definition 2.3.2. Let t ≥ 0, c > 0 and x ∈ {0, 1}∗. x is t-deep at significance

level c if depthc(x) ≥ t. Otherwise x is t-shallow at significance level c.

A slight variation of Definition 2.3.11 is explored in [6] (with a correction

in [144]) where it is shown that changing the significance parameter by 1 can

drastically change the depth of a string. In particular it is shown that a sequence

of strings of increasing length x1, x2, x3, . . . can be built such that as a function

of n, this difference in depth grows faster than any computable function. The

same result holds using Definition 2.3.1 if the class of Turing Machines used is

restricted [145].

Bennett also provides a notion of depth for infinite sequences. Specifically

he introduces two notions, a strongly and weakly deep notion. We will be more

1The definition used is depthc(x) = minp∈{0,1}∗{t(|x|) : p ∈ {0, 1}∗ ∧ V (p)[t] ↓= x ∧ |p| −
H(x) < c}. Bennett presents it as tentative Definition 0.2 in [17].

21

2.3. Bennett’s Depth

interested in the strongly deep notion which states that an infinite sequence is

strongly deep if for every computable time bound t : N→ N and every significance

level c, all but finitely many prefixes of S are t-deep at significance level c. Several

equivalent definitions are also mentioned in [17, 86] one of which is as follows.

Definition 2.3.3. Let S ∈ {0, 1}ω. S is (Bennett) strongly deep if for all com-

putable time bounds t : N → N and all c ≥ 0 it holds that for all but finitely

many n

H t(S � n)−H(S � n) ≥ c.

Bennett’s strong depth satisfies three basic properties. Firstly, random se-

quences are not deep. Randomness here means ML-randomness after Martin-

Löf. While there are several equivalent characterisations of ML-randomness

[38, 108, 99, 126, 127], we shall give the definition based on prefix-free Kolmogorov

complexity.

Definition 2.3.4. S ∈ {0, 1}ω is ML-random if there is a constant c ∈ N such

that for all n ∈ N it holds that H(S � n) > n− c.

Theorem 2.3.5 ([17, 86]). If S ∈ {0, 1}ω is ML-random then S is not strongly

deep.

The second property is that computable sequences are not deep.

Definition 2.3.6. S ∈ {0, 1}ω is computable if there exists a Turing machine M

such that for every non-negative integer n, M on input n computes the nth bit of

S, i.e. M(n) ↓= S[n].

Definition 2.3.7. S ∈ {0, 1}ω is computably enumerable if the set A = {n :

S[n] = 1} is the domain of some machine M , i.e. dom(M) = A.

Theorem 2.3.8 ([17, 86]). If S ∈ {0, 1}ω is computable then S is not strongly

deep.

22

2.3. Bennett’s Depth

The third property is the Slow Growth Law. This says that quick processes

cannot transform shallow sequences into deep ones. This is demonstrated by

depth being invariant under truth table reductions. Truth table reductions are

equivalent to time bounded Turing reductions (see Proposition 1.2.22 of [118]).

We present the definition of truth table reductions based on this fact.

Definition 2.3.9. We say thatX ∈ {0, 1}ω is truth-table reducible to Y ∈ {0, 1}ω,

written as X ≤tt Y , if there exists a computable time bound t : N→ N such that

X ∈ DTIMEY (t). That is, there exists an oracle machine MY such that for all

n ∈ N, X[n] = MY (n)[t(|sn|)] ↓.

Theorem 2.3.10 (Slow Growth Law [17, 86]). Let X, Y ∈ {0, 1}ω. If X ≤tt Y

and X is strongly deep, then Y is strongly deep.

Bennett himself noticed how his strong depth notion related to the idea of a

sequence being useful. Specifically, Bennett noted that the characteristic sequence

∅′ of the Halting problem is strongly deep [17, 86]. It is an extremely useful

sequence in the sense that any computably enumerable sequence can be computed

by an oracle machine with access to ∅′ in polynomial time.

Juedes, Lathrop, and Strauss explicitly described the relationship between

usefulness and Bennett’s strong depth in [86]. They gave two notions of useful-

ness, called weakly useful and strongly useful.

Definition 2.3.11. Let S ∈ {0, 1}ω.

• S is weakly useful if there exists a computable time bound t : N → N such

that the set DTIMES(t) has non-zero measure in the set of all computable

sequences.

• S is strongly useful if there exists a computable time bound t : N→ N such

that the set DTIMES(t) contains every computable sequence.

23

2.3. Bennett’s Depth

Without going into details, here by measure we mean the resource bounded

measure developed by Lutz [105, 106] which is a generalisation of Lebesgue mea-

sure theory. Intuitively, S is weakly useful if it means that a non-negligible subset

of the computable sequences can be efficiently computed via the help of S. Simi-

larly, strongly useful means all of the computable sequences can be computed in a

time bound via the help of S. Juedes, Lathrop, and Strauss proved the following

fact.

Theorem 2.3.12 ([86]). Every weakly useful sequence is strongly deep.

The converse is not true as it has been shown that there exists strongly deep

sequences which are not weakly useful [96]. Weakly useful sequences are further

explored in [66].

2.3.1 Moser’s General Framework for Depth

Many variations of depth have been studied and new ones are introduced and

compared in this thesis. While all different, they share a common theme. Moser

provides a general framework for defining any depth notion in [112] which we will

discuss now.

As Moser points out, depth notions can be defined relative to two classes of

functions G and G′ on strings. G and G′ may be any type of function, such as

decompressors or compression algorithms. Depth is then defined based on how

much information a member of class G can extract from the sequence compared

to members of class G′.

For instance, suppose three monolingual speakers who understand English,

French and Arabic respectively are presented with a piece of text written in

English which is aimed at the general public. In this case the English speaker

should be able to extract all available information from the text. On the other

end of the spectrum, as Arabic uses a different alphabet from English, to the

24

2.3. Bennett’s Depth

Arabic speaker the text will appear to be a random jumble of symbols which

are meaningless. In between, as French and English both use the same Latin

alphabet, there may exist certain combinations of letters the French person may

guess the meaning of and so can extract some of the information from the text.

For instance, the French for ‘table’ is ‘tableau’. Likewise, many French words are

also used in English such as ‘faux pas’.

More formally, let G,G′ be two classes of competing functions on strings. Let

Perf : G×G′×{0, 1}∗ → [0, 1] be some function which measures how much better

an algorithm A′ ∈ G′ performs on an input string compared to an algorithm

A ∈ G. Here, 0 means they perform as well as each other while 1 means A′

optimally outperforms A. For instance, Perf may compute how much more A′

can compress the string x compared to A. Let M be a family of computable

functions where for all m ∈ M and every positive integer n, 1 ≤ m(n) ≤ n. M

is used to measure how well A′ performs compared to A. Then, with G, G′, and

M , one can define a depth notion.

Definition 2.3.13 (Framework for Depth [112]). A sequence S ∈ {0, 1}ω is

almost everywhere (a.e.) (G,G′,M)-deep if

(∀m ∈M)(∀A ∈ G)(∃A′ ∈ G′)(∀∞n ∈ N) Perf(A,A′, S � n) ≥ m(n)

n
.

Infinitely often (i.o.) (G,G′,M)-depth is similarly defined by replacing the ∀∞

term in the above definition with ∃∞.

Many of the choices when developing a depth notion can seem arbitrary, for

instance whether to have an a.e. or i.o. notion. Similarly one may choose to say

‘there exists a bound m ∈M ’ instead of ‘for all bounds m ∈M ’. Another choice

may say ‘for all observers A ∈ G, there exists a bound m ∈M ’ instead of ‘for all

bounds m ∈ M and for all observers A ∈ G’. However, the challenge remains to

show that the depth notions are meaningful in a sense that they satisfy results

25

2.3. Bennett’s Depth

analogous to Theorems 2.3.5, 2.3.8 and 2.3.10.

The following examples are how Moser’s framework captures some depth no-

tions.

Example 2.3.14. Bennett’s strong depth satisfies Moser’s framework with G =

{H t : t a time bound}, G′ = {H}, M = N and

Perf(H t, H, x) =
H t(x)−H(x)

|x|
.

Example 2.3.15. Stephan and Moser explore a plain version of Bennett’s depth

in [114] where G = {Kt}, G′ = {K} and various choices for M are examined.

Example 2.3.16. Stephan and Moser explore their notion called limit depth in

[115] where G = {H}, G′ = {H∅′} and M = N. Here, H∅
′
(x) is the prefix-free

Kolmogorov complexity of x in the sense of Definition 2.2.7 except the optimal

prefix-free machine V becomes an oracle machine in the sense of Definition 2.1.3

with access to ∅′.

Example 2.3.17. In an effort to overcome the uncomputability of H, Moser

defines a polylog depth notion in [113]. A variant of plain Kolmogorov Complexity

from [3] is used, denoted by KT , which allows for logarithm time bounds. In

particular, for a string x and a time bound t : N→ N where t(n) ≥ log n, for all

n we define

KT t(x) = min{|p| : (∀b ∈ {0, 1, λ})(∀i ≤ n)Up(i, b)[t(n)] = accepts iffx[i] = b}

where n = |x|, for all i ≥ |x| x[i] = λ, and Up(i, b)[t(|x|)] means U with oracle

access to p and on input of the pair (i, b) runs for t(|x|) steps. Note here that

on input (i, b), U only needs to identify the value of x[i] and by requiring that

U(|x|, b) = λ, U identifies the length of x.

26

2.4. Descriptional Transducer Based Complexity

Let PL = {c logc n : c ∈ N}. Polylog depth is then defined using the framework

where G = {KT t : t ∈ PL}, G′ = {KT s : s ∈ 2PL}, M = PL and

Perf(KT t, KT s, x) =
KT t(x)−KT s(x)

|x|
.

2.4 Descriptional Transducer Based Complex-

ity

Throughout this thesis (particularly in Chapters 3 and 6) we will use computable

complexity approaches analogous to K based on a special class of partial com-

putable functions over strings which can be computed by finite-state based trans-

ducers. Definitions of the transducers we use can be found in Definitions 3.2.1

and 6.2.1. For a transducer T : {0, 1}∗ → {0, 1}∗ and a string x, we will be

interested in finding the minimum length of input required for T to output x,

i.e. the value min{|y| : y ∈ {0, 1}∗ ∧ T (y) = x}. Similar approaches encapsulat-

ing this theme to define finite-state complexity have previously been explored in

[31, 34, 56, 57, 95].

In particular, we will be interested in restricting the sizes of the transducers

we are examining also. This leads to the question as to how to define the size of a

transducer. Probably the most intuitive approach would be to say that the size of

a transducer is defined as the number of states that make up the transducer. The

main problem with this is that for any string x, one can easily build a transducer

with one state which outputs the string x for every bit of its input. This would

result in every string having a complexity of 1.

Instead, for a class of transducers F, we will associate each transducer T ∈ F

with a set of binary strings which fully describe T . Then the size of T will be the

length of the minimal string associated with it. This approach to define the size

27

2.4. Descriptional Transducer Based Complexity

of transducers has been previously taken in [31, 34, 56, 57]

Definition 2.4.1. Let F be a class of transducers and D ⊆ {0, 1}∗ be an infi-

nite, computable set of strings. A binary representation of F-transducers σ is a

computable map σ : D → F, such that for every transducer T ∈ F, there exists

some x ∈ D such that σ(x) = T , i.e. σ is surjective. If σ(x) = T , we call x a σ

description of T .

For a binary representation of F-transducers σ, we define

|T |σ = min
x∈dom(σ)

{|x| : σ(x) = T}

to be the size of T with respect to σ. For all k ∈ N, define

F≤kσ = {T ∈ F : |T |σ ≤ k}

to be the set of F-transducers with a σ description of size k or less. For all k ∈ N

and x ∈ {0, 1}∗, the k-F complexity of x with respect to binary representation σ

is defined as

Dk
σ(x) = min

{
|y| : T ∈ F≤kσ ∧ T (y) = x

}
.

Here, y is the shortest string that gives x as an output when inputted into an

F-transducer of size k or less with respect to the binary representation σ. In later

chapters we fix binary representations for the classes of transducers examine and

will instead write Dk
F(x) in place of Dk

σ(x).

We will use the following two ratios in Definition 2.4.2 to measure the com-

pressibility of sequences with respect to a class of transducers. We use the term

compressibility instead of randomness to avoid confusion with Definition 2.3.4.

Definition 2.4.2. Let S ∈ {0, 1}ω and F be a class of transducers. The upper

28

2.4. Descriptional Transducer Based Complexity

and lower compressibility rates of S with respect to the class F are given by

ρF(S) = lim
k→∞

lim inf
n→∞

Dk
F(S � n)

n
, and RF(S) = lim

k→∞
lim sup
n→∞

Dk
F(S � n)

n

respectively.

Definition 2.4.3. Let S ∈ {0, 1}ω and F be a class of transducers. We say S is

F−trivial if RF(S) = 0 and F−incompressible if ρF(S) = 1.

2.4.1 Compression Algorithms

Similarly to classes of transducers, we will also be examining the complexity of

sequences with respect to classes of compression algorithms in Chapters 4, 5 and

7. For a compression algorithm C : {0, 1}∗ → {0, 1}∗, the complexity of a string

x will be based on the length of the string that C maps x to, i.e. the length

of |C(x)|. We will use the following two ratios to measure the randomness of

sequences with respect to a compression algorithm.

Definition 2.4.4. Let S ∈ {0, 1}ω and C : {0, 1}∗ → {0, 1}∗ be a compression

algorithm The best-case and worst-case compression ratios of S via C are given

by

ρC(S) = lim inf
n→∞

|C(S � n)|
n

, andRC(S) = lim sup
n→∞

|C(S � n)|
n

respectively.

Instead of examining the compression ratio via a single compression algorithm,

occasionally we will also be interested in the compression ratio of sequences over

a class of compression algorithms.

Definition 2.4.5. Let S ∈ {0, 1}ω and F be a class of compression algorithms.

For a sequence S, the best-case and worst-case compression ratios of S with

29

2.5. Normal Sequences

respect to the class F are respectively given by

ρF(S) = inf{ρC(S) : C ∈ F}, andRF(S) = inf{RC(S) : C ∈ F}

Definition 2.4.6. Let S ∈ {0, 1}ω and F be a class of compression algorithms.

We say S is F−trivial if RF(S) = 0 and F−incompressible if ρF(S) = 1.

2.5 Normal Sequences

In most chapters of this thesis we will examine the complexity and depth of a

special class of sequences known as normal sequences. They were first defined by

Borel in 1909 [25].

Prior to defining normal sequences, we require the following notation to rep-

resent the number of occurrences of a particular substring in a string.

Definition 2.5.1. Let x,w ∈ {0, 1}∗.

1. The block number of occurrences of w in x is given by

occb(w, x) = |{i : x[i..i+ |w| − 1] = w ∧ i ≡ 0 mod |w|}|.

2. The total number of occurrences of w in x is given by

occ(w, x) = |{i : x[i..i+ |w| − 1] = w}|.

For instance occ(00, 0000) = 3 while occb(00, 0000) = 2. One way of characteris-

ing normal sequences is as follows.

Definition 2.5.2. A sequence S ∈ {0, 1}ω is normal if for all x ∈ {0, 1}∗ it holds

that

lim
n→∞

occ(x, S � n)

n
= 2−|x|.

30

2.5. Normal Sequences

The above definition is a ‘non-aligned’ version of normality. The occ(x, S � n)

term could be replaced with occb(x, S � n) to define an ‘aligned’ version. However,

both versions along with Borel’s original definition are equivalent. Kozachinskiy

and Shen provide details on the history of showing these definitions are equivalent

in Section 3 of [95]. It can easily be adapted to define normal numbers in any

base k.

Due to their ‘balanced’ statistics, for a sequence to be ML-random, it must be

normal. Intuitively this is true as if a sequence S were not normal, there exists

some substring x of length n which appears more frequently than all other strings

of length n in S. Hence a Turing Machine could be created which exploits this

fact to compress prefixes of S.

Lemma 2.5.3. If S is ML-random then S is normal.

However, not all normal sequences are ML-random. The first sequence proven

to be normal (in base 10) was the decimal sequence

S = 012345678910111213..

by Champernowne in 1933 [40]. This sequence was the concatenation of all non-

negative integers in order of magnitude. It is clearly not ML-random as all you

need to produce a prefix of the sequence is to know the length of the prefix to

be constructed. Of course, this construction can be generalised to any base to

produce a base-k normal sequence. This idea of listing numbers in order to form

normal sequences can be generalised as follows. Given an infinite set B ∈ Z+,

Copeland and Erdös provide the following condition that B must satisfy so that

the sequence formed by concatenating the base-k representations of the elements

of B in order is normal in base-k.

Theorem 2.5.4 ([47]). Let B be an infinite set of positive integers. The sequence

31

2.5. Normal Sequences

formed by concatenating the base-k representations of the elements of B in order

of magnitude is normal in base-k if for all ε < 1, for all n sufficiently large it

holds that |B
⋂
{1, 2, . . . , n}| > nε.

The above theorem can be used for instance to show that the sequence

P = 23571113 . . .

formed by listing the prime numbers in order is a decimal normal number.

This idea of listing all strings in order of length classifies a subset of normal

sequences which we call Champernowne sequences.

Definition 2.5.5. A sequence C ∈ {0, 1}ω is a Champernowne sequence if C =

C1C2C3... such that

(∀n ∈ N)(∀x ∈ {0, 1}n) occb(x,Cn) = 1.

Note in the above that for all n, |Cn| = n · 2n. Unlike the binary version

of Champernowne’s original sequence which was a concatenation of all strings

in lexicogrpahic-length order (0100011011000...), we emphasise that the set of

Champernowne sequences do not require strings to be in length-lexicographic

order for the construction. There are 2n! possible choices for zone Cn in a Cham-

pernowne sequence. For instance, 00011011 and 11100001 are two possibilities

for C2.

It is widely known that Champernowne sequences are incompressible by the

Lempel-Ziv 78 compression algorithm. In [97], Lathrop and Strauss show that

every sequence which is incompressible by the Lempel-Ziv 78 algorithm must be

normal. Hence, this is one approach to prove that Champernowne sequences are

normal.

32

2.6. de Bruijn Strings

2.6 de Bruijn Strings

The building blocks of many of the sequences constructed in this thesis are de

Bruijn strings. A de Bruijn string of order n is a string that when viewed cyclically

contains every string of length n as a substring once and once only.

Definition 2.6.1. A (binary) de Bruijn string of order n is a string x ∈ {0, 1}2n

such that for all w ∈ {0, 1}n, occ(w, x · x[0..n− 2]) = 1.

For example, 00011101 and 00010111 are de Bruijn strings of order 3. Note

that if x ∈ {0, 1}2n is a de Bruijn string of order n, for all 1 ≤ j < 2n, x[j..2n −

1] · x[0..j − 1] is also a de Bruijn string of order n.

Such strings are named after Nicolaas de Bruijn for his work in 1946 [51],

although the question about whether such strings exist was raised [53] and solved

previously [52, 125]. The problem also was independently ‘re-discovered’ and

solved by Good in 1946 [75]. A history of the problem can be found in [123] and

[68].

It is known that there are 22n−1−n binary de Bruijn strings of order n unique

up to cycling [51, 125, 143]. By this we mean that for example, the binary order

2 de Bruijn strings 0011 and 0110 are viewed as the same string.

2.6.1 Granddaddy de Bruijn Strings

We will often make use of the lexicographic least de Bruijn string to build se-

quences. For instance, of the 16 de Bruijn strings of order 4, 0000100110101111

is the lexicographic least. Such strings have been referred to as the granddaddy

de Bruijn strings due to Knuth [90], or as Ford strings due to Ford’s work in 1957

[67]. The first known algorithm to construct such de Bruijn strings was given by

Martin in 1934 [107]. Martin’s algorithm is as follows:

33

2.6. de Bruijn Strings

Martin’s Algorithm:

1. Begin with the string u = 1n−1.

2. While possible, append a bit, with 0 taking priority over 1, onto the end of

u so that substrings of length n occur only once in u.

3. When step 2 is no longer possible2, remove the prefix 1n−1 from u. The

resulting string is the lexicographic least de Bruijn string of order n.

Martin’s is a form of greedy algorithm and requires Ω(2n) space, making it

infeasible for large n. Another algorithm known as the FKM-algorithm after

work by Fredricksen, Kessler and Maiorana [69, 70] requires only O(n) space. We

require the following two definitions to describe the FKM-algorithm.

Definition 2.6.2. A string x ∈ {0, 1}n is a necklace if it is the lexicographical

least string in the set of its rotations, i.e. of the set {x[j..n− 1] · x[0..j− 1] : 0 ≤

j < n}.

For example, the set of necklaces of {0, 1}4 is

{0000, 0001, 0011, 0101, 0111, 1111}.

Definition 2.6.3. The aperiodic prefix of a string x ∈ {0, 1}n is the shortest

prefix u of x such that there exists some 1 ≤ j ≤ n where uj = x.

For example, the set of aperiodic prefixes of the necklaces of {0, 1}4 is

{0, 0001, 0011, 01, 0111, 1}. (2.1)

The following is the FKM algorithm to form the lexicographic least de Bruijn

string of order n:

2Martin shows this occurs when when |u| = 2n + n− 1

34

2.6. de Bruijn Strings

FKM Algorithm:

Concatenate the aperiodic prefixes of the necklaces of {0, 1}n in lexico-

graphic order.

For example, concatenating the elements of the set 2.1 in lexicographic order gives

us the de Bruijn string 000010011010111, i.e. the lexicographic least de Bruijn

string of order 4.

35

Chapter 3

Finite-State Depth

Contents of this chapter were presented at SOFSEM 2020 in Cyprus during Jan-

uary 2020. doi: 10.1007/978-3-030-38919-2 16.

3.1 Introduction

One of the first notions of depth studied which attempted to overcome the un-

computablitiy of Kolmogorov complexity was a finite-state based notion by Doty

and Moser [57]. Their notion was based on the minimal length of an input to a

finite-state transducer of a certain size that results in the desired output. They

proved that their notion satisfies the three fundamental properties of depth: They

showed that FST-trivial sequences (those with a strong finite-state dimension of

0) and FST-incompressible sequences (those with a finite-state dimension of 1) are

not deep in their notion (see Definition 3.2.6 for the full definition of dimension).

They also proved a slow growth law where the transformations examined were

those that could be computed by an information lossless finite-state transducer.

In their notion however, a sequence was finite-state deep if it satisfied some

depth requirement for infinitely many of its prefixes. Bennett himself noted that

for his notion, simply using an infinitely often requirement would result in every

36

https://doi.org/10.1007/978-3-030-38919-2_16

3.2. Finite-State Transducers

computable sequence being deep [17]. In this chapter we attempt to overcome this

by developing a notion of almost everywhere finite-state depth. Here, a sequence

will be finite-state deep in our notion if it satisfies some depth requirement for

all but finitely many of its prefixes.

We will show that there exists deep sequences in our notion. We will similarly

show that FST-incompressible sequences are not deep and that a slow growth law

holds in our notion. The question of whether FST-trivial sequences are classified

as deep or not is explored also and it is discussed how this impacts the definition

we choose for our depth.

We furthermore show that there exists a sequence which is deep in Moser and

Doty’s notion which is not deep in the new notion we present, thus differentiating

the two.

3.2 Finite-State Transducers

We use the standard finite-state transducer model.

Definition 3.2.1. A finite-state transducer (FST) is a 4-tuple T = (Q, q0, δ, ν),

where

• Q is a non-empty, finite set of states,

• q0 ∈ Q is the initial state,

• δ : Q× {0, 1} → Q is the transition function,

• ν : Q× {0, 1} → {0, 1}∗ is the output function.

For all x ∈ {0, 1}∗ and b ∈ {0, 1}, the extended transition function δ̂ :

{0, 1}∗ → Q is defined by the recursion δ̂(λ) = q0 and δ̂(xb) = δ(δ̂(x), b). For

x ∈ {0, 1}∗, the output of T on x is the string T (x) defined by the recursion

37

3.2. Finite-State Transducers

T (λ) = λ, and T (xb) = T (x)ν(δ̂(x), b). We require the class of information

lossless finite-state transducers to later demonstrate a slow growth law.

Definition 3.2.2. An FST T is information lossless (IL) if for all x ∈ {0, 1}∗,

the function x 7→ (T (x), δ̂(x)) is injective.

In other words, an FST T is IL if the output and final state of T on input x

uniquely identify x. We call an FST that is IL an ILFST. By the identity FST, we

mean the ILFST IFS such that on every input x, IFS(x) = x. We write (IL)FST

to denote the set of all (IL)FSTs. We note that occasionally we call ILFSTs

finite-state compressors to emphasise when we view the ILFSTs as compressors

as opposed to decompressors.

We require the concept of (information lossless) finite-state computable func-

tions to demonstrate our slow growth also.

Definition 3.2.3. A function f : {0, 1}ω → {0, 1}ω is said to be (information

lossless) finite-state computable ((IL)FS computable) if there is an (IL)FST T such

that for all S ∈ {0, 1}ω, lim
n→∞

|T (S � n)| =∞ and for all n ∈ N, T (S � n) v f(S).

Based on the above definition, if f is (IL)FS computable via the (IL)FST T ,

we say that T (S) = f(S). We often use the following two results [82, 92] which

demonstrate that any function computed by an ILFST can be inverted to be

approximately computed by another ILFST.

Theorem 3.2.4 ([82, 92]). For all T ∈ ILFST, there exists T−1 ∈ ILFST and a

constant c ∈ N such that for all x ∈ {0, 1}∗, x � (|x| − c) v T−1(T (x)) v x.

Corollary 3.2.5. For all T ∈ ILFST, there exists T−1 ∈ ILFST such that for all

S ∈ {0, 1}ω, T−1(T (S)) = S.

38

3.2. Finite-State Transducers

3.2.1 k-Finite-State Complexity

For a class of transducers F, recall that in Section 2.4 of Chapter 2 we discussed

the k-F complexity of strings and binary representations of F transducers. In

this chapter we examine these notions with respect to the class of finite-state

transducers, i.e. when F = FST. As such, the size of FSTs, the sets FST≤k, and

the k-finite-state complexity Dk
FS(x) of a string x are all defined as in Chapter 2.

In their original paper [57], Doty and Moser discuss the size of FSTs via ‘some

standard’ binary representation. However, no specific discussion of a description

is given. For the purposes of this chapter, we fix a binary representation of

finite-state transducers σ as follows:

Let T = (Q, q0, δ, ν) be an FST. We define the function ∆ : Q × {0, 1} →

Q× {0, 1}∗, where

∆(q, b) = (δ(q, b), ν(q, b)) (3.1)

which completely describes the state transitions and outputs of T . Calude, Sa-

lomaa and Roblot previously presented different methods to encode ∆ in [31].

Further study of binary representations of FSTs can be found in [34]. We re-

present the first encoding scheme from [31] here (borrowing the notation they

use) as it is used to define our own binary representation later.

For n ∈ N, let bin(n) denote the binary representation of n. For instance

bin(1) = 1, bin(2) = 10, bin(3) = 11. Note that bin(n) begins with a 1 for all n.

string(n) denotes the binary string built by removing the first 1 in bin(n). So,

bin(n) = 1 · string(n). Note that |string(n)| = blog(n)c.

For x = x1x2 . . . xl, where xi ∈ {0, 1} for 1 ≤ i ≤ l, we define the following

two strings:

1. x† = x10x20 . . . xl−10xl1, and

2. x� = (1x)†,

39

3.2. Finite-State Transducers

where 0̄ = 1 and 1̄ = 0.

Then if Q = {q1, . . . , qm}, ∆ is encoded by the string

π = bin(n1)‡ · string(n′1)� · bin(n2)‡ · · · bin(n2m)‡ · string(n′2m)�, (3.2)

where ∆(qi, b) = (q(n2i−1+b mod m)+1, string(n′2i−1+b)), 1 ≤ i ≤ m, and b ∈ {0, 1}.

Here, bin(nt)
‡ = λ if the corresponding transition stays in the same state, that is

δ(qt, b) = qt. Otherwise bin(nt)
‡ = bin(nt)

†.

While π in (3.2) gives a complete description of ∆, there is no indication of

what the initial state of T is. One is left to assume that q1 is the initial state.

This leads to the question of whether changing the initial state of T to qi, where

qi 6= q1 drastically alters the length of the corresponding encoding of the new

FST.

To overcome this, the binary representation σ : D → FST for FSTs we use is

as follows. Let

∆m = {π |π is an encoding of ∆ for an FST with m states}

be the set of all possible encodings of ∆ for all FSTs with m states. The domain

D of σ is the set of strings

D =
⋃
m

⋃
1≤i≤m

{d(bin(i))01y | y ∈ ∆m}.

Then for 1 ≤ i ≤ m and y ∈ ∆m we set

σ(d(bin(i))01y) = T (3.3)

where T is the FST with Q = {q1, . . . qm} with initial state q0 = qi and whose

transition function ∆ is described by y. Clearly σ is surjective and so is a binary

40

3.2. Finite-State Transducers

representation of all FSTs.

In later results we require a pointer to the initial state as for two transducers

which are equivalent up to a relabelling of their states, this change of relabelling

of states changes the encoding of their respective ∆. This pointer allows us to

easily get a bound on the size of transducers with equivalent transition tables,

but different initial states.

Consider the transducer T in Figure 3.1 with three states and with the as-

sumption that on every transition the empty string is outputted. Simply swapping

which state is labelled 5, � and © does affect the length of the encoding of ∆.

For instance, if the state labelled with a 5 is the initial state, ∆ is encoded in 26

bits. Otherwise, ∆ is encoded in 30 bits. This is shown in Table 3.1.

�

5 ©
0

1

0

1

0

1

Figure 3.1: Diagram of T .

1 2 3 ∆ |∆|
5 © � 00100100101100110011001100 26
5 � © 00101100110011001001001100 26
© 5 � 101100100100001100100100100100 30
© � 5 100100101100101100101100001100 30
� © 5 100100100100110010110000100100 30
� 5 © 100100100100001011001100100100 30

Table 3.1: The encoding of T depending on which state is labelled 1, 2, and 3.

Specifically our binary representation σ is used to prove Lemma 3.3.9, which

in turn is needed to prove the existence of a deep sequence in Theorem 3.3.13.

However, Theorem 3.3.4 demonstrates that if a sequence is deep when the size

of transducers is viewed from the perspective of one binary representation, it is

41

3.2. Finite-State Transducers

deep when viewed from the perspective of any binary representation. Henceforth,

we will drop the σ notation and instead write |T | for |T |σ, FST≤k for FST≤kσ and

Dk
FS(x) instead of Dk

σ(x). All other definitions and results hold and can be proved

regardless of the binary representation being used.

To measure the randomness of a sequence in the finite-state setting, we use

the following notions which will be used to examine whether FST-trivial and

FST-incompressible sequences are deep.

Definition 3.2.6. Let S ∈ {0, 1}ω.

1. The finite-state dimension of S [49] is defined to be

dimFS(S) = lim
k→∞

lim inf
n→∞

Dk
FS(S � n)

n
= inf

T∈ILFST
lim inf
n→∞

|T (S � n)|
n

. (3.4)

2. The finite-state strong dimension of S [7] is defined to be

DimFS(S) = lim
k→∞

lim sup
n→∞

Dk
FS(S � n)

n
= inf

T∈ILFST
lim sup
n→∞

|T (S � n)|
n

. (3.5)

Note that dimFS(S) = ρILFST(S) and DimFS(S) = RILFST(S) where ρILFST(S)

and RILFST(S) are the values from Definition 2.4.5 when the class of compressors

being studied are ILFSTs.

Finite-state dimension (and strong finite-state dimension) satisfies many nice

properties. For instance, consider how sequences can be viewed as the infinite

binary expansion of real numbers (ignoring the integer part) in the interval [0, 1].

When viewed as such, Doty, Lutz and Nandakumar have shown that for any real

number α ∈ [0, 1], its finite-state dimension (and strong finite-state dimension)

remains unchanged under the operations of addition and multiplication with a

nonzero rational number β ∈ (0, 1] ∩Q, as stated in the following theorem.

42

3.2. Finite-State Transducers

Theorem 3.2.7 ([55]). Let α ∈ [0, 1] and β ∈ (0, 1] ∪ Q. The following two

results hold:

1. dimFS(α) = dimFS(β + α) = dimFS(α · β)

2. DimFS(α) = DimFS(β + α) = DimFS(α · β)

The original definitions of finite-state and finite-state strong dimension pre-

sented in [7, 49] were based on finite-state gamblers and information lossless

finite-state compressors. However, using the relationship between finite-state

compressors and decompressors as shown in [56, 132], these definitions and the

definition we use of dimension are equivalent. Intuitively, a sequence is FST-

trivial (having finite-state-strong dimension of 0) if very few bits are needed to

output long prefixes of the sequence by some FST. Similarly a sequence is FST-

incompressible (having finite-state dimension of 1) if the number of bits required

to output almost every prefix of the sequence is roughly equal to the length of the

prefix being examined by every FST. Other equivalent definitions of finite-state

and finite-state strong dimension can be found in terms of aligned and non-aligned

block entropy rates [26, 95, 131, 157], a restricted class of super-additive func-

tions [95] and finite-state log-loss predictors [76]. Note that the choice of binary

representation of FSTs used has no effect on finite-state and finite-state strong

dimension.

3.2.2 Normal Sequences and Finite-State Transducers

Normal sequences were briefly discussed in Section 2.5 of Chapter 2. Results by

Schnorr and Stimm [128] and Dai, Lathrop, Lutz and Mayordomo [49] demon-

strate that information lossless finite-state compressors (ILFSTs) cannot com-

press a sequence if and only if the sequence is normal (see [14] for a direct proof).

This gives us the following result indicating that normal sequences are incom-

pressible for FSTs.

43

3.2. Finite-State Transducers

Theorem 3.2.8. Let S ∈ {0, 1}ω. It holds that S is a normal sequence if and

only if dimFS(S) = 1.

Note that as a corollary to Theorem 3.2.7, and as originally shown by Wall

[146], when α ∈ [0, 1] is a normal number (i.e. its corresponding sequence is

normal), for every β ∈ (0, 1] ∩ Q, it holds that β + α and β · α are also normal

numbers.

As an aside, it is possible to define a finite-state based descriptional complexity

where normal sequences have minimal complexity. In [31], Calude, Salomaa and

Roblot introduce the following complexity notion.

Definition 3.2.9. Let σ be a binary representation of FSTs and let x ∈ {0, 1}∗.

The Calude-Salomaa-Roblot (CSR) complexity of x with respect to σ, denoted

by CSRσ(x), is given by

CSRσ(x) = min{|y|+ |T |σ : T ∈ FST ∧ T (y) = x}. (3.6)

In the above definition, σ may be replaced with any other binary representation

of FSTs π, but the value of CSRπ(x) and CSRσ(x) may differ greatly. The rela-

tionship between CSRσ and Dk
FS(x) is demonstrated by the following: Consider

two strings x and y such that T ∈ FST≤k with T (y) = x and Dk
FS(x) = |y|. If the

same binary representation (in this case σ) is being used for both complexity no-

tions it follows that CSRσ(x) ≤ |y|+k. CSRσ(x) differs from Dk
FS(x) in that the

value of CSRσ(x) is free to look for a minimal description for x over all transduc-

ers instead of those whose size is bounded above by k. This freedom was used by

Calude, Staiger and Stephan to show that regardless of the binary representation

used, there exists normal sequences with minimal CSR complexity.

Theorem 3.2.10 ([34]). Let σ be a binary representation of FSTs. Then there

44

3.3. Finite-State Depth

exists a normal sequence S such that

lim
n→∞

CSRσ(S � n)

n
= 0.

As a further aside, Kozachinskiy and Shen develop their own version of de-

scriptional finite-state complexity in [95] which they call Automatic Kolmogorov

complexity1. The difference with their approach is that they do not assign initial

states to finite-state transducers, and they extend the domain of the transition

and output functions to include λ as a valid input along with {0, 1}. This means

that, if it is an option to take, a transducer can move between states and output

a character without needing to read a character of its input.

To avoid the issue of every string therefore having a minimal descriptional

length of 0 as a result of this, only transducers where each input only describes at

most O(1) number of strings are considered. Hence, the single state transducer

which allows outputting either 0 or 1 without reading any characters of its input

is not considered as then λ would be a description for every string.

3.3 Finite-State Depth

A sequence S is finite-state deep if, given any finite-state transducer, we can

always build a more powerful finite-state transducer (i.e. via a combination of

having more states to process the input and the ability to output longer strings)

such that when we examine the k-finite-state complexity of prefixes of S on each

transducer, their difference is always bounded below by the length of the prefix

times a fixed constant. Intuitively, the larger transducer is more powerful and

can spot patterns of the sequence that the smaller transducer cannot. As such,

1This is not to be confused with Shallit and Wang’s automatic complexity discussed in
Chapter 8.

45

3.3. Finite-State Depth

the larger transducer requires less bits to describe the prefix. In [57], a notion2

of depth based on FSTs was introduced called infinitely often finite-state depth

(i.o. FS-depth).

Definition 3.3.1. S ∈ {0, 1}ω is infinitely often finite-state deep (i.o. FS-deep)

if

(∃α > 0)(∀k ∈ N)(∃k′ ∈ N)(∃∞n ∈ N)Dk
FS(S � n)−Dk′

FS(S � n) ≥ αn.

We introduce an a.e. version of the original finite-state notion called almost

everywhere finite-state depth (a.e. FS-depth).

Definition 3.3.2. S ∈ {0, 1}ω is almost everywhere finite-state deep (a.e. FS-

deep) if both of the following hold:

1. (∀k ∈ N)(∃α > 0)(∃k′ ∈ N)(∀∞n ∈ N)Dk
FS(S � n)−Dk′

FS(S � n) ≥ αn,

2. DimFS(S) 6= 0.

We make note of the different order of the quantifiers in Definitions 3.3.1 and

3.3.2. We justify this order of quantifiers as in their original paper, Doty and

Moser also introduced a second notion of i.o. FS-depth with the same order of

quantifiers as in Definition 3.3.2. A sequence that is not a.e. FS-deep is called

almost everywhere finite-state shallow (a.e. FS-shallow).

One of the limitations of our definition of a.e. FS-depth is condition 2 in Def-

inition 3.3.2. If we dropped the requirement, some FST-trivial sequences would

be considered deep which goes against the spirit of Bennett’s original notion.

Lemma 3.3.3. If condition 2 from Definition 3.3.2 was dropped, the sequence of

all 0s would be considered a.e. FS-deep.

2Actually two notions were introduced, which differ only by the order of quantifiers.

46

3.3. Finite-State Depth

Proof. Let k ∈ N. Let p ∈ N be greater than the maximum number of 0’s any

T ∈ FST≤k can output upon reading a single bit. Therefore we have that

Dk
FS(0n) ≥

⌊n
p

⌋
≥ n

p
− 1. (3.7)

Next consider the FST T ′ such that on any input of the form 0m10r, T ′ uses 0m

to output 2pm 0’s and then upon reading the 1, uses 0r to output r 0’s.

As every n can be written in the form n = 2pm + r where m, r ∈ N and

0 ≤ r < 2p, we have that

D
|T |
FS (0n) ≤

⌊ n
2p

⌋
+ r + 1 ≤ n

2p
+ 2p+ 1. (3.8)

Let 0 < α < 1. Then for all but finitely many n it holds that

Dk
FS(0n)−D|T |FS (0n) ≥ (

n

p
− 1)− (

n

2p
+ 2p+ 1) (by (3.7) and (3.8))

=
n

2p
− 2p− 2 =

1

2p
(n− 4p2)− 2

≥ n(
1− α

2p
). (when n is large)

As k is arbitrary, the sequence of all 0’s would be considered a.e. FS-deep.

3.3.1 Basic Properties

The following lemma demonstrates that if a sequence S is a.e. FS-deep when

the size of finite-state transducers are viewed with respect to one binary rep-

resentation, then it is a.e. FS-deep regardless of what binary representation is

used.

Lemma 3.3.4. Let π be a binary representation of FSTs. Let S be an a.e. FS-

deep sequence when the size of the FSTs are viewed with respect to the binary

47

3.3. Finite-State Depth

representation π. Then S is a.e. FS-deep when the size of the FSTs are viewed

with respect to every binary representation.

Proof. Let S and π be as in the statement of the lemma. Let τ be a different

binary representation of all FSTs.

Fix k ∈ N. There exists a constant c such that FST≤kτ ⊆ FST≤k+c
π . Therefore

for all n ∈ N,

Dk+c
π (S � n) ≤ Dk

τ (S � n). (3.9)

As S is a.e. FS-deep with respect to π, there exists constants αk and (k + c)′

such that for almost every n

Dk+c
π (S � n)−D(k+c)′

π (S � n) ≥ αkn. (3.10)

Let d be a constant such that FST(k+c)′

π ⊆ FST(k+c)′+d
τ . Therefore for almost

every n,

D(k+c)′+d
τ (S � n) ≤ D(k+c)′

π (S � n). (3.11)

Therefore by Equation (3.10), for almost every n,

Dk
τ (S � n)−Dk′

τ (S � n) ≥ Dk+c
π (S � n)−D(k+c)′

π (S � n) ≥ αkn (3.12)

where k′ = (k+ c)′+ d. As DimFS(S) 6= 0 regardless of the binary representation

and as k is arbitrary, we have that S is also a.e FS-deep with respect to τ .

The following result shows that sequences that incompressible by finite-state

transducers, i.e. normal sequences, cannot be a.e. FS-deep.

Theorem 3.3.5. Let S ∈ {0, 1}ω. If dimFS(S) = 1, then S is not a.e. FS-deep.

48

3.3. Finite-State Depth

Proof. Let S ∈ {0, 1}ω be such that dimFS(S) = 1. Let k′ ∈ N and α > 0. Then

(∀∞n ∈ N)Dk′

FS(S � n) > (1− α)n. (3.13)

Therefore, if k is such that IFS ∈ FST≤k, it holds that

(∀∞n ∈ N)Dk
FS(S � n)−Dk′

FS(S � n) < n− (1− α) = αn. (3.14)

As α and k′ are arbitrary, S is not a.e. FS-deep.

3.3.2 Slow Growth Law

In the following subsection we prove a Slow Growth Law for a.e. FS-depth. Re-

call that the intuition behind slow growth laws is that deep sequences cannot

be constructed from simple processes, i.e. they must be computationally diffi-

cult to make. We demonstrate that a.e. FS-depth satisfies a slow growth law

by demonstrating that no a.e. FS-deep sequence can be constructed from an

a.e. FS-shallow sequence via an ILFS computable process. This is the same

transformation used by Doty and Moser in their i.o. FS-depth notion [57].

To demonstrate the slow growth law we require the following lemma regarding

how ILFSTs do not greatly alter the k-finite-state complexity of strings. It pre-

viously appeared in [57] in a slightly different format but we restate and reprove

parts of it here.

Lemma 3.3.6 ([57]). Let M be an ILFST.

1. (∀k ∈ N)(∃k′ ∈ N)(∀x ∈ {0, 1}∗)Dk′
FS(M(x)) ≤ Dk

FS(x).

2. (∀ε > 0)(∀k ∈ N)(∃k′ ∈ N)(∀∞x ∈ {0, 1}∗)Dk′
FS(x) ≤ (1 + ε)Dk

FS(M(x)) +

O(1).

49

3.3. Finite-State Depth

Proof. The proof for part 1 is in [57].

For part 2, let ε, k, x and M be as stated in the lemma. Furthermore let

0 < ε′ < ε. By Theorem 3.2.4, there exists an ILFST M−1 and a constant c ∈ N

such that for all y ∈ {0, 1}∗, y � (|y| − c) vM−1(M(y)) v y.

Let p be a k-minimal program for M(x), i.e. A(p) = M(x) for A ∈ FST≤k

and Dk
FS(M(x)) = |p|.

Let b = d 2
ε′
e. There exists non-negative integers n and r such that |p| = nb+r,

where 0 ≤ r < b. Let p′ be a new string such that p′ begins with the first nb

bits of p, with a 0 placed to separate every b bits starting at the beginning of the

string, followed by a 1 and then the remaining r bits of p doubled. That is

p′ = 0p1 . . . pb0pb+1 . . . p2b0 . . . pnb1pnb+1pnb+1 . . . pnb+rpnb+r.

Note therefore that

|p′| = n(b+ 1) + 2r + 1 = |p|+ n+ r + 1 < |p|+ n+ b+ 1. (3.15)

nb ≤ |p| means n ≤
⌈ |p|
b

⌉
and so for |p| large it holds that

|p′| ≤ |p|+
⌈
|p|
b

⌉
+ b+ 1 ≤ |p|+ 2

⌈
|p|
b

⌉
= |p|+ 2

⌈
|p|
d 2
ε′
e

⌉
≤ |p|+ 2(

ε′|p|
2

+ 1) = |p|(1 + ε′) + 2

≤ |p|(1 + ε). (3.16)

Next we build A′ for x. Let y = M−1(M(x)), i.e. x = yz for some |z| ≤ c.

Let A′ be the machine such that on input p′01z: A′ uses p′ to simulate A(p) to

retrieve M(x). A′ knows where p′ ends due to the 01 separator. A′ takes M(x)’s

output and simulates it on M−1 to retrieve y. This is possible as the composition

of ILFSTs can be simulated by an ILFST. After seeing the separator, A′ acts as

50

3.3. Finite-State Depth

the identity transducer and outputs z. Thus A′(p′01z) = yz = x. Thus

D
|A′|
FS (x) ≤ |p′|+ 2 + |z| ≤ |p|(1 + ε) + 2 + c = Dk

FS(M(x)) +O(1). (3.17)

As |A′| depends on the size of A, the size of M−1 and b (i.e. it does not vary

with x), k′ can be chosen such that k′ = |A′|.

Consider two sequences S, S ′ ∈ {0, 1}ω such that S ′ is ILFS computable from

S via the ILFST M . It may be the case that M on input of prefixes of S does

not output every prefix of S ′. For instance, it may only output the prefixes of

even length. We use the following remark to relate the finite-state complexity of

prefixes of S ′ with just those prefixes that are outputted by M on input S.

Remark 3.3.7. Let S, S ′ ∈ {0, 1}ω be such that S ′ is ILFS computable from

S via the ILFST M . For each n, let mn denote the largest integer such that

M(S � mn) v S ′ � n. Then for all 0 < ε < 1 we have that

(∀k ∈ N)(∃k′ ∈ N)(∀∞n ∈ N)Dk′

FS(S ′ � n) ≤ (1 + ε)Dk
FS(M(S � mn)) +O(1).

Proof. Let S, S ′, M , and the sequence of integers {mn}n∈N be as stated in the

lemma. For each n, let yn ∈ {0, 1}∗ be the string which satisfies M(S � mn) ·yn =

S ′ � n.

The proof then follows the same structure as part two of Lemma 3.3.6: By

letting p be a k-description of M(S � mn), we can similarly use a padded version

of p, along with a separator, and then the string yn to retrieve S ′ � n. Since |yn|

is bounded, for each chosen ε, the inequality will hold when |p| is long enough,

i.e. for long enough prefixes of S ′ � n.

51

3.3. Finite-State Depth

Theorem 3.3.8 (Slow Growth Law). Let S ∈ {0, 1}ω. Let f : {0, 1}ω −→ {0, 1}ω

be ILFS computable, and let S ′ = f(S). If S ′ is a.e. FS-deep, then S is a.e. FS-

deep.

Proof. Let S, S ′, and f be as stated in the theorem and let M be an ILFST

computing f .

For all n, let mn denote the largest integer such that M(S � mn) v S ′ � n,

and let yn ∈ {0, 1}∗ be such that M(S � mn) · yn = S ′ � n. Note that yn = λ

infinitely often. As M is IL, it cannot visit a state twice without outputting at

least one bit, so there exists a β > 0 such that for all such n, n ≥ βmn.

Fix l ∈ N. Let k be from Lemma 3.3.6 such that for all x ∈ {0, 1}∗,

Dk
FS(M(x)) ≤ Dl

FS(x). (3.18)

As S ′ is a.e. FS-deep, there exists k′ and α > 0 such that for almost every n

Dk
FS(S ′ � n)−Dk′

FS(S ′ � n) ≥ αn. (3.19)

Note that we can choose k′ to satisfy (3.18) and be large enough so that IFS ∈

FST≤k
′
. Hence, for all x and constants c, Dk′

FS(x)(1 + c) ≤ Dk′
FS(x) + |x|c.

Let 0 < ε < α. Let l′ ∈ N be from Lemma 3.3.6 such that for almost every x,

Dl′

FS(x) ≤ Dk′

FS(M(x))(1 +
ε

2
) +O(1). (3.20)

Hence, for almost every m, there exists an n such that

52

3.3. Finite-State Depth

Dl
FS(S � m)−Dl′

FS(S � m) ≥ Dl
FS(S � m)−Dk′

FS(M(S � m))(1 +
ε

2
)−O(1)

≥ Dk
FS(M(S � m))−Dk′

FS(M(S � m))(1 + ε)

= Dk
FS(M(S � mn))−Dk′

FS(M(S � mn))(1 + ε)

= Dk
FS(S ′ � n)−Dk′

FS(S ′ � n)(1 + ε)

≥ αn− ε(Dk′

FS(S ′ � n))

≥ (α− ε)n

≥ (α− ε)βmn ≥ (α− ε)βm.

Thus as l was arbitrary, S satisfies condition 1 of Definition 3.3.2.

Next we must be show that DimFS(S) 6= 0. Recall that for every sequence T

that

DimFS(T) = lim
k→∞

lim sup
n→∞

Dk
FS(T � n)

n
.

First let δ > 0. In the following, for each k, let k′′ and k′ be such that for almost

all n ∈ N

Dk′′

FS(S ′ � n) ≤ (1 + δ)Dk′

FS(M(S � mn)) + 2 + |yn|

= (1 + δ)Dk′

FS(M(S � mn)) +O(1)

≤ (1 + δ)Dk
FS(S � mn) +O(1).

Such k′′ and k′ exist by Lemma 3.3.6 and Remark 3.3.7. We will use the following

facts to show that DimFS(S) 6= 0: We require the following two facts to complete

the proof: For any sequence

1. The limit superior of any subsequence is less than or equal to the limit

53

3.3. Finite-State Depth

superior of the original sequence.

2. Every subsequence of a convergent sequence converges to the same limit.

As S ′ is a.e. FS-deep, it follows that DimFS(S ′) > 0. Therefore we have that

0 < DimFS(S ′)

= lim
k→∞

lim sup
n→∞

Dk
FS(S ′ � n)

n

= lim
k→∞

lim sup
n→∞

Dk′′
FS(S ′ � n)

n
(by Fact 2)

≤ lim
k→∞

lim sup
n→∞

(1 + δ)Dk′
FS(M(S � mn) +O(1)

n

≤ lim
k→∞

lim sup
n→∞

(1 + δ)Dk
FS(S � mn)

n

≤ lim
k→∞

lim sup
n→∞

(1 + δ)Dk
FS(S � mn)

mnβ
(as n ≥ mnβ)

≤ lim
k→∞

lim sup
m→∞

(1 + δ)Dk
FS(S � m)

mβ
(by Fact 1 above)

=
(1 + δ)

β
DimFS(S).

Hence as (1 + δ)/β is non-zero, neither is DimFS(S). Thus S is a.e. FS-deep.

3.3.3 Existence of an a.e. FS-Deep Sequence

To prove the existence of an a.e. FS-deep sequence we need Lemmas 3.3.9 and

3.3.12 which examine the k-finite-state complexity of substrings within a string

on FSTs of roughly the same size. Lemma 3.3.9’s proof relies on viewing FSTS

with respect to our fixed binary representation σ described in Section 3.2.1.

Suppose we are given an FST T and an input vw. If T outputs xy on reading

vw and x on reading the prefix v, this means that v is a description of x and vw

is a description of xy via T . We can alter T to create a new transducer T ′ such

54

3.3. Finite-State Depth

that the states and transitions of T ′ and T are the same, with the only difference

being that the start state of T ′ is the one T ends in after reading v. This means

that w is a description of y via T ′.

Lemma 3.3.9. For our fixed binary representation σ (from 3.3), when k ≥ 4 it

holds that

(∀n ∈ N)(∀x, y, z ∈ {0, 1}∗)Dk
FS(xynz) ≥ D3k

FS(x) + nD3k
FS(y) +D3k

FS(z).

Proof. Let k, n, x, y and z be as stated. Let T ∈ FST≤k and px, py,i, . . . py,n, pz ∈

{0, 1}∗ be such that Dk
FS(xynz) = |pxpy,1 . . . py,npz| with T (pxpy,1 . . . py,npz) =

xynz, T (pxpy,1 . . . py,j) = xyj for 1 ≤ j ≤ n, and T (px) = x.

For all w ∈ {0, 1}∗, let Tw be the FST such that Tw’s states, transitions, and

outputs are the same as T ’s with the only difference being that the start state of

Tw is the state that T on input w ends in. That is, Tw’s initial state is the state

δT (q0, w) where q0 is the initial state of T . Hence we have that Tpx(py,1) = y,

Tpxpy,1...py,n(pz) = z and for 2 ≤ j ≤ n, Tpxpy,1...py,j−1
(py,j) = y.

Next we put a bound on the binary description length of Tw. Recall by our

choice of σ, for an FST M , σ(d(bin(n))01π) = M where d(bin(n)) is a pointer to

M ’s start state qn, and π describes the function ∆ of M ’s transitions and outputs.

We write ∆M for the ∆ function of M .

As |T | ≤ k, T has at most k states. Therefore the pointer to Tw’s start state

takes at most 2|bin(k)| = 2(blog kc + 1) bits to encode. Similarly, the encoding

of ∆T can be used to encode ∆Tw and so the number of bits required to encode

∆Tw is bounded above by k bits also. Hence we have that whenever k ≥ 4

|Tw| ≤ 2(blog kc+ 1) + 2 + k ≤ 3k. (3.21)

Thus for k ≥ 4 we have that D3k
FS(x) ≤ |px|, D3k

FS(z) ≤ |pz| and D3k
FS(y) ≤ |py|

55

3.3. Finite-State Depth

where |py| = min
{
|py,j| : 1 ≤ j ≤ n

}
.

Hence

Dk
FS(xynz) ≥ |px|+ n|py|+ |pz| ≥ D3k

FS(x) + nD3k
FS(y) +D3k

FS(z)

as desired.

Remark 3.3.10. Note that for all x ∈ {0, 1}∗, Dk
FS(x) ≤ Dk+1

FS (x). Hence while

Lemma 3.3.9’s result is only for k ≥ 4, it gives us that for all x, y, z,

D1
FS(xynz) ≥ D2

FS(xynz) ≥ D3
FS(xynz) ≥ D12

FS(x) + nD12
FS(y) +D12

FS(z).

Remark 3.3.11. Lemma 3.3.9 can be generalised such that for our fixed binary

representation σ, we can break the input into any number of substrings to get a

similar result. That is for any string x = x1 . . . xn,

(∀∞k ∈ N)Dk
FS(x1 . . . xn) ≥

n∑
i=1

D3k
FS(xi).

The following lemma states that for almost every pair of strings x and y, given

a description of x and a description of y, a transducer T can be built such that

upon reading a padded version of the description of x, a flag, and the description

for y, T can output the string xy.

Lemma 3.3.12. (∀ε > 0)(∀k ∈ N)(∃k′ ∈ N)(∀∞x ∈ {0, 1}∗)(∀y ∈ {0, 1}∗)

Dk′

FS(xy) ≤ (1 + ε)Dk
FS(x) +Dk

FS(y) + 2.

Proof. Let ε, x, y and k be as stated in the lemma. Consider p, q ∈ {0, 1}∗ such

that Dk
FS(x) = |p| and Dk

FS(y) = |q|, and suppose A,B ∈ FST≤k where A(p) = x

and B(q) = y.

56

3.3. Finite-State Depth

Let b = d2
ε
e. Then there exists integers n an r such that |p| = nb + r, where

0 ≤ r < b. Let p′ be a new string such that p′ begins with the first nb bits of p,

with a 0 placed to separate every b bits starting at the beginning of the string.

This is followed by a 1 and the remaining r bits of p doubled, i.e.

p′ = 0p1 . . . pb0pb+1 . . . p2b0 . . . pnb1pnb+1pnb+1 . . . pnb+rpnb+r.

Then by the same argument as in Lemma 3.3.6, whenever |p| is large enough

we can arrive to the same result as in Equation (3.16), i.e. it holds that |p′| ≤

|p|(1 + ε). Another way of saying this holds only for large |p| is when Dk
FS(x) is

large.

Next let M ∈ FST≤k
′

(where k′ is a number whose value is dependent only

on k and b) be the FST such that on input p′10q: M uses p′ to output A(p) = x.

M can spot the beginning bits of p from the blocks of size b by the 0s. When

M sees the block beginning with 1 it knows that the remaining bits will be the

final bits of p doubled. Upon reading 10, M uses the remaining bits to output

B(q) = y. Therefore, for almost all x and all y it holds that

Dk′

FS(xy) ≤ |p′|+ |q|+ 2 ≤ (1 + ε)Dk
FS(x) +Dk

FS(y) + 2.

We now present the main result of this chapter by constructing an a.e. FS-

deep sequence. The sequence is constructed in consecutive blocks where each

block is devoted to some pair k, k′. On such a block, transducers of size k do

poorly, while some larger transducer of size k′ does very well. The key difference

from the proof in [57] where Doty and Moser prove the existence of an i.o. FS-

deep sequence is that blocks devoted to the same pair (k, k′) repeat every constant

number of blocks. This method of repeating blocks assigned to a certain pair at

57

3.3. Finite-State Depth

a predetermined frequency has also been used to construct deep sequences in

different notions of depth [62, 77]. This ensures an a.e. FS-deep sequence, as

opposed to merely an i.o. FS-deep sequence.

Theorem 3.3.13. There exists an a.e. FS-deep sequence.

Proof. We begin by partitioning the non-negative integers into disjoint consec-

utive intervals I0, I1, . . . where interval Ij has size 2j. For instance, I0 = {0},

I1 = {1, 2} and I3 = {3, 4, 5, 6}. For each Ij, set mj = min(Ij) and Mj = max(Ij).

Note that for all j, mj+1 = Mj + 1. For all integers k ≥ 0, k is devoted to every

interval Ij where j is of the form 2k − 1 + t(2k+1) for t ≥ 0. So k = 0 will first

be assigned to I0 and every 2nd interval after that. k = 1 is first assigned to I1

and every 4th interval after that, and so on. If k is devoted to Ij, Ij+ denotes the

next interval k is devoted to.

S is constructed in stages S0S1S2 . . ., where S[mj..Mj] = Sj. Note that |Sj| =

|Ij|. Each stage Sj of S is constructed as follows:

If Ij is devoted to 0, set Sj = 0|Ij |. Otherwise if Ij is devoted to some non-zero

k, suppose j = 2k− 1 + t(2k+1) for some t. Let rk be a string of length 22k−1 that

is 3k-FS random in the sense that

D3k
FS(rk) ≥ |rk| − 4k. (3.22)

Such a string exists as |FST≤3k| · 2|rk|−4k < 2|rk| for k ≥ 1. In this case construct

Sj by concatenating |Ij|/|rk| copies of rk. That is

Sj = r
|Ij |
|rk|
k = r2t(2

k+1)

k . (3.23)

Fix some k ≥ 4 (this allow us to apply Lemma 3.3.9) and consider some

arbitrarily long prefix S � n of S. Let j = max{i : Ii is assigned to k and Mi ≤

n− 1}. That is, j denotes the index of the largest interval devoted to k such that

58

3.3. Finite-State Depth

Sj is a substring of S � n but the substring denoted by Sj+ which is tied to interval

Ij+ is not. We split S � n into three substrings x, y, z such that x = S[0..Mj−1],

y = Sj, and z = S[mj+1..n− 1].

We find a lower bound for the k-finite-state complexity of xyz as follows:

Dk
FS(xyz) ≥ D3k

FS(x) +
|Ij|
|rk|

D3k
FS(rk) +D3k

FS(z) (by Lemma 3.3.9)

≥ D3k
FS(x) + |Ij|(1−

4k

|rk|
) +D3k

FS(z) (by (3.22))

≥ D3k
FS(x) + |Ij|c1 +D3k

FS(z), (3.24)

where c1 = (211 − 1)/211 as 1− 4k
|rk|

is minimum for k = 4.

For each r ∈ {0, 1}∗, consider the single state FST Tr such that for each

bit of its input read, Tr stays in the same state and outputs r. That is, for all

x ∈ {0, 1}∗, Tr(x) = r|x|. Let k̂ be large enough such that k̂ > 3k and both the

identity transducer IFS and Trk are contained in FST≤k̂. This enables us to get

the following upper bounds for the k̂-finite-state complexity of x and y of

Dk̂
FS(x) ≤ |x| = 2j − 1 < 2j = |Ij| and Dk̂

FS(y) ≤ |Ij|
|rk|

. (3.25)

Next set ε = 5/10923. We set δ to have a value such that δ + δ2/4 = ε.

By Lemma 3.3.12, whenever Dk̂
FS(x) and Dk̂

FS(y) are large enough (i.e. for long

enough prefixes of S) we have that there exists k′′, k′ ≥ 3k such that

Dk′′

FS(xyz) ≤ (1 +
δ

2
)Dk′

FS(xy) +Dk′

FS(z) + 2 (by Lemma 3.3.12)

≤ (1 +
δ

2
)2Dk̂

FS(x) + (1 +
δ

2
)Dk̂

FS(y) +Dk′

FS(z) + 4 (by Lemma 3.3.12)

≤ (1 + ε)(Dk̂
FS(x) +Dk̂

FS(y)) +Dk′

FS(z) + 4 (by choice of δ)

≤ Dk̂
FS(x) + |Ij|(ε+

1 + ε

|rk|
) +Dk′

FS(z) + 4 (by (3.25))

= Dk̂
FS(x) + |Ij|c2 +Dk′

FS(z) + 4 (3.26)

59

3.3. Finite-State Depth

where c2 = 2−11 as 1/|rk| is maximum for k = 4.

Hence we have for almost every m,

Dk
FS(S � n)−Dk′′

FS(S � n) = Dk
FS(xyz)−Dk′′

FS(xyz)

≥ (D3k
FS(x)−Dk̂

FS(x)) + (D3k
FS(z)−Dk′

FS(z))

+ |Ij|(c1 − c2)− 4 (by (3.24) and (3.26))

= |Ij|(
210 − 1

210
)− 4

≥ |Ij|(
29 − 1

29
) (for j large)

=
(29 − 1)|Ij+|

29(22k+1)
(as |Ij+| = 22k+1|Ij|)

>
n

2
(

29 − 1

22k+1+9
) (as n < Mj+ < 2|Ij+|)

= nαk (3.27)

where αk = (29− 1)/22k+1+10. Condition 1 of Definition 3.3.2 for a.e. FS-depth is

then met as for 0 ≤ k ≤ 3, Equation (3.27) is satisfied by taking the appropriate

k′′ when k = 4 and setting αk to be α4.

Finally we must show that DimFS(S) 6= 0. Let k ≥ 4. We consider the k-

finite-state complexity of prefixes of the form S[0..Mj] of S where Ij is an interval

devoted to k. Hence we have that

Dk
FS(S[0..Mj]) ≥

|Ij|
|rk|

(D3k
FS(rk)) (by Lemma 3.3.9)

≥ |Ij|(1−
4k

|rk|
) (by (3.22))

≥ |Ij|(
211 − 1

211
) (as 4k/|rk| is minimum for k = 4)

≥ 211 − 1

212
|S[0..Mj]|. (as Mj < 2|Ij|)

Hence we have that DimFS(S) ≥ (211 − 1)/212 > 0. Therefore S is a.e. FS-

deep.

60

3.3. Finite-State Depth

3.3.4 Separation from i.o. FS-depth

The following result demonstrates a difference between our a.e. FS-depth and

Doty and Moser’s original i.o. FS-depth notion. We do this by building a sequence

which is i.o. FS-deep but not a.e. FS-deep, thus demonstrating that being i.o.

FS-deep is a weaker requirement. The sequence is constructed similarly to the

sequence from Theorem 3.3.13, however, every second block is now a random

string. This prevents us achieving a.e. FS-depth.

Theorem 3.3.14. There exists a sequence which is i.o. FS-deep but not a.e.

FS-deep.

Proof. We begin by partitioning the non-negative integers into disjoint consec-

utive intervals I1, I2, . . . where |I1| = 2 and |Ij| = 2|I1|+···+|Ij−1| for j ≥ 2. For

instance, I1 = {0, 1}, I2 = {2, 3, 4, 5}, and I3 = {6, 7, . . . , 69}. For each Ij, set

mj = min(Ij) and Mj = max(Ij). Note that for all j, mj+1 = Mj + 1.

S is constructed in stages S1S2S3 . . . where Sj denotes the substring S[mj..Mj].

For all j, we henceforth use the notation Sj to denote the prefix S1 · · ·Sj of S.

Note that |Sj| = |Ij| and when j > 1 we have that log(|Sj|) = |Sj−1|. Each stage

Sj is constructed as follows:

For every interval Ij where j is odd, we set Sj to be a string with maximal

plain Kolmogorov complexity in the sense that K(Sj) ≥ |Sj|. If j is even, Ij is

devoted to some FST description bound length k. Specifically for each k, k is

devoted to every interval Ij where j is of the form j = 2k + t(2k+1), for t ≥ 0.

So k = 1 is first devoted to I2 and every 4th interval after that and k = 2 is first

devoted to I4 and every 8th interval after that, and so on. For each k, let rk be a

61

3.3. Finite-State Depth

string of length |I2k | such that rk is 3k-FS random in the sense that

D3k
FS(rk) ≥ |rk| − 4k. (3.28)

Such a string exists as |FST≤3k| · 2|rk|−4k < 2|rk| for k ≥ 1. Then if Ij is devoted

to k we set

Sj = r
|Ij |
|rk|
k = r2t(2

k+1)

k . (3.29)

First we show S is i.o. FS-deep:

Fix some k ≥ 4 (this allows us to apply Lemma 3.3.9). We consider prefixes

of the form Sj of S where interval Ij is devoted to k. We first find a lower bound

for the k-finite-state complexity of Sj. We have that

Dk
FS(Sj) ≥ D3k

FS(Sj−1) +
|Sj|
|rk|

D3k
FS(rk) (by Lemma 3.3.9)

≥ |Sj|
|rk|

(|rk| − 4k). (by (3.28))

Let Trk be the single state FST as described in Theorem 3.3.13 which on

every input bit outputs rk. Let k̂ be large enough so that Trk and the identity

transducer are contained in FST≤k̂. This enables us to get upper bounds for the

k̂-finite-state complexity of Sj−1 and Sj of

Dk̂
FS(Sj−1) ≤ |Sj−1| and Dk̂

FS(Sj) ≤
|Sj|
|rk|

. (3.30)

By Lemma 3.3.12, whenever Dk̂
FS(Sj−1) and Dk̂

FS(Sj) are large (i.e. for long

62

3.3. Finite-State Depth

enough prefixes of S) we have that there exists a k′ such that

Dk′

FS(Sj) ≤ 2Dk̂
FS(Sj−1) +Dk̂

FS(Sj) + 2 (by Lemma 3.3.12)

≤ 2|Sj−1|+
|Sj|
|rk|

+ 2 (by (3.30))

= 2(log(|Sj|) + 1) +
|Sj|
|rk|

. (3.31)

Let 0 < ε < 1. Using that lim
k→∞

(4k + 1)/|rk| = 0, for sufficiently long prefixes

of the form Sj where k is devoted to j, for k sufficiently large it holds that

Dk
FS(Sj)−Dk′

FS(Sj) ≥
|Sj|
|rk|

(|rk| − 4k − 1)

− 2(log(|Sj|) + 1) (by (3.30) and (3.31))

≥ |Sj|(1−
ε

2
) (for j and k sufficiently large)

= (|Sj| − log |Sj|)(1−
ε

2
)

≥ |Sj|(1− ε). (3.32)

Similarly as Equation (3.32) only holds for large k, for all i ≤ k where k is

large, when k′ is chosen as above we have that Di
FS(Sj)−Dk′

FS(Sj) ≥ |Sj|(1− ε)

when j is devoted to k. Hence S is i.o. FS-deep.

Next we show S is not a.e. FS-deep, i.e.

(∃k ∈ N)(∀α > 0)(∀k′ ∈ N)(∃∞n ∈ N)Dk
FS(S � n)−Dk′

FS(S � n) < αn.

Throughout the remainder of the proof we assume j is odd. Recall that for all

odd j, K(Sj) ≥ |Sj|.

Fix some k′. Let a ≥ 3 be large enough such that for some T ∈ FST≤ak
′
,

there exists a y ∈ {0, 1}∗ where |y| = Dak′
FS (Sj) and T (y) = Sj. Furthermore,

consider the machine M that on input of strings of the form d(σ)01x, where σ

63

3.4. Summary

is an encoding of an FST, M runs x on said FST and returns the same output.

Then from an encoding σT of T , we have that M(d(σT)01y) = Sj. Hence for all

k′ we have

|Sj| ≤ K(Sj) ≤ 2ak′ + 2 +Dak′

FS (Sj) +O(1) = Dak′

FS (Sj) +O(1). (3.33)

Let 0 < β < 1. Hence by Equation (3.33), whenever j is sufficiently large it

holds that

Dak′

FS (Sj) > |Sj|(1−
β

2
). (3.34)

By Lemma 3.3.9, whenever j is sufficiently large we therefore have that

Dk′

FS(Sj) ≥ D3k′

FS (Sj) ≥ Dak′

FS (Sj) > |Sj|(1−
β

2
) (by (3.34))

= (|Sj| − log(|Sj|))(1−
β

2
)

> |Sj|(1− β). (3.35)

Let k be such that the identity transducer is in FST≤k. Hence by Equation

(3.35), for infinitely many odd j it holds that

Dk
FS(Sj)−Dk′

FS(Sj) < |Sj| − |Sj|(1− β) = |Sj|β. (3.36)

Then as β and k′ were chosen arbitrarily, it holds that S is not a.e. FS-deep.

3.4 Summary

In this chapter we introduced a new notion of depth at a low complexity level

called almost everywhere finite-state depth. This notion expanded upon a previ-

ous finite-state notion of Doty and Moser [57]. We demonstrated that our notion

64

3.4. Summary

satisfied some of the fundamental properties of depth. These included that finite-

state incompressible sequences are not a.e. FS-deep in Theorem 3.3.5 and that a

slow growth law is satisfied in Theorem 3.3.8. We proved the existence of an a.e.

FS-deep sequence in Theorem 3.3.13 and showed how our notion was different

from Doty and Moser’s original notion in Theorem 3.3.14.

We will revisit i.o. FS-depth when we examine other notions in later chapters.

65

Chapter 4

Pushdown Depth

4.1 Introduction

In this chapter we develop a new notion of depth based on information lossless

pushdown compressors (ILPDCs). ILPDCs are more powerful that lossless finite-

state compressors in that they have access to an additional data type known as

a stack to aid in compression. Using the stack, the ILPDC stores characters in

its memory, however the compressor is only able to access this memory in a last

in, first out way.

In the spirit of Bennett’s depth which looks at Kolmogorov Complexity against

its weaker counterpart of time bounded Kolmogorov complexity, we will define

pushdown depth in this chapter by comparing pushdown compressors (PDCs)

against unary-stack pushdown compressors (UPDCs). A UPDC is the same as

an ordinary PDC with the key difference in this chapter being that a UPDC can

only push the symbol 0 onto its stack. In contrast a PDC can push both the

symbols 0 and 1.

We will show that there exists deep sequences in our pushdown notion. We

will similarly show that ILUPDC-trivial and ILPDC-incompressible sequences

are not pushdown deep. We will also show that a slow growth law holds in our

66

4.2. Pushdown Compressors

notion.

We tie this chapter back to Chapter 3 also by demonstrating the existence of

a sequence which is pushdown deep but not i.o. FS-deep and vice versa. This

separates the two notions.

4.2 Pushdown Compressors

The model of pushdown compressors (PDC) we use to define pushdown depth

can be found in [109] where PDCs were referred to as bounded pushdown com-

pressors. We use this model as it allows for feasible run times by bounding the

number of times a PDC can pop a bit from its stack without reading an input

bit. This prevents the compressor spending an arbitrarily long time altering its

stack without reading its input. This model of pushdown compression also has

the nice property that it is equivalent to a notion of pushdown-dimension based

on bounded pushdown gamblers [1]. Similar models where there is no bound on

the number of times a bit can be popped off from the stack can be found in [2, 58].

The following contains details of the model used. It is taken from [109].

Definition 4.2.1. A pushdown compressor (PDC) is a 7-tuple

C = (Q,Γ, δ, ν, q0, z0, c)

where

1. Q is a non-empty, finite set of states,

2. Γ = {0, 1, z0} is the finite stack alphabet,

3. δ : Q× {0, 1, λ} × Γ→ Q× Γ∗ is the transition function,

4. ν : Q× {0, 1, λ} × Γ→ {0, 1}∗ is the output function,

67

4.2. Pushdown Compressors

5. q0 ∈ Q is the initial state,

6. z0 ∈ Γ is the special bottom of stack symbol,

7. c ∈ N is an upper bound on the number of λ-transitions per input bit.

We write δQ and δΓ∗ to represent the projections of the function δ. For z ∈ Γ+

the stack of C, z is ordered such that z[0] is the topmost symbol of the stack

and z[|z| − 1] = z0. δ is restricted to prevent z0 being popped from the bottom

of the stack. That is, for every q ∈ Q, b ∈ {0, 1, λ}, either δ(q, b, z0) = ⊥, or

δ(q, b, z0) = (q′, vz0) where q′ ∈ Q and v ∈ Γ∗.

Note that δ accepts λ as a valid input symbol. This means that C has the

option to pop the top symbol from its stack and move to another state without

reading an input bit. This type of transition is call a λ-transition. In this scenario

δ(q, λ, a) = (q′, λ). To enforce determinism, we ensure that one of the following

hold for all q ∈ Q and a ∈ Γ:

• δ(q, λ, a) = ⊥, or

• δ(q, b, a) = ⊥ for all b ∈ {0, 1}.

This means that the compressor does not have a choice to read either 0 or 1

characters. To prevent an arbitrary number of λ-transitions occurring at any

one time, we restrict δ such that at most c λ-transitions can be performed in

succession without reading an input bit.

The transition function is extended to δ′ : Q × {0, 1, λ} × Γ+ → Q × Γ∗ and

is defined recursively as follows. For q ∈ Q, v ∈ Γ∗, a ∈ Γ and b ∈ {0, 1, λ}

δ′(q, b, av) =


(δQ(q, b, a), δΓ∗(q, b, a)v), if δ(q, b, a) 6= ⊥;

⊥ otherwise.

68

4.2. Pushdown Compressors

For readability, we abuse notation and write δ instead of δ′. The transition

function is extended further to δ′′ : Q × {0, 1}∗ × Γ+ → Q × Γ∗ as follows. For

q ∈ Q, v ∈ Γ+, w ∈ {0, 1}∗ and b ∈ {0, 1, λ}

δ′′(q, λ, v) =


δ′′(δQ(q, λ, v), λ, δΓ∗(q, λ, v)), if δ(q, λ, v) 6= ⊥;

(q, v) otherwise,

δ′′(q, wb, v) =


δ′′(δQ(δ′′Q(q, w, v), b, δ′′Γ∗(q, w, v)), λ, δΓ∗(δ

′′
Q(q, w, v), b, δ′′Γ∗(q, w, v)),

if δ′′(q, w, v) 6= ⊥ and δ(δ′′Q(q, w, v), b, δ′′Γ∗(q, w, v)) 6= ⊥;

⊥, otherwise.

In an abuse of notation we write δ for δ′′ and δ(w) for δ(q0, w, z0).

We define the output from state q ∈ Q on input w ∈ {0, 1}∗ with stack

contents v ∈ Γ∗ by the recursion ν(q, λ, v) = λ and

ν(q, wb, v) = ν(q, w, v) · ν(δQ(q, w, v), b, δΓ∗(q, w, v)).

The output of C on input w ∈ {0, 1}∗ is denoted by the string C(w) = ν(q0, w, z0).

To define our notion of depth, we examine the class of information lossless

pushdown compressors.

Definition 4.2.2. A PDC C is information lossless (IL) if for all x ∈ {0, 1}∗,

the function x 7→ (C(x), δQ(x)) is injective.

In other words, a PDC C is IL if the output and final state of C on input x

uniquely identify x. We call a PDC that is IL an ILPDC. We write (IL)PDC to

denote the set of all (IL)PDCs. By the identity PDC, we mean the ILPDC IPD

where on every input x, IPD(x) = x.

69

4.2. Pushdown Compressors

As part of our definition of pushdown depth, we examine ILPDCs whose stack

is limited to containing only the symbol 0 also.

4.2.1 Unary-stack Pushdown Compressors

UPDCs are similar to counter compressors as seen in [11]. The difference here

is that for a UPDC, only a single 0 can be popped from the stack during a

single transition, while for a counter transducer, an arbitrary number of 0s can

be popped from its stack on a single transition, i.e. its counter can be deducted

by an arbitrary amount. However, the UPDC has the ability to pop off 0s from

its stack without reading a symbol via λ-transitions while the counter compressor

cannot. Thus, if a counter compressor decrements its counter by the value of k

on a single transition, a UPDC can do the same by performing k−1 λ-transitions

in a row before reading performing the transition of the counter compressor and

popping off the final 0.

Definition 4.2.3. A unary-stack pushdown compressor (UPDC) is a 7-tuple

C = (Q,Γ, δ, ν, q0, z0, c)

where Q, δ, ν, q0, z0 and c are all defined the same as for a PDC in Definition 4.2.1,

while the stack alphabet Γ is the set {0, z0}.

Definition 4.2.4. A UPDC C is information lossless (IL) if for all x ∈ {0, 1}∗,

the function x 7→ (C(x), δQ(x)) is injective. A UPDC which is IL is referred to

as an ILUPDC.

We make the following observation regarding ILUPDCs. Let C ∈ ILUPDC

and suppose it has been given the input yx. After reading the prefix y, if C’s

stack height is large enough such that it never empties on reading the suffix x,

the actual height of the stack doesn’t matter. That is, any reading of x with an

70

4.2. Pushdown Compressors

arbitrarily large stack which is far enough away from being empty will all have a

similar behaviour if starting in the same state. This is because if the stack does

not empty, it has little impact on the processing of x. We describe this below.

Remark 4.2.5. Let C ∈ ILUPDC and suppose C can perform at most c λ-

transitions in a row. Consider running C on an input of the form yx and let q

be the state C ends in after reading y. If C’s stack has a height above (c+ 1)|x|

after reading y, then C’s stack can never be fully emptied upon reading x. Hence,

for k, k′ ≥ (c + 1)|x| with k 6= k′ then C(q, x, 0kz0) = C(q, x, 0k
′
z0), i.e. C will

output the same string regardless of whether the height is k or k′. Thus, prior to

reading x, only knowing whether the stack’s height is below (c + 1)|x| will have

any importance.

To examine the complexity of a sequence S from the perspective of pushdown

compressors, we are interested in the best case and worst case compression ratios

of S via pushdown compressors. For a compressor C ∈ ILPDC (similarly for

C ∈ ILUPDC), we write ρC(S) to denote the best-case compression ratio of S via

C and RC(S) to denote the worst-case compression ratio of C via S where ρC(S)

and RC(S) are defined as in Definition 2.4.4.

We similarly examine the compression ratio of a sequence S over the family

of all ILPDCs. In this case we write ρPD(S) for the the best-case compression

ratio of S over all ILPDCs and RPD(S) for the worst-case compression ratios of

S over all ILPDCs. Here, ρPD(S) and RPD(S) are defined as in Definition 2.4.5

with the class F being ILPDCs. Note we write ρPD(S) and RPD(S) instead of

ρILPDC(S) and RILPDC(S) purely for neatness of notation. ρUPD(S) and RUPD(S)

are similarly defined when F is taken to be the class ILUPDC. Again we write

ρUPD(S) andRUPD(S) instead of ρILUPDC(S) andRILUPDC(S) purely for notational

reasons.

71

4.3. Pushdown Depth and its Properties

4.3 Pushdown Depth and its Properties

We now present our notion of pushdown depth (PD-depth). It is an almost

everywhere notion. Our current definition examines the difference between the

performance between all ILUPDCs and an ILPDC C ′. Intuitively, a sequence S

is pushdown deep if S contains some structure which ILUPDCs cannot exploit

during compression due to their stack restriction while C ′ can.

Definition 4.3.1. Let S ∈ {0, 1}ω. S is pushdown deep (PD-deep) if

(∃α > 0)(∀C ∈ ILUPDC)(∃C ′ ∈ ILPDC)(∀∞n ∈ N)

|C(S � n)| − |C ′(S � n)| ≥ αn.

The following theorem shows that PD-depth satisfies two of the fundamen-

tal depth properties in that both ILUPDC-trivial sequences (in the sense that

RUPD(S) = 0) and ILPDC-incompressible sequences (in the sense that ρPD(S) =

1) are not PD-deep. This is analogous to computable and ML-random sequences

being shallow in Bennett’s depth.

Theorem 4.3.2. Let S ∈ {0, 1}ω.

1. If ρPD(S) = 1, then S is not PD-deep.

2. If RUPD(S) = 0, then S is not PD-deep.

Proof. Let S ∈ {0, 1}ω be such that ρPD(S) = 1. Therefore for every α > 0 and

every C ∈ ILPDC, for almost every n

|C(S � n)| > n(1− α). (4.1)

Then for almost every n

|IPD(S � n)| − |C(S � n)| < n− n(1− α) = αn. (4.2)

72

4.3. Pushdown Depth and its Properties

As α is arbitrary and IPD ∈ ILUPDC, S is therefore not PD-deep.

Next suppose S ∈ {0, 1}ω is such that RUPD(S) = 0. Let C ∈ ILUPDC be

such that lim sup
n→∞

|C(S � n)|/n = 0. Hence for every β > 0 and almost every n,

|C(S � n)| < βn. (4.3)

Therefore for every C ′ ∈ ILPDC, it holds that for almost every n

|C(S � n)| − |C ′(S � n)| ≤ |C(S � n)| < βn. (4.4)

As β is arbitrary, S is not PD-deep.

4.3.1 Slow Growth Law

Before we prove a slow growth law for pushdown depth, we first demonstrate

that the composition of any ILPDC (or ILUPDC) C with any ILFST T can be

simulated by another ILPDC (or ILUPDC) N which is allowed to perform more

λ-transitions than C.

Lemma 4.3.3. Given C ∈ ILPDC (similarly C ∈ ILUPDC) and T ∈ ILFST, we

can build an ILPDC (similarly an ILUPDC) N , such that ∀x ∈ {0, 1}∗, N(x) =

C(T (x)).

Proof. Let T = (QT , q0,T , δT , νT) and C = (QC ,ΓC , δC , νC , q0,C , z0, c) be the IL-

FST and the ILPDC respectively as stated in the lemma. Let d = max{|T (q, b)| :

q ∈ QT , b ∈ {0, 1}} denote the longest output possible from a transition in T . We

build the PDC N = (QN ,ΓC , δN , νN , q0,N , z0, cd), where

• QN = QC ×QT × S, where S = {0, 1}≤cd,

• q0,N = (q0,C , q0,T , λ).

73

4.3. Pushdown Depth and its Properties

N works as follows: Before reading a bit, N uses λ-transitions to pop the

topmost cd bits of its stack, or until the stack only contains z0, and remembers

them in its states. That is, while |y| < cd and a 6= z0,

δN((qC , qT , y), λ, a) = ((qC , qT , ya), λ).

On such states,

νN((qC , qT , y), λ, a) = λ.

Then for b ∈ {0, 1}, if a = z0 or |y| = cd, N moves to the state representing

how C would move on input νT (qT , b), how T would move on input b, and to the

state representing not having the topmost stack bits in memory. N ’s stack then

updates to be the same as C’s would be as if it had read νT (qT , b). That is,

δ((qC , qT , y), b, a) = ((δC,Q(qC , νT (qT , b), ya), δT,Q(qT , b), λ), xa)

where for some w ∈ {0, 1}∗ either

1. x = wy, if C would have pushed w onto its stack reading νT (qT , b),

2. x = wy[i . . . |y|− 1], if C would have popped off the top i symbols and then

pushed w onto its stack reading νT (qT , b),

3. x = y[i . . . |y| − 1], if C would have popped off the top i symbols from its

stack and pushed nothing on when reading νT (qT , b).

As there are only a finite number of possibilities, these can all be coded into the

states and transitions. On such states,

νN((qC , qT , y), b, a) = νC(qC , νT (qT , b), ya).

N is an ILPDC as from knowledge of the output and qC , we can recover T (x)

74

4.3. Pushdown Depth and its Properties

as C is IL, and from qT and T (x) we can recover x as T is IL.

Note that if C ∈ ILUPDC, the proof remains the same except S = {0}≤cd

and w mentioned above is an element of {0}∗.

The following result shows that pushdown depth satisfies a slow growth law.

Theorem 4.3.4 (Slow Growth Law). Let S ∈ {0, 1}ω, let g : {0, 1}ω → {0, 1}ω

be ILFS computable and let S ′ = g(S). If S ′ is PD-deep then S is PD-deep.

Proof. Let S, S ′, f , and g be as in the statement of the lemma and let T be an

ILFST computing g.

For all m, let mn denote the largest integer such that

T (S � m) = T (S � mn) = S ′ � n.

As T is IL, it cannot visit the same state twice without outputting at least one

bit, so there exists a β > 0 such that for all n, n ≥ βmn. Furthermore recall from

Theorem 3.2.4 that there exists an ILFST T−1 and a constant a such that for all

x ∈ {0, 1}∗, x � (|x| − a) v T−1(T (x)) v x.

Let C ∈ ILUPDC. Let N be the ILUPDC given by Lemma 4.3.3 such that

N(x) = C(T−1(x)) for all x. Note then that for some n,

|C(S � m)| ≥ |C(T−1(T (S � m))| = |N(T (S � m))|

= |N(T (S � mn))| = |N(S ′ � n)|. (4.5)

As S ′ is deep, there exists α > 0 and an ILPDC N ′ such that for almost every n,

|N(S ′ � n)| − |N ′(S ′ � n)| ≥ αn. (4.6)

Next let C ′ be the ILPDC given by Lemma 4.3.3 such that on input x, C ′(x) =

75

4.4. Separation from Finite-State Depth

N ′(T (x)). Hence for some n,

|C ′(S � m)| = |N ′(T (S � m))| = |N ′(T (S � mn))| = |N ′(S ′ � n)|. (4.7)

Therefore for almost every m ∈ N, there exists some n such that

|C(S � m)| − |C ′(S � m)| ≥ |N(S ′ � n)| − |N ′(S ′ � n)| (by (4.5) and (4.7))

≥ αn (by (4.6))

≥ αβmn ≥ αβm. (4.8)

Hence S is PD-deep.

4.4 Separation from Finite-State Depth

Prior to comparing pushdown depth with Doty and Moser’s i.o. finite-state depth,

we require the following definition which defines the depth-level of a sequence.

Simply put, the depth-level of a deep sequence is the α term in Definitions 3.3.1

and 4.3.1. Note that we exclusively refer to i.o. FS-depth here and drop the i.o.

notation.

76

4.4. Separation from Finite-State Depth

Definition 4.4.1. Let S ∈ {0, 1}ω. Let α > 0.

1. We say that FS-depth(S) ≥ α if

(∀k ∈ N)(∃k′ ∈ N)(∃∞n ∈ N)Dk
FS(S � n)−Dk′

FS(S � n) ≥ αn.

Otherwise we say FS-depth(S) < α.

2. We say that PD-depth(S) ≥ α if

(∀C ∈ ILUPDC)(∃C ′ ∈ ILPDC)(∀∞n ∈ N) |C(S � n)| − |C ′(S � n)| ≥ αn.

Otherwise we say PD-depth(S) < α.

The following result demonstrates the existence of a sequence which has a large

FS-depth level but not even a small PD-depth level. This sequence is composed

of chunks of random strings which grow exponentially. Some of these chunks are

composed of repetitions of random strings which small FSTs cannot identify while

larger FSTs can, resulting in finite-state depth. Specifically, since the chunks grow

exponentially in size, this means that for infinitely many prefixes the finite-state

depth of the sequence we construct gets arbitrarily close to 1. Other chunks x are

such that K(x) ≥ |x| preventing the sequence being PD-deep. Specifically, these

random chunks result in pushdown compressors achieving little compression on

infinitely many of the prefixes of the sequence. This means that the sequence’s

pushdown depth gets arbitrarily close to 0. The construction takes advantage of

the fact that one is an i.o. notion (Moser and Doty’s notion) while the other is

an a.e. notion.

Theorem 4.4.2. There exists a sequence S such that for all 0 < α < 1, FS-

depth(S) > (1− α) and PD-depth(S) < α.

77

4.4. Separation from Finite-State Depth

Proof. Let 0 < α < 1. We claim that the sequence S constructed in Theorem

3.3.14 satisfies this theorem. We give a brief recap of the construction of S:

Begin by partitioning the non-negative integers into disjoint consecutive in-

tervals I1, I2, . . . where |I1| = 2 and |Ij| = 2|I1|+···+|Ij−1| for j ≥ 2. For instance,

I1 = {0, 1}, I2 = {2, 3, 4, 5}, and I3 = {6, 7, . . . , 69}. For each Ij, set mj = min(Ij)

and Mj = max(Ij). Note that for all j, mj+1 = Mj +1. S is constructed in stages

S1S2S3 . . ., where Sj denotes the substring S[mj..Mj] . For all j, we henceforth

use the notation Sj to denote the prefix S1 · · ·Sj of S. Note that |Sj| = |Ij| and

when j > 1 we have that log(|Sj|) = |Sj−1|. Each stage Sj is constructed as

follows:

For every interval Ij where j is odd, we set Sj to be a string with maximal

plain Kolmogorov complexity in the sense that K(Sj) ≥ |Sj|. If j is even, Ij is

devoted to some FST description bound length k. Specifically for each k, k is

devoted to every interval Ij where j is of the form j = 2k + t(2k+1), for t ≥ 0.

So k = 1 is first devoted to I2 and every 4th interval after that and k = 2 is first

devoted to I4 and every 8th interval after that, and so on. For each k, let rk be a

string of length |I2k | which is 3k-FS random. Then if Ij is devoted to k we set

Sj = r
|Ij |
|rk|
k .

If we similarly follow the argument in the proof of Theorem 3.3.14 up to

Equation (3.32), we therefore have that for all 0 < α < 1, FS-depth(S) ≥ 1− α.

This is because the ε term in Equation 3.32 was arbitrarily chosen (so set ε = α)

such that 0 < ε < 1.

Next we show that PD-depth(S) < α: Throughout the remainder of the proof

we assume that j is odd.

78

4.4. Separation from Finite-State Depth

Let C be any ILPDC. Consider the tuple

(Sj−1, qs, qe, Ĉ, ν̄C(Sj))

where qs is the state C when begins reading Sj, qe is the state C ends up in after

reading Sj, Ĉ is an encoding of C in some representation of PDCs and ν̄C(Sj) is

the suffix of C(Sj) outputted when reading Sj. Then given this tuple, one can

recover Sj as C is information lossless.

Using the fact that tuples of the form (x1, x2, . . . , xn) can be encoded by the

string

1dlogn1e0n1x11dlogn2e0n2x2 . . . 1
dlognn−1e0nn−1xn−1xn, (4.9)

where ni = |xi| in binary, we have that

|Sj| ≤ K(Sj) ≤ |ν̄C(Sj)|+ 2 log(|Sj−1|) + |Sj−1|+O(|Ĉ|) +O(1) (as j is odd)

= |ν̄C(Sj)|+ 2 log(log(|Sj|)) + log(|Sj|) +O(|Ĉ|) +O(1). (4.10)

Hence for j large we have that

|ν̄C(Sj)| ≥ |Sj| − 2 log(log(|Sj|))− log(|Sj|)−O(|Ĉ|)−O(1) > |Sj|(1−
α

2
).

(4.11)

Therefore, for j large we have that

|C(Sj)| ≥ |ν̄C(Sj)| > |Sj|(1−
α

2
) (by (4.11))

= (|Sj| − log(|Sj|))(1−
α

2
) > |Sj|(1− α). (4.12)

Hence, for infinitely many prefixes Sj of S it holds that

|IPD(Sj)| − |C(Sj)| < |Sj| − |Sj|(1− α) = α|Sj| (4.13)

79

4.4. Separation from Finite-State Depth

As C was chosen arbitrarily, it holds that PD-depth(S) < α.

The next result demonstrates the existence of a sequence which achieves a

PD-depth of roughly 1/2 while at the same time while having a small finite-state

depth level. This sequence is split into chunks of strings of the form RFR−1

where F is a flag and R is a string not containing F with large plain Kolmogorov

complexity relative to its length. A large ILPDC C is built to push R onto its

stack, and then when it sees the flag F , uses its stack to compress R−1. These

R are such that an ILUPDC cannot use its stack to compress R, resulting in

no compression. For the finite-state transducers, the sequence appears almost

random and so little depth is achieved. The sequence from Theorem 3 of [109]

satisfies the result as shown in the following theorem.

Theorem 4.4.3. For all 0 < β < 1/2, there exists a sequence S such that PD-

depth(S) ≥ 1/2− β, and FS-depth(S) < β.

Proof. First we shall give the construction of the sequence from Theorem 3 of

[109]:

Let 0 < β < 1/2, and let k > 8 be a positive integer such that β ≥ 8/k. For

each n, let tn = kd
logn
log k
e. Note that for all n,

n ≤ tn ≤ kn. (4.14)

Consider the set Tj which contains all strings of length j that do not contain 1k

as a substring. As Tj contains strings of the form x10x20x30 · · · where each xt is

a string of length k − 1, we have that |Tj| ≥ 2j(1−
1
k

). For each j, let Rj ∈ Tktj

have maximal plain Kolmogorov complexity in the sense that

K(Rj) ≥ |Rj|(1−
1

k
). (4.15)

80

4.4. Separation from Finite-State Depth

Such an Rj exists as |T|Rj || > 2|Rj |(1− 1
k

) − 1. Note that kj ≤ |Rj| ≤ k2j.

The sequence S which we claim satisfies the theorem is constructed as follows:

For each j, set

Sj = Rj1
kR−1

j .

First we examine how well any ILUPDC compresses occurrences of Rj zones

in S. Let C ∈ ILUPDC. Consider the tuple

(Ĉ, qs, qe, z, νC(qs, Rj, z))

where Ĉ is an encoding of C, qs is the state that C begins reading Rj in, qe is

the state C ends up in after reading Rj, z is the stack contents of C as it begins

reading Rj in qs (i.e. z = 0pz0 for some p), and the output νC(qs, Rj, z) of C on

Rj. By Remark 4.2.5, C’s stack is only important if |z| < (c+ 1)|Rj|, as if |z| is

larger, C will output the same regardless of |z|’s true value. Hence, set

z′ =


|z| if |z| < (c+ 1)|Rj|

(c+ 1)|Rj| if |z| ≥ (c+ 1)|Rj|.
(4.16)

As C is lossless, having knowledge of the tuple (Ĉ, qs, qe, z
′, νC(qs, Rj, z))

means we can recover Rj. If we encode the tuple (Ĉ, qs, qe, z
′, νC(qs, Rj, z)) the

same way as in (4.9), and noting that z′ contributes roughly O(log |Rj|) bits to

the encoding, we have we have by Equation (4.15)

|Rj|(1−
1

k
) ≤ K(Rj) ≤ |νC(qs, Rj, z)|+O(log |Rj|) +O(|Ĉ|) +O(1). (4.17)

Therefore, for j large we have

|νC(qs, Rj, z)| ≥ |Rj|(1−
1

k
)−O(log |Rj|) > |Rj|(1−

2

k
). (4.18)

81

4.4. Separation from Finite-State Depth

This is similarly true for R−1
j zones also as K(Rj) ≤ K(R−1

j) + O(1). Hence for

j large we see that C outputs at least

|C(Sj)| − |C(Sj−1)| ≥ 2|Rj|(1−
2

k
)

= (|Sj| − k)(1− 2

k
)

≥ |Sj|(1−
3

k
) (4.19)

bits when reading Sj.

Next we examine how well C compresses S on arbitrary prefixes. Consider

the prefix S � n and let j be such that Sj is a prefix of S � n but Sj+1 is not.

Thus S � n = Sj · y for some y @ Sj+1. Suppose Equation (4.19) holds for all

i ≥ j′. Hence we have that

|C(S � n)| ≥ |C(Sj)| ≥ |C(Sj)| − |C(Sj′−1)|

≥ |Sj′ . . . Sj|(1−
3

k
)−O(1) (by (4.19))

= (n− |y| − |Sj′−1|)(1−
3

k
)−O(1)

≥ (n− |y|)(1− 4

k
). (4.20)

Noting that n = Ω(j2) and |y| = O(j), by Equation (4.20) we have that

|C(S � n)| ≥ n(1− 5

k
). (4.21)

As C was arbitrary, we therefore have that

ρUPD(S) > 1− 6

k
. (4.22)

Next we build an ILPDC C ′ that is able to compress prefixes of S. In [109],

it was shown that RPD(S) ≤ 1/2. We provide the details of this proof here for

82

4.4. Separation from Finite-State Depth

completeness.

For the ILPDC C ′, informally, C ′ outputs its input for some prefix S1 . . . Sp−1.

Then, for all j ≥ p, C ′ compresses Sj as follows: On Sj, C
′ outputs its input on

Rj1
k while trying to identify the 1k flag. Once the flag is found, C ′ pops the flag

from its stack and then begins to read an R−1
j zone. On R−1

j , C ′ counts modulo v

to output a zero every v bits, and uses its stack to ensure that the input is indeed

R−1
j . If this fails, C ′ outputs an error flag, enters an error state and from then on

outputs its input. Furthermore, v is cleverly chosen such that for all but finitely

many j, v divides evenly into |Rj|. Specifically we set v = ka for some a ∈ N. A

complete description of C ′ is provided at the end of this proof for completeness.

Next we will compute the compression ratio of C ′ on S. We let p be such

that for all j ≥ p, v divides evenly into |Rj|. C ′ will output its input on Sp−1

and begin compressing on the succeeding zones. Also, note that the compression

ratio of C ′ on S is largest on prefixes ending with a flag 1k. Hence, consider some

prefix Sj−1Rj1
k of S. We have that for j sufficiently large

|C(Sj−1Rj1
k)|

|Sj−1Rj1k|
≤
|Sp−1|+

∑j
i=p(|Ri|+ k + |Ri|

v
)− |Rj |

k

|Sj−1Rj1k|

≤ |Sp−1|
|Sj−1|

+
(1 + 1

v
)
∑j

i=1 kti + jk − ktj
v

|Sj−1|

≤ 1

6v
+

(1 + 1
v
)
∑j

i=1 kti + jk − ktj
v

2k
∑j−1

i=1 ti
(for j large)

≤ 1

6v
+

(1 + 1
v
)
∑j

i=1 ti + j − tj
v

2
∑j−1

i=1 ti

≤ 1

6v
+

(1 + 1
v
)
∑j−1

i=1 ti

2
∑j−1

i=1 ti
+

tj

2
∑j−1

i=1 ti
+

j

2
∑j−1

i=1 ti

≤ 1

6v
+

1

2
+

1

2v
+

1

2

(jk

(j − 1)(j)/2

)
+

1

2

(j

(j − 1)(j)/2

)
≤ 1

6v
+

1

2
+

1

2v
+

1

6v
+

1

6v
(for j large)

=
1

2
+

1

v
. (4.23)

83

4.4. Separation from Finite-State Depth

As v can be chosen to be arbitrarily large, we therefore have that

RPD(S) ≤ 1

2
. (4.24)

Hence, for almost every n, by Equations (4.22) and (4.24) it follows that for

all C ∈ ILUPDC,

|C(S � n)| − |C ′(S � n)| ≥ (1− 6

k
− 1

k
)n− (

1

2
+

1

k
)n (4.25)

= (
1

2
− 8

k
). (4.26)

Choosing k large such that 8
k
≤ β gives us our desired result of PD-depth(S) ≥

1
2
− β.

Next we examine the finite-state depth of S. From Equation (4.22) and Defi-

nition 3.2.6, it follows that dimFS(S) > 1− 6
k
. Hence, for all l it follows that for

all but finitely many n that

Dl
FS(S � n) ≥ (1− 7

k
)n. (4.27)

Therefore, for l′ such that IFS ∈ F≤l
′

we have that for all l and almost every n

Dl′

FS(S � n)−Dl
FS(S � n) ≤ n− (1− 7

k
)n <

8

k
· n. (4.28)

That is, FS-depth(S) < β as desired.

For completeness we now present a full description of the ILPDC C ′: Let Q

be the following set of states:

1. the start state qs0,

2. the counting states qs1, . . . q
s
m and q0 that count up to m = |Sp−1|,

3. the flag checking states qf11 , . . . , q
f1
k and qf01 , . . . , q

f0
k ,

84

4.4. Separation from Finite-State Depth

4. the pop flag states qF0 , . . . , q
F
k ,

5. the compress states qc1, . . . , q
c
v+1,

6. the error state qe.

We now describe the transition function of C ′. At first, C ′ counts from qs0 to

qsm to ensure that for later Rj zones, v divides evenly into |Rj|. That is, for

0 ≤ i ≤ m− 1,

δ(qsi , x, y) = (qsi+1, y)

and

δ(qsm, λ, y) = (q0, y).

Once this counting has taken place, an Rj zone begins. Here, the input is pushed

onto the stack and C ′ tries to identify the flag 1k by examining group of k symbols.

We set

δ(q0, x, y) =


(qf11 , xy) if x = 1

(qf01 , xy) if x 6= 1

and for 1 ≤ i ≤ k − 1,

δ(qf0i , x, y) = (qf0i+1, xy)

and

δ(qf1i , x, y) =


(qf1i+1, xy) if x = 1

(qf0i+1, xy) if x 6= 1.

If the flag 1k is not detected after k symbols, the test begins again. That is

δ(qf0k , λ, y) = (q0, y).

85

4.4. Separation from Finite-State Depth

If the flag is detected, the pop flag state is entered. δ(qf1k , λ, y) = (qF0 , y). The

flag is then removed from the stack, that is, for 0 ≤ i ≤ k − 1

δ(qFi , λ, y) = (qFi+1, λ)

and

δ(qFk , λ, y) = (qc1, y).

C ′ then checks using the stack, that the next part of the input it reads is R−1
j ,

counting modulo v. If the checking fails, the error state is entered. That is for

1 ≤ i ≤ v,

δ(qci , x, y) =



(qci+1, λ) if x = y

(qe, y) if x 6= y and y 6= z0

(qf11 , xz0) if x = 1 and y = z0

(qf01 , xz0) if x 6= 1 and y = z0.

Once v symbols are checked, the checking starts again. That is

δ(qcv+1, λ, y) = (qc1, y).

The error state is the loop

δ(qe, x, y) = (qe, y).

We now describe the output function of C ′. Firstly, on the counting states,

C ′ outputs its input. That is, for 0 ≤ i ≤ m− 1

ν(qsi , x, y) = x.

86

4.4. Separation from Finite-State Depth

On the flag checking states C ′ outputs its input. That is, for 1 ≤ i ≤ k − 1

ν(qf0i , x, y) = ν(qf1i , x, y) = x.

C ′ outputs nothing while in the flag popping states qF0 , . . . , q
F
k and on the compress

states qc1, . . . , q
c
v+1 except in the case when v symbols have just been checked. That

is,

ν(qcv, x, y) = 0 if x = y.

When an error is seen, a flag is outputted. That is for 1 ≤ i ≤ v

ν(qci , x, y) = 13m+i0x if x 6= y and y 6= z0.

C ′ outputs its input while in the error state. That is,

ν(qe, x, y) = x.

Lastly we verify that C ′ is in fact IL. If the final state is not an error state,

then all Rj zones and 1k flags are output as in the input. If the final state is

qci then the number t of zeros after the last flag in the output along with qci

determines that the last R−1
j zone read is tv+ i− 1 bits long. If the final state is

qe, then the output is of the form

aRj1
k0t13m+i0b

for a, b ∈ {0, 1}∗. The input is uniquely determined to be the input corresponding

to the output aRj1
k0t with final state qc1 followed by

R−1
j [tv..tv + (i− 1)− 1].

87

4.5. Summary

As 13m does occur anywhere as a substring of S post the prefix Sp−1, its first

occurrence post Sp−1 as part of an output must correspond to an error flag.

4.5 Summary

In this chapter we introduced a new notion of depth at a low complexity based

on lossless pushdown compressors called pushdown depth. This notion expanded

upon the previous finite-state notion of Chapter 3 as pushdown compressors are

simply finite-state transducers with an added stack. We demonstrated that our

notion satisfies some of the fundamental properties of depth. This included that

ILPDC-incompressible and ILUPDC-trivial sequences are not pushdown deep in

Theorem 4.3.2 and that a slow growth law is satisfied in Theorem 4.3.4.

Our pushdown depth was based on the difference between ILUPDCs and

ILPDCs. We proved the existence of a PD-deep sequence in Theorem 4.4.3.

We also compared our pushdown depth with i.o. FS-depth from Chapter 3.

In Theorem 4.4.2 we showed there exists i.o. FS-deep sequences which are not

pushdown deep and in Theorem 4.4.3 we showed the existence of sequences which

are PD-deep, and if they are i.o. FS-deep, they must have low FS-depth levels.

Pushdown depth will be revisited in Chapters 5 and 6.

88

Chapter 5

Lempel-Ziv Depth

5.1 Introduction

In 1976, Lempel and Ziv presented a new approach to measure the complexity of

finite strings based on the number of substrings that a string would be parsed into

based on certain constraints [98]. They noted that their parsing complexity may

have use in compression and subsequently developed two lossless compression

algorithms in 1977 and 1978, commonly referred to as Lempel-Ziv 77 (LZ77) and

Lempel-Ziv 78 (LZ78) respectively [156, 157]. For a parsed string, both algorithms

achieve compression by using a pointer to indicate previous instances of a phrase

in the parsing. LZ77 uses a sliding window to keep track of past phrases while

LZ78 builds a dictionary.

Both algorithms have been shown to be very powerful for certain families of

inputs. For instance, for input sequences formed by finite alphabets generated by

stationary, ergodic sources, both algorithms are optimal, i.e. their compression

rate approaches the entropy of the input when the size of the sliding window and

dictionary are allowed to get infinitely large [131, 152, 157]. Both algorithms are

called universal as they do not need to know anything about the statistics of the

source to compress, unlike say Huffman encoding [81]. Their success has led to a

89

5.2. The Lempel-Ziv 78 Algorithm

number of variations of the algorithms being developed and studied, such as in

[94, 147, 150, 151].

In this chapter we develop a notion of depth based on the LZ78 compression

algorithm. Our notion examines the difference in compression between ILFSTs

(referred to as finite-state compressors in this chapter) and the LZ78 algorithm.

We propose that LZ78 is a good choice to compare against ILFSTs as it asymp-

totically reaches the lower bound of compression attained by any finite-state

compressor [131, 157].

We show that our notion of Lempel-Ziv depth satisfies some of the expected

fundamental properties of depth. We also compare it with finite-state depth

discussed in Chapter 3 and pushdown depth of Chapter 4. We do this by demon-

strating the existence of sequences which are Lempel-Ziv deep which are neither

a.e. nor i.o. finite-state deep. We then show there exists a sequence which is

Lempel-Ziv deep but not pushdown deep. We also demonstrate the existence of a

sequence with a PD-depth level of roughly 1/2 and a low Lempel-Ziv depth level.

5.2 The Lempel-Ziv 78 Algorithm

The Lempel-Ziv algorithm LZ78 (henceforth denoted by LZ unless clearly stated

otherwise) [157] is a lossless dictionary based compression algorithm. Given an

input x ∈ {0, 1}∗, LZ parses x into phrases x = x1x2 . . . xn such that each phrase

xi is unique in the parsing, except for possibly the last phrase. Furthermore,

for each phrase xi, every prefix of xi also appears previously as a phrase in the

parsing. That is, if y @ xi, then y = xj for some j < i. Each phrase is stored

in LZ’s dictionary. LZ encodes x by encoding each phrase as a pointer to its

dictionary containing the longest proper prefix of the phrase along with the final

bit of the phrase. Specifically for each phrase xi, xi = xl(i)bi for l(i) < i and

90

5.2. The Lempel-Ziv 78 Algorithm

bi ∈ {0, 1}. Then for x = x1x2 . . . xn

LZ(x) = cl(1)b1cl(2)b2 . . . cl(n)bn,

where ci is an encoding of the pointer to the ith element of LZ’s dictionary,

and x0 = λ. We restrict LZ’s input to binary strings. We note that LZ being

asymptotically optimal means that in the worst case scenario, strings of length n

compress to n+ o(n) bits.

For instance y1 = 0100000101000011000 would be parsed as

0, 1, 00, 000, 10, 100, 001, 1000.

Best case scenario for LZ is if the input string is parsed in such a way such that

for all i, phrase xi is a prefix of xi+1 (except for maybe the last phrase). For

instance y2 = 0010100100010010100 parses as

0, 01, 010, 0100, 01001, 0100.

Note in this case that each phrase xi has length i (except for maybe the last

phrase). Worst case scenario for LZ if its input is a concatenation of all binary

strings in order of length. For instance y3 = 0100011011000001010 parses as

0, 1, 00, 01, 10, 11, 000, 001, 010.

We have that |y1| = |y2| = |y3| = 19 yet y1 is parsed into 8 phrases, y2 into 6

phrases and y3 into 9 phrases.

For strings w = xy, we let LZ(y|x) denote the output of LZ on y after it has

already parsed x. For strings of the form w = xyn, we use Lemma 1 from [109]

to get an upper bound for |LZ(yn|x)|.

91

5.3. Lempel-Ziv Depth and its Properties

Lemma 5.2.1 ([109]). Let n ∈ N, and x, y ∈ {0, 1}∗ where y 6= λ. Let w = xyn.

Suppose on its computation of the string w that LZ’s dictionary contained d ≥ 0

phrases after reading x. Then we have that

|LZ(yn|x)| ≤
√

2(|y|+ 1)|yn| log (d+
√

2(|y|+ 1)|yn|).

We occasionally make reference to the best-case compression ratio of LZ on

sequences. These are as defined in Definition 2.4.5 where the class F contains

only the LZ algorithm.

Definition 5.2.2. The LZ-upper and LZ-lower compression ratios of S are re-

spectively given by

ρLZ(S) = lim inf
n→∞

|LZ(S � n)|
n

, andRLZ(S) = lim sup
n→∞

|LZ(S � n)|
n

.

5.3 Lempel-Ziv Depth and its Properties

We now present our notion of Lempel-Ziv depth (LZ-depth). Our current definition

examines the difference between the performance of ILFSTs (i.e. finite-state

compressors) and the LZ algorithm. Intuitively a sequence is Lempel-Ziv deep

if given any ILFST, the compression difference between the ILFST and the LZ

algorithm is bounded below by a constant times the length of the prefix examined.

Definition 5.3.1. A sequence S is (almost everywhere) Lempel-Ziv deep ((a.e.)

LZ-deep) if

(∃α > 0)(∀C ∈ ILFST)(∀∞n ∈ N), |C(S � n)| − |LZ(S � n)| ≥ αn.

We say a sequence is infinitely often (i.o.) LZ-deep if the (∀∞n ∈ N) term in

the above definition is replaced with (∃∞n ∈ N). We usually use the i.o. notation

92

5.3. Lempel-Ziv Depth and its Properties

to denote i.o. LZ-depth but do not use the a.e. notation to denote a.e. LZ-depth.

Therefore, one can assume LZ-depth always refers to the a.e. notion.

We note that a Lempel-Ziv notion of depth could similarly be defined based on

the Lempel-Ziv 77 algorithm. For instance, in Chapter 7 we will later encounter

sequences that are Lempel-Ziv 77 deep if the sliding window was allowed to have

infinite length. Furthermore, instead of a single LZ-style algorithm, LZ-depth

could be defined over a family of LZ-style algorithms. We proceed content with

our current definition based on LZ78.

Prior to comparing LZ-depth with other notions, we require the following def-

inition which describes the depth-level of a sequence. This is similar to Definition

4.4.1.

Definition 5.3.2. Let S ∈ {0, 1}ω. Let α > 0. We say that LZ-depth(S) ≥ α if

(∀C ∈ ILFST)(∀∞n ∈ N) |C(S � n)| − |LZ(S � n)| ≥ αn.

Otherwise we say that LZ-depth(S) < α.

We now show that LZ-depth satisfies the property of depth which says that

trivial sequences and random sequences are not deep. Here, trivial means se-

quences which are FST-trivial (i.e. have a finite-state strong dimension of 0

(recall Definition 3.2.6)) and random means LZ-incompressible.

Theorem 5.3.3. Let S ∈ {0, 1}ω.

1. If ρLZ(S) = 1, then S is not LZ-deep.

2. If DimFS(S) = 0, then S is not LZ-deep.

Proof. The proof follows the same structure as Theorem 4.3.2.

Let S ∈ {0, 1}ω be such that ρLZ(S) = 1. Therefore for every α > 0, for

almost every n

|LZ(S � n)| > n(1− α). (5.1)

93

5.4. Separation from Finite-State Depth

Then for almost every n

|IFS(S � n)| − |LZ(S � n)| < n− n(1− α) = αn. (5.2)

As α is arbitrary and IFS ∈ ILFST, S is not LZ-deep.

Next suppose S ∈ {0, 1}ω is such that DimFS(S) = 0. Hence there exists some

C ∈ ILFST such that for every β > 0 and almost every n,

|C(S � n)| < βn. (5.3)

Therefore it holds that for almost every n

|C(S � n)| − |LZ(S � n)| ≤ |C(S � n)| < βn. (5.4)

As β is arbitrary, S is not LZ-deep.

5.4 Separation from Finite-State Depth

In the following section we compare LZ-depth with FS-depth of Chapter 3. In our

first result we demonstrate the existence of a LZ-deep sequence which is neither

deep in either our notion of a.e. FS-depth nor in Doty and Moser’s i.o FS-depth.

It relies on a result by Lathrop and Strauss which demonstrates the existence of

a normal sequence S such that RLZ(S) 6= 1, i.e. a normal sequence Lempel-Ziv

can compress [97].

Theorem 5.4.1. There exists a normal LZ-deep sequence.

Proof. Let S be the normal sequence from Theorem 4.3 of [97] such that RLZ(S) =

ε < 1. We claim this sequence satisfies the theorem.

94

5.4. Separation from Finite-State Depth

Let δ > 0 be such that ε+ δ < 1. Therefore, for almost every n it holds that

|LZ(S � n)| ≤ (ε+
δ

2
)n. (5.5)

As S is normal, dimFS(S) = 1 by Theorem 3.2.8. Hence for all C ∈ ILFST

and almost every n we have

|C(S � n)| ≥ (1− δ

2
)n. (5.6)

Therefore for almost every n

|C(S � n)| − |LZ(S � n)| ≥ (1− δ

2
)n− (ε+

δ

2
)n = (1− ε− δ)n. (5.7)

Hence as C was arbitrary, S is LZ-deep.

Corollary 5.4.2. There exists a sequence which is LZ-deep but neither a.e. nor

i.o. FS-deep.

Proof. Let S be the normal LZ-deep sequence from Theorem 5.4.1. As S is

normal, dimFS(S) = 1. Hence S is not a.e. FS-deep by Theorem 3.3.5. This is

similarly true for i.o. FS-depth.

Next we demonstrate that the sequence which satisfies Theorem 4.4.2 is an

i.o. FS-deep sequence that is not LZ-deep. The long sections of random strings

in S prevent LZ-depth as was the case with PD-depth.

Theorem 5.4.3. There exists a sequence S which is i.o. FS-deep but not LZ-

deep.

95

5.4. Separation from Finite-State Depth

Proof. Let 0 < β < 1. Let S be the sequence satisfying Theorem 4.4.2. We

claim this sequence satisfies the theorem. As shown in Theorem 4.4.2, i.o. FS-

depth(S) ≥ β, i.e. S is i.o. FS-deep.

All that remains to show is that S is not LZ-deep. Recall that S is broken into

substrings S = S1S2S3 . . . where |S1| = 2 and for all j, |Sj| = 2|S1...Sj−1|, i.e. for

j > 1, log |Sj| = |S1 . . . Sj−1|. Recall also that for j odd, Sj is a string of maximal

plain Kolmogorov complexity in the sense that K(Sj) ≥ |Sj|. We assume j is

always odd in the rest of the theorem. We write Sj to denote the prefix S1 . . . Sj.

For any prefix of the form Sj, as LZ is lossless, Sj can be recovered from the

string

d(Sj−1) · 01 · LZ(Sj|Sj−1).

Therefore for j odd,

|Sj| ≤ K(Sj) ≤ 2|Sj−1|+ 2 + |LZ(Sj|Sj−1)|+O(1), (5.8)

and so for j large

|LZ(Sj|Sj−1)| ≥ |Sj| − 2|Sj−1| −O(1)

= |Sj| − 2 log(|Sj|)−O(1) > |Sj|(1−
β

2
). (5.9)

Therefore for infinitely many prefixes of the form Sj, we have

|LZ(Sj)| ≥ |LZ(Sj|Sj−1)| > |Sj|(1−
β

2
) (by (5.9))

= (|Sj| − log(|Sj|))(1−
β

2
)

> |Sj|(1−
β

2
)(1− β

2
) > |Sj|(1− β). (5.10)

96

5.4. Separation from Finite-State Depth

Hence for infinitely many prefixes of S we have that

|IFS(Sj)| − |LZ(Sj)| < |Sj| − |Sj|(1− β) = |Sj|β. (5.11)

As β was arbitrary, it follows that S is not LZ-deep.

The following result follows from the previous theorem and shows that it is

possible to build i.o. LZ-deep sequences which are not a.e. LZ-deep.

Lemma 5.4.4. There exists a sequence S which is i.o. LZ-deep and i.o. FS-deep

but not a.e. LZ-deep.

Proof. Let S be the sequence satisfying Theorems 4.4.2 and 5.4.3 which is i.o.

FS-deep but not a.e. LZ-deep. All that remains to show is that S is i.o. LZ-deep.

Recall to construct S, we split the non-negative integers into intervals I1, I2, . . .

such that |I1| = 2 and |Ij| = 2|I1|+···|Ij−1| for all j > 1. Also recall that for all k ≥ 1,

k was devoted to intervals Ij where j had the form j = 2k + t(2k+1), for t ≥ 0.

Recall also that S was built in stages S = S1S2 . . . such that if k was devoted

to interval Ij then Sj = r
|Ij |/|rk|
k where rk was a string of length |I2k | that was

3k-finite-state random in the sense that

D3k
FS(rk) ≥ |rk| − 4k. (5.12)

We first examine how well any ILFST compresses prefixes of S. Let C ∈

ILFST with states QC = {q1, . . . , qp}. We assume all states of C are reachable

from its start state. For all 1 ≤ i ≤ p, we let Ci denote the FST with the same

states, transitions and outputs as C but with start state qi, i.e. for all x ∈ {0, 1}∗,

Ci(x) = νC(qi, x). As C is an ILFST, so is Ci. Recall from our encodings of FSTs

that therefore Ci ∈ FST≤3|C|, where |C| is the length of the encoding for C.

97

5.4. Separation from Finite-State Depth

Next let d be such that IFS ∈ FST≤d. As Ci is an ILFST, by Lemma 3.3.6

there exists d′ such that for all i and x

Dd′

FS(Ci(x)) ≤ Dd
FS(x). (5.13)

Let 0 < ε < 1. By Lemma 3.3.6, there exists an l such that for all i and

almost every x,

Dl
FS(x) ≤ (1 +

ε

3
)Dd′

FS(Ci(x)) +O(1). (5.14)

Of our set of random strings {rk}k≥1, let l′ ≥ l be such that rl′ satisfies both

Equation (5.14) and |rl′| − 4l′ ≥ (1 − ε/3)|rl′ |. Such an l′ must exist as {rk}k∈N

is a set of strings of increasing length.

Hence we have that for all i

|rl′ |(1−
ε

3
) ≤ |rl′| − 4l′ ≤ D3l′

FS(rl′) ≤ Dl
FS(rl′) (as rl′ is 3l′-FS random)

≤ (1 +
ε

3
)Dd′

FS(Ci(rl′)) +O(1) (by (5.14))

≤ Dd′

FS(Ci(rl′)) +
ε

3
Dd

FS(rl′) +O(1) (by (5.13))

≤ |Ci(rl′)|+
ε

3
|rl′|+O(1). (5.15)

Hence by Equation (5.15) for all i, when l′ is chosen large

|Ci(rl′)| ≥ |rl′|(1−
ε

3
)− ε

3
|rl′| −O(1) > |rl′|(1− ε). (5.16)

That is, for all i

|C(qi, rl′)| > |rl′ |(1− ε). (5.17)

We now calculate a lower bound of compression of C for prefixes of S of the

98

5.4. Separation from Finite-State Depth

form Sj where j is devoted to rl′ . For almost every such j we have that

|C(Sj)| ≥ |C(Sj)| − |C(Sj−1)|

>
|Sj|
|rl′|

(|rl′ |(1− ε)) (by (5.17))

= |Sj|(1− ε) = (|Sj| − |Sj−1|)(1− ε) (5.18)

= (|Sj| − log(|Sj|))(1− ε)

> |Sj|(1− β) (5.19)

where ε < β < 1.

We next examine how well LZ compresses any prefix Sj of S where j is devoted

to l′. Note after reading Sj−1, LZ’s dictionary will contain at most |Sj−1| entries,

i.e. it has size bounded above by log(|Sj|). Setting al′ = |rl′ |+ 1, by Lemma 5.2.1

we have that

|LZ(Sj|Sj−1)| ≤
√

2al′ |Sj| log(|Sj−1|+
√

2al′ |Sj|

=
√

2al′|Sj| log(log |Sj|+
√

2al′|Sj|)

= O(
√
|Sj| log |Sj|). (5.20)

Hence we have that for j large devoted to l′ that

|LZ(Sj)| = |LZ(Sj−1)|+ |LZ(Sj|Sj−1)|

≤ |Sj−1|+ o(|Sj−1|) +O(
√
|Sj| log |Sj|) (by (5.20))

= log(|Sj|) + o(log(|Sj|)) +O(
√
|Sj| log |Sj|)

= O(
√
|Sj| log |Sj|). (5.21)

Hence, as infinitely many intervals are devoted to l′, for infinitely many pre-

99

5.5. Separation from Pushdown Depth

fixes we have

|C(Sj)| − |LZ(Sj)| ≥ |Sj|(1− β)−O(
√
|Sj| log |Sj|) (by (5.19) and (5.21))

> |Sj|(1− α) (5.22)

where β < α < 1. Hence as C was an arbitrary ILFST, it holds that S is i.o.

LZ-deep.

5.5 Separation from Pushdown Depth

The following results demonstrate the difference between LZ-depth with PD-

depth. We first show that the sequence S from Theorem 1 of [109] is an example

of a LZ-deep sequence which is not PD-deep. S contains repeated non-consecutive

random substrings which Lempel-Ziv can exploit to compress. However, the

random strings are long enough that a pushdown compressor cannot compress

the sequence.

Theorem 5.5.1. There exists a sequence S which is not PD-deep but is LZ-deep.

Proof. Let S be the sequence from Theorem 1 of [109] which satisfies RLZ(S) =

0 but ρPD(S) = 1. We claim S satisfies the theorem statement. We omit a

description of the construction of S in this proof. As ρPD(S) = 1, S is not

PD-deep by Theorem 4.3.2.

Let 0 < α < 1. As ρPD(S) = 1, it also holds that dimFS(S) = 1. Hence for all

Ĉ ∈ ILFST it holds that

|Ĉ(S � n)| > (1− α

2
)n. (5.23)

100

5.5. Separation from Pushdown Depth

As RLZ(S) = 0, it holds that for almost all n that

|LZ(S � n)| ≤ α

2
n. (5.24)

Hence for almost all n we have that

|Ĉ(S � n)| − |LZ(S � n)| ≥ (1− α

2
)n− α

2
n = (1− α)n. (5.25)

As Ĉ was arbitrary, it holds that S is LZ-deep.

Next we demonstrate the existence of a sequence that roughly has a PD-depth

level of 1/2 while having a very small LZ-depth level. This sequence was first

presented in Theorem 5 of [109] and was built by enumerating strings in such

a way so that a pushdown compressor can use its stack to compress, but an

ILUPDC cannot use their stacks due to their unary nature. LZ cannot compress

the sequence either as it is similar to a Champernowne sequence. LZ performs

poorly on such sequences as discussed briefly previously.

Theorem 5.5.2. For all 0 < β < 1/2, there exists a sequence S such that PD-

depth(S) ≥ (1/2− β) but LZ-depth(S) < β.

Proof. Let 0 < β < 1/2. We claim that the sequence from Theorem 5 of [109]

satisfies the theorem statement. We first give a brief description of this sequence.

Let ε be such that 0 < ε < β, and let k and v be non-negative integers to be

determined later.

For any n ∈ N, let Tn denote the set of strings of length n that do not contain

the substring 1j in x for all j ≥ k. As Tn contains the set of strings whose every

kth bit is 0, it follows that |Tn| ≥ 2(k−1
k

)n. Note that for every x ∈ Tn, there exists

101

5.5. Separation from Pushdown Depth

y ∈ Tn−1 and b ∈ {0, 1} such that x = yb. Hence

|Tn| < 2|Tn−1|. (5.26)

Let An = {a1n , . . . , aun} be the set of palindromes in Tn. As fixing the first dn
2
e

bits determines a palindrome, |An| ≤ 2d
n
2
e. The remaining strings in Tn−An are

split into v+1 pairs of sets Xn,i = {xn,i,1, . . . , xn,i,tin} and Yn,i = {yn,i,1, . . . , yn,i,tin}

where tin = b |Tn−An|
2v
c if i 6= v + 1 and

tv+1
n =

1

2
(|Tn − An| − 2

v∑
i=1

|Xn,i|),

(xn,i,j)
−1 = yn,i,j for every 1 ≤ j ≤ tin and 1 ≤ i ≤ v + 1 both xn,i,1 and yn,i,tn

start with 0 (excluding the case where both Xn,v+1 and Yn,v+1 are the empty sets).

Note that for convenience we write Xi, Yi for Xn,i, Yn,i respectively.

The sequence S which satisfies the theorem is constructed in stages as follows:

Let f(k) = 2k and f(n + 1) = f(n) + v + 2. Note that n < f(n) < n2 for

large n. For n ≤ k − 1, Sn is a concatenation of all strings of length n, i.e.

Sn = 0n · 0n−11 · · · 1n−10 · 1n. For n ≥ k,

Sn = a1n . . . aun1f(n)zn,1zn,2 . . . zn,vzn,v+1

where

zn,i = xn,i,1xn,i,2 . . . xn,i,tin−1xn,i,tin1f(n)+iyn,i,tinyn,i,tin−1 . . . yn,i,2yn,i,1,

with the possibility that zn,v+1 = 1f(n)+v+1 only. That is, Sn is a concatenation

of all strings in An followed by a flag of f(n) ones, followed by a concatenation

of all strings in the Xi zones and Yi zones separated by flags of increasing length

102

5.5. Separation from Pushdown Depth

such that each Yi zone is the Xi zone written in reverse. Let

S = S1S2 . . . Sk−11k1k+1 . . . 12k−1SkSk+1 . . .

i.e. the concatenation of all Sj zones with some extra flags between Sk−1 and Sk.

Then from [109], for ε small, choosing k and v appropriately large we have

that

ρLZ(S) ≥ 1− ε, and RPD(S) ≤ 1/2. (5.27)

Next we consider how any C ∈ ILUPDC performs on S. Let Sj denote the

prefix

S1 . . . Sk−11k . . . 12k−1Sk . . . Sj

of S for all j ≥ k.

Suppose C is reading zone Sn and can perform at most c λ-transitions in a

row. We examine the proportion of strings in Tn that give a large contribution to

the output. For simplicity, we write C(p, x, s) = (q, v) to represent that when C

is in state p with stack contents s = 0az0 for some a ≥ 0, on input x C outputs

v and ends in state q, i.e. C(p, x, s) = (δ̂Q(p, x, s), ν̂(p, x, s)).

For each x ∈ Tn, let

hx = min{|v| : ∃p, q ∈ Q, ∃s ∈ {0az0 : a ≥ 0}, C(p, x, s) = (q, v)}

be the minimum possible addition of the output that could result from reading

x. We restrict ourselves to reachable combinations of pairs of states and choices

for s. Let

Bn = {x ∈ Tn : hx ≥
(k − 2)n

k
}

be the set of strings that give a large contribution to the output.

103

5.5. Separation from Pushdown Depth

Next consider x′ ∈ Tn − Bn. There is a computation of x′ that results in C

outputting at most (k−2)n
k

bits. As C is lossless, x′ can be associated uniquely to a

start state px′ , stack contents sx′ , end state qx′ and output vx′ where |vx′ | < (k−2)n
k

such that C(px′ , x
′, sx′) = (qx′ , vx′). Recall from our previous discussion that on

reading x of length n, if C has a stack of height bigger than (c+1)n, the stack will

have no impact on the compression of x. That is, if k 6= k′ but k, k′ ≥ (c + 1)n,

then C(px′ , x
′, 0kz0) = C(px′ , x

′, 0k
′
z0).

Hence we can build a map g such that g(x′) = (px′ , s
′
x′ , vx′ , qx′) where 0 ≤

s′x′ < (c+ 1)|x|. As this map g is injective, we can bound |Tn −Bn| as follows:

|Tn −Bn| ≤ |Q|2 · (c+ 1)n · 2<
(k−2)n

k

< |Q|2 · (c+ 1)n · 2
(k−2)n

k . (5.28)

For 0 < δ < 1/6 whose value is determined later, as |Tn| ≥ 2
(k−1)n

k , we have

that for n large

|Bn| = |Tn| − |Tn −Bn|

> |Tn| − |Q|2 · (c+ 1)n · 2
(k−2)n

k (by (5.28))

> |Tn|(1− δ). (5.29)

Similarly, as the flags are only comprised of O(n2) bits in each Sn zone, we

have for n large that

|Tn|n > |Sn|(1− δ). (5.30)

Then for n large (say for all n ≥ i such that (5.29) and (5.30) hold),

104

5.5. Separation from Pushdown Depth

|C(Sn)| > k − 2

k

m∑
j=i

j|Bj|

>
k − 2

k
(1− δ)

n∑
j=i

j|Tj| (by (5.29))

>
k − 2

k
(1− 2δ)

n∑
j=i

|Sj| (by (5.30))

=
k − 2

k
(1− 2δ)(|Sn| − |Si−1|)

>
k − 2

k
(1− 3δ)|Sn|. (5.31)

The compression ratio of S on C ∈ ILUPDC is least on prefixes of the form

Sn·xn+1, where potentially xn+1 is a concatenation of all the strings in Tn+1−Bn+1,

i.e. the compressible strings of Tn+1. Let xn+1 be a such a potential prefix of Sn+1.

Then if Fn+1 =
∑v

i=0(f(n+ 1) + i), the length of the flags in Sn+1, we can bound

the length of |xn+1| as follows. For n large we have

|xn+1| < |Tn+1 −Bn+1|(n+ 1) + Fn+1

< (|Tn+1| − |Bn+1|)(n+ 1) + (v + 2)n2

< δ|Tn+1|(n+ 1) + δ|Tn|(n+ 1) (by (5.29))

< 2δ|Tn|(n+ 1) + δ|Tn|(n+ 1) (by (5.26))

= 3δ|Tn|(n+ 1)

< 3δ|S1 . . . Sn|. (5.32)

105

5.5. Separation from Pushdown Depth

Hence for n large

|C(Snxn+1)| ≥ (
k − 2

k
)(1− 3δ)(|Snxn+1| − |xn+1|)

> (
k − 2

k
)(1− 3δ)(|Snxn+1| − 3δ|Sn|) (by (5.31))

> (
k − 2

k
)(1− 6δ)|Snxn+1|

>
k − 3

k
|Snxn+1| (5.33)

when δ is chosen sufficiently small, i.e. δ < 1
6(k−2)

. Hence

ρUPD(S) ≥ k − 3

k
. (5.34)

Thus for all 0 < ε′ < k−3
k

, for almost every n,

|C(S � n)| ≥ (
k − 3

k
− ε′)n.

Next let Ĉ ∈ ILPDC be such that Ĉ achieves RPD(S) ≤ 1/2. Then for all ε′ > 0

and almost every n it holds that

|C(S � n)| ≤ (
1

2
+ ε′).

Hence, choosing ε′ = 1/2k, for almost every n and every C ∈ ILUPDC we have

|C(S � n)| − |Ĉ(S � n)| ≥ (
k − 3

k
− ε′)n− (

1

2
+ ε′)n

= (
1

2
− 3

k
− 1

k
)n = (

1

2
− 4

k
)n. (5.35)

That is, PD-depth(S) > 1
2
− 4

k
. Hence, choosing k large appropriately at the start

such that 4
k
< β we have that PD-depth(S) > 1

2
− β.

Next we examine LZ-depth. Recall ρLZ(S) ≥ 1 − ε. Thus for c such that

106

5.6. Summary

ε+ c < β (recall ε < β), for almost every n it holds that

|LZ(S � n)| > (1− ε− c)n. (5.36)

Hence as IFS ∈ ILFST, we have that for almost every n

|IFS(S � n)| − |LZ(S � n)| < n− (1− ε− c)n = (ε+ c)n < βn. (5.37)

Hence we have that LZ-depth(S) < β.

In conclusion, for all 0 < β < 1
2
, choosing ε such that ε < β and k such that

4
k
< β, a sequence S can be built which satisfies the requirements of the theorem.

5.6 Summary

In this chapter we introduced a new notion of depth based on the LZ78 com-

pression algorithm which examined the difference between ILFSTs and the LZ78

compression algorithm.

We showed LZ-depth satisfied some of the fundamental properties of depth in

Theorem 5.3.3, i.e. FST-trivial and LZ-incompressible sequences were not deep.

The question of a slow growth type law remains open. We demonstrated that

LZ-depth differs from both a.e. and i.o. FS-depth in Theorem 5.4.1 by showing

the existence of a LZ-deep normal sequence. We also separated LZ-depth from

PD-depth by first demonstrating the existence of a sequence which is LZ-deep

but not PD-deep in Theorem 5.5.1. We continued by showing the existence of a

sequence which is PD-deep, and if it is LZ-deep, it must have a low depth level

as given in Theorem 5.5.2.

We will revisit LZ-depth in Chapter 6.

107

Chapter 6

Pebble Depth

6.1 Introduction

In Chapters 3, 4 and 5 we examined depth notions where the transducers and

compression algorithms we used were limited in the following sense: For FS-

depth where complexity was based on the minimal input needed to output a

certain string, finite-state transducers are limited in that that relationship be-

tween the output and input is linear. For PD-depth, pushdown transducers with

a bounded number of λ-transitions between the reading of each bit are similarly

linear. Furthermore finite-state, pushdown transducers and the Lempel-Ziv 78

algorithm are limited to reading their input in one direction. They are unable to

backtrack to reread a previously seen part of their input.

In this chapter we examine a notion of depth based on transducers which

do not suffer from the above restrictions which we call pebble depth (PB-depth).

Specifically we examine the minimal descriptional complexity of a class of two-

way transducers known as pebble transducers which have a polynomial size output

compared to their input [65].

For k ∈ N, a k-pebble automaton is a two-way finite-state automaton with the

additional capacity to mark k squares of its tape with its pebbles. In particular, a

108

6.1. Introduction

0-pebble automaton is the same as the classical understanding of a two-way finite-

state automaton1. Both 0-pebble automata [121, 133] and 1-pebble automata

[22] are known to be equivalent to one-way finite-state automata, i.e. they decide

exactly the regular languages.

When two or more pebbles are used, we henceforth will exclusively examine

pebble automata whose pebbles follow a stack-like discipline. By this we mean

that the pebbles are ordered and a pebble’s position on the tape can only be

altered (lifted from or dropped onto a square of the input tape) if all lower

ranked pebbles are currently on the tape and all higher ranked pebbles are not

currently on the tape. All papers cited with regards to pebble automata and

transducers, unless stated otherwise, also use this restriction. This restricted

class was examined as acceptors by Globerman and Harel who also showed that

these restricted pebble automata also only decide the regular languages [74].

Transforming a k-pebble automaton into a two-way finite-state automaton, and

the blow-up in terms by the number of states, has been studied by Geffert and

Ištoňová in [72].

Another variation of pebble automata (explored on trees) can be seen in [64]

where the automata’s pebbles are split into two groups of visible and invisible

pebbles. Visible pebbles act as pebbles of a normal pebble automaton in that

a transducer can see all the visible pebbles currently on the tape square it is

reading. For invisible pebbles on the other hand, the automaton is only able to

see the topmost invisible pebble on the current square it is reading. That is, on

any tape square, the pebble automaton can see at most one invisible pebble while

it can see all visible pebbles. This variation of pebble automata is not explored

in this chapter.

Pebble automata were first examined as transducers for trees by Milo et al.

1It should be noted that some authors refer to the head of the automaton as a pebble and
so a classical two-way finite-state automaton is considered a 1-pebble automaton to those.

109

6.1. Introduction

in [110]. These tree transducers were later restricted to monadic trees, i.e. for

strings, by Engelfriet and Maneth in [65]. While Globerman and Harel’s result

show that as acceptors, pebble automata are equivalent to finite-state automata

[74], pebble transducers are much more powerful in the following sense: While

two-way finite-state transducers have output of size O(n) on inputs of size n, a

k-pebble transducer has output of size O(nk+1). As such, the class of functions

computed by pebble transducers has been referred to as the class of polyregular

functions and have been shown to have several equivalent characterizations [23,

24]. With regards to this class of polyregular functions, a recent result by Lhote

demonstrates that a polyregular function has output of size O(nk+1) if and only

if the function can be performed by a k-pebble transducer [102].

Other variations of k-pebble transducers include k-marble transducers [60],

where if pebble i is placed on the tape, the reading head of the transducer cannot

move right past the square containing pebble i until it is lifted, and pebble i+1 can

only be placed on a square to the left of the square containing pebble i. Another

variation are the comparison-free k-pebble transducers [117], also known as k-

blind transducers [59], which are similar to, but further restrict the idea of invisible

pebbles mentioned previously from [64]. Recently, Douéneau-Tabot has compared

the expressive power of ordinary k-pebble, k-marble and k-blind transducers [59]

that produce unary outputs. Neither k-marble nor k-blind transducers are studied

in this chapter.

The extra power pebble transducers have over finite-state transducers are their

ability to compute the following three basic functions:

1. Due to their two-way nature, pebble transducers can compute the function

rev(x) = x−1 which prints the reverse of the input string.

2. A k-pebble transducer is able to compute the function powk(x) = x|x|
k

which prints x |x|k times resulting in a string of length |x|k+1. It achieves

110

6.2. Pebble Transducers

this by moving its head left to right printing x and using its k pebbles

to count to |x|k by moving one pebble to the right for each printing of x

performed.

3. A 1-pebble transducer is able to compute the function pref(x) which prints

every prefix of x in order of length. That is, pref(x) = x0x0x1x0x1x2 . . . x,

where x = x0 . . . xn. It achieves this by scanning over the input tape and

moving its pebble one square to the right to keep track of each prefix printed.

We define our notion of pebble depth (PB-depth) based on the difference be-

tween the minimal descriptional complexity of finite-state transducers and pebble

transducers. We demonstrate how our notion of PB-depth satisfies some of the

basic properties of depth, i.e. FST-trivial sequences and PB-incompressible se-

quences are not deep and that a slow growth law holds. We furthermore compare

PB-depth with the other depth notions previously examined. We first show that

unlike FS-depth (both a.e. and i.o.) where normal sequences are not deep, there

exists normal PB-deep sequences. We demonstrate a difference with LZ-depth by

showing the existence of a sequence which has a PB-depth level of approximately

1/2 and, if it is LZ-deep, has a low level of LZ-depth. This sequence is an example

of a non-normal pebble deep sequence. We furthermore show that there exists

sequences which are both PB-deep and PD-deep.

6.2 Pebble Transducers

A k-pebble transducer is two-way finite-state transducer which also has k-pebbles

labelled 1, . . . , k. Initially the transducer has no pebbles on its input tape, how-

ever during its computation the transducer can drop pebbles onto and pick up

pebbles from squares of the tape. At each stage of computation the transducer

knows which pebbles are on the square under its head and it can choose to drop

111

6.2. Pebble Transducers

a new pebble on that square, lift the topmost pebble from that square, or move

to a different square. However, the way in which the transducer can drop and lift

pebbles is restricted to act in a stack like fashion.

We use the pebble transducers with this restriction as these transducers have

very nice properties. For instance, in Theorem 2 of [65] it was shown that this

class of deterministic pebble transducers is closed under composition. We use this

property in the proof of Theorem 6.3.6. These transducers also have other nice

properties such as that all non-deterministic pebble transducers which compute

a partial function can in fact be computed by a deterministic pebble transducer

[63].

Definition 6.2.1. A pebble transducer (PB) is a 6-tuple T = (Q, q0, F, k, δ, ν)

where

1. Q is a non-empty, finite set of states,

2. q0 ∈ Q is the start state,

3. F ⊆ Q is the set of final states,

4. k is the number of pebbles allowed to be placed on the tape,

5. δ : (Q−F)×{0, 1,a,`}×{0, 1}k → Q×{+1,−1, push, pop} is the transition

function,

6. ν : (Q− F)× {0, 1,a,`} × {0, 1}k → {0, 1}∗ is the output function.

A PB with k pebbles is referred to as a k-pebble transducer. On input x ∈

{0, 1}∗, the input tape contains a x `, where a and ` are the left and right end

markers of the tape respectively. The tape squares are numbered 0, 1, . . . , |x|, |x|+

1. A configuration of T is a 4-tuple (q, i, σ, w) where q ∈ Q is the current state

of T , 0 ≤ i ≤ |x|+ 1 is the current position of the head, σ ∈ {⊥, 0, . . . , |x|+ 1}k

is a tuple indicating the location of the pebbles and w ∈ {0, 1}∗ is what T has

112

6.2. Pebble Transducers

outputted so far. That is, σ[m − 1] = j means that pebble m is on square j,

and σ[m − 1] = ⊥ means pebble m is not currently on the tape. Hence by

the stack nature of T , if only l pebbles are currently placed on the tape then

σ[l] = · · · = σ[k − 1] = ⊥.

If T is in configuration (q, i, σ, w) with a being the symbol on square i of the

tape, then T ’s transition and output functions δ and ν take the input (q, a, b)

where for 0 ≤ j ≤ k − 1, b[j] = 1 ⇐⇒ σ[j] = i.

If there are l pebbles on T ’s tape, δ(q, a, b) = (q′, d) means that T moves from

state q to state q′ and performs action d, where +1 means move one square right,

−1 means move one square left, push means place pebble l + 1 onto the current

square and pop means remove pebble l from the current square. These four

types transitions are undefined if performing d results in an impossible action,

i.e. if d = +1 when a =`, d = −1 when a =a, d = push when all pebbles are

currently on the tape, and d = pop when pebble l is not on the current square

of the configuration respectively. Following a transition, T enters the successor

configuration (q′, i′, σ′, w ·ν(q, a, b)), where q′, i′ and σ′ reflect the new state, head

position and place of the pebbles based on the result of δ(q, a, b). Specifically

q′ = δQ(q, a, b), i′ ∈ {i− 1, i, 1 + 1} depending on whether the instruction was to

move left, push or pop, or move right respectively and

σ′ =


σ if the instruction was +1 or −1

σ[0..l − 1]i⊥k−l−1 if the instruction was to push pebble l + 1

σ[0..l − 2]⊥k−l+1 if the instruction was to pop pebble l.

(6.1)

We say that T on input x outputs w, i.e. T (x) = w, if starting in configuration

(q0, 0,⊥k, λ), there is a finite sequence of successor configurations of T ending with

(q, i, σ, w), where q ∈ F . We require the use of final states to define the output

as we do not wish to consider cases where T finds itself in a loop and outputs an

113

6.2. Pebble Transducers

infinite sequence, i.e. T (x) = zyω, for some z, y ∈ {0, 1}∗ where |y| ≥ 1. We write

PB to denote the set of deterministic pebble transducers. We use PBk ⊂ PB to

denote set of deterministic k-pebble transducers. Note then that each M ∈ PB

computes a partial function from {0, 1}∗ to {0, 1}∗.

Using constructions of [72], Engelfriet showed that the set of functions com-

puted by PBs is closed under composition [63]. This property is used in the proof

of a slow growth law in Theorem 6.3.6.

Theorem 6.2.2 ([63]). Let r,m ≥ 0. Let R ∈ PBr and M ∈PBm. Then there

exists T ∈ PBrm+r+m such that for all x ∈ {0, 1}∗, T (x) = R(M(x)).

6.2.1 k-Pebble Complexity

For a class of transducers F, recall in Section 2.4 of Chapter 2 we discussed the

k-F complexity of strings and binary representations of F transducers. In this

chapter we examine these notions with respect to the class of pebble transducers,

i.e. when F = PB. As such, the size of PBs, the sets PB≤k, and the k-pebble

complexity Dk
PB(x) of a string x are all defined as in Chapter 2. We note that the

set PB≤k, the set of pebble transducers with a binary representation of length

k, should not be confused with the set of k pebble transducers PBk. Unlike in

Chapter 3 where we gave a specific binary representation of FSTs, we do not give

a binary representation of PBs here as our proofs do not depend on a specific

representation. The proof of Theorem 3.3.4 can be adapted to hold for PBs too,

i.e. pebble depth does not depend on the binary representation chosen.

Before we discuss pebble depth, we explore an analogous result to Lemma

3.3.6 (part 1) for k-PB complexity. It states that if given a description y for a

string x, then y is also a description for T (x) where T ∈ PB.

114

6.2. Pebble Transducers

Lemma 6.2.3. Let T ∈ PB. Then

(∀k ∈ N)(∃k′ ∈ N)(∀x ∈ {0, 1}∗)Dk′

PB(T (x)) ≤ Dk
PB(x).

Proof. Let x, k and t be as stated. Let p be a k-minimal program for x, i.e.

A(p) = x where A ∈ PB≤k and PB≤k(x) = |p|.

Suppose A has a pebbles and T has t pebbles. Then by Theorem 6.2.2 there

exists B ∈ PBta+a+n such that for all y ∈ {0, 1}∗, B(y) = T (A(y)). In particular

B(p) outputs T (x) and hence p is also a description of T (x). Therefore setting

k′ = |B| we have that Dk′
PB(T (x)) ≤ Dk

PB(x).

In particular, the above lemma says that if we have a description y for the

string x, y is also a description of x|x|
n

for all n, x−1, and pref(x).

Corollary 6.2.4. Let k, n ∈ N. Let x, y ∈ {0, 1}∗ such that Dk
PB(x) = |y|. Then

there exists k′ ∈ N such that Dk′
PB(x|x|

n
) ≤ |y|.

Proof. Let n be as stated in the lemma. Note that there exists a pebble transducer

T ∈ PBn such that for all z ∈ {0, 1}∗, T (z) = z|z|
n
. The result then follows from

Lemma 6.2.3.

Corollary 6.2.5. Let k ∈ N. Let x, y ∈ {0, 1}∗ such that Dk
PB(x) = |y|. Then

there exists k′ ∈ N such that Dk′
PB(x−1) ≤ |y|.

Proof. Note that there exists T ∈ PB0 such that for all z ∈ {0, 1}∗, T (z) = z−1.

The result then follows from Lemma 6.2.3.

Corollary 6.2.6. Let k ∈ N. Let x, y ∈ {0, 1}∗ such that Dk
PB(x) = |y|. Then

there exists k′ ∈ N such that Dk′
PB(pref(x)) ≤ |y|.

115

6.2. Pebble Transducers

Proof. Note that there exists T ∈ PB1 such that for all z ∈ {0, 1}∗, T (z) =

pref(z). The result then follows from Lemma 6.2.3.

The following lemma is analogous to Lemma 3.3.6 (part 2). It states that if

y is a description for M(x) where M ∈ ILFST, then y is also a description of x.

Lemma 6.2.7. Let M ∈ ILFST. Then

(∀k ∈ N)(∃k′ ∈ N)(∀x ∈ N)Dk′

PB(x) ≤ Dk
PB(M(x)).

Proof. Let M, k and x be as stated in the lemma. By Theorem 3.2.4, there

exists an ILFST M−1 and constant b such that for all z ∈ {0, 1}∗, z � |z| − b v

M−1(M(x)) v z.

Note that both M and M−1 can be simulated by 0-pebble transducers that

print nothing on first reading a, then read their input bit by bit moving right

performing the same actions as M and M−1 respectively and where upon reading

`, they output nothing and enter their final state. For simplicity of notation we

call these equivalent 0-pebble transducers M and M−1 also.

Let p be a k-PB minimal program for M(x), i.e. A(p) = M(x) for A ∈ PB≤k,

and Dk
PB(M(x)) = |p|. We construct A′ and p′ for x. Let y = M−1(M(x)), i.e.

there exists some z ∈ {0, 1}≤b such that yz = x. Let A′ be the PB which on

input p simulates A(p) to get M(x), and sticks the output into M−1 and adds z

at the end of M−1’s output, i.e. when it enters the final state of M−1, regardless

of what is under its reading head, it prints z and enters its own final state. Note

that by Theorem 6.2.2, A′ will have the same number of pebbles as A. Thus

D
|A′|
PB (x) ≤ Dk

PB(M(x)). As |A′| depends only on k, the size of M and |z| ≤ b, we

set k′ to be the smallest integer that takes all the possibilities for z into account.

That is Dk′
PB(x) ≤ Dk

PB(M(x)).

116

6.2. Pebble Transducers

The following theorem is an analogous result to Lemma 3.3.12 which states

that if p is a pebble description of x and q is a pebble description of y, a padded

version of p followed by a flag, followed by q is a pebble description of the string

xy.

Lemma 6.2.8. (∀ε > 0)(∀k ∈ N)(∃k′ ∈ N)(∀∞x ∈ {0, 1}∗)(∀y ∈ {0, 1}∗)

Dk′

PB(xy) ≤ (1 + ε)Dk
PB(x) +Dk

PB(y) + 2.

Proof. The proof is similar to Lemma 3.3.12’s proof.

Let ε, x, y and k be as stated in the lemma. Consider p, q ∈ {0, 1}∗ such that

Dk
PB(x) = |p| and Dk

PB(y) = |q|. Let A,B ∈ PB≤k where A(p) = x and B(q) = y.

Let b = d2
ε
e. Then there exists integers n and r such that |p| = nb+ r, where

0 ≤ r < b. Let p′ be a new string such that p′ begins with the first nb bits of p,

with a 0 placed to separate every b bits starting at the beginning of the string.

This is followed by a 1 and the remaining r bits of p doubled. So

p′ = 0p1 . . . pb0pb+1 . . . p2b0 . . . pnb1pnb+1pnb+1 . . . pnb+rpnb+r,

and

|p′| = n(b+ 1) + 2r + 1 = |p|+ n+ r + 1 ≤ |p|+ n+ b+ 1.

Then by the same argument as in Lemma 3.3.6, whenever |p| is large enough we

can arrive to the same result as in Equation 3.17, i.e. it holds that |p′| ≤ |p|(1+ε).

Suppose A has i pebbles and B has j pebbles. Let T be a pebble-transducer

with m = max{i, j} + 1 pebbles such that on input p′01q: T first examines the

section of its tape containing a p′01 and uses i of its pebbles to simulate A(p).

To do this, T treats the 01 following p′ as if it was ` on A’s tape. Also, to ensure

117

6.3. Pebble Depth

T does not use more than i pebbles, T keeps track in its states of how many

pebbles it has placed on the a p′01 part of the tape. When T enters a final state

of A, T knows it has outputted x. Upon this, T scans a p′01 moving back and

forth popping off all of the pebbles from its tape and moves its head right until it

reaches the end of p′01 when no pebbles remain. On the final 1, T drops a pebble

(henceforth denoted by 1•) and enters the initial state of B. T then exclusively

examines the section of tape containing 1•q ` to simulate B(q). To do this, T

treats 1• as a on B’s tape. To ensure T does not use more than j pebbles, T

keeps track in its states of how many pebbles it has placed on the 1•q ` part

of the tape, excluding the pebble already dropped on 1•. When T enters a final

state of B, T enters its own final state having just outputted y.

Thus for k′ = |T |, whenever |p| is large enough we have that,

Dk′

PB(xy) ≤ |p′|+ |q|+ 2 = (1 + ε)Dk
PB(x) +Dk

PB(y) + 2. (6.2)

6.3 Pebble Depth

In this section we present our notion of pebble depth (PB-depth), show it satisfies

the three basic fundamental properties of depth and identify a normal PB-deep

sequence.

We define PB-depth by examining the difference in k-FS and k′-PB complexity

on prefixes on sequences. This keeps to the spirit of Bennett’s original notion of

comparing Kolmogorov complexity against its restricted time-bounded version.

Here, FSTs can be viewed as a restricted subset of 0-pebble transducers which

can only move in one direction.

118

6.3. Pebble Depth

Definition 6.3.1. A sequence S is pebble deep (PB-deep) if

(∃α > 0)(∀k ∈ N)(∃k′ ∈ N)(∀∞n ∈ N)Dk
FS(S � n)−Dk′

PB(S � n) ≥ αn.

Definition 6.3.2. Let S ∈ {0, 1}ω. We say that PB-depth(S) ≥ α if

(∀k ∈ N)(∃k′ ∈ N)(∀∞n ∈ N)Dk
FS(S � n)−Dk′

PB(S � n) ≥ αn.

Otherwise we say PB-depth(S) < α.

Unlike in Chapters 4 and 5 where compressors were used to define depth, we

will take the minimal descriptional approach as opposed to using pebble com-

pressors because of their two-way nature, issues arise when trying to define what

compressibility by two-way compressors means. We similarly did not compare

pebble transducers against pebble transducers to define depth, unlike with FSTs

in Chapter 3, to keep with the spirit of Bennett’s original notion. Other diffi-

culties arise if this approach is taken also, one of which is finding an analogous

result to Lemma 3.3.9. Specifically, unlike in the finite-state setting where from

a description of the string xy we could get a description of both x and y sepa-

rately by switching the start state of the transducer used to output xy, this trick

does not work in the pebble setting due to their two-way nature and due to the

pebbles. Section 6.4 of this chapter discusses how we arrived at this definition of

depth in more detail.

6.3.1 Fundamental Properties

Before we show that pebble depth satisfies the fundamental properties of depth,

we first show the existence of PB-incompressible sequences. PB-trivial sequences

are evident in our later proofs. To demonstrate this, we first need the following

result which relates H and K, the prefix-free and plain version of Kolmogorov

119

6.3. Pebble Depth

complexity. It can be found as Corollary 2.4.2 in [118].

Lemma 6.3.3. For all x ∈ {0, 1}∗ it holds that

H(x) ≤ K(x) + 2 log(K(x)) +O(1) ≤ K(x) + 2 log(|x|) +O(1).

Lemma 6.3.4. If S ∈ {0, 1}ω is ML-random, then ρPB(S) = 1.

Proof. Let S ∈ {0, 1}ω be ML-random. Hence for all n there exists some c ∈ N

such that H(S � n) > n− c.

Fix k ∈ N and consider the prefix S � n of S. Let T ∈ PB≤k and y ∈ {0, 1}∗ be

such that T (y) = S � n and Dk
PB(S � n) = |y|. Let M be the machine such that

on inputs of the form d(σ)01x, where σ is a description of a pebble transducer via

our encoding and x is in the domain of the pebble transducer that σ describes,

M uses d(σ) to retrieve the pebble transducer and then simulates the transducer

on x. Otherwise, M loops.

Hence we have that

K(S � n) ≤ 2|σ|+ 2 + |y|+O(1) ≤ 2k + 2 +Dk
PB(S � n) +O(1).

By Lemma 6.3.3 it follows that

H(S � n) ≤ 2k+2+Dk
PB(S � n)+2 log(n)+O(1) = Dk

PB(S � n)+2 log(n)+O(1).

Therefore

Dk
PB(S � n) > n− c− 2 log(n)−O(1) = n− 2 log(n)−O(1).

Note if no y as above exists, this still holds as in such cases Dk
PB(S � n) =∞.

120

6.3. Pebble Depth

Therefore, for all k we have that

1 = lim inf
n→∞

n− 2 log(n)−O(1)

n
≤ lim inf

n→∞

Dk
PB(S � n)

n
≤ 1.

As k was arbitrary, it follows that ρPB(S) = 1.

The following demonstrates that sequences which are FST-trivial and PB-

incompressible (in the sense of Definition 2.4.3) are not PB-deep. This is anal-

ogous to Bennett’s fundamental properties of computable and ML-random se-

quences being shallow.

Theorem 6.3.5. Let S ∈ {0, 1}ω. If RFS(S) = 0 or ρPB(S) = 1 then S is not

PB-deep.

Proof. Suppose that RFS(S) = 0. Let α > 0. Let k be such that for almost every

n

Dk
FS(S � n) ≤ αn. (6.3)

Then for all k′ ∈ N, for almost every n we have that

Dk
FS(S � n)−Dk′

PB(S � n) ≤ Dk
FS(S � n) < αn. (6.4)

As α was chosen arbitrarily, S is not PB-deep.

Next suppose that ρPB(S) = 1. Therefore for all α > 0 and k ∈ N, for almost

every n it holds that

Dk
PB(S � n) ≥ (1− ε). (6.5)

Therefore we have for k′ such that IFS ∈ FST≤k
′
,

Dk′

FS(S � n)−Dk
PB(S � n) ≤ n− (1− α)n = αn. (6.6)

121

6.3. Pebble Depth

As α was chosen arbitrarily, S is not PB-deep

We now demonstrate that PB-depth also satisfies a slow growth law. In the

following theorem we show that if a deep sequence S ′ is the output of some ILFS

computable mapping, the original sequence S used to compute S ′ must also have

been deep. This is analogous to Bennett’s slow growth law as it demonstrates

that the fast process of computation by an ILFST cannot transform a non-deep

sequence into a deep sequence.

Theorem 6.3.6 (Slow Growth Law). Let S be a sequence. Let f : {0, 1}ω −→

{0, 1}ω be ILFS computable, and let S ′ = f(S). If S ′ is PB-deep, then S is

PB-deep.

Proof. The proof is similar to Theorem 3.3.8’s. Let S, S ′, f be as stated, and M

be an ILFST computing f .

For all n such that M(S � m) = S ′ � n for some m, let mn denote the largest

integer such that M(S � mn) = S ′ � n. As M is IL, it cannot visit the same state

twice without outputting at least one bit, so there exist a β > 0 such that for all

n, n ≥ βmn.

Fix l ∈ N. Let k be from Lemma 3.3.6 such that for all x ∈ {0, 1}∗

Dk
FS(M(x)) ≤ Dl

FS(x). (6.7)

As S ′ is PB-deep, there exists k′ and α > 0 such that for almost every n

Dk
FS(S ′ � n)−Dk′

PB(S � n) ≥ αn. (6.8)

Similarly let l′ be from Lemma 6.2.7 such that for all x

Dl′

PB(x) ≤ Dk′

PB(M(x)). (6.9)

122

6.3. Pebble Depth

Hence for almost every m we have that

Dl
FS(S � m)−Dl′

PB(S � m) ≥ Dk
FS(M(S � m)−Dl′

PB(S � m) (by (6.7))

≥ Dk
FS(M(S � m)−Dk′

PB(M(S � m)) (by (6.9))

= Dk
FS(M(S � mn)−Dk′

PB(M(S � mn)) (for some n)

= Dk
FS(S ′ � n)−Dk′

PB(S ′ � n)

≥ αn (by (6.8))

≥ αβmn ≥ αβm.

Hence S is PB-deep.

Next we show that if a transformation via a pebble transducer is performed

instead of via an ILFST, the existence of a sequence S such that ρPB(S) = 1 would

break the alternative slow growth law. First we need the following definition of

a pebble-computable function.

Definition 6.3.7. A function f : {0, 1}ω → {0, 1}ω is said to be pebble com-

putable if there is exists some T ∈ PB such that for all S ∈ {0, 1}ω, lim
n→∞

|T (S �

n)| =∞ and for all n ∈ N, T (S � n) v f(S).

We now present this result which breaks the alternative slow growth law.

Lemma 6.3.8. Let S ∈ {0, 1}ω be such that ρPB(S) = 1. There exists a pebble

computable function f such that for S ′ = f(S), S ′ is PB-deep while S is not

PB-deep.

Proof. Let S ∈ {0, 1}ω be such that ρPB(S) = 1. Recall the function pref on

strings and note that pref can extended to be a pebble computable function on

sequences. We will show that S ′ = pref(S) is PB-deep even though S is not

PB-deep by Theorem 6.3.5.

123

6.3. Pebble Depth

Let 0 < ε < 1. Note that as ρPB(S) = 1, it follows that dimFS(S) = 1 also.

Hence, for all k and almost every n it holds that

Dk
FS(S � n) > n(1− ε

3
). (6.10)

Consider an arbitrary prefix S ′ � n of S ′. Let j be such that

j(j + 1)

2
≤ n <

(j + 1)(j + 2)

2
.

S ′ � n can be written in the form x1x2 . . . xjy where xi = S[0..i−1] and y @ xj+1.

Suppose j∗ is such that Equation (6.10) holds for all j ≥ j∗. Then by Remark

3.3.11 it follows that for almost all k and large enough n,

Dk
FS(S ′ � n) ≥

j∑
i=1

D3k
FS(xi) +D3k

FS(y)

>

j∑
i=j∗

D3k
FS(xi)

>

j∑
i=j∗

|xi|(1−
ε

3
) (by (6.10))

= (n−O(1)− |y|)(1− ε

3
)

> n(1− 2ε

3
) (6.11)

as |y| = O(
√
n).

Similarly, let T be the pebble transducer such that on inputs of the form

d(x)01z, T uses d(x) and a pebble to print pref(x) and then uses z to print z.

Hence, T (d(xj)01y) = S ′ � n. Thus for n large,

D
|T |
PB(S ′ � n) ≤ 2j + 2 + |y| < 3(j + 1) = O(

√
n). (6.12)

124

6.3. Pebble Depth

Hence, for almost every k and for n large it holds that

Dk
FS(S ′ � n)−D|T |PB(S ′ � n) > n(1− 2ε

3
)− nε

3
= n(1− ε). (6.13)

As Equation (6.13) in fact holds for every k as Di
FS(x) ≥ Di+1

FS (x) for all strings

x, S ′ is in fact PB-deep. Thus the alternative slow growth law breaks.

For completeness, we provide the following construction for T : As T is a

1-pebble transducer, the pebble placement part of the transition and output

function will have value 0 or 1 indicating whether or not the pebble is present on

the current square of the input tape. Note that some transitions are omitted if

they are not seen.

Let T = (Q, q0, {qf}, 1, δ, ν) be as follows. T has the following set of states:

1. qs the start state.

2. qp is the state T enters when it needs to move its pebble.

3. qb is the state which records the first bit for b ∈ {0, 1} when examining a

block of size 2.

4. ql is the state used when T continuously moves its head to the left side of

the tape.

5. q1, q2, q3 are the states used to print the prefixes of the input.

6. qi is the state where T acts as the identity transducer.

7. qf is the final state.

Beginning in the start state, T moves its head to the right and enters the pebble

placement state

δ(qs,a, 0) = (qp,+1).

125

6.3. Pebble Depth

Beginning in qp, T then reads the next two bits. T first records the first bit

and moves right

δ(qp, b, 0) = (qb,+1).

Then reading the second bit, if it matches the first bit, T places a pebble onto

the square and enters the state for scanning to the left. If they do not match, T

moves right and enters the identity state. That is

δ(qb, a, 0) =


(ql, push) if a = b

(qi,+1) if a 6= b.

In ql, T scans left to the end of the tape, i.e. for b, c ∈ {0, 1},

δ(ql, b, c) = (ql,−1).

When T reaches the end of the tape, it begins reading in chunks of size two,

printing every second bit, until it sees the square containing the pebble. T first

moves its head right,

δ(ql,a, 0) = (q1,+1).

T then moves its head to the right to the second square on any bit,

δ(q1, b, 0) = (q2,+1).

In q2, if the current square contains the pebble, T pops the pebble and moves it

forward two squares. If it does not, T moves right and returns to q1. That is, on

any bit b,

δ(q2, b, c) =


(q1,+1) if c = 0

(q3, pop) if c = 1.

126

6.3. Pebble Depth

In q3, T returns to qp and moves its head to the right to begin the process of

moving the pebble again. That is,

δ(q3, b, 0) = (qp,+1).

When in state qi, T moves right regardless of the bit read. That is,

δ(qi, b, 0) = (qi,+1).

T enters its final state if T reaches the right hand side of the tape in states

qp, q
b or qi. That is, for q ∈ {qp, qb, qi},

δ(q,`, 0) = (qf ,−1).

T outputs the empty string on all transitions except in the following cases

where it prints the bit on the current square:

For c ∈ {0, 1}, ν(q2, b, c) = b and ν(qi, b, 0) = b.

This completes the construction of T .

6.3.2 Separation from Finite-State Depth

The following demonstrates a difference between FS-depth and PB-depth. Recall

that for both i.o. FS-depth ([57]) and a.e. FS-depth (Theorem 3.3.5), normal

sequences are not deep. On the other hand, the normal sequence from Theorem

5.4.1 (i.e. the sequence from Theorem 4.3 of [97]) which is LZ-deep is also PB-

deep.

127

6.3. Pebble Depth

Remark 6.3.9 ([97]). There exists S ∈ {0, 1}ω such that the normal sequence

S ′ from Theorem 5.4.1 satisfies S ′ = pref(S).

As there exists a 1-pebble transducer that is able to compute the pref function,

prefixes of S have low k-pebble complexity. Hence PB-depth is achieved.

Theorem 6.3.10. There exists a normal sequence which is PB-deep.

Proof. Let S ′ be the normal sequence from Theorem 4.3 of [97]. S ′ has the

property that there exists S ∈ {0, 1}ω such that pref(S) = S ′. We claim S ′

satisfies the theorem.

The proof follows from the same logic as the proof of Lemma 6.3.8 by noting

that as S ′ is normal, Equation (6.11) still holds. That is, that for all k and almost

every n,

Dk
FS(S ′ � n) ≥ (1− 2ε

3
).

Similarly, Equation (6.12) still holds for the same pebble transducer T . Thus,

Equation (6.13) still holds meaning that S ′ is PB-deep.

6.3.3 Separation from Lempel-Ziv Depth

The following demonstrates the existence of a sequence S with PB-depth of

roughly 1/2 and low LZ-depth. The sequence is that from Theorem 5 of [109].

This sequence is broken into blocks where each block is a concatenation of most

of the strings of length n. Specifically blocks are composed of subblocks of the

form XFY where X is a listing of a selection of strings of length n, F is a flag not

contained in any string of length n listed, and Y is a listing of strings of length

n such that Y = X−1. A pebble transducer can perform well on this sequence as

given X, the transducer can use its two-way tape property to print Y also. LZ

128

6.3. Pebble Depth

does not compress S by much as it is almost a listing of every string in order of

length. LZ compresses such sequences poorly.

Theorem 6.3.11. For each 0 < β < 1
2
, there exists a sequence S such that

PB-depth(S) ≥ 1
2
− β and LZ-depth(S) < β.

Proof. Let S be a sequence that satisfies Theorem 5 of [109]. We claim that

S satisfies the theorem statement. We present the construction of the sequence

again for clarity even though it was already given in Theorem 5.5.2.

Let 0 < β < 1
2
, and let k > 2 and v be integers to be determined later. For

any n ∈ N, let Tn denote the set of strings of length n that do not contain the

substring 1j in x for all j ≥ k. As Tn contains the set of strings whose every kth

bit is 0, it follows that |Tn| ≥ 2(k−1
k

)n. Note that for every x ∈ Tn, there exists

y ∈ Tn−1 and b ∈ {0, 1} such that x = yb. Hence

|Tn| < 2|Tn−1|. (6.14)

Let An = {a1n , . . . , aun} be the set of palindromes in Tn. As fixing the first dn
2
e

bits determines a palindrome, |An| ≤ 2d
n
2
e. The remaining strings in Tn−An are

split into v+1 pairs of sets Xn,i = {xn,i,1, . . . , xn,i,tin} and Yn,i = {yn,i,1, . . . , yn,i,tin}

where tin = b |Tn−An|
2v
c if i 6= v + 1 and

tv+1
n =

1

2
(|Tn − An| − 2

v∑
i=1

|Xn,i|),

(xn,i,j)
−1 = yn,i,j for every 1 ≤ j ≤ tin and 1 ≤ i ≤ v+1 both xn,i,1 and yn,i,tn start

with 0 (that is, xn,i,tin ends with a 0) excluding the case where both Xn,v+1 and

Yn,v+1 are the empty sets). Note that for convenience we write Xi, Yi for Xn,i, Yn,i

respectively.

S is constructed in stages. Let f(k) = 2k and f(n+ 1) = f(n) + v + 2. Note

that n < f(n) < n2 for large n. For n ≤ k−1, Sn is a concatenation of all strings

129

6.3. Pebble Depth

of length n, i.e. Sn = 0n · 0n−11 · · · 1n−10 · 1n. For n ≥ k,

Sn = a1n . . . aun1f(n)zn,1zn,2 . . . zn,vzn,v+1

where

zn,i = xn,i,1xn,i,2 . . . xn,i,tin−1xn,i,tin1f(n)+iyn,i,tinyn,i,tin−1 . . . yn,i,2yn,i,1,

with the possibility that zn,v+1 = 1f(n)+v+1 only. That is, Sn is a concatenation

of all strings in An followed by a flag of f(n) ones, followed by a concatenation

of all strings in the Xi zones and Yi zones separated by flags of increasing length

such that each Yi zone is the Xi zone written in reverse. Finally we set

S = S1S2 . . . Sk−11k1k+1 . . . 12k−1SkSk+1 . . .

i.e. the concatenation of all Sj zones with some extra flags between Sk−1 and Sk.

We first examine the lower randomness density of S for pebble transducers.

Claim 6.3.12.

lim
k→∞

lim sup
n→∞

Dk
PB(S � n)

n
≤ 1

2
.

We prove this claim by building the 1-pebble transducer T that acts as follows:

T begins moving right and printing its input until it sees the first 0 after a flag of

2k ones. Upon seeing this 0, if the succeeding bit is a 1, T stays in the print zone.

T moves right and prints what is on its tape until it sees a flag of 2k ones followed

by a 0 again. If T sees a 0 after 12k0, T enters a print-and-reverse zone. T drops

its pebble on the succeeding square. T moves its head right printing what it sees

until it sees 12k0 (without printing the last 0), then scans left past the flag of 1s.

Once the flag of 1s ends, T prints what it sees (i.e. printing the reverse of what

it just printed) until it reaches the square with the pebble, printing what is on

130

6.3. Pebble Depth

it. T then moves right until it sees 12k0 again and checks the next bit to see if it

is in a print or print-and-reverse zone.

Let y = S1 . . . Sk−11k . . . 12k−1. Then T (y0) = y. Note that |y| + 1 < 22k. For

n ≥ k and 1 ≤ i ≤ v, let

πn = 1a1n . . . aun1f(n)0 and σn,i = 0xn,i,1 · · · xn,i,tin1f(n)+i0.

If i = v + 1 we let

σn,v+1 =


0xn,v+1,1 · · · xn,v+1,tv+1

n
1f(n)+v+10 if |Xn,v+1| 6= 0

11f(n)+v+10 otherwise.

Lastly we set

τn = πnσn,1σn,2 . . . σn,v+1.

Note that

|τn| ≤ |An|n+ (v + 2)(f(n) + v + 1) + 2(v + 2) +
n

2
|Tn − An|

= |An|n+ (v + 2)(f(n) + v + 3) +
n

2
|Tn − An|. (6.15)

Then as T (y0τk . . . τn−1) = S1 . . . Sk−11k . . . 12k−1Sk . . . Sn−1, it follows that

D
|T |
PB(S1 . . . Sk−11k . . . 12k−1Sk . . . Sn−1) ≤ |S1 . . . Sk−11k . . . 12k−1|+ 1

+
n−1∑
j=k

[|Aj|j + (v + 2)(f(j) + v + 3) +
j

2
|Tj − Aj|]. (6.16)

Let wp be the string such that T (wp) = S � p. Note that the ratio |wp|
|p| is

maximal if the suffix of S � p is a full concatenation of a Yn,i zone without the

131

6.3. Pebble Depth

final bit. That is, S � p ends with a suffix of the form

yn,i,tin . . . yn,i,2yn,i,1[0..n− 2].

This is because T cannot make use of its two-way capability to print the reverse

of the X zone since it does not know where to stop. In particular, the ratio is

maximal on the zone i = 1 as it immediately follows the palindrome portion of

Sn where T acts as the identity transducer to output it.

Let 0 ≤ I < v. We do not examine the case where I = v as in this case, T

requires the fewest amount of bits to output the v + 1th zone. We examine the

ratio |wp|
|S�p| inside zone Sn on the second last symbol of the YI+1 zone. Note that

T outputs S � p on input

y0τk . . . τn−1πnσn,1 . . . σn,I1z

where

z = xn,I+1,1 . . . xn,I+1,tn1f(n)+I+1yn,I+1,tn . . . yn,I+1,2yn,I+1,1[0..n− 2].

Thus

|wp| ≤ 22k +
n−1∑
j=k

[|Aj|j + (v + 2)(f(j) + v + 3) +
j

2
|Tj − Aj|]

+ |An|n+ (v + 2)(f(n) + v + 3) + I(
n|Tn − An|

2v
) +

n|Tn − An|
v

. (6.17)

Note first that

n∑
j=k

|Aj|j ≤ n2|An| ≤ n2 · 2d
n
2
e ≤ n2 · 2

n+1
2 (6.18)

for n large. Similarly the summation of the (f(j) + v + 2) contributes at most a

132

6.3. Pebble Depth

polynomial number of bits in n. Along with the 22k term being a constant term

this gives us for all ε > 0, for n large

|wp| ≤ 2n(1
2

+ε) +
n−1∑
j=k

j

2
|Tj|+

n|Tn|
v

(
I

2
+ 1)

= 2n(1
2

+ε) +
n−1∑
j=k

j

2
|Tj|+

n|Tn|
2v

(I + 2). (6.19)

The number of bits in such a prefix of S is

|S � p| ≥
n−1∑
j=k

j|Tj|+ n|An|+ 2n
⌊ |Tn − An|

2v

⌋
(I + 1)

≥
n−1∑
j=k

|Tj|+ n|An|+ 2n(
|Tn − An|

2v
− 1)(I + 1)

=
n−1∑
j=k

|Tj|+ n|An|+ n(
|Tn| − |An|

v
− 2)(I + 1)

=
n−1∑
j=k

j|Tj|+ n|An|(1−
(I + 1)

v
) + n(I + 1)(

|Tn|
v
− 2)

≥
n−1∑
j=k

j|Tj|+
n

v
|Tn|(I) (6.20)

as I + 1 ≤ v.

133

6.3. Pebble Depth

Hence,

lim sup
n→∞

|wn|
|S � n|

≤ lim sup
n→∞

2n(1
2

+ε) +
∑n−1

j=k
j
2
|Tj|+ n|Tn|

2v
(I + 2)∑n−1

j=k j|Tj|+
n|Tn|
v

(I)

(by (6.19) and (6.20))

= lim sup
n→∞

[
2n(1

2
+ε) + 2 · n|Tn|

2v∑n−1
j=k j|Tj|+

n|Tn|
v

(I)

+
1

2
·
∑n−1

j=k j|Tj|+
n|Tn|
v

(I)∑n−1
j=k j|Tj|+

n|Tn|
v

(I)

]

= lim sup
n→∞

[
2n(1

2
+ε) + n|Tn|

v∑n−1
j=k j|Tj|+

n|Tn|
v

(I)
+

1

2

]
. (6.21)

By (6.14), as
∑n−1

j=k j|Tj| ≥ (n− 1)|Tn−1| ≥ (n−1)
2
|Tn|, we have

n−1∑
j=k

j|Tj|+
n

v
|Tn|(I) ≥ n− 1

2
|Tn|+

n

v
|Tn|(I)

=
n|Tn|

2v
(2I + v − v

n
). (6.22)

Thus, when ε is chosen to be such that 0 < ε < 1
2
− 1

k
we have that

lim sup
n→∞

2n(1
2

+ε)∑n−1
j=k j|Tj|+

n|Tn|
v

(I)
≤ lim sup

n→∞

2n(1
2

+ε)

(n−1)
2
|Tn|
≤ lim sup

n→∞

2n(1
2

+ε)

|Tn|

≤ lim sup
n→∞

2n(1
2

+ε)

2
(k−1)n

k

= 0

as k > 2. Similarly by (6.22) we have

n|Tn|
v∑n−1

j=k j|Tj|+
n|Tn|
v

(I + 1)
≤

n|Tn|
v

n|Tn|
2v

(2I + v − v
n
)
≤ 2

v(1− 1
n
)

(6.23)

which can be made arbitrarily small by choosing v appropriately large.

Therefore

lim sup
n→∞

|wn|
|S � n|

≤ 1

2
.

134

6.3. Pebble Depth

This establishes Claim 6.3.12, i.e. for all 0 < β′ < 1/2− 3/k, we can choose v, I

and k appropriately such that

D
|T |
PB(S � n) ≤ (

1

2
+
β′

2
)n. (6.24)

Next we examine how well any ILFST can compress prefixes of S. We use the

equality from Definition 3.2.6 regarding the finite-state dimension of S to relate

the compression performance back to k-finite-state complexity.

Recall from the proof of Theorem 5.5.2 it was shown in Equation (5.34) that

ρUPD(S) ≥ k−3
k

. Hence it follows that

dimFS(S) = ρILFST(S) ≥ ρUPD(S) ≥ k − 3

k
.

Therefore, for all l and almost every n it holds that

Dl
FS(S � n) ≥ (

k − 3

k
− β′

2
)n. (6.25)

Hence, for all l and almost every n it follows that

Dl
FS(S � n)−D|T |PB(S � n) ≥ (

k − 3

k
− β′

2
)n− (

1

2
+
β′

2
)n

= (
1

2
− 3

k
− β′)n

≥ (
1

2
− β)n (6.26)

where 3/k + β′ ≤ β < 1/2. That is, PB-depth(S) ≥ 1/2− β.

Recall from [109], for all β < 1
2
, k and v can be chosen such that

ρLZ(S) > (1− β

2
). (6.27)

135

6.3. Pebble Depth

Again, therefore we have that for almost every n that

|LZ(S � n)| > (1− β)n (6.28)

and so

|IFS(S � n)| − |LZ(S � n)| < n− (1− β)n = βn. (6.29)

That is, LZ-depth(S) < β.

Thus, if k, v and β′ are chosen such that Equations (6.26) and (6.29) hold,

we have the desired result.

For completeness, the following is a construction for T : T = (Q, qo, F, 1, δ, ν)

is the 1-pebble transducer whose states are follows:

1. q0 the start state,

2. qi,w for w ∈ {0, 1}2k the just printing states,

3. q1 the state used to check whether the transducer just prints or needs to

print the reverse too,

4. qp a state used to place the pebble,

5. qr,w for w ∈ {0, 1}2k, the state where T moves right printing but will print

the reverse too,

6. qf the state when scanning left along the flag before printing the reverse,

7. ql the state used to print the reverse moving left,

8. qs,w for w ∈ {0, 1}2k used to scan right,

9. qF the final state.

136

6.3. Pebble Depth

So F = {qF}.

From the start state, T moves to state qi,02k and prints nothing. That is,

δ(q0,a, 0) = (qi,02k ,+1),

and

ν(q0,a, 0) = λ.

From here, T continuously prints what is under its head moving right until it sees

the end of a flag. At the end of the flag it moves to q1. That is for w ∈ {0, 1}2k

and b ∈ {0, 1}

δ(qi,w, b, 0) =


(qi,w[1..]b,+1) if w 6= 12k or (w = 12k and b = 1)

(q1,+1) if w = 12k and b = 0,

and

ν(qi,w, b, 0) =


b if w 6= 12k or (w = 12k and b = 1)

λ if w = 12k and b = 0.

In q1, T has just read a 0 after a flag of 12k. If T reads a 1 in q1, T moves

right and returns to qi,02k the initial printing state. If T reads a 0, T moves right

and enters the state qp and places its pebble on its tape. That is,

δ(q1, b, 0) =


(qp,+1) if b = 0

(qi,02k ,+1) if b = 1.

T prints nothing in q1. That is, for b, c ∈ {0, 1}

ν(q1, b, c) = λ.

137

6.3. Pebble Depth

In qp, T places a pebble on its current square and enters state qr,02k and prints

nothing. That is, for b ∈ {0, 1},

δ(qp, b, 0) = (qr,02k , push),

and

ν(qp, b, 0) = λ.

T moves its head to the right printing what it reads when in states qr,w. It

does this until it sees the end of a 12k flag, upon which it enters state qf moving

its head to the left. That is, for b, c ∈ {0, 1}, w ∈ {0, 1}2k,

δ(qr,w, b, c) =


(qr,w[1..]b,+1) if w 6= 12k or (w = 12k and b = 1)

(qf ,−1) if w = 12k and b = 0,

and

ν(qr,w, b, c) =


b if w 6= 12k or (w = 12k and b = 1)

λ if w = 12k and b = 0.

T moves its head to the left printing nothing while in qf until it sees a 0, that

is, the end of the 12k flag zone. When it sees a 0, T begins printing what it reads

and enters state ql. That is for b ∈ {0, 1},

δ(qf , b, 0) =


(qf ,−1) if b = 1

(ql,−1) if b = 0,

and

ν(qf , b, 0) =


λ if b = 1

0 if b = 0.

In ql, T moves its head to the left printing what it sees until it sees the square

138

6.3. Pebble Depth

with the pebble. When T sees the pebble, T removes the pebble and enters state

qs,02k . That is for b, c ∈ {0, 1}

δ(ql, b, c) =


(ql,−1) if c = 0

(qs,02k , pop) if c = 1,

and

ν(ql, b, c) = b.

T moves its head to the right printing nothing until it sees the end of a 12k

flag, upon which it enters state q1 to begin the process of printing a new zone

again. That is, for b ∈ {0, 1}, w ∈ {0, 1}2k

δ(qs,w, b, 0) =


(qs,w[1..]b,+1) if w 6= 12k or (w = 12k and b = 1)

(q1,+1) if w = 12k and b = 0,

and

ν(qs,w, b, 0) = λ.

For w ∈ {0, 1}2k, if T is in state qi,w (the just printing states without reversing)

or in state q1 (where T checks if the next zone is just printing or printing and

reversing) and sees ` indicating the right hand side of the tape, T enters qF the

final state and halts, printing nothing. That is for w ∈ {0, 1}2k

δ(qi,w,`, 0) = δ(q1,`, 0) = (qF ,−1),

and

ν(qi,w,`, 0) = ν(q1,`, 0) = λ.

This completes the construction of T .

139

6.3. Pebble Depth

Corollary 6.3.13. There exists a non-normal PB-deep sequence.

Proof. This follows from Theorem 6.3.11 since the string 012k0 only occurs as

a substring of the constructed sequence S which satisfies the theorem a finite

number of times. This is clear as the only places 012k can occur is if 0 is the last

bit of Sk−1 or where the 12k is a prefix to a flag in some zone Sn. However, as the

flags increase in length, 012k will eventually always be followed by another 1.

6.3.4 Preliminary Comparison with Pushdown Depth

In this chapter we do not present an example of a sequence which is PB-deep

but not PD-deep. More work is to be done to find such a sequence if it exists.

Instead we present a preliminary result which states that for all 0 < β < 1/2, one

can construct a sequence S such that PB-depth(S) ≥ 1−β while PD-depth(S) ≥

1/2−β. Hence, the sequence is deep in both notions, and it is possible that their

depth levels are in fact equal. However, we show the sequence is not FS-deep.

The sequence is composed of strings of the form R|R|F (R−1)|R| where F is a

flag and R is a string not containing F with large plain Kolmogorov complexity

relative to its length. Note that R|R| is a string of length |R|2. From a single

description of R, a 1-pebble transducer can use a single pebble to print R|R|.

A large ILPDC with no restriction on its stack can be built to push R|R| onto

its stack, and then when it sees the flag F , use its stack to compress (R−1)|R|.

These R are built such that an ILUPDC is unable to use its stack to compress

R, resulting in minimal compression. For FSTs, the sequence appears almost

random and so little depth is achieved.

Note that the sequence is similar to that in Theorem 4.4.3, however the suc-

cessive repetitions R allows a pebble-transducer to gain an advantage neither the

140

6.3. Pebble Depth

ILPDC we examine nor an FST have.

Remark 6.3.14. For all 0 < β < 1/2, there exists a sequence S such that

PB-depth(S) ≥ 1− β, PD-depth(S) ≥ 1/2− β, and FS-depth(S) < β.

Proof. The sequence S which we construct that satisfies this remark is similar to

the sequence constructed in Theorem 4.4.3.

Let 0 < β < 1/2 and let k > 8 be such that β ≥ 8/k. For each n, let

tn = kd
logn
log k
e. Note that for all n,

n ≤ tn ≤ kn. (6.30)

Consider the set Tj which contains all strings of length j that do not contain 1k

as a substring. As Tj contains strings of the form x10x20x30 · · · where each xt is

a string of length k− 1, we have that |Tj| ≥ 2j(1−
1
k

). For each j, let Rj ∈ {0, 1}ktj

have maximal plain Kolmogorov complexity in the sense that

K(Rj) ≥ |Rj|(1−
1

k
). (6.31)

Such an Rj exists as |T|Rj || > 2|Rj |(1− 1
k

) − 1. Note that kj ≤ |Rj| ≤ k2j. We

construct S in stages S = S1S2 . . . where for each j,

Sj = R
|Rj |
j 1k(R−1

j)|Rj |.

Claim 6.3.15. PD-depth(S) ≥ 1
2
− β.

First we examine how well any ILUPDC compresses occurrences of Rj zones

in S. Let C ∈ ILUPDC. Consider the tuple

(Ĉ, qs, qe, z, νC(qs, Rj, z))

141

6.3. Pebble Depth

where Ĉ is an encoding of C, qs is the state that C begins reading Rj in, qe is

the state C ends up in after reading Rj, z is the stack contents of C as it begins

reading Rj in qs (i.e. z = 0pz0 for some p), and the output νC(qs, Rj, z) of C on

Rj. By Remark 4.2.5, C’s stack is only important if |z| < (c+ 1)|Rj|, as if |z| is

larger, C will output the same regardless of |z|’s true value. Hence, setting

z′ =


|z| if |z| < (c+ 1)|Rj|

(c+ 1)|Rj| if |z| ≥ (c+ 1)|Rj|,
(6.32)

as C is lossless, having knowledge of the tuple (Ĉ, qs, qe, z
′, νC(qs, Rj, z)) means

we can recover Rj. If we encode the tuple (Ĉ, qs, qe, z
′, νC(qs, Rj, z)) the same

way as in (4.9), and noting that z′ contributes roughly O(log |Rj|) bits to the

encoding, we have we have by Equation (6.31) that

|Rj|(1−
1

k
) ≤ K(Rj) ≤ |νC(qs, Rj, z)|+O(log |Rj|) +O(|Ĉ|) +O(1). (6.33)

Therefore, for j large we have

|νC(qs, Rj, z)| ≥ |Rj|(1−
1

k
)−O(log |Rj|) > |Rj|(1−

2

k
) (6.34)

This is similarly true for R−1
j zones also as K(Rj) ≤ K(R−1

j) + O(1). Hence for

j large we see that C outputs at least

|C(Sj)| − |C(Sj−1)| ≥ 2|Rj|2(1− 2

k
)

= (|Sj| − k)(1− 2

k
)

≥ |Sj|(1−
3

k
) (6.35)

bits when reading Sj.

142

6.3. Pebble Depth

Next we examine how well C compresses S on arbitrary prefixes. Consider

the prefix S � n and let j be such that Sj is a prefix of S � n but Sj+1 is not.

Thus S � n = Sj · y for some y @ Sj+1. Suppose Equation (6.35) holds for all

i ≥ j′. Hence we have that

|C(S � n)| ≥ |C(Sj)| ≥ |C(Sj)| − |C(Sj′−1)|

≥ |Sj′ . . . Sj|(1−
3

k
)−O(1) (by (6.35))

= (n− |y| − |Sj′−1|(1−
3

k
)−O(1)

≥ (n− |y|)(1− 4

k
). (6.36)

Then, noting that n = Ω(j3) and that |y| = O(j2), by Equation (6.36) we have

that

|C(S � n)| ≥ n(1− 5

k
). (6.37)

As C was arbitrary, we therefore have that

ρUPD(S) > 1− 6

k
. (6.38)

Next we examine how well the ILPDC C ′ from the proof of Theorem 4.4.3 can

compress prefixes of S. Recall that C ′ outputs its input for some prefix S1 . . . Si.

Then, for all j > i, C ′ compresses Sj as follows: On Sj, C
′ outputs its input on

R
|Rj |
j 1k while trying to identify the 1k flag. Once the flag is found, C ′ pops the

flag from its stack and then begins to read an (R−1
j)|Rj | zone. On (R−1

j)|Rj |, C ′

counts modulo v to output a zero every v bits, and uses its stack to ensure that

the input is indeed (R−1
j)|Rj |. If this fails, C ′ outputs an error flag and enters an

error state and from then on outputs its input. Furthermore, v is cleverly chosen

such that for all but finitely many j, v divides evenly in |Rj|. Specifically we set

v = ka for some a ∈ N. A complete description of C ′ was provided at the end of

143

6.3. Pebble Depth

the proof of Theorem 4.4.3 on page 84.

Next we will compute the compression ratio of C ′ on S. We let p be such that

for all j ≥ p, v divides evenly into |Rj|. C ′ will output its input on Sp and begin

compressing on the succeeding zones. Also, note that the compression ratio of

C ′ on S is largest on prefixes ending with a flag 1k. Hence, consider some prefix

Sj−1R
|Rj |
j 1k of S. We have that for n sufficiently large

|C(Sj−1R
|Rj |
j 1k)|

|Sj−1R
|Rj |
j 1k|

≤
|Sp−1|+

∑j
i=p(|Ri|2 + k + |Ri|2

v
)− |Rj |2

k

|Sj−1R
|Rj |
j 1k|

≤ |Sp−1|
|Sj−1|

+
(1 + 1

v
)
∑j

i=1(kti)
2 + jk − (ktj)2

v

|Sj−1|

≤ 1

6v
+

(1 + 1
v
)
∑j

i=1(kti)
2 + jk − (ktj)2

v

2k2
∑j−1

i=1 t
2
i

(for j large)

≤ 1

6v
+

(1 + 1
v
)
∑j−1

i=1 t
2
i

2
∑j−1

i=1 t
2
i

+
t2j

2
∑j−1

i=1 t
2
i

+
j

2k
∑j−1

i=1 t
2
i

≤ 1

6v
+

1

2
+

1

2v
+

3(jk)2

(j − 1)(j)(2j + 1)
+

3

k(j − 1)(2j + 1)

≤ 1

6v
+

1

2
+

1

2v
+

1

6v
+

1

6v
(for j large)

=
1

2
+

1

v
. (6.39)

As v can be chosen to be arbitrarily large, we therefore have that

RPD(S) ≤ 1

2
. (6.40)

Hence, for n large, by Equations (6.38) and (6.40) it follows that for all C ∈

ILUPDC

|C(S � n)| − |C ′(S � n)| ≥ (1− 6

k
− 1

k
)n− (

1

2
+

1

k
)n (6.41)

= (
1

2
− 8

k
). (6.42)

144

6.3. Pebble Depth

Hence, choosing k large such that 8
k
≤ β gives us our desired result of PD-

depth(S) ≥ 1
2
− β.

Claim 6.3.16. FS-depth(S) < β.

Next we examine the finite-state depth of S. From Equation (4.22) and Defi-

nition 3.2.6, it follows that dimFS(S) > 1− 6
k
. Hence, for all l it follows that for

all but finitely many n

Dl
FS(S � n) ≥ (1− 7

k
)n. (6.43)

Therefore, for l′ such that IFS ∈ FST≤l
′

we have for all l and almost every n that

Dl′

FS(S � n)−Dl
FS(S � n) ≤ n− (1− 7

k
)n <

8

k
· n. (6.44)

That is, FS-depth(S) < β as desired.

Claim 6.3.17. PB-depth(S) ≥ 1− β.

Finally we examine the pebble depth of S. Consider the pebble-transducer

T that reads its input the following way: T reads its input in chunks of size 2

trying to find flags of uneven bits. If T reads a chunk 10 in its input, T then

scans right continuing to read its input in chunks of size two until it finds two

unequal bits. T uses the two flags and the string of the form d(x) between the

flags to print the string x|x|. That is, if T reads an input with the substring

10d(x)b1b2, with b1, b2 ∈ {0, 1}, b1 6= b2, and x ∈ {0, 1}∗, then T outputs x|x| on

that substring. If instead T reads the chunk 01, then T reads its input in chunks

of size 2, outputting a single bit from each chunk if the bits match until it sees

an unequal chunk or it reaches the end of the tape. That is, if T reads an input

with the substring 01d(x)b1b2, with b1, b2 ∈ {0, 1}, b1 6= b2, and x ∈ {0, 1}∗, or the

tape ends with 01d(x) `, then T outputs x. T enters its final state upon seeing

` if the last flag it saw was 01, i.e. T must ‘print’ at least the empty string to

145

6.3. Pebble Depth

enter a final state. A full description of T is provided at the end of this proof.

Consider an arbitrary prefix S � n of S. Let j be such that Sj−1 is a prefix of

S � n but Sj is not. That is, S � n = Sj−1 · y for some y @ Sj. For each i, let xi

denote the string

xi = 10 · d(Ri) · 01 · d(1k) · 10 · d(R−1
i).

Hence we have that

T (x1 . . . xj−101 · d(y)) = S � n.

Then, for all ε > 0, for n large it follows that

D
|T |
PB(S � n)

n
=

∑j−1
i=1 |xi|+ 2 + 2|y|
|Sj−1|+ |y|

≤ 4
∑j−1

i=1 |Ri|+ (6 + 2k)(j − 1) + 2 + 2|y|
|Sj−1|

≤ 4
∑j−1

i=1 kti + (6 + 2k)(j − 1) + 2 + 2|Sj|
|Sj−1|

≤ 4k
∑j−1

i=1 ti + (6 + 2k)(j − 1) + 2 + 2k + 4(ktj)
2

2k2
∑j−1

i=1 t
2
i

≤ 4k2
∑j−1

i=1 i

2k2
∑j−1

i=1 i
2

+
(6 + 2k)(j − 1) + 2(1 + k)

2k2
∑j−1

i=1 i
2

+
4k3j2

2k2
∑j−1

i=1 i
2

=
6

2j − 1
+

(6 + 2k)(j − 1) + 2(1 + k)

(j − 1)(j)(2j − 1)/6
+

12kj2

(j − 1)(j)(2j − 1)

≤ ε. (for j large)

Hence we have that

RPB(S) = 0. (6.45)

Therefore, by Equations (6.43) and (6.45), for all k and almost every n we

146

6.3. Pebble Depth

have that

Dk
FS(S � n)−D|T |PB(S � n) ≥ (1− 7

k
)n− 1

k
n ≥ 1− β. (6.46)

That is, PB-depth(S) ≥ 1− β as desired.

For completeness, the following is a description of the pebble transducer T .

Note that some transitions are omitted if there are never seen. Let Q be the

following set of states of T :

1. the start state qs,

2. the accepting state qa,

3. the failure state qd,

4. the initial flag identifying states qis, q
0
s and q1

s ,

5. the ‘just print’ states qp, q
0
p and q1

p,

6. the ‘place pebble’ states q,rq
0
r , q

1
r ,

7. the states used to find a flag when scanning left ql, q
0
l and q1

l ,

8. the ‘print square’ states q−1
i , qi, q

0
i and q1

i ,

9. the states used to find and pop the pebble from the tape qf and q′f .

We first describe the transition function δ of T . Beginning in the start state,

T checks whether the next two bits contain 01 or 10 to indicate whether it is

entering a print or print-square zone respectively. T first moves right off of a

δ(qs,a, 0) = (qis,+1).

147

6.3. Pebble Depth

In qi, T reads what is under its head and moves right to check the next bit. That

is,

δ(qis, b, c) =



(qd,+1) if b =a

(qd,−1) if b =`

(q0
s ,+1) if b = 0

(q1
s ,+1) if b = 1.

T then checks if the next bit is different from the previous bit, i.e. if a flag has

just been read. If they are the same or the end of the tape has been read, T

enters the failure state. That is,

δ(qbs, b
′, c) =


(qd,−1) if b =` or b′ = b

(qp,+1) if bb′ = 01

(qr,+1) if bb′ = 10.

If the flag read was 01, T enters the ‘just print’ states beginning with state qp.

Here, T reads its input in chunks of size two. T scans left until it sees a chunk of

two unmatching bits, that is, another flag and enters the appropriate state. If it

reaches the right end of the tape, it enters the final state. That is, beginning in

state qp, T reads the first bit of a chunk

δ(qp, b, c) =


(qbp,+1) if b ∈ {0, 1}

(qa,−1) if b =`.

Then in state qbp, if the next bit read matches b, T enters state qp again, otherwise

148

6.3. Pebble Depth

it knows it has just read a flag. That is

δ(qbp, b
′, c) =



(qp,+1) if b = b′

(qp,+1) if bb′ = 01

(qr,+1) if bb′ = 10

(qa,−1) if b =`.

If T has read the flag 10, it enters the ‘print square’ zone. T must first place

its pebble on its tape. Starting in state qr, T reads its input and then moves to

the right checking if the two bits it has just read match. If they match, T places

its pebble on the tape, otherwise it knows it has just read another flag. That is

δ(qr, b, 0) =


(qd,−1) if b =`

(q0
r ,+1) if b = 0

(q1
r ,+1) if b = 1,

and

δ(qbr, b
′, 0) =



(qd,−1) if b′ =`

(ql, push) if b = b′

(qr,+1) if bb′ = 10

(qp,+1) if bb′ = 01.

Once the pebble is placed, beginning in state ql, T scans left while reading in

chunks of size two to find the last 10 flag it has read. That is,

δ(ql, b, c) = (qbl ,−1)

149

6.3. Pebble Depth

and

δ(qbl , b
′, c) =


(ql,−1) if b = b′

(q−1
i ,+1) if b′b = 10

(qd,+1) otherwise.

Once the 10 flag is found, beginning in state q−1
i , T moves to the right

δ(q−1
i , b, c) = (qi,+1).

Using states qi, q
0
i and q1

i , T scans right reading in chunks of size two trying to

find the next flag. That is

δ(qi, b, c) =


(qd,−1) if b =`

(qbi ,+1) if b ∈ {0, 1},

and

δ(qbi , b
′, c) =


(qd,−1) if b =`

(qi,+1) if b = b′

(qf ,−1) if b 6= b′.

In state qf , T has just read a flag. T then scans left to find its pebble on its tape

to pop it. That is,

δ(qf , b, c) =


(qd,+1) if b =`

(qf ,−1) if c = 0

(q′f , pop) if c = 1.

150

6.4. Discussion

In state q′f , T moves right and re-enters state qr to place a pebble on its tape.

That is,

δ(qf , b, c) = (qr,+1).

In the failure state qd, T enters a loop and so never enters qa. That is

δ(qd, b, c) =


(qd,−1) if b =`

(qd,+1) otherwise.

T outputs nothing on all transitions except in the following two cases:

• ν(pb, b, c) = b (when in a ‘just print’ state and it sees an equal chunk)

• ν(qbi , b, c) = b (when in a ‘print square’ zone and it sees an equal block)

This completes the construction of T .

6.4 Discussion

6.4.1 Why not Compressors?

Unlike in Chapters 4 and 5 where compressors were used to define pushdown and

Lempel-Ziv depth, for pebble depth we took the minimal description decompres-

sion approach. The main reason for this is that the power of pebble-transducers

comes from their ability to compute string to string functions that other types of

transducers cannot, e.g. the pref and the powk functions.

For pebble compressors to be of interest, as opposed to ordinary two-way

finite-state compressors, one would hope that on all inputs of the form x|x| for

instance, a 1-pebble compressor exists which would output x. However, this com-

pressor would recognise the non-regular language of L = {x|x| : x ∈ {0, 1}∗}

contradicting that pebble-automata recognise only the regular languages [74].

151

6.4. Discussion

The main issue is as pebble-automata are two-way, each position of the in-

put can be visited multiple times which introduces a problem of defining what

compression by a pebble-compressor even means. When considering the output’s

length, one could consider the length up to the first instance of a visit to a po-

sition of the input, or the last visit of a position, or any other variation. This is

explored by Carton and Heiber in [35]. They demonstrate how for ordinary two-

way finite-state compressors (0-pebble compressors) these possible definitions are

equivalent on normal inputs. However, if an additional counter is added to the

machine, that is a stack whose stack alphabet has only one character, the defini-

tion of compressibility collapses with the counter providing unbounded memory.

A k-pebble transducer only has access to k extra bits of information at any one

time compared to a finite-state transducer. Hence its memory is bounded. How-

ever compressibility still collapses as shall be demonstrated next.

The following adapts Carton and Heiber’s approach of compressibility for 0-

pebble compressors to k-pebble compressors [35].

Definition 6.4.1. Let fn = min{j| ij = n} and ln = max{j| ij = n} be the first

and last visit of position n in the input of the accepting run of an information

lossless k-pebble compressor whose sequence of configurations is given by

r = (q0, 0,⊥k, λ)→ (q1, i1, b1, v1)→ (q2, i2, b2, v1v2)→ (q3, i3, b3, v1v2v3) · · ·

The first-hit, middle and last-hit outputs of the compressor at position n of its

input are respectively given by

∑
j≤fn

|vj+1|,
∑
ij≤n

|vj+1|, and
∑
j≤ln

|vj+1|.

Similarly for a 0-pebble compressor, where fn = min{j| ij = n} and ln =

152

6.4. Discussion

max{j| ij = n} on an accepting run whose sequence of configurations is given by

r = (q0, 0,⊥, λ)→ (q1, i1,⊥, v1)→ (q2, i2,⊥, v1v2)→ (q3, i3,⊥, v1v2v3) · · ·

Carton and Heiber then define the first-hit, middle and last-hit ratios at position

n are respectively given by

lim inf
n→∞

1

n

∑
j≤fn

|vj+1|, lim inf
n→∞

1

n

∑
ij≤n

|vj+1|, and lim inf
n→∞

1

n

∑
j≤ln

|vj+1|.

In Theorem 3.2 of [35], it is shown that these three ratios coincide on normal

inputs.

The above characterizations of the three ratios can be adapted to k-pebble

transducers also. As an input of size n’s output has size O(nk+1), the above ratios

may be adapted by dividing by 1
nk+1 instead of 1

n
. Regardless of whether 1

nk+1 or 1
n

is used, we next demonstrate these ratios are not equivalent for certain k-pebble

compressors. This is shown by the existence of a 1-pebble compressor such that

for longer prefixes of any sequence, the middle and last hit ratio tend to infinity

while the first hit ratio also tends to infinity (if we divide by 1
n
) and to 1/2 if we

divide by 1
n2 .

Consider the 1-pebble T compressor which computes the function pref. Be-

ginning on a, T moves one square to the right and places its pebble. T then scans

left to a printing nothing, and then scans right printing every bit it reads up until

(and including) it sees the square with the pebble. T then lifts the pebble and

moves it one square to the right and scans left again repeating the process. T

enters an accepting state when it reaches the right end of the tape. Since |pref(x)|

is a triangular number, |x| can be retrieved from knowing |pref(x)|. Hence T is

lossless as then x will equal the suffix of pref(x) of length |x|.

Let S ∈ {0, 1}ω. Note for all m, T (S � m) @ T (S � (m+ 1)). We examine the

153

6.4. Discussion

first-hit, middle and last hit ratio of character S[n− 1] (the nth bit) of S when T

is given the input S � m, where m > n.

The first time T reads S[n − 1] it has already printed out pref(S � (n − 1)).

T also prints nothing during its first time reading S[n − 1] as it only places its

pebble on the square. Hence the first hit output is simply

n−1∑
j=1

j =
(n− 1)n

2
. (6.47)

For the middle output, T prints pref(S � n) and S � n a further (m−n) times.

That is, the middle output is given by

n(m− n) +
n∑
j=1

j = n(m− n) +
n(n+ 1)

2
. (6.48)

For the last-hit output, T prints pref(S � (m− 1)) followed by S � n. That is,

the last-hit output is given by

n+
m−1∑
j=1

j = n+
(m− 1)m

2
. (6.49)

Hence as we take longer prefixes of S, position n is visited infinitely many

times resulting in m tending to infinity. Thus the middle and last hit ratios

cannot be defined. The first-hit ratio similarly cannot be defined if we divide by

1/n while if we divide by 1/n2 it tends to 1/2.

6.4.2 Why not Pebble vs Pebble?

The notion of pebble depth discussed in this chapter is based on the difference in

minimal descriptional complexity of finite-state transducers and pebble transduc-

ers. Ideally a notion solely comparing pebble transducers would be examined (as

in Chapter 3 where finite-state transducers are compared against themselves).

154

6.4. Discussion

One of the main obstacles to this approach is finding a result analogous to

Lemma 3.3.9. Ideally we would like something similar to being able to say that

for all strings x, y ∈ {0, 1}∗ and for all k, there exists a k′ such that

Dk
PB(xy) ≥ Dk′

PB(x) +Dk′

PB(y). (6.50)

In the finite-state approach, if there were two strings p and q and an FST T such

that T (p) = x and T (pq) = xy, we were able to build an FST T ′ identical to T

with only the start state possibly being different such that T ′(q) = y.

This approach would not work for pebble transducers. For instance, suppose

N is a pebble transducer and r ∈ {0, 1}∗ such that N(r) = xy. Consider the

split r = st where N ’s reading head is above the first character of t immediately

after it has finished outputting x. Simply building a new pebble transducer N ′

identical to N but switching the start state to be the one that N is in after

outputting x does not aid us as before since we cannot say that N ′(t) = y. Due

to the two-way nature of N , N may scan left and read suffixes of s as part of its

process of outputting y. N ′ on t would not have this information available to it.

Similarly the placement of N ’s pebbles on its tape after outputting x may play

an important role in the process of outputting y. This is a problem as N ′ would

not have any pebbles placed on its tape at the beginning of its computation of t.

This is best illustrated with the following example. Suppose k is large enough

to contain the pebble-transducer R where R(x) = xx−1 for all x. Let r be

a string such that K(r) = |r|. Therefore, K(r−1) = |r| + O(1) as rev is an

injective function. Similarly note that K(r) ≤ Dk′
PB(r) + O(k′) and K(r−1) ≤

Dk′
PB(r−1) +O(k′) for all k′. Hence, if we had a result such as in Equation (6.50)

we would have that

|r| ≥ Dk
PB(rr−1) ≥ Dk′

PB(r) +Dk′

PB(r−1) ≥ 2|r| −O(k′)

155

6.5. Summary

which is a contradiction for long enough r.

However, as with other notions of depth such as Bennett’s which compare one

form of descriptional complexity against a weaker notion, we are content with the

pebble depth version we have provided.

6.5 Summary

In this chapter we presented a new notion of depth based on pebble-transducers.

We showed that PB-depth satisfies versions of the fundamental properties of

depth. Specifically, we first showed that FST-trivial and PB-incompressible se-

quences are not PB-deep in Theorem 6.3.5. We demonstrated a slow growth

type law holds in Theorem 6.3.6. We differentiated PB-depth from FS-depth by

showing the existence of a normal PB-deep sequence in Theorem 6.3.10. We also

demonstrated the existence of non-normal PB-deep sequences in Corollary 6.3.13

via Theorem 6.3.11 which, if they are LZ-deep, have low LZ-depth in Theorem

6.3.11. A preliminary comparison with pushdown depth was also performed in

Remark 6.3.14.

156

Chapter 7

Prediction by Partial Matching

and Normal Sequences

Contents of this chapter were presented (virtually) at SOFSEM 2021 in Italy

during January 2021. doi: 10.1007/978-3-030-67731-2 28.

7.1 Introduction

In previous chapters we have used compression algorithms to examine the com-

plexity of sequences (pushdown compressors, finite-state compressors and the

Lempel-Ziv 78 algorithm) and have occasionally focused specifically on the com-

plexity of normal sequences (Theorems 3.3.5, 5.4.1 and 6.3.10). The following

chapter continues this line of study, away from defining new logical depth notions,

by analysing the performance of members of the Prediction by Partial Matching

(PPM) family of compressors (PPM* [46] and the original Bounded PPM algo-

rithm [45]). As discussed in Chapter 1, a common question studied about normal

sequences is whether or not they are compressible by certain families of compres-

sors. Such an analysis has not been performed previously on the PPM algorithms.

The main objective of this chapter is to show the existence of a normal sequence

157

https://doi.org/10.1007/978-3-030-67731-2_28

7.2. Description of the PPM Algorithms

which PPM* can compress but is Lempel-Ziv 78 incompressible. We also show

that Bounded PPM cannot compress normal sequences. We briefly compare the

performance of the bounded and unbounded versions of PPM of specific inputs

also.

7.2 Description of the PPM Algorithms

The PPM family of compression algorithms was first introduced by Cleary and

Witten in 1984 [45]. PPM algorithms work by building a model of their input as

it reads each character. The model keeps track of previously seen substrings of

the input, known as contexts, and the characters that follow them. Characters

of the input are encoded based on their prediction probabilities in the relevant

contexts via arithmetic encoding [149]. After a character is read, the model is

updated by incrementing the frequency counts of the character in the relevant

contexts and, if needed, adding new contexts to the model.

Implementations of the PPM algorithm family often rely on the exclusion

principal to achieve better compression ratios. We ignore this is in our analysis

of the algorithms for simplicity as, even without this, the normal sequence we

later build achieves a compression ratio of 0 via PPM*.

7.2.1 Bounded PPM

In the original presentation of PPM, a bounded version was introduced [45]. Prior

to encoding, a value t ∈ N must be provided to the encoder which sets the maxi-

mum context length that the model can store. We refer to this version of Bounded

PPM with bound t as PPMt. By context, we mean previously seen substrings of

the input stream contained in the model. For each context, the model records

what characters have followed the context in the input stream, and the frequency

with which each character has occurred. These frequencies are used to build pre-

158

7.2. Description of the PPM Algorithms

diction probabilities that the encoder uses to encode the rest of the input stream.

When reading the next character of the input stream, the encoder examines the

relevant contexts and encodes the next character based on its current prediction

probabilities in these contexts. By relevant context, we mean suffixes of the input

already read by the encoder that are contained in the model. The longest relevant

context available is chosen as the first current context, as it is the one the model

uses to first encode the next character seen. Once encoded, new contexts are

added to the model if necessary, and the prediction probabilities of the relevant

contexts are updated to reflect the character that has just been read.

In some implementations of PPM algorithms (such as Moffat’s [111]), only

the prediction probabilities of the context used to encode the character read and

all longer relevant contexts are updated. For instance if the context of length two

b1b2 is used to encode the character b3, only the counts of contexts with suffix

b1b2 are updated while the contexts b2 and λ are not. This type of updating is

referred to as shallow updating or update exclusion. We do not use this method

of updating the counts and instead take the approach of Cleary and Witten’s

original approach of updating the counts of all relevant contexts.

When a character being encoded has never occurred previously in the current

context, an escape symbol (denoted by $) is transmitted and the next shortest

relevant context becomes the new current context. If the character has not been

seen before even when the current context is λ, that is, the context where none

of the previous characters are used to predict the next character, an escape is

outputted and the character is assigned the prediction probability from the order-

(−1) table. By convention, this table assigns each character equal probability.

Several different approaches exist to calculate the prediction probabilities. In

their original paper, Cleary and Witten present two approaches known as Method

A and Method B [45]. Moffat proposed Method C in 1990 [111]. Howard and

Vitter present Method D in 1992 in [79]. Åberg et al. in 1997 presented Method E

159

7.2. Description of the PPM Algorithms

ctxt pred cnt pb ctxt pred cnt pb ctxt pred cnt pb
Order t = 3 Order t = 2 Order t = 1

001 1 1 1
2

00 1 1 1
2

0 0 1 1
6

$ 1 1
2

$ 1 1
2

1 3 1
2

010 0 1 1
2

01 0 1 1
5

$ 2 1
3

$ 1 1
2

1 2 2
5

1 0 3 3
7

011 0 2 2
3

$ 2 2
5

1 2 2
7

$ 1 1
3

10 0 1 1
4

$ 2 2
7

100 1 1 1
2

1 1 1
4

Order t = 0

$ 1 1
2

$ 2 1
2

λ 0 5 5
12

101 1 1 1
2

11 0 2 2
3

1 5 5
12

$ 1 1
2

$ 1 1
3

$ 2 1
6

110 1 1 1
2

Order t = −1

$ 1 1
2

0 1 1
2

1 1 1
2

Table 7.1: PPM3 model for the input 0100110110 for the binary alphabet.

[18]. Steinruecken presented Method G in 2014 [140]. Witten and Bell described

Methods P and X based on Poisson processes in 1991 [148]. Bloom’s Method Z

approach uses a secondary model to calculate escape probabilities [21].

This chapter uses Method C to assign probabilities to $ in each context as it

is the approach taken by Cleary and Witten when introducing PPM*. Here, $

is given a frequency equal to the number of distinct characters predicted in the

context so far. Hence for the binary alphabet, $’s count is bounded above by 2.

For instance, in Table 7.1 the model for the string 0100110110 with bound

t = 3 is given. In the context 01, the escape symbol $ has count 2 as both 0 and

1 have followed 01, while $ in 101 has count 1 as it has only been followed by a 1.

Suppose 0 is the next character to be encoded after input stream 0100110110

by PPM3. The relevant contexts are 110, 10, 0 and λ. The longest relevant context

is 110. The encoder escapes to the shorter context 10 since 0 is not seen in context

110. The escape is encoded by the prediction probability 1/2. From context 10,

0 is encoded with probability 1/4. The frequency counts of 0 will be updated

160

7.2. Description of the PPM Algorithms

in contexts 10, 0 and λ. Also, 0 will be added as a prediction to context 110.

Following this, if the next character to be encoded was another 0 the model would

start in context 100 and, since 0 is not predicted here, it would transmit an escape

symbol with probability 1/2 and then examine the next longest context 00 and

proceed as necessary. If there was another bit b in the input stream after this, (as

000 would be the current suffix of the input stream but no context for 000 exists

yet as it would have never been seen before) the encoder would begin in context

00 and proceed as before, and a context for 000 would be created predicting the

character b when the model updates.

7.2.2 PPM*

Like PPMt, PPM* builds a model of contexts of its input, continuously updates

the model, and encodes each character it sees based on its frequency probability

in the current context. The key difference is that there is no upper bound on the

maximum context length stored in the model. Instead of building a context for

every substring seen, a context is only extended until it is unique. Suppose PPM*

has read the string x. For any string w with occ(w, x) ≥ 2, the context wb must

be built in the model for each b such that occ(wb, x) ≥ 1. When reading a new

character to encode, unlike PPMt, PPM* first chooses the shortest deterministic

context available to be the current context. By deterministic, we mean a context

where $ has a frequency of 1, i.e. it has only been followed by a single character

previously in the input stream. If no such context exists, the longest relevant

context is chosen. We also use the Method C approach to compute $ probabilities

for PPM*.

For instance, in Table 7.2 the model for the string s = 0100110110 is found

when restricted to the binary alphabet. Suppose the next character read is a

0. The relevant contexts are λ, 0, 10, 110 and 0110. The shortest deterministic

161

7.2. Description of the PPM Algorithms

ctxt pred cnt pb ctxt pred cnt pb ctxt pred cnt pb
Order t = 5 101 1 1 1

2
Order t = 1

01101 1 1 1
2

$ 1 1
2

0 0 1 1
6

$ 1 1
2

110 1 1 1
2

1 3 1
2

Order t = 4 $ 1 1
2

$ 2 1
3

0110 1 1 1
2

Order t = 2 1 0 3 3
7

$ 1 1
2

00 1 1 1
2

1 2 2
7

1101 1 1 1
2

$ 1 1
2

$ 2 2
7

$ 1 1
2

01 0 1 1
5

Order t = 0

Order t = 3 1 2 2
5

λ 0 5 5
12

010 0 1 1
2

$ 2 2
5

1 5 5
12

$ 1 1
2

10 0 1 1
4

$ 2 1
6

011 0 2 2
3

1 1 1
4

Order t = −1

$ 1 1
3

$ 2 1
2

0 1 1
2

100 1 1 1
2

11 0 2 2
3

1 1 1
2

$ 1 1
2

$ 1 1
3

Table 7.2: PPM* model for the input 0100110110 for the binary alphabet.

context is 110. It does not predict 0 so $ is transmitted with probability 1/2 and

then 0 is transmitted by context 10 with probability 1/4. The model is updated

as follows: The frequency count of 0 in contexts λ, 0 and 10 are incremented by

one. 0 is added as a prediction to 110 and 0110. Furthermore occ(00, s0) 6= 1

and occ(100, s0) 6= 1 while occ(00, s) = occ(100, s) = 1. Therefore contexts 00

and 100 must be extended to create new contexts 001 and 1001 which predict a

1. If another 0 is read after s0, since both a 0 and 1 now have been seen to follow

110 and 0110, contexts for 1100 and 01100 will be created both predicting a 0,

since a context has to be made for each branching path of 110 and 0110 (1101

and 01101 already exist).

7.2.3 Arithmetic Encoding

PPM’s output is found via arithmetic encoding. A sample of works, including

tutorials on arithmetic encoding, can be found in [15, 78, 80, 85, 149]. Beginning

162

7.3. A Compressible Champernowne Sequence

with the interval [0, 1), it is split into subintervals of lengths corresponding to

the probabilities of the current context. The subinterval corresponding to the

character or $ transmitted is carried forward to the next stage. When complete,

a number c ∈ [a, b) is transmitted, where [a, b) is the final interval. Note that c

can be encoded in −dlog(|b−a|)e characters. In particular, if p1, p2, . . . , pm is the

sequence of probabilities transmitted to encode the input, then
∏m

i=1 pi = |b− a|.

With knowledge of c and the length of the input, the input can be recovered.

For simplicity, we assume the encoder can calculate the endpoints of the in-

tervals with infinite precision. In reality, a fixed finite limit precision is used to

represent the intervals and their endpoints and a process known as renormalisa-

tion occurs to prevent intervals becoming too small to handle.

7.3 A Compressible Champernowne Sequence

Recall the Definition 2.5.5 for Champernowne sequences. These are sequences

which are broken into substrings C1C2C3 . . . such that each zone Ci is a listing of

all strings in {0, 1}i exactly once. In this section we demonstrate our main result

of the chapter in Theorem 7.3.8 which proves the existence of a Champernowne

sequence C such that R
PPM*(C) = 0. Specifically, we show that a Champernowne

sequence can be built using Pierce and Shields’ algorithm from [119] which satis-

fies this.

7.3.1 Pierce and Shields’ Construction

We now describe Pierce and Shields’ construction of Champernowne sequences

from [119] and write PSC to denote the set of sequences built using their method.

It relies heavily on de Bruijn strings which were defined in Definition 2.6.1. Recall

that a string x ∈ {0, 1}2n is a de Bruijn string of order n if for all u ∈ {0, 1}n it

holds that occ(u, x · x[0..n− 2]) = 1.

163

7.3. A Compressible Champernowne Sequence

Suppose we wished to construct substring Cn of a Champernowne sequence.

Let dn be a de Bruijn string of order n. For 0 ≤ j ≤ 2n − 1, let dn,j represent a

cyclic shift to the left of the first j bits of dn. That is, dn,j = dn[j..] · dn[0..j − 1].

We write dn instead of dn,0 when no cyclic shift occurs. Note that each n can be

written uniquely in the form n = 2st where s ≥ 0 and t ≥ 1 are non-negative

integers with t being odd. Each substring Cn is broken into further substrings

Cn = Bn,0 ·Bn,1 · · ·Bn,2s−1 where Bn,j is a concatenation of dn,j with itself t times.

That is, Bn,j = dtn,j. Bn,j is referred to as the jth block of Cn. Hence, if n is odd

then Cn = dnn and if n = 2k for k ≥ 1 then Cn = dndn,1 · · · dn,n−1.

The following lemma demonstrates that any sequence in the set PSC is a

Champernowne sequence. We re-present Pierce and Shields’ proof using our own

notation. It relies on some results from group theory of which details can be

found in Rotman’s introductory text [124].

Lemma 7.3.1 ([119]). Let C ∈ PSC. Then C is a Champernowne sequence.

Proof. Let C ∈ PSC. In order to show that C is a Champernowne sequence we

must show that for each zone Cn, for all x ∈ {0, 1}n, occb(x,Cn) = 1.

Consider substring Cn. Let G2n be the cyclic group of order 2n, i.e. G2n =

〈x |x2n = e〉, where e = x0 is the identity element and x is the generator of

the group. There exists a bijective mapping f : G2n → {0, 1}n such that for

0 ≤ a < 2n, xa is mapped to the substring of dn of length n beginning in

position a when dn is viewed cyclically. That is, f(e) = dn[0..n − 1], f(x) =

dn[1..n], . . . f(x2n−1) = dn[2n − 1] · dn[0..n− 2].

Let s ≥ 0 and t ≥ 1 where t is odd such that n = 2st. Consider the subgroup

〈xn〉 of G2n . It follows that

|〈xn〉| = 2n

gcd(n, 2n)
= 22st−s = 2n−s.

164

7.3. A Compressible Champernowne Sequence

So

〈xn〉 =
2n−s−1⋃
i=0

{xin mod 2n} = {e, xn, x2n, . . . x(2n−s−1)n mod 2n}.

Concatenating the result of applying f to each element of 〈xn〉 beginning with e

in the natural order gives the string

σ = f(e) · f(xn) · f(x2n) · · · f(x(2n−s−1)n mod 2n).

σ can be thought of as beginning with the prefix of dn of length n, cycling through

dn in blocks of size n until the block containing dn’s suffix of length n is seen. As

2n−sn
2n

= t, we have that σ = dtn = B0.

As |G2n|/|〈xn〉| = 2s, there are 2s cosets of 〈xn〉 in G2n . As cosets are disjoint,

each represents a different set of 2n−s strings of {0, 1}n. Specifically each coset

represents one of the 2s blocks of Cn, i.e. each coset represents the string Bj =

dtn,j for some j. Therefore, for each x ∈ {0, 1}n, for some j ∈ {0, . . . , 2s − 1},

occb(x,Bj) = 1 and occb(x,Bi) = 0 for each i 6= j. Thus occb(x,Cn) = 1.

7.3.2 A Sequence which satisfies Theorem 7.3.8

Henceforth, we let C ∈ PSC denote the sequence such that for each n, the

least lexicographic de Bruijn of order n was used to construct substring Cn. We

furthermore also let dn denote the least lexicographic de Bruijn of order n. We

point the reader back to Section 2.6.1 to see how to construct these strings. We

will show that C satisfies Theorem 7.3.8.

To help the reader visualise C, Figures 7.1 and 7.2 show the substrings C3, C4

and C6 of C.

165

7.3. A Compressible Champernowne Sequence

00010111 0000100110101111
00010111 0001001101011110
00010111 0010011010111100

0100110101111000

Figure 7.1: Concatenating the three rows on the left hand side produces the
substring C3 and concatenating the four rows on the right hand side produces
the substring C4 if d3 and d4 are chosen to be the least lexicographic de Bruijn
string of their order respectively.

0000001000011000101000111001001011001101001111010101110110111111
0000001000011000101000111001001011001101001111010101110110111111
0000001000011000101000111001001011001101001111010101110110111111
0000010000110001010001110010010110011010011110101011101101111110
0000010000110001010001110010010110011010011110101011101101111110
0000010000110001010001110010010110011010011110101011101101111110

Figure 7.2: Concatenating the six rows produces the substring C6 where d6 is
chosen to be the lexicographic least de Bruijn string of order 6. The first three
rows are B0 while the second three rows are B1.

Before we proceed, we make note of the following properties of dn.

Remark 7.3.2. d1 = 01, d2 = 0011, and for n ≥ 3,

1. dn[0..2n] = 0n10n−211,

2. dn[2n − n− 1..] = 1n.

The first property is clear when constructing the string. The second property

is proven by Martin when showing how his algorithm to construct the string

terminates [107].

For clarity, we write Cn to denote the prefix C1 · · ·Cn of C. Suppose the prefix

Cn−1 of C has already been read. While PPM*’s model may contain contexts of

length n, the following lemma shows it will contain all possible contexts of length

n after reading the first 2n + n characters of Cn. The idea is that in the first

2n + n− 1 bits of Cn, for each x ∈ {0, 1}n−1, x occurs at least twice, and x0 and

x1 occur once. Hence a context for each branching path of x must be created.

166

7.3. A Compressible Champernowne Sequence

Lemma 7.3.3. For n > 2, once the prefix Cn−1Cn[0..2n +n− 1] is processed, the

encoder will contain a context for all x ∈ {0, 1}n.

Proof. Consider x = Cn[0..2n + (n − 2)] = dn · 0n−1 (as dn has prefix 0n10n−211

by Remark 7.3.2). Let v ∈ {0, 1}n−1. By the definition of de Bruijn strings,

occ(v0, x) = occ(v1, x) = 1. As occ(v, x) ≥ 2 (as occ(0n−1, x) = 3), a context

for v would have been created, and as v is not unique in x, contexts for each its

branching paths have to be created, namely v0 and v1. However, one more bit is

required to finish building the context in the case where v0 = 10n−1 (the final n

bits of x) as the model cannot build a context until it can say what it predicts.

Hence |x|+ 1 = 2n + n bits are needed in total.

The following lemma bounds the maximum number of characters contributed

by any singular character to the encoding within a Cn zone.

Lemma 7.3.4. For all but finitely many n, if Cn−1 has already been read, each

character in Cn contributes at most 5 log n bits to the final encoding.

Proof. For n large, let b be the current character of Cn being encoded. Let x

be the context used to predict b. Then |x| ≥ n − 1 as all contexts of length

n− 2 and below are non-deterministic in Cn as seen in Lemma 7.3.3. Worst case

scenario, x will be deterministic but will not predict b correctly and so transmits

$. For j ≤ n − 1, occ(x,Cj · Cj+1[0..n − 3]) ≤ j, and occ(x,Cn) ≤ 2n. Thus for

n large, we can bound the maximum possible number of occurrences above by∑n−1
j=1 j+2n ≤ n2. This results in $ contributing at most dlog(n2 +1)e characters.

Next, b will be transmitted by the non-deterministic context x[1..|x| − 1] of

length at least n − 2. Using the same logic, this context will have appeared at

most j times in Cj · Cj+1[0..n − 4] for j ≤ n − 2, and a most 2(n − 1) times in

Cn−1 ·Cn[0..n−4] and at most 4n times in Cn. Thus, we can bound the maximum

167

7.3. A Compressible Champernowne Sequence

possible number of occurrences by

(
n−2∑
j=1

j) + 2(n− 1) + 4n ≤ n2

for n large. As such, for all but finitely many n, b contributes at most

dlog(n2 + 2)e+ dlog(n2 + 1)e ≤ 5 log n (7.1)

characters to the final encoding. As b was arbitrary, we have the desired result.

For each Cn, we will refer to its first 2n + 2n bits as its bad zone. This is

the section of the string where contexts often incorrectly predict bits, requiring

$ to be transmitted. Ideally after the first 2n + n bits of Cn are encoded, either

the contexts used to predict Cn[0..2n + n − 1] will have been deterministic and

will continue to correctly predict the remaining bits of Cn, or new deterministic

contexts will have been created that correctly predict the remaining bits of Cn.

This may not always occur in the succeeding n characters and often occurs if the

original contexts used straddle two previous Ci sections.

For instance, consider the substring C7[0..135] = d7 · 071. The final 1 will be

predicted by a context of length at least 7 by Lemma 7.3.3. 07 is the context

of length 7 that may be used. However 07 is not a deterministic context. Since

C4 ends with 103 and C5 begins with 051, this results in the substring 1081

straddling two zones. Specifically occ(07, 1081) = 2 with occ(070, 1081) = 1 and

occ(071, 1081) = 1. Instead 107 is a context of length 8 that may be used. We

know it exists as occ(106, C6 · C7[0..135]) = 2. It occurs once in the straddle of

C4 and C5 (103051), and again in the straddle of C6 and C7 (10071), both times

followed by 0. It does not appear anywhere else (as 07 cannot occur anywhere

else) and so it incorrectly predicts 0. Therefore $ is transmitted.

168

7.3. A Compressible Champernowne Sequence

Corollary 7.3.5. For all but finitely many n, if Cn−1 has already been read, the

bad zone of Cn contributes at most 5(2n + 2n) log n characters to the encoding of

C.

Proof. Lemma 7.3.4 tells us that each character of the bad zone contributes at

most 5 log n characters to the final encoding. As the bad zone has length (2n+2n),

the result follows.

7.3.3 Main Result

In this subsection we prove our main result in Theorem 7.3.8 that C satisfies

R
PPM*(C) = 0. Compression is achieved from the repetition of the de Bruijn

strings which lead to the repeated use of deterministic contexts which make cor-

rect predictions. When deterministic contexts are used, correct predictions are

performed with probability p/(p+1), for some p ∈ N. As p increases, the number

of characters contributed to the encoding by that prediction approaches 0.

The following lemma shows that deterministic contexts correctly predict every

character outside of the bad zone for infinitely many Cn zones.

Lemma 7.3.6. For all but finitely many n, whenever n is odd or n = 2j for some

j > 0, all bits not in the bad zone of Cn are correctly predicted by deterministic

contexts.

Proof. For odd n, the 2n + 2n + 1th bit in Sn will always be a 1 (if n is a power

of 2, a similar argument holds but we look at the 2n + 2nth bit). This is because

dn · dn[0..2n] = dn · 0n10n−211 by Remark 7.3.2. The context used to predict this

1 will always be a suffix of the context 010n−21. This context exists as we have

that occ(010n−21, Cn[0..2n + 2n]) = 2.

First we show 010n−21 is deterministic by showing it never occurs as a sub-

string in Cn−1, i.e. that occ(010n−21, Cn−1) = 0. The only place the string 10n−2

169

7.3. A Compressible Champernowne Sequence

occurs is in Cn−1 where it would be preceded by 1n−2 and not a 0, in Cn−2 where

it would be preceded by 1n−3 and not a 0, or along a straddle between two prior

Ci’s for i ≤ n − 1, but again, it would be preceded by a 1, and not a 0. Hence,

010n−21 first appears in Cn[0..2n − 1] = dn where it is followed by a 1. Thus

010n−21 is deterministic.

As the context 010n−21 is deterministic, all extensions of this context (those of

the form 010n−21y for the appropriate y ∈ {0, 1}∗) that are built while reading Cn,

must be deterministic also. They remain deterministic throughout the reading of

Cn since due its construction, any substring of Cn of length at least n is always

followed by the same bit. Thus, every bit not in the bad zone of Cn is predicted

by a deterministic context which is a suffix of an extension of the deterministic

context 010n−21.

For n-even but not of the form 2j for some j, Lemma 7.3.6 does not hold.

While most bits are predicted by deterministic contexts, the shifts of the de

Bruijn strings in the construction of Cn between blocks Bn,0 and Bn,1 mean that

some contexts which may have originally been deterministic in Bn,0, soon see the

opposite bit due to the shift of de Bruijn strings used to construct the different

blocks.

For example, consider context 1605. We have that occ(1605, C5) = 0, but it

does occur in C6 multiple times. The first two times it occurs it sees a 0 (as

d6[26 − 6..26 − 1] · d6[0..5] = 1606) by Remark 7.3.2). The third time it sees a 1

due to the shift in B6,1 (as d6[26 − 6..26 − 1] · d6,1[0..5] = 16051). Hence, 1605 is

no longer deterministic. This can be seen in Figure 7.2.

The following result bounds the number of characters each Cn zone contributes

to the encoding. Here |PPM*(Cn |Cn−1)| represents the number of bits con-

tributed to the output by Cn if the encoder has already processed Cn−1.

170

7.3. A Compressible Champernowne Sequence

Lemma 7.3.7. For all but finitely many n, |PPM*(Cn |Cn−1)| ≤ 13(2n log n).

Proof. By Lemma 7.3.6, every character outside the bad zone is predicted cor-

rectly by a deterministic context when n is odd or when n = 2j for some j > 0.

This is not true for the remaining n as mentioned in the discussion preceding this

lemma. As such, the output contributed by the case where n is even but not a

power of 2 acts as an upper bound for all n.

In this case, n = 2st for some s ≥ 1 and t ≥ 3 where t is odd. Recall that

Cn = B0 ·B1 · · ·B2s−1 where Bi = dtn,i. Let bn = 2s, the number of blocks in Cn.

After processing the bad zone, a 1 is deterministically correctly predicted by

the context 010n−21 with probability at least 1/2 by the same argument as in

Lemma 7.3.6. Following this, the next 2n − n − 2 bits are also predicted by

deterministic contexts as these contexts are suffixes of extensions of 010n−21 and

see the same bits within Cn. The next time 010n−21 is seen it predicts a 1 with

probability at least 2/3 and so on. When 010n−21 is seen for the nth time, there

are only 2n − 2n + bn − 1 bits left to encode as the encoder has ‘fallen behind’

by bn − 1 bits due to the bn − 1 shifts that occur. These bits are encoded with

probability at least (n− 1)/n.

Excluding the bad zone and using that bn < 2n, the characters we have ac-

counted for (of which there are (2n−n− 2)(n− 2) + 2n− 2n+ bn− 1) contribute

at most

⌈
− log

(
(
n− 1

n
)d

n−1∏
i=2

(
i− 1

i
)c
)⌉
<
⌈

log
(
(n− 1)nn2n+1)⌉

< 3(2n log n) (7.2)

bits where c = 2n − n − 1 and d = 2n − 2n + bn − 1. To help visualise this,

Table 7.3 shows the bits of C6 which will be correctly predicted by deterministic

contexts that we use in our calculations.

Things differ with the encoding of the remaining characters to account for as

they may be impacted by the shifts that occur between blocks. The number of

171

7.3. A Compressible Champernowne Sequence

such characters is bounded above by n2 − n− 1− bn < n2.

Then by Equation (7.2), Lemma 7.3.4, Corollary 7.3.5 and that 2n+2n+n2 <

2(2n) for n large, we have that

|PPM*(Cn |Cn−1)| ≤ 5(2(2n) log n) + 3(2n log n) = 13(2n log n). (7.3)

0000001000011000101000111001001011001101001111010101110110111111
0000001000011000101000111001001011001101001111010101110110111111
0000001000011000101000111001001011001101001111010101110110111111
0000010000110001010001110010010110011010011110101011101101111110
0000010000110001010001110010010110011010011110101011101101111110
0000010000110001010001110010010110011010011110101011101101111110

Table 7.3: The bits of C6 shaded in blue above are those which we know will be
correctly predicted by deterministic contexts.

We now can prove the main result of this chapter.

Theorem 7.3.8. R
PPM*(C) = 0.

Proof. Note that the worst compression of prefixes of C is achieved if the input

ends with a complete bad zone, i.e. prefixes of the form C∗n = Cn−1Cn[0..2n +

2n− 1].

Let j be such that Lemma 7.3.7 holds for all zones Ci with i ≥ j. The

prefix Ci−1 will always contribute O(1) bits. Using Lemma 7.3.7 to bound the

contribution to the output by Cj · · ·Cn−1 and Lemma 7.3.4 to bound Cn[0..2n +

2n− 1]’s contribution to the output by 5(2n + 2n) log n characters, we have that

|PPM*(C∗n)| ≤
n−1∑
i=j

(13(2i log(i)) + 5(2n + 2n) log n+O(1). (7.4)

As |C∗n| = 2n(n− 1) + 2n+ 2, it follows that R
PPM*(Ck) = 0.

172

7.3. A Compressible Champernowne Sequence

7.3.4 Bounded PPM on Normal Sequences

In this section we prove that for any t, no normal sequence can be compressed

by PPMt.

Theorem 7.3.9. Let S ∈ {0, 1}ω be normal. Then for all t, ρPPMt(S) = 1.

Proof. Let S and t be as above. Let x ∈ {0, 1}t and ε > 0. As S is normal, for

almost every n and for b ∈ {0, 1},

n(2−(t+1) − ε) < occ(xb, S[0..n− 1]) < n(2−(t+1) + ε). (7.5)

Thus, for almost every n, each time x is used to predict the next character it has

prediction probability p such that

p ≤ n(2−t−1 + ε)

2n(2−t−1 − ε) + 2
≤ (2−t−1 + ε)

2(2−t−1 − ε)
.

That is, p ≤ 1/2 + βε for all but finitely many n where βε > 0 and can be

made arbitrarily small by choosing ε small. Hence, almost every time x makes

a prediction, it contributes at least − log(1/2 + βε) bits to the encoding. This

value gets arbitrarily close to 1 as βε is chosen to be closer to zero. As x was an

arbitrary context, it follows that ρPPMt(S) = 1.

We do not explore a notion of PPM-depth in this thesis. However, with a

bounded and unbounded version of the algorithm, the most intuitive definition

would be that a sequence S is PPM-deep if

(∃α > 0)(∀t ∈ N)(∀∞n ∈ N) |PPMt(S � n)| − |PPM*(S � n)| ≥ αn.

The existence of such a PPM-deep sequence would then easily follow from The-

orems 7.3.8 and 7.3.9.

173

7.4. Bounded versus Unbounded

Whether or not this definition of PPM-depth is meaningful, in the sense that

‘easy’ and ‘random’ are not deep and that a slow growth law holds, remains open.

Remark 7.3.10. As an aside, as C is a Champernowne sequence, it holds that

ρLZ(C) = 1 and so C is not LZ-deep by Theorem 5.3.3. However, in Chapter 5

we discussed how similar versions of LZ-depth could be defined based on other

members of the Lempel-Ziv family of algorithms. For instance, Pierce and Shields

show that RULZ(C) = 0 [119] where ULZ is a variation of the Lempel-Ziv 77

algorithm. It then follows easily that C would be an example of an ULZ-deep

sequence.

7.4 Bounded versus Unbounded

The main question that must be asked when choosing between Bounded PPM

and PPM* is what bound of context length should be used: finite or infinite?

Choosing a length too small may mean the encoder cannot spot patterns that

may lead to compression. On the other hand, setting the upper bound for length

to be large means that while the contexts may have a greater chance of being

deterministic, they may not get to be used frequently enough to achieve compres-

sion. In practical terms, another aspect to consider is that larger upperbounds

require more memory. We do not consider memory needs in our analysis.

Cleary and Witten explored this problem in their original paper, compressing

various files ranging from English text to binary data, and found that the optimal

context length for many of their experiments was around four [45]. Moffat found

similar results in his experiments [111].

This leads to the question as to whether there exists a sequence S such that for

all bounds t, ρ
PPM*(S) > RPPMt(S)? To our knowledge, all comparisons between

the performances of the PPM family of algorithms have been experimental in

nature and no examples have been proven to be mathematically different.

174

7.4. Bounded versus Unbounded

We partially explore this question by showing that for every t ≥ 1, there exists

a sequence St such that

lim
n→∞

|PPMt(S
t � n)|

|PPM*(St � n)|
=

1

t
.

In each case, St is a rather simple sequence where it holds that R
PPM*(St) =

RPPMt(S
t) = 0. Thus, while the St is both PPM*-trivial and PPMt-trivial, PPMt

compresses much ‘faster’ than PPM*.

Fix a bound t ∈ N. We construct the sequence St in blocks Bt,1 · Bt,2 · · ·

where for each i, Bt,i = 0it1. For instance, S3 = 0001 · 0000001 · 0000000001

For all i, we write Bt,i to denote the prefix Bt,1 · · ·Bt,i of St.

The number of occurrences of 0t will be important to us in this section. A

simple counting exercise shows that

occ(0t, Bt,n−1) =
n−1∑
j=1

(t(j − 1) + 1) =
n− 1

2
(tn− 2t+ 2). (7.6)

We henceforth use kt,n−1 to denote occ(0t, Bt,n−1).

7.4.1 PPMt’s Performance on St

We first examine the output of PPMt on prefixes of the form Bt,n.

Lemma 7.4.1. For all t ∈ N, we have that

|PPMt(Bt,n)| ≤ t log(n− 1) + (n+ 2) log(t(n+ 1)2)− log((n− 1)!) +O(1).

Proof. Once Bt,1 and Bt,2 have been read by PPMt, the t+ 1 contexts 0l10m and

0t with 0 ≤ l,m ≤ t− 1 where l +m = t− 1 are used to predict every bit of the

remainder of St.

Beginning with block Bt,3, the first t 0s are each predicted using one of the t

175

7.4. Bounded versus Unbounded

contexts containing a 1 with prediction probability 1/2 as it will be the first time

they are used and have only seen 0 in Bt,1 ·Bt,2. The remaining 2t 0s are predicted

by the context 0t. As occ(0t, Bt,1Bt,2) = t + 2, where t times it is followed by

a 0 and twice followed by a 1, the first time 0t predicts a 0 in Bt,3 will be with

probability t/(t + 4). The prediction probabilities of the next 2t − 1 0s is easily

found by incrementing the numerator and denominator of t/(t + 4) by one for

each 0. This means that when the final 1 of Bt,3 is read, it is predicted with

probability 2/((t+ 4) + 2t).

Next, the bits of Bt,4 are read. The first t are predicted by contexts involving

1s with probabilities now 2/3. The prediction probability of the first 0 predicted

by 0t is found by incrementing the numerator by one of the prediction probability

used the last time the 0t predicted a 0 and incrementing the denominator by one

of the prediction probability used the last time 0t predicted 1, i.e. with probability

(t+ 2t)/((t+ 4) + 2t+ 1).

This can easily be generalised to any block Bt,n as follows: The first t 0s are

predicted each with probability (n − 2)/(n − 1). Using Formula (7.6), we have

that the first 0 in Bt,n predicted by 0t is done so with probability

kt,n−1 − (n− 1)

kt,n−1 + 2
. (7.7)

Note the numerator is decremented by n− 1 to account for n− 1 instances when

0t is followed by a 1. Thus, every instance 0 is predicted by 0t in Bt,n, it is done

so with a probability of the form

kt,n−1 − (n− 1) + j

kt,n−1 + 2 + j
(7.8)

176

7.4. Bounded versus Unbounded

n Prediction Probabilities of B3,3 · · ·B3,6

3 1
2

1
2

1
2

3
7

4
8

5
9

6
10

7
11

8
12

2
13

4 2
3

2
3

2
3

9
14

10
15

11
16

12
17

13
18

14
19

15
20

16
21

17
22

3
23

5 3
4

3
4

3
4

18
24

19
25

20
26

21
27

22
28

23
29

24
30

25
31

26
32

27
33

28
34

29
35

4
36

6 4
5

4
5

4
5

30
37

31
38

32
39

33
40

34
41

35
42

36
43

37
44

38
45

39
46

40
47

41
48

42
49

43
50

44
51

5
52

Table 7.4: The prediction probabilities used for B3,3 · · ·B3,6 by PPM3.

where 0 ≤ j ≤ t(n− 1)− 1. Similarly, the 1 in Bt,n is predicted with probability

n− 1

kt,n−1 + t(n− 1) + 2
. (7.9)

In summary, this means that Bt,n contributes the following probabilities to

the final encoding:

(n− 2

n− 1

)t
︸ ︷︷ ︸
The first t 0s

·
(t(n−1)−1∏

j=0

kt,n−1 − (n− 1) + j

kt,n−1 + 2 + j

)
︸ ︷︷ ︸

0t predicting a 0

·
(n− 1

kt,n−1 + t(n− 1) + 2

)
︸ ︷︷ ︸

0t predicting a 1

. (7.10)

To help visualise this, Table 7.4 contains the probabilities for the substring

B3,3 · · ·B3,6 of S3.

Let

at,n =
(n− 2

n− 1

)t
,

bt,n =
(t(n−1)−1∏

j=0

kt,n−1 − (n− 1) + j

kt,n−1 + 2 + j

)
,

and

ct,n =
(n− 1

kt,n−1 + t(n− 1) + 2

)
.

177

7.4. Bounded versus Unbounded

Multiplying the prediction probabilities together and simplifying gives us that

n∏
i=3

at,i · bt,i · ct,i =
((n− 1)!

(n− 1)t

)((t+ 3)!

(t− 1)!

)((kt,n−1 − (n− 1) + t(n− 1)− 1)!

(kt,n−1 + t(n− 1) + 2)!

)
=

(n− 1)!(t+ 3)(t+ 2)(t+ 1)(t)

(n− 1)t(
∏n+1

l=0 (kt,n−1 + t(n− 1) + 2− l))
. (7.11)

Noting that for n ≥ 1

kt,n−1 + t(n− 1) + 2 =
n− 1

2
(t(n+ 1)− 2t+ 2) + t(n− 1) + 2 ≤ t(n+ 1)2

2
,

the denominator of Equation (7.11) can be bounded above by

(t(n+ 1)2

2

)n+2

.

Hence, since |PPMt(Bt,n)| = log((
∏n

i=3 at,i ·bt,i ·ct,i)−1)+O(1), by Equation (7.11)

we have that

|PPMt(Bt,n)| ≤ log((n− 1)t) + log((
t(n+ 1)2

2
)n+2)− log((n− 1)!) +O(1)

≤ t log(n− 1) + (n+ 2) log(t(n+ 1)2)− log((n− 1)!) +O(1).

(7.12)

This proves the lemma.

Next we show that St is compressible by PPMt.

Proposition 7.4.2. RPPMt(S
t) = 0.

Proof. Note that PPMt performs the worst on prefixes of St of the form Bt,n as

these are the prefixes where the final character encoded is always a 1, i.e. the

characters which contribute the most to the output.

178

7.4. Bounded versus Unbounded

Hence, by Lemma 7.4.1 we have that

lim
n→∞

|PPMt(Bt,n)|
|Bt,n|

≤ lim
n→∞

t log(n− 1) + (n+ 2) log(t(n+ 1)2)− log((n− 1)!)
n
2
(tn+ t+ 2)

= 0. (7.13)

Thus RPPMt(S
t) = 0.

7.4.2 PPM*’s Performance on St

We now examine the output of PPM* on prefixes of the form Bt,n.

Lemma 7.4.3. For all t ≥ 1, we have that

|PPM*(Bt,n)| ≤ (n− 2) log(p−1
t) + t log(n− 1) + t log((n− 1)!) +O(1),

where pt = 1/(20(t− 1)(t)(t+ 3)) if t > 1 and pt = 1/24 if t = 1.

Proof. Assume the encoder has read Bt,1 · Bt,2. Beginning with block Bt,3, the

first 2t 0s are encoded with the contexts 1, 10, . . . , 102t−1. These contexts exist

as they are seen straddling Bt,1 and Bt,2, and just before the current bit being

predicted is read. They each deterministically predict a 0 with probability 1/2.

Only the suffix 0t1 is left to encode in Bt,3. The next bit seen is a 0 where the

context 02t is used to predict it. It exists as it occurs in Bt,2 and has just been

read in the previous 2t bits. However it has only seen a 1 so far and so an escape

is transmitted with probability 1/2. Then, 02t−1 predicts a 0 with probability

2/5 (it has occurred 3 times previously: once followed by 1 and twice by 0). The

next 0 is encoded by 02t (02t+1 does not exist yet as a context). It predicts a

0 with probability 1/4 (it has occurred twice previously, once followed by 1 and

0). The remaining t− 2 zeroes are predicted by the context 02t+1 which has just

179

7.4. Bounded versus Unbounded

been created. It deterministically predicts a 0 and so the first 0 is predicted with

probability 1/2 and the t − 2th 0 with probability (t − 2)/(t − 1). For the 1, an

escape is transmitted by 02t+1 with probability 1/t and then transmitted by 02t

with probability 1/(t + 3) (as it has been seen t + 1 times where it has been

followed by a 1 once at the end of Bt,2).

Next we examine Bt,4. The first 2t 0s are encoded by the contexts 10i for

0 ≤ i ≤ 2t− 1 as before, but this time with probability 2/3. The next 0 (whose

equivalent positioned 0 in Bt,3 required an escape) is now deterministically pre-

dicted by the context 0t+1102t with probability 1/2. The next t−1 0s are predicted

deterministically by the just created contexts 102t+1, 102t+2, . . . , 103t−1 with prob-

ability 1/2.

The final t + 1 bits (0t1) are predicted as follows: The next bit seen is a 0

where the context 03t is used to predict it. It exists as it occurs in Bt,3 and has

just been read in the previous 3t bits. However, it has only seen a 1 so far and

so an escape is transmitted with probability 1/2. Then, 03t−1 predicts a 0 with

probability 2/5 (it has occurred 3 times previously: once followed by 1 and twice

by 0). The next 0 is encoded by 03t (03t+1 does not exist as a context). It predicts

a 0 with probability 1/4 (it has occurred twice previously, once followed by 1 and

0). The remaining t − 2 zeros are predicted by the context 03t+1 which has just

been created. It deterministically predicts a 0 and so the first 0 is predicted with

probability 1/2 and the t − 2th 0 with probability (t − 2)/(t − 1). For the 1, an

escape is transmitted by 03t+1 with probability 1/t and then transmitted by 03t

with probability 1/(t + 3) (as it has been seen t + 1 times where it has been

followed by a 1 once at the end of Bt,3).

We can generalise this to any block Bt,j as follows: The first 2t 0s are predicted

by contexts 1, 10, . . . , 102t−1 with probability (j − 2)/(j − 1). The next (j − 3)t

180

7.4. Bounded versus Unbounded

bits are split into (j − 3) windows of size t, i.e.

Bt,j = 02t · 0t · 0t · · · 0t · 0t︸ ︷︷ ︸
j − 3 copies of 0t

·0t1.

These windows are numbered 1 to j−3 in order of appearance. For window i, the

first 0 is predicted by context 0it+110(2+(i−1))t with probability (j−2−i)/(j−1−i).

The next t−1 0s are predicted by contexts 10(2+(i−1))t+1, . . . , 10(2+(i−1))t+t−1 with

probability (j − 2 − i)/(j − 1 − i) also. The suffix of 0t1 is encoded as follows.

First suppose t 6= 1. The context

0(2+(j−3)−1))t+t = 0(j−2)t+t = 0(j−1)t

is used to predict the first 0. However it has only seen a one so far (in Bt,j−1)

and so an escape is transmitted with probability 1/2. 0(j−1)t−1 then predicts the

0 with probability 2/5. The next 0 is encoded by 0(j−1)t (0(j−1)t+1 does not exist

as a context yet). It predicts a 0 with probability 1/4 (it has occurred twice

previously, once followed by 1 and 0). The remaining t − 2 zeroes are predicted

by the context 0(j−1)t+1 which has just been created. It deterministically predicts

a 0 and so the first 0 is predicted with probability 1/2 and the t − 2th 0 with

probability (t − 2)/(t − 1). For the 1, an escape is transmitted by 0(j−1)t+1 with

probability 1/t and then transmitted by 0(j−1)t with probability 1/(t + 3) (as it

has been seen t + 1 times where it has been followed by a 1 once at the end of

Bt,j−1).

Otherwise if t = 1, the suffix 01 is encoded as follows. Firstly the context

0j−1 is used to predict the 0. However it has only been followed by a 1 so far (in

B1,j−1) and so an escape is transmitted with probability 1/2. 0j−2 then predicts

the 0 with probability 1/3 as it has been followed by a 0 twice (once in B1,j and

B1,j−1) and a 1 twice (once in B1,j−1 and B1,j−2). The 1 is then predicted by the

181

7.4. Bounded versus Unbounded

n Prediction Probabilities of B3,3 · · ·B3,6

3 1
2

1
2

1
2

1
2

1
2

1
2

1
2

2
5

1
4

1
2

1
3

1
6

4 2
3

2
3

2
3

2
3

2
3

2
3

1
2

1
2

1
2

1
2

2
5

1
4

1
2

1
3

1
6

5 3
4

3
4

3
4

3
4

3
4

3
4

2
3

2
3

2
3

1
2

1
2

1
2

1
2

2
5

1
4

1
2

1
3

1
6

6 4
5

4
5

4
5

4
5

4
5

4
5

3
4

3
4

3
4

2
3

2
3

2
3

1
2

1
2

1
2

1
2

2
5

1
4

1
2

1
3

1
6

Table 7.5: The prediction probabilities used in B3,3 · · ·B3,6 by PPM*.

context 0j−1 with probability 1/4 as it has now been followed by both a 0 and a

1 once.

Hence, setting

pt =


1
24

if t = 1

1
20(t−1)(t)(t+3)

if t 6= 1,

(7.14)

to represent the bits contributed by the suffix 0t1, Bt,j contributes

(j − 2

j − 1

)2t

︸ ︷︷ ︸
prefix 02t

·
j−2∏
l=2

(l − 1

l

)t
︸ ︷︷ ︸
j−3 windows of 0t

· pt︸︷︷︸
suffix 0t1

(7.15)

bits to the encoding. Note that the 1/(20(t−1)(t)(t+3)) term in Equation (7.14)

comes from the fact that when t 6= 1, the formula for pt is as follows:

pt =
1

2
· 2

5
· 1

4
· 1

t
· 1

t+ 3
·
t−1∏
j=2

j − 1

j
=

1

20(t− 1)(t)(t+ 3)
. (7.16)

Note that statement (7.15) can be simplified to

(j − 2)t

(j − 1)2t
· pt. (7.17)

To help visualise this, Table 7.5 contains the prediction probabilities PPM*

uses on B3,3 · · ·B3,6.

182

7.4. Bounded versus Unbounded

In total, zones Bt,3 · · ·Bt,n contribute the following number of bits to the

output:

pn−2
t ·

n∏
j=3

(j − 2)t

(j − 1)2t
=

pn−2
t

(n− 1)2t
·
n−2∏
j=1

1

jt
=

pn−2
t

(n− 1)t((n− 1)!)t
. (7.18)

Therefore we have that

|PPM*(Bt,n)| = (n− 2) log(p−1
t) + t log(n− 1) + t log((n− 1)!) +O(1). (7.19)

This proves the lemma.

Next we show that St is compressible by PPM*.

Proposition 7.4.4. R
PPM*(St) = 0.

Proof. Note that PPM* performs the worst on prefixes of St of the form Bt,n as

these are the prefixes where the final character is encoded is always a 1, i.e. the

characters which contribute the most to the output.

Hence, by Lemma 7.4.3 we have that

lim
n→∞

|PPM*(Bt,n)|
|Bt,n|

= lim
n→∞

(n− 2) log(p−1
t) + t log(n− 1) + t log((n− 1)!)

n
2
(tn+ t+ 2)

≤ lim
n→∞

(n− 2) log(p−1
t) + t log(n− 1) + t(n− 1) log((n− 1))

n
2
(tn+ t+ 2)

= 0. (7.20)

Thus ρ
PPM*(S) = 0.

183

7.4. Bounded versus Unbounded

7.4.3 Comparing the Two

Above we saw that (unsurprisingly) both PPMt and PPM* compress St with a

compression ratio of 0. We now prove the main theorem of this section.

Theorem 7.4.5. Let t ≥ 1. It holds that

lim
m→∞

|PPMt(S
t � m)|

|PPM*(St � m)|
=

1

t
.

Proof. For each m, let nm denote the least non-negative integer such that S �

m v Bt,nm . That is S � m is a prefix of Bt,nm but not Bt,nm−1. Note that for all

m it holds that

|PPMt(Bt,nm−1)|
|PPM*(Bt,nm)|

≤ |PPMt(S
t � m)|

|PPM*(St � m)|
≤ |PPMt(Bt,nm)|
|PPM*(Bt,nm−1)|

. (7.21)

We will use this inequality to prove the theorem.

Firstly, we shall examine

|PPMt(Bt,nm)|
|PPM*(Bt,nm−1)|

.

From Equation (7.19) we have that

|PPM*(Bt,nm−1)| = (nm − 3) log(p−1
t) + t log(nm − 2) + t log((nm − 2)!) +O(1)

where pt = 1
(t−1)(t)(t+3)

if t > 1 and t = 1/24 otherwise. From Equation (7.12) we

have that

|PPMt(Bt,nm)| ≤ t log(nm− 1) + (nm + 2) log(t(nm + 1)2)− log((nm− 1)!) +O(1).

184

7.4. Bounded versus Unbounded

It follows that

lim
m→∞

t log(nm − 1) + (nm + 2) log(t(nm + 1)2)− log((nm − 1)!) +O(1)

(nm − 3) log(p−1
t) + t log(nm − 2) + t log((nm − 2)!) +O(1)

=
1

t
.

(7.22)

Hence

lim
m→∞

|PPMt(Bt,nm)|
|PPM*(Bt,nm−1)|

≤ 1

t
. (7.23)

Next we examine

|PPMt(Bt,nm−1)|
|PPM*(Bt,nm)|

.

Again from Equation (7.19) we have that

|PPM*(Bt,nm)| = (nm − 2) log(p−1
t) + t log(nm − 1) + t log((nm − 1)!) +O(1).

Recall that from Equation (7.11), rearranging we find that

|PPMt(Bt,nm−1)| =t log(nm − 2) + log(
nm∏
l=0

(kt,nm−2 + t(nm − 2) + 2− l)

− log((nm − 2)!) +O(1).

Noting that

kt,nm−2 + t(nm − 2) + 2− nm ≥
(nm − 2)

2

(
t(nm − 1)− 2t+ 2

)
− nm

≥ (nm − 2)

2

(
t(nm − 1)− 2t

)
− nm

≥ nm
2

(tnm − 5t− 2),

185

7.5. Summary

we have that

(|Bt,nm−1)| ≥t log(nm − 2) + (nm + 1) log(
nm
2

(tnm − 5t− 2))

− log((nm − 2)!) +O(1). (7.24)

It follows that

lim
m→∞

t log(nm − 2) + (nm + 1) log(nm

2
(tnm − 5t− 2))− log((nm − 2)!)

(nm − 2) log(p−1
t) + t log(nm − 1) + t log((nm − 1)!)

=
1

t
.

(7.25)

That is,

lim
m→∞

|PPMt(Bt,nm−1)|
|PPM*(Bt,nm)|

≥ 1

t
. (7.26)

Hence by Equations (7.21), (7.23) and (7.26), it follows that

lim
m→∞

|PPMt(S
t � m)|

|PPM*(St � m)|
=

1

t
.

7.5 Summary

In this chapter we performed the first analysis of PPM* on normal sequences.

By using a construction of Pierce and Shields, we demonstrated that there exists

a Champernowne sequence C such that R
PPM*(C) = 0 in Theorem 7.3.8. This

construction method will be explored again in Chapter 8. We furthermore showed

that regardless of the bound of context length chosen, Bounded PPM cannot

compress normal sequences in Theorem 7.3.9.

In Section 7.4, we conducted a small investigation into whether a maximum

context length can be cleverly chosen such that Bounded PPM can beat PPM*.

186

7.5. Summary

From a chosen bound t, we showed in Theorem 7.4.5 that one can construct a

simple sequence St such that PPM*’s output on prefixes of St is t times longer

than PPMt’s output.

187

Chapter 8

Automatic Complexity of Normal

Sequences

Contents of this chapter were presented (virtually) at FSTTCS 2021 in India

during December 2021. doi: 10.4230/LIPIcs.FSTTCS.2021.47.

8.1 Introduction

The following chapter examines the complexity of finite strings and sequences

via the complexity measure based on deterministic finite-state automata (DFA)

introduced by Shallit and Wang known as automatic complexity [130]. As such,

this chapter can be viewed as a cousin of Chapter 3 which similarly used finite-

state automata with outputs to examine strings and sequences. Being a finite-

state based complexity, we are interested whether normal sequences must have

maximal automatic complexity. To answer this, we demonstrate the existence of

normal sequences whose prefixes have an automatic complexity ratio of between

0 and 1/2. We furthermore show that prefixes of the Champernowne sequences

constructed in Chapter 7 (Section 7.3.1) have an automatic complexity ratio

bounded above by 2/3.

188

https://doi.org/10.4230/LIPIcs.FSTTCS.2021.47

8.1. Introduction

8.1.1 Motivation

In Chapter 3 we examined one method of calculating the complexity of strings

and sequences via finite-state transducers and their minimal descriptions. Recall

that the complexity of a string x was related to the length of the smallest string

y such that a transducer on input y would output x. The longer y must be, the

more complex x is as it requires more bits to be described. This approach of

defining finite-state complexity has been taken in many places [31, 34, 56, 57].

Instead of being based on outputting the string x, one may define the com-

plexity to be the amount of computing power required to distinguish x from all

other strings of length |x|. As described in Definition 2.2.10, Sipser was the first

to introduce this idea of a Distinguishing Complexity [134]. For a string x, Shallit

and Wang define its automatic complexity A(x) to be the minimum number of

states required by a deterministic finite-state automaton such that x is the only

string of length |x| it accepts. A non-deterministic variation was first examined

by Hyde [83]. A similar complexity notion based on finding the size of the small-

est context-free grammar such that x is the only string of length |x| the grammar

generates was explored in [41].

In their original paper, Shallit and Wang proved upper and lower bounds of

automatic complexity for various sets of strings and of prefixes of the infinite

Thue-Morse [19] sequence. Expanding on this line of research, Kjos-Hanssen has

recently studied the automatic complexity of Fibonacci and Tribonacci sequences

[87].

Depending on how finite-state complexity is measured, normal sequences may

have high or low complexity. As previously discussed, if complexity is defined as

compressibility by lossless finite-state compressors, normal sequences have maxi-

mum complexity (see previously mentioned [11, 14, 35, 49, 128]). For the minimal

description approach, if the size of the transducers are restricted when examining

189

8.1. Introduction

all prefixes of the sequence, normal sequences have maximal complexity, as seen

in Theorem 3.2.8. If not, normal sequences can have arbitrarily low complexity,

as seen in Theorem 3.2.10. A survey of old and new results can be found in [95].

As automatic complexity is more of a ‘combinatorial’ rather than an ‘infor-

mation content’ measurement1, this leads to the question as to how low can the

automatic complexity of normal sequences be? As the number of DFAs with n

states exceeds the number of strings of length n, one would expect that most

strings would have an automatic complexity value which is smaller than their

length. In fact, Shallit and Wang demonstrate in Theorem 6 of [130] that almost

every string x satisfies

A(x) ≤ 3|x|
4

+ log |x|
√
|x|
8
. (8.1)

In terms of lower bounds, in Theorem 8 of [130] Shallit and Wang show that for

almost every string x it holds that

A(x) ≥ |x|
13
. (8.2)

They also state that the 13 term above can be replaced with 7 after personal

communication with Petersen. Kjos-Hanssen has recently shown that 13 can be

replaced with 2 + ε for all ε > 0 [89]. For completeness of both Equations (8.1)

and (8.2), a set S ⊆ {0, 1}∗ contains ‘almost every’ string means that

lim
n→∞

|S
⋂
{0, 1}n|
2n

= 1.

Previously, the automatic complexity of finite strings produced by linear feed-

back shift registers which have a maximal number of distinct substrings (otherwise

1In an information content measurement, we would like there to be roughly 2n objects with
a complexity of n. For automatic complexity, it holds that all strings of the form 0n and 1n

have an automatic complexity of 2.

190

8.1. Introduction

known as m-sequences) [88] along with sequences and finite strings which do not

contain k-powers, i.e. substrings of the form xk, have been studied [84, 87, 130].

Normal sequences by definition contain xk as a substring infinitely often for every

possible pair (x, k). Is there a trade-off between the randomness of normal se-

quences resulting in high complexity, in the sense that they contain every string

as a substring infinitely often, and does the fact that some of those substrings

have the form xk result in low automatic complexity? We explore this question

in this chapter.

8.1.2 Automatic Complexity Definitions

Recall Definition 3.2.1 of a finite-state transducer. The definition for finite-state

automata is similar.

Definition 8.1.1. A deterministic finite-state automaton (DFA) M is defined by

a 4-tuple M = (Q, q0, δ, F), where

• Q is a non-empty, finite set of states,

• q0 ∈ Q is the initial state,

• δ : Q× {0, 1} → Q is the transition function,

• F ⊆ Q is the set of final or accepting states.

The transition function and extended transition function of a DFA for strings

is defined recursively the same way as for an FST. We say a DFA accepts the

string x if δ(q0, x) ∈ F . The language of a DFA M , denoted by L(M), is the

set of strings that M accepts. That is, L(M) = {x : δ(q0, x) ∈ F}. Shallit and

Wang define automatic complexity as follows.

Definition 8.1.2 ([130]). Let x ∈ {0, 1}∗. The automatic complexity of x, de-

noted by A(x), is the minimal number of states required by a deterministic finite

automaton M such that L(M)
⋂
{0, 1}|x| = {x}.

191

8.2. Normal Sequences with a Low Automatic Complexity Ratio

Definition 8.1.3. A DFA M uniquely accepts a string x if L(M)
⋂
{0, 1}|x| =

{x}.

Shallit and Wang compute the following two ratios to examine the automatic

complexity of sequences.

Definition 8.1.4. The lower and upper bounds for the automatic complexity

ratio of a sequence T ∈ {0, 1}ω are respectively given by

I(T) = lim inf
m→∞

A(T � m)

m
and, S(T) = lim sup

m→∞

A(T � m)

m
.

8.2 Normal Sequences with a Low Automatic

Complexity Ratio

We require the use of de Bruijn strings during constructions in this chapter. We

point towards Definition 2.6.1 for a refresher.

In our first result we construct a normal sequence T such that I(T) = 0, that

is, infinitely many prefixes have minimal automatic complexity. We furthermore

show that S(T) ≤ 1/2, indicating that the sequence does not have high complex-

ity. We first require the following theorem of Nandakumar and Vangapelli.

Theorem 8.2.1 ([116]). Let f : N→ N be increasing such that for all n, f(n) ≥

nn. Then every sequence of the form T = d
f(1)
1 d

f(2)
2 d

f(3)
3 · · · where dn is a de

Bruijn string of order n, is normal 2.

2Nandakumar and Vangapelli’s original result was for when f(n) = nn. However, their
argument easily carries over for f(n) ≥ nn also and this fact has been used by other authors
such as in [33, 34].

192

8.2. Normal Sequences with a Low Automatic Complexity Ratio

Theorem 8.2.2. There is a normal sequence T such that I(T) = 0 and S(T) ≤

1/2.

Proof. We recursively define the sequence T = T1T2 . . . and the function f : N→

N as follows. For all j ≥ 1, let dj be a de Bruijn string of order j such that

if j is odd, dj begins with a 1 and if j is even, dj begins with a 0. We set

f(1) = 2 and T1 = d
f(1)
1 = d2

1. For j ≥ 2, we define f(j) = |T1 . . . Tj−1||T1...Tj−1|

and Tj = d
f(j)
j . Note that f(1) > 1 and for all j ≥ 2, f(j) ≥ |Tj−1||Tj−1| and that

|Tj−1| = 2j−1f(j − 1) ≥ j. Hence by Theorem 8.2.1, T is normal. For simplicity,

we write Tj for the prefix T1 · · ·Tj of T .

We first show that I(T) = 0. Consider a prefix of the form Tn. Tn is uniquely

accepted by the DFA M1 which has a state for each bit of Tn−1 and then has

a loop of length 2n for the string dn which can be seen in Figure 8.1. M1 has

|Tn−1|+ 2n + 1 states. Thus we have that

A(Tn)

|Tn|
≤ |Tn−1|+ 2n + 1

|Tn|+ |Tn−1|
=
|Tn−1|+ 2n + 1

2nf(n) + |Tn−1|

≤ max
{ |Tn−1|

2n|Tn−1||Tn−1|
,
2n + 1

|Tn−1|

}
≤ max

{ 1

2n
,

2n + 1

(n− 1)n−1

}
. (8.3)

Hence it follows that I(T) = 0.

Next consider an arbitrary prefix T � m of T . Let n be largest such that Tn

is a prefix of T � m but Tn+1 is not. Thus T � m = Tn ·w for some w @ Tn+1 and

is uniquely accepted by the DFA M2 in Figure 8.1. M2 has |Tn−1|+ 2n + |w|+ 1

states.

Consider when 1 ≤ |w| ≤ 2n(f(n)− 1) + 2n+1. Note that

|Tn+1| = 2n+1f(n+ 1) = 2n+1(f(n+ 1)− 1) + 2n+1 > 2n(f(n)− 1) + 2n+1

193

8.2. Normal Sequences with a Low Automatic Complexity Ratio

so w can be this length. Hence for such w we have that

A(T � m)

m
≤ |Tn−1|+ 2n + |w|+ 1

|Tn|+ |w|

≤ |Tn−1|+ 2n + 2n(f(n)− 1) + 2n+1 + 1

|Tn|+ 2n(f(n)− 1) + 2n+1

=
|Tn−1|+ |Tn|+ 2n+1 + 1

|Tn−1|+ 2|Tn|+ 2n

=
|Tn−1|+ 2n(|Tn−1||Tn−1| + 2) + 1

|Tn−1|+ 2(2n|Tn−1||Tn−1|) + 2n

≤ max
{1 + 2n(|Tn−1||Tn−1|−1 + 2|Tn−1|−1)

1 + 2(2n|Tn−1||Tn−1|−1)
,

1

2n

}
. (8.4)

Note, for all ε > 0, Equation (8.4) is bounded above by 1/2 + ε as n increases.

Furthermore consider when 2n(f(n) − 1) + 2n+1 < |w| ≤ |Tn+1|. Instead of

looping on dn, it becomes more beneficial to loop on dn+1 via a DFA similar to

M1 in Figure 8.1 where the accepting state is a single state in the loop depending

on the length of w. Thus for such prefixes A(Tn ·w) ≤ |Tn|+ 2n+1 + 1, i.e. it does

not depend on w. Hence the ratio A(T � m)/m decreases and approaches I(T)

for such w.

Therefore by Equation (8.4), S(T) ≤ 1/2.

start
Tn−1

dn

start
Tn−1

dn

w

Figure 8.1: DFA M1 (left) and M2 (right) from Theorem 8.2.2. The error state
(the state traversed to if the bit seen is not the expected bit) and arrows to it are
not included. By the construction of T , dn[0] 6= w[0] to ensure determinism.

194

8.3. Automatic Complexity of a Champernowne Sequence

8.3 Automatic Complexity of a Champernowne

Sequence

Recall the subset of normal sequences known as Champernowne sequences intro-

duced in Chapter 2 which were formed by listing all strings of length 1 followed

by all strings of length 2 and so on. With this restrictive property on their

construction, one may wonder if such sequences must have maximal automatic

complexity. We answer this in the following section by demonstrating the exis-

tence of a Champernowne sequence C such that S(C) ≤ 2/3. We specifically

examine sequences built using Pierce and Shields’ construction [119] of Cham-

pernowne sequences discussed in Section 7.3.1 of Chapter 7 involving successive

concatenations of de Bruijn strings. Recall that the set of sequences constructed

using their method was denoted by PSC.

Before examining the main result of this section, we require the following

result from number theory.

Theorem 8.3.1. For a, b, c ∈ Z, consider the Diophantine equation ax+ by = c.

If there exists a solution to the equation (x0, y0) where x0, y0 ∈ Z, then all other

solutions (x′, y′) such that x′, y′ ∈ Z are of the form x′ = x0 + (b/g)d and y′ =

y0 − (a/g)d where d ∈ Z is arbitrary and g = gcd(a, b).

Theorem 8.3.2. There exists a Champernowne sequence C ∈ PSC such that

S(C) ≤ 2/3.

Proof. For each n, let dn be a de Bruijn string of order n with prefix 0n. Let

C ∈ PSC be a Champernowne sequence constructed using Pierce and Shields’

method where for each substring Cn, dn is the de Bruijn string used to construct it.

Recall, for example, the construction of zone Cn of C. n can be uniquely written

in the form n = 2st for s ≥ 0 and t ≥ 1 where t is odd. Then Cn = Bn,0 · · ·Bn,2s−1

where Bn,j = dtn,j such that dn,j = dn[j..2n − 1] · dn[0..j − 1]. Recall then if n is

195

8.3. Automatic Complexity of a Champernowne Sequence

odd that Cn = dnn and if n is a power of 2 (i.e. t = 1) that Cn = dn ·dn,1 · · · dn,n−1.

Again, we use Cn to denote the prefix C1C2 · · ·Cn of C.

Consider an arbitrary prefix C � m of C. Let n be largest such that Cn+1 is

a prefix of C � m, but Cn+2 is not. To examine A(C � m) we build automata

which make use of two loops which exploit the repetitions of the de Bruijn strings

in Cn and Cn+1. The automata have one accepting state which depends on the

length of the prefix being examined. There are four cases to consider which are

dependent on the value of n, and the four automata can be seen in Figure 8.4.

• Case 1: n is a power of 2,

• Case 2: n+ 1 is a power of 2,

• Case 3: n is even but not a power of 2,

• Case 4: n+ 1 is even but not a power of 2.

Notation wise, we let vn be the string such that dn = 0n1vn. Note that

dn[n] = 1 as otherwise the string 0n would appear twice as a substring of dn.

Also not that the final bit of dn must be a 1 also.

Suppose we are in Case 3 where n = 2st where s ≥ 1 and t ≥ 3 where t is odd.

Let pn+2 denote the prefix of Cn+2 such that C � m = Cn+1pn+2. The automaton

for Case 3 in Figure 8.4 accepts C � m by reading the prefix Cn−1 · 0n state by

state, then traversing the first loop 2s times, then reading 02s+1, then traversing

the second loop fully n times and then up to reading 1vn+1 on the n+1th traversal

of it. Then, depending on the length of pn+2, we read the final 0n+1 of the second

loop and exit it to read the remainder of Cn+2[n + 1..] as needed. That is, if

|pn+2| ≤ n+ 1 then the final state is contained in the last n+ 1 states (including

the root state) of the second loop of the DFA, else once finishing the loop, we

traverse through |pn+2| − (n+ 1) extra states to the accepting state.

196

8.3. Automatic Complexity of a Champernowne Sequence

To help the reader visualise these loops, Figures 8.2 and 8.3 are provided to

show which bits of zones C3, C4 and C6 are read on a single traversal of a loop

when the lexicographic least de Bruijn strings of order 3, 4 and 6 are used.

To see that C � m is accepted by the DFA, note that the traversal through

the DFA described above can be factored as Cn−1xpn+2 where

x = 0n(1vnd
t−1
n 0n−1)2s02s+1(1vn+10n+1)n(1vn+1).

00010111 0000100110101111
00010111 0001001101011110
00010111 0010011010111100

0100110101111000

Figure 8.2: The bits shaded in blue indicate which bits are read on a single
traversal of the loops used when reading C3 (left) and C4 (right) respectively.

0000001000011000101000111001001011001101001111010101110110111111
0000001000011000101000111001001011001101001111010101110110111111
0000001000011000101000111001001011001101001111010101110110111111
0000010000110001010001110010010110011010011110101011101101111110
0000010000110001010001110010010110011010011110101011101101111110
0000010000110001010001110010010110011010011110101011101101111110

Figure 8.3: The bits shaded in blue indicate which bits are read on a single
traversal of the loop used when reading C6.

197

8.3. Automatic Complexity of a Champernowne Sequence

Note that x = CnCn+1 since

x = 0n(1vnd
t−1
n 0n−1)2s02s+1(1vn+10n+1)n(1vn+1)

= (0n1vnd
t−1
n)0n−1(1vnd

t−1
n 0n−1)2s−102s+1(1vn+10n+1)n(1vn+1)

= B0(0n−11vnd
t−1
n 0)0n−2(1vnd

t−1
n 0n−1)2s−102s+1(1vn+10n+1)n(1vn+1)

= B0B1(0n−21vnd
t−1
n 02)0n−3(1vnd

t−1
n 0n−1)2s−202s+1(1vn+10n+1)n(1vn+1)

... (Keep repeating this process of sectioning into the 2s blocks)

= B0B1 · · ·B2s−10n−2s02s+1(1vn+10n+1)n(1vn+1)

= Cn(0n+11vn+1)n+1 = CnCn+1.

Next we show that the DFA uniquely accepts C � m. Note that all strings

accepted have length

|Cn−1|+ n+ (2nt− 1)a+ 2s + 1 + 2n+1b+ |pn+2| − (n+ 1)

where a, b ≥ 0 are positive integers. As stated (a, b) = (2s, n+ 1) is a solution to

the Diophantine equation

|Cn−1|+ n+ (2nt− 1)a+ 2s + 1 + 2n+1b+ |pn+2| − (n+ 1) = |C � m|. (8.5)

By Theorem 8.3.1, as the first loop has odd length and the second has even

length, all integer solutions to Equation (8.5) take the form

(2s + 2n+1c, n+ 1− (2nt− 1)c)

where c ∈ Z. As 2s = n/t and t ≥ 3, we have that (n+ 1)− (2nt− 1)c < 0 when

c > 0 and 2s + 2n+1c < 0 when c < 0, it follows that c = 0 is the only possibility

that gives non-negative integer solutions, i.e. C � m is uniquely accepted by the

198

8.3. Automatic Complexity of a Champernowne Sequence

DFA.

The number of states of the automaton is bounded above by

|Cn−1|+ n+ 2nt+ 2s + 2n+1 + |pn+2|.

As 2s ≤ n/3, we then have that

A(C � m)

m
≤
|Cn−1|+ 2nt+ 4n

3
+ 2n+1 + |pn+2|

|Cn+1|+ |pn+2|
. (8.6)

Hence for |pn+2| ≤ 2n(n− t)− n
3

+ 1 + 2n+2(n+2
2

) we find that

A(C � m)

m
≤
|Cn−1|+ 2nt+ 4n

3
+ 2n+1 + |pn+2|

|Cn+1|+ |pn+2|

≤
|Cn−1|+ |Cn|+ n+ 2n+1 + 1 + 2n+2(n+2

2
)

|Cn+1| − n
3

+ 1 + 2n+2(n+2
2

)

=
|Cn|+ n+ 2n+1 + 1 + 2n+2(n+2

2
)

|Cn+1| − n
3

+ 1 + 2n+2(n+2
2

)
. (8.7)

For all ε > 0, we note that Equation (8.7) is bounded above by 2/3 + ε as n

increases.

However as |pn+2| increases, it becomes more advantageous to use a loop for

the repetitions in Cn+2 as opposed to the loop for Cn (similar to the proof of

Theorem 8.2.2). In the worst case scenario, n + 2 has the form 2s
′
t′ for s′ ≥ 1

and t′ ≥ 3 where t′ is odd. This results in an automaton of Case 4, as shown in

Figure 8.4, where the accepting state is one of that states of the second loop. One

can show that the prefix is uniquely accepted as before with a similar argument.

Such an automaton requires at most |Cn| + 2n+1 + n + 1 + 2n+2(n+2
2

) states (as

t′ ≤ (n+ 2)/2).

Hence for j ≥ 1 such that 2n(n− t)− n
3

+ 1 + 2n+2(n+2
2

) ≤ |pn+2|+ j < |Cn+2|

199

8.3. Automatic Complexity of a Champernowne Sequence

we use the automaton from Case 4 and find that

A(C � m)

m
≤
|Cn|+ n+ 2n+1 + 1 + 2n+2(n+2

2
)

|Cn+1| − n
3

+ 1 + 2n+2(n+2
2

) + j
. (8.8)

One can see that for such pn+2, the number of states of the automaton used

to calculate (8.8) remains constant and the ratio decreases as j increases.

Similar calculations for the other three cases show that none achieve an upper

bound greater than 2/3 + ε resulting in S(C) ≤ 2/3. As the calculations are

similar, for completeness and readability purposes, these are presented in Section

8.3.2 at the end of this chapter.

200

8.3. Automatic Complexity of a Champernowne Sequence

1start

Cn−10n

1

vn0n−1

0n+1

1

vn+10n+1Cn+2[n+ 1..]

3start

0n−1

Cn−1

0n

1

vn

dt−1
n

02s+1

1

vn+10n+1Cn+2[n+ 1..]

2start

Cn−10n

1

vn0n

0

1

vn+10nCn+2

4start

0n

Cn−10n

1

vn0n

0

1

vn+1

dt
′−1
n+1

02s
′
+1Cn+2[n+ 2..]

Figure 8.4: Automata for Case 1 (top left), Case 2 (top right), Case 3 (bottom
left) and Case 4 (bottom right) for Theorem 8.3.2. The dashed arrows represent
the missing states belonging to their labels. The error states and arrows to it are
not included.

201

8.3. Automatic Complexity of a Champernowne Sequence

8.3.1 Lower Bounds for Champernowne Sequences

Let C ∈ PSC satisfy Theorem 8.2.2. As part of Theorem 8.2.2, we do not

provide any insight into the value of I(C). Currently many of the techniques

for calculating lower bounds rely on the absence of k-powers (such as proofs in

[87, 130]). In particular, Shallit and Wang show that for every x without k-powers,

x satisfies A(x) ≥ (|x|+ 1)/k. However, as C is a Champernowne sequence, long

enough prefixes will contain k-powers, i.e. there eventually is a substring x such

that x = uk for some string u.

However, one can easily identify an upper bound for I(C) as follows. Consider

prefixes of the form Cn+1 where n is a power of 2, i.e. we are in Case 1. The au-

tomaton in Figure 8.4 for Case 1, where the final state is contained appropriately

in the second loop, will uniquely accept the prefix and simple calculations give

us that I(C) ≤ 1/4.

One prefix x of C such that A(x)/|x| < 1/4 which is in Case 1 is C65. The

automaton for Case 1 in Figure 8.4 which uniquely accepts C65 has n1 = |C63|+

264 + 265 + 128 states. However, the number of states can be reduced further by

using two more loops for zones C62 and C63 instead of having a state for each of

their bits. Consider the DFA M̂ shown in Figure 8.5:

M̂ reads the prefix C61 · 062. It then traverses a loop for 1v62(d62)30061. It

then reads 03 and enters a loop for the string (1v63063)21. Following this it reads

01v64063 and then enters a loop for the string (1v64063)7. It then reads 065 and

enters a loop for the string (1v65065)5, with the final state being that state of this

loop after reading (1v65065)4 · 1v65. M̂ can be thought of as combining the DFAs

from Figure 8.4, but altering the length of the loops for the zones. Strings of

length |C65| that M̂ accepts satisfy the equation

|C61|+(262 ·31−1)a+(21 ·263)b+(7 ·(264−1))c+(5 ·265)d+65+264 = |C65| (8.9)

202

8.3. Automatic Complexity of a Champernowne Sequence

where it must hold d ≥ 1 so the final loop is traversed to reach the accepting

state. a = 2, b = 3, c = 9 and d = 13 is the only non-negative integer solution to

Equation (8.9) and so M̂ uniquely accepts C65. M̂ has

n2 = |C61|+ 31 · 262 + 7 · 263 + 8 · 264 + 5 · 265 + 120

states which is less than n1. Hence M̂ gives us that A(C65)/|C65| < 0.173 < 1/4.

start
C61 · 062

(1v62(d62)30061)

03

(1v63063)21

01v64063

(1v64063)7

065

(1v65065)41v65065

Figure 8.5: Automaton M̂ for C65. The dashed arrows represent the missing
states belonging to their labels. The error state (the state traversed to if the bit
seen is not the expected bit) and arrows to it are not included.

While the above demonstrates that more than two loops can be used, the size

of the loops are limited in each case. The following remark examines the potential

lengths of the possible loops that can be used in an arbitrary Cn zone.

Remark 8.3.3. Let n ∈ N and s ≥ 0 and t ≥ 1 where t is odd such that n = 2st.

Let x ∈ {0, 1}∗ such that |x| ≥ n. If occ(xx,Cn) ≥ 1, then the possibilities for

the length of x include:

1. |x| = 2na, where 1 ≤ a ≤ b t
2
c,

2. |x| = 2nb− 1, where 1 ≤ b ≤ t,

3. |x| = (2nt− 1)c, where 1 ≤ c ≤ 2s−1.

Proof. Recall that Cn = B0 · · ·B2s−1, where for each i, Bi = dtn,i. So |Bi| = 2nt.

In the following we will write di instead of dn,i for notational clarity as we are

203

8.3. Automatic Complexity of a Champernowne Sequence

exclusively examining zone Cn.

1. First suppose that occ(xx,Bi) ≥ 1 for some i, i.e. xx is contained in a full

block Bi. Assume n ≤ |x| < 2n. Then x can be factored into x = yz where

|y| = n and |z| < 2n − n. Thus yzy is a substring of Bi which has length

at most 2n + n − 1. By the construction of Bi, yzy is therefore a prefix of

σ = di[k..] · di[0..k + n − 2] for some k. For all τ ∈ {0, 1}n, occ(τ, σ) = 1,

however occ(y, σ) = 2, which is a contradiction.

Next suppose 2na < |x| < 2n(a + 1). If a > b t
2
c, then |xx| > |Bi| which

contradicts occ(xx,Bi) ≥ 1. Hence a ≤ b t
2
c. x can be factored into sub-

strings x = yz where |y| = 2na and |z| < 2n. Hence, yzy is a substring of

Bi. We therefore have that

yzy = (di[k..2
n − 1] · di[0..k − 1])a · z · (di[k..] · di[0..k − 1])a

for some k. This forces

z = (di[k..] · di[0..k − 1])c

for some c ≥ 1 or z = λ, both of which contradict the possible lengths of

z. Hence we must have that |x| = 2na, where 1 ≤ a ≤ b t
2
c establishing the

first case.

2. Next consider the case where xx is a substring of Cn such that the first x

is a suffix of block Bi and the second is a prefix of block Bi+1. This forces

x to be of the form di[1..] · (di)b where b < t, as otherwise, x is not a prefix

of Bi+1. Noting that for all i,

di[1..2
n − 1] · 0 = di+1 and di = 0 · di+1[0..2n − 2],

204

8.3. Automatic Complexity of a Champernowne Sequence

we see that xx is a substring of Cn as

di[1..2
n − 1] · dbi = di[1..2

n − 1] · 0 · di[1..2n − 1] · db−1
i

= di+1 · di[1..2n − 1] · 0 · di[1..2n − 1] · db−2
i

= d2
i+1 · di[1..2n − 1] · db−2

i

...

= db−1
i+1 · di[1..2n − 1]

= db−1
i+1 · di+1[0..2n − 2].

As di[1..2
n − 1] · dbi is a suffix of Bi and db−1

i+1 · di+1[0..2n − 2] is a prefix of

Bi+1, this establishes the second case.

3. Next suppose xx is a substring of Cn where x can be factored into substrings

x = ywz such that y is a suffix of Bi, z is a prefix of Bi+c, and w =

Bi+1 · · ·Bi+c−1. This forces x to be of the form

x = di[k..] · dpi ·Bi+1 · · ·Bi+c−1 · dt−p−1
i+c · di+c[0..k − 1− c]

where p < t and c ≤ 2s−1. Note that |x| = (2nt−1)c. We have the previous

restriction on p and c as if p ≥ t then di[k..] · dpi is not a suffix of Bi and if

c > 2s−1 then |xx| > |Cn|.

To see this, we consider the simpler case of

x = di[k..] · dpi ·Bi+1 · dt−p−1
i+2 · di+2[0..k − 3]

and show that x can be parsed into the string

x = di+2[k − 1..] · dpi+2 ·Bi+3 · dt−p−1
i+4 · di+4[0..k − 5].

205

8.3. Automatic Complexity of a Champernowne Sequence

We have that

di[k..] · dpi ·Bi+1 · dt−p−1
i+2 · di+2[0..k − 3]

= di[k..] · 0 · di[1..] · dp−1
i ·Bi+1 · dt−p−1

i+2 · di+2[0..k − 3]

= di+1[k − 1..] · di+1 · di[1..] · dp−2
i ·Bi+1 · dt−p−1

i+2 · di+2[0..k − 3]

...

= di+1[k − 1..] · dp−1
i+1 · di+1[1..] · dti+1 · d

t−p−1
i+2 · di+2[0..k − 3]

= di+1[k − 1..] · dpi+1 · di+1[1..] · dt−1
i+1 · d

t−p−1
i+2 · di+2[0..k − 3]

= di+1[k − 1..] · dpi+1 · di+2 · di+1[1..] · dt−2
i+1 · d

t−p−1
i+2 · di+2[0..k − 3]

...

= di+1[k − 1..] · dpi+1 · dt−1
i+2 · di+1[1..] · 0 · dt−p−2

i+2 [1..] · dt−p−2
i+2 · di+2[0..k − 3]

= di+1[k − 1..] · dpi+1 · dti+2 · di+2[1..] · dt−p−2
i+2 · di+2[0..k − 3]

= di+1[k − 1..] · dpi+1 ·Bi+2 · di+3 · di+2[1..] · dt−p−3
i+2 · di+2[0..k − 3]

...

= di+1[k − 1..] · dpi+1 ·Bi+2 · dt−p−2
i+3 · di+2[1..] · ·di+2[0..k − 3]

= di+1[k − 1..] · dpi+1 ·Bi+2 · dt−p−2
i+3 · di+2[1..] · 0 · di+2[1..k − 3]

= di+1[k − 1..] · dpi+1 ·Bi+2 · dt−p−1
i+3 · di+3[0..k − 4].

To see that xx is a substring of Cn, note then that x can be further parsed

again as above to get that

x = di+2[k − 2..] · dpi+2 ·Bi+3 · dt−p−1
i+4 · di+4[0..k − 5].

206

8.3. Automatic Complexity of a Champernowne Sequence

Hence it follows that

xx = di[k..] · dpi ·Bi+1 · dt−p−1
i+2 · di+2[0..k − 3]︸ ︷︷ ︸
x

· di+2[k − 2..] · dpi+2 ·Bi+3 · dt−p−1
i+4 · di+4[0..k − 5]︸ ︷︷ ︸

x

= di[k..] · dpi ·Bi+1 · dti+2 ·Bi+3 · dt−p−1
i+4 · di+4[0..k − 5]

= di[k..] · dpi ·Bi+1 ·Bi+1 ·Bi+3 · dt−p−1
i+4 · di+4[0..k − 5]

which is a substring of Cn.

The case where w contains more than one full block Bi follows from this

case.

8.3.2 Remaining Calculations for Theorem 8.3.2

The following is the reasoning why Equation (8.7) from the proof of Theorem

8.3.2 gives us the upper bound of S(C). We perform similar calculations as in

the proof for Cases 1, 2 and 4 to see this.

Case 1: n is a power of 2.

Suppose we are in Case 1. Let pn+2 be such that C � m = Cn+1pn+2. We have

an automaton as in Case 1. It requires at most |Cn−1|+1+2n+2n+2n+1 + |pn+2|

states. Thus

A(C � m)

m
≤ |Cn−1|+ 1 + 2n+ 2n + 2n+1 + |pn+2|

|Cn+1|+ |pn+2|
.

For |pn+2| long enough, it is more beneficial to loop in Cn+2 instead of Cn and

use an automaton in the style of Case 4 since in the worst case scenario, n+2 has

the form 2s
′
t′. Such an automaton has at most |Cn| + 1 + n + 2n+1 + 2n+2(n+2

2
)

207

8.3. Automatic Complexity of a Champernowne Sequence

states.

So for |pn+2| ≤ 2n(n− 1)− n+ 2n+2(n+2
2

), it holds that

A(C � m)

m
≤ |Cn−1|+ 1 + 2n+ 2n + 2n+1 + |pn+2|

|Cn+1|+ |pn+2|

≤
|Cn−1|+ 1 + 2n− n+ 2n + 2n(n− 1) + 2n+1 + 2n+2(n+2

2
)

|Cn+1| − n+ 2n(n− 1) + 2n+2(n+2
2

)

=
|Cn|+ 1 + n+ 2n+1 + 2n+2(n+2

2
)

|Cn+1| − n+ 2n(n− 1) + 2n+2(n+2
2

)
.

For j ≥ 1 such that 2n(n− 1)− n + 2n+2(n+2
2

) ≤ |pn+2| + j < |Cn+2|, we use

an automaton from Case 4 and have that

A(C � m)

m
≤

|Cn|+ 1 + n+ 2n+1 + 2n+2(n+2
2

)

|Cn+1| − n+ 2n(n− 1) + 2n+2(n+2
2

) + j
,

i.e. the number of states required remains constant. Furthermore

lim
n→∞

|Cn|+ 1 + n+ 2n+1 + 2n+2(n+2
2

)

|Cn+1| − n+ 2n(n− 1) + 2n+2(n+2
2

)
=

4

7
<

2

3
.

Case 2: n+ 1 is a power of 2

Suppose we are in Case 2. Let pn+2 be such that C � m = Cn+1pn+2. We have

an automaton as in Case 2. It requires at most |Cn−1| + n + 2n + 2n+1 + |pn+2|

states. Thus

A(C � m)

m
≤ |Cn−1|+ n+ 2n + 2n+1 + |pn+2|

|Cn+1|+ |pn+2|
.

For |pn+2| long enough, it is more beneficial to loop in Cn+2 instead of Cn and

use an automaton in the style of Case 1 as n + 2 is odd and n + 1 is a power

of 2. As the final state will be contained in the second loop, such an automaton

requires |Cn|+ 2 + 2n+ 2n+1 + 2n+2 states.

208

8.3. Automatic Complexity of a Champernowne Sequence

Thus for |pn+2| ≤ 2 + n+ 2n(n− 1) + 2n+2, it holds that

A(C � m)

m
≤ |Cn−1|+ n+ 2n + 2n+1 + |pn+2|

|Cn+1|+ |pn+2|

≤ |Cn−1|+ 2 + n+ n+ 2n + 2n(n− 1) + 2n+1 + 2n+2

|Cn+1|+ 2 + n+ 2n(n− 1) + 2n+2

=
|Cn|+ 2 + 2n+ 2n+1 + 2n+2

|Cn+1|+ 2 + n+ 2n(n− 1) + 2n+2
.

For j ≥ 1 such that 2 + n+ 2n(n− 1) + 2n+2 ≤ |pn+2|+ j < |Cn+2|, we use an

automaton from Case 1 and have that

A(C � m)

m
≤ |Cn|+ 2 + 2n+ 2n+1 + 2n+2

|Cn+1|+ 2 + n+ 2n(n− 1) + 2n+2 + j
,

i.e. the number of states required remains constant. Furthermore

lim
n→∞

|Cn|+ 2 + 2n+ 2n+1 + 2n+2

|Cn+1|+ 2 + n+ 2n(n− 1) + 2n+2
=

2

5
<

2

3
.

Case 4: n+ 1 is even but not a power of 2

Suppose we are in Case 4, i.e. n+ 1 = 2st for some s ≥ 1 and t ≥ 3 odd. Let

pn+2 be such that C � m = Cn+1pn+2. We have an automaton as in Case 4. It

requires at most |Cn−1|+ n+ 2n + 2n+1t+ |pn+2| states.

Thus

A(C � m)

m
≤ |Cn−1|+ n+ 2n + 2n+1t+ |pn+2|

|Cn+1|+ |pn+2|
.

For |pn+2| long enough, it is more beneficial to loop in Cn+2 instead of Cn and

use an automaton in the style of Case 3 as n + 2 is odd and n + 1 is even but

not power of 2. As the final state will be contained in the second loop, such an

automaton requires |Cn|+n+2n+1t+2s+2n+2 states. As 2s ≤ n/3, we have that

the number of states required is bounded above by |Cn|+ 4n/3 + 2n+1t+ 2n+2.

209

8.4. Summary

So for |pn+2| ≤ n/3 + 2n(n− 1) + 2n+2, it follows that

A(C � m)

m
≤ |Cn−1|+ n+ 2n + 2n+1t+ |pn+2|

|Cn+1|+ |pn+2|

≤
|Cn−1|+ n+ n

3
+ 2n + 2n(n− 1) + 2n+1t+ 2n+2

|Cn+1|+ n
3

+ 2n(n− 1) + 2n+2

=
|Cn|+ 4n

3
+ 2n+1t+ 2n+2

|Cn+1|+ n
3

+ 2n(n− 1) + 2n+2

For j ≥ 1 such that n/3 + 2n(n− 1) + 2n+2 ≤ |pn+2| + j < |Cn+2|, we use an

automaton from Case 3 and have that

A(C � m)

m
≤

|Cn|+ 4n
3

+ 2n+1t+ 2n+2

|Cn+1|+ n
3

+ 2n(n− 1) + 2n+2 + j
,

i.e. the number of states required remains constant. Furthermore

lim
n→∞

|Cn|+ 4n
3

+ 2n+1t+ 2n+2

|Cn+1|+ n
3

+ 2n(n− 1) + 2n+2
≤ lim

n→∞

|Cn|+ 4n
3

+ 2n+1 (n+1)
2

+ 2n+2

|Cn+1|+ n
3

+ 2n(n− 1) + 2n+2

=
3

5
<

2

3
.

8.4 Summary

In this chapter we explored whether normal sequences must have maximal au-

tomatic complexity. We answered this first in Theorem 8.2.2 by constructing a

normal sequence T such that S(T) ≤ 1/2. This separates automatic complexity

from other finite-state based complexities where normal sequences have maximal

complexity. We furthermore showed that I(T) = 0 which demonstrates that

longer prefixes of T have arbitrarily small automatic complexity.

We further demonstrated the existence of a Champernowne sequence C and

showed that S(C) ≤ 2/3 in Theorem 8.3.2. This shows that even amongst a

210

8.4. Summary

restricted class of normal sequences in terms of how they must be constructed,

normal sequences with non-maximal automatic complexity exist. We further

showed that the size of the loops used in DFAs which uniquely accept C are

restricted. Is there a limit to the number of beneficial loops we can use to ensure

prefixes of C are uniquely accepted? We leave open the question of finding a

lower bound for the value of I(C).

211

Chapter 9

Concluding Remarks

In this thesis we offered new insights into the study of the complexity of se-

quences in various settings involving finite-state automata and transducers, along

with popular compression algorithms. This was done to avoid the uncomputabil-

ity of Kolmogorov complexity. This research had two main goals. Firstly, we

aimed to develop new feasible notions of Bennett’s Logical Depth and to exam-

ine their properties. Secondly, to identify whether normal sequences must have

maximal complexity in certain compression-based and finite automata settings.

We summarise below the core contributions of each chapter before discussing and

identifying some of the limitations of this research and potential future areas of

work.

To achieve our first goal, using Moser’s framework for depth, four new notions

of depth were studied. This began in Chapter 3 where we expanded upon Doty

and Moser’s infinitely often finite-state depth to develop an almost everywhere

finite-state depth notion. This brings the study of finite-state depth more in

line with Bennett’s original version which is an almost everywhere notion. Like

Doty and Moser’s, our notion was based on the minimal length of an input string

required by finite-state transducers to output a desired string. We demonstrated

that normal sequences, that is FS-incompressible sequences, are not deep in our

212

notion and that a slow growth law applies, thus showing that our notion satisfies

two of the fundamental laws of depth. By cleverly using repeated blocks of

repetitions of finite-state random strings, we constructed an almost everywhere

finite-state deep sequence. We furthermore showed that our notion differs from

Doty and Moser’s by constructing a sequence which is deep in their notion but

not in ours.

In Chapter 4 we followed up by developing a notion of depth based on in-

formation lossless pushdown compressors. We showed that our pushdown depth

satisfied all the fundamental properties of depth: ILUPDC-trivial and ILPDC-

incompressible sequences are not deep and that a slow growth law holds. We also

differentiated our pushdown depth from Doty and Moser’s finite-state depth as

follows. We first constructed a sequence which is deep in their finite-state depth

notion and showed it is not pushdown deep. We then proved the existence of

a sequence which is pushdown deep, and if it is deep in their finite-state depth

notion, it must have a low finite-state depth level.

In Chapter 5, a depth notion based on the Lempel-Ziv 78 algorithm was pre-

sented. This was based on the difference in compression of the Lempel-Ziv 78

algorithm against all lossless finite-state compressors. We showed that sequences

with a finite-state strong dimension of 0 and which are Lempel-Ziv 78 incompress-

ible are not LZ-deep. With regards to normal sequences, we showed that there

exists normal sequences which are LZ-deep. This automatically differentiates LZ

depth from both version of finite-state depth studied in this thesis. We success-

fully separated LZ-depth from pushdown depth by presenting the existence of a

sequence which is LZ-deep but not pushdown deep. We also showed that there

exists sequences which are pushdown deep, and if they are LZ-deep, have a low

LZ depth level.

The final new depth notion we developed was presented in Chapter 6. It

was based on the difference between the minimal length of inputs required by

213

a finite-state transducer and by a pebble transducer to output the same string.

We demonstrated that a slow growth law held, sequences which do not have

a finite-state strong dimension of 0 are not deep and sequences which are PB-

incompressible are not deep. By utilising the ability of certain pebble transduc-

ers to compute the pref function, we demonstrated the existence of a normal

sequence which is pebble deep, thus differentiating it from both versions of finite-

state depth. Similarly, by utilising the two-way nature of pebble transducers, we

showed that there exists a sequence which is pebble deep, and if it is LZ-deep,

has a low depth level. A preliminary investigation into comparing pebble depth

with pushdown depth was also conducted, but a full separation was not achieved.

In Chapter 7 we performed the first analysis of the Prediction by Partial

Matching family of compressor algorithms on normal sequences. The main result

of this chapter was showing that there exists a Champernowne sequence C which

can be fully compressed by the PPM* algorithm, that is, R
PPM*(C) = 0. We

furthermore showed that regardless of what upper bound of context length is used,

normal sequences cannot be compressed by Bounded PPM. We also conducted a

preliminary investigation into comparing Bounded PPM and PPM*. We showed

that for every bound t, there exists a sequence St such that on long enough

prefixes of St, PPM*’s output’s length is roughly t times longer than PPMt’s.

We concluded in Chapter 8 by exploring whether normal sequences must have

maximal automatic complexity. Being a finite automata based complexity ap-

proach, as with many other finite-state based complexities, one might assume

they must. Our investigation shows that the answer is no. We first showed that

there exists a normal sequence which has infinitely many prefixes whose auto-

matic complexity can get arbitrarily close to 0. We also showed that for the

same sequence, the automatic complexity of its prefixes never goes above 1/2

for long enough prefixes. We furthermore studied the automatic complexity of a

specific Champernowne sequence and showed that the automatic complexity of

214

9.1. Limitations and Potential Future Work

its prefixes never goes above 2/3 for long enough prefixes. This illustrates that

even amongst a restricted class of normal sequences in terms of how they must

be constructed, normal sequences with non-maximal automatic complexity exist.

9.1 Limitations and Potential Future Work

As discussed in Section 2.3.1, many of the choices made when developing new

notions of depth can seem arbitrary. In an effort to create a meaningful notion, i.e.

one which satisfies all of or most of the fundamental properties of depth, sacrifices

are made in terms of the succinctness of the notion to achieve this goal. In this

section we shall identify some of the limitations of the depth notions developed in

this thesis and identify areas where future research could be performed to improve

them. We also identify some open questions which remain in this thesis.

For the depth notions developed, we tried to show that they satisfy a subset

of the fundamental properties of Bennett’s depth: deep sequences exist, random

sequences are not deep, trivial sequences are not deep, and that a slow growth

law holds. There is one other property of Bennett’s depth we did not study:

the property of deep sequences being useful. For each notion developed, can

analogous results to Theorem 2.3.12 be found (which states that every Bennett

deep sequence is weakly useful in the sense of Definition 2.3.11)? Other feasible

depth notions previously studied satisfy analogous properties such as Doty and

Moser’s polynomial-time depth [57].

Weakly useful sequences are related to Turing reductions. Hence to explore

the question, we must develop approaches to performing reductions in each of our

settings. Similar ideas have been explored by Becher et al. in [12] (and further

explored in [4]) in which a notion of finite-state independence is developed. Here,

two sequences are independent if neither sequence aids in the compression of the

other via finite-state compressors when provided as a secondary input. Hence,

215

9.1. Limitations and Potential Future Work

one potential avenue for developing a finite-state usefulness notion would be to

find two sequences which are not FS-deep but when the secondary sequence is

provided as an auxiliary input, they become FS-deep in this altered setting. Here,

both sequences could be considered ‘useful’ in helping to find minimal descriptions

for prefixes of the other.

In Chapter 3, our almost everywhere finite-state depth notion has one clear

potential area of improvement. For instance, one limitation we had was the need

to switch the order of quantifiers in Definition 3.3.2 of a.e. FS-depth in contrast

to the original i.o. notion’s Definition 3.3.1. Ideally we would have a definition

where the depth-level achieved would be the same for each k as opposed to varying

based on the value of k being examined, i.e. a single α as opposed to differing

αk’s. That is, we would like a notion where a sequence S is a.e. FS-deep if

(∃α > 0)(∀k ∈ N)(∃k′ ∈ N)(∀∞n ∈ N)Dk
FS(S � n)−Dk′

FS(S � n) ≥ αn.

This above limitation led to a second limitation for our notion of having to hard-

code the property of FS-trivial sequences not being deep into the definition. The

development of a such an almost everywhere notion is left open.

As discussed in Section 3.2.1, the finite-state dimension of sequences has been

widely studied. We showed in Theorem 3.3.5 that sequences with a finite-state

dimension of 1 are not deep. A question that could be explored in the future is

whether for all 0 < s < 1, does there exist a FS-deep sequence (in either our a.e.

notion or Doty and Moser’s i.o. notion) which has a finite-state dimension of s?

In Chapter 4, our pushdown depth was based on the difference between

ILUPDCs and ILPDCs. While it mirrors Bennett’s idea of comparing H t against

H, ILUPDCs are much more restricted than ordinary ILPDCs. Can a pushdown

notion of depth be developed which compares ILPDCs against ILPDCs? Fur-

thermore, the version of depth presented in this chapter is based on compressors.

216

9.1. Limitations and Potential Future Work

An open question is whether or not a worthwhile notion can be developed which

takes on the minimal description approach of Bennett’s depth and the finite-state

versions in Chapter 3. One obstacle to this currently is finding analogous results

to Lemmas 3.3.9 and 3.3.12. While in the finite-state setting, if xy is a description

for vw and x is a description for v via some FST, y can become a description for

w by simply altering the start state in the FST. This is not as straightforward

for pushdown transducers as the stack contents after reading x may play a vital

role in the outputting of w while reading y.

With regards to Theorem 4.4.3, the factor of 1/2 may be a fundamental con-

stant in demonstrating a difference between the notions. In essence, an ILPDC

must act similarly to an ILFST when pushing characters onto its stack or when

it is not altering it, as in such cases the ILPDC has only one extra bit of infor-

mation (the top of its stack) compared to an ILFST. The ILPDC only gains an

advantage when it is popping bits from its stack to compare against its input.

As the ILPDC can only pop as many characters from its stack that it pushed

on, this gives rise to the 1/2 term. As such, we leave open as to whether there

exists a sequence S such that for 0 < β < 1/2, PD-depth(S) > 1/2 while i.o.

FS-depth(S) < β.

Other questions exist also. For instance, does there exist a pushdown deep

normal sequence? Results from [11] show that normal sequences are not com-

pressible by any ILUPDC. As such, based on our current definition of PD-depth,

the existence of a PD-deep normal sequences hinges on whether or not there ex-

ists a normal sequence which is compressible by some ILPDC. This is currently

an open question.

With regards to pebble depth in Chapter 6, depth was defined based on com-

paring finite-state transducers against pebble transducers. As discussed in Sec-

tion 6.4, can a meaningful notion of depth be developed which compares the

descriptional complexity of pebble transducers against other pebble transducers

217

9.1. Limitations and Potential Future Work

as opposed to against finite-state transducers? A full comparison with PD-depth

is also not performed. Both Theorems 5.5.2 and 6.3.11 and Remark 6.3.14 present

sequences which are both PB-deep and PD-deep. Neither makes use of the ability

of pebble transducers to compute the pref function. Perhaps this is the approach

to take to identify a sequence which is PB-deep but not PD-deep? Similarly, does

there exist a sequence which is LZ-deep but not PB-deep?

In this thesis, knowing that PB-incompressible sequences exist was sufficient

for our desired results. Based on this, a result which could also potentially be

expanded upon is Lemma 6.3.4 in which we showed that ML-random sequences

are PB-incompressible. Just as it is known that a sequence is FS-incompressible if

and only if the sequence is normal, a similar result which classifies what sequences

are PB-incompressible is welcome.

Away from depth, potential avenues of research are evident Chapter 7. As

discussed previously in the Chapter 1 and Section 3.2.2, normal sequences and

incompressible sequences are equivalent in many variations of finite-state com-

pressibility [11, 14, 35]. Similarly, it is known that for any sequence S which

satisfies ρLZ(S) = 1, S is normal [97]. While in Theorem 7.3.8 it was shown

that there exists a normal sequence C such that R
PPM*(C) = 0, a similar re-

sult which answers the question as to whether or not for for any sequence C ′

which satisfies ρ
PPM*(C ′) ≥ 1, must C ′ be normal is open. Is it possible to take

a non-normal sequence and add in ‘adversarial’ bits periodically in a way which

maintains non-normality but results in the sequence being PPM*-incompressible?

In Section 7.4 we showed that one can construct a simple sequence St such

that PPM*’s output on prefixes of St is t times longer than PPMt’s output.

However, R
PPM*(St) = R

PPM*(St) = 0, meaning that St is highly compressible

by both compressors. For a fixed t, does there in fact exist a sequence S ′ such that

RPPMt(S
′) < ρ

PPM*(S ′), meaning that PPMt compresses S ′ better than PPM*?

Furthermore, does there exist a sequence S ′′ such that for all t, RPPMt(S
′′) <

218

9.1. Limitations and Potential Future Work

ρ
PPM*(S ′′)? In this case, S ′′ must be cleverly constructed such that regardless of

the maximum context length chosen, Bounded PPM always performs better than

PPM*. A comparison between PPM and other compression algorithms, such as in

the vein of Mayordomo, Moser and Perifel’s work in [109] can still be undertaken.

For instance, Theorem 7.3.8 demonstrates the existence of a sequence C such

that R
PPM*(C) = 0 but ρLZ(C) = 1. Does there exist a sequence such that the

converse holds? The question of separating PPM from pushdown compression is

also open.

In Chapter 8, we asked the question as to whether or not there exists a normal

sequence T such that its upper automatic complexity ratio satisfies S(T) < 1.

We answer this question positively in Theorems 8.2.2 and 8.3.2. However, this

question may be redundant in the sense that it is currently unknown as to whether

or not the set {T ∈ {0, 1}ω |S(T) = 1} is non-empty. The answer to this is not

obvious since it holds that for almost every string x, A(x) ≤ 3/4+O(
√
|x| log |x|)

as stated in Equation 8.1.

Alternatively, we could consider the non-deterministic approach as first in-

troduced by Hyde [83] (denoted by AN). In this setting, it is known that every

string x satisfies AN(x) ≤
⌊ |x|

2

⌋
+ 1 [83, 84]. It is also known that this bound is

tight [84]. Similarly, it is known that for all ε > 0, for almost every string x it

holds that AN(x) ≥ |x|/(2 + ε) [89]. This means that almost every string x has a

non-deterministic automatic complexity close to 1/2. While we were able to show

that there exists a normal sequence T such that S(T) ≤ 1/2 in Theorem 8.2.2, we

would be interested in knowing whether there exists a normal sequence T ′ such

that S(T ′) < 1/2, i.e. its automatic complexity, and hence its non-deterministic

automatic complexity, lies outside of this ‘close to 1/2’ range.

219

Bibliography

[1] Pilar Albert, Elvira Mayordomo, and Philippe Moser. Bounded pushdown

dimension vs Lempel Ziv information density. In Adam R. Day, Michael R.

Fellows, Noam Greenberg, Bakhadyr Khoussainov, Alexander G. Melnikov,

and Frances A. Rosamond, editors, Computability and Complexity - Essays

Dedicated to Rodney G. Downey on the Occasion of His 60th Birthday, vol-

ume 10010 of Lecture Notes in Computer Science, pages 95–114. Springer,

2017. doi:10.1007/978-3-319-50062-1_7.

[2] Pilar Albert, Elvira Mayordomo, Philippe Moser, and Sylvain Perifel. Push-

down compression. In Susanne Albers and Pascal Weil, editors, STACS

2008, 25th Annual Symposium on Theoretical Aspects of Computer Sci-

ence, Bordeaux, France, February 21-23, 2008, Proceedings, volume 1 of

LIPIcs, pages 39–48. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2008. doi:10.4230/LIPIcs.STACS.2008.1332.

[3] Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek,

and Detlef Ronneburger. Power from random strings. SIAM J. Comput.,

35(6):1467–1493, 2006. doi:10.1137/050628994.

[4] Nicolás Alvarez, Verónica Becher, and Olivier Carton. Finite-state inde-

pendence and normal sequences. J. Comput. Syst. Sci., 103:1–17, 2019.

doi:10.1016/j.jcss.2019.02.001.

220

https://doi.org/10.1007/978-3-319-50062-1_7
https://doi.org/10.4230/LIPIcs.STACS.2008.1332
https://doi.org/10.1137/050628994
https://doi.org/10.1016/j.jcss.2019.02.001

Bibliography

[5] Luis Filipe Coelho Antunes, Lance Fortnow, Dieter van Melkebeek, and

N. V. Vinodchandran. Computational depth: Concept and applications.

Theor. Comput. Sci., 354(3):391–404, 2006. doi:10.1016/j.tcs.2005.

11.033.

[6] Luis Filipe Coelho Antunes, Andre Souto, and Paul M. B. Vitányi. On the

rate of decrease in logical depth. Theor. Comput. Sci., 702:60–64, 2017.

(Corrigendum: see [144]). doi:10.1016/j.tcs.2017.08.012.

[7] Krishna B. Athreya, John M. Hitchcock, Jack H. Lutz, and Elvira May-

ordomo. Effective strong dimension in algorithmic information and com-

putational complexity. SIAM J. Comput., 37(3):671–705, 2007. doi:

10.1137/S0097539703446912.

[8] J.M. Barzdin. Complexity of programs to determine whether natural num-

bers not greater than n belong to a recursively enumerable set. Soviet Math.

Dokl, 9:1251–1254, 1968.

[9] Bruno Bauwens, Anton Makhlin, Nikolai K. Vereshchagin, and Marius Zi-

mand. Short lists with short programs in short time. Comput. Complex.,

27(1):31–61, 2018. doi:10.1007/s00037-017-0154-2.

[10] Bruno Bauwens and Marius Zimand. Linear list-approximation for short

programs (or the power of a few random bits). In IEEE 29th Conference

on Computational Complexity, CCC 2014, Vancouver, BC, Canada, June

11-13, 2014, pages 241–247. IEEE Computer Society, 2014. doi:10.1109/

CCC.2014.32.

[11] Verónica Becher, Olivier Carton, and Pablo Ariel Heiber. Normality and

automata. J. Comput. Syst. Sci., 81(8):1592–1613, 2015. doi:10.1016/j.

jcss.2015.04.007.

221

https://doi.org/10.1016/j.tcs.2005.11.033
https://doi.org/10.1016/j.tcs.2005.11.033
https://doi.org/10.1016/j.tcs.2017.08.012
https://doi.org/10.1137/S0097539703446912
https://doi.org/10.1137/S0097539703446912
https://doi.org/10.1007/s00037-017-0154-2
https://doi.org/10.1109/CCC.2014.32
https://doi.org/10.1109/CCC.2014.32
https://doi.org/10.1016/j.jcss.2015.04.007
https://doi.org/10.1016/j.jcss.2015.04.007

Bibliography

[12] Verónica Becher, Olivier Carton, and Pablo Ariel Heiber. Finite-state in-

dependence. Theory Comput. Syst., 62(7):1555–1572, 2018. doi:10.1007/

s00224-017-9821-6.

[13] Verónica Becher and Pablo Ariel Heiber. A linearly computable measure of

string complexity. Theor. Comput. Sci., 438:62–73, 2012. doi:10.1016/j.

tcs.2012.03.007.

[14] Verónica Becher and Pablo Ariel Heiber. Normal numbers and finite au-

tomata. Theor. Comput. Sci., 477:109–116, 2013. doi:10.1016/j.tcs.

2013.01.019.

[15] Timothy C. Bell, John G. Cleary, and Ian H. Witten. Text Compression.

Prentice-Hall, Inc., Upper Saddle River, New Jersey, USA, 1990. ISBN:

0-13-911991-4.

[16] Charles H. Bennett. On random and hard-to-describe numbers. Technical

Report RC 7483, IBM, Yorktown Heights, New York, USA, May 1979.

doi:doi=10.1.1.27.3492.

[17] Charles H. Bennett. Logical depth and physical complexity. The Universal

Turing Machine, A Half-Century Survey, pages 227–257, 1988.

[18] Jan Åberg, Yuri M. Shtarkov, and Ben J.M. Smeets. Estimation of escape

probabilities for PPM based on universal source coding theory. In Proceed-

ings of IEEE International Symposium on Information Theory, page 65,

1997. doi:10.1109/ISIT.1997.612980.

[19] Jean Berstel. Axel Thue’s papers on repetitions in words: a transla-

tion. Publications du Laboratoire de Combinatoire et d’Informatique

Mathématique, Université du Québec à Montréal, Canada, 1995.

222

https://doi.org/10.1007/s00224-017-9821-6
https://doi.org/10.1007/s00224-017-9821-6
https://doi.org/10.1016/j.tcs.2012.03.007
https://doi.org/10.1016/j.tcs.2012.03.007
https://doi.org/10.1016/j.tcs.2013.01.019
https://doi.org/10.1016/j.tcs.2013.01.019
https://doi.org/doi=10.1.1.27.3492
https://doi.org/10.1109/ISIT.1997.612980

Bibliography

[20] Laurent Bienvenu, Valentino Delle Rose, and Wolfgang Merkle. Relativized

depth. CoRR, 2021. arXiv:2112.04451.

[21] Charles Bloom. Solving the problems of context modelling, 1998. (informal

publication, Accessed: May 11, 2021). URL: https://www.cbloom.com/

papers/ppmz.pdf.

[22] Manuel Blum and Carl Hewitt. Automata on a 2-dimensional tape. In 8th

Annual Symposium on Switching and Automata Theory, Austin, Texas,

USA, October 18-20, 1967, pages 155–160. IEEE Computer Society, 1967.

doi:10.1109/FOCS.1967.6.

[23] Miko laj Bojańczyk. Polyregular functions. CoRR, 2018. arXiv:1810.

08760.

[24] Miko laj Bojańczyk, Sandra Kiefer, and Nathan Lhote. String-to-string

interpretations with polynomial-size output. In Christel Baier, Ioannis

Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th Inter-

national Colloquium on Automata, Languages, and Programming, ICALP

2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 106:1–

106:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:

10.4230/LIPIcs.ICALP.2019.106.

[25] Émile Borel. Les probabilités dénombrables et leurs applications

arithmétiques. Rendiconti del Circolo Matematico di Palermo, 27(1):247–

271, 1909. doi:10.1007/BF03019651.

[26] Chris Bourke, John M. Hitchcock, and N. V. Vinodchandran. Entropy rates

and finite-state dimension. Theor. Comput. Sci., 349(3):392–406, 2005.

doi:10.1016/j.tcs.2005.09.040.

223

http://arxiv.org/abs/2112.04451
https://www.cbloom.com/papers/ppmz.pdf
https://www.cbloom.com/papers/ppmz.pdf
https://doi.org/10.1109/FOCS.1967.6
http://arxiv.org/abs/1810.08760
http://arxiv.org/abs/1810.08760
https://doi.org/10.4230/LIPIcs.ICALP.2019.106
https://doi.org/10.4230/LIPIcs.ICALP.2019.106
https://doi.org/10.1007/BF03019651
https://doi.org/10.1016/j.tcs.2005.09.040

Bibliography

[27] Allen H. Brady. The determination of the value of Radó’s noncomputable

function
∑

(k) for four-state turing machines. Math. Comput., 40(162):647–

665, 1983. doi:10.2307/2007539.

[28] Michael Burrows and David Wheeler. A block-sorting lossless data com-

pression algorithm, 1994.

[29] Cristian S. Calude, Sanjay Jain, Wolfgang Merkle, and Frank Stephan.

Searching for shortest and least programs. Theor. Comput. Sci., 807:114–

127, 2020. doi:10.1016/j.tcs.2019.10.011.

[30] Cristian S. Calude and André Nies. Chaitin Ω numbers and strong re-

ducibilities. J. Univers. Comput. Sci., 3(11):1162–1166, 1997. doi:

10.3217/jucs-003-11-1162.

[31] Cristian S. Calude, Kai Salomaa, and Tania Roblot. Finite state complexity.

Theor. Comput. Sci., 412(41):5668–5677, 2011. doi:10.1016/j.tcs.2011.

06.021.

[32] Cristian S. Calude, Kai Salomaa, and Tania Roblot. State-size hierarchy

for finite-state complexity. Int. J. Found. Comput. Sci., 23(1):37–50, 2012.

doi:10.1142/S0129054112400035.

[33] Cristian S. Calude and Ludwig Staiger. Liouville, computable, borel normal

and martin-löf random numbers. Theory Comput. Syst., 62(7):1573–1585,

2018. doi:10.1007/s00224-017-9767-8.

[34] Cristian S. Calude, Ludwig Staiger, and Frank Stephan. Finite state

incompressible infinite sequences. Inf. Comput., 247:23–36, 2016. doi:

10.1016/j.ic.2015.11.003.

[35] Olivier Carton and Pablo Ariel Heiber. Normality and two-way automata.

Inf. Comput., 241:264–276, 2015. doi:10.1016/j.ic.2015.02.001.

224

https://doi.org/10.2307/2007539
https://doi.org/10.1016/j.tcs.2019.10.011
https://doi.org/10.3217/jucs-003-11-1162
https://doi.org/10.3217/jucs-003-11-1162
https://doi.org/10.1016/j.tcs.2011.06.021
https://doi.org/10.1016/j.tcs.2011.06.021
https://doi.org/10.1142/S0129054112400035
https://doi.org/10.1007/s00224-017-9767-8
https://doi.org/10.1016/j.ic.2015.11.003
https://doi.org/10.1016/j.ic.2015.11.003
https://doi.org/10.1016/j.ic.2015.02.001

Bibliography

[36] Gregory J. Chaitin. On the length of programs for computing finite binary

sequences. J. ACM, 13(4):547–569, 1966. doi:10.1145/321356.321363.

[37] Gregory J. Chaitin. On the length of programs for computing finite binary

sequences: statistical considerations. J. ACM, 16(1):145–159, 1969. doi:

10.1145/321495.321506.

[38] Gregory J. Chaitin. A theory of program size formally identical to informa-

tion theory. J. ACM, 22(3):329–340, 1975. doi:10.1145/321892.321894.

[39] Gregory J. Chaitin, Asat Arslanov, and Cristian S. Calude. Program-size

complexity computes the halting problem. Bull. EATCS, 57, 1995.

[40] D. G. Champernowne. The construction of decimals normal in the scale of

ten. J. Lond. Math. Soc., s1-8(4):254–260, 1933. doi:10.1112/jlms/s1-

8.4.254.

[41] Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prab-

hakaran, April Rasala, Amit Sahai, and Abhi Shelat. Approximating the

smallest grammar: Kolmogorov complexity in natural models. In John H.

Reif, editor, Proceedings on 34th Annual ACM Symposium on Theory of

Computing, May 19-21, 2002, Montréal, Québec, Canada, pages 792–801.

ACM, 2002. doi:10.1145/509907.510021.

[42] Xin Chen, Brent Francia, Ming Li, Brian McKinnon, and Amit Seker.

Shared information and program plagiarism detection. IEEE Trans. Inf.

Theory, 50(7):1545–1551, 2004. doi:10.1109/TIT.2004.830793.

[43] Rudi Cilibrasi and Paul M. B. Vitányi. Clustering by compression.

IEEE Trans. Inf. Theory, 51(4):1523–1545, 2005. doi:10.1109/TIT.2005.

844059.

225

https://doi.org/10.1145/321356.321363
https://doi.org/10.1145/321495.321506
https://doi.org/10.1145/321495.321506
https://doi.org/10.1145/321892.321894
https://doi.org/10.1112/jlms/s1-8.4.254
https://doi.org/10.1112/jlms/s1-8.4.254
https://doi.org/10.1145/509907.510021
https://doi.org/10.1109/TIT.2004.830793
https://doi.org/10.1109/TIT.2005.844059
https://doi.org/10.1109/TIT.2005.844059

Bibliography

[44] Rudi Cilibrasi, Paul M. B. Vitányi, and Ronald de Wolf. Algorithmic clus-

tering of music based on string compression. Comput. Music. J., 28(4):49–

67, 2004. doi:10.1162/0148926042728449.

[45] John G. Cleary and Ian H. Witten. Data compression using adaptive coding

and partial string matching. IEEE Trans. Commun., 32(4):396–402, 1984.

doi:10.1109/TCOM.1984.1096090.

[46] John G. Cleary, Ian H. Witten, and William J. Teahan. Unbounded length

contexts for PPM. Comput. J., 40(2/3):67–75, 1997. doi:10.1109/DCC.

1995.515495.

[47] Arthur H. Copeland and Paul Erdös. Note on normal numbers. Bull.

Amer. Math. Soc, 52(10):857–861, October 1946. doi:10.1090/s0002-

9904-1946-08657-7.

[48] Cristina Costa-Santos, João Bernardes, Paul M. B. Vitányi, and Luis Fil-

ipe Coelho Antunes. Clustering fetal heart rate tracings by compression.

In 19th IEEE International Symposium on Computer-Based Medical Sys-

tems (CBMS 2006), 22-23 June 2006, Salt Lake City, Utah, USA, pages

685–690. IEEE Computer Society, 2006. doi:10.1109/CBMS.2006.68.

[49] Jack Jie Dai, James I. Lathrop, Jack H. Lutz, and Elvira Mayordomo.

Finite-state dimension. Theor. Comput. Sci., 310(1-3):1–33, 2004. doi:

10.1016/S0304-3975(03)00244-5.

[50] Robert P. Daley. Noncomplex sequences: Characterizations and examples.

J. Symbolic Logic, 41(3):626–638, 1976. doi:10.2307/2272040.

[51] Nicolaas G. de Bruijn. A combinatorial problem. In Proc. Koninklijke Ned-

erlandse Academie van Wetenschappen, volume 49, pages 758–764, 1946.

226

https://doi.org/10.1162/0148926042728449
https://doi.org/10.1109/TCOM.1984.1096090
https://doi.org/10.1109/DCC.1995.515495
https://doi.org/10.1109/DCC.1995.515495
https://doi.org/10.1090/s0002-9904-1946-08657-7
https://doi.org/10.1090/s0002-9904-1946-08657-7
https://doi.org/10.1109/CBMS.2006.68
https://doi.org/10.1016/S0304-3975(03)00244-5
https://doi.org/10.1016/S0304-3975(03)00244-5
https://doi.org/10.2307/2272040

Bibliography

[52] Nicolaas G. de Bruijn. Acknowledgement of priority to C. Flye Sainte-Marie

on the counting of circular arrangements of 2n zeros and ones that show

each n-letter word exactly once. T.H.-Report 75-WSK-06, Department of

Mathematics, Technological University Eindhoven, The Netherlands, 1975.

URL: https://research.tue.nl/en/publications/acknowledgement-

of-priority-to-c-flye-sainte-marie-on-the-countin.

[53] A. de Rivière. Question nr. 48. In L’Intermédiaire des Mathématiciens,

volume 1, pages 19–20, 1894.

[54] Jean-Paul Delahaye and Hector Zenil. Numerical evaluation of algorith-

mic complexity for short strings: A glance into the innermost struc-

ture of randomness. Appl. Math. Comput., 219(1):63–77, 2012. doi:

10.1016/j.amc.2011.10.006.

[55] David Doty, Jack H. Lutz, and Satyadev Nandakumar. Finite-state di-

mension and real arithmetic. Inf. Comput., 205(11):1640–1651, 2007.

doi:10.1016/j.ic.2007.05.003.

[56] David Doty and Philippe Moser. Finite-state dimension and lossy decom-

pressors. CoRR, 2006. arXiv:cs/0609096.

[57] David Doty and Philippe Moser. Feasible depth. In Computation and Logic

in the Real World, Third Conference on Computability in Europe, CiE 2007,

Siena, Italy, June 18-23, 2007, Proceedings, volume 4497 of Lecture Notes

in Computer Science, pages 228–237. Springer, 2007. doi:10.1007/978-

3-540-73001-9_24.

[58] David Doty and Jared Nichols. Pushdown dimension. Theor. Comput. Sci.,

381(1-3):105–123, 2007. doi:10.1016/j.tcs.2007.04.005.

227

https://research.tue.nl/en/publications/acknowledgement-of-priority-to-c-flye-sainte-marie-on-the-countin
https://research.tue.nl/en/publications/acknowledgement-of-priority-to-c-flye-sainte-marie-on-the-countin
https://doi.org/10.1016/j.amc.2011.10.006
https://doi.org/10.1016/j.amc.2011.10.006
https://doi.org/10.1016/j.ic.2007.05.003
http://arxiv.org/abs/cs/0609096
https://doi.org/10.1007/978-3-540-73001-9_24
https://doi.org/10.1007/978-3-540-73001-9_24
https://doi.org/10.1016/j.tcs.2007.04.005

Bibliography

[59] Gaëtan Douéneau-Tabot. Pebble transducers with unary output. In 46th

International Symposium on Mathematical Foundations of Computer Sci-

ence, MFCS 2021, August 23-27, 2021, Tallinn, Estonia, volume 202 of

LIPIcs, pages 40:1–40:17. Schloss Dagstuhl - Leibniz-Zentrum für Infor-

matik, 2021. doi:10.4230/LIPIcs.MFCS.2021.40.

[60] Gaëtan Douéneau-Tabot, Emmanuel Filiot, and Paul Gastin. Register

transducers are marble transducers. In Javier Esparza and Daniel Král’, ed-

itors, 45th International Symposium on Mathematical Foundations of Com-

puter Science, MFCS 2020, August 24-28, 2020, Prague, Czech Republic,

volume 170 of LIPIcs, pages 29:1–29:14. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2020. doi:10.4230/LIPIcs.MFCS.2020.29.

[61] Rodney G. Downey and Denis Roman Hirschfeldt. Algorithmic Randomness

and Complexity. Springer, New York ; London, 2010. ISBN: 978-0-387-

95567-4. doi:10.1007/978-0-387-68441-3.

[62] Rodney G. Downey, Michael McInerney, and Keng Meng Ng. Lowness and

logical depth. Theor. Comput. Sci., 702:23–33, 2017. doi:10.1016/j.tcs.

2017.08.010.

[63] Joost Engelfriet. Two-way pebble transducers for partial functions and

their composition. Acta Informatica, 52(7-8):559–571, 2015. doi:10.1007/

s00236-015-0224-3.

[64] Joost Engelfriet, Hendrik Jan Hoogeboom, and Bart Samwel. XML navi-

gation and transformation by tree-walking automata and transducers with

visible and invisible pebbles. Theor. Comput. Sci., 850:40–97, 2021. doi:

10.1016/j.tcs.2020.10.030.

[65] Joost Engelfriet and Sebastian Maneth. Two-way finite state transducers

with nested pebbles. In Krzysztof Diks and Wojciech, editors, Mathemati-

228

https://doi.org/10.4230/LIPIcs.MFCS.2021.40
https://doi.org/10.4230/LIPIcs.MFCS.2020.29
https://doi.org/10.1007/978-0-387-68441-3
https://doi.org/10.1016/j.tcs.2017.08.010
https://doi.org/10.1016/j.tcs.2017.08.010
https://doi.org/10.1007/s00236-015-0224-3
https://doi.org/10.1007/s00236-015-0224-3
https://doi.org/10.1016/j.tcs.2020.10.030
https://doi.org/10.1016/j.tcs.2020.10.030

Bibliography

cal Foundations of Computer Science 2002, 27th International Symposium,

MFCS 2002, Warsaw, Poland, August 26-30, 2002, Proceedings, volume

2420 of Lecture Notes in Computer Science, pages 234–244. Springer, 2002.

doi:10.1007/3-540-45687-2_19.

[66] Stephen A. Fenner, Jack H. Lutz, Elvira Mayordomo, and Patrick Reardon.

Weakly useful sequences. Inf. Comput., 197(1-2):41–54, 2005. doi:10.

1016/j.ic.2005.01.001.

[67] Lester R. Ford Jr. A cyclic arrangement of m-tuples, report no. Reprot

P-1071, RAND Corp, 1957.

[68] Harold Fredricksen. A survey of full length nonlinear shift register cycle

algorithms. SIAM review, 24(2):195–221, 1982. doi:10.1137/1024041.

[69] Harold Fredricksen and Irving J. Kessler. An algorithm for generating

necklaces of beads in two colors. Discret. Math., 61(2-3):181–188, 1986.

doi:10.1016/0012-365X(86)90089-0.

[70] Harold Fredricksen and James Maiorana. Necklaces of beads in k colors

and k-ary de Bruijn sequences. Discret. Math., 23(3):207–210, 1978. doi:

10.1016/0012-365X(78)90002-X.

[71] Cédric Gaucherel. Ecosystem complexity through the lens of logical depth:

Capturing ecosystem individuality. Biol. Theory, 9(4):440–451, March 2014.

doi:10.1007/s13752-014-0162-2.

[72] Viliam Geffert and L’ubomı́ra Ištoňová. Translation from classical two-way

automata to pebble two-way automata. RAIRO Theor. Informatics Appl.,

44(4):507–523, 2010. doi:10.1051/ita/2011001.

229

https://doi.org/10.1007/3-540-45687-2_19
https://doi.org/10.1016/j.ic.2005.01.001
https://doi.org/10.1016/j.ic.2005.01.001
https://doi.org/10.1137/1024041
https://doi.org/10.1016/0012-365X(86)90089-0
https://doi.org/10.1016/0012-365X(78)90002-X
https://doi.org/10.1016/0012-365X(78)90002-X
https://doi.org/10.1007/s13752-014-0162-2
https://doi.org/10.1051/ita/2011001

Bibliography

[73] Ian Glaister and Jeffrey O. Shallit. Automaticity III: polynomial automatic-

ity and context-free languages. Comput. Complex., 7(4):371–387, 1998.

doi:10.1007/s000370050016.

[74] Noa Globerman and David Harel. Complexity results for two-way and

multi-pebble automata and their logics. Theor. Comput. Sci., 169(2):161–

184, 1996. doi:10.1016/S0304-3975(96)00119-3.

[75] I.J. Good. Normal recurring decimals. LMS, s1-21(3):167–169, 1946. doi:

10.1112/jlms/s1-21.3.167.

[76] John M. Hitchcock. Fractal dimension and logarithmic loss unpredictabil-

ity. Theor. Comput. Sci., 304(1-3):431–441, 2003. doi:10.1016/S0304-

3975(03)00138-5.

[77] Rupert Hölzl, Thorsten Kräling, and Wolfgang Merkle. Time-bounded

Kolmogorov complexity and Solovay functions. Theory Comput. Syst.,

52(1):80–94, 2013. doi:10.1007/s00224-012-9413-4.

[78] Paul G. Howard and Jeffrey Scott Vitter. Analysis of arithmetic coding

for data compression. Inf. Process. Manag., 28(6):749–764, 1992. doi:

10.1016/0306-4573(92)90066-9.

[79] Paul G. Howard and Jeffrey Scott Vitter. Practical implementations of

arithmetic coding. Image and Text Compression - The Kluwer International

Series in Engineering and Computer Science (Communication and Infor-

mation Theory), pages 85–112, 1992. doi:10.1007/978-1-4615-3596-

6_4.

[80] Paul G. Howard and Jeffrey Scott Vitter. Arithmetic coding for data

compression. In Encyclopedia of Algorithms, pages 145–150. 2016. doi:

10.1007/978-1-4939-2864-4_34.

230

https://doi.org/10.1007/s000370050016
https://doi.org/10.1016/S0304-3975(96)00119-3
https://doi.org/10.1112/jlms/s1-21.3.167
https://doi.org/10.1112/jlms/s1-21.3.167
https://doi.org/10.1016/S0304-3975(03)00138-5
https://doi.org/10.1016/S0304-3975(03)00138-5
https://doi.org/10.1007/s00224-012-9413-4
https://doi.org/10.1016/0306-4573(92)90066-9
https://doi.org/10.1016/0306-4573(92)90066-9
https://doi.org/10.1007/978-1-4615-3596-6_4
https://doi.org/10.1007/978-1-4615-3596-6_4
https://doi.org/10.1007/978-1-4939-2864-4_34
https://doi.org/10.1007/978-1-4939-2864-4_34

Bibliography

[81] David. A. Huffman. A method for the construction of minimum-redundancy

codes. Proceedings of the IRE, 40(9):1098–1101, 1952. doi:10.1109/

JRPROC.1952.273898.

[82] David A. Huffman. Canonical forms for information-lossless finite-state

logical machines. IRE Trans. Inf. Theory, 5(5):41–59, 1959. doi:10.1109/

TIT.1959.1057537.

[83] Kayleigh Hyde. Nondeterministic finite state complexity. Master’s thesis,

University of Hawai‘i at Mānoa, 2013. Accessed: April 20, 2021. URL:

http://hdl.handle.net/10125/29507.

[84] Kayleigh Hyde and Bjørn Kjos-Hanssen. Nondeterministic automatic com-

plexity of overlap-free and almost square-free words. Electron. J. Comb.,

22(3):P3.22, 2015. doi:10.37236/4851.

[85] Glen G. Langdon Jr. An introduction to arithmetic coding. IBM J. Res.

Dev., 28(2):135–149, 1984. doi:10.1147/rd.282.0135.

[86] David W. Juedes, James I. Lathrop, and Jack H. Lutz. Computational

depth and reducibility. Theor. Comput. Sci., 132(2):37–70, 1994. doi:

10.1016/0304-3975(94)00014-X.

[87] Bjørn Kjos-Hanssen. Automatic complexity of Fibonacci and Tribonacci

words. Discret. Appl. Math., 289:446 – 454, 2021. doi:10.1016/j.dam.

2020.10.014.

[88] Bjørn Kjos-Hanssen. Automatic complexity of shift register sequences. Dis-

cret. Math., 341(9):2409–2417, 2018. doi:10.1016/j.disc.2018.05.015.

[89] Bjørn Kjos-Hanssen. An incompressibility theorem for automatic complex-

ity. Forum of Mathematics, Sigma, 9:E62, 2021. doi:10.1017/fms.2021.

58.

231

https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1109/TIT.1959.1057537
https://doi.org/10.1109/TIT.1959.1057537
http://hdl.handle.net/10125/29507
https://doi.org/10.37236/4851
https://doi.org/10.1147/rd.282.0135
https://doi.org/10.1016/0304-3975(94)00014-X
https://doi.org/10.1016/0304-3975(94)00014-X
https://doi.org/10.1016/j.dam.2020.10.014
https://doi.org/10.1016/j.dam.2020.10.014
https://doi.org/10.1016/j.disc.2018.05.015
https://doi.org/10.1017/fms.2021.58
https://doi.org/10.1017/fms.2021.58

Bibliography

[90] Donald E. Knuth. The Art of Computer Programming: Volume 4A, Com-

binatorial Algorithms, Part 1. Addison-Wesley, Upper Saddle River, New

Jersey, USA, 2011. ISBN: 0-201-03804-8.

[91] Ker-I Ko. On the notion of infinite pseudorandom sequences. Theor. Com-

put. Sci., 48(3):9–33, 1986. doi:10.1016/0304-3975(86)90081-2.

[92] Zvi Kohavi. Switching and Finite Automata Theory, Second Edition.

McGraw-Hill, New York, 1978.

[93] A.N. Kolmogorov. Three approaches to the quantitative definition of in-

formation. Problems Inform. Transmission, 1(1):1–7, 1965. doi:10.1080/

00207166808803030.

[94] S. Rao Kosaraju and Giovanni Manzini. Compression of low entropy strings

with Lempel-Ziv algorithms. SIAM J. Comput., 29(3):893–911, 1999. doi:

10.1137/S0097539797331105.

[95] Alexander Kozachinskiy and Alexander Shen. Automatic Kolmogorov com-

plexity, normality, and finite-state dimension revisited. J. Comput. Syst.

Sci., 118:75–107, 2021. doi:10.1016/j.jcss.2020.12.003.

[96] James I. Lathrop and Jack H. Lutz. Recursive computational depth. Inf.

Comput., 153(1):139–172, 1999. doi:10.1006/inco.1999.2794.

[97] James I. Lathrop and Martin Strauss. A universal upper bound on the per-

formance of the Lempel-Ziv algorithm on maliciously-constructed data. In

Bruno Carpentieri, Alfredo De Santis, Ugo Vaccaro, and James A. Storer,

editors, Compression and Complexity of Sequences 1997, Positano, Amal-

fitan Coast, Salerno, Italy, June 11-13, 1997, Proceedings, pages 123–135.

IEEE, 1997. doi:10.1109/SEQUEN.1997.666909.

232

https://doi.org/10.1016/0304-3975(86)90081-2
https://doi.org/10.1080/00207166808803030
https://doi.org/10.1080/00207166808803030
https://doi.org/10.1137/S0097539797331105
https://doi.org/10.1137/S0097539797331105
https://doi.org/10.1016/j.jcss.2020.12.003
https://doi.org/10.1006/inco.1999.2794
https://doi.org/10.1109/SEQUEN.1997.666909

Bibliography

[98] Abraham Lempel and Jacob Ziv. On the complexity of finite sequences.

IEEE Trans. Inf. Theory, 22(1):75–81, 1976. doi:10.1109/TIT.1976.

1055501.

[99] Leonid A. Levin. On the notion of a random sequence. Soviet Math. Dokl,

14(5):1413–1416, 1973.

[100] Leonid A. Levin. Laws of information conservation (non-growth) and as-

pects of the foundation of probability theory. Problems Inform. Transmis-

sion, 10(3):206–210, 1974. URL: http://mi.mathnet.ru/ppi1039.

[101] Leonid A. Levin. Randomness conservation inequalities; information and

independence in mathematical theories. Inf. Control., 61(1):15–37, 1984.

doi:10.1016/S0019-9958(84)80060-1.

[102] Nathan Lhote. Pebble minimization of polyregular functions. In LICS

’20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science,

Saarbrücken, Germany, July 8-11, 2020, pages 703–712. ACM, 2020. doi:

10.1145/3373718.3394804.

[103] Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul M. B. Vitányi. The similarity

metric. IEEE Trans. Inf. Theory, 50(12):3250–3264, 2004. doi:10.1109/

TIT.2004.838101.

[104] Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity

and Its Applications, Third Edition. Texts in Computer Science. Springer,

2008. ISBN: 978-0-387-33998-6. doi:10.1007/978-0-387-49820-1.

[105] Jack H. Lutz. Almost everywhere high nonuniform complexity. J. Comput.

Syst. Sci., 44(2):220–258, 1992. doi:10.1016/0022-0000(92)90020-J.

[106] Jack H. Lutz. Resource bounded measure. CoRR, 2011. arXiv:1101.5455.

233

https://doi.org/10.1109/TIT.1976.1055501
https://doi.org/10.1109/TIT.1976.1055501
http://mi.mathnet.ru/ppi1039
https://doi.org/10.1016/S0019-9958(84)80060-1
https://doi.org/10.1145/3373718.3394804
https://doi.org/10.1145/3373718.3394804
https://doi.org/10.1109/TIT.2004.838101
https://doi.org/10.1109/TIT.2004.838101
https://doi.org/10.1007/978-0-387-49820-1
https://doi.org/10.1016/0022-0000(92)90020-J
http://arxiv.org/abs/1101.5455

Bibliography

[107] Monroe H. Martin. A problem in arrangements. Bull. Amer. Math. Soc.,

40(12):859–864, 1934. doi:10.1090/S0002-9904-1934-05988-3.

[108] Per Martin-Löf. The definition of random sequences. Inform. Control,

9(6):602–619, 1966. doi:10.1016/S0019-9958(66)80018-9.

[109] Elvira Mayordomo, Philippe Moser, and Sylvain Perifel. Polylog space

compression, pushdown compression, and Lempel-Ziv are incomparable.

Theory Comput. Syst., 48(4):731–766, 2011. doi:10.1007/s00224-010-

9267-6.

[110] Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for XML trans-

formers. J. Comput. Syst. Sci., 66(1):66–97, 2003. doi:10.1016/S0022-

0000(02)00030-2.

[111] Alistair Moffat. Implementing the PPM data compression scheme. IEEE

Trans. Commun., 38(11):1917–1921, 1990. doi:10.1109/26.61469.

[112] Philippe Moser. On the polynomial depth of various sets of random strings.

Theor. Comput. Sci., 477:96–108, 2013. doi:10.1016/j.tcs.2012.10.

045.

[113] Philippe Moser. Polylog depth, highness and lowness for E. Inf. Comput.,

271:104483, 2020. doi:10.1016/j.ic.2019.104483.

[114] Philippe Moser and Frank Stephan. Depth, highness and DNR degrees.

Discret. Math. Theor. Comput. Sci., 19(4), 2017. doi:10.23638/DMTCS-

19-4-2.

[115] Philippe Moser and Frank Stephan. Limit-depth and DNR degrees. Inf.

Process. Lett., 135:36–40, 2018. doi:10.1016/j.ipl.2018.02.015.

234

https://doi.org/10.1090/S0002-9904-1934-05988-3
https://doi.org/10.1016/S0019-9958(66)80018-9
https://doi.org/10.1007/s00224-010-9267-6
https://doi.org/10.1007/s00224-010-9267-6
https://doi.org/10.1016/S0022-0000(02)00030-2
https://doi.org/10.1016/S0022-0000(02)00030-2
https://doi.org/10.1109/26.61469
https://doi.org/10.1016/j.tcs.2012.10.045
https://doi.org/10.1016/j.tcs.2012.10.045
https://doi.org/10.1016/j.ic.2019.104483
https://doi.org/10.23638/DMTCS-19-4-2
https://doi.org/10.23638/DMTCS-19-4-2
https://doi.org/10.1016/j.ipl.2018.02.015

Bibliography

[116] Satyadev Nandakumar and Santhosh Kumar Vangapelli. Normality

and finite-state dimension of Liouville numbers. Theory Comput. Syst.,

58(3):392–402, 2016. doi:10.1007/s00224-014-9554-8.

[117] Lê Thành Dung Nguyên, Camille Noûs, and Pierre Pradic. Comparison-free

polyregular functions. In Nikhil Bansal, Emanuela Merelli, and James Wor-

rell, editors, 48th International Colloquium on Automata, Languages, and

Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual

Conference), volume 198 of LIPIcs, pages 139:1–139:20. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.

139.

[118] André Nies. Computability and Randomness. Oxford logic guides. Oxford

University Press, Oxford ; New York, 2009. ISBN: 978-0-19-923076-1. doi:

10.1093/acprof:oso/9780199230761.001.0001.

[119] Larry A. Pierce and Paul C. Shields. Sequences incompressible by SLZ

(LZW), yet fully compressible by ULZ. In Ingo Althöfer, Ning Cai, Gunter

Dueck, Levon Khachatrian, Mark S. Pinsker, Andras Sárközy, Ingo We-

gener, and Zhen Zhang, editors, Numbers, Information and Complexity,

pages 385–390. Springer, 2000. doi:10.1007/978-1-4757-6048-4_32.

[120] Carl Pomerance, John Michael Robson, and Jeffrey O. Shallit. Automaticity

II: descriptional complexity in the unary case. Theor. Comput. Sci., 180(1-

2):181–201, 1997. doi:10.1016/S0304-3975(96)00189-2.

[121] Michael O. Rabin and Dana S. Scott. Finite automata and their decision

problems. IBM J. Res. Dev., 3(2):114–125, 1959. doi:10.1147/rd.32.

0114.

[122] Tibor Radó. On non-computable functions. Bell Syst. Tech. J., 41(3):877–

884, May 1962. doi:10.1002/j.1538-7305.1962.tb00480.x.

235

https://doi.org/10.1007/s00224-014-9554-8
https://doi.org/10.4230/LIPIcs.ICALP.2021.139
https://doi.org/10.4230/LIPIcs.ICALP.2021.139
https://doi.org/10.1093/acprof:oso/9780199230761.001.0001
https://doi.org/10.1093/acprof:oso/9780199230761.001.0001
https://doi.org/10.1007/978-1-4757-6048-4_32
https://doi.org/10.1016/S0304-3975(96)00189-2
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1002/j.1538-7305.1962.tb00480.x

Bibliography

[123] Anthony Ralston. de Bruijn sequences-a model example of the interaction

of discrete mathematics and computer science. Mathematics Magazine,

55(3):131, May 1982. doi:10.2307/2690079.

[124] Joseph J. Rotman. An Introduction to the Theory of Groups. Graduate

Texts in Mathematics. Springer, New York, 1995. ISBN: 978-1-4612-8686-

8. doi:10.1007/978-1-4612-4176-8.

[125] Camille Flye Sainte-Marie. Solution to question nr. 48. In L’Intermédiaire

des Mathématiciens, volume 1, pages 107–110, 1894.

[126] Claus-Peter Schnorr. A unified approach to the definition of random

sequences. Math. Syst. Theory, 5(3):246–258, 1971. doi:10.1007/

BF01694181.

[127] Claus-Peter Schnorr. Process complexity and effective random tests. J.

Comput. Syst. Sci., 7(4):376–388, 1973. doi:10.1016/S0022-0000(73)

80030-3.

[128] Claus-Peter Schnorr and H. Stimm. Endliche Automaten und Zufallsfolgen.

Acta Inf., 1:345–359, 1972. doi:10.1007/BF00289514.

[129] Jeffrey O. Shallit and Yuri Breitbart. Automaticity I: properties of a mea-

sure of descriptional complexity. J. Comput. Syst. Sci., 53(1):10–25, 1996.

doi:10.1006/jcss.1996.0046.

[130] Jeffrey O. Shallit and Ming-Wei Wang. Automatic complexity of strings. J.

Autom. Lang. Comb., 6(4):537–554, 2001. doi:10.25596/jalc-2001-537.

[131] Dafna Sheinwald. On the Ziv-Lempel proof and related topics. Proceedings

of the IEEE, 82(6):866–871, 1994. doi:10.1109/5.286190.

236

https://doi.org/10.2307/2690079
https://doi.org/10.1007/978-1-4612-4176-8
https://doi.org/10.1007/BF01694181
https://doi.org/10.1007/BF01694181
https://doi.org/10.1016/S0022-0000(73)80030-3
https://doi.org/10.1016/S0022-0000(73)80030-3
https://doi.org/10.1007/BF00289514
https://doi.org/10.1006/jcss.1996.0046
https://doi.org/10.25596/jalc-2001-537
https://doi.org/10.1109/5.286190

Bibliography

[132] Dafna Sheinwald, Abraham Lempel, and Jacob Ziv. On encoding and de-

coding with two-way head machines. Inf. Comput., 116(1):128–133, 1995.

doi:10.1006/inco.1995.1009.

[133] John C. Shepherdson. The reduction of two-way automata to one-way

automata. IBM J. Res. Dev., 3(2):198–200, 1959. doi:10.1147/rd.32.

0198.

[134] Michael Sipser. A complexity theoretic approach to randomness. In

Proceedings of the 15th Annual ACM Symposium on Theory of Com-

puting, 1983, Boston, Massachusetts, USA, pages 330–335. ACM, 1983.

doi:10.1145/800061.808762.

[135] Robert I. Soare. Computability and recursion. Bull. Symb. Log., 2(3):284–

321, 1996. doi:10.2307/420992.

[136] Fernando Soler-Toscano, Hector Zenil, Jean-Paul Delahaye, and Nicolas

Gauvrit. Calculating Kolmogorov complexity from the output frequency

distributions of small turing machines. PLoS ONE, 9(5):e96223, May 2014.

doi:10.1371/journal.pone.0096223.

[137] R.J. Solomonoff. A preliminary report on a general theory of inductive

inference. Technical Report ZTB-138, Zator Company, Cambridge, Mass.,

November 1960. Accessed: June 14, 2021. URL: http://raysolomonoff.

com/publications/z138.pdf.

[138] R.J. Solomonoff. A formal theory of inductive inference. part i. In-

form. Control., 7(1):1–22, 1964. doi:https://doi.org/10.1016/S0019-

9958(64)90223-2.

237

https://doi.org/10.1006/inco.1995.1009
https://doi.org/10.1147/rd.32.0198
https://doi.org/10.1147/rd.32.0198
https://doi.org/10.1145/800061.808762
https://doi.org/10.2307/420992
https://doi.org/10.1371/journal.pone.0096223
http://raysolomonoff.com/publications/z138.pdf
http://raysolomonoff.com/publications/z138.pdf
https://doi.org/https://doi.org/10.1016/S0019-9958(64)90223-2
https://doi.org/https://doi.org/10.1016/S0019-9958(64)90223-2

Bibliography

[139] R.J. Solomonoff. A formal theory of inductive inference. part ii. Inform.

Control, 7(2):224–254, 1964. doi:https://doi.org/10.1016/S0019-

9958(64)90131-7.

[140] Christian Steinruecken. Lossless Data Compression. PhD thesis, University

of Cambridge, 2014. (Accessed: May 11, 2021). URL: https://q4.github.

io/thesis.pdf.

[141] Jason Teutsch. Short lists for shortest descriptions in short time. Com-

put. Complex., 23(4):565–583, September 2014. doi:10.1007/s00037-

014-0090-3.

[142] Alan M. Turing. On computable numbers, with an application to the

Entscheidungsproblem. P. Lond. Math. Soc., s2-42(1):230–265, 01 1937.

doi:10.1112/plms/s2-42.1.230.

[143] Tatyana van Aardenne-Ehrenfest and Nicolaas Govert de Bruijn. Circuits

and trees in oriented linear graphs. Simon Stevin : Wis- en Natuurkundig

Tijdschrift, 28:203–217, 1951. URL: https://research.tue.nl/en/

publications/circuits-and-trees-in-oriented-linear-graphs-3.

[144] Paul M. B. Vitányi. Corrigendum to [6]. Theor. Comput. Sci., 770:101,

2019. doi:10.1016/j.tcs.2018.07.009.

[145] Paul M. B. Vitányi. Logical depth for reversible turing machines with

an application to the rate of decrease in logical depth for general turing

machines. Theor. Comput. Sci., 778:78–80, 2019. doi:10.1016/j.tcs.

2019.01.031.

[146] Donal Dines Wall. Normal Numbers. PhD thesis, University of California,

Berkeley, 1948.

238

https://doi.org/https://doi.org/10.1016/S0019-9958(64)90131-7
https://doi.org/https://doi.org/10.1016/S0019-9958(64)90131-7
https://q4.github.io/thesis.pdf
https://q4.github.io/thesis.pdf
https://doi.org/10.1007/s00037-014-0090-3
https://doi.org/10.1007/s00037-014-0090-3
https://doi.org/10.1112/plms/s2-42.1.230
https://research.tue.nl/en/publications/circuits-and-trees-in-oriented-linear-graphs-3
https://research.tue.nl/en/publications/circuits-and-trees-in-oriented-linear-graphs-3
https://doi.org/10.1016/j.tcs.2018.07.009
https://doi.org/10.1016/j.tcs.2019.01.031
https://doi.org/10.1016/j.tcs.2019.01.031

Bibliography

[147] Terry A. Welch. A technique for high-performance data compression. Com-

puter, 17(6):8–19, 1984. doi:10.1109/MC.1984.1659158.

[148] Ian H. Witten and Timothy C. Bell. The zero-frequency problem: Estimat-

ing the probabilities of novel events in adaptive text compression. IEEE

Trans. Inf. Theory, 37(4):1085–1094, 1991. doi:10.1109/18.87000.

[149] Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic coding

for data compression. Commun. ACM, 30(6):520–540, June 1987. doi:

10.1145/214762.214771.

[150] Aaron D. Wyner and Abraham J. Wyner. Improved redundancy of a version

of the Lempel-Ziv algorithm. IEEE Trans. Inf. Theory, 41(3):723–731, 1995.

doi:10.1109/18.382018.

[151] Aaron D. Wyner and Jacob Ziv. Fixed data base version of the Lempel-

Ziv data compression algorithm. IEEE Trans. Inf. Theory, 37(3):878–880,

1991. doi:10.1109/18.79955.

[152] Aaron D. Wyner and Jacob Ziv. The sliding-window Lempel-Ziv algorithm

is asymptotically optimal. Proceedings of the IEEE, 82(6):872–877, 1994.

doi:10.1109/5.286191.

[153] Hector Zenil, Jean-Paul Delahaye, and Cédric Gaucherel. Image character-

ization and classification by physical complexity. Complex., 17(3):26–42,

2012. doi:10.1002/cplx.20388.

[154] Hector Zenil, Santiago Hernández-Orozco, Narsis A. Kiani, Fernando Soler-

Toscano, Antonio Rueda-Toicen, and Jesper Tegnér. A decomposition

method for global evaluation of shannon entropy and local estimations of al-

gorithmic complexity. Entropy, 20(8):605, 2018. doi:10.3390/e20080605.

239

https://doi.org/10.1109/MC.1984.1659158
https://doi.org/10.1109/18.87000
https://doi.org/10.1145/214762.214771
https://doi.org/10.1145/214762.214771
https://doi.org/10.1109/18.382018
https://doi.org/10.1109/18.79955
https://doi.org/10.1109/5.286191
https://doi.org/10.1002/cplx.20388
https://doi.org/10.3390/e20080605

Bibliography

[155] Marius Zimand. Short lists with short programs in short time - A short

proof. In Arnold Beckmann, Erzsébet Csuhaj-Varjú, and Klaus Meer, ed-

itors, Language, Life, Limits - 10th Conference on Computability in Eu-

rope, CiE 2014, Budapest, Hungary, June 23-27, 2014. Proceedings, volume

8493 of Lecture Notes in Computer Science, pages 403–408. Springer, 2014.

doi:10.1007/978-3-319-08019-2_42.

[156] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data

compression. IEEE Trans. Inf. Theory, 23(3):337–343, 1977. doi:10.1109/

TIT.1977.1055714.

[157] Jacob Ziv and Abraham Lempel. Compression of individual sequences via

variable-rate coding. IEEE Trans. Inf. Theory, 24(5):530–536, 1978. doi:

10.1109/TIT.1978.1055934.

[158] A.K. Zvonkin and Leonid A. Levin. The complexity of finite objects and

the development of the concepts of information and randomness by means

of the theory of algorithms. Russ. Math. Survey, 25(6):83–124, December

1970. doi:10.1070/rm1970v025n06abeh001269.

240

https://doi.org/10.1007/978-3-319-08019-2_42
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1978.1055934
https://doi.org/10.1109/TIT.1978.1055934
https://doi.org/10.1070/rm1970v025n06abeh001269

	Abstract
	Acknowledgements
	Declaration
	List of Publications
	Introduction
	Background
	Objectives of This Thesis
	Outline of the Thesis

	Preliminaries and Background
	Preliminaries
	Kolmogorov Complexity
	Distinguishing Complexity

	Bennett's Depth
	Moser's General Framework for Depth

	Descriptional Transducer Based Complexity
	Compression Algorithms

	Normal Sequences
	de Bruijn Strings
	Granddaddy de Bruijn Strings

	Finite-State Depth
	Introduction
	Finite-State Transducers
	k-Finite-State Complexity
	Normal Sequences and Finite-State Transducers

	Finite-State Depth
	Basic Properties
	Slow Growth Law
	Existence of an a.e. FS-Deep Sequence
	Separation from i.o. FS-depth

	Summary

	Pushdown Depth
	Introduction
	Pushdown Compressors
	Unary-stack Pushdown Compressors

	Pushdown Depth and its Properties
	Slow Growth Law

	Separation from Finite-State Depth
	Summary

	Lempel-Ziv Depth
	Introduction
	The Lempel-Ziv 78 Algorithm
	Lempel-Ziv Depth and its Properties
	Separation from Finite-State Depth
	Separation from Pushdown Depth
	Summary

	Pebble Depth
	Introduction
	Pebble Transducers
	k-Pebble Complexity

	Pebble Depth
	Fundamental Properties
	Separation from Finite-State Depth
	Separation from Lempel-Ziv Depth
	Preliminary Comparison with Pushdown Depth

	Discussion
	Why not Compressors?
	Why not Pebble vs Pebble?

	Summary

	Prediction by Partial Matching and Normal Sequences
	Introduction
	Description of the PPM Algorithms
	Bounded PPM
	PPM*
	Arithmetic Encoding

	A Compressible Champernowne Sequence
	Pierce and Shields' Construction
	A Sequence which satisfies Theorem 7.3.8
	Main Result
	Bounded PPM on Normal Sequences

	Bounded versus Unbounded
	PPMt's Performance on St
	PPM*'s Performance on St
	Comparing the Two

	Summary

	Automatic Complexity of Normal Sequences
	Introduction
	Motivation
	Automatic Complexity Definitions

	Normal Sequences with a Low Automatic Complexity Ratio
	Automatic Complexity of a Champernowne Sequence
	Lower Bounds for Champernowne Sequences
	Remaining Calculations for Theorem 8.3.2

	Summary

	Concluding Remarks
	Limitations and Potential Future Work

	Bibliography

