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Abstract

It has been shown [1, 2] that a wide class of 3D motions of in-
compressible viscous fluid in Cartesian coordinates can be de-
scribed by only one scalar function dubbed the quasi-potential.
This class of fluid flows is characterized by three-component
velocity field having two-component vorticity field; both these
fields can depend of all three spatial variables and time, in gen-
eral. Governing equations for the quasi-potential have been de-
rived and simple illustrative examples of 3D flows have been
presented. In this paper the concept of quasi-potential is fur-
ther developed for fluid flows in cylindrical coordinates. It is
shown that the introduction of a quasi-potential in curvilinear
coordinates is non-trivial and may be a subject of additional
restrictions. In the cases when it is possible, we construct il-
lustrative examples which can be of interest for some practical
applications.

Introduction

A great success in the solution of fluid dynamic problems is as-
sociated with the reduction of a primitive set of hydrodynamic
equations to only one equation for any scalar function, e.g., ve-
locity potential or stream function [3, 4, 5, 6, 7]. It has been
shown in [1, 2] that the class of exactly solvable hydrodynamic
problems can be widened by introduction one more scalar func-
tion, the quasi-potential. The starting point for the introduction
of the quasi-potential is the condition of incompressibility of
a fluid: divU = 0, where U is the fluid velocity. This allows
us to introduce a vector-potential A such that U = curlA au-
tomatically satisfies this equation. However, there is a gauge
invariance in the choice of the vector-potential as it is defined
up to the gradient of any scalar function f (t,x,y,z), because
curl(∇ f ) ≡ 0. Therefore, if we use another vector-potential
A′ = A+∇ f , this does not affect the velocity vector U.

Due to the freedom of choice of an arbitrary function f (t,x,y,z),
we can eliminate one of the components of the vector-potential.
Therefore without loss of generality the vector potential A can
be chosen consisting of two components only. In the Cartesian
rectilinear coordinates it does not matter which component is
eliminated, because vector differential operations are symmet-
rical with respect to all spatial variables x, y and z. However, it is
not the case in curvilinear coordinates, in particular, in cylindri-
cal coordinates. In any case, an arbitrary 3D velocity field can
be described, in general, by two-component vector-potential,
i.e. by two scalar functions – the corresponding components
of the vector-potential. If there is any additional link between
these two components, then the description of a fluid flow can
be done in terms of only one scalar function, equation for which
follows from the primitive Navier–Stokes equation. This ap-
proach has been exploited in [1, 2] in Cartesian coordinates and
nontrivial examples of fluid motions have been found.

Below we consider fluid flow in cylindrical coordinates and
show how the quasi-potential can be introduced when one of
the components of the vector-potential A is eliminated. An il-
lustrative example is constructed.

Governing equations and quasi-potential in cylindrical co-
ordinates

Case 1 – Derivation of basic equations when Ar = 0

Consider first the case when the vector-potential does not con-
tain the radial component Ar and reads: A = (F1/r)eϕ−F2ez,
where F1 and F2 are functions of time and all spatial variables.

The velocity and vorticity fields for such vector-potential read:
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Consider a particular class of fluid flows having only two com-
ponents of the vorticity. To eliminate the first component of the
vorticity let us introduce such function P that
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Thus, the assumption that the r-component of vorticity is zero
implies that P is the potential function of ϕ and z.

It is convenient to introduce further a quasi-potential Φ such
that P = Φr (here and below the indices of function Φ stand for
partial derivatives with respect to the corresponding variables).
Substitute then expressions for U and ω into the Navier–Stokes
equation in the Helmholtz form [3]:
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Bearing in mind that thankful to the condition (3) the r-
component of the vorticity is zero, in the case of perfect fluid
(ν = 0) the r-component of this vector equation reduces to:
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where H(Φr) is an arbitrary function of Φr.

Two other components (ϕ and z) of Eq. (4) after simple mani-
pulations reduce to one equation:
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where Q(t, r) is an arbitrary function of its arguments, and H ′

stands for a derivative of function H with respect to its argu-
ment.



In terms of function Φ the velocity and vorticity fields read:

U = ∇Φ+[H(Φr)−Φr]er , (7)
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In the particular case of H(Φr)≡Φr, the quasi-potential Φ be-
comes the conventional hydrodynamic velocity potential. Equa-
tion (5) reduces to the Laplace equation, Eq. (6) disappears, and
vorticity vanishes.

In general the main equations to be solved simultaneously are
Eqs. (5) and (6) with given functions H(Φr) and Q(t, r). As
there is a freedom in the choice of these function, we obtain a
good perspective to construct exact solutions to hydrodynamic
equations and accommodate them to practical needs.

Unfortunately, in the case of a viscous fluid (ν 6= 0) the intro-
duction of a quasi-potential does not help to simplify the basic
equation (4).

Case 2 – Derivation of basic equations when Aϕ = 0

Consider now the case when the vector potential has only r- and
z-components: A = −r F1 er + r F2 ez. In this case the velocity
and vorticity fields become:
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Let us eliminate now the second component of the vorticity. To
this end introduce such function P that
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In the case of a perfect fluid the second ϕ-component of vector
equation (4) reduces to:
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where H(P) is an arbitrary function of P.

This equation can be presented in terms of a quasi-potential Φ

which is defined as P+ r2H(P) = ∂Φ/∂ϕ. Alternatively, one
can think that P is an arbitrary function G of Φϕ and r, viz.
P = G(Φϕ, r). Then Eq. (12) reads:
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where R(t, r, z) is an arbitrary function of its arguments.

Two other components (r and z) of Eq. (4) after simple manip-
ulations can be reduced to the following one equation:
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where Q(t, ϕ) is an arbitrary function of its arguments.

In terms of quasi-potential the velocity and vorticity fields read:
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In the particular case of G(Φϕ, r)≡ 0, the quasi-potential Φ be-
comes ϕ-independent conventional hydrodynamic velocity po-
tential. Equation (13) reduces to the Laplace equation with
R(t, r, z) ≡ 0, Eq. (14) disappears, provided that Q(t, ϕ) ≡ 0,
and vorticity vanishes. The velocity field becomes plane and
depends only of r and z.

In general the main equations to be solved for Φ simultaneously
are Eqs. (13) and (14) with given functions G(Φϕ, r), Q(t, ϕ),
and R(t, r, z). Despite of the more complex character of these
equations, the freedom of choice of arbitrary functions allows
us to obtain again a good perspective to construct exact solu-
tions to hydrodynamic equations and accommodate them to the
practical needs.

Unfortunately, in the case of a viscous fluid (ν 6= 0) the intro-
duction of a quasi-potential does not help to simplify the basic
equation (4).

Case 3 – Derivation of basic equations when Az = 0

Consider at last the case when the vector potential has only r-
and ϕ-components: A = (F1/r)er−F2 eϕ.

In this case the velocity and vorticity fields become:
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where we have eliminated already the third component of vor-
ticity assuming that there is a relationship between functions F1
and F2: ∂F1/∂r = ∂F2/∂ϕ. This relationship is satisfied auto-
matically if we introduce a quasi-potential Φ such that
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Substituting the expressions for U and ω into Eq. (4), we obtain
from the third, z-component, of this vector equation even with
the viscous term accounted for:
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where H(Φz) is an arbitrary function of Φz and R(t, r, ϕ) is an
arbitrary function of its arguments.

Two other components (r and ϕ) of Eq. (4) with ν 6= 0 after sim-
ple manipulations can be reduced to the following one equation:
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where Q(t, z) is an arbitrary function of its arguments.



In terms of quasi-potential the velocity and vorticity fields read:
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In the particular case of H(Φz)≡Φz, the quasi-potential Φ be-
comes the conventional hydrodynamic velocity potential. Equa-
tion (19) reduces to the Laplace equation with R(t, r, ϕ) ≡ 0,
Eq. (20) disappears, and vorticity vanishes. In the case of vis-
cous fluid there is no additional restrictions.

Below we present an example of non-trivial fluid flow described
by these Eqs. (19) and (20).

Examples

We managed to construct two examples illustrating the devel-
oped theory.

Example of a vertical flow in Case 2

Consider first an example for the case when the vector potential
has only r- and z-components in cylindrical coordinates. Let us
assume that G(Φϕ, r)≡ (1−λ2)Φϕ, where λ 6= 1 is a constant.

One can readily prove that the following quasi-potential
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This solution describes stationary vortical flow periodic in azi-
muthal coordinate ϕ and having two components of vorticity.
When λ = 0, the velocity and vorticity fields vanish, whereas
when λ = 1, the flow becomes potential with the zero vorticity.

In Cartesian coordinates both the velocity and vorticity fields
are three-component and read:
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Figures 1 and 2 illustrate the velocity and vorticity fields as per
Eqs. (26) and (27).

Figure 1: A fragment of velocity field as per Eq. (26).

Figure 2: A fragment of vorticity field as per Eq. (27).

The modulus of the velocity field is:
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Example of a vertical flow in Case 3

Consider now an example of the vortical flow for the third case
when the vector potential has only r- and ϕ-components in
cylindrical coordinates. Let us assume that H(Φz) ≡ −λ2Φz,
where λ 6= 1 is a constant.

One can readily prove that the following quasi-potential
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This solution describes exponentially decaying with time velo-
city and vorticity fields. The vector fields are periodic in ϕ

and z. In Cartesian coordinates the velocity field becomes two-
component:
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whereas the vorticity field has only one component:
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Both these fields do not depend on x and therefore can
be described by the conventional stream function ψ =
−λT (t)sinλysinz, so that the velocity components are:
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For purely imaginary λ = i, the quasi-potential reduces to the
conventional hydrodynamic potential, and the fluid field be-
comes potential with the zero vorticity.

Thus, this example describes a vortical flow double periodic in
the (y, z) plane. Figure 3 illustrates the velocity field for t = 0
and λ = 1 when y and z vary in the range of [0, π]. There is a
mirror symmetry with respect to planes y = 0 and z = 0. Figure
4 illustrates the corresponding vorticity field for t = 0 and λ= 1.

As one can see from these two examples, the introduction of
quasi-potentials allows us to construct exact solutions for fairly
complex vortical flows in cylindrical coordinates. The transfor-
mation of a two-component vorticity field in cylindrical coordi-
nates can lead to either on-component or three-component vor-
ticity field in Cartesian coordinates. There is no regular method
to construct three-component vortical flows in Cartesian coor-
dinates, whereas the developed theory allows us to find exact
solutions in terms of quasi-potential.

Conclusion

It has been demonstrated that introduction of quasi-potential
is possible in cylindrical geometry, whereas it is not a triv-
ial generalisation of quasi-potential theory developed in [1, 2].
Quasi-potential approach helps us to construct exact solutions
describing fairly complicated three-dimensional fluid field with
a multi-component vorticity field. In the particular cases the
quasi-potential theory reduces to the conventional potential the-
ory and to the theory based on introduction of a stream-function.
It is believed that the quasi-potential approach can be used also
in other curvilinear coordinates, in particular, in a spherical ge-
ometry. The results for spherical coordinates will be published
elsewhere.
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Figure 3: A fragment of velocity field as per Eq. (33).

Figure 4: A fragment of vorticity field as per Eq. (34).


