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Abstract. In [1] the stiffness of bridges and cantilevers made of natural chrysotile asbestos
nanotubes has been studied by means of scanning probe microscopy. The stiffness is defined as
a ratio the value of local load (applied to the tube) to the value of the displacement. The nan-
otubes with different materials for fillings are analyzed. The experiments show that the stiffness
of the tube depends on the materials for filling. The tubes with water are softer than the tubes
without filling materials and the tubes filled with mercury are more rigid than tubes without
filling materials. It was shown in [1] that the classical theory of beam bending can not explain
the experimental results, but the experimental results well agree with the Timoshenko-Reissner
theory (at least qualitatively), when interlaminar shear modulus of elasticity changes for dif-
ferent filling materials. When additional factors such as lamination of structure and cylindrical
anisotropy are taken into account [2] the theory of Rodionova-Titaev-Chernykh (RTC) permits
to obtain much more reliable results. In this work the authors also applied one more nonclas-
sical shell theory, namely the shell theory of Paliy-Spiro (PS) developed for medium - thickness
shells and considered radial pressure. The comparison of nonclassical shell theories (RTC and
PS) with experimental data and FEM calculations are presented in the report.
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1 INTRODUCTION

It is known [3] that mechanical characteristics corresponding to nano-dimensional structure
elements such as beams, plates and shells can differ from mechanical characteristics corre-
sponding to structures of the same material, which have ”normal” geometrical sizes. There is
a possibility of appearance of the anisotropy of nanoobjects. In [1], [2] results of experiments,
which examined mechanical properties of nanotubes made of natural chrysolite asbestos are
discussed. The diameter of nanotubes is approximately equal to 30nm, internal diameter is
5nm. The inner cavity of a tube was filled with water, mercury or tellurium under pressure. The
rigidity of nanotubes was measured with the use of scanning probing microscopy. The rigidity
was understood as the ratio between applied strain and value of bridge deflection formed by the
nanotube, which blocked an opening in porous bottom layer. (Conditions of the experiment are
described in detail in [1]). The experiments showed that tube filled with water is substantially
softer than a ”dry” tube ( tube without any filler) and tubes filled with mercury are slightly more
rigid than ”dry” tubes. In [1] experimental data and the results of modeling were compared.
The simplest classical models of isotropic beams and non-classical transversal isotropic models
were considered. In [2] the problem of nanotubes deformation was solved with the use of the
Rodionova-Titaev-Chernykh (RTCH) theory of anisotropic shells [4] , which permits to take
into account layered structure of asbestos and cylindrical anisotropy as well. In this work de-
formation of a multilayered tube under locally applied load (Fig. 1) is found with the use of the
theory of anisotropic shells of moderate thickness, which is developed in [5]. There was made
a comparison of the results obtained with the use of the Timoshenko-Reissner (TR) theory [6] ,
RTCH theory, the Paliy-Spiro theory and FEM calculations in ANSYS code.

2 PROBLEM DEFINITION

Let α and β be cylindrical coordinates on a shell surface, α — the polar angle, β — coordi-
nate along the tube’s generatrix, h(i) — thicknesses, R(i) — radiuses of medium surfaces of the
shell layers, and L — tube’s length. For definition of coefficients we will use symbol A(i)

j . Low
index j denotes curvilinear coordinate corresponding to the value A, upper index i — denotes
to which layer it corresponds, i.e. if i = 1 then A corresponds to the first inner layer, if i = N

then A corresponds to the last outer layer. E(i)
1 , E

(i)
2 , E

(i)
3 are modules of elasticity in tangential

and normal directions, ν(i)jk are the Poisson’s ratios.

Figure 1: Geometrical model of the tube
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We studies the stress-strain state of a multilayered tube under locally applied load with the
use of the new improved iterative theory of anisotropic shells of Rodionova-Titaeva-Chernykh
[4], the theory by Paliy-Spiro suggested in [5], the Timoshenko-Reissner theory.

The improved iterative RTCH theory is based on the following hypotheses:

1. transverse tangential and normal stresses are distributed on shell’s thickness according to
quadratic and cubic laws respectively;

2. tangential and normal components of the displacement vector are distributed on the shell
thickness according to quadratic and cubic laws respectively.

This theory takes into account turns of fibers, their deviation and change of their length.
Functions which describe displacement of the shell’s layer u1(α, β, z), u2(α, β, z), u3(α, β, z)

according to the Rodionova-Chernykh theory are suggested to be found as series of Legendre
polynomials P0, P1, P2, P3 in normal coordinate z ∈

[
−h

2
, h
2

]
u1(α, β, z) = u(α, β)P0(z) + γ1(α, β)P1(z) + θ1(α, β)P2(z) + φ1(α, β)P3(z),
u2(α, β, z) = v(α, β)P0(z) + γ2(α, β)P1(z) + θ2(α, β)P2(z) + φ2(α, β)P3(z),
u3(α, β, z) = w(α, β)P0(z) + γ3(α, β)P1(z) + θ3(α, β)P2(z),

(1)

P0(z) = 1, P1(z) =
2z

h
, P2(z) =

6z2

h2
− 1

2
, P3(z) =

20z3

h3
− 3z

h
, (2)

where u, v, w are the components of the displacement vector for points of the middle surface
of the shell, γ3 and θ3 characterize change in length of the normal to this surface, γ1 and γ2 are
angles of rotation of the normal in planes (α, z), (β, z) correspondingly. The variables θ1 and
φ1, describe normal curvature of the fiber in plane (α, z), quantities θ2 φ2, normal curvature in
plane (β, z) before deformation they were perpendicular to the shell middle surface.

The Paliy-Spiro shells theory [5] is a theory of shells of moderate thickness, which assumes
the following hypotheses:

1. straight fibers of the shell, which are perpendicular to its middle surface before deforma-
tion, remain also straight after deformation;

2. cosine of the slope angle of these fibers shell’s slope to the middle surface of the deformed
shell is equal to the averaged angle of transverse shear.

Mathematical formulation of these hypotheses gives following equalities:

u1(α, β, z) = u(α, β) + ϕ(α, β)z, u2(α, β, z) = v(α, β) + ψ(α, β)z,
u3(α, β, z) = w(α, β) + F (α, β, z),
ϕ(α, β) = γ1(α, β) + ϕ0(α, β), ψ(α, β) = γ2(α, β) + ψ0(α, β),

ϕ0(α, β) = − 1

A1

∂w(α, β)

∂α
+ k1u(α, β), ψ0(α, β) = − 1

A2

∂w(α, β)

∂α
+ k2v(α, β),

(3)

where ϕ and ψ are angles of normal’s rotation in planes (α, z), (β, z); ϕ0, ψ0,γ1 and γ2 — are
angles of normal’s rotation to the median surface and angles of displacement in the same planes.
The function F (α, β, z) characterizes change of length of the normal to the median surface.

The Lamé’s coefficients and curvature coefficients, which determine geometry of the cylin-
drical shell have the following form

A
(i)
1 = R(i), A

(i)
2 = 1, k

(i)
1 =

1

R(i)
, k

(i)
2 = 0 (4)
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Let us introduce the following dimensionless variables:

R̃(i) =
A

(i)
1

A
(i)
2

, h̃(i) =
h

R(i)
,{

ũ(i), ṽ(i), w̃(i), γ̃
(i)
1,2,3, θ̃

(i)
1,2,3, φ̃

(i)
1,2, ϕ̃

(i)
,0 , ψ̃

(i)
,0

}
=

1

h

{
u(i), v(i), w(i), γ

(i)
1,2,3, θ

(i)
1,2,3, φ

(i)
1,2, ϕ

(i)
,0 , ψ

(i)
,0

}
,

Ẽ2,3 =
E2,3

E1

, G̃13,12,23 =
G13,12,23

E1

,

P̃ in1,2,3
(i)

=
Pin

(i)
1,2,3

E1

, P̃ out1,2,3
(i)

=
Pout

(i)
1,2,3

E1

,

{
T̃

(i)
0,1,2, Q̃

(i)
1,2, m̃

(i)
1,2,3

}
=

{
T

(i)
0,1,2, Q

(i)
1,2,m

(i)
1,2,3

}
R(i)E1

,

{
M̃

(i)
0,1,2

}
=

{
M

(i)
0,1,2

}
R(i)E1h

,
{
q̃
(i)
1,2,3

}
=

{
q
(i)
1,2,3

}
E1

,

(5)

where Poutx, Pinx are the values of the pressure on the internal and external shell surfaces.
For simplicity we introduce the following parameters:

E11 =
1

1− ν12ν21
, E12 =

Ẽ2

1− ν12ν21
, E22 =

ν12
1− ν12ν21

,

Ez =
Ẽ3

1− ν13µ1 − ν23µ2

, µ1 =
ν31 + ν21ν32
1− ν12ν21

, µ2 =
ν32 + ν21ν31
1− ν12ν21

,

K11 = −E11h̃
(i), K12 = E22h̃

(i), K21 =
3

2
E11h̃

(i)µ1, K22 =
3

2
E22h̃

(i)µ2,

K13 = E11
h̃(i)

2
(µ2 + 2ν12µ1), K23 = E11

h̃(i)

2
(ν12µ1 + 2µ2),

m̃(i)
x =

h̃(i)

2
P̃ outx

(i)
(
1 +

h̃(i)

2

)
+
h̃(i)

2
P̃ inx

(i)
(
1− h̃(i)

2

)
, (x = 1, 2, 3),

q̃(i)x = P̃ outx
(i)
(
1 +

h̃(i)

2

)
− P̃ inx

(i)
(
1− h̃(i)

2

)
, (x = 1, 2, 3)

(6)

3 CORRELATIONS OF THE RODIONOVA-TITAEV-CHERNYKH SHELL THEORY
AND THE PALIY-SPIRO THEORY

Shell deformations of the theories under consideration are expressed through the components
of displacements with the use of the following equations.

Deformation components those are different for the theories are underlining. Below we
present the relations for moments, strains and deformation components for the RTCH theory,
which were converted for the case of a cylindrical shell. Substituting the given dependencies in
expression (7), we can receive an equation, which characterizes their connection to components
of the displacement.
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Rodionova-Titaev-Chernykh theory Paliy-Spiro theory

ε̃
(i)
1 = h̃(i)(

∂ũ(i)

∂α(i)
+ w̃(i)), ε̃

(i)
2 =

∂ṽ(i)

∂β(i)
, ε̃

(i)
1 = h̃(i)(

∂ũ(i)

∂α(i)
+ w̃(i)), ε̃

(i)
2 =

∂ṽ(i)

∂β(i)
,

η̃
(i)
1 = h̃(i)(

∂γ̃
(i)
1

∂α(i)
+ γ̃

(i)
3 ), η̃

(i)
2 =

∂γ̃
(i)
2

∂β(i)
, η̃

(i)
1 = h̃(i)(

∂ϕ̃(i)

∂α(i)
), η̃

(i)
2 =

∂ψ̃(i)

∂β(i)
,

ε̃
(i)
13 = h̃(i)

∂w̃(i)

∂α(i)
− h̃(i)ũ(i) + 2γ̃

(i)
1 , ε̃

(i)
13 = 0,

ε̃
(i)
23 =

∂w̃(i)

∂β(i)
+ 2γ̃

(i)
2 , ε̃

(i)
23 = 0,

ω̃
(i)
1 = h̃(i)

∂ṽ(i)

∂α(i)
, ω̃

(i)
2 =

∂ũ(i)

∂β(i)
, ω̃

(i)
1 = h̃(i)

∂ṽ(i)

∂α(i)
, ω̃

(i)
2 =

∂ũ(i)

∂β(i)
,

τ̃
(i)
1 = h̃(i)

∂γ̃
(i)
2

∂α(i)
, τ̃

(i)
2 =

∂γ̃
(i)
1

∂β(i)
, τ̃

(i)
1 = h̃(i)

∂ψ̃(i)

∂α(i)
, τ̃

(i)
2 =

∂ϕ̃(i)

∂β(i)
,

τ̃ (i) = τ̃
(i)
1 + τ̃

(i)
2 , ω̃(i) = ω̃

(i)
1 + ω̃

(i)
2

Table 1: Deformation components in two theories

T̃
(i)
1 = E11h̃

(i)ε
(i)
1 + E12h̃

(i)ε
(i)
2 + µ

(i)
1 T̃

(i)
0 , T̃

(i)
2 = E12h̃

(i)ε
(i)
1 + E22h̃

(i)ε
(i)
2 + µ

(i)
2 T̃

(i)
0 ,

M̃
(i)
1 = h̃(i)

6
(E11η

(i)
1 + E12η

(i)
2 ) + µ

(i)
1 M̃

(i)
0 , M̃

(i)
2 = h̃(i)

6
(E12η

(i)
1 + E22η

(i)
2 ) + µ

(i)
2 M̃

(i)
0 ,

T̃
(i)
12 = T̃

(i)
21 = G̃

(i)
12 h̃

(i)τ̃ (i), M̃
(i)
12 = M̃

(i)
21 = 1

6
G̃

(i)
12 h̃

(i)ω̃(i),

Q̃
(i)
1 =

5h̃(i)G̃
(i)
13

6
ε
(i)
13 +

m̃
(i)
1

6
− (h̃(i))2

G̃
(i)
13

6

∂θ
(i)
3

∂α(i) ,

Q̃
(i)
2 =

5h̃(i)G̃
(i)
23

6
ε
(i)
23 +

m̃
(i)
2

6
− h̃(i)

G̃
(i)
23

6

∂θ
(i)
3

∂β(i) ,

T̃
(i)
0 = m̃

(i)
3 + (h̃(i))2

12

(
∂q̃

(i)
1

∂α(i) + R̃(i) ∂q̃
(i)
2

∂β(i)

)
− h̃(i)M̃

(i)
1 ,

M
(i)
0 = (h̃(i))2

10
q̃
(i)
3 + h̃(i)

60

(
∂m̃

(i)
1

∂α(i) + R̃(i) ∂m̃
(i)
2

∂β(i)

)
− h̃(i)

60
T̃

(i)
1

(7)

Let us substitute the following relations (8) for six components of the displacement in formulas
(7). Thus we reduce them to dependence on the five main components of the displacement
u, v, w, γ1, γ2:

θ̃
(i)
1 =

q̃
(i)
1

12G13
− h̃(i)

6

∂γ̃
(i)
3

∂α(i) , φ̃
(i)
1 = m1

(i)−Q̃
(i)
1

10h̃(i)G̃
(i)
13

− h̃(i)

10

∂θ̃
(i)
3

∂α(i) ,

θ̃
(i)
2 =

q̃
(i)
2

12G23
− h̃(i)

6R̃(i)

∂γ̃
(i)
3

∂β(i) , φ̃
(i)
2 =

m2
(i)−Q̃

(i)
2

10h̃(i)G̃
(i)
23

− h̃(i)

R̃(i)

∂θ̃
(i)
3

∂β(i) ,

γ̃
(i)
3 = 1

2h̃(i)

T̃
(i)
0

Ẽ
(i)
z

− 1
2

(
µ1ε

(i)
1 + µ

(i)
2 ε

(i)
2

)
, θ̃

(i)
3 = 1

h̃(i)

M̃
(i)
0

Ẽ
(i)
z

− 1
6

(
µ1η

(i)
1 + µ2η

(i)
2

) (8)
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The same transformation for Paliy-Spiro theory gives:

T̃
(i)
1 = E11h̃

(i)ε
(i)
1 + E12h̃

(i)ε
(i)
2 + h̃(i)

12
((K11 −K12)η̃

(i)
1 −K13η̃

(i)
2 ) + µ

(i)
1

qi3
2
h̃(i),

T̃
(i)
2 = E12h̃

(i)ε
(i)
1 + E22h̃

(i)ε
(i)
2 + h̃(i)

12
((K21 −K22)η̃

(i)
2 −K23η̃

(i)
1 ) + µ

(i)
2

qi3
2
h̃(i),

T̃
(i)
12 = G̃

(i)
12 h̃

(i)

(
ω̃
(i)
1 + ω̃

(i)
2 − (h̃(i))2

12
τ̃
(i)
1

)
,

T̃
(i)
21 = G̃

(i)
12 h̃

(i)

(
ω̃
(i)
1 + ω̃

(i)
2 + (h̃(i))2

12
τ̃
(i)
2

)
,

M̃
(i)
1 = h̃(i)

6
(E11η

(i)
1 + E12η

(i)
2 + (K11 −K12)ε̃

(i)
1 −K23ε̃

(i)
2 ) + µ

(i)
1

qi3
8
h̃(i),

M̃
(i)
2 = h̃(i)

6
(E12η

(i)
1 + E22η

(i)
2 + (K21 −K22)ε̃

(i)
2 −K13ε̃

(i)
1 ) + µ

(i)
2

qi3
8
h̃(i),

M̃
(i)
12 = G̃

(i)
12

h̃(i)

12

(
τ̃
(i)
1 + τ̃

(i)
2 − (h̃(i))2ω̃

(i)
1

)
,

M̃
(i)
21 = G̃

(i)
12

h̃(i)

12

(
τ̃
(i)
1 + τ̃

(i)
2 + (h̃(i))2ω̃

(i)
2

)
,

Q̃
(i)
1 = G̃

(i)
13 h̃

(i)γ
(i)
1 , Q̃

(i)
2 = G̃

(i)
23 h̃

(i)γ
(i)
2 ,

σ33 =
P̃ out3

(i)
(
1+ h̃(i)

2

)(
0.5+ z

h(i)

)
−P̃ in3

(i)
(
1− h̃(i)

2

)(
0.5− z

h(i)

)
1+ z

R(i)
,

F̃ (α, β, z)
(i)

=
z∫
0

σ33

Ez
dz − (µ1ε1 + µ2ε2)z −

[
µ1

(
η1 − ε1

R(i)

)
+ µ2η2

]
z2

2
+
(
µ1η1
R(i)

)
z3

3
.

(9)

By using Table 1 we obtain moments and strains as functions of the displacement u, v, w, γ1, γ2.
By substituting these relations into equilibrium equation of the cylindrical shell

∂T̃
(i)
1

∂α(i) + R̃(i) ∂T̃
(i)
21

∂β(i) + Q̃
(i)
1 + q̃

(i)
1 = 0,

∂T̃
(i)
12

∂α(i) + R̃(i) ∂T̃
(i)
2

∂β(i) + q̃
(i)
2 = 0,

∂Q̃
(i)
1

∂α(i) + R̃(i) ∂Q̃
(i)
2

∂β(i) − T̃
(i)
1 + q̃

(i)
3 = 0,

1
h̃(i)

(
∂M̃

(i)
1

∂α(i) + R̃(i) ∂M̃
(i)
21

∂β(i)

)
− Q̃

(i)
1 + m̃

(i)
1 = 0,

1
h̃(i)

(
∂M̃

(i)
12

∂α(i) + R̃(i) ∂M̃
(i)
2

∂β(i)

)
− Q̃

(i)
2 + m̃

(i)
2 = 0

(10)

one can get a system of five partial differential equations with five unknown functions for both
theories. For the Rodionova-Titaev-Chernykh theory this system of equations is 14 order, and
for the Paliy-Spiro theory is of 10 order. Substituting corresponding components of the defor-
mation in formulas (1)-(3) one can get all components of the stress-deformed state of the shells
under consideration.

4 TIMOSHENKO-REISSNER THEORY

In the first approximation the nanotube could be considered as a beam. If we use the
Timoshenko-Reissner theory then the solution for beams with the freely supported edges has
the following [6] form

w(Lv) =
FLv

2(L− Lv)
2

3LEJ

(
1 +

1

GS

3nEJ

Lv(L− Lv)

)
. (11)

where Lv is a coordinate of the load application, J = πR4

4
is moment of inertia for circular

cross-section, n = 5/6 is coefficient in the formula Zhuravsky, S = πR2 is cross-sectional area.
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5 NUMERICAL METHOD

For solving the system of equations (10) in the displacements we will use the following
series:

(u(i)(α, β)), (γ
(i)
1 (α, β)) =

∑∞
n=0

∑∞
m=0(u

(i)
nm), (γ1

(i)
nm) sin[nα] sin[m̄β],

(v(i)(α, β)), (γ
(i)
2 (α, β)) =

∑∞
n=0

∑∞
m=0(v

(i)
nm), (γ2

(i)
nm) cos[nα] cos[m̄β],

w(i)(α, β) =
∑∞

n=0

∑∞
m=0w

(i)
nm cos[nα] sin[m̄β], m̄ = (πm)/L,

(12)
These formulas take into account the symmetry of the shell deformation in regard to plane
α = 0 and provide zero displacements u, γ1 and w while β = 0, L. Expressions for v, γ2 do not
satisfy zero boundary conditions but this displacements are small. External and internal forces,
which act on the shell surface can be represented as a product of sectional forces expanded in
series. Let X1(i+1)

mn , X2(i+1)
mn , X3(i+1)

mn — be components of the pressure on the external surface
of ith shell, and X1(i)mn, X2(i)mn, X3(i)mn pressure on its internal surface. Then expressions for the
load and moments become:

m̃
(i)
1 (α, β) =

∑∞
n=0

∑∞
m=0

h̃(i)

2

(
X1(i+1)

nm

(
1 + h̃(i)

2

)
+X1(i)nm

(
1− h̃(i)

2

))
sin[nα] sin[m̄β],

q̃
(i)
1 (α, β) =

∑∞
n=0

∑∞
m=0

(
X1(i+1)

nm

(
1 + h̃(i)

2

)
−X1(i)nm

(
1− h̃(i)

2

))
sin[nα] sin[m̄β],

m̃
(i)
2 (α, β) =

∑∞
n=0

∑∞
m=0

h̃(i)

2

(
X1(i+1)

nm

(
1 + h̃(i)

2

)
+X1(i)nm

(
1− h̃(i)

2

))
cos[nα] cos[m̄β],

q̃
(i)
2 (α, β) =

∑∞
n=0

∑∞
m=0

(
X1(i+1)

nm

(
1 + h̃(i)

2

)
−X1(i)nm

(
1− h̃(i)

2

))
cos[nα] cos[m̄β],

m̃
(i)
3 (α, β) =

∑∞
n=0

∑∞
m=0

h̃(i)

2

(
X1(i+1)

nm

(
1 + h̃(i)

2

)
+X1(i)nm

(
1− h̃(i)

2

))
cos[nα] sin[m̄β],

q
(i)
3 (α, β) =

∑∞
n=0

∑∞
m=0

(
X1(i+1)

nm

(
1 + h̃(i)

2

)
−X1(i)nm

(
1− h̃(i)

2

))
cos[nα] sin[m̄β]

(13)
Index i = 1 corresponds to the internal, and i = N +1 to the external surface of the tube, which
consists of N layers. Following [4], we accept the condition of rigidly bound layers:

ũ
(i)
k (α, β, h/2) = ũ

(i+1)
k (α, β,−h/2), k = 1, 2, 3 (14)

The load localized in a small rectangular area can be represented in the form of a product of the
Fourier series of two loading functions in cross-section and longitudinal section:

Pa[α] = P (
C

L
+

2

L

∞∑
n=0

L

nπ
sin(

nπ

L
C) cos(

nπ

L
α)) (15)

Pressure in longitudinal section of the tube is equal to

Pb[β] = P (
4

L

∞∑
m=0

L

mπ
sin(

mπ

L
C)sin(

mπ

L
Lv) sin(

mπ

L
β)), (16)

where Lv is a center of load application, 2C is a size of load application area, P is pressure in
the area. Pressure area is described by function of the product of the series:

Pd[α, β] = Pa[α] ∗ Pb[β] (17)

The load is applied to the outer surface of the tube:

X1(N+1)
nm = 0, X2(N+1)

nm = 0, X3(N+1)
nm = Pd[α, β] (18)
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Pressure on the internal surface of the tube is absent:

X1(1)nm = 0, X2(1)nm = 0, X3(1)nm = 0 (19)

Substituting dependencies (11),(12) and (16) in the system (10) and in conditions (13) we obtain
a system of 8N−3 linear algebraic equations for 5N deformation components and 3N−3 forces
of interaction between layers of shells. Each of the obtained coefficients u(i)nm, v(i)nm, w(i)

nm, γ1(i)nm,
γ2(i)nm, X1(i)mn, X2(i)mn, X3(i)mn is a member of the Fourier series of functions of deformation and
loading functions.

For realization of the aforementioned numerical method we developed a program based on
code Mathematica 7.0.

6 NUMERICAL RESULTS

In [4] deformation of a nanotube was considered with the following parameters: thickness
of each of the 100 layers h = 0, 135 nm, inner tube radius R=2.5 nm, outer R=16 nm, length
of the tube L=500 nm. For values of the modulus of elasticity of the shell E1,2,3 = 1.75 ∗ 1011
Pa, and relatively small value of the shear modulus G13 = G12 = G23 = 2.3 ∗ 107 Pa. Poisson
ratios ν12 = ν21 = ν32 = ν31 = ν23 = ν13 = 0.3.

The table 2 shows the values of deflection of the described tube, obtained by RTCH, TR
theory and theory of PS. Calculation of the functions of displacement was done with external
force Fv = 10 nN. The area of applied load is [40 ∗ 40] nm2. For comparison we present values
of deflections of a transversal-isotropic tube, which were received in code Ansys 11 where 3-
dimensional 20 knots element Solid 186 was used. Lines ”TR1”, ”Ansys1” correspond to tube
with a hole; lines ”TR2”, ”Ansys2” correspond to solid tube.

Lv 250 220 200 170 150 120 100 70 40
TR1 60.61 59.7 58.07 54.14 50.52 43.65 38.12 28.47 17.24
TR2 59.2 58.31 56.72 52.87 49.34 42.62 37.22 27.79 16.82

RTCH 57.79 56.86 55.21 51.22 47.56 40.62 35.07 25.45 14.4
PS 57.54 56.62 54.97 51 47.35 40.45 34.92 25.34 14.34

Ansys1 54.11 53.26 51.7 48.3 45.1 39.02 34.07 25.37 15.37
Ansys2 52.39 52.38 50.12 46.77 43.71 37.81 33.02 24.6 14.91

Table 2: Deflection of the many-layer nanotube.

Let us compare results obtained by the three-dimensional theory that is used in code Ansys
11 with results obtained by the aforementioned non-classical theories of shells for single-layer
cylindrical shell. We consider a shell with constant outer radius and gradually increase the
thickness of the shell (and consequently reduce a radius of the middle surface of the shell). The
following table lists the values of deflections at the center of considered shells.

Figures 2 present functions of the upper layer displacement of the shell when the load is
applied to the center of the tube.

Table 3 gives the values of the deflections of shells. Other values that characterize the stress-
strain state of shells are also similar. With increasing the relative thickness of the shell, values of
deflection obtained with the PS theory are closer to the values obtained with the finite element
method.
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h/R 1/15 1/10 1/5 1/4 1/3 1/2
TR1 46.33 31.91 17.55 14.71 11.88 9.13

RTCH 78.09 52.64 27.14 22.13 17.31 12.98
PS 75.28 49.82 24.29 19.26 14.39 9.9

Ansys1 76.36 46.44 20.37 15.9 11.95 8.92

Table 3: Deflection of a single-layer shell with constant outer radius
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Figure 2: Deformed tube
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