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a b s t r a c t

The RandomNeural Network (RNN) has extensively investigated over the past few decades; this research
has resulted in a considerable number of theoretical and application papers. Although, great effort has
been done to develop a systematic procedure to train the recurrent fashion of the RNN, the choice of
the number of neurons remains an open question. To overcome this problem, at least partially, this
paper uses multiobjective optimisation (MOP) to select the number of neurons. The MOP framework
used the mean square error (MSE) and the number of neurons (N) as the objectives to be minimised. The
stochastic nondominated algorithm (SNA) to exclude dominated solutions of the Pareto-set has been also
introduced. Instead of using only the best solution, candidates to the Pareto-set are excluded by statistical
comparison among mean values of the two objectives in all training runs. The SNA allows a statistically
correct exclusion of dominated solutions; the best solution can be picked up using classical decision-
making procedures. Numerical and real examples illustrate the potentiality of the proposed method in
two areas: classification problems and system identification.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The Random Neural Network (RNN) is propelled by the spiking
behaviour of the physics of biological processes in a real neuron [1–
3]. Signals propagate between neurons, and enter or leave the
network, both as inhibitory and excitatory spikes of amplitude−1
and+1, respectively. The twomost common topologies of RNN are
multilayer feedforward [4] and recurrent networks (RRNN) [5].

During recent decades, much research has been done on build-
ing up the RNN and on applications in various territories of en-
gineering and science. In [6], a few components that clarify the
accomplishment of the RNN are outlined: (i) it introduces an effec-
tive calculation strategy by means of an analytical equation for its
steady-state probability distribution [6]; (ii) it has low complexity
for standard learning algorithms [7]; (iii) it has a close connection
with biological neuronal network [8]; (iv) and it can serve as a
universal approximation for bounded continuous functions [9].

E-mail address: nepomuceno@ufsj.edu.br.

Probably the most vital uses of the RNN concern on optimisa-
tion [10], detection ofmalicious behaviour inmobile networks [11]
and supervised learning problems [4]. More recently, a new type of
RNN based on Tsallis statistics has been proposed [12]. The reader
can also found an interesting survey on applications of the RNN
in [13]. Very recent works have been published on RNN. For more
information the reader can refer to [14–18].

Although, great effort has been done to develop a systematic
procedure to train the recurrent fashion of the RNN, the choice
of the number of neurons remains an open question. Accord-
ing to [19] there is no endeavour to simultaneously optimise the
weights and the structure of the RNN by means of using a mul-
tiobjective technique [20]. This problem has also been pointed in
works such as [4,21,22]. This reveals a different research stage in
comparison to Multilayer Perceptron, in which there are a consid-
erable number of works that deals with optimisation of topology
and number of neurons [23,24]. The number of neurons for the
hidden layer has been successfully determined using a stochastic
search algorithm for radial basis function neural network in [25].
Innovative methods, such as shark smell optimisation has also
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been considered to increase the performance of structure selection
of neural networks approaches [26]. It is important to point out
that the choice of the number of neurons, although showing some
advance, has been receiving great attention. There are still works
in which the topology is tested by different set of parameters.
This is the case of work done by Ullah et al. [27], wherein a
range of accuracy within 80% and 92% has been obtained sim-
ulating different combinations of training functions and number
of neurons. The choice of number of neurons is still a problem
to be overcome even in control application, such as described
in [28], where the authors use a variable structure neuro fuzzy to
reduce the number of neurons, and consequently heavy complex
computations. Similar worry has been investigated in [29]. The
authors have experimentally observed a reduction of around 40%
in the number of neurons, but keeping the accuracy in 99% of the
original topology. Also, it has been possible to notice in [29], a
significant improvement in the speed of the FPGA which received
the investigated neural network. On the other hand, it is possible to
find recent works where optimisation tools have been efficiently
applied. For instance, the authors in [30] have used genetic algo-
rithm to optimise the results in a deep neural network, where the
number of neurons are the input parameters for the optimisation
tool. Another example of optimised structure can be seen in [31],
where structural parameters, such as the number of neurons are
automatically selected to minimise the prediction error criterion
according to Akaike’s information criterion. Nevertheless, in works
such as in [32], the authors have limited to say that the number
of neurons is proportional to other works in literature. Certainly,
this is a topology that deserves further investigation in this direc-
tion. Moghaddari et al. [33] have adopted similar procedure to find
the best solution, by means a heuristic approach.

To overcome this problem, at least partially, this paper uses
multiobjective optimisation (MOP) to select the number of neurons
for a RRNN. TheMOP framework used themean square error (MSE)
and the number of neurons (N) as the objectives to be minimised.
Numerous works have established valuable procedures to select
structures for neural networks using MOP [34–43]. However, con-
sidering stochastic representations, such as the RRNN, little atten-
tion has been paid for the statistical implications in the stage of
removing dominated solutions. In such situations, the comparison
of two candidates in the Pareto-set using nominal values can be
shown statistically incoherent. The contributions of this paper are
twofold. First, it has been introduced the stochastic nondominated
algorithm (SNA) to exclude dominated solutions of the Pareto-set.
Instead of using only the best solution, candidates to the Pareto-set
are excluded by a comparison of means of the two objectives in all
training runs using statistic test at the 0.05 level of significance.
Second, using the Pareto-set, we present a systematic approach
to select the number of neurons for the RRNN. The best solution
can be picked up using classical decision-making procedures. Here,
three methods to choose the solution among the Pareto-set are
applied: (i) minimum N; (ii) minimum MSE; and (iii) minimum
norm.

The proposed method is applied in four case studies. The first
one is a theoretical and it aims at showing that Pareto-set obtains
the precise number of neurons. Two classification problems and a
system identification for a piecewise nonlinear system complete
the four case studies. In all cases it was possible to present a
Pareto-set and offer a systematic way to evaluating the number
of neurons for the RRNN. To show the run time and standard
deviation properties of the solutions other four classification cases
have been presented.

This paper is organised as follows. In Section 2, the RRNNmodel
is described and the gradient descent learning algorithm is briefly
presented. The MOP is defined in Section 3, where the SNA is
detailed. The steps of the algorithm to select the number of neurons
in the RRNN is given in Section 4. Lastly, the results are discussed
in Section 5 and final remarks are presented in Section 6.

2. The RRNNmodel

In this section, the RRNNmodel based on [1,5,6,44] is described.
The RRNN is a recurrent network of N completely associated neu-
rons which exchange negative and positive impulse signals. When-
ever t , the signal potential ki(t) represents the state of neuron i. If
ki(t) > 0, then a neuron is excited and its excitation probability is
qi(t) = Pr[ki(t) > 0] ≤ 1.

At the point when a neuron is excited, it can arbitrarily fire
as indicated by the exponential distribution with rate ri bringing
about the lessening of its potential by 1. The let go spike may carry
on in three distinctive ways. It might achieve another neuron as
a negative flag with probability p−(i, j), or as positive flag with
probability p+(i, j), or it leaves from the network with probability
ℓ(i).

Consider k(t) = [ki(t), . . . , kn(t)] be the array of signal po-
tentials at time t , and k = (ki, . . . , kn) be a specific value of the
vector. p(k) is the steady state probability distribution p(k) =
limt→∞ Pr[k(t) = k], which must be in accordance with global
balance equations:

p(k)
N∑
i=1

[Φ(i)+ [φ(i)+ r(i)]1{ki>0}]

=

N∑
i=1

{p(k+i )r(i)ℓ(i)+ p(k−i )Φ(i)1{ki>0} (1)

+ p(k+i )φ(i)+
N∑
j=1

[p(k+−ij )r(i)p+ (i, j)1{kj>0}

+ p(k++ij )r(i)p−(i, j)+ p(k+i )r(i)p
−(i, j)1{kj=0}]}

The Eq. (1) has been solved in [1],

p(k) =
N∏
i=1

[1− qi]q
ki
i (2)

where

qi =
φ+(i)

r(i)+ φ−(i)
(3)

and φ+(i), φ−(i) for i = 1, . . . ,N fulfil the next system of nonlinear
equations:

φ+(i) =
N∑
j=1

qjr(j)p+(j, i)+Φ(i),

φ−(i) =
N∑
j=1

qjr(j)p+(j, i)+ φ(i) (4)

Let the next rates:

w+(i, j) = rip+(i, j) (5)
w−(i, j) = rip−(i, j). (6)

Furthermore, from Eqs. (5)–(6) and considering that the total
of the three probabilities for all j neurons is 1, the accompanying
expression for ri is determined:

ri = (1− ℓ(i))−1
N∑
j=1

[w+(i, j)+ w−(i, j)]. (7)

Positive and negative signals can also arrive from the outside
world according to Poisson processes of rates Φi and φi, respec-
tively. Each neuron accumulates signals as they arrive, and fires if
its total signal count at a given instant of time is positive.
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2.1. The RRNN learning process

The author of [5] has formulated a gradient descent supervised
learning algorithm for the RRNN. In the RRNN, the mth input data
x⃗m is described by the vectors Φ⃗ = [Φm1, . . . , ΦmN ] and φ⃗ =

[φm1, . . . , φmN ]. The technique to attribute the input to exogenic
rates is detailed in [6].

The output of the mth pattern, y⃗m are described by the station-
ary excitation probabilities of the neurons q⃗m = [qm1, . . . , qmN ]

evaluated from employing input training pattern m to the RRNN.
The learning method comprises in updating the RRNN weights
w+(i, j) ∈ RN×N and w−(i, j) ∈ RN×N . On the other hand in a more
broad manner, it comprises in updating the matrix W ∈ R2N×N ,
such that

W =
[

w+(i, j)
w−(i, j)

]
(8)

3. Multiobjective optimisation

According to [45], the multiobjective optimisation problem
(MOP) may be defined as:

minimise f⃗ (κ⃗) =

⎡⎢⎢⎣
f1(κ1, κ2, . . . , κn)
f2(κ1, κ2, . . . , κn)

...

fA(κ1, κ2, . . . , κn)

⎤⎥⎥⎦ (9)

subject to κ⃗ ∈ Ω,

where f⃗ : Rn
→ RA and Ω ⊂ Rn is the constraint set.

Consider the definition presented in [46]

Definition 3.1. Let f⃗ : Rn
→ RA and κ⃗ ∈ Ω be given. For the

optimisation problem

minimise f⃗ (κ⃗)
subject to κ⃗ ∈ Ω

a point κ⃗∗ ∈ Ω is called a Pareto minimiser or nondominated
solution if there is no κ⃗ ∈ Ω such that f⃗ (κ⃗) ≤ f⃗ (κ⃗∗) and f⃗ (κ⃗) ̸=
f⃗ (κ⃗∗). ■

Therefore, if there is no other κ⃗ ∈ Ω that diminishes other
objectives without a simultaneous increase in at least one other
variable, then κ⃗∗ is a Pareto minimiser. The set of κ⃗∗ is nominated
the Pareto-set (P) [45]. LetΥ be defined as objective function space
of the Pareto-set, such that f⃗ : P → Υ . A multiobjective function
specifies to each variable κ⃗ a multiobjective vector function value
in the objective function space. In general, the MOP are applied to
nonconvex problems, which show local solutions. The following
definition in such case is useful:

Definition 3.2. A solution κ⃗ℓ is a local Pareto minimiser in a region
N (κ⃗ℓ, δ) ⊂ Ω if exists δ > 0 and there is no exist any other solution
κ⃗ ∈ N (κ⃗ℓ, δ) such that for f⃗ (κ⃗) ≤ f⃗ (κ⃗ℓ) and f⃗ (κ⃗) ̸= f⃗ (κ⃗ℓ). ■

The main concern of a MOP is to estimate the Pareto-set [47,
48]. The determination of the Pareto-set is usually undertaken by
means of finding a subset of nondominated solutions of all local
Pareto-set. The choice of a unique solution ofP ismade by a decision
maker (DM) [48]. This technique is denominated decision-making
task.

As mentioned, a MOP solution uses a stochastic optimisation
process. In such situation, each point of Pareto-set is a vector of
solutions, as the optimisation procedure runs several times. Let the
following definition for a biobjective case of N and MSE, which
describes a procedure to exclude dominated solutions for such
case.

Table 1
Exclusion of dominated solutions. Applying the concept of stochastic nondominated
described in Definition 3.3, only solutions A and D are stochastic nondominated.
Solution Neuron Mean Runs

1 2 3 4 5

A 2 0.100 0.10 0.09 0.08 0.11 0.12
B 3 0.094 0.09 0.08 0.07 0.11 0.12
C 4 0.130 0.11 0.15 0.14 0.12 0.13
D 5 0.014 0.01 0.02 0.01 0.01 0.02

Fig. 1. Solutions of hypothetical biobjective problem. The objectives are number
of neurons and mean of MSE. In general, only solution C would be excluded.
Following Definition 3.3 stochastic nondominated solution, the solution B is also
excluded. Thus, the Pareto-set contains solutions A and D.

Definition 3.3 (Stochastic Nondominated). Consider a pair of solu-
tions in objective function space given by (f1i, f̄2i), where f1i isN and
f̄2i is mean value of MSE for all runs of gradient descent simulation.
If one of the following conditions is satisfied, then a ith solution is
excluded.

(a) It exists at least one pair (f1j, f̄2j), with j ̸= i that f1j < f1i,
f̄2j < f̄2i and f̄2j ̸= f̄2i at the 0.05 level of significance.

(b) It exists at least one f1j with j ̸= i that f1j < f1i and f̄2j = f̄2i
at the 0.05 level of significance.

Table 1 shows an example of the application of this definition.
In this hypothetical Pareto-set, for each number of neurons N =
[2; 3; 4; 5] there are 5 runs ofMSE. Themean ofMSEwas presented
in the third column. In the definition of dominance described
in [36], only the solution C would be excluded. Nevertheless, let
us suppose that the mean of solutions A and B are equal. Using a p-
value of 0.05. These tests have beenperformed in the free statistical
package PSPP.1 The two tailed significance for the MSE is 0.621. As
this is greater than 0.05 we must reject the null hypothesis and
conclude that there is insufficient evidence to indicate that the
mean of solution A and B are different. Thus, the solution B should
be also excluded, and according toDefinition 3.3, only the solutions
A and D belongs to Pareto-set. For the sake of clarity the solutions
are also shown in Fig. 1. Solutions B and C are excluded from the
Pareto-set.

4. Structure optimisation of the RRNN

In this section, the structure optimisation algorithm of the
RRNN is presented. In general terms, the algorithm consist of

1 http://www.gnu.org/software/pspp/.

http://www.gnu.org/software/pspp/
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minimising simultaneously two functions: mean square error and
number of neurons as stated in the following equations

minimise
W

⎧⎪⎨⎪⎩f1 =
1
2

M∑
m=1

N∑
i=1

ci(gi(qi,m)− yi,m)2

f2 = N

subject to [W ,N] ∈ Ω, (10)

where f1 is the error function formth input–output pair, ci ∈ {0, 1},
gi is a differentiable function of neuron i and f2 is the number of
neurons.

4.1. Steps of the algorithm

Here, the steps for the structure optimisation algorithm are
summarised as follows:

(1) Initialise the matrices W and define minimum and maximum
values of N. The initiation of W is made at random among
non-negative matrices. The learning rate is empirically cho-
sen as η = 0.1 for all simulations. The minimum value of N
should reckon of the number of inputs/outputs.

(2) Define stop criteria. In this paper, the tolerance of MSE and a
maximum number of interactions are defined as stop crite-
ria. For all simulations, themaximumnumber of interactions
is 600. For each case study, an appropriate tolerance forMSE
has been defined.

(3) Perform an optimisation process to find a Pareto-set. This step
consist in a MOP, in which may be solved by several forms
[48]. In this approach, the gradient descent method with
multiple initial conditions has been adopted. In this method
the system is initiated in different areas of parameter space.
As the system is nonconvex, it is possible to achieve a sub-
optimal solution. We proceed in such way for each value of
N in a predefined range in step 2.

(4) Stochastic nondominated exclusion. As the system is noncon-
vex and there is no guarantee of global solution, dominated
solutions should be removed. Here, as for each N there is a
vector of values forMSE, it has been developed a comparison
regarding the mean values of such vectors. Moreover, the
claim that twomeans of MSE vectors are or are not different
have been also tested [49]. This procedure is undertaken as
stated in Definition 3.3.

(5) Apply a decision-making task. In this work, three strategies
to choose the most suitable solution from a Pareto-set have
been investigated. The first procedure stresses theminimum
size of the network, that is, the solution of the Pareto-set
chosen will be that one which presents the minimum value
of N . This may be suitable for implementations of RRNN
in hardware in which the number of variables may be a
constraint. The second possible solution relies on minimum
of mean square error. In this case, it is stressed the fitness to
system. Finally, the solution may be chosen as a Euclidean
norm of the two objectives. Objective function has been
normalised into a scale of 0 to 1. This solution represents
the minimum distance to utopian solution, that is a solution
which minimises both f1 and f2. This may be used in occa-
sions that the user should consider the complexity and the
fitness of the RRNN simultaneously.

The pseudocode of this algorithm is presented in Algorithm
1. This algorithm was implemented in Matlab R2017a using a
modified version of toolbox proposed in [50]. All simulations have

been performed in a computer withWindows 8, Intel Core i5, RAM
8 GB, 64-Bits.

Algorithm 1: Pseudocode of the structure optimisation of the
RRNN following the steps described in Section 4.1, which are
emphasised in bold face. B and M are the number Pareto
candidates and number of input/output pairs. W ∗ is the best
solution according a decision criteria, which is identified by
the operator DM(·). See [44] for a complete description of
Multiobjective learning algorithm using the gradient method.
1 /* Step 1 */
Input : Define the minimum and maximum values of N

Set the learning rate µ← 0.1 (default)
Set the maximum number of interactions

τmax ← 600 (default)
Set the tolerance tol for each case study
Load training and validation data

2 for b← 1 to B do
3 /* Step 2 */
4 Initialise randomly the matrixW defined by Eq. (8)
5 τ ← 1
6 while (stop) do
7 /* Step 3 */
8 for m← 1 toM do
9 ∆b,0 ← 0

10 for a← 1 to A do

11 ∆b,a ← ∆b,a−1 +Θb,a
∂ fa
∂W

12 end
13 Wb,τ+1 ← Wb,τ − η∆b,a

14 end
15 τ = τ + 1
16 if (τ > τmax or MSE < tol then
17 stop← true
18 end
19 Pℓ

b ← Wb,τ+1

20 Ψ ℓ
b ← f⃗ (Wb,τ+1)

21 end
22 /* Step 4 */
23 β ← [ ]

24 for b← 1 to B do
25 if nand

(
Ψ ℓ(b, 1) > Ψ ℓ(:, 1), · · · , Ψ ℓ(b, A) > Ψ ℓ(:, A)

)
then

26 β ← [β b]
27 end
28 end
29 P ← Pℓ(:, :, β)
30 /* Step 5 */
31 Decision-making task:W ∗ ← DM(P)
32 end

Output: Chosen number (N) of Neurons and respective MSE
WeightsW ∗ for the selected RNNN.

5. Case studies

In this section, four case studies illustrate the potentiality of
the proposed method. For each value of N the optimal solution
following the gradient descent with random initial condition was
undertaken. The vertical bars represent one standard deviation,
which means that 95% of solutions are expected to be inside this
range. These results have presented in general a standard deviation
for the solutions less than 2%. To present more comparisons with
the proposed technique, other four classification cases have been
presented in Section 5.5.
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Fig. 2. Input and output of the RRNN system. The RRNN contains 14 neurons. Input
is applied in first three neurons and output is collected from the 14th neuron.

5.1. The RRNN system

This theoretical case study aims at showing the property of
the proposed method in producing the Pareto-set with optimal
solution. This system has been designed with three inputs and one
output. The RRNN contains 14 neurons and weights of the RRNN
were generated arbitrary following a uniform distribution ranging
from 0 to 0.2. The input consists of random values of +1 and −1
as shown in Fig. 2. The three inputs are applied in the first three
neurons. It has been used 32 samples of the input. The output
collected from 14th neuron of the RRNN is shown in Fig. 3. For this
case, a range from 4 to 24 neurons has been examined. Applying
the concept of stochastic nondominated (Definition 3.3), only two
values of neurons were considered nondominated: 4 and 14. As
one can see, if only the mean is compared, the Pareto-set would
also include numbers 5 and 13. However, as these means do not
present significant difference compared with other means in this
set, the values with lower number of neurons were considered. It
is important to emphasise that the precise number, that is 14, was
obtained by our method, which suggests an interesting behaviour
of the RRNN. Other feature is related to choose of the minimum
number of neurons. Thatmay indicate the ability of RRNN to repre-
sent a system using minimum information. Finally, the behaviour
ofMSE according to number of neurons can be used to design some
policy in situations where resilience is required, for instance, in a
real application, if one of the neurons is disconnected, according
to Fig. 3, it could be better to reduce the number of neurons from
13 to 4, which is not an obvious policy. Moreover, it suggests the
optimal N has the minimum value of MSE.

5.2. Diabetes classification

The Diabetes dataset was obtained from Proben1 [51]. This
consist of 8 inputs settled on personal data and medical exami-
nations. The output 1 or 0 indicates if the individual is diabetes
positive or not, respectively. The original dataset is composed of
768 examples. In this study, 70 examples were used for training
and 192 examples for validation. In this case, only the minimum

Fig. 3. The RNN system. Tolerance 0.0010. The x-axis represents the number of
neurons N and the y-axis represents the mean square error (MSE) of training. The
solutions marked with ◦ are the final solutions belonged to the Pareto-set.

structure possible, that is, with 9 neurons (one for output and eight
for inputs) was chosen to Pareto-set, as seen in Fig. 4. Values of
N was from 9 to 20. This best solution presents a MSE of 0.219
and regarding its capacity to classify, it was observed that for a
different set of examples, the error of classification was 25.3%. This
result is close to values obtained by [52], where the authors found
21.8% and 25.8% for Backpropagation and Levenberg–Marquardt
respectively.

5.3. Liver disorder classification

The liver disorder classification is based on dataset from Irvine
Machine Learning Database Repository called BUPA Liver Disor-
ders. It comprises in 345 data points with 6 features [53]. The first
five variables are blood clinical exams related to alcohol consump-
tion. The sixth variable measures the number of alcohol drinks per
day. The first 50 points have been used to train and the following
50 points to validate.

This case has been investigated using values ofN from7 to 26. In
this case, only the first value was pointed out as a ParetoMinimise.
It can be seen in Fig. 5 Values of MSE stayed in a close range. As
a consequence, there was no significant difference between the
mean of MSE vectors of the chosen result and other solutions.
Comparing to published solution, this method achieved an error of
26.19%, while in the authors in [19] has achieved 35%. In both two
cases of classification, this method was suitable to point out the
minimum feasible number of N as the best solution for the RRNN.

5.4. Function approximation

The fourth case study is piecewise function described as in
Eq. (11). For this single-input and single-output system we have
used 25 examples.

f (x) =
{

0.25x if 0 ≤ x < 0.5
0.75x if 0.5 ≤ x ≤ 1 (11)
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Fig. 4. Diabetes Classification. Tolerance 0.5000. The x-axis represents the number
of neuronsN and the y-axis represents themean square error (MSE) of training. The
solutions marked with ◦ are the final solutions belonged to the Pareto-set.

The fourth example was piecewise function. In this case, the
Pareto-set was presented with three solutions, as shown in Fig. 6.
N = 2 represents the solution in which decision-making task
applies the minimum value for N as criteria. If one applied the
minimum value for MSE, the best solution would be N = 4, while
the N = 3 is the best solution for the case that Euclidean norm of
the normalised objective functions is considered as criteria.

5.5. Additional examples

In this section, a comparison of the proposed RRNN with other
techniques in the literature to classify patterns has been presented.
We have presented four cases for classification, which results are
summarised in Table 2. TheGlass Identification presents 7 different
values for the output and other three are binary classification. The
second method of the decision making, that is, the minimum of
MSE, has been adopted to chose the best solution.

Three cases presented performance similar with values in the
literature. The exception is for the Breast Cancer Ljubljana, which
ourmethodhas presented significant higher error. For this case, the
level of 33% is not so different from the majority of results found
in many works as reported by Dr. Duch2 which is reported as 30%.
Nevertheless, one of the reasons that it is possible to explain such
difference is the fact that this is the unique dataset with missing
values. This fact is certainly a feature that deserves more attention
in future investigations. Here in this section, we have also reported
the Liver Disorder, but now we have followed the same number of
training data and test data as in [54]. It was possible to obtain a
slight different value, but inferior to that presented in Section 5.3.
This is another feature that should be analysed, that is the impact
of the number of sample for the training and test. It has also been
shown theRunTime for training the best solution. TheRRNN is very
sensitive to the number of attributes. With 34 attributes, the Johns
Hopkins Ionosphere dataset has spent the longest time, compared

2 See more details in http://www.is.umk.pl/~duch/projects/projects/datasets.
html.

Fig. 5. Liver Disorder Classification. Tolerance 0.100. The x-axis represents the
number of neurons N and the y-axis represents the mean square error (MSE) of
training. The solutionsmarkedwith ◦ are the final solutions belonged to the Pareto-
set.

Fig. 6. Function Approximation. Tolerance 0.0001. The x-axis represents the num-
ber of neurons N and the y-axis represents themean square error (MSE) of training.
The solutions marked with ◦ are the final solutions belonged to the Pareto-set.

to the Glass Identification dataset (10 attributes), which was 8
times less.

6. Final remarks

This paper presents a novel method for structure selection of
the RRNN using the MOP. This method aims at finding solutions
in the Pareto-set based on two objectives, namely the number of
neurons and the means square error (MSE). Usually, the exclusion

http://www.is.umk.pl/~duch/projects/projects/datasets.html
http://www.is.umk.pl/~duch/projects/projects/datasets.html


E.G. Nepomuceno / Applied Soft Computing Journal 76 (2019) 607–614 613

Table 2
Comparison of the proposed technique. It has been compared the classification
accuracy of the Back Propagation Neural Network (BPNN) as proposed regarding
the Ref. [54]. It has been presented the average and standard deviation of error and
run time of the best solution.
Dataset Literature This paper

Error (%) Ref. Error (%) Run time (s)

Avg. Std. Avg. Std.

Johns Hopkins Ionosphere 9.7 [55] 8.9 0.8 256.5 32.9
Glass Identification 6.7 [56] 7.6 1.5 29.3 3.6
Breast Cancer Ljubljana 22.0 [57] 34.0 0.7 59.5 15.7
Liver Disorder 30.0 [54] 34.1 1.4 131.6 86.1

of dominated solutions in the Pareto-set has been addressed by the
concept of dominance as described in [36]. However, this approach
is not always suitable for situations, wherein the outcomes are
stochastic, such as in the RRNN. To deal with the stochastic nature
of the RRNN, the concept of stochastic nondominated has been
introduced, which allows the exclusion of solution using statistical
properties.

The results provide compelling evidence that the MOP is useful
to replace heuristic approaches to choose the number of neurons
for RRNN. The proposed technique has been applied in four exam-
ples. In the first case,we showed that thismethod is able to identify
a Pareto-set in which the precise solution is present. Although, this
example is a hypothetical one, it has been important to stress the
ability of the technique to find the optimum number of neurons
in a priori known scenario. This is not the common background,
and thus, the other three cases were investigated to select the
number of neurons, in which the best number of neurons are
unknown. The two classification problems have shown the ability
of MOP to provide a good number of neurons, which presents
similar classification error when compared with other works in
literature. It is important to stress that these examples present
mean square error quite high. As the results are comparable with
others in literature, it suggests that the independent variables are
limited to a better explanation of the outcome. In fact, dealingwith
real data and in situations, such as diseases, this results are in good
agreement with those found in literature. Durairaj and Kalaiselvi
[58] have surveyed four different datamining algorithms. The error
of classification ranges from 11% to 25% . In the fourth example, the
RRNN has been applied to identify a system, a piecewise function,
in which the Pareto-set presents three nondominated solutions.
The choice of the best solution in this case, as well in the previous
classification problems, can be easily obtained using a decision-
making task described in Section 4.1. classification problems have
shown the ability of MOP to provide a good number of neurons,
which presents similar classification error when compared with
other works in literature. It is important to stress that these ex-
amples present mean square error quite high. As the results are
comparable with others in literature, it suggests that the indepen-
dent variables are limited to a better explanation of the outcome. In
fact, dealing with real data and in situations, such as diseases, this
results are in good agreement with those found in literature. Du-
rairaj and Kalaiselvi [58] have surveyed four different data mining
algorithms. The error of classification ranges from 11% to 25% . In
the fourth example, the RRNN has been applied to identify a sys-
tem, a piecewise function, in which the Pareto-set presents three
nondominated solutions. The choice of the best solution in this
case, as well in the previous classification problems, can be easily
obtained using a decision-making task described in Section 4.1.

Four additional classification cases have been investigated. The
proposed technique has obtained comparable results in three of
these four cases. Only in one case, Breast Cancer Ljubljana dataset
the result has been distant from the best known outcome. Never-
theless, in this case, it has been possible to obtain results close to

the average of other techniques (34% compared to the average of
30%). This dataset presentsmissing values,which can be inferred as
one of the factors to explain the difference between these results.
This fact should be investigated in a future work.

In this work, the learning process has been carried by means of
adapted gradient optimisation method. It seems clear that future
work should address multiobjective evolutionary algorithm [40,
59] to obtain the Pareto-set.Moreover, the influence of the number
of samples and the number of attributes should be also examined
as it presents an important factor to explain the increasing of run
time.
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