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a b s t r a c t 

Chaos-based stream ciphers form a prospective class of data encryption techniques. Usually, in chaos- 

based encryption schemes, the pseudo-random generators based on chaotic maps are used as a source of 

randomness. Despite the variety of proposed algorithms, nearly all of them possess many shortcomings. 

While sequences generated from single-parameter chaotic maps can be easily compromised using the 

phase space reconstruction method, the employment of multi-parametric maps requires a thorough anal- 

ysis of the parameter space to establish the areas of chaotic behavior. This complicates the determination 

of the possible keys for the encryption scheme. Another problem is the degradation of chaotic dynam- 

ics in the implementation of the digital chaos generator with finite precision. To avoid the appearance 

of quasi-chaotic regimes, additional perturbations are usually introduced into the chaotic maps, making 

the generation scheme more complex and influencing the oscillations regime. In this study, we propose 

a novel technique utilizing the chaotic maps with adaptive symmetry to create chaos-based encryption 

schemes with larger parameter space. We compare pseudo-random generators based on the traditional 

Zaslavsky map and the new adaptive Zaslavsky web map through multi-parametric bifurcation analysis 

and investigate the parameter spaces of the maps. We explicitly show that pseudo-random sequences 

generated by the adaptive Zaslavsky map are random, have a weak correlation and possess a larger pa- 

rameter space. We also present the technique of increasing the period of the chaotic sequence based 

on the variability of the symmetry coefficient. The speed analysis shows that the proposed encryption 

algorithm possesses a high encryption speed, being compatible with the best solutions in a field. The 

obtained results can improve the chaos-based cryptography and inspire further studies of chaotic maps 

as well as the synthesis of novel discrete models with desirable statistical properties. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

It is known, that there is a close relationship between the

roperties of deterministic chaos and the requirements imposed

n cryptographic systems [1] . According to the concept pro-

osed by Shannon, any cryptographic system should implement

he confusion and diffusion processes [2] . In chaotic systems,

hose processes match with ergodicity, a mixing property and

igh sensitivity to the small variations of initial conditions or

ontrol parameters. Therefore, the chaos phenomenon can be a

rospective pseudo-random source in data encryption schemes. 
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Like their classical counterparts, chaos-based cryptographic sys-

ems can be classified into two groups: stream ciphers and block

iphers. Since stream encryption schemes usually have a higher

ncryption speed they can be effectively used in real-time ap-

lications. The common way to construct a stream cipher is the

eneration of a pseudo-random sequence to mask a plaintext [3] .

any encryption schemes that use chaos-based pseudo-random

umber generators (PRNG) have been recently proposed [3–23] .

espite the variety of described algorithms, many of them pos-

ess several common shortcomings. First, some of the described

chemes employ one-dimensional chaotic maps [3,8,9] and there-

ore are vulnerable to attacks based on the phase space recon-

truction method [11,13] . In addition, the set of keys is essentially

imited for one-dimensional chaotic maps with a single parameter,

ince usually the initial conditions and nonlinearity parameter are

he only available encryption keys [5] . For instance, schemes based
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Fig. 1. Geometric interpretation of the adaptive symmetry technique. 
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on the logistic map allow obtaining pseudo-random sequences for

a parameter with values in the interval [3.57; 4]. However, when

applying maps with a higher number of parameters, it becomes

necessary to determine the parameter boundaries where the re-

sulting sequence is still chaotic. When several parameters are used

simultaneously as a part of the key, the mutual interdependence

complicates the choice of regions in the key space and should be

avoided [24] . 

Another issue of chaos-based PRNG arises in the implementa-

tion of chaos generators with finite precision. Many researchers

have studied the influence of a data type to the period length

of chaotic sequences [5,10,25–28] . Data type limitations impover-

ish chaotic dynamics and cause the appearance of short-period

orbits. Hence, the security of the final cryptographic system can

be significantly reduced [24] . To solve the aforementioned prob-

lem several techniques were proposed [29–32] . The obvious way

is to implement generators with higher precision [29] , but this

can significantly slow down the computations. Another solution

is the implementation of chaotic cascades [32] , which complicates

the generation algorithm and increases the overhead costs. One of

the prospective ideas is to use the perturbation-based algorithms

[30,31] , using the nonlinearity parameter as a subject for the per-

turbation. Thus, it is necessary to check the type of oscillations of

nonlinear system (periodic or chaotic) while the nonlinear param-

eter changes. 

In this paper we propose a new approach to the pseudo-

random generation based on the novel concept of chaotic maps

with adaptive symmetry. Since the adaptive coefficient practically

does not affect the nature of the system this opens up great op-

portunities for improving known chaos-based PRNG. The adaptive

coefficient is not a bifurcation parameter, so it can be assumed that

additional multi-parametric analysis will not be required. More-

over, symmetry coefficient can be changed to contribute comple-

mentary perturbations, thereby increasing the period length of

chaotic sequences. 

The rest of the paper is organized as follows. In Section 2 we

propose the method for constructing chaotic maps with variable

symmetry and introduce the adaptive Zaslavsky web map as an ex-

ample. Section 3 shows the application of chaotic maps with adap-

tive symmetry to the stream ciphers and presents the results of

multi-parametric bifurcation and correlation analysis of sequences

generated by the PRNG based on the Zaslavsky web map. Finally,

some conclusions and discussion are given in Section 4 . 

2. Adaptive chaotic maps 

In previous paper [33] we considered the symmetric versions

of the well-known Chirikov and Henon maps. These maps were

generated through the application of geometric integration tech-

niques to the continuous dynamical systems. The conventional

way to integrate the Hamiltonian system is to apply the single-

step single-stage Euler-Cromer integration operator, which results

in symplectic, but not symmetric integration scheme. Applying
 composition of two adjoint Euler-Cromer methods, we can use

he additional integration point at the time t n + 0 . 5 h, where h is

he discretization step. In the proposed adaptive maps one can

hange this additional integration point by varying the symmetry

oefficient S ( Fig. 1 ) without loss of chaotic properties. The case

 = 1 corresponds to single-stage Euler-Cromer scheme and S = 0 . 5

orresponds to the symmetric integration (Verlet scheme). In other

ases, as we will show below, the value of symmetry coefficient

an be changed almost arbitrarily. Let us consider the proposed

pproach for the Zaslavsky map. 

The Zaslavsky map appears in the literature in at least two dif-

erent versions. The first one is a dissipative generalization of the

tandard map [34] . It is determined by the following equations 

 n +1 = { y n + ν(1 + μz n ) + ενμ cos (2 πy n ) };
 n +1 = e −r (z n + ε cos (2 πy n ) ) ; (1)

nd 

= 

1 − e −r 

r 

here y, z are dimensionless coordinates, ε is the dimensionless

arameter of the perturbation, r is the dissipation parameter, the

rackets {} denote the fractional of the argument. 

Another version is the stochastic web map, also known as

aslavsky map. The Zaslavsky web map is a model exhibiting min-

mal chaos, i.e., a special case of chaotic motion that implies the

xistence of small chaotic regions in a phase space of the system

nder infinitesimally small perturbations [35] . Let us consider a

inear pendulum affected by an infinite wave set whose dynamics

an be described as follows 

q n +1 

p n +1 

)
= 

(
cos α sin α

− sin α cos α

)
·
(

q n 
p n + K sin q n 

)
. (2)

here q and p are dimensionless coordinates between two

uccessive kicks, K is the intensity of the kicks, α is the frequency.

Resonant cases when α = 2 π / m, m ∈ Z are of a special inter-

st because they let the system exhibit minimal chaos. The phase

ortrait of the system in this state represents a stochastic web, a

attern of thin channels separating isolated regions of regular dy-

amics [36] . The stochastic webs of Zaslavsky map (2) are shown

n Fig. 2 . These stochastic webs possess a fractal structure and have

esemblance with crystal grids [22] . Cases of m = 4 and m = 6 are

alled trivial resonances since they generate stochastic webs with

 very simple regular structure, while cases of m = 5, 7, 8, 9, ...

re called non-trivial resonances and their stochastic webs resem-

le oriental ornaments based on m -beam stars. 

To obtain the adaptive Zaslavsky map, let us consider a sym-

etric version of the original map. One of the possible symmetric

orms can be described as follows: 

q n +1 

p n +1 

)
= 

(
cos α sin α

− sin α cos α

)
·
((

q n 
p n + 0 . 5 K sin q n 

)
+ 

(
0 

0 . 5 K sin q n +1 

))
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Fig. 2. The phase space of the Zaslavsky web map for K = 0.8 and m = 4, the case 

of the trivial resonance. 
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Applying the adaptive integration technique we obtain 

q n +1 

p n +1 

)
= 

(
cos α sin α

− sin α cos α

)
·
(

q n 
p n + SK sin q n + (1 − S) K sin q n +1 

)

(3) 

here S is the symmetry coefficient. 

Phase space of system (3) with various values of S is shown in

ig. 3 . For a case of a trivial resonance with S = 0.5 ( Fig. 3 c), one

an see the shape of stochastic cells in the given scale. The shape

f the cells becomes symmetric with respect to axes p = 0 and

 = 0. 

In the next section, the application of obtained map to the

seudo-random generation in chaos-based stream ciphers will be

onsidered. 

. Adaptive Zaslavsky web map in pseudo-random number 

eneration 

As it was previously stated, when implementing a chaos-based

tream cipher it is necessary to determine the intervals of the pa-

ameter values, which give key space of the resulting encryption

cheme. The introduction of adaptive symmetry into chaotic maps

implifies this task. Let us compare the PRNG based on the Za-

lavsky (1) map [37] and the generator based on the Zaslavsky web

ap with adaptive symmetry (3) . We transformed the real number

o a sequence of 0 and 1 with the following formula 

 = mod (abs (integer(x · 10 

9 )) , 2) (4)

here abs ( x ) is the absolute value of x and integer ( x ) is a func-

ion of reducing x to an integer value. The concatenation of b val-

es gives the output sequence of the PRNG. The initial values for

he pseudo-random number generation using the Zaslavsky chaotic

ap are usually chosen from the interval [0; 1] [37] . 

.1. Bifurcation analysis 

The choice of the parameters of chaotic generator is usually

ased on parametric dynamical analysis. The most common tool is

 dynamical map of the system, where parameter values are plot-

ed on the axis and the color corresponds to the largest Lyapunov
xponent (LLE) for a couple of system parameters [24,38] . The dy-

amical map of the system (1) is given in Fig. 4 . The black color

orresponds to the parameter values that should be avoided when

mplementing a PRNG to keep the encryption scheme secure. One

an note that precise definition of boundaries for these areas is

 non-trivial task because any change in parameters sufficiently

nfluences the system behavior. Studies of Avrutin, Schanz et al.

39,40] show that simultaneous changes in the parameter values

an lead to the appearance of special types of multi-parametric

ifurcations. To determine the conditions where they occur, new

ethods still need to be developed. 

Let us consider the dynamical map for the Zaslavsky web map

ith adaptive symmetry where m = 4 ( Fig. 5 ). The parameter K

nd the symmetry coefficient S are plotted along the horizontal

nd vertical axes, respectively. One can see that for values of K that

xceed 2.5, the behavior of the considered system is chaotic for any

 . One can observe the same changes in the oscillation regimes in

riginal Zaslavsky web map. 

The detailed study [33] of symmetric and non-symmetric maps

as shown that changing the symmetry is an isomorphic trans-

orm and provides phase space stretching and compression with-

ut affecting the chaotic behavior. Therefore one can assume that

hen the symmetry coefficient is simultaneously changed along

ith the system bifurcation parameter, undesirable n -parametric

ifurcations will not occur. This fact theoretically provides a larger

ey space to the PRN generators based on adaptive symmetric

aps. 

.2. Key space analysis 

The key space is a vital feature of chaos-based cryptographic

ystems. In paper [37] B. Stoyanov and K. Kordov do not discuss

he size of the key space. The proposed generator was based on

 map (1) with two nonlinearity parameters and two initial con-

itions. These four values were represented using a floating-point

ata type [41] with precision of p = 53 bits, which yields 2 212 . The

eneration algorithm proposed in this paper is based on chaotic

ap (3) , and possess the same number of key parameters. It is

elieved that a secure cryptosystem must have a key space larger

han 2 100 to be robust against brute-force attacks [42–44] . Hence,

oth approaches provide a key space that is larger than the re-

uired minimum. In order to approximately determine the key

pace boundaries which correspond to the positive LLE values, one

an use a simple analysis of dynamical map in Fig. 5 roughly esti-

ating the percentage of white spots. For pseudo-random genera-

ors based on adaptive maps, this task can be easier than for tra-

itional chaos-based generators. Moreover, for encryption schemes

ith single-parameter maps such as the Chirikov map [45] , the in-

lusion of an adaptive coefficient will at least double the size of

he key space. 

.3. Correlation analysis 

Many previous studies that considered PRNG based on the Za-

lavsky map, represented only the results of randomness test for

he generated sequences. In our study we also perform a compar-

tive correlation analysis to experimentally show that sequences

btained by the adaptive Zaslavsky web map do not change

he type of behavior while the symmetry coefficient value is

hanged. 

We used Eq. (4) for converting the phase variable values into

he bit sequence. All calculations were carried out with double pre-

ision IEEE floating-point numbers. First, we investigated the cor-

elation of sequences generated from close initial points. Following

toyanov and Kordov [37] , we generated the sequence of length

0 5 . To obtain new sequences we shifted this point 10 3 times to
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Fig. 3. Phase space of adaptive Zaslavsky web maps for K = 1.2 and m = 4 with: (a) S = −10 ; (b) S = 0 . 1 ; (c) S = 0 . 5 ; (d) S = 0 . 8 . Light-violet color corresponds to the 

net-shaped chaotic sea. (To see full color figures, the reader is referred to the web version of this article.) 

Fig. 4. The dynamical map for Zaslavsky map (1) while e ∈ [0; 1] and ν ∈ [0; 10]. Negative values of LLE correspond to black color, positive values to white. 
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the machine epsilon. For the final set we calculated the values of

the Pearson correlation coefficients and obtained their distribution

( Figs. 6–8 ). One can see, the obtained values do not exceed 0.02 for

all generators including the original Zaslavsky generator ( Fig. 6 ),

which corresponds to a weak correlation according to the Ched-

dock scale. Thus, we can claim that the correlation of the gener-

ated sequences does not depend on the symmetry coefficient. 

On the next step we investigated the correlation between the

sequences obtained by maps starting at one initial point with the
mall differences in the symmetry coefficient. Setting the starting

oint as 0.5, we added the machine epsilon to S 10 3 times and

enerated sequences of length 10 5 . Then we calculated the Pearson

orrelation coefficient for all obtained sequences. Fig. 9 represents

he final distribution. The results are similar to those obtained in

he previous experiment. Sequences generated with close values

f the symmetry coefficient have a weak correlation relationship,

hich indicates that the symmetry coefficient can be considered

s a key. 
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Fig. 5. The dynamical map for the adaptive Zaslavsky web map (3) while S ∈ [0; 1] and K ∈ [0; 10]. Negative LLE values correspond to black color, positive LLE values are 

marked white. 

Fig. 6. The distribution of the Pearson correlation coefficient calculated for the se- 

quences generated by PRNG based on the original Zaslavsky map with r = 3 , ν = 

400 / 3 , e = 0 . 3 . 
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Both experiments have shown that the change of the symme-

ry coefficient does not affect the correlation properties of the se-

uences obtained by the PRNG based on the adaptive map. That

orresponds well with the theoretical predictions. 

.4. Statistical testing 

Another common approach to investigate pseudo-random se-

uences is the statistical testing. In 2001, the National Institute of

tandards and Technology (NIST) published a general methodology

or PRNG testing intended for this purpose [46] . We used this tech-

ique to study the proposed generator based on the Zaslavsky web

ap with adaptive symmetry. We performed the experiments with

ifferent values of the symmetry coefficient using the NIST test
ig. 7. The distribution of the Pearson correlation coefficient calculated for the sequences

ith K = 3 and (a) S = 1 ; (b) S = 0 . 8 . 
uite implemented in LabVIEW 2018. A set of 100 sequences with

 length of 10 6 bits each (the minimum length recommended for

IST testing) was studied. The level of significance α in our exper-

ments was 0.01. The obtained results are shown in Table 1 . One

an see that the investigated generator produces sequences with

andom characteristics for all of the considered cases. 

A detailed analysis of the dependence between the symmetry

oefficient and sequences is of interest for further research. 

.5. Encryption speed analysis 

The recent studies have shown that the efficiency of traditional

ryptographic schemes, including widely used Advanced Encryp-

ion Standard (AES), is relatively low in the case of multimedia

ata encryption [47] . One of the possible advantages of chaotic

ryptography is higher encryption speed [48] . 

To estimate the performance of chaos-based schemes we

ompared the encryption speed of the stream cipher based on

he proposed PRNG and the AES algorithm. We chose the AES

mplementation from the Crypto Toolkit developed by Alab Tech-

ologies for NI LabVIEW. For the AES encryption, the key length

as 128 bit and the block cipher mode of operation was Cipher

lock Chaining (CBC). We varied the number of bytes of data for

ncryption and estimated the time costs. For each data set, we

erformed 100 executions that were averaged. The obtained results

re shown in Fig. 10 . One can see that the chaos-based encryption

s faster than the traditional approach. The averaged encryption

peed for the proposed algorithm is 315 B/ms. Gayathri and

ubashini [48] presented the comparison of the encryption speed

or different chaos-based cryptosystems (See Table 7 in [48] ). The

uthors investigated eight algorithms based on different chaotic

aps. Only two of them show better encryption speed than the

roposed cipher based on the adaptive map (2023 B/ms for the

anso cipher [49] , 407.1 B/ms for the Zhou cipher [50] ). However,

he Zhou cipher is based on the one-dimensional logistic map that
 generated by the PRNG based on the Zaslavsky web map with adaptive symmetry 
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Fig. 8. The distribution of the Pearson correlation coefficient calculated for the sequences generated by the PRNG based on the Zaslavsky web map with adaptive symmetry 

with K = 3 and (a) S = 0 . 5 ; (b) S = 0 . 3 . 

Table 1 

Results of NIST testing for PRNG based on the adaptive Zaslavsky map with K = 3 . 

Statistical 

tests 

S = 0 . 3 S = 0 . 5 S = 0 . 8 S = 1 

Pvalue Pass rate Pvalue Pass rate Pvalue Pass rate Pvalue Pass rate 

FT 0.025 0.99 0.367 1 0.475 1 0.319 0.99 

BFT 0.046 0.98 0.304 1 0.596 1 0.720 0.97 

CST 0.475 0.99 0.351 1 0.367 1 0.534 0.99 

RT 0.055 0.99 0.575 1 0.616 1 0.437 0.99 

LROT 0.115 1 0.049 0.98 0.978 1 0.911 1 

MRT 0.004 1 0.575 0.99 0.494 1 0.575 1 

SPT 0.851 0.98 0.086 0.98 0.575 0.99 0.225 0.99 

NTMT 0.109 0.99 0.401 0.99 0.740 0.98 0.616 0.98 

OTMT 0.086 0.99 0.262 0.99 0.616 0.98 0.956 1 

MUST 0.202 0.98 0.437 0.99 0.760 0.99 0.350 0.98 

AET 0.049 0.98 0.779 1 0.021 1 0.637 0.99 

RET 0.616 0.98 0.740 0.99 0.658 1 0.575 1 

REVT 0.554 1 0.081 0.99 0.145 0.99 0.679 0.99 

ST 0.122 0.99 0.514 1 0.401 1 0.834 1 

LCT 0.049 0.99 0.817 0.99 0.554 0.97 0.091 1 

Fig. 9. The distribution of the Pearson correlation coefficient calculated for the se- 

quences generated by the PRNG based on the Zaslavsky map with adaptive symme- 

try where S value was varied linearly. 
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not able to resist the attack by the method of the phase space

reconstruction. The Kanso algorithm uses the three-dimensional

cat map as the pseudo-randomness source. The chaotic behavior

of this map significantly depends on the parameter matrix which

includes six values. This problem has already been discussed in

detail in Section 3.1 . Thus, the proposed algorithm is devoid of

such shortcomings and shows a high encryption speed ( Fig. 11 ). 
.6. The adaptive coefficient as a perturbation 

It is possible to increase the complexity of the chaotic behavior

y introducing a function that changes the symmetry coefficient

uring the simulation. As it was shown before, the linear changes

f the symmetry coefficient result in an infinitesimally small corre-

ation of the generated sequences. Thus, replacing the coefficient S

y a function we can make the phase space of the system more

omplex. This also can notably deform the areas of chaotic sea

nd stability islands without changing other parameters of the map

33] . Actually, this brings us to a new family of discrete maps based

n initial symmetric prototype. 

Let us consider the Zaslavsky web map with a resonance α =
/ 4 which corresponds to 8-beam symmetry in the phase space.

or the perturbation parameter K = 0 . 8 , the chaotic sea is large

nough and has star-like shape, allowing the Arnold diffusion to

xist for a notable set of initial conditions. When the symme-

ry coefficient is governed by the law S = sin (2 π/n ) , where n = 4

 Fig. 10 ), the phase space is similar to the case of trivial resonance

= π/ 2 , but with the shifted axes. The case n = 9 ( Fig. 10 c) shows

everal embedded chaotic seas, which do not intersect with each

ther, and the overall chaotic sea area becomes sufficiently larger.

he case n = 3 ( Fig. 10 d) corresponds to an even more expanded

haotic sea. If n is irrational, no periodic solutions can be found

nd thus no stability islands exist. In this case, the chaotic sea oc-

upies the entire phase space. 

Note, that the perturbation function can be chosen in an

lmost arbitrary way. The possibility of obtaining pseudo-random



A.V. Tutueva, E.G. Nepomuceno and A.I. Karimov et al. / Chaos, Solitons and Fractals 133 (2020) 109615 7 

Fig. 10. The time costs for data encryption using AES algortihm and chaos-based stream cipher. 

Fig. 11. Poincare sections of the adaptive Zaslavsky map with S = sin (2 π/n ) . Light violet color corresponds to chaotic sea. (To see full color figures, the reader is referred to 

the web version of this article.) 
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equences with different values of the adaptive coefficient was

onfirmed by NIST tests in the previous section. 

. Conclusion and discussion 

The experimental study of the proposed adaptive Zaslavsky

ap shows that the sequences generated by the corresponding

RNG have the property of randomness and demonstrate a weak

orrelation relationship regardless of the values of the symmetry

oefficient. This means that the symmetry coefficient can be

fficiently used as a key parameter in chaos-based cryptographic

chemes, making increase in the key space possible. We also
sed the idea of the perturbing parameter proposed earlier in

30,31] to develop the technique that make it possible to avoid

he short-period quasi-chaotic sequences by varying the symmetry

oefficient. We suggested exploiting the symmetry coefficient as a

erturbation parameter to obtain novel discrete maps based on the

ymmetric prototype. The proposed approach allows to increase

he period of oscillations because the sequences, generated with

lose symmetry coefficient values, are loosely coupled. In addition,

he computational complexity of the generation scheme does not

ncrease. 

Thus, we can conclude that chaotic maps with adaptive sym-

etry are suitable for the stream ciphers. The PRNG based on the
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adaptive map described in this paper is easier to implement than

the previously known modified chaos-based generators. The in-

crease in encryption speed can be estimated only after a thorough

security analysis of the final cryptographic scheme. In our further

studies we will explore various attacks on the cryptographic sys-

tem based on the adaptive maps, including an attack by phase

space reconstruction. Another direction for future research is a

search for other applications of maps with adaptive symmetry,

where this property can be effectively used. One of them can be

the application of the adaptive symmetry concept to the models

based on coupled map lattices and networks, including artificial

neural networks. We will also consider the development of other

adaptive maps, the synchronization of adaptive symmetric chaotic

systems and obtaining sequences with certain statistical properties

by controllable symmetry. 
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