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Abstract— This paper investigates string stability issues in It has been shown that it is not possible to achieve string
homogeneous strings of strictly proper feedback control sstems  stability in a homogeneous string of strictly proper feed-
with unidirectional nearest neighbour communications, ugg back control systems with nearest neighbour communication

only linear systems with two integrators in the loop. We show h - v li t ith two int ¢ in th
under which conditions the inducedZL,-norm of the disturbance ~ WN€N USING only lineéar systems wi 0 Iintegrators in the

to error transfer function is bounded independently of the ¢ring ~ Open loop and constant inter-vehicle spacing, [3]. Thisltes
length and derive a formula for the infimal time headway to is independent of the particular linear controller desigh,

guarantee string stability. [10]. The problem was also studied using partial differanti
equations, [11], [12] from the perspective of the slowest
|. INTRODUCTION closed loop eigenvalue for problems with bidirectional -con

One control objective in the field of coordinated system&©l- However, string stability can be guaranteed with a
is formation control. In formation control a group of velisl SPeed dependent inter-vehicle spacing policy (also called
should follow a given group trajectory and in addition everylime headway policy’), [13]. Other research was done on
vehicle needs to maintain a prescribed distance to the stfétérogeneous strings, i.e. the particular controlleredep
rounding vehicles. Increasing commercial and privatesiehi On the position within the string, [8], [14] and on nonlinear
traffic motivates a growing interest in the one dimensionatPacing policies, [15]. o _ _
version of this problem which is often called ‘platooningi. e would like to present a precise discussion of string

this case we focus on a linear string of automobiles drivinﬁflabi”ty of a homogeneous system with two integrators in
in a column. e open loop of the subsystem and unidirectional nearest

In its simplest form platoon control requires a constanf€ighbour communication. First we will clarify the notatio

distance between the vehicles and the lead vehicle follo4S€d and derive the disturbance-to-error-transfer fondti

a given trajectory, e.g. [1]-[5]. To simplify communicatio Section Il. Thereafter we will show that string instability
requirements we consider the case where the automobiles §f&' Pé avoided using a time headway policy only if the
equipped with a local controller based on sensing the distantime headway IS ;ufﬁmgntly large. In particular, we dgm/e
to the preceding vehicle. We call the strihgmogeneou formula for the infimal time headway to guarantegstring

the dynamics of the vehicle and controller are independefit2?ility in Section lil. In Section IV string stability irhe L

of location in the string. sense will be proved using a sufficiently large time headway.
If every controller only uses the information of theExamples in Section V illustrate the results.

separation to its predecessor the system structure will be [I. PRELIMINARIES

triangular. Hence, studying the stability of the. system is \we wish to discuss the stability of a simple chain of
relatively easy. In other words, for a fixed string length,y yehicles where all but the first should keep a fixed
and appropriately designed local controllers, asymp@tit  gisiance s, to their predecessor. The first car follows a

input-output stability can be guaranteed. Unfortunatély, given trajectory. We will choose the same vehicle model with
some cases, _these forms of stability are not uniform witf},nster functionP(s) and the same linear controllét(s)
respect to string length, and as the string length grows, the&; eyery subsystem, i.e. every car. The open loop transfer
@sturbance response may grow without bound. This effegtction L(s) has exactly two poles at the origit(s) =
is referred to as 'string instability’. , N P(s)C(s) = % L(s) with L(0) # 0. The position of theith

In th(_a_past, dn_‘ferent definitions of string _stqb|l|ty haveyghicle x; depends on the disturbande and the actuator
been utilised. While most researchers work with input-atitp gjgnaj of theith controlleru;. The local control objective is

formulations, definitions involving the initial conditisrand {5 force the separation erref to zero. Measurement noise
state space formulations can also be found, [6]. Due to easjg neglected for simplicity.

handling working with the Euclidean norm, [7], [8], is often

preferred to the use of the maximum norm, [9]. z; = P(s) (ui +d;) 1)
u; = C(s)e; (2)
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7J Tdo ldi In vector form, we can write
Ti—1 €; U Ti
——o0—> Ch(s) P(s) 0 0
- I'(s) 0
e= . e
Q) 0 I'(s) 0
: . . o —Q(s) 0
Fig. 1: Block diagram of the linear system with time headway 1 —Q(s)
+ D(s)Cy " (s)d
with the vector of error signals(t) = (e ez - - eN)T and 0 1 —Q(s)
the disturbances(t) = (d; da - - dN)T. It is known that 1 o 1°°¢
the absolute value of the complementary sensitivity fuoncti —I'(s) 1
. _ L(s) . _

of a single subsysteni(s) = TTi(s) 1S greater than one

for a range of frequencies € (w_,w;), and that the
system therefore will be ‘string unstable’ for constant@pg
(xq = const), [3], [7]. P

We consider the following definition afo-string stability: 1 0

Definition 1 (Lo-String Stability): Consider a string ofV Q'(s) -1
dynamic systems with the local error sigraland the distur- : _ _ I'(s)C7(s)d (7)
banced;. The error signalg(¢) depend on the disturbances T .
d(t) in the following manner: 0 Q' (s) -1

e(t) = He,a(s) *d(t) (4) Q

wheree,d € RV, N € N and He q(s) : RN — RY. The with H, 4 = I~'QI'(s)C~!(s).
system (4) isL.-string stable if given any > 0 there exists ~ We wish to discus string stability according to Defi-

ad > 0 such that nition 1. That is, we requireL, bounded error signals
()i < 8 = [leO)|l, < e g]depender_\t of the string lengthv f_or any vector of L,
o _ ounded disturbances. Thus, the indudegnorm of the
whered is independent of the string lengfH. * operatorH, 4 must be bounded independently it

Since using a constant spacing policy the system is string The inducedL,-norm of a matrix operator(jw) is the

Unstable, a linear time headWﬁyS inCOprfated in the feed- supremum over frequency of its |argest Singu|ar Vafh-l"r%:x:
back path. In addition to a fixed vehicle separation, a vefoci

v; dependent distance is required between the vehicles;  ||A(jw)lli, = ess sup omax(A(jw)) = ess sup / Amax (A*A)
x4, + hv;. To simplify the following derivations and because weR weR (®)
we are interested in the disturbance to error behaviour we

shall setzq, = 0 below. The complementary sensitivity WhereA is the complex conjugate of and A* its Hermitian

function of the new subsystem (shown in Fig. 1)li&) =  adjoint with (4*), ; = (fl)ji.

PEICL) 1 _PICE) ith ¢ (s) = S) and
éj};)(s):qi;;)_?.(i)_ QNP o) [Il. I NDUCED NORM OFH, 4 FOR|[T'|| > 1

Since the output of thé — 1)th subsystem (position;_;) Lemma 1 (String instability fof[I’|| > 1): Suppose the

is the reference signal for théh system with the output;,  disturbance to error performance of an interconnecte@syst

we can write the transfer functioHy, x, ,(s) = I'(s). is described by (7), wher&(s) = ﬁjz(j()%s()) and
Consider a disturbance;(s) that enters theith sub- sy _ 51 1 and the controller’(s) internally stabilises

system between the controlleCh(s) and the plant yhe plantp(s). Suppose also that there exists a frequency

P(s). It affects the output of theith subsystem with wo such thatT'(jwo)| > 1, then there exists & > 0 such

_ -1 Jo)| -
Hyiai(s) = Gy ()L (). that || He.alli, = [T Q(s)C(5)]li, > [T (jeo) [N 0.
zi(s) = T(s)xi_1(s) + Ch_l(s)l"(s)di(s) O Zroof: The over all disturbance-to-error-transfer func-
tion He 4 is

The error signak; for 2 < i < N can be expressed as
ei(s) = zi—1(s) — Q(s)zi(s)
=TI'(s) (zi—2(s) — Q(s)zi-1(s))
+T(s)Cy " (5) (diz1(s) — Q(s)di(s)) rQ!-T) o1 ro-t
=I(s)ei-1(s) : :
+T(s)Cy H(5) (dim1(s) — Q(s)di(s))  (6) rN—2(Q—1 -1 pN—S(Q—l RO |

H.q=T7'Qrc-!



Note that Hence, choosingh = /2/|L(0)| guarantees that
IT| < 1 and|l'| = 1 only atw = 0. In fact, this
condition has a simple geometric interpretation. For

h = 1/2/|L(0)| the second derivative ¢F | atw = 0 is
weR ©J

N2 . zero,dd—;|1“(w)| = 0. Since|T'| is equal to 1 at the
2 ess igﬁ |F (@ -Drc | origin, it would ‘be greater than 1 for some frequency
— ess sup [TV (@ '=D)|c7Y () w’ > 0 if its second derivative at the origin would be
weR greater or equal to zero.
(b) The maximum in (12) is attained at at least ane# 0.
In that casel'| < 1 and|I'| = 1 only atw = 0 and
w = wp. Condition (12) becomes

[He,all;, = esssup [[Hea(jw)ll;,
weR

> ess sup max ’(Hc,d)ij

The last equality holds becauBg@ andC' are scalar transfer
functions. Under the assumption that there exists a nort zero
frequencyw, for which |T'(jwo)| > 1, [6], [9], the absolute

value of (Q~! —T') and C~! cannot be zero at, as we Lijwo) |2
now demonstrate. First, suppoé&!(jwg) = 0. So C(s) e ‘1+L(jwo) -1 14
has two poles at = +jwy. Since a marginally stable pole 0= wo (14)

zero cancellation would contradict internal stability biet

. IV. INDUCED NORM OFH, 4 FOR|'| <1
loop P(jwy) cannot be zero. Hence, ed T <

As we have seen that string stability cannot be achieved

T'(jwo) = 1 P(jwo)C(jwo) for a system with a time headway less thanwe will now
Q(jwo) 1+ P(jwo)C(jwo) choose a time headway &f> hy.
1 1 Lemma 2 (String stability foh > hg): Suppose the dis-
 Q(jwp) C-1iwe) turbance to error performance of an interconnected system
PGwo) T 1 : : P(s)C
1 is described by (7), wher&'(s) = Q@% and

= — (10) Q(s) = hs + 1. Suppose the time headway is strictly
Q(jwo) greater tham, as defined in (12) and the controlléf(s)
and thus|T'(jwo)| = |Q ! (jwo)| < 1 which contradicts the internally stabilises the planP(s). Then there exists &
first assumption thall"(jwo)| > 1. Also, the magnitude of such thatj|He 4s, = [|[T*QT'(s)C ™ (s)|}i, < 70.
Q' (jwo) — T'(jwo) cannot be zero becaus®—'| < 1 for Proof: Using the structure of' and Q we can write
all frequencies greater than zero afigjwg)| > 1. H,q4 as
Therefore the induced-norm of H, 4 will grow expo- H.,=['0rc-!
nentially with the string lengthV and the system will be ed =

string unstable withy = |C 1 (jwo)||Q ! (jwo) — I'(jwo)|. 0 0
10
u I N 1

Thus, one necessary condition for string stability is that o I+T (Q F) re= (19

IT(jw)| <1 for all w. Note that 0 10
. 1 L(jw) 2 Using the triangle inequality we can bound the induded

2 _
PG = 15 oee 1+L(jw)‘ s D hom of A, 4 as

Hence the infimal time headway essential to permit string H~,1 1 H 1
. . . . edll: < — i .
stability (since otherwis@T||;, > 1) is hg [Heally, < {1+ ]|T (@ r) i [T, |C |12
(16)

Since the norms of andC~! do not depend on the string

L(jw) _ -
ho = ‘1+L(jw) (12) length, the norm of’~! (@~ —T') can be used to bound
. w w? ||He,d||i2-

Since the maximum in (12) can be attainedwat= 0 or at HF_I(Q_l —T)|| =esssup ((Umin (f)) 1|Q_1 - F|)

at least onevy # 0, we will distinguish between two cases: N welk (17)

(&) The maximum in (12) is attained ab = 0 Using the Gersgorin-Theorem (see e.g. [16]), we can esti-
only. Using L'Hopital's Rule and the fact that mate the minimal Eigenvalue of a matrix.
L(0) = L(0) = ‘E(O)‘ condition (12) becomes

n

Amin(4) > max Inzln Qi — Z lai;] |,
=1,

L(jw) _

2
’ )" _
Bl —V2/lo)] @) | "
min | aj; — > lagl (18)

1SinceI’(0) = 1, wo # 0. i=1,i#j

h,o = lim
w—0



For I'*T we obtain

Ain(T*T) = min{1+ T2 = 7], 1+ |0 = 2|T),1 - [T}
=1+0)* - 2T = (1 - 1)) (19)
Thus, the induced,-norm of [~ (Q ' —T') can be bounded

as
- o1
rQ:tt-r < ess sup L
H ) iz wER 1 - |].—‘|
1)_1
= ess sup _JE%__UIEZI__
L
wer 1— |Q 7|
1
=esssup —————  (20)
wer |Q[|1+ L| — [L|
and from (16)
1
Heqll,, < (1+esssup —)
Heall, Ao
~ess sup |Tless sup |C7'| (21)
weR weR

We have proven string stability fok > hg, and string
instability for h < hg. It remains therefore to consider the
case wheréw = hg. We will show that the induced,-norm
of He 4 will grow at least as fast as the square root of the
string length/V.

First, we will analyse case (b) whefg, is chosen ac-
cording to (14) andI'(jwg)| = 1. Since the first element of

H? Heq is
) )2 |jc?

(24)
(jwo) — D(jwo)| # 0, andC ! (jiwo) # 0 the norm of
(He aHe, d) will grow with the string lengthN. Hence
the largest E|genvalue af; 4H..a and therefore the square
of the inducedLs-norm of H, 4 will grow with the string
length NV.
The proof for case (a) is given in the appendix.

N—-2

(HaHo), = (1 Y et -1
1=0

Q™!

V. EXAMPLES

since|T'| and|C~!| are bounded independently of the string

length N. However, we need to have a closer look at (21)

for w = 0, where|I’(0)| = 1.
li !
m-———-=
w=0|Q[1+ L] -

L]
1
= lm, 2
\/h2w2+1\/1—w—12 (£+E) + 4 ‘L} -4 i}
2
= lm, - 2
VIt - (L 1)+ [1] - |1
(22)
Using L'Hbpital's Rule, (22) becomes
li L
m-—————7
w=0[Q[|1 + L| — [L|
~ = ~ 2
= 1 - 2
Jirm, <2w\/ o (L+1) +[2]
h2w? +1
| 202 — (E+i) — w24 (i+i) +2‘E‘ 4 E‘
2 - = -2
w? — w? (L+L) +‘L‘
d B —1
_ 2 L‘
dw? ‘ )
1
- = L(0)+L(0) (23)
1p2 _ 1L0)+50)
2h ‘L(O)} 2 |£(0)|

At zero frequencyl.(0) = = |L(0
greater thanh, and therefore greater thaQ/Q/\E ),

lim, o (|Q||1+ Z| - |Z|) " is bounded. Hence|He.all;

)|. Sincen is strictly

1072 10° 10t

1071
Frequencyw
(@) 4/ |T(jw)|2 - 1/w for different transfer functions

102 ‘ 7

102 L

IHeall,,

101 L

100 i i
1.2 1.3 1.4 1.5 . 1.7
Time headwayh

(b) InducedL2-norm of H, 4 for different time headways h

Example 1 (Infimal Time Headway): In order to find
the infimal time headwayhy, the maximum over all fre-

is bounded independently 8f and the system is string stable dUencies Of(|T(JW)| - 1) /w® must be evaluated. For

according to Definition 1. [ ]

s+1

e the maximum is achieved at = 0 and

Ti(s) =



ho = /2 is chosen according to (13). Fdi(s) = 52?:‘;;11 We want to find ana such that|T|* > 1+(1w4 for small
it is achieved atv = wy ~ 0.5. Thus,hg ~ 1.47 is chosen frequenciedw| < wy. Hence,o must satisfy
according to (14). In Fig. 2a both cases are illustrated.

Example 2 (Induced.o-Norm of H, 4): Fig. 2b shows

||He,al|;, for different time headwayk and string lengthsy. a> sup Sw? 1 5 ~2 L +2L

For time headways less thag (dashed line) the inducelt, - lw|<wo ‘i(o)‘ ‘i‘ ‘]j‘ ‘L(O)‘ ‘j‘
norm of H, 4 grows exponentially with the string lengih. _oL

However, if the time headway is sufficiently large > ho, —ﬁ |£(20)|

||He,all;, converges as the string length increases. + 2 (26)

VI. CONCLUSIONS ANDFUTURE DIRECTIONS

In this paper we have discussed string stability for a hoEor_ all f|x.ed_ frequencied < |w.| < wo, there exists a
mogeneous string of strictly proper feedback control syiste which satisfies (26). However, it also must be bounded for
with nearest neighbour communications when using onfy —
linear systems with two integrators in the open loop. We have

shown how the induced-norm of the disturbance to error . 2 9 1 2 L+1L
transfer functionH, 4 grows as the string length increases @z ilnlo ~ Wt (0 ~|2

if no or a small time headway is used. A formula for the ‘L(O)‘ ‘L‘ ‘L‘ ‘ ( )‘ ‘L‘
infimal time headway has been derived. We proved that using _ I+l 2

a sufficiently large time headway bounds the induded n EEREO] 27)
norm of H, 4 independently of the string length. w?

As for future directions, it would be interesting to extend
the results presented to more general cases. That co
be analyzing heterogeneous systems, bidirectional déartro
designs, or using thé&,-norm.

"H(q evaluate the last term in (27), we make use of the
following facts:

APPENDIX L(w) =a(w) + b(w); (28)
. . a(w) =ag + asw? + agw* + ... (29)
We will prove that an interconnected system where the b(w) =byw + baw® + bsw® + . . (30)

maximum of (12) is achieved at = 0 is string unstable
if the time headway is equalhg in (13). More precisely,

. . and L'Hopital’s Rule:
we will show that there exists @ > 0 and ac such that P

| Hoall?, = (N + ). Ll
We assume that there exista < (0,1], a lyin and lim || " L)
a lmax Such thatd < I, < ’f)(jw)’ < lmax for all w—0 w?
~ = ~12
w € [0,wo). Then there exist and3 such thatl'|” > Trest —(L+ L) + ﬁ ’L
and |Q~! —F|2 > MT; are satisfied for all frequencies = lm 2
|w| < wp. Later, these inequalities will be used to prove string ‘L‘ w?
instability. 4 (5 = s a (1512
First, we will analysel'|? for this special case. T (L + L) OIS <’L )
= lim
s w=0 d 212 o 7|2
, 1 L ‘ o ‘ ‘ w? 42 ‘L w
T =
h2w? +1 1 = = 1 |7 2 ~ = -2
1= (L+ L)+ &I _d—;(L+L)+|E§O)|dTi(‘L‘)
_ 2 = lim
L’ s ~ 2 _ 2 ~ 2
. | o () o+ (Ji) w2
= ~2 w2 + 1 4 5 - = 12 w w
|L0)] wh—w (L + L) + ‘L‘ —das + 12 (4agaz + 23) -
.= = 2
- 2 g, et 2 B+, 2
- - -2 -2 = 12 L oo :
L(O)‘ ‘L‘ ‘L‘ ’L(O)‘ ‘L‘ SinceL(0) = ag # 0, the limit in (31) exists. Therefore (27)
1 is bounded, and there exists anthat satisfies (26) for all
= 3 frequenciegw| < wy and
L+ L 2
:’—2 w4 ——w?+1 (25) )
i o) P> —— Vil <wo 32)

14 awt



We will now show that there exists & satisfying
Q-1 > <.

2 1 wt
T 12,2 - = 12
h*w +1w4—w2(L+L)+‘L‘

]Q‘l —F‘ (33)

For small frequenciebv| < wy, there exists &’ such that

PP+ 1<h*+1=0  Vw| <wy (34)
Furthermore, there exists @’ satisfying
~ = ~ 2
Wt — W2 (L n L) + M <8 Vel <w (35)
such that
.= 2
8" =1+ sup (‘L+L’+’L‘ > (36)
|w|<wo
Hence,
_ 2wt w?
Q' -T|" > G5 = Wl<w @D

Using the special structure afl, 4, we can bound its
inducedLy-norm as follows:

|Heall2, + |TCY2 > | Hea + INTCT2
i i

sup |(Hea+ INTO) o],
v||=1

|(Hea + INDC) |} (38)

Y

with a vectorv’ of length1
1 N-1 \T
/I r
V== (1 —”FHM)

Using |T'| < 1 Vw, (32), (37) and (39), inequality (38)
becomes

T r
(SRR

(39)

| Heal2, +|[TC2

-1 _ T 2 T 2 —1|2
> ess sup 1Q FIrEle™ (1+(1+|F|)2+._.
weR N
2
oA (L I D2 Y 2))
C—l 2 4
> ess sup ICEE (I0pY 4 (0 o)
IUJ|<UJO N /8
o (PP TP DY T
|Cfl|2 w4 oN
> ess sup —T
|w|<wo N B

: (12+22+---(N—1)2)
oss s |Cfl|2 w4 1
S sup i
|w|<wo N ﬁ (1 + aw4)N
(N — 1)N(2N — 1)
6

Y

(40)

For any string lengthV, the maximum over all frequencies

in (40) must be greater or equal to that obtained by choosing

w= N4
| Heall?, +|ITC7
c12 -N (N —-1)N(2N —1
G () "

for sufficiently large stringsN > w0_4.
Since (1 + %)_N > e~ @, (41) can be bounded by
—1112
1He.ally, + [TC
—1|2 _ —
LG a (N - NN - 1)

Z 763 6 (42)
—1|2
> |O3ﬁ| e 2 (N —2) VN >1 (43)

Thus, the induced.z-norm of H, 4 grows at least as far as
the square root of the string lengft and the system is not
string stable according to Definition 1.
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