
An Alternative Proof of the Rate-Distortion
Function of Poisson Processes with a Queueing

Distortion Measure

Todd P. Coleman∗, Negar Kiyavash†, and Vijay G. Subramanian‡
∗ ECE Dept & Coordinated Science Laboratory, UIUC. colemant@uiuc.edu† CS Dept & Information Trust Institute, UIUC. kiyavash@uiuc.edu‡Hamilton Institute, NUIM. vijay.subramanian@nuim.ie

Abstract

This paper presents a proof of the rate distortion function of a Poisson process with
a queuing distortion measure that is in complete analogy with the proofs associated with
the rate distortion functions of a Bernoulli source with Hamming distortion measure and
a Gaussian source with squared-error distortion measure. Analogous to those problems, the
distortion measure that we consider is related to the logarithm of the conditional distribution
relating the input to the output of a well-known channel coding problem, specifically the
Anantharam and Verdu “Bits through Queues” [1] coding problem. Our proof of the converse
utilizes McFadden’s point process entropy formulation [2] and involves a number of mutual
information inequalities, one of which exploits the maximum-entropy achieving property of
the Poisson process. Our test channel uses Burke’s theorem [3], [4] to prove achievability.

I. INTRODUCTION

In their landmark “Bits through Queues” paper Anantharam & Verdu [1] concretely
illustrated the advantages of coding through the timing of packets in packet systems.
For a memoryless arrival process of rate λ, the First-Come First-Serve (FCFS) ·/M/1
continuous-time queue with service rate µ > λ > 0 has a capacity C(λ) given by

C(λ) = λ log
µ

λ
, λ < µ nats/s. (1)

Then the capacity of the FCFS ·/M/1 continuous-time queue with service rate µ is
given by the maximum of C(λ) over all possible arrival rates λ < µ, namely,

C = e−1µ nats/s, (2)

where the maximum corresponding to (2) is achieved in (1) at λ = e−1µ.
The remarkable aspect of the “Bits through Queues” result [1] is that despite a

queueing system having non-linearities, memory, and non-stationarities, there still exists
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a closed-form solution for the FCFS ·/M/1 queue. This fact, along with the fact that
an exponential service timing channel (ESTC) can be seen as an “entropy-increasing
operator” [5, Sec. 2],[6, Thm 1] and also the saddle-point property of mutual information
for the ESTC [1, Thm 3], makes the ESTC appear to be analogous to the binary
symmetric channel (BSC) and additive white Gaussian noise (AWGN) channels.

The latter two channels have canonical rate-distortion problems associated with them,
where the distortion measure is related to the logarithm of the conditional distribution
relating the input to the output of the channels. A thorough discussion of this and the
applicability of this to optimality of uncoded transmissions can be found in [7]. In
these two cases (AWGN and BSC), simple mutual information inequalities exploiting
maximum-entropy distributions and entropy manipulations lead to a closed-form lower
bound - which can be shown to be tight by developing elegant “test-channel” achiev-
ability arguments [8, Sec. 10.3].

Given the entropy-maximizing property of the exponential distribution and the pre-
eminence of the Poisson process in point-process theory [9] rate distortion functions
under various distortion measures have been sought in the literature [10], [11], [12],
[13], [14], [15]. A large class of distortion measures, including those that consider
a magnitude error criterion and the reproduction of the number of events in a given
interval and the times between successive events, lead to non-causal reproductions [10],
[11], [12]. Gallager [13] considered transmission of point processes through a causal
system such that the output point process always follows the input but the order of
messages need not be preserved. Considering the output of such a system to be a
reproduction of the input point process and using average delay per message as the
distortion measure, Gallager [13] derived a minimum information rate for the Poisson
process for a given fidelity of reproduction that included both the timing information
and the message ordering. Bedekar [15] refined Gallager’s approach by insisting upon
in-order delivery of the messages through the system and defining the distortion measure
to be the average service-time D of a hypothetical FCFS queue that would result in the
output. For a Poisson message arrival stream with rate λ Bedekar [15] showed that the
rate-distortion function R(D) is given as follows:

R(D) =

{
− log(λD) bits/message if 0 < λD ≤ 1;

0 otherwise.
(3)

Related work pertaining to minimizing mutual information across special classes of
causal systems is the jamming work of Giles and Hajek [16].

Verdu [14] considered a different approach where the message inter-arrival times were
reproduced to a fidelity of D seconds under the constraint that the last arrival is declared
no sooner than it occurs. The rate distortion function R(D) that results in [14] for a



Poisson process of rate λ is given by

R(D) =

{
−λ log(λD) bits/second if 0 < λD ≤ 1;

0 otherwise,
(4)

where the optimal reproduction is by a counting process with inter-arrival times given
by X̂ = max(0, X −W ) + D where X ∼ exp(λ) is the random-variable corresponding
to the inter-arrival time of the Poisson process and W is a random-variable independent
of X such that the marginal distributions are exp(1/D). The sequence of W random-
variables are chosen such that the constraint on the last arrival time mentioned earlier
is respected.

Wagner and Anantharam [17] embarked upon understanding the similarities between
the BSC, AWGN, and ETSC channels by developing a distance metric for the ·/M/1
queuing system that is analogous to Hamming/Euclidean distances for BSC/AWGN
channels; in that, it is related to the logarithm of the channel’s conditional density.
Using this distance metric they were able to characterize the zero-rate reliability of
the ESTC. This led the authors to conjecture that an analogous rate-distortion problem
with an appropriate distortion measure should lead to an elegant set of mutual informa-
tion inequalities, a closed-form lower bound, and an elegant “test-channel” to illustrate
achievability. We accomplish that in what follows using the distance metric developed
in [17] per unit time to be the distortion measure.

This paper is organized as follows. In Section II we state a few preliminaries that are
helpful in proving our result. The specific distortion measure and identification of the
rate-distortion function is then presented in Section III. We then present in Section IV
a detailed comparison with existing results in the literature, and finally conclude in
Section V.

II. PRELIMINARIES

The entropy on [0, T ] of a point process P with arrival times {P1, P2, . . .} is defined
[2] as the sum of its numerical entropy and its positional entropy:

hT (P) := H(M) + EM [h(P1, . . . , Pm|M = m)],

where M is a random variable denoting the number of arrivals in [0, T ], H(·) is discrete
entropy, h(·) is differential entropy, and given M = m, {P1, . . . , Pm} are the locations (in
time) of the arrivals. Also define the counting function NP(T ) at time T ≥ 0 associated
with point process P as follows

NP(T ) := sup{n ∈ N : Pn ≤ T}.
We will restrict our attention to non-explosive point processes whereby NP(T ) is finite
(a.s.) for all 0 ≤ T < +∞.



Analogously, we can define the joint entropy on [0, T ] of two point processes Pa and
Pb by

hT (Pa,Pb) := H(Ma,Mb)+EMa,Mb
[h(P a

1 , . . . , P a
ma

, P b
1 , . . . , P b

mb
|Ma = ma,Mb = mb)],

where Ma and Mb are the random variables denoting the number of arrivals of processes
Pa and Pb respectively, and {P a

1 , . . . , P a
ma
} and {P b

1 , . . . , P b
mb
} are the locations (in time)

of the arrivals of processes Pa and Pb given Ma = ma and Mb = mb. From this we
can define the conditional point process entropy simply as

hT (Pa|Pb) := hT (Pa,Pb)− hT (P).

It is well known that for all continuous-time point processes [9] P with rate at most
λ > 0 (i.e, E[NP(T )] ≤ λT for all T ∈ [0, +∞)), a Poisson process of rate λ maximizes
the entropy [2]. The entropy rate of a Poisson process of rate λ over (0, T ] is given by

hT (P) = Tλ(1− log λ).

III. THE CANONICAL RATE-DISTORTION FUNCTION IN ANALOGY WITH “BITS
THROUGH QUEUES”

We now consider the canonical rate-distortion function for any two point processes.
Over [0, T ], consider two point processes X and X̂ . Denote the arrival times of X by
{Xi} and the arrival times of X̂ by {X̂i}. We remind the reader that the associated
counting functions of X and X̂ are NX(t) and NX̂(t), respectively. For any two point
processes X and X̂ such that NX(T ) = NX̂(T ), and NX̂(t) ≥ NX(t), ∀t ∈ [0, T ] define

S = X ¦ X̂
as the point process with inter-arrival times {Si} given by the induced service times of
a FCFS queueing system with X̂ as the input and X as the output as shown in Figure 1.
Note the abuse of notation in that for the process S , the {Si}s are the inter-arrival times.
Specifically, Si = Xi−max(Xi−1, X̂i); see Figure 2 for the validity of this relationship.
Note that the counting function for S , NS(t) is uniquely defined on [0,

∑NX(T )
i=1 Si].

X̂ FCFS queue X

Fig. 1. The Diagram of interpreting X as the output of a FCFS queueing system with X̂ as the input. The point
process S is defined by treating inter-arrival time Si as the ith service time.
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Fig. 2. The arrivals (blue) and departures (red) from a FCFS ·/M/1 Queue. Note that the service time s1 for the
first packet is given by x1 − x̂1 = 6. Note that the first packet does not depart from the queue until after the second
packet arrives. Thus the service time s2 for the second packet is given by s2 = x2 − x1, because the server starts
working on the second packet once the first packet departs. The second packet departs before the third arrival x̂3.
Thus the third service time is simply s3 = x3 − x̂3. So in general, it follows that si = xi −max(x̂i, xi−1).

With this definition, we can now define the distortion between any two realizations x
and x̂ of point processes X and X̂ . Define

dT (x, x̂) =

{
1
T

∑
i=1 si if NX(T ) = NX̂(T ) and NX̂(t) ≥ NX(t), ∀t ∈ [0, T ]
∞ otherwise (5)

where si = xi −max(xi−1, x̂i) defines a realization s of S.
For the rate-distortion problem we consider X̂ to be a reproduction of X with average

distortion measure lim supT→+∞ E[dT (X , X̂ )]. We now state the rate-distortion theorem,
show the converse, and prove achievability.

Theorem 3.1: The rate-distortion function for the source a Poisson process with rate
λ with distortion measure (5) is given by

R(D) =

{
−λ log(D) bits/second D ∈ (0, 1);

0 D ≥ 1.
The proof is presented in two parts: the converse in Section III-A and achievability in
Section III-B. The converse consists of lower bounding the mutual information between
the input and output by the service-time process. Thereafter, the entropy maximizing
property of the Poisson process is used to derive the expression for R(D). Then the
achievability result follows quite easily considering an M/M/1 queue in steady-state and
invoking Burke’s theorem [3], [4] to show that every step in the proof of the converse
is satisfied with equality in this setting.

A. Converse
Fix a distortion value D ∈ (0, 1). Consider any joint distribution on X and X̂ satisfying

the distortion constraint, where X is a Poisson process of rate λ on [0, T ]. Note that
because the finite distortion constraint is met, with probability one, NX(T ) = NX̂(T ).
Define

µ , λ

D
. (6)



Note given 0 < λ < µ < ∞, for any valid X and X̂ defined on [0, T ] we have

IT (X ; X̂ ) = hT (X )− hT (X|X̂ )

= λT (1− log λ)− hT (X|X̂ ) (7)

= λT (1− log λ)− hT (X ¦ X̂ |X̂ ) (8)

≥ λT (1− log λ)− hT (X ¦ X̂ ) = λT (1− log λ)− hT (S)

≥ λT (1− log λ)− µ

(
λT

µ

)
(1− log µ) (9)

= λT log
(µ

λ

)
= −λT log(D)

⇒ 1

T
IT (X ; X̂ ) ≥ −λ log(D)

where (7) follows because X is a Poisson process with rate λ, (8) follows by referring
to Appendix I, and (9) follows because of the argument below.

Note the following properties for S , namely,
1) S = X ¦ X̂ is a point process with an average of λT spikes; and
2) 1

T
E [

∑
i Si] ≤ D = λ

µ
, and thus E [

∑
i Si] ≤ λT

µ
.

Thus hT (S) is upper-bounded by the entropy of the maximum-entropy point process
among all point processes of duration λT

µ
and rate at most µ, which is a Poisson process

on [0, λT
µ

] of rate µ.

B. Achievability
Generate codewords X̂ according to a Poisson process with rate (λ) on [0, T ]. For any

X̂ , consider the output of an ESTC with rate µ > λ in steady-state with input process X̂ ,
and denote the output process as X . Note that by Burke’s theorem [3], [4] the departure
process X is also a Poisson process with rate λ and thus, by defining D = λ

µ
, we have

that

lim
T→∞

1

T
IT (X ; X̂ ) = lim

T→∞
1

T
[hT (X )− hT (X|X̂ )]

= lim
T→∞

1

T
[λT (1− log λ)− hT (X ¦ X̂ |X̂ )]

= λ(1− log λ)− lim
T→∞

1

T
hT (S|X̂ )

= λ(1− log λ)− lim
T→∞

1

T
hT (S)

= λ(1− log λ)− lim
T→∞

1

T
µ

(
λT

µ

)
(1− log µ)

= λ(1− log λ)− λ(1− log µ) = λ log
(µ

λ

)
= −λ log D.



Note that this immediately suggests the following coding scheme. For a chosen D ∈
(0, 1) and T ∈ (0, +∞), given a realization x of Poisson process X with rate λ, generate
2TR(D) independent realizations of a rate λ Poisson process X̂ denoting the ith realization
by x̂(i) for i = 1, 2, . . . , 2TR(D). Now choose x̂(i∗) as the reproduction of x where
i∗ ∈ arg mini=1,2,...,2TR(D) dT (x, x̂(i)).

IV. DISCUSSION

The rate distortion function that we have arrived at is exactly the same as in Be-
dekar [15]. In fact the distortion measures are related and the achievability of the min-
imum rate using Poisson code-words passed through an M/M/1 queue in steady-state
is also similar. However, a key distinction is that while our code-words are constructed
such that X̂ leads X , i.e., X̂i ≤ Xi for every i, the code-words in [15] are such that the
reproductions always follow X . Thus, as an analogy, if one were to construct code-words
following the approach outlined in Wyner [18], [19], i.e., sample every D seconds and
count the number of arrivals in [nD, (n + 1)D] for n ∈ N ∪ {0}, then our code-words
would assign all the arrivals in [nD, (n + 1)D] to nD while the code-words of [15]
would assign all of them to (n + 1)D.

Interpreted appropriately, the rate-distortion function for the problem considered [14]
is equivalent in structure to the one we developed, however [14] focusses more on
constructing the code-words by approximating the inter-arrival times and relies on the
extremal properties of the exponential distribution rather than on queueing. Note that
all the code-words in [14] are such that the arrival points (except for the last arrival) of
the reproductions can either lead or follow the arrival points of X . There are also other
subtle differences in the constraints and distortion measures in our approach vis-a-vis
[14], namely,

1) Distortion measure: [14] uses the following distortion measure for the reproductions
given the source realization

x̂i − x̂i−11{i>1} ≤ xi − xi−11{i>1} + D, ∀ i ∈ {1, . . . , m},
where D is a length of time while we consider 1

T
E[

∑m
i=1 Si] ≤ D where D is a

dimension-less number;
2) Timing constraint: [14] imposes the constraints that the reproductions produce

the same number of arrivals as the source realization with the last arrival of the
reproduction being after the last arrival of the source realization, i.e.,

Nx(T ) = Nx̂(T ) and xNx(T ) ≤ x̂Nx̂(T ),

whereas we insist that the reproductions lead the original while producing the same
number of arrivals, i.e.,

∀ t ∈ [0, T ] Nx(t) ≤ Nx̂(t) and Nx(T ) = Nx̂(T );



3) Nature of Reproductions: A final but important distinction is that our reproductions
are always Poisson processes whereas those in [14] are not even renewal processes,
although they are, in a sense, close to being renewal processes.

V. CONCLUSIONS

In conclusion we would like to emphasize that our main motivation for this work
was to develop a mutual information lower-bounding technique using maximum-entropy
arguments, and show achievability with an appropriate test-channel - to be in complete
analogy to the methodology developed for the AWGN and BSC rate-distortion problems.
Also note that the exact same line of analysis follows for the discrete-time queueing case
[20], [6]. We plan to consider extensions to networks in the future.
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APPENDIX I
PROOF OF (8)

First note that S = X ¦X̂ is uniquely defined given X and X̂ . Also, from the queueing
interpretation, it is clear that given X̂ , S uniquely defines S. However, the point process
entropy contains both a discrete numerical entropy component as well as a positional
entropy, where the latter relies upon a differential entropy term - so just illustrating this
bijection does not suffice. We now focus on the differential entropy term pertaining to
the positional entropy and show there is no amplitude scaling. To do this, we consider
conditioning upon X̂ = x̂ and investigate the Jacobian of the mapping between X and S .
Since NX(T ) = NX̂(T ) with probability one, it follows that conditioned upon X̂ = x̂,
we know exactly how many arrival times there are for X up until time T , i.e., Nx(T );
to be concise, we define m , Nx(T ). Now it suffices to show that

h(X1, . . . , Xm|NX̂(T ) = m, X̂1 = x̂1, . . . , X̂m = x̂m)

= h(S1, . . . , Sm|NX̂(T ) = m, X̂1 = x̂1, . . . , X̂m = x̂m).

But note that the service process {Si}, given {X̂i}, is related to the departure process
{Xi} by the simple (recursive) relationship [4], [21]

Si = Xi −max(Xi−1, x̂i).

Also see Figure 2. Considering specific realizations note that the mapping from (x1, . . . , xm)
to (s1, . . . , sm) is differentiable except on a set A ∈ <m

+ with Lebesgue measure zero
(pertaining to the points of discontinuity of the functions max(xi, si)). We can consider
the Jacobian at any point (x1, . . . , xm) not in A, and note that

|J(x1, . . . , xm)| =

∣∣∣∣∣∣∣∣∣

∂s1

∂x1

∂s1

∂x2
. . . ∂s1

∂xm
∂s2

∂x1

∂s2

∂x2
. . . ∂s2

∂xm
...

...
...

...
∂sm

∂x1

∂sm

∂x2
. . . ∂sm

∂xm

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

1 0 . . . 0 0
−1±1

2
1 . . . 0

...
...

...
...

...
0 0 . . . −1±1

2
1

∣∣∣∣∣∣∣∣
= 1.

The −1±1
2

simply denotes that if xi−1 > x̂i, then max(xi−1, x̂i) = xi−1 and thus the
corresponding Jacobian entry in the (i, i−1) point of the matrix is equal to −1; otherwise,
if xi−1 < x̂i then max(xi−1, x̂i) = x̂i, and thus the corresponding Jacobian entry in the



(i, i − 1) point of the matrix is equal to 0. No matter what the specific values in the
(i, i− 1) locations of the Jacobian are, note that the determinant is always 1.

Thus it follows that

h(X1, . . . , Xm|NX̂(T ) = m, X̂1 = x̂1, . . . , X̂m = x̂m)

= h(S1, . . . , Sm|NX̂(T ) = m, X̂1 = x̂1, . . . , X̂m = x̂m).

Consequently,

EM [h(X1, . . . , Xm|NX̂(T ) = M, X̂1 = x̂1, . . . , X̂M = x̂M)]

= EM [h(S1, . . . , Sm|NX̂(T ) = M, X̂1 = x̂1, . . . , X̂M = x̂M)].

Thus (8) is proved.


