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Abstract
In this paper, we present a technique to tune the reinforcement learning (RL) parameters applied to the sequential ordering
problem (SOP) using the Scott–Knott method. The RL has been widely recognized as a powerful tool for combinatorial
optimization problems, such as travelling salesman and multidimensional knapsack problems. It seems, however, that less
attention has been paid to solve the SOP. Here, we have developed a RL structure to solve the SOP that can partially fill
that gap. Two traditional RL algorithms, Q-learning and SARSA, have been employed. Three learning specifications have
been adopted to analyze the performance of the RL: algorithm type, reinforcement learning function, and ε parameter. A
complete factorial experiment and the Scott–Knott method are used to find the best combination of factor levels, when the
source of variation is statistically different in analysis of variance. The performance of the proposed RL has been tested using
benchmarks from the TSPLIB library. In general, the selected parameters indicate that SARSA overwhelms the performance
of Q-learning.

Keywords Reinforcement learning · Sequential Ordering Problem · Factorial design · Scott–Knott method · Tuning
parameters

1 Introduction

The reinforcement learning (RL) is an important field of
machine learning. In RL, an agent learns from success and
failure in interacting with an environment (Sutton and Barto
2018). This learning process leads agents to accumulate
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experience from reinforcements and penalties. The RL has
been applied inmany fields, such as in robotics, control, mul-
tiagent systems and optimization (Gambardella and Dorigo
2000; Kober et al. 2013; Shao et al. 2014; Bianchi et al. 2015;
Yliniemi and Tumer 2016; Da Silva et al. 2019; Mnih et al.
2015; Asiain et al. 2019; Alipour et al. 2018; Carvalho et al.
2019; Li et al. 2019; Low et al. 2019; Bazzan 2019; Da Silva
et al. 2019). A growing interesting to apply the RL can be
seen in combinatorial optimization (Gambardella andDorigo
1995; Likas et al. 1995; Miagkikh and Punch 1999; Mari-
ano and Morales 2000; Sun et al. 2001; Ma et al. 2008; Liu
and Zeng 2009; Lima Júnior et al. 2010; Santos et al. 2014;
Alipour and Razavi 2015; Alipour et al. 2018; Ottoni et al.
2018; Woo et al. 2018; Miki et al. 2018; Chhabra and Warn
2019), such as the travelling salesman problem (TSP) (Gam-
bardella and Dorigo 1995; Alipour et al. 2018), Job-Shop
Problem (Zhang and Dietterich 1995; Cunha et al. 2020), the
K-Server Problem (Costa et al. 2016) and the multidimen-
sional knapsack problem (MKP) (Arin and Rabadi 2017;
Ottoni et al. 2017). Although, it seems evident that a great
number of works have been devoted to solving combinatorial
optimization, less attention has been paid to the sequential
ordering problem (SOP) (Skinderowicz 2017) using the RL.
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The SOP is a similar problem to the TSP (Gambardella
and Dorigo 2000). In TSP, the goal is to minimize the dis-
tance traveled on a route by going through all locations once
and returning the starting city at the end of the route (Dorigo
and Gambardella 1997). In SOP, the visit order constraints
are added. It means that a certain node j must precede node
i . The SOP has several applications in real problems, such
as in production planning (Escudero 1988), single-machines
scheduling problems (Letchford and Salazar-González 2016;
Skinderowicz 2017), vehicle routing (Ascheuer et al. 2000;
Gambardella and Dorigo 2000), single vehicle routing with
pickup and delivery constraints (Ascheuer et al. 2000), the
routing of a stacker crane in an automatic storage system
(Ascheuer et al. 2000), in routing applicationswhere a pickup
has to precede the delivery (Fiala Timlin and Pulleyblank
1992), transportationproblems inflexiblemanufacturing sys-
tems (Ascheuer et al. 2000), helicopter routing (Fiala Timlin
and Pulleyblank 1992) and switching energy minimization
in compilers (Shobaki and Jamal 2015). In this aspect, most
works dealing with the solution for the SOP have been using
particle swarm optimization (PSO) (Anghinolfi et al. 2011)
or ant colony system (ACO) (Gambardella andDorigo 2000).

Despite many works devoted to the SOP, to the best of
authors knowledge, little attention has been paid to inves-
tigate the SOP using SARSA or Q-learning, wherein the
parameters are tuned by a systematic approach. In fact,
parameter estimation for RL has been recognized as an
important part to achieve good performance in its execution
and convergence (Schweighofer and Doya 2003; Even-Dar
and Mansour 2003; Ottoni et al. 2018; Cardenoso Fernandez
and Caarls 2018). There are some successful attempts to deal
with automatic tuning for the RL. For instance, the authors
in Cardenoso Fernandez and Caarls (2018) have applied to
genetic algorithms to find parameters that best fit the per-
formance of the SARSA and Q-learning RL algorithms. In a
different approach, the learning rate is tuned using a cognitive
network design tool, where the RL is applied to Optimized
Link State Routing (OLSR) (McAuley et al. 2012). Addi-
tionally, the authors in Barsce et al. (2017), motivated by the
increase of machine learning usage by industries and scien-
tific communities in a variety of tasks such as text mining,
image recognition, self-driving cars, and automatic setting
of hyper-parameter, have applied an autonomous framework
that employs Bayesian optimization and Gaussian process
regression to optimize the hyper-parameters of a reinforce-
ment learning algorithm.

In this paper, we have proposed an RL structure capa-
ble of solving the SOP, through a model defined in actions,
states and reinforcements and an algorithm responsible for
evaluating the precedence restrictions during the learning. A
complete factorial experiment (Montgomery 2017) and the
Scott–Knott method (1974) have been employed to inves-
tigate the performance of Q-learning (Watkins and Dayan

1992) and SARSA (Sutton and Barto 2018). Our procedure
has also considered the influence of three reinforcement func-
tions and the ε-greedymethod (Sutton and Barto 2018) in the
SOP resolution. The Scott–Knott method of multiple com-
parison has been used to identify the best combination of
factor levels, when the source of variation is statistically dif-
ferent in analysis of variance (ANOVA) (Montgomery 2017).

The remainder of this paper is organized as follows. Sec-
tion 2 presents basic theoretical concepts of the SOP and RL.
Then, Sect. 3 describes a general overview of methodology.
The results are given in Sect. 4, and concluding remarks are
delivered in Sect. 5.

2 Theoretical foundation

2.1 Sequential ordering problem

2.1.1 Formulation problem

The TSP can be formulated as a graph G(N , A), with N =
{1, . . . , n} is the set of nodes and ci j is the cost of each
arc (i , j) ∈ A (Bodin et al. 1983; Gambardella and Dorigo
2000;Applegate et al. 2007; Letchford and Salazar-González
2016). TSP can be classified into two groups: symmetric
and asymmetric. In the symmetric TSP, the cost between
locations i and j is equivalent to the cost between nodes j and
i, that is, ci j �= c ji . In an asymmetric travelling salesman
problem (ATSP), the cost of moving a city i to a location j
(ci j ) may be different from the cost of going from j to i (c ji ),
that is, ci j �= c ji .

The SOP can be interpreted as a specific case of the ATSP
with precedence constraints (Gambardella and Dorigo 2000;
Escudero 1988; Guerriero and Mancini 2003; Montemanni
et al. 2008; Anghinolfi et al. 2011; Shobaki and Jamal 2015).
The cost for SOP can assume: ci j ≥ 0 or ci j = −1 (with
c ji ≥ 0) (Gambardella and Dorigo 2000). There is a cost
associatedwith the arc (i , j)when ci j ≥ 0.However, for ci j =
−1, there is the constraint of ordering the SOP, indicating
that the node j must precede the node i . Thus, the element j
should be accessed in an instant of time (t1) before the access
to the i the instant node t2, that is, t1 < t2. The difference
between the two instants of time may be greater than one
step, that is, t2 − t1 ≥ 1 (Gambardella and Dorigo 2000).

A mathematical formulation based on TSP (Bodin et al.
1983) for SOP is given below:

Min
N∑

i=1

N∑

j=1

ci j xi j , (1)
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subject to:

N∑

i=1

xi j = 1 (∀ j = 1, . . . , N ), (2)

N∑

j=1

xi j = 1 (∀i = 1, . . . , N ), (3)

xi j ∈ {0, 1} (∀i, j = 1, . . . , N ), (4)

X = xi j ∈ S (∀i, j = 1, . . . , N ), (5)

ci j ≥ 0 ∨ ci j = −1 ∧ c ji ≥ 0 (∀i, j = 1, . . . , N ), (6)

where Eqs. (1)–(5) refer to the mathematical model of the
TSP. N is a set of nodes and Eq. (1) depicts the goal of
minimizing the total distance traveled in the route. Thus, the
cost of displacement between two cities (i and j) is given
by ci j . The decision variable xi, j assumes 1 if the arc (i, j)
composes the solution and 0 otherwise. Equations (2) and
(3) ensure that each location is visited only once. In addition,
Eq. (4) ensures that the variable xi j is binary. In Eq. (5),
the set S represents any set of constraints that eliminate the
formation of sub-routes. Finally, the Eq. (6) is the additional
precedence restriction of the SOP.

2.1.2 Literature review

The SOP was initially formulated by Escudero (1988) for
application in production planning systems. Since then,
several methods have already been addressed in solving
this problem. The authors in Gambardella and Dorigo
(2000) present a hybrid system between ant colony sys-
tem (ACS) and the local search method SOP-3-exchange.
Along the same lines, the works of Montemanni et al. (2007)
and Skinderowicz (2017) have discussed SOP solution
using ACS.

The work of Anghinolfi et al. (2011) have investigated
particle swarm optimization. The authors in Papapanagiotou
et al. (2015) have performed the comparison of two exact
algorithms in the solution of instances of three reposito-
ries: TSPLIB, Soplib06, and Compilers. An exact algorithm
for solving SOP in an application directed toward compiler
performance optimization have been addressed in Shobaki
and Jamal (2015). Other papers presented formulations for
the SOP resolution in vehicle routing applications such
asHernández-Pérez and Salazar-González (2009) and Letch-
ford and Salazar-González (2016).

2.1.3 TSPLIB

A travelling salesman problem library (TSPLIB)1 (Reinelt
1991) is an open-data repository that gathers options for TSP

1 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.

Table 1 The cost matrix of esc07 instance (TSPLIB)

0 0 0 0 0 0 0 0 1,000,000

−1 0 100 200 75 0 300 100 0

−1 400 0 500 325 400 600 0 0

−1 700 800 0 550 700 900 800 0

−1 − 1 250 225 0 275 525 250 0

−1 − 1 100 200 − 1 0 − 1 − 1 0

−1 − 1 1100 1200 1075 1000 0 1100 0

−1 − 1 0 500 325 400 600 0 0

−1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 0

The value − 1 indicates that priority should be given to visit. For
instance, the value of − 1 in row 5 (i) and column 2 ( j) of this table
indicates that node 2 must be accessed before node 5

case studies and other combinatorial optimization problems
such as SOP. The repository provides instances with different
levels of resolution complexity and their optimal solution
value for the problem. Table 1 illustrates the structure of
the cost matrix of an SOP instance provided by TSPLIB.
In this sense, we can observe some precedence constraints
(ci j = −1). For instance, the value of −1 in row 5 (i) and
column2 ( j) of Table 1 indicates that node 2must be accessed
before node 5.

2.2 Reinforcement learning

We have adopted two RL algorithms: Q-learning (Watkins
and Dayan 1992) and SARSA (Sutton and Barto 2018). The
Q-learning is based on updating a Q matrix according to Eq.
(7):

Qt+1 = Qt (s, a)

+α
[
r(s, a) + γmaxa′Q(s′, a′) − Qt (s, a)

]
, (7)

where s and a are state and action at the current instant (t),
respectively; s′ is state and a′ is action at the next instant
(t + 1); Qt (s, a) is the value at time t in the Q matrix for
the pair state × action (s, a). Qt+1 is the updating of the
learning matrix in t + 1 by executing the action a in state
s; r(s, a) is the reinforcement by the execution of the pair
(s, a); maxa′Q(s′, a′) is the utility of s′, that is, the max-
imum value in the line of Q referring to the new state; α

is the learning rate; γ is the discount factor. Algorithm 1
shows the Q-learning, where the ε-greedy policy is adopted
for actions selection. This method uses the ε parameter in the
control between greedy and randomness in decision making
according to Algorithm 2.

The SARSA method (see Algorithm 3) is a modification
ofQ-learning. The updating of the learningmatrix in SARSA
is given by Eq. (8) and ε-greedy policy follows Algorithm 2.

Qt+1 = Qt (s, a) + α[r(s, a) + γ Qt (s
′, a′) − Qt (s, a)].

(8)
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1 Set the parameters: α, γ and ε

2 For each pair s,a the matrix Q(s,a)=0 should be initialized
3 Observe the state s
4 repeat
5 Select the action a using ε-greedy method
6 Take the action a
7 Receive immediate reward r(s, a)
8 Observe the new state s’
9 Update Q (s, a) with Eq. (7)

10 s = s’
11 until the stopping criterion is satisfied;

Algorithm 1: Q-learning.

1 Receive ε, Q(s,a)
2 Generate a random number (na) in [0, 1]
3 if na < ε then
4 Select the random action (aa)
5 a = aa
6 else
7 Select the greedy action (a∗) in Q(s,a) matrix
8 a = a∗
9 end

10 Return a

Algorithm 2: ε-greedy method

1 Set the parameters: α, γ and ε

2 For each pair s,a to initialize the matrix Q(s,a)=0
3 Observe the state s
4 Select the action a using ε-greedy method
5 repeat
6 Take the action a
7 Receive immediate reward r(s, a)
8 Observe the new state s’
9 Select the new action a using ε-greedy method

10 Update Q (s, a) with Eq. (8)
11 s = s’
12 a = a’
13 until the stopping criterion is satisfied;

Algorithm 3: SARSA

3 Methodology

3.1 Reinforcement learningmodel

The RL model defined for the SOP resolution is comprised
into three main features: states, actions, and reinforcements.
The formulation adopted is based on definitions in RL struc-
tures for the TSP solution addressed in previous studies
(Bianchi et al. 2009; Lima Júnior et al. 2010; Ottoni et al.
2018). After examining the logic of the SOP, we have pro-
posed the following model in this paper:

– States: The set of states (S) was defined as all localities
(nodes) that should be accessed for route formation by
the agent (travelling salesman) (Lima Júnior et al. 2010;
Ottoni et al. 2018). In this sense, the set S varies according
to the number of locations in the instance.

– Actions: Each action was defined as a plan to visit
another location (state) of the problem (Lima Júnior
et al. 2010; Ottoni et al. 2018). For example, in a sce-
nario with three states, if the agent is in locality 1 at the
instant t , the movement can happen to node 2 (action
2) or node 3 (action 3). If the selected action is 3, the
agent will be in state 3 at the instant t + 1. In addi-
tion, the action 3 is not available from the instant t + 1,
since each locality can be accessed only once during the
route.

– Reinforcements: The reinforcement function defines the
returns for executing actions in certain states. For com-
binatorial optimization problems, one way is to associate
the reward with the problem cost function as described
in Eq. (1) (Bianchi et al. 2009; Lima Júnior et al. 2010;
Ottoni et al. 2018). In this sense, for the SOP resolu-
tion, the reinforcement function can be related to the
cost of displacement between cities i and j , given by
ci j . In some works this cost is also denoted by di j :
distance between node i and node j . In this work, the
following three types of reinforcement functions are ana-
lyzed:

R1 = −di j , (9)

R2 = 1

di j
, (10)

R3 = −(di j )
2. (11)

In Eq. (9), the greater the distance between two locations i
and j , the more negative the reinforcement R1 (Bianchi et al.
2009; Ottoni et al. 2018). In Eq. (10), the reinforcement is
the inverse of the distance (Lima Júnior et al. 2010). Finally,
R3 grows negatively with the square of the distance between
i and j .

3.2 RLSOP algorithm

Considering the previous discussion, we have proposed the
RLSOP (reinforcement learning for the SOP) algorithm (see
Algorithm 4). This algorithm is used for analysis of the SOP
restrictions of precedence in the RL decision making. The
objective of RLSOP is to check for actions that must be
performed before the action (at ) selected by the ε-greedy
policy.
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1 at = ε-greedy()
2 cont = 0
3 while (cont == 0) do
4 if (there are precedence constraints for the selected action)

then
5 if (at least one action corresponding to the precedence

constraints of at has not yet been selected) then
6 cont = 0
7 else
8 cont = 1
9 end

10 end
11 if (cont==0) then
12 Remove action at from the list of available actions at the

instant t ;
13 at = ε-greedy()
14 end
15 end
16 Return a

Algorithm 4: RLSOP Algorithm. This is an adaption of
the RL algorithm for solving the SOP.

The RLSOP Algorithm starts by receiving the action (at )
selected by the ε-greedy policy (Algorithm 2) at the instant
t . The cont variable is responsible for controlling the while
command. Thus, cont is initialized with zero and the loop is
only terminated if that variable receives 1. In the proposed
algorithm, some conditional tests are performed. The first if
command checks for precedence constraints for the selected
action. Then, it is analyzed if the precedence constraints have
already been executed before the instant t . If there are still
any pending restrictions, then the control variable remains
at zero. Otherwise, all precedence constraints have already
been satisfied, and thus cont receives 1. On the other hand,
if cont = 0, at is taken from the list of actions available at
instant t . In addition, a new action is selected by the ε-greedy
policy. The run continues until the proposed conditions are
satisfied and cont receives 1.

3.3 Experiments

The experimentalmethodologyhas been based inOttoni et al.
(2016, 2018). The authors in Ottoni et al. (2018) have suc-
cessfully adopted response surface models to estimate two
RL parameters: learning rate and discount factor. Similarly,
logistics regression models have been employed for the RL
parameters analysis in the Q-learning and SARSA perfor-
mance in Ottoni et al. (2016). In this sense, these two papers
(Ottoni et al. 2016, 2018) have conducted experiments for a
statistical analysis of RL parameters.

Experiments have been performed in the MATLAB soft-
ware and comprised simulations with 11 TSPLIB instances.
Table 2 presents the number of nodes (locations), the num-

Table 2 TSPLIB problems studied

Problem Nodes Constraints Optimal

br17.10 18 48 55

esc07 9 22 2125

esc12 14 36 1675

esc25 27 62 1681

esc47 49 127 1288

esc63 65 360 62

esc78 80 440 18,230

ft53.1 54 117 7531

ft53.4 54 864 14,425

prob42 42 100 243

rbg109a 111 5548 1038

ber of precedence constraints (ci j = −1) and the optimal
solution known in the literature for each problem.

The RL performance of the instances resolution of Table 2
was analyzed by observing three learning specifications:
algorithm type, reinforcement function, and ε parameter (ε-
greedy policy) as follows:

– Algorithms: Q-learning and SARSA;
– Reinforcement functions: R1 [Eq. (9)], R2 [Eq. (10)] and

R3 [Eq. (11)];
– Parameter ε: [0.01; 0.05; 0.10].

For each instance, a total of 18 test combinations have been
conducted: 2 (algorithms) × 3 (reinforcement functions) ×
3 (ε values). Each combination was simulated five runs (rep-
etitions) with 10,000 episodes. Each run is independent, that
is, learning is accumulated over the 10,000 episodes, but its
value is reset in the beginning of a new run. It is also worth
mentioning that an episode is composed of iterations, respon-
sible for initiating, developing and finalizing a route. The
measure of performance is the total distance (cost) calcu-
lated at the end of the route in an episode. The learning rate
and discount factor were defined based on results described
in Ottoni et al. (2018) for the TSP: α = 0.75 and γ = 0.15.

3.4 Factorial design

The chosen control factors in this study were the type of
algorithms, reinforcement functions and ε-greedy politics.
Table 3 summarizes these factors followed by their respective
levels. The response variable accessed by the factorial design
was the best solution found during run episodes.

The full-factorial design was given by:

yi jkl = μ + ζi + η j + θk + (ζη)i j

+ (ζ θ)ik + (ηθ) jk + (ζηθ)i jk + ξi jkl , (12)

123



4446 A. L. C. Ottoni et al.

Table 3 Control factors and
levels

Control factors Number of levels Levels

Algorithms 2 Q-learning SARSA

R. functions 3 R1 R2 R3

ε 3 0.01 0.05 0.10

where μ is the overall mean effect, ζi is the effect of the ith
level of the algorithms (i = 1, 2), η j is the effect of the jth
level of the reinforcement functions ( j = 1, 2, 3), θk is the
effect of the kth of ε-greedy politics (k = 1, 2, 3), (ζη)i j is
the effect of the interaction between ζi and η j , (ζ θ)ik is the
effect of the interaction between ζi and θk , (ηθ) jk is the effect
of interaction between η j and θk , (ζηθ)i jk is the effect of the
three-way interaction, and ξi jkl is a random error component
(l = 1, 2, 3, 4, 5).

Factorial design has been applied to estimate the effect of
a factor in different levels of the other factors. Additionally,
the effect of the interaction between two or more factors can
be analyzed. Through the combination of all levels of the
control factors in the study, 18 tests were obtained, which
were replicated five times, generating 90 observations in total
(2 × 32 × 5). All tests were conducted in random order.

By analysis of variance (ANOVA), all the hypotheses of
non-differences in treatment means were tested through the
F test with a significance level αF equal to 0.05. The nor-
mality test of Kolmogorov–Smirnov (KS) (Conover 1971)
and the Levene test (Fox and Weisberg 2011) for equality
of variances were performed to assure that the experimental
error terms were normally distributed, and the data variance
were homogeneous. See Montgomery (2017) to obtain more
details about the statistical analysis.

3.5 The Scott–Knott method

When the ANOVA indicates that the average levels of a
source of variation differ, it is necessary to identify which
combination of the factor levels are specifically different.
There are various procedures of multiple comparisons in the
literature. Scott–Knott (1974) method has been recognized
as efficient alternative, as it is a method of grouping means
that categorizes results without ambiguity.

The Scott–Knottmethod begins by partitioning the groups
tomaximize the sum of squares between groups. After order-
ing the means, the number of possible partitions (k − 1
partitions) is reduced. The sum of squares B0, is defined
according to Eq. (13):

B0 = T 2
1

k1
+ T 2

2

k2
+ (T1 + T2)2

k1 + k2
(13)

with

T1 =
k1∑

i=1

y(i) (14)

and

T2 =
k1+k2∑

i=k1+1

y(i) (15)

where y(i): ordered mean of treatment i (i = 1, 2, . . . , k);
k = (k1 + k2) is the number of means to be separated; T1
and T2 are the totals of the two groups with k1 and k2 treat-
ments, respectively. Themaximum B0 value obtained is used
to compute the statistic λ according to Eq. (16):

λ = π

2(π − 2)
× B0

σ̂ 2
0

, (16)

where σ̂ 2
0 is the estimator of maximum likelihood obtained

by Eq. (17):

σ̂ 2
0 = 1

k + v

[
k∑

i=1

(yi − ȳ)2 + vs2y

]
, (17)

and ȳ is overall mean of treatments; v is the degrees of free-
dom of the residuals; s2y = MSE

r is the unbiased estimator

of σ 2

r , being r the degrees of freedom associated with that
estimator.

The statistics λ is tested by the chi-squared test, where the
condition

λ ≥ X2
αF ; k

n−2

indicates that the two groups are statistically different and
should be tested separately for new possible divisions. On
the contrary, the means are considered homogeneous and,
further partitioning is therefore unnecessary.

3.6 Analysis of the results

The analysis of the results has been conducted as follows:
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Table 4 Best results found in the five runs of simulation for all combinations of the three factors analyzed (algorithm, reinforcement function and
ε parameter)

Alg R ε br17.10 esc07 esc12 esc25 esc47 esc63 esc78 ft53.1 ft53.4 prob42 rbg109a

Q-learning R1 0.01 57 2150 1773 2209 2816 62 20,255 9255 17,444 323 1279

0.05 55 2225 1696 2090 2891 63 20,125 9272 17,135 323 1254

0.10 55 2150 1688 1757 2782 63 20,195 9373 17,086 323 1252

R2 0.01 55 2125 2162 8416 15,470 119 28,785 17,201 20,102 779 1468

0.05 55 2125 2115 7845 13,982 89 24,985 17,889 20,062 753 1428

0.10 55 2125 2020 7561 13,014 93 23,745 17,440 19,000 828 1410

R3 0.01 57 2200 1793 2368 3005 62 20,195 9419 17,815 314 1289

0.05 55 2125 1765 2135 2692 62 20,295 9495 17,131 338 1265

0.10 55 2125 1688 2135 2791 63 20,590 9546 17,086 331 1260

SARSA R1 0.01 57 2125 1675 1788 2390 63 19,725 8594 17,255 313 1292

0.05 55 2125 1675 1684 2566 65 19,625 8509 16,833 302 1286

0.10 55 2125 1675 1684 2658 66 19,855 8628 17,041 306 1276

R2 0.01 55 2125 1801 6133 7742 68 20,580 10,085 16,687 351 1383

0.05 55 2125 1826 6291 6137 73 22,650 10,170 16,913 418 1373

0.10 55 2125 1813 6912 7428 73 23,510 11,159 17,005 447 1398

R3 0.01 57 2125 1685 1807 2902 63 19,760 8640 17,240 359 1258

0.05 55 2125 1685 2026 2995 67 19,825 8683 17,205 377 1283

0.10 55 2125 1675 2092 3364 66 20,130 8836 16,925 397 1299

Optimal 55 2125 1675 1681 1288 62 18,230 7531 14,425 243 1038

The first three columns present all the combinations of the three factors. The remainder columns present the results for the 11 TSPLIB problems
investigated in this work. For the convenience of the reader, the best known result for each problem according to Table 2 is also presented here.
Finally, values in bold face indicate the best result found for each problem

– Preliminary analysis: search for the best solutions in each
problem. In addition, figures to exemplify the evolution
of the solution by learning episodes are presented. The
computational times of the algorithms are also discussed.

– Tuning RL parameters

– Adequacy of the models: the premises that guaran-
tee the adequacy of the ANOVA models are checked
(independence, homoscedasticity and normality of
the residues).

– Descriptive analysis: for problems in which the
assumptions of the model were not met, a descrip-
tive analysis of the means of solutions obtained was
performed.

– Scott–Knott results: presents the best configuration of
algorithm, reinforcement function, and ε parameter.

4 Results

In this section, the results for the experiments are presented
in two steps: preliminary analysis and tuning RL parameters.
Afterward, the advantages of the proposed technique have
been pointed out compared with other works in the literature.

4.1 Preliminary analysis

Table 4 presents the best solutions calculated for each
TSPLIB problem for each combination of the algorithm,
reinforcement function, and control factor ε. It is possible
to observe that these factors may influence the outcome of
the SOP optimization process. The results of Table 4 show
that the SARSA algorithm achieved the best results (numbers
in bold) in most instances.

Figures 1 and 2 show a performance during the learning
process according to the algorithm type. The reinforcement
function is exemplified in Figs. 3 and 4. Notice that the
SARSA remained closer to the optimal solution of the ft53.1
problem, in relation to the Q-learning, during the simula-
tion adopting R1 and ε = 0.01 (Fig. 1). Figure 2 presents a
zoom, where (a): episodes 1 to 500) and (b): episodes 9500
to 10,000. Figure 2a shows that at the beginning of the learn-
ing the Q-learning and SARSA algorithms obtained similar
performances. However, this balance betweenmethods is not
reflected at the end of learning (Fig. 2b), where the SARSA
algorithm found better solutions. These results are evident in
Table 4. This also shows that SARSA presents a slow conver-
gence, and it requires a longer period to obtain better results.

Figures 3 and 4 show mainly a lower performance of the
reinforcement function R2 in relation to others, using esc78
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Fig. 1 Evolution of the solution
by learning episodes for ft53.1.
Curves for simulations of
Q-learning and SARSA
algorithms with the following
specifications: R1 and ε = 0.01.
In general, the SARSA solution
remains closer to the optimal
solution of the ft53.1 problem
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Fig. 2 Zoom of Fig. 1. a
Episodes from 0 to 500, b
episodes from 9500 to 10,000

Episodes

0 100 200 300 400 500

S
ol
ut
io
n

×104

1

1.5

2

2.5

(a)

Q-learning
SARSA

Episodes

9500 9600 9700 9800 9900 10000

S
ol
ut
io
n

×104

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

(b)

Q-learning
SARSA

Fig. 3 Evolution of the solution
by learning episodes for esc78
instance. Curves for simulations
for reinforcement functions (R1,
R2 and R3) with the following
specifications: SARSA and
ε = 0.01. It is clear here that R2
presents worse performance
than R1 and R3
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instance, SARSAand ε = 0.01. In this case, this difference in
performance between the reinforcement functions is greater
at the beginning of the learning process (Fig. 4a).

An optimal policy in RL is found when number of visits
to each pair state-action approaches to infinity (Watkins and
Dayan 1992). In this sense, the adoption of 10,000 episodes
is an approximation to guarantee a convergence within an

acceptable range. Figures 1 and 3 exemplify the impor-
tance of adopting a larger number of episodes. In Fig. 1,
the best result was found by the SARSA algorithm (solu-
tion 8890) in episode 7693. In Fig. 2, the best solution was
found by the reinforcement function R1 (solution 19,725) in
episode 9457.
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Fig. 4 Zoom of Fig. 3. a
Episodes from 0 to 500, b
episodes from 9500 to 10,000.
The difference among the
reinforcement decreases by the
end of the simulation
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Table 5 Average of computational time of 45 simulated runs using all
combinations for the two algorithms

Problem Q-learning SARSA Difference (%)

esc07 26.67 33.33 36.92

esc12 41.33 45.33 19.98

esc25 76.00 101.33 8.82

esc47 161.33 172.00 25.00

esc63 282.67 297.33 6.20

esc78 718.67 646.67 4.93

ft53.1 172.00 194.67 − 11.13

ft53.4 529.33 626.67 11.65

prob42 130.67 230.67 15.53

rbg109a 2277.33 3185.33 43.35

Average 17.25

The fourth column presents the increase in time in SARSA compared
to Q-learning. SARSA presents 17.25% higher average time than Q-
learning. The time is given in seconds

Table 5 presents the average of computational time of 45
simulated runs for all combinations (3 reinforcement func-
tions × 3 ε values × 5 repetitions) of the two algorithms
analyzed. The SARSA algorithm achieves 17.25% higher
average than Q-learning.

4.2 Tuning RL parameters

The experiment analysis in factorial scheme (Montgomery
2017) was adopted to verify whether the analyzed learning
conditions (algorithm, reinforcement function and ε-greedy
policy) influenced the SOP optimization process. For each
simulation of the 11 instances, themeasure of performance is
the best solution found during the episodes of a run (response
variable) and an experiment model was fitted in a factorial
scheme (2 × 32). The complete form has adopted with the
main effects, double interactions, and triple interaction. All

statistical analyses were conducted using the software R (R
Core Team 2018).

4.2.1 Adequacy of the models

We have verified the assumptions that guarantee the ade-
quacy of the models constructed from the summarization of
the results of analysis of variance (ANOVA): independence,
homoscedasticity, and residue normality.

First, the assumption of independent samples is accepted
by the fact that the results of the run do not depend on each
other, that is, each season is a simulation that starts with the
reset learning matrix. Second, the assumption of residues
normality was analyzed using the KS test (Conover 1971),
and homoscedasticity was verified by the variance of Lev-
ene test (Fox and Weisberg 2011). For the KS test, the null
hypothesis (H0) is that the residual follows a normal distri-
bution (p value> 0.05) and the alternative hypothesis (H1)
that do not (p value≤ 0.05). Six problems (br17.10, esc07,
esc12, esc63, ft53.1 and prob42) have not passed in the KS
test. The normality assumption of other five problems (esc25,
esc47, esc78, ft53.4 and rbg109a) have confirmed, as well as
the assumption of homoscedasticity of variances.

4.2.2 Descriptive analysis

A descriptive analysis has been undertaken for the six prob-
lems which do not match the assumptions of normality. The
average of five runs for each of the combinations of the three
factors are shown in Table 6. The numbers highlighted in
bold refer to the minimum value of the mean found in each
instance.

Each simulated instance has its own characteristics, such
as number of nodes, distances between localities, number
of precedence constraints, and optimal solution defined by
TSPLIB, shown inTable 2. For example, the instance br17.10
has 18 nodes with an optimal solution of 55 (distance unit),
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Table 6 Computation of the
average of five simulated runs
for all combinations of the three
factors analyzed (algorithm
reinforcement function and
ε-greedy policy)

Alg R ε br17.10 esc07 esc12 esc63 ft53.1 prob42

Q-learning R1 0.01 58.8 2270.0 1773.0 62.6 9383.4 330.2

0.05 56.6 2315.0 1754.0 63.2 9415.4 331.6

0.10 55.8 2250.0 1707.2 64.6 9536.8 326.4

R2 0.01 63.6 2185.0 2404.6 141.2 17,902.0 877.0

0.05 55.0 2220.0 2250.6 120.0 18,576.0 818.0

0.10 55.0 2135.0 2127.6 101.8 18,049.0 913.0

R3 0.01 59.4 2280.0 1797.8 64.8 9524.6 321.2

0.05 55.4 2125.0 1773.4 63.4 9616.0 350.8

0.10 55.0 2125.0 1696.4 65.0 9725.4 347.4

SARSA R1 0.01 57.6 2125.0 1717.8 64.0 8785.2 317.0

0.05 55.4 2125.0 1694.2 66.0 8714.8 316.6

0.10 55.0 2125.0 1683.0 67.0 8841.6 328.4

R2 0.01 55.0 2140.0 1921.0 71.4 10,238.0 408.6

0.05 55.0 2125.0 1852.2 74.8 10,593.0 439.4

0.10 55.0 2125.0 1855.6 76.0 11,467.0 454.6

R3 0.01 58.2 2125.0 1709.2 63.8 8813.0 380.2

0.05 55.6 2125.0 1691.4 67.8 8866.8 401.4

0.10 56.2 2125.0 1685.2 70.0 9037.8 423.6

The best values found are in bold face. SARSA presents a better result in five of the six instances presented
in this table

while esc12 has 14 nodes with an optimal solution of 1675.
Observing the results, for the instance esc12 the combination
SARSA, R1 and ε = 0.01 reached a result of 1683, while
the combination Q-learning, R2 and ε = 0.01 presents an
average of 2404.6. This difference among the results rep-
resents the influence of the definition of the RL parameters
in terms of the solution (distance in the route) of the SOP
instance. In a different way, the majority of best solutions
for br17.10 have approached the optimal value of 55. In gen-
eral, the SARSA algorithm combined with the reinforcement
function R1 presents the best results. Only in the instance
esc63, a slight advantage in the use of Q-learning has been
identified.

4.2.3 Scott–Knott results

For each of the instances (esc25, esc47, esc78, ft53.4, and
rbg109a), which conditions of normality and homoscedas-
ticity have been met, an experiment model was adjusted. It
has been done in a complete factorial scheme, that is, with the
main effects, the double interactions and the triple interac-
tion. Table 7 presents p values of the KS (normality), Levene
(homoscedasticity) and ANOVA tests and the best config-
uration of the Scott–Knott multiple comparison method.
For example, for the instance rbg109a, the normality and
homoscedasticity assumptions were satisfied, because the
results of theKS andLevene tests were 0.71 and 0.47, respec-
tively. In addition, the triple interaction (Alg×R×ε) between
the terms is significant by the ANOVA test (p < 0.05)

for rbg109a. Moreover the Scott-Knott method tuning RL
parameters (SARSA, R3 and ε = 0.10) for rbg109a instance.

In general, the analysis of Table 7 indicates that for
the esc47, esc78, ft53.4, and rbg109a, the triple interaction
between the factors was significant (p < 0.05), while for
the esc25 instance, the double interactions Alg ×R and Alg
× ε were significant. In such cases, where triple or dou-
ble interaction are significant, it is necessary to deploy the
degrees of freedom of a factor within each level of the other
factors, and then perform multiple comparison tests (Scott–
Knott method), in order to investigate which combination of
factors provides the best results. The combination of the fac-
tors that provided the best results is found in the final part of
Table 7. It has been noticed that the SARSA algorithm has
been chosen for all instances. Regarding the reinforcement
function and the ε-greedy method, it is noted that depending
on the analyzed problem, there is a better combination of
these two factors.

4.3 Comparison with other works

In this section, a comparative study of the proposed technique
is performed. Five features are compared: combinatorial opti-
mization problems, instances library, algorithms, tuning RL
parameters, and results analysis. Table 8 presents the com-
parison of this proposal with different works which use
reinforcement learning in combinatorial optimization prob-
lems: I (Gambardella and Dorigo 1995), II (Alipour et al.
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Table 7 p values of the KS,
Levene, and ANOVA tests and
the best configuration of the
Scott–Knott multiple
comparison method

esc25 esc47 esc78 ft53.4 rbg109a

Normality KS 0.31 0.05 0.10 0.33 0.71

Homoscedasticity Levene 0.05 0.05 0.01 0.01 0.47

ANOVA Alg 0.00 0.00 0.00 0.00 0.01

R 0.00 0.00 0.00 0.00 0.00

ε 0.11 0.00 0.00 0.00 0.00

Alg × R 0.00 0.00 0.00 0.00 0.00

Alg × ε 0.00 0.00 0.00 0.00 0.00

R × ε 0.88 0.00 0.03 0.00 0.21

Alg×R× ε 0.24 0.00 0.05 0.00 0.04

Scott–Knott Alg SARSA SARSA SARSA SARSA SARSA

R R2 R1 R2 R1 R3

ε 0.01 0.01 0.01 0.05 0.10

Values in bold face indicate the interaction between the terms is significant

Table 8 Comparison of this proposal with different works that applied reinforcement learning in combinatorial optimization problems: I (Gam-
bardella and Dorigo 1995), II (Alipour et al. 2018), III (Ottoni et al. 2018), IV (Ottoni et al. 2017) and V (Costa et al. 2016)

Problem Proposed I (Gambardella
and Dorigo 1995)

II (Alipour
et al. 2018)

III (Ottoni
et al. 2018)

IV (Ottoni
et al. 2017)

V (Costa
et al. 2016)

SOP TSP TSP TSP MKP K-Server

Instances TSPLIB � � � � – –

Algorithms Q-learning � – – � � �
SARSA � – – � – –

RLSOP � – – – – –

Tuning RL parameters Reinforcement function � � � – – –

ε � – � – – –

α – � � � � –

γ – � – � � –

Analysis ANOVA � � – – – –

Scott–Knott � – – – – –

2018), III (Ottoni et al. 2018), IV (Ottoni et al. 2017) and V
(Costa et al. 2016).

An important contribution of this proposal is the applica-
tion of RL to SOP solution (TSPLIB instances). In previous
works, other combinatorial optimization problems were
adopted, such as travelling salesman problem (TSP) (Gam-
bardella and Dorigo 1995; Alipour et al. 2018; Ottoni
et al. 2018), the multidimensional knapsack problem (MKP)
(Ottoni et al. 2017), and the K-Server Problem (Costa et al.
2016).

Two traditional RL algorithms were adopted in this pro-
posal: Q-learning and SARSA. Among the works presented
in Table 8, only the authors in Ottoni et al. (2018) have also
compared the performances of these two algorithms. In addi-
tion, it is worthmentioning that this work presented amethod
for tuning RL parameters. Other papers also analyzed the
influence of the RL parameters (Gambardella and Dorigo
1995; Alipour et al. 2018; Ottoni et al. 2017, 2018). Never-

theless, they have not applied rigorous statistical techniques
to choose the parameters, as we did in this paper by means
of ANOVA and Scott–Knott method.

5 Conclusion

This paper has addressed the application of RL to solve the
SOP.Using statistical tools, such asANOVAandScott–Knott
method, the RL performance has been analyzed, providing
a rigorous way to choose the best set of parameters. Three
learning specifications have been investigated, namely algo-
rithm type, reinforcement function, and ε parameter.

The novelty of this paper is the algorithm for analysis of
the SOP restrictions of precedence in the RL decision mak-
ing (RLSOP). In addition, a complete factorial experiment
and the Scott–Knott method is then used to find the best
combination of factor levels, when the source of variation
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is statistically different in analysis of variance (ANOVA).
Furthermore, this paper proposes a systematic analysis of
the results composed of: preliminary analysis and tuning RL
parameters (adequacy of themodels, descriptive analysis and
Scott–Knott results).

The results have shown a superiority of SARSA algo-
rithm compared to Q-learning in the resolution of most of
the simulated instances (see Tables 6, 7). The ANOVA and
the Scott–Knott method showed that there is a statistically
significant difference in adopting the SARSA algorithm for
the solution of the esc25, esc47, esc78, ft53.4 and rbg109a.
The method does not suggest a unique best solution for rein-
forcement function or ε-greedymethod. In fact, eachTSPLIB
problem has presented a better combination of these two fac-
tors (see Table 7).

In future works, we intend to analyze the influence of the
learning rate (α) and discount factor (γ ) on the SOP solution
(Ottoni et al. 2018). In addition, the performance of other
RL algorithms and a comparison with traditional optimiza-
tion methods, such as genetic algorithms, ant colony system,
and particle swarm optimization should be also investigated.
It is also intended to propose and analyze RL structures in
the solution of other classical problemsof combinatorial opti-
mization.
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